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Abstract

A memory checker is an algorithmic tool used to certify the integrity of a database maintained
on a remote, unreliable, computationally bounded server. Concretely, it allows a user to issue
instructions to the server and after every instruction, obtain either the correct value or a failure
(but not an incorrect answer) with high probability. A recent result due to Boyle, Komargod-
ski, and Vafa (BKV, STOC ’24) showed a tradeoff between the size of the local storage and the
number of queries the memory checker makes to the server upon every logical instruction. Specif-
ically, they show that every non-trivial memory checker construction with inverse-polynomial
soundness and local storage at most n1−ϵ must make Ω(log n/ log log n) queries, and this is tight
up to constant factors given known constructions. However, an intriguing question is whether
natural relaxations of the security guarantee could allow for more efficient constructions.

We consider and adapt the notion of covert security to the memory checking context, wherein
the adversary can effectively cheat while taking the risk of being caught with constant proba-
bility. Notably, BKV’s lower bound does not apply in this setting.

We close this gap and prove that Ω(log n/ log log n) overhead is unavoidable even in the covert
security setting. Our lower bound applies to any memory checker construction, including ones
that use randomness and adaptivity and ones that rely on cryptographic assumptions and/or
the random oracle model, as long as they satisfy a natural “read-only reads” property. This
property requires a memory checker not to modify contents of the database or local storage in
the execution of a logical read instruction.
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1 Introduction

Memory checking, introduced by Blum, Evans, Gemmel, Kannan, and Naor [BEG+94], is a central
algorithmic tool used to certify the integrity of a database that is maintained on a remote unreliable
server [HJ05, CSG+05, OR07, CD16]. A memory checker uses a small reliable local storage and
serves as a proxy between the user and the remote database, allowing verifiable read and write
queries. Since there is no way to prevent a rogue server from corrupting the memory altogether, a
memory checker has the following best possible soundness guarantee: whatever query is made by
the user, either it is executed correctly or the user is notified that the server is faulty. The checker’s
assertions should be correct with high probability; typically, a small two-sided error is permitted.

The main complexity measures of a memory checker are its space complexity (denoted p), i.e., the
size of the reliable local storage in bits, and its query complexity (denoted q), the number of physical
queries made to the unreliable memory per logical user request. Memory checkers have been studied
both in the information-theoretic setting (where the server is computationally unbounded) and in
the computational setting (where the server runs in polynomial time). In the information-theoretic
setting it is known that memory checkers must be “trivial” in the sense that p·q = Ω(n), where n is the
memory size [BEG+94, NR09]. This is true even for a very weak variant of memory checkers where
completeness and soundness are both constant. In the computational setting, however, significantly
more efficient schemes exist. Specifically, there exist constructions where q = O(log n/ log log n)
and p is only proportional to the computational security parameter [BEG+94, PT11, BKV24].

For many years the question of whether the above parameters were optimal was largely open,
with only one lower bound ruling out more efficient constructions of restricted form [DNRV09]. Very
recently, Boyle, Komargodski, and Vafa [BKV24] proved an unrestricted lower bound, ruling out any
construction with q = o(log n/ log log n) queries, no matter the cryptographic assumptions being
made and not limiting in any way the behavior of the memory checker. Nevertheless, a drawback of
[BKV24]’s result is that it applies only to memory checkers that have a strong soundness guaran-
tee, i.e., inverse polynomial soundness, roughly 1/n1+o(1). Standard approaches toward soundness
amplification are not known within the setting of memory checkers, and at best would degrade the
bound of [BKV24] to a meaningless guarantee.

Memory checkers with covert security. We investigate the possibility of memory checkers
with weaker soundness guarantees, considering a version of the covert security model [AL10] within
the context of memory checkers. In the covert security model, the guarantee is that if a malicious
server tries to cheat in order to break the integrity of the system, then it will be caught with some
constant probability. Unlike the standard security model that does not allow the adversary to
cheat at all, with covert security, the adversary can effectively cheat while taking the risk of being
caught. In the context of memory checking, covert security corresponds to relaxing the soundness
parameter to be constant instead of negligible. Importantly, the lower bound of [BKV24] leaves
open the possibility of attaining significantly more efficient memory checkers within this model,
ideally even ones that have only constant overhead.

The main justification for studying covert security in our context is that in many practical
applications of memory checkers, it makes sense that the server’s fear of being caught cheating is
enough of a deterrent to prevent it from cheating. For example, a cloud service provider that is being
caught cheating risks hurting their reputation and future business, and therefore has no incentive
in trying to cheat in the first place. Moreover, in blockchain applications of memory checking,
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Figure 1: Summary of known lower bounds on the size of the local storage p of memory checkers
(with computational security) for a logical memory of size n with query complexity q.

Reference Space/Query tradeoff Soundness Limitation of the Scheme

[DNRV09] p ≥ n/(log n)O(q) Constant Deterministic and non-adaptive
[BKV24] p ≥ n/(log n)O(q) 1/n1+o(1) None
This work p ≥ n/(log n)O(q) Constant Read-only reads

money staked on a cryptographic proof could be lost if verification fails. In this setting, a constant
probability of forfeiting money is enough of a disincentive to prevent malicious activity.

Since the original work that introduced the covert security model [AL10], it has been widely
studied in the classical secure computation literature with the aim of designing secure protocols
that are much more efficient than the ones known to satisfy the stronger malicious security notion.
In particular, covert security has enabled asymptotic efficiency gains in terms of computational
overhead and communication complexity (e.g., [AL10, GMS08, HL10]). As memory checking is
itself a special case of secure computation, we view this possibility as (a priori) quite plausible
in light of efficiency gains in the literature when relaxing other forms of secure computation from
malicious to covert security. More than that, since logarithmic factors in n in query complexity (as
achieved by standard memory checkers) can be prohibitively expensive in practice, we believe that
the question of relaxing memory checkers to covert security to bypass this logarithmic blowup is a
significant one.

Our main result. We prove that relaxing the security guarantee of memory checkers to covert
essentially does not allow for asymptotically better constructions, separating memory checking from
other secure computation functionalities. Our lower bound applies to all memory checker construc-
tions satisfying a very natural “read-only reads” property, which says that the memory checker does
not make any writes to the database or modify the local storage while handling a read instruction.
Notably, our lower bound applies to constructions that utilize randomness and adaptivity, and also
to constructions that rely on cryptographic assumptions and/or the random oracle model.

Theorem 1 (Main result stated informally; see Theorem 3). Every memory checker with read-only
reads (with computational security) for a logical memory of size n that has query complexity q, a
local storage of size p, completeness 2/3, and soundness 1/3, must satisfy p ≥ n/(log n)O(q).

As a special case, q = Ω(log n/ log log n) assuming p = n1−Ω(1), even if completeness and sound-
ness are 2/3 and 1/3, respectively.

In fact, our formal theorem (see Theorem 3) is more fine-grained in the sense that we separately
consider the read- and write-query complexities and obtain a trade-off curve. Specifically, letting
qr and qw be the read- and write-query complexities of the memory checker, respectively, we prove
that under the same conditions as in Theorem 1, it must be that p ≥ n/(qrqw log n)O(qr). This
implies, for example, that as long as p = n1−Ω(1), if qr = O(1), then qw = nΩ(1) (i.e., a memory
checker with constant read-query complexity must have polynomial write-query complexity), even
if the memory checker has only constant soundness.

See Figure 1 for a summary of known lower bounds in the computational setting.
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On the read-only reads assumption. As mentioned, the “read-only reads” property says that
the memory checker does not modify contents of the database or local storage in the execution of a
logical read query. We maintain that this is a natural state of affairs, which is upheld by all existing
constructions of memory checkers from the literature to our knowledge. (In fact, one could argue
that the natural definition of a memory checker should require this property, but for generality, we
do not define memory checkers this way.)

As an illustration, the classical and optimal construction of Blum et al. [BEG+94] (and its
refinement due to Tamassia and Papamanthou [PT11]) arranges the memory content in the leaves
of a Merkle tree [Mer89], wherein every internal node essentially “authenticates” the content of its
two children. Thus, to read the content of a logical memory cell, the memory checker merely queries
the nodes on the path from the root to the associated leaf, verifying consistency of each parent-child
nodes in this path. In this construction, it is obvious that reading a (logical) memory cell’s content
requires only reading from the memory. In fact, while one can devise contrived schemes that do not
comply, it is not clear how these (or any method of writing during reads) could intuitively aid in
boosting soundness or completeness.

We remark that the need for this assumption comes for a technical reason in the proof of Theo-
rem 1 on which we elaborate in Section 2. We believe that the statement of Theorem 1 should hold
even without this assumption; proving this, however, is left as an open problem.

Implications of our result. Memory checkers have been extended and generalized in various
ways and have even been used in numerous applications (including provable data possession and
retrievability systems [ABC+07, JJ07, OR07, SW13, CKW17], and cryptographic verifiable com-
putation systems [WTS+18, XZZ+19, Set20, ZXZS20, OWWB20, BMM+21, BDFG21, BCHO22,
AST24, STW24, ST25], to name a few). Therefore, naturally, our lower bound directly implies a
lower bound for many of these extensions. We mention a few direct implications for concreteness.

