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Abstract
Pulsars exhibit signals with precise inter-arrival times that are on the order of milliseconds to seconds depending on the individual pulsar. There
is subtle variation in the timing of pulsar signals, primarily due to the presence of gravitational waves, intrinsic variance in the period of the
pulsar, and errors in the realization of Terrestrial Time (TT). Traditionally, these variations are dismissed as noise in high-precision timing
experiments. In this paper, we show that these variations serve as a natural entropy source for the creation of Random Number Generators
(RNG). We also explore the effects of using randomness extractors to increase the entropy of random bits extracted from Pulsar timing data. To
evaluate the quality of the Pulsar RNG, we model its entropy as a k-source and use well-known cryptographic results to show its closeness to a
theoretically ideal uniformly random source. To remain consistent with prior work, we also show that the Pulsar RNG passes well-known
statistical tests such as the NIST test suite.
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1. Introduction
Random number generators (RNGs) are a fundamental part
of modern cryptography (Katz & Lindell, 2014). They can
be used to implement provably secure secret-key encryption
schemes (Katz & Lindell, 2014; Pass & Shelat, 2010), digital
signature schemes (Katz & Lindell, 2014), and the key genera-
tion step of public-key encryption schemes such as RSA (Rivest
et al., 1978) and ElGamal (1985). True Random Number Gen-
erators (TRNGS) use noise in physical processes as a source of
randomness. As an example, Intel’s TRNG uses Johnson noise
in resistors (Jun & Kocher, 1999). Pseudo-Random Number
Generators (PRNGs) are initialized with a seed and use algo-
rithms to produce numbers that seem random to adversaries
that do not know the seed and are restricted to performing
all their computations in probabilistic polynomial time Pass
& Shelat (2010). The initial seed of a PRNG may be derived
from a TRNG. Prior work on extracting randomness from
astrophysical sources includes, in chronological order, hot pix-
els in astronomical imaging (Pimbblet & Bulmer, 2005), radio
astronomy signal data noise (Chapman et al., 2016), cosmic mi-
crowave background radiation spectra (Lee & Cleaver, 2017),
cosmic photon arrival times (Wu et al., 2017), and intrinsic
flux density distribution of single pulsars (Dawson et al., 2022).
Using a pulsar’s flux density fluctuations as an entropy source
has certain complicating factors including interstellar scintil-
lation and instrumental noise such as unique Gaussian noise
added by a telescope (Dawson et al., 2022).

Pulsar timing variations provide an alternative entropy
source that is structured yet unpredictable. Since timing vari-
ations rely on the precise arrival times of pulsar signals in-
stead of their observed intensity, they are comparatively less
affected by interstellar scintillation. The periodic nature of
pulsar signals (Hobbs et al., 2019) allows for a well-defined
baseline against which small, astrophysical variations introduce
entropy in a measurable and reproducible way (Hobbs et al.,

2010). Timing measurements are also inherently less sensitive
to instrumental noise than flux density measurements for pul-
sars. To the best of our knowledge, this paper is the first to
investigate the variation in inter-arrival times of pulsar signals
as a novel entropy source for cryptographic random number
generation. Prior work on random number generation from
astrophysical sources notably including Dawson et al. (2022)
and Pimbblet & Bulmer (2005) has relied primarily on black-
box statistical testing to evaluate randomness quality. There
are well-known concerns (Saarinen, 2022) with relying solely
on such statistical tests without a proper theoretical analysis
of the entropy source. In fact, the statistical tests endorsed by
NIST can be passed even by weak PRNGs (Saarinen, 2022).
Unlike prior work, our work also includes a theoretical analysis
using known cryptographic techniques to complement our
empirical findings.

The rest of this paper is structured as follows. In Sec-
tion 2, we create a Pulsar RNG from observational data from
two sources: the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) (Matthews et al., 2016) and
the European Pulsar Timing Array (EPTA) (EPTA et al., 2024).
Section 3 evaluates the Pulsar RNG using a cryptographic anal-
ysis and statistical tests. Section 4 provides discussion relevant
to the viability of the Pulsar RNG.

