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Abstract. We point out flaw in zero-knowledge of the CROSS identification protocol,
CROSS-ID [BBB+24], which allows a distinguisher to distinguish real and simulated
transcripts given access to the witness. Moreover, we show that the real and simulated
transcripts are not statistically indistinguishable, and therefore the protocol can only
satisfy weak computational (rather than strong, statistical or perfect) Honest Verifier
Zero-knowledge. This issue is still present in version 2.0 updated on January 31, 2025,
which resolves the security losses attained via the attacks of [BLP+25]
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CROSS [BBB+24] is a candidate submitted to the NIST additional digital signatures
competition. The CROSS protocol has been selected as a round 2 candidate and is thus
under more scrutiny by the cryptographic community. This is particularly the case for
CROSS, which has recently been attacked in [BLP+25], leading the authors to update
their parameters to account for the loss in bit-security. In this note, we show that the
identification protocol which the CROSS signature is based on does not satisfy their
included definition of honest verifier zero-knowledge. In particular, we show that (a) the
distributions of real and simulated transcripts are not statistically close, and (b) given
access to the witness, it is possible to distinguish between the real and simulated transcripts
with overwhelming advantage.

It is unclear what relevance this has to the security of the resulting signature scheme,
when the Fiat-Shamir transform has been applied. However, this is particularly relevant
to the security of fully-anonymous ring signatures constructed via generic transformation
of identification protocols, as was seen in the case of SQISign [BLL24].

Note: We assume the reader of this note is accompanied with the CROSS security
document [BBB+25]. The relevant content is presented in Section 4.2 and Figure 4. Hence,
except for the definitions of zero-knowledge, we will follow all notation and definitions that
are present in the document.

Identifying Variants of Honest Verifier Zero Knowledge We consider the various
notions of honest verifier zero-knowledge in the context of 5-round indentification protocols,
which are extended from the classic definitions of 3-round sigma protocols. Below is the
definition present in the v2.0 security document of CROSS, retrieved from [BBB+25]:

Definition 1 (Honest Verifier Zero-Knowledge). Let Π = (P,V) be interactive proof
system for a hard relation R ⊆ X × Y . We say that Π is honest-verifier zero-knowledge if
there exists a probabilistic polynomial time algorithm S, called the simulator, such that
the following two distribution ensembles are indistinguishable:

{(x, w, ⟨P(x, w),V(x)⟩) | (x, w)←$R} and {(x, w,S(x)) | (x, w)←$R}
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where ⟨P(x, w),V(x)⟩ denotes the transcript of an honest interaction between a prover
and the verifier with their respective inputs.

There is some ambiguity in the definition. It is unclear what the authors mean by
indistinguishability. In the security proof for zero-knowledge, they claim that certain
values in the simulated transcript follow the same statistical distribution as those in real
transcripts, but typically the witness is only included in the distribution given to the
distinguisher in the setting of computational zero-knowledge. Unfortunately, we show that
the CROSS protocol can only satisfy the variant below (in the ROM):

Definition 2 (Weak Computational Honest Verifier Zero-knowledge). Given a random
oracle O, let Π = (PO,VO) be interactive proof system for a hard relation R ⊆ X × Y .
We say that Π is weak computational honest-verifier zero-knowledge if there exists a
probabilistic polynomial time algorithm SO, called the simulator, such that for any λ ∈ N,
and any PPT distinguisher D that makes polynomially many queries to the random oracle
O, the following quantity is negligible in λ:

Pr[DO(x, ⟨PO(x, w),VO(x)⟩) = 1 | (x, w)←$R]− Pr[DO(x,SO(x)) = 1 | (x, w)←$R]

We denote the above quantity as the advantage of D.

In particular, we first provide a distinguisher for ΠCROSS-ID which shows that it does
not satisfy Definition 1 (i.e. it is not strong honest verifier zero-knowledge). Then, we
show that ΠCROSS-ID is not statistically zero-knowledge, since for a fixed instance-witness
pair, the distributions of real and simulated transcripts are not statistically close.