Mathialagan [Mat23] constructed memory checkers for Parallel RAM (PRAM) machines that has
O(logN) query blowup and O(logN) depth blowup, relying on the existence of one-way functions
and achieving negligible soundness. Using our lower bound, one can conclude that in terms of
query blowup, their scheme is optimal (among schemes with read-only reads), even if only constant
soundness is targeted. Wang, Lu, Papamanthou, and Zhang [WLPZ23] studied the locality of
memory checkers (i.e., the number of non-contiguous memory regions a checker must query to
verifiably answer a query). Using our lower bound, we conclude that Ω(log n/ log log n) locality is
necessary for any possible scheme (with read-only reads), even if only constant soundness is required.

Lastly, we mention a connection between memory checkers and maintainable vector commit-
ments [SCP+22, WUP23]. A maintainable vector commitment (MVC) is, in particular, a vector
commitment (VC), which allows a prover to compute a succinct digest of a vector along with proofs
for each position. A verifier who has the digest can later verify a proof that a reported value in a
given position is correct (a Merkle tree is the canonical implementation of a VC). The maintainable
aspect of a MVC allows changing a particular entry in the vector in sub-linear time (i.e., by updating
only a fraction of the proofs). Thus, in spirit, a MVC implies a memory checker,1 and so memory
checker lower bounds (ours and of [BKV24]) directly imply analogous lower bounds for MVCs.

1This implication is likely known by experts, but we have not seen it mentioned anywhere. We additionally
note that we are not aware of an existing “vanilla” definition of MVC since they are defined with additional useful
properties, like aggregation. Thus, we avoid coming up with such a definition merely for the sake of formalizing an
implication to memory checkers.
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Amplification via repetition. A natural attempt toward addressing weak soundness guarantees
would be to generically amplify soundness of the original scheme via some form of repetition (and
invoke the result of [BKV24]). Due to the online nature of memory checkers, a method of repetition
that seems to make sense is to maintain multiple independent instances of the scheme, executing
every logical instruction independently and sequentially across all instances. Concretely, to execute
two logical operations op1, op2, we first execute op1 across all instances sequentially and when this
is over we execute op2 across all instances sequentially. For a read instruction, we will use the
majority, i.e., the value that appears as the response from most instances.

This approach fails due to two main reasons. First, it is not clear that this form of repetition
reduces soundness at all; indeed, this form of repetition is essentially parallel across logical queries,
and so runs into the issues raised by Bellare, Impagliazzo, and Naor [BIN97], showing that parallel
repetition does not necessarily amplify soundness in a computational setting. Second, even if parallel
repetition would amplify soundness, we need to amplify from constant to inverse polynomial. In
the best-case scenario, this would require having Ω(log n) independent instances running in parallel,
which would cause a logarithmic blowup in both space and query complexity, enough to destroy
this regime of bounds.

1.1 Related Work

Covert deterministic and non-adaptive memory checkers. Before the work of [BKV24],
Dwork, Naor, Rothblum, and Vaikuntanathan [DNRV09] showed that logarithmic query complexity
is inherent for a restricted class of memory checkers. Specifically, their lower bound applies to
memory checkers where for each read/write operation made by the user, the locations that the
checker accesses in the unreliable memory are fixed and known. They refer to such checkers as
deterministic and non-adaptive. Their lower bound does rule out even covert secure constructions
(of deterministic and non-adaptive form).

Formally, the assumptions of being “deterministic and non-adaptive” (as in [DNRV09]) and having
“read-only reads” are incomparable, as far as we can tell. However, we view the “read-only reads”
assumption as comparatively more mild. Indeed, determinism and non-adaptivity are features that
are known to improve complexity in various contexts. For instance, binary search is an adaptive
procedure, and there is no analogous non-adaptive variant with similar complexity. Also, examples
exist in which r-round communication protocols are exponentially more efficient than (r− 1)-round
communication protocols [NW93]. Lastly, data structures that use randomness give significant
efficiency gains (Cuckoo hashing, for instance). On the other hand, we do not see a scenario where
violating the “read-only reads” assumption would allow for efficiency gains.

Online vs. offline memory checkers. In this paper, we consider online memory checkers, i.e.,
memory checkers that need to report either a correct value or an error (but never be wrong) after
every logical instruction, before seeing the next instruction. A natural variant is called offline
memory checkers, wherein it is required to report whether an error has occurred at the end of
a batch of instructions. Blum et al. [BEG+94] constructed offline memory checkers that achieve
amortized O(1) overhead per instruction (see also [DNRV09, Section 5]), and so our lower bounds
obviously do not apply (in fact, these constructions are even statistically secure).
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2 Technical Overview

We begin by recapping the previous lower bound of Boyle, Komargodski, and Vafa [BKV24] (hence-
forth referred to as BKV) and describing what fails in the case of constant soundness error.

At a high level, the proof idea is a compression argument: Alice can write to a random subset
of the logical indices of a memory checker, and by sending the resulting local storage to Bob (along
with short extra helper information we describe below), Bob can recover a large fraction of the
entropy of the random subset. This places a lower bound on the size of the local storage.

In more detail, suppose the memory checker uses physical words (i.e., blocks) of size w bits. Let
m denote the size (i.e., number of physical words) on the remote server. To set up the compression
argument, suppose that Alice wishes to communicate a uniformly random string x ∈ {0, 1}n of fixed
Hamming weight k to Bob (where k is a parameter set later). Alice and Bob can initialize an empty
(all “0”s) memory checker, which results in a public database DB0 ∈ ({0, 1}w)m and local storage
st0 ∈ {0, 1}p. Then, Alice can write “1” to all logical indices in support(x) := {i ∈ [n] : xi = 1},
resulting in updated public database DB1 and st1. After this, Alice can send Bob st1.

Bob can attempt the following decoding strategy to recover x. Using the outdated DB0 but
fresh st1, Bob can run the memory checker and perform a read instruction to all i ∈ [n], resulting
in values in {0, 1,⊥}, where ⊥ indicates failure. The hope is to apply completeness and soundness
of the memory checker (respectively) to argue that:

1. Bob will often recover many binary (non-⊥) values, by completeness, and

2. Bob’s binary values will not be incorrect, by soundness.

If these two conditions are satisfied, then Bob will recover lots of the logical memory (and hence
lots of x), which allows BKV to give a lower bound on p by a standard communication argument.

To address Item 1, BKV [BKV24] introduce a tri-partition of the public database of the form
[m] = H ⊔M ⊔L, denoting heavy, medium, and light physical locations, respectively. Here “heavy”
and “light” are with respect to how frequently logical reads to a random i ∈ [n] touch a given physical
location. BKV have Alice additionally send H ⊆ [m] and DB1|H ∈ ({0, 1}w)|H| (i.e., the updated
public database locations on H) to Bob, allowing Bob to compute a “hybrid” physical database D̃B
defined by

D̃B[v] :=

{
DB1[v] if v ∈ H,

DB0[v] otherwise.

BKV now argue that for some well-chosen H and k, Bob can recover at least ≈ 4n/5 binary values
for the logical memory by running the memory checker with st1 (still) and D̃B.

Now, even if these values for the logical memory are all “0” and do not intersect support(x), if
we assume these binary values are all correct, this narrows a superset of support(x) from size n to
n/5, resulting in

log

(
n

k

)
− log

(
n/5

k

)
= Ω(k)

bits of information being sent from Alice to Bob (for, say, k ≤ n/100). Loosely speaking, BKV’s tri-
partition lemma is set up so that these Ω(k) bits of information sent from Alice to Bob sufficiently
dominate |H|, consequently giving a lower bound on p = |st1|.
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The crucial part for us is addressing Item 2. Note that in the compression argument, Bob only
learns information from Alice if Bob does not learn any incorrect binary values. For example, for
all we know, it is possible that using D̃B instead of DB1 could cause the memory checker to always
return “0”, in which case Bob does not learn anything. This is where soundness comes in. To apply
soundness, we need to make sure that Bob’s decoding strategy coincides with an efficient (i.e.,
probabilistic polynomial time) attack on the memory checker.

The critical question: Can k and H (used to compute D̃B) be computed efficiently? Let us
discuss these separately.

• Challenge 1: Computing k. BKV’s partition argument shows that it is always true that
a “correct” k exists and moreover it can be set to one of O(q) possibilities. BKV deal with
this in the soundness argument by simply having the adversary “guess” the correct value of k,
resulting in a O(q) factor loss in soundness error.

• Challenge 2: Computing H. The heavy set H is only defined existentially as part of the
tri-parition lemma. In BKV [BKV24], this is dealt with by having the adversary essentially
brute-force “guess” H, as well. Namely, for each of the q physical locations read during the
logical read, the adversary guesses at random whether the corresponding location is heavy:
i.e., whether D̃B agrees with DB0 or DB1. This results in a further 2q factor loss in soundness
error.

What is common to both of the above challenges of computing k and H is that they could
adaptively change throughout the writes of the memory checker. That is, the database DB and local
storage st change with each logical write, making the “correct” corresponding values of k and H
change as well. More than that, the value of k and the partition to H,M, and L in BKV [BKV24,
Lemma 3] are given purely in the analysis and they depend on the exact probability distribution of
the memory checker, which the adversary need not have access to. In fact, this distribution could
depend on the private randomness and/or private local storage of the memory checker.