2. Generating Random Bits

We use measurement data from two pulsars, PSR J0030+0451
and PSR J1918-0642. These two pulsars are present in both
the NANOGrav 9-year dataset release (Jun & Kocher, 1999)
and the EPTA DR2 dataset release (EPTA et al., 2024). Our
Pulsar RNG extracts timing residuals from these datasets using
PINT (Luo et al., 2021) v1.1.1. Let L be the list of pulsar resid-
uals where Li is the ith element. We first normalize the residual
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Figure 1. Timing Variations in µs for the J0030+0451 and J1918-0642 pulsars with Modified Julian Date (MJD) and Year plotted on the x axis

values to create list N in the usual way (Ni = Li–min(L)
max(L)–min(L) ).

We then investigate three quantification techniques on the list
N to convert it to a list of random bits R.

1. A simple threshold: Ri = 1 if Ni ≥ 0.5, otherwise Ri = 0
2. 8-bit Gray coding (Doran, 2007)
3. Using the 8-bit Gray coded value as a seed for a SHA-512

hash (Penard & Van Werkhoven, 2008)

Figure 2 shows the measured dataset entropy in bits per
byte of these three quantification methods. Note that by entropy
throughout this paper we mean information entropy, also
known as Shannon entropy. We measure all dataset entropy
results in this paper using the ent tool (Walker, 2008).

Using threshold as a quantification method requires a care-
ful choice of where to put the threshold based on each dis-
tribution. Our method of uniformly using τ = 0.5 as the
threshold provides vastly different results for, as an example,
the PSR J1918-0642 data on the EPTA dataset as opposed to
the NANOGrav dataset. This is due to τ = 0.5 not providing
an equal direction of the EPTA data. This can be verified
in Figure 3 which shows normalized residuals (N) for both
datasets. Notice that while the points on the NANOGrav data
are roughly equally divided by a cutoff line at 0.5 (marked by
a dotted line in the figure), most points in the EPTA dataset
are below 0.5.

We next investigate the effect of three different randomness
extractors on our results. Randomness Extractors are functions
that take as input 1) a comparatively small uniformly-random

Threshold 8-bit Gray Coding SHA-5120
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Figure 2. Entropy of Different Quantification Methods for 2 Pulsars across
EPTA and NANOGrav data

seed and 2) a comparatively weak entropy source, for example,
radioactive decay (Walker, 2001) or in our case Pulsar tim-
ing variation. Randomness Extractors output random bits that
appear to computationally bound adversaries as being indepen-
dent from the input entropy source and uniformly randomly
distributed. Note that prior astrophysics-based RNG papers
including Pimbblet & Bulmer (2005) refer to randomness ex-
tractors as debiasing or deskewing algorithms. We test two
simple ad hoc randomness extractors, XOR-ing several subse-
quent bits (Stipčević & Koç, 2014) and Von Neumann (1963).
We also test a Randomness extractor based on SHAKE-256
from the SHA-3 family of cryptographic hash functions. Fig-
ure 4 shows our results. While using a cryptographic hash
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Figure 3. Normalized PSR J1918-0642 residuals on EPTA data (above) and
NANOGrav data (below).

yields the highest entropy, it is interesting to note that even
an ad-hoc random extractor like Von Neumann provides con-
siderable entropy gains.

None XOR Von Neumann SHAKE-2560
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Figure 4. Entropy for different randomness extractors on data from PSR
J0030+0451 (EPTA).

3. Evaluation
A strict mathematical proof of absolute randomness is consid-
ered impossible (Stipčević & Koç, 2014). To analyze TRNGs,
we must rely on assumptions based on the fundamental postu-
lates of physics (Stipčević & Koç, 2014) in combination with
our mathematical analysis. We define randomness extractors
and k-sources using standard cryptographic definitions (See
Appendix 1 for details). We use our definitions to show the suit-
ability of Pulsar RNG under a reasonable physical assumption.
We assume that pulsar timing variations exhibit non-trivial
entropy and can be modeled as a k-source (Assumption 1).

From a theoretical standpoint, this assumption aligns with
existing stochastic models Antonelli et al. (2023) of pulsar tim-
ing variations due to non-deterministic phenomena such as
glitches (Zubieta, E. et al., 2024), as well as the presence of
Gravitational Waves (Agazie et al., 2023).

We also empirically verify our assumption based on Pulsar
data from NANOGrav and EPTA. We show our empirical
results in Table 1. We generate binary arrays from 10 differ-
ent Pulsars, 5 in the NANOGrav dataset and 5 in the EPTA
dataset respectively. Then we measure the min-entropy (Def-
inition 3) of generated binary arrays in units of bits per bit.
By a non-trivial min-entropy, we mean a min-entropy value
significantly larger than 0. By definition, the min-entropy
over a binary array will be in the range [0, 1] in bits per bit.
We rely on the 8-bit Gray coding method for quantification
that we discussed in Section 2.

Table 1. Empirical results validating non-trivial (significantly larger than 0)
min-entropy for 10 pulsars, 5 from NANOGrav and 5 from EPTA. Note that the
maximum possible min-entropy is 1.

Pulsar Dataset Min Entropy (bits per bit)

PSR J0030+0451 EPTA 0.974
PSR J1918-0642 EPTA 0.826
PSR J2124-3358 EPTA 0.801
PSR J1843-1113 EPTA 0.911
PSR J2322+2057 EPTA 0.699
PSR J1832-0836 NANOGrav 0.679
PSR J2302+4442 NANOGrav 0.909
PSR J0030+0451 NANOGrav 0.882
PSR J1918-0642 NANOGrav 0.739
PSR J1012+5307 NANOGrav 0.798

3.1 Cryptographic Guarantees
We show that our Pulsar RNG satisfies the conditions of a
strong extractor under the Leftover Hash Lemma. Random-
ness extractors are cryptographic primitives that can transform
an entropy source with bias into a (in practice) uniformly ran-
dom distribution. The Leftover Hash Lemma formally proves
that a universal hashing family can extract nearly uniform bits
from a k-source. For the hash function that performs this de-
biasing in Pulsar RNG, we use SHAKE-256 from the SHA-3
family of cryptographic hash functions. The formal proof is
provided in Appendix 1. Informally, this result implies that
random bits generated by Pulsar RNGs are statistically close
to random bits sampled from some ideal uniformly random
distribution. More precisely, the statistical distance between
the output of Pulsar RNG and a uniformly random distribution
is bounded by a suitable ε.

3.2 Statistical Tests
Previous analyses of RNGs derived from astrophysical sources
rely on black-box statistical tests such as the NIST SP800-22b
test (Bassham III et al., 2010), ent (Walker, 2008), diehard,
and dieharder (Brown et al., 2018). In Section 3.2, we show
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that our Pulsar RNG performs well when evaluated using such
statistical tests and provide a discussion regarding debiasing
and mixing methods. We note, however, that presenting re-
sults for these black-box statistical tests as sole evidence for
the suitability of cryptographic RNGs is inaccurate (Saarinen,
2022). Even weak (insecure) PRNGs can pass these tests (Saari-
nen, 2022). Therefore, we recommend using our statistical
test results only as complementary evidence to our theoretical
claims. We show NIST SP800-22b results for the complete
version of our Pulsar RNG, including SHA-512 quantification
and SHAKE-256 randomness extraction, on the NIST Statis-
tical Testing suite. We test 1 million generated bits evaluated
as 10 bitstreams of 100K bits each. Table 2 shows the results
for PST J0030+0451 on EPTA Data.

Table 2. Statistical Test Results for Pulsar RNG on PSR J0030+0451 (EPTA).