2.1 Our Idea: Learning an Approximate Partition

As mentioned, the value of k and the partition to H,M,L could depend on the private local storage
of the memory checker, and so it is infeasible to efficiently compute them exactly; but, there is hope
we could approximate them. This is where we diverge from BKV. The idea of approximation leads
to the following two questions: (1) What is a reasonable notion of approximation for a set H? and
(2) given whatever approximation of H we can come up with, does it suffice for the rest of argument
to go through? We elaborate on these points next.

1. We begin by showing there is indeed a suitable notion of an approximation of a heavy set H
and parameter k that is sufficient for our lower bound argument. Concretely, the notion of
approximation we use allows some of the elements that should have been placed in M to be
placed in H or L (and vice versa), while still preserving a sufficiently large gap between L and
H. (See Theorem 2 for a precise statement.)

2. We show that if one has enough samples from the memory checker’s logical read behavior,
then there is a way to efficiently learn such an approximation of a heavy set H and parameter
k, simultaneously. That is, with enough samples from the memory checker, generating our
approximation is computationally efficient.
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3. To generate these samples from the memory checker’s read behavior, the adversary can issue
additional reads before the attack, even if we assume the local storage of the memory checker
is secret from the adversary. That is, by issuing logical reads, the memory checker does not
need to read the local storage of the memory checker to generate samples needed to run the
efficient algorithm from Theorem 2.

A careful analysis of Item 2 is the main technical portion of this paper, which we give in Section 4
(Theorem 2) and outline below. Note that Items 1 and 2 force us to change what Alice sends in the
compression argument (Theorem 3), as compared to BKV. (See Figure 6 for a description of the
adversary used when invoking soundness in the proof of the main theorem.) Further note that there
are additional technical issues that we gloss over here that we defer to the proof of Theorem 3.

Efficiently learning an approximate heavy set. We first recall how the proof of the partition
lemma in BKV [BKV24, Lemma 3] works, which is itself inspired by Goldreich [Gol23, Claim
2.6]. Roughly speaking, [BKV24, Lemma 3] partitions elements of [m] into a “histogram” with c
geometrically increasing buckets, depending on the probability of each given j ∈ [m]. By averaging,
one of these buckets must have total probability at most 1/c. Taking M to be this bucket and H
and L to be the other two sides of M on the histogram, we get enough of a multiplicative “gap”
between H and L so that Item 4 of Theorem 2 (or rather, its equivalent in [BKV24, Lemma 3])
goes through. This “gap” is what enables the final lower bound on p = |st1|.

However, in a computational setting, one cannot efficiently compute the precise probabilities of
querying each j ∈ [m], since one only has sample access to the distribution. As a result, we can
only work with approximations to the probabilities of each j ∈ [m]. Instead of directly trying to
compute these c histogram buckets, we can work with “cushioned” buckets {Ĉi}i∈[c] with a wider
probability range that cover [m] but do not partition [m]; that is, we allow overlap between buckets.
The hope is that each cushioned bucket Ĉi, defined in terms of the sample probabilities that we
can efficiently compute, contains Bi, where {Bi}i∈[c] form a geometric partition defined in terms of
the true probabilities of D. For appropriately chosen probability ranges for the buckets, this can be
shown to be true using Chernoff bounds (see Claim 1 in Theorem 2). Finally, we argue that setting
M to (essentially) be the Ĉi with smallest total probability is good enough, even though {Ĉi}i∈[c]
do not form a partition. See Figure 2 and the pseudocode in Figure 3 for more details.

Read-only reads. We now explain where the “read-only reads” assumption is needed. Recall
that this assumption states that logical read instructions only cause physical reads (i.e., not physical
writes) and do not change the local storage. As mentioned, this property is attained by all non-
contrived existing memory checker constructions. We now describe why we need this assumption.

In short, there are two possible routes for our lower bound argument to go through. For Bob
to recover the contents at logical index i given st1 and D̃B, either (a) Bob rewinds to the previous
local storage and database between each logical read, or (b) Bob sequentially reads all i ∈ [n]. For
route (a), it is not clear how constant soundness can be sufficient, since, for example, the memory
checker can randomly choose an (n/10)-sized subset to be incorrect on for that final read. In such
a case, we cannot rule out that Bob recovers no information about x. (Note that this is the route
that BKV [BKV24] take, which explains why they have a factor n loss, on top of the O(q · 2q) loss.)
On the other hand, for route (b), the local storage and DB1 could “update” between each i ∈ [n].
For any reads that query an old, corrupted part of D̃B, we have no way to invoke completeness of
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the next read, as DB1 and st1 could be updated to junk. Moreover, Alice cannot send the correct
freshly updated st1 and/or DB1 after each logical read, as that would blow up the communication
argument. The “read-only reads” assumption makes sure that route (b) is possible; sequential logical
reads that Bob does do not impact st1 nor DB1, even if the logical reads query incorrect contents
in D̃B.

3 Preliminaries

For a natural number n ∈ N, we let [n] := {k ∈ N : 1 ≤ k ≤ n}. All logarithms with the notation
log are in base 2, unless otherwise specified; the notation ln is reserved for the natural logarithm.

For a finite distribution D, we write X ∼ D to denote that the random variable X is distributed
according to D. For a finite set S, we abuse notation and write X ∼ S to denote that the random
variable X is distributed uniformly over S. For subsets A1, · · · , Aℓ ⊆ U , we write U = A1⊔ · · · ⊔Aℓ

to indicate that {Ai}i∈[ℓ] partition U , i.e., U = ∪i∈[ℓ]Ai and Ai ∩Aj = ∅ for all i, j ∈ [ℓ], i ̸= j. For
a string x ∈ {0, 1}ℓ, we let ∥x∥0 denote the Hamming weight of x, i.e., ∥x∥0 = |{i ∈ [ℓ] : xi = 1}|.
We say that an algorithm A is PPT if it runs in probabilistic polynomial time.

Compression lemma. We state the well-known lemma typically used in compression arguments
(and used in [BKV24]). The lemma roughly says that any method for encoding a uniformly random
ℓ-bit string with fewer than ℓ bits must lose information about the string.

Lemma 1 (E.g., [DTT10]). Let S be a finite set. Consider the one-way communication problem of
sending uniformly random x ∼ S from Alice to Bob in the public coin setting where the length of
Alice’s message to Bob is fixed. If Bob succeeds in outputting x with probability δ (over x and the
public coins), then Alice’s (binary) message to Bob must be at least log2(|S|)− log2(1/δ) bits long.

3.1 Memory Checking

Here, we define the notion of memory checkers that we consider. We directly use many of the same
explanations, definitions, etc. as in Boyle et al. [BKV24] throughout this section.

Random-access machines. A RAM is an interactive Turing machine that consists of a remote
memory and a user. The memory is indexed by the logical address space [n]. We refer to each
memory word also as a block and we use wℓ to denote the bit-length of each block. The user can
issue read/write instructions to the memory of the form (op, addr, data), where op ∈ {read,write},
addr ∈ [n] and data ∈ {0, 1}wℓ ∪ {⊥}. If op = read, then data = ⊥ and the returned value is the
content of the block located in logical address addr in the memory. If op = write, then the memory
data in logical address addr is updated to data. The user can perform arbitrary computation.

Memory checkers. A memory checker [BEG+94, NR09, DNRV09], at a high level, is a sim-
ulation of a standard RAM so that it has the additional guarantee that the RAM’s answers to
read instructions are reliable even if the remote memory is being tampered with. We formalize a
memory checker as an additional interactive Turing machine, placed “between” the user and the
remote memory (so they no longer interact directly). The memory checker gets logical queries to
a size n memory from the user and processes them into a—possibly adaptively generated and using
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randomness—sequence of read/write instructions to a physical memory. Responses are sent back to
the memory checker that processes them until it finally sends a response to the user (if needed). We
emphasize that the user issues instructions for the logical memory but the simulation is done using
a physical memory that could possibly be bigger. We let [m] be the address space of the physical
memory and assume each word is of size w bits. What makes the task of designing a memory
checker non-trivial is the fact that we wish to limit the local space of the memory checker, where
by “local space” we mean the number of bits p preserved in between user instructions (so it is not
a true space complexity parameter, as the memory checker could use an unbounded number of bits
in the middle of carrying out a user’s query).

Formally, the interface of a memory checker is as follows. We assume that at the start of the
system, the local storage of the memory checker is empty st = ⊥p and the physical memory DB is
initialized with all ⊥s. Furthermore, the memory checker is parametrized by logical and physical
memory size and block size (n,wℓ) and (m,w), respectively, as well as possibly a computational
security parameter given in unary. We suppress these for convenience when clear from context.

• ⟨(data′, st′), DB′⟩ ← (MemCheckerOp(st, op, addr, data) ⇐⇒ DB). This interactive proto-
col between the memory checker with local storage st ∈ {0, 1}p and the physical mem-
ory DB ∈ ({0, 1}w ∪ {⊥})m is executed upon a logical instruction (op, addr, data), where
op ∈ {read,write}, addr ∈ [n], and data ∈ {0, 1}wℓ ∪ {⊥}. The output of this protocol consists
of a data entry data′ ∈ {0, 1}wℓ ∪{⊥} (where data′ = ⊥ if op = write or if the memory checker
detects tampering) and the new local storage of the memory checker st′, where |st′| = p. The
updated physical memory, after the interaction ends, is denoted DB′.

The protocol may consist of multiple rounds, where in each round the memory checker issues
a “physical” RAM query of the form (ôp, âddr, d̂ata), where ôp ∈ {read,write}, âddr ∈ [m],
and d̂ata ∈ {0, 1}w. For every such query, the physical memory DB responds with a value
d̂ata

′
∈ {0, 1}w ∪ {⊥}, where d̂ata

′
= DB[âddr] if ôp = read and d̂ata

′
= ⊥ otherwise.

Read-only reads. As explained in the introduction, we add the constraint that during logical
reads, memory checkers do not make any physical writes to the database or modify the local storage.

Definition 1 (Read-only reads). A memory checker is said to have the “read-only reads” property
if upon every logical read instruction op = read, it holds that st′ = st and all physical queries have
ôp = read.

The main complexity measure of a memory checker is the communication complexity of the pro-
tocols, measured by the total number of queries issued by the memory checker per logical instruction.
This is made precise in the following definition.

Definition 2 (Query complexity). We define the read query complexity, denoted qr (and write
query complexity, denoted qw) to be the worst-case number of physical queries made by the memory
checker for any given logical read (and logical write, respectively). The query complexity, denoted
q, is defined as q = max{qr, qw}.

Remark 1 (Parameters convention). We shall assume that all of the above procedures/protocols
can be implemented by machines that run in polynomial time in n, the logical memory size. This
implicitly bounds m ≤ 2poly(n), as physical indices need logm bits to represent. If unspecified,
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we assume that m is bounded by a polynomial in n. We remark that this is (essentially) without
loss of generality because memory checkers with a fixed number of supported logical queries, can be
generically transformed (via a PRF) into ones where m ∈ poly(n); see [BKV24, Appendix B]. Also,
unless otherwise specified, we assume wℓ, w ≤ polylog(n).

Completeness and soundness. Loosely speaking, completeness of a memory checker says that
in an honest execution, i.e., without an adversary tampering with the memory, the user should get
the “correct” answer. Soundness says that if the adversary is actively trying to tamper with the
memory, then the user will either get the “correct” answer or an abort symbol ⊥ indicating that
something went wrong. Importantly, the memory checker should not respond with a wrong value.
Below, we formalize these properties.

We first define the ideal memory functionality, i.e., a memory that is executed by a trusted party
and can provide with the “correct” value of every memory cell at any point in time. We refer to this
functionality as the logical memory snapshots functionality.

Definition 3 (Logical memory snapshot functionality). A logical memory snapshot functionality is
an ideal primitive that gets as input logical instructions and outputs the full state (so called “snap-
shot”) of the logical memory after each instruction. Initially the memory is assumed to be empty,
indicated by ⊥ in each cell. More precisely, the functionality receives (adaptively) a stream of logical
instructions of the form (op, addr, data), where op ∈ {read,write}, addr ∈ [n], and data ∈ {0, 1}wℓ .
Each read instruction is ignored. Each write instruction is executed, namely, for (write, addr, data)
the value in index addr is updated to data. After processing each instruction, a snapshot of the
memory is generated, denoted SnapshotMem.

For a sequence of l logical instructions {(opi, addri, datai)}i∈[l], fed into the ideal functionality, we
have l snapshots SnapshotMem1, . . . ,SnapshotMeml. The ith snapshot satisfies for every addr ∈ [n]
that SnapshotMemi[addr] = data ∈ {0, 1}wℓ∪{⊥} if there exists a j < i such that (opj , addrj , dataj) =
(write, addr, data) and there is no j < j′ < i with (opj′ , addrj′ , dataj′) = (write, addr, data′) where
data′ ̸= data.

Now, we can define completeness. We require that with probability c(n) over the internal ran-
domness of the memory checker, the memory checker’s outputs are all correct (i.e., equal to the
corresponding value in the ith logical memory snapshot). Furthermore, we do not allow the logical
queries to be adaptively chosen based on previous physical queries made by the memory checker.
We emphasize that this definition of completeness is rather weak, and specifically, it is weaker than
some definitions that were formalized in prior works. However, since we prove a lower bound (mean-
ing we rule out constructions satisfying a weak notion of completeness), these weakenings only make
our result stronger. Essentially, all known non-contrived constructions achieve perfect completeness
(c(n) = 1), the strongest definition of completeness.

Definition 4 (c-completeness). Let l ∈ N and consider a sequence of l logical instructions I =
{(opi, addri, datai)}i∈[l], where op ∈ {read,write}, addr ∈ [n], and data ∈ {0, 1}wℓ .

We say that a memory checker has completeness c if the following holds for every polynomial
l = l(n) and I as above:

Pr [CompletenessExpt(I) = 1] ≥ c(n),

where the above probability is taken over the randomness used in the experiment CompletenessExpt(I)
that is defined next.
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CompletenessExpt(I):

1. Initialize a memory checker by setting the local storage to st = ⊥p, and initialize the physical
memory DB to ⊥m.

2. For j = 1, . . . , l:

(a) Run the protocol between the memory checker and the physical memory

MemCheckerOp(st, opj , addrj , dataj)⇐⇒ DB.

This protocol outputs a value data′j ∈ {0, 1}wℓ ∪ {⊥}. It also outputs an updated st′ and
an updated physical memory DB′, both of which are used in the next iteration.

(b) Feed (opj , addrj , dataj) into the logical memory snapshot functionality, getting back a
snapshot SnapshotMemj.

(c) If opj = read and data′j ̸= SnapshotMemj [addrj ], output 0 and abort.

3. Output 1.

Remark 2 (Completeness amplification). Our definition of completeness allows for amplification
by repetition. That is, by running k independent instances of a memory checker at once (sequen-
tially within each logical query) and outputting the majority response, we can improve completeness
exponentially in k. This comes at the cost of an O(k) multiplicative blowup in query complexity,
local space, and public database size.

For soundness, we consider a malicious PPT adversary playing the role of the physical memory
in the interaction with the memory checker. We require that for any such adversary, the probability
that the memory checker outputs an incorrect value σ ∈ {0, 1}wℓ is at most s(n). Below, we formalize
the standard definition of soundness for memory checkers [BEG+94, NR09, DNRV09] (used both in
upper and lower bounds).

Definition 5 (s-soundness). Let l ∈ N and consider a sequence of l logical instructions I =
{(opi, addri, datai)}i∈[l], where op ∈ {read,write}, addr ∈ [n], and data ∈ {0, 1}wℓ .

We say that a memory checker has soundness error s(n) if for every stateful PPT adversary A
and every polynomial l = l(n) and I as above, it holds that

Pr[SoundnessExptA(I) = 1] ≤ s(n),

where the probability is over the randomness used in the experiment SoundnessExptA(I) that is
defined next.
SoundnessExptA(I):

1. Initialize a memory checker by setting the local storage to st = ⊥p.

2. For j = 1, . . . , l:

(a) Run the protocol between the memory checker and A, acting as the physical memory:

MemCheckerOp(st, opj , addrj , dataj)⇐⇒ A.

12



The adversary A has read access to everything except for the local storage of the memory
checker and the random tape of the memory checker. This protocol outputs a value
data′j ∈ {0, 1}wℓ ∪ {⊥}. It also outputs an updated st′ and an updated physical memory
DB′, both of which are used in the next iteration.

(b) Feed (opj , addrj , dataj) into the logical memory snapshot functionality, getting back a
snapshot SnapshotMemj.

(c) If opj = read and data′j ̸∈ {SnapshotMemj [addrj ],⊥}, output 1 and abort.

3. Output 0.

Remark 3 (Completeness and soundness parameters). In our lower bound, we rule out a memory
checker where completeness is c = c(n) = 2/3 and soundness error is s = s(n) = 1/3.

About our definitions. First, we emphasize that our soundness notion is the standard one,
appearing in all prior works studying memory checkers (e.g., [BEG+94, NR09, DNRV09]), wherein
this definition is used for upper and lower bounds. The only exception to this statement that
we are aware of is the recent work of Boyle et al. [BKV24] that considered a weaker notion of
soundness where the requirement is that a single logical read index fixed before running the protocol
is protected. We do not know how to avoid polynomial soundness loss with their weaker definition
and leave it as an open problem.

Second, we mention a few ways in which our lower abound applies broadly. Our lower bound
applies to memory checkers that could have secret local storage, even though there are memory
checker constructions that have public but reliable local storage (e.g., a Merkle tree [Mer89] or the
UOWHF construction in Blum et al. [BEG+94].) Furthermore, our lower bound applies even when
wℓ = 1. Lastly, our lower bound does not require the memory checker’s internal operations to
be efficiently computable. In fact, the local space is just the number of bits preserved in between
user queries, so it is not a true space complexity parameter, as the memory checker could use an
unbounded number of bits in the middle of carrying out a user instruction.