NIST test Proportion P-value Pass

Frequency 10/10 0.911413 Y
BlockFrequency 10/10 0.911413 Y
CumulativeSums 10/10 0.534146 Y
Runs 10/10 0.213309 Y
LongestRun 10/10 0.534146 Y
Rank 10/10 0.534146 Y
FFT 10/10 0.534146 Y
ApproximateEntropy 10/10 0.122325 Y
Serial 10/10 0.017912 Y
LinearComplexity 10/10 0.004301 Y

The Pulsar RNG passes all tests in NIST SP800-22b. NIST
SP800-22b compares a given bit stream to the null hypothesis
of a uniformly random distribution of binary bits (Dawson
et al., 2022). The frequency test checks the fraction of 0s
and 1s in the bit stream. The block frequency test checks
the same fraction but for segments or blocks of the bit stream.
The cumulative sum test checks whether the cumulative sum
of the bits in the bit stream follows a random walk. The
runs test checks the maximum length of consecutive 0s or
1s. The longest runs of ones test checks the maximum length
of consecutive 1s in blocks of the bit stream. The Fast Fourier
Transform (Heideman et al., 1984) test, FFT for short, checks
if there are any repeating patterns in the bit stream. The
Approximate Entropy test checks the frequency of all possible
overlapping m-bit patterns across the entire sequence. The
Serial test focuses on the frequency of all possible overlapping
m-bit patterns in the bit stream. Lastly, the Linear Complexity
test focuses on the length of a linear feedback shift register
(LFSR) to determine whether or not the sequence is complex
enough to be considered random (Bassham III et al., 2010).

4. Discussion

We have demonstrated the viability of pulsar timing varia-
tions as an entropy source for RNGs. Theoretically, we have
proved the existence of pulsar-based strong randomness extrac-
tors based on reasonable physical assumptions. Experimentally,

we have verified the quality of our Pulsar RNG using var-
ious standard statistical tests. When compared to TRNGs
based on noise in electronic devices, such as Johnson noise
in resistors (Tyson, 2013), Pulsar RNGs are immune to lo-
cal temperature fluctuations and other local environmental
factors. Pulsar timing variation data is also publicly available
from many sources including the North American Nanohertz
Observatory for Gravitational Waves (Agazie et al., 2023), the
European Pulsar Timing Array (EPTA et al., 2024), the Chi-
nese Pulsar Timing Array Xu et al. (2023), and the Parkes
Pulsar Timing Array (Manchester et al., 2013) in Australia.
Unlike most Quantum RNGs (Ma et al., 2016), our Pulsar
RNG does not require specialized hardware and uses this pub-
licly available data.

In addition to cryptography, our Pulsar RNG is also suit-
able for many other applications. RNGs are used in Monte
Carlo simulations to generate random variates from the un-
derlying distributions of input variables (Raychaudhuri, 2008).
This random variate generation process is, in fact, the core of
the Monte Carlo simulation. RNGs are also used to implement
probabilistic data structures such as Bloom Filters (Bloom,
1970), Skip Lists (Pugh, 1990), and Sketches (Cormode &
Muthukrishnan, 2005). Other uses of RNGs include Machine
Learning algorithms (Mitchell, 1997) and even artwork (Bauer,
1998). We have released a fully open-source Python imple-
mentation of our Pulsar RNG. Our implementation contains
a usable tool to generate random numbers from pulsar data
under multiple configurations. The tool currently supports
NANOGrav and EPTA data but our modular implementation
makes the tool easy to extend for other public datasets. In
addition to our tool, we have also open sources all our data
processing scripts, randomness extraction methods, and eval-
uation code. Lastly, we have also publicly released the raw
bitstreams we generated to allow an independent verification
of our results. We have made all the discussed artifacts available
at github.com/jadidbourbaki/pulsar_rng.