4 Computing a Partition

We now give an effective version of the partition lemma shown by BKV [BKV24, Lemma 3], in the
sense that finding a valid partition of the public database is computationally efficient when one can
generate samples from random logical reads to the database. Later, this will be used in the lower
bound to argue that we can invoke memory checking soundness on the efficient adversary that can
compute a partition and perform a replay attack accordingly. (See Figure 6 and its explanation in
Theorem 3 for its exact use.)

We briefly discuss the differences between Theorem 2 and [BKV24, Lemma 3]. Item 3 shows a
probability bound of 4/(c − 1) of hitting M instead of 1/c, but this constant factor difference will
not be essential for us. Similarly, Item 4 has 2c in the exponent in the denominator instead of c,
which is also immaterial for our application.

Theorem 2 (Effective version of Lemma 3 of [BKV24]). There is a polynomial time algorithm
PartitionD(1γ , 1c, 1n,m) with sample access to a distribution D with the following guarantee. Suppose
γ, c, n ∈ N with γ, c ≥ 2, and suppose D is a distribution over [m] where m ≤ 2poly(n). Then, with
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True Distribution

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4

Sample Distribution

Â1 Â2 Â3 Â4 Â5 Â6 Â7 Â8

Ĉ1 Ĉ3

Ĉ2 Ĉ4

Figure 2: We graphically sketch the idea behind using the “cushioned buckets” Ĉi in Theorem 2 and
in Figure 3. Here, c = 4. Note that Claim 1 shows that Bi ⊆ Ĉi with sufficiently high probability.
Furthermore, note that each Âi is contained in at most 2 different cushioned buckets Ĉi, showing
that {Ĉi}i∈[c] form (at most) a double cover.

probability at least 1 − 1/n, Partition outputs some H ⊆ [m] and i ∈ [c] such that there exists
L,M ⊆ [m] such that:

1. [m] = H ⊔M ⊔ L;

2. For all ℓ ∈ L, PrX∼D[X = ℓ] ≤ (2γ)2i−2/n;

3. PrX∼D[X ∈M ] ≤ 4/(c− 1); and

4. The set H satisfies
n

(2γ)2i−2
− |H|γ >

n

(2γ)2c
.

Moreover, Partition uses t = Θ(n2 log(m + n)) samples from D and is deterministic (ignoring the
randomness in the samples from D).

Proof of Theorem 2. We describe the algorithm in Figure 3. Let

pj := Pr
X∼D

[X = j].

Define the “true” buckets

A1 :=

{
j ∈ [m] : pj ∈

[
0,

2γ

n

)}
,

Ai :=

{
j ∈ [m] : pj ∈

[
(2γ)i−1

n
,
(2γ)i

n

)}
for i ∈ {2, · · · , 2c− 1},

A2c :=

{
j ∈ [m] : pj ∈

[
(2γ)2c−1

n
,∞

)}
.
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PartitionD(1γ , 1c, 1n,m):

1. Let t :=
⌈
100n2 ln(m+ n)

⌉
. Generate t samples a1, · · · , at ∼ D.

2. Fora j ∈ [m], let

p̂j :=
|{k ∈ [t] : ak = j}|

t
.

Note that ∑
j∈[m]

p̂j = 1. (1)

3. Define the buckets

Â1 :=

{
j ∈ [m] : p̂j ∈

[
0,

2γ

n

)}
,

Âi :=

{
j ∈ [m] : p̂j ∈

[
(2γ)i−1

n
,
(2γ)i

n

)}
for i ∈ {2, · · · , 2c− 1},

Â2c :=

{
j ∈ [m] : p̂j ∈

[
(2γ)2c−1

n
,∞

)}
.

Note that these buckets partition [m].

4. Define the “cushioned” buckets

Ĉ1 := Â1 ⊔ Â2 ⊔ Â3,

Ĉi := Â2i−2 ⊔ Â2i−1 ⊔ Â2i ⊔ Â2i+1 for i ∈ {2, · · · , c− 1},

Ĉc := Â2c−2 ⊔ Â2c−1 ⊔ Â2c.

Note that these buckets cover [m]. All elements in Â1 and Â2c are covered once, while
all other elements are covered twice.

5. Fix some

i∗ ∈ arg min
i∈{2,··· ,c}

∑
j∈Ĉi

p̂j

 .

6. Set
H :=

⋃
i≥i∗+1

Ĉi.

7. Output (H, i∗).
aWhile this is phrased as iterating over j ∈ [m], the algorithm can instead iterate over just the t samples to

lazily generate non-zero p̂j , which runs in time poly(n, logm) instead of Ω(m).

Figure 3: Partition algorithm, as in Theorem 2.
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Note that these buckets partition [m]. Now, define larger buckets

Bi := A2i−1 ⊔A2i for i ∈ [c].

Observe that these larger buckets also partition [m].
We begin by showing two auxiliary claims, Claims 1 and 2. Using these claims, we prove Items 1

to 4 in Claims 3, 4, 5, and 6, respectively.

Claim 1. For the cushioned buckets Ĉi defined in Figure 3,

Pr
a1,··· ,at∼D

[
∀i ∈ [c], Bi ⊆ Ĉi

]
≥ 1− 1

n
.

Proof. We consider three cases and union bound over them: i ∈ {2, · · · , c− 1}, i = c, and i = 1.

Case 1: i ∈ {2, · · · , c− 1}. In this case,

Ĉi = Â2i−2 ⊔ Â2i−1 ⊔ Â2i ⊔ Â2i+1 =

{
j ∈ [m] : p̂j ∈

[
(2γ)2i−3

n
,
(2γ)2i+1

n

)}
,

Bi = A2i−1 ⊔A2i =

{
j ∈ [m] : pj ∈

[
(2γ)2i−2

n
,
(2γ)2i

n

)}
.

The multiplicative Chernoff bound says that

Pr

[
p̂j /∈

[
pj
2
,
3pj
2

]]
≤ 2e−pjt/12.

For all j ∈ Bi, we know

pj ≥
(2γ)2i−2

n
≥ 1

n
,

so
Pr

[
p̂j /∈

[
pj
2
,
3pj
2

]]
≤ 2e−t/(12n). (2)

Since t ≥ 100n ln(m + n), union bounding over all possible j ∈ [m] will result in total success
probability at least 1 − 1/(3n). Because 2γ > 2, we have (with high probability) that if pj ≥
(2γ)2i−2/n, then

p̂j ≥
pj
2

>
pj
2γ
≥ (2γ)2i−3

n
,

and similarly, if pj < (2γ)2i/n,

p̂j ≤
3pj
2
≤ (2γ)pj ≤

(2γ)2i+1

n
.

Therefore, combining these implications, with high probability we have Bi ⊆ Ĉi for i ∈ {2, · · · , c−1}.

Case 2: i = c. In this case,

Ĉc = Â2c−2 ⊔ Â2c−1 ⊔ Â2c =

{
j ∈ [m] : p̂j ∈

[
(2γ)2c−3

n
,∞

)}
,

Bc = A2c−1 ⊔A2c =

{
j ∈ [m] : pj ∈

[
(2γ)2c−2

n
,∞

)}
.
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By the same multiplicative Chernoff bound, since it still holds that pj ≥ 1/n, if pj ≥ (2γ)2c−2/n,
then with high probability,

p̂j ≥
pj
2

>
pj
2γ
≥ (2γ)2c−3

n
.

Therefore, Bc ⊆ Ĉc.

Case 3: i = 1. In this case,

Ĉ1 = Â1 ⊔ Â2 ⊔ Â3 =

{
j ∈ [m] : p̂j ∈

[
0,

(2γ)3

n

)}
,

B1 = A1 ⊔A2 =

{
j ∈ [m] : pj ∈

[
0,

(2γ)2

n

)}
.

Here, we cannot invoke a multiplicative Chernoff bound because pj could be very small. Instead,
we invoke an additive Chernoff bound that says

Pr[p̂j ≥ pj + ε] ≤ e−2ε2t.

We can plug in ε = 1/n to get

Pr

[
p̂j ≥ pj +

1

n

]
≤ e−2t/n2

.

Since t ≥ 2n2 ln(m + n), this failure probability is at most 1/(m + n)4, and when union bounded
over all j ∈ [m], the probability of success for all j is at least 1−1/(3n). Therefore, if pj < (2γ)2/n,
we have (with high probability)

p̂j < pj +
1

n
<

(2γ)2

n
+

(2γ)2

n
=

2 · (2γ)2

n
<

(2γ)3

n
.

This shows that B1 ⊆ Ĉ1, concluding the proof of the claim.

Claim 2.
∑

j∈Ĉi∗
p̂j ≤ 2/(c− 1).

Proof. This follows since the Ĉi form (at most) a double cover of [m]. For i ∈ [c], let αi :=
∑

j∈Ĉi
p̂j

be the (sample) weight of Ĉi. By construction of Ĉi,∑
i∈{2,···c}

αi ≤
∑
i∈[c]

αi =
∑
i∈[c]

∑
j∈Ĉi

p̂j =
∑
j∈Âi

p̂j +
∑
j∈Â2c

p̂j + 2
∑

2≤i≤2c−1

∑
j∈Âi

p̂j

≤ 2
∑
i∈[2c]

∑
j∈Âi

p̂j

= 2
∑
j∈[m]

p̂j = 2,

where the penultimate equality follows because Âi form a partition of [m], and the last equality
holds by (1). Therefore, by an averaging argument, there must exist some i ∈ {2, · · · , c} for which
αi ≤ 2/(c− 1). By construction of i∗, we have shown the desired claim.
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Now, we construct M and L. Let M := Bi∗ \H and L :=
⋃

i≤i∗−1Bi.

Claim 3. (Item 1) H, M , and L partition [m].

Proof. Clearly, M and H are disjoint by construction of M . M and L are disjoint because Bi form
a partition of [m]. To see why L and H are disjoint, we can invoke Claim 1 to see that

L =
⋃

i≤i∗−1

Bi ⊆
⋃

i≤i∗−1

Ĉi =
⋃

i≤i∗−1

Â2i+1 ⊆
⋃
i≤i∗

Â2i−1.

On the other hand,
H =

⋃
i≥i∗+1

Ĉi ⊆
⋃

i≥i∗+1

Â2i−2 ⊆
⋃
i≥i∗

Â2i.

Since Âi form a partition of [m], L and H are disjoint.
Lastly, to see that they union to [m], we can again invoke Claim 1 to see that

M ∪H = (Bi∗ \H) ∪H = Bi∗ ∪H = Bi∗ ∪
⋃

i≥i∗+1

Ĉi ⊇ Bi∗ ∪
⋃

i≥i∗+1

Bi =
⋃
i≥i∗

Bi.

Combining with the definition of L, we have

L ∪M ∪H =

 ⋃
i≤i∗−1

Bi

 ∪
⋃

i≥i∗

Bi

 =
⋃
i∈[c]

Bi = [m],

as desired.

Claim 4. (Item 2) For all ℓ ∈ L, PrX∼D[X = ℓ] ≤ (2γ)2i
∗−2/n.

Proof. This follows from the definition of L. Explicitly,

L =
⋃

i≤i∗−1

Bi =
⋃

i≤2i∗−2

Ai =

{
j ∈ [m] : pj ∈

[
0,

(2γ)2i
∗−2

n

)}
.

Claim 5. (Item 3) PrX∼D[X ∈M ] ≤ 4/(c− 1).

Proof. By Claim 1, we have

Pr
X∼D

[X ∈M ] =
∑

j∈Bi∗\H

pj ≤
∑
j∈Bi∗

pj ≤
∑
j∈Ĉi∗

pj .

Since i∗ ̸= 1 by choice of i∗, and by (2), we know with high probability that∑
j∈Ĉi∗

pj ≤
∑
j∈Ĉi∗

2p̂j .

By combining all inequalities above and Claim 2, we have

Pr
X∼D

[X ∈M ] ≤
∑
j∈Ĉi∗

pj ≤ 2
∑
j∈Ĉi∗

p̂j ≤
4

c− 1
,

as desired.
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Claim 6. (Item 4) The set H satisfies

n

(2γ)2i∗−2
− |H|γ >

n

(2γ)2c
.

Proof. Since
H =

⋃
i≥i∗+1

Ĉi =
⋃

i≥2i∗

Âi,

we know that for all h ∈ H, we have p̂h ≥ (2γ)2i
∗−1/n. Therefore, by summing up all p̂h, (1), and

counting,

|H| · (2γ)
2i∗−1

n
≤

∑
h∈H

p̂h ≤
∑
j∈[m]

p̂j = 1,

from which it follows that |H| ≤ n/(2γ)2i
∗−1. Therefore,

n

(2γ)2i∗−2
− |H|γ ≥ n

(2γ)2i∗−2
− γ · n

(2γ)2i∗−1
=

n

2 · (2γ)2i∗−2
>

n

(2γ)2c
,

as desired.

5 Main Lower Bound

Theorem 3 (Main Theorem). There is a universal constant C ≤ 103 for which the following holds.
Consider a memory checker with read-only reads for a logical memory of size n with secret local
storage and with logical word size wℓ = 1. Assume that the memory checker has physical database
size m, physical word size w, read query complexity qr ≤ n/C, write query complexity qw, and local
space p. If completeness is 99/100 and soundness error is 1/3, then for n ≥ C,

p ≥ n

(Cqrqw(w + logm))C·qr − log qr − C.

Comparison between Theorem 3 and BKV [BKV24, Theorem 5]. The main differences
between the statements of Theorem 3 and [BKV24, Theorem 5] is the requirement on soundness
(and the read-only reads condition). While their soundness error needs to be at most O(1/(qr ·2qr)),
ours only needs to be at most 1/3. In short, our proof circumvents this by showing that an efficient
adversary can learn a sufficiently good partitioning of the physical memory by issuing poly(n)
queries to the memory checker instead of guessing. Besides the description of the adversary used to
invoke soundness of the memory checker, the rest of the proof is very similar to [BKV24, Theorem
5]. We borrow notation and more from [BKV24] throughout the proof.

We now state some corollaries of the main theorem, similarly to [BKV24] except with a signif-
icantly weakened requirement on the soundness error. Corollary 1 gives a quasi-logarithmic lower
bound on the query complexity q of memory checkers, when not differentiating between read and
write query complexities. We emphasize that this bound on q is tight up to constant factors;
see [BEG+94, PT11, BKV24] for standard constructions. Corollary 2 shows that if qr is small,
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then qw is large; this is similarly tight up to constant factors in the exponent due to the read-write
trade-off of DNRV [DNRV09].

As an aside, these corollaries assume m ≤ poly(n) and w ≤ polylog(n). We give brief justification
for these standard settings of parameters. [BKV24, Appendix B] shows how to obtain m ≤ poly(n)
generically (using PRFs) when the number of logical queries is bounded above by a fixed polynomial
(see also [BKV24, Remark 5]). For larger physical word sizes w, [BKV24, Remark 6] shows that
if w = (log n)ω(1), one can indeed get better memory checkers with query complexity O(logw n),
assuming the existence of sub-exponentially secure one-way functions. For example, for w = nε for
some ε ∈ (0, 1), there is a memory checker with query complexity O(1/ε).

Corollary 1. Consider a memory checker with read-only reads for a logical memory of size n with
secret local storage and with logical word size wℓ = 1. Assume that the memory checker has physical
database size m ≤ poly(n), physical word size w ≤ polylog(n), query complexity q, and local space
p. If completeness is 2/3 and soundness error is 1/3, then

p ≥ n

(log n)O(q)
−O(log log n).

In particular, if p ≤ n1−ε for ε > 0, then q ≥ Ω(log n/ log log n).

Proof of Corollary 1 assuming Theorem 3. First, we apply completeness amplification from 2/3 to
99/100 by parallel repetition, increasing qr, qw, m and w by at most an O(1) factor. Suppose that
q ≥ log n/ log log n. Then, there exists a constant such that (log n)C·q = ω(n), making the inequality
trivial. Therefore, we can assume q = max{qr, qw} ≤ log n/ log log n. Thus, log qr = O(log log n).
Furthermore, since m ≤ poly(n) and w ≤ polylog(n) by assumption, when applying Theorem 3,
the denominator becomes (log n)O(q), as desired.

Corollary 2. Consider a memory checker with read-only reads for a logical memory of size n with
secret local storage and with logical word size wℓ = 1. Assume that the memory checker has physical
database size m ≤ poly(n), physical word size w ≤ polylog(n), read query complexity qr, write query
complexity qw, and local space p ≤ n1−ε for ε > 0, with completeness 2/3 and soundness error 1/3.
Then:

• If qr = o(log n/ log log n), then qw = (log n)ω(1).

• If qr = O(1), then qw = nΩ(1).

Proof of Corollary 2 given Theorem 3. First, we apply completeness amplification from 2/3 to
99/100 by parallel repetition, increasing qr, qw, m and w by at most an O(1) factor. For qr = o(n),
we can apply Theorem 3 and re-arrange to get

qw ≥
nΘ(1/qr)

qr log n
.

The result immediately follows.

Finally, we prove our main theorem, Theorem 3.
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Proof of Theorem 3. We begin by defining some notation. Suppose DB ∈ ({0, 1}w ∪ {⊥})m is a
public database, and st ∈ {0, 1}p is a (secret) local storage. Let R(i,DB, st; r) ⊆ [m] denote the set
of (at most qr) physical locations queried by the memory checker upon performing logical read to
index i ∈ [n] using public database DB, local storage st, and internal randomness r for the logical
read.

“Next-read” distribution. For a database DB and storage st, define the next-read distribution
DDB,st as follows:

1. Sample i ∼ [n] uniformly at random.

2. Sample internal randomness r for the memory checker uniformly at random.

3. Sample and output a uniformly random element of R(i,DB, st; r).

Let c = 100qr + 1, and let γ = 200qrqw(w + logm+ 2) in preparation for applying Theorem 2. For
j ∈ [c], let δj := (2γ)2j−2/n ≥ 1/n as in Theorem 2, and let kj := ⌊1/(100δjqrqw)⌋ ≤ n/100. We
assume n is a multiple of 10 throughout for simplicity.