Many open problems emerge from this work. We observe
(Table 1) that different pulsars yield different entropy. There
are over 3000 known pulsars and a comprehensive study would
provide a better understanding of the min-entropy and entropy
distributions of pulsar timing variations in generation. The
deployment of pullsar-based RNGs in real-work applications
will also demonstrate practical advantages or challenges our
analysis does not address.
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Appendix 1. Formal Definitions & Proofs
Given set S, we write x←$ S to mean that x is sampled uni-
formly randomly from S. For set S, we denote by |S| the
number of elements in S. The same notation is used for a
list L. We write variable assignments using ←. If the out-
put is the value of a randomized algorithm, we use ←$ in-
stead. For a randomized algorithm A, we write output ←
Ar(input1, input2, · · · , inputl), where r ∈ R are the random
coins used by A andR is the set of possible coins. We consider
strings {0, 1}n to be elements of the Galois Field GF(2n). We
shorten random variables to r.v. We assume all adversaries
are computationally bound. More precisely, we assume adver-
saries are restricted to non-uniform probabilistic polynomial
time (Pass & Shelat, 2010).

Definition 1 (Statistical Distance ∆). Let X, Y be r.v.s with
range U.

∆(X, Y) =
1
2
Σu∈U |P[X = u] – P[Y = u]|

.

Definition 2 (ε-close). Let X, Y be r.v.s with range U.

X ≈ε Y ≡ ∆(X, Y) ≤ ε

Definition 3 (Min-entropy). Let X be an r.v. with range U.

H∞(X) = – log2(max
u∈U

P[X = u])

Definition 4 (k-source). R.v X is a k-source if H∞(X) ≥ k

We base our analysis on the following assumption regarding
Pulsar timing variations.

Assumption 1. Let PX be an r.v. representing timing variation
in pulsar signals for pulsar P with universe U. We assume PX is a
k-source (Definition 4) with non-trivial k.

We can now precisely define a randomness extractor (Reyzin,
2011) in the cryptographic sense.
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https://123.physics.ucdavis.edu/week_2_files/Johnson_noise_intro.pdf
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Definition 5 (Randomness-Extractor). Let seed Ud be uni-
formly distributed on {0, 1}d . E : {0, 1}n × {0, 1}d 7→ {0, 1}m is
a (k, ε)-extractor if, for all k-sources X on {0, 1}n independent of
Ud ,

E(X, Ud), Ud) ≈ε (Um, Ud)

where Um is uniformly distributed on {0, 1}m independent of X
and Ud .

Extractors, as defined above, are also referred to in the literature
as strong extractors.

Definition 6 (Universal hash family). A family H of hash
functions of size 2d from {0, 1}n to {0, 1}m is called universal if,
for every x, y ∈ {0, 1}n with x ̸= y,

Ph∈H[h(x) = h(y)] ≤ 2–m.

We denote our Pulsar RNG algorithm as Ep. Ep relies on a
universal hash family. Ep takes quantified data from a Pulsar
entropy source xp ←$ PX . It then uses a hash function from
a universal hash family hp ←$ H of size 2d . In our default
implementation, this is the SHAKE-256 hash function from
the SHA-3 family of hashes. Ep then uses px as the seed for hp.

Ep(px, h) = hp(px)

There is a well-known result in cryptography called the
Leftover Hash Lemma (Reyzin, 2011), originally proved by Im-
pagliazzo et al. (1989). The Leftover Hash Lemma proves that
a universal hash family can be used to construct a strong ex-
tractor from a k-source.

Theorem 1 (Leftover hash lemma). Let X be a k-source with
universe U. Fix ε > 0. Let H be a universal hash family of size 2d

with output length m = k – 2 log2( 1
ε ). Define

E(x, h) = h(x)

Then E is a strong (k, ε/2) extractor with seed length d and output
length m.

We are now ready to prove our main result, that our Pulsar
RNG Ep is a strong extractor.

Theorem 2. Let PX be an r.v. representing timing variation in
pulsar signals for pulsar P with universe U. Fix ε > 0. Pulsar
RNG, Ep is a strong (m + 2 log2( 1

ε ))-extractor with seed length d
and output length m.

Proof. The proof follows directly from Assumption 1 and the
Leftover Hash Lemma.
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