We use the memory checker to directly construct a public-coin protocol for Alice and Bob to send
a string x chosen uniformly at random from {0, 1}9n/10+kj∗ such that ∥x∥0 = kj∗ . This construction
directly follows [BKV24, Theorem 5], with the main difference being the soundness argument.

Protocol description. Alice and Bob share randomness before starting the protocol. First, Alice
and Bob run a memory checker and logically write 0 to all logical indices i ∈ [n]. Next, Alice and
Bob sample j∗ ∼ [c] uniformly at random. Next, Alice and Bob will together randomly sample a
uniform y ∈ {0, 1}n such that ∥y∥0 = n/10− kj∗ , and they will write 1 to all logical indices i ∈ [n]
such that yi = 1 in a uniformly random order. This process yields

DB0 ∈ ({0, 1}w ∪ {⊥})m , st0 ∈ {0, 1}p,

representing the public database and local storage of the memory checker. Based on y, Alice
and Bob will agree on a fixed map π : [9n/10 + kj∗ ] → [n] that maps [9n/10 + kj∗ ] bijectively
to the logical indices i ∈ [n] such that yi = 0. For simplicity of notation, let k := kj∗ and
π(x) := {π(i) : i ∈ [9n/10 + k], xi = 1} ⊆ [n].

Alice’s encoding. Alice will directly encode x(−j∗) = (x(1), · · · , x(j∗−1), x(j
∗+1), · · · , x(c)). For

x := x(j
∗), Alice will use DB0 and st0 to write π(x) to the memory checker in a uniformly random

order, resulting in updated DB1 and st1. Then, Alice will run PartitionDDB1,st1 on the next-read
distribution DDB1,st1 to receive (H, j̃). Alice will then send st1, H, DB1|H , and auxiliary information
aux to Bob to help complete Bob’s partial information into full information about x. See Figure 4
for more technical details.
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Alice’s Strategy

Shared by Alice and Bob: j∗, DB0, st0, y, π
Alice’s Private Input:

(
x(1), · · · , x(c)

)
1. Let x := x(j

∗), and let x(−j∗) be a direct encoding of
(
x(1), · · · , x(j∗−1), x(j

∗+1), · · · , x(c)
)
.

2. Let π(x) := {π(ℓ) ∈ [n] : ℓ ∈ [9n/10 + kj∗ ], xℓ = 1}.

3. Using DB0 and st0, use the memory checker to write “1” to all indices in π(x) ⊆ [n] in a
uniformly random order. This results in updated DB1 and st1.

4. Using DB1 and st1 to define the next-read distribution DDB1,st1 , generate
(
H, j̃

)
←

PartitionD(1γ , 1c, 1n,m).

5. Run Steps 2-4 of Bob’s strategy (Figure 5) to generate the subset U ⊆ [n].

6. Let aux be an encoding of the subset U ∩ π(x) ⊆ U .

Output:
(
x(−j∗), st1, H,DB1|H , aux

)
.

Figure 4: Alice’s encoding strategy in the proof of Theorem 3.

The length of Alice’s message can be directly bounded above bylog
∏

j∈[c]
j ̸=j∗

(
9n/10 + kj

kj

)
+ |st1|+ |H|⌈log(m)⌉+ |H|⌈log(2w + 1)⌉+ |aux| (3)

≤ log

 ∏
j∈[c],j ̸=j∗

(
9n/10 + kj

kj

)+ p+ |aux|+ |H|(w + logm+ 2) + 1. (4)

Bob’s decoding. Bob will directly decode x(−j∗). To recover x, Bob first computes a hybrid
database D̃B, which is DB1 on H and DB0 on [m] \H. Then, Bob will use st1 from Alice and D̃B
to perform memory checker reads to all indices i ∈ [n]. Let z̃i ∈ {0, 1,⊥} denote outcome of each
of these reads. Bob will then keep all of these values that are binary and fill in any ⊥ values using
aux from Alice. See Figure 5 for more technical details.

Analysis. Let z ∈ {0, 1}n be the logical memory of the memory checker after writing y and x to
their respective parts, namely zi = yi∨1[i ∈ π(x)] (making ∥z∥0 = n/10). Let ρ denote randomness
to specify a uniformly random ordering of the support of z, representing the order that the support
of y and π(x) are written into the memory checker.

Claim 7. The distribution of j∗ is independent of z and ρ. In particular, since j∗ ∼ [c] uniformly
at random, Pr

[
j̃ = j∗

]
= 1/c.
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Bob’s Strategy

Shared by Alice and Bob: j∗, DB0, st0, y, π
Alice’s Message:

(
x(−j∗), st1, H,DB1|H , aux

)
.

1. Decode x(−j∗) into
(
x(1), · · · , x(j∗−1), x(j

∗+1), · · · , x(c)
)
.

2. Using DB0 from the shared input and H and DB1|H from Alice, define the database
D̃B ∈ ({0, 1}w ∪ {⊥})m as follows:

D̃B[v] :=

{
DB1[v] if v ∈ H,

DB0[v] otherwise.

3. For all i ∈ [n], perform a logical read to index i using database D̃B and local storage st1,
and let z̃i ∈ {0, 1,⊥} denote the outcome.

4. Define U := {i ∈ [n] : z̃i = ⊥}.

5. Parsing aux ⊆ U , define z ∈ {0, 1}n by

zi :=


z̃i if z̃i ̸= ⊥,
1 if z̃i = ⊥ and i ∈ aux,

0 if z̃i = ⊥ and i /∈ aux.

6. Define x ∈ {0, 1}9n/10+kj∗ by xℓ := zπ(ℓ) ∈ {0, 1}.

Output:
(
x(1), · · · , x(j∗−1), x, x(j

∗+1), · · · , x(c)
)
.

Figure 5: Bob’s decoding strategy in the proof of Theorem 3.
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Proof of Claim 7. The proof follows by the same reasoning as BKV [BKV24, Claim 1]. In short,
for each value of j∗, writing n/10 − kj∗ uniformly random distinct indices in a uniformly random
order and then writing to kj∗ uniformly random distinct indices (outside of those already written
to) in a uniformly random order is equivalent to writing n/10 uniformly random distinct indices in
a uniformly random order. To see this more formally, the probability of a particular z and ρ can be
written as the reciprocal of(

n

n/10− kj∗

)
· (n/10− kj∗)! ·

(
9n/10 + kj∗

kj∗

)
· kj∗ ! =

n!

(9n/10)!
=

(
n

n/10

)
· (n/10)!,

which has no dependence on j∗.

Using completeness. Throughout, we will assume that the call to Partition() from Alice succeeds.
This occurs with probability at least 1 − 1/n, and hence can be ignore up to an additive 1/n in
the success probability of the protocol. Fix D = DDB1,st1 to be the next-read distribution. Fix
H ⊔M ⊔ L = [m] and j̃ as the output of Partition, which we know satisfy the following properties:

1. For all ℓ ∈ L, PrX∼D[X = ℓ] ≤ (2γ)2j̃−2/n = δj̃ ;

2. PrX∼D[X ∈M ] ≤ 4/(c− 1) = 1/(25qr); and

3. The set H satisfies
1

δj̃
− |H|γ >

n

(2γ)2c
.

The public databases DB0 and DB1 differ only at physical locations that Alice accessed in writing
the indices π(x). Since ∥x∥0 ≤ k, this is at most k ·qw locations, which we will call W ⊆ [m]. Define
BAD := W ∩ (L ∪M) to be the set of locations that Alice wrote to that are not included in H.
That is, DB1 and D̃B differ only at physical locations in BAD. (We emphasize that Bob does not
know the set BAD.) Note that whenever

R(i,DB1, st1; r) ∩BAD = ∅,

then
DB1|R(i,DB1,st1;r) = D̃B|R(i,DB1,st1;r),

allowing us to invoke completeness of the memory checker. To argue that R(i,DB1, st1; r)∩BAD = ∅
occurs with decent probability, we show the following claim, analogous to Claim 2 of [BKV24]:

Claim 8. Assuming j̃ = j∗,

Pr
i∼[n],r

[R (i,DB1, st1; r) ∩BAD = ∅] ≥ 19

20
.

Proof of Claim 8. We can decompose BAD = (W ∩ L) ∪ (W ∩ M) and analyze the two cases
separately.

For W ∩ L, by definition of L, we know

Pr
X∼D

[X ∈W ∩ L] =
∑

ℓ∈W∩L
Pr

X∼D
[X = ℓ] ≤ |W ∩ L|δj∗ ≤ |W |δj∗ ≤ kj∗qwδj∗ .

24



Therefore, by construction of D and the union bound, we have

Pr
i∼[n],r

[R(i,DB1, st1; r) ∩ (W ∩ L) ̸= ∅] ≤ qr · Pr
X∼D

[X ∈W ∩ L]

≤ kj∗qwqrδj∗ ≤
1

100
,

by our setting of the parameter kj∗ = ⌊1/(100δj∗qrqw)⌋.
For W ∩M , notice that PrX∼D[X ∈M ] ≤ 1/(25qr). By construction of D and the union bound,

Pr
i∼[n],r

[R(i,DB1, st1; r) ∩ (W ∩M) ̸= ∅] ≤ Pr
i∼[n],r

[R(i,DB1, st1; r) ∩M ̸= ∅]

≤ qr · Pr
X∼D

[X ∈M ] ≤ 1

25
.

By union bounding over both cases, we have

Pr
i∼[n],r

[R(i,DB1, st1; r) ∩BAD ̸= ∅] ≤ 1

100
+

1

25
=

1

20
,

as desired.

Now, we can use completeness of the memory checker to argue that Bob will recover the correct,
binary values for a constant fraction of z (conditioned on j̃ = j∗), in the following sense:

Claim 9.
Pr

[
|{i ∈ [n] : z̃i = zi}| ≥

4n

5

∣∣∣∣ j̃ = j∗
]
≥ 7

10
.

Proof of Claim 9. To apply memory checking completeness, consider the sequence of operations
that writes 0 to all i ∈ [n], writes 1 to all of z in the order ρ, and then reads to index i to receive
an outcome in {0, 1,⊥}. By the “read-only reads” property, this outcome is identical to Bob’s z̃i,
since the only difference in between the two is logical reads. Therefore, by completeness, for each
i ∈ [n], we have

Pr
r
[z̃i = zi | R(i,DB1, st1; r) ∩BAD = ∅] ≥ 99

100
,

where the probability here (and later) is implicitly also over the randomness of z, ρ, and the
randomness of the memory checker up until the logical read. By Claim 7, we know that we also
have

Pr
r

[
z̃i = zi

∣∣∣ R(i,DB1, st1; r) ∩BAD = ∅, j̃ = j∗
]
≥ 99

100
,

incorporating the distribution over j∗ as well. By taking the convex combination over i ∈ [n], we
have

Pr
i∼[n],r

[
z̃i = zi

∣∣∣ R(i,DB1, st1; r) ∩BAD = ∅, j̃ = j∗
]
≥ 99

100
.

By the bound Pr[A|C] ≥ Pr[A|B,C] · Pr[B|C], we can use the previous line and Claim 8 to get

Pr
i∼[n],r

[
z̃i = zi

∣∣∣ j̃ = j∗
]
≥ Pr

i∼[n],r

[
z̃i = zi

∣∣∣ R(i,DB1, st1; r) ∩BAD = ∅, j̃ = j∗
]

· Pr
i∼[n],r

[
R (i,DB1, st1; r) ∩BAD = ∅

∣∣∣ j̃ = j∗
]

≥ 99

100
· 19
20

>
47

50
.
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Therefore, the expected number of i ∈ [n] such that z̃i = zi (given j̃ = j∗) is at least 47n/50. By
Markov’s inequality, this implies

Pr

[
|{i ∈ [n] : z̃i = zi}| ≥

4n

5

∣∣∣∣ j̃ = j∗
]
≥ 7

10
,

as desired.

Using soundness. We now describe the computationally efficient attack that the adversary car-
ries out, against which we apply soundness of the memory checker. Consider the memory checker
that first writes 0 to all logical indices i ∈ [n], and then writes z in a random order specified ρ.
After this point, the adversary will choose t = Θ(n2 log(m + n)) uniformly random logical read
indices i ∈ [n] and record uniformly random a physical query location from the resulting physical
reads. Next, the adversary will run Partition(1γ , 1c, 1n,m) using this list of samples it has generated
to compute a heavy set H and corresponding index j̃ ∈ [c]. From this index, the adversary will
compute k := kj̃ and D̃B according to k just as Bob does. Finally, the adversary will perform
logical reads to all i ∈ [n]. We give more technical details for the adversary in Figure 6.

Note that conditioned on j̃ = j∗, by the “read-only reads” property, the values z̃i recovered by
Bob are identical to the values the adversary recovers from the last n logical reads. As a result,
since j∗ is uniform and independent of the full view of the memory checker (Claim 7), we have the
following, due to soundness:

Pr
[
∃i ∈ [n], z̃i /∈ {zi,⊥}

∣∣∣ j̃ = j∗
]
≤ 1

3
.

Negating, this becomes

Pr
[
∀i ∈ [n], z̃i ∈ {zi,⊥}

∣∣∣ j̃ = j∗
]
≥ 2

3
. (5)

Combining Claim 9 and (5) via the union bound, and the fact that Pr
[
j̃ = j∗

]
= 1/c, we have

Pr

[
(∀i ∈ [n], z̃i ∈ {zi,⊥}) ∧

(
|{i ∈ [n] : z̃i = zi}| ≥

4n

5

)
∧
(
j̃ = j∗

)]
≥

Pr

[
(∀i ∈ [n], z̃i ∈ {zi,⊥}) ∧

(
|{i ∈ [n] : z̃i = zi}| ≥

4n

5

)∣∣∣∣ j̃ = j∗
]
· Pr

[
j̃ = j∗

]
≥

(
1− 3

10
− 1

3

)
· 1
c
≥ 1

3c
=

1

300qr + 3
≥ 1

303qr
.

Since we have assumed throughout that Partition is successful, union bounding over the case that
Partition fails, we know that Partition succeeds and the three conditions above hold with probability
at least α := 1/(303qr)− 1/n. Assuming qr ≤ n/500, we have α ≥ 1/(800qr).

Note that if all of the above conditions hold, then Bob successfully recovers Alice’s input. Since
|{i ∈ [n] : z̃i = zi}| ≥ 4n/5, Alice’s string aux can be used to encode a subset of the n/5 remaining
indices in [n] of size at most k (where k ≤ n/100). Therefore,

|aux| ≤
⌈
log

(
n/5

k

)⌉
≤ log

(
n/5

k

)
+ 1.
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Description of A (for soundness)

• For the first n+ n/10 queries (i.e., for writing 0 to all of [n] and then 1 to z):

– Behave honestly, and record all physical queries made by the memory checker.

• Let DB1 ∈ ({0, 1}w ∪ {⊥})m denote the updated (honest) database after the n + n/10
queries.a

• Initialize an empty list D.

• For the next t = Θ(n2 log(m+ n)) reads to random logical locations i ∼ [n]:

– Behave honestly, and add a uniformly random one of the (at most) qr physical
locations to the list D.

• Compute (H, j̃)← PartitionD(1γ , 1c, 1n,m), where the samples are read linearly from the
list D.

• Let k := kj̃ = ⌊n/(100(2γ)
2j̃−2qrqw)⌋, and let DB0 ∈ ({0, 1}w ∪ {⊥})m be the database

rewound to the end of the first n+ n/10− k logical queries.

• Define the database D̃B ∈ ({0, 1}w ∪ {⊥})m as follows:

D̃B[v] :=

{
DB1[v] if v ∈ H,

DB0[v] otherwise.

• For the last n queries (i.e., for the final logical reads):

– Perform all physical queries from the memory checker with respect to D̃B.

aEven if m = nω(1), the adversary can lazily generate DB0, DB1, D̃B on the fly by storing all physical
queries from the memory checker.

Figure 6: Description of memory checking adversary, to apply soundness of the memory checker
in Theorem 3.
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As such, by (4), the length of Alice’s message can be directly bounded above by

log

 ∏
j∈[c],j ̸=j∗

(
9n/10 + kj

kj

)+ log

(
n/5

k

)
+ p+ |H|(w + logm+ 2) + 2.

We now invoke the compression lemma (Lemma 1).2 Since the probability of success is at least α,
we have

log

 ∏
j∈[c],j ̸=j∗

(
9n/10 + kj

kj

)+ log

(
n/5

k

)
+ p+ |H|(w + logm+ 2) + 2

≥ log

∏
j∈[c]

(
9n/10 + kj

kj

)− log(1/α),

which simplifies to

p ≥ log

(
9n/10 + k

k

)
− log

(
n/5

k

)
− |H|(w + logm+ 2)− log(1/α)− 2.

By using the standard bound on binomial coefficients (a/b)b ≤
(
a
b

)
≤ (ea/b)b, this becomes

p ≥ k log(9n/(10k))− k log(en/(5k))− |H|(w + logm+ 2)− log(1/α)− 2

= k log(9/(2e))− |H|(w + logm+ 2)− log(1/α)− 2

≥ k

2
− |H|(w + logm+ 2)− log(1/α)− 2

≥ 1

200δj∗qrqw
− |H|(w + logm+ 2)− log(1/α)− 5

2

≥ 1

200qrqw

 1

δj∗
− |H| · 200qrqw(w + logm+ 2)︸ ︷︷ ︸

γ

− log(1/α)− 5

2
.

Using the guarantee (Item 3) from Partition, we have

p ≥ 1

200qrqw
· n

(400qrqw(w + logm+ 2))2c
− log(1/α)− 5

2

=
1

200qrqw
· n

(400qrqw(w + logm+ 2))200qr+2
− log(1/α)− 5

2

≥ n

(400qrqw(w + logm+ 2))203qr
− log(800qr)−

5

2

≥ n

(600qrqw(w + logm))406qr
− log(qr)− 13,

as desired.
2As stated, the length of this message is technically not fixed, but is rather a random variable that depends on

the protocol’s execution. Our proof will implicitly show that with sufficiently high probability, this random variable
can be upper bounded by a small enough fixed quantity to invoke Lemma 1 and obtain a lower bound on p = |st1|.
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