An efficient distinguisher given access to the witness We define a distinguisher D
for Definition 1 of ΠCROSS-ID as follows. On input:

• instance (G, H, s) where G ⊆ En, H ∈ F(n−k)×n
p , s ∈ Fn−k

p ,

• witness e ∈ G such that s = eH⊤,

• and transcript T = (cmt0, cmt1, chall1, digesty, chall2, resp)

The distinguisher, given oracle access to O = Hash(·), performs the following steps:

1. If chall2 = 0, parse resp as Seed and perform the following:

(a) Compute (e′, u′) ← CSPRNG(Seed) and hence with knowledge of e, obtain
v = e ⋆ (e′)−1, and u = v ⋆ u′. Lastly, compute s′ = uH⊤.

(b) If cmt0 = Hash(s′|v), output 1. Otherwise, output 0.

2. Otherwise, chall2 = 1, parse resp as (y, v) and perform the following:

(a) With knowledge of e, compute e′ = e ⋆ v−1 and solve for u′ = y− chall1 ⋆ e′.
(b) If cmt1 = Hash(u′|v), output 1. Otherwise, output 0.

The only time the distinguisher will output 1 for a simulated transcript is when
the simulator chooses a random bit string that coincides with the commitment for an
honest execution of the protocol with the same challenges and responses. This occurs
with probability 2−2λ. Hence the distinguisher has overwhelming advantage 1− 2−2λ in
distinguishing the distributions in Definition 1.
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Statistical distance between real and simulated transcripts Recall the statistical
distance (or total variable distance) between two distributions (or random variables) X
and Y is defined as:

∆(X, Y ) = 1
2

∑
x

|Pr[X = x]− Pr[Y = x]|

The distributions are said to be statistically indistinguishable for a parameter λ ∈ N if
∆(X, Y ) ≤ negl(n)(λ).

We rely on the following classical results from [Sho05, Thm 8.32, Thm 8.31].

Lemma 1. If S and T are finite sets, and X and Y are random variables taking values
in S, and f : S → T is a function, then ∆(X, Y ) ≥ ∆(f(X), f(Y )).

Lemma 2. Let X and Y be random variables taking the values in a set S. For every
S′ ⊆ S, we have ∆(X, Y ) ≥ |Pr[X ∈ S′]− Pr[Y ∈ S′]|.

Given (P O, V O) = ΠCROSS-ID, let us consider the distribution of transcripts for a fixed
(x, w) ∈ RCROSS-ID and instantiation of a random oracle O. Let

Treal = {⟨P O(x, w), V O(x)⟩} and Tsim = {SO(x)}

be the random variables associated to real and simulated transcripts respectively over
the set of valid transcripts Ω. From now on, parse elements of the set T ∈ Ω as
(cmt0, cmt1, chall1, digesty, chall2, resp).

First, we observe that since the real transcripts use a λ-bit seed, which determines
the resulting values for cmt0 and cmt1. However, the digests for the random oracle are
length 2λ. Hence there are at least 22λ − 2λ possible values for cmt0 and cmt1 ∈ {0, 1}2λ

which are never used in the real transcripts, but are in the unopened commitment of the
simulated transcript. Consider the function f : Ω→ {0, 1} × {0, 1}2λ which sends:

(cmt0, cmt1, chall1, digesty, chall2, resp) 7→ (chall2, cmt1−chall2)

That is, the distribution of chall2 and the (1− chall2)-th commitment, which remains
unopened. Let T ′

real := f(Treal) and T ′
sim := f(Tsim), and observe that the latter distribution

is uniformly distributed.
Define the function g0,e : {0, 1}λ → {0, 1}2λ that takes as input a λ-bit seed, and outputs

the resulting commitment cmt0 in the real transcript for a given witness e. Similarly,
define g1,e to output the commitment cmt1 in the real transcript for a given seed and e.
Now, let

S0 = {0} × {0, 1}2λ \ {0} × g1,e({0, 1}λ),
and S1 = {1} × {0, 1}2λ \ {1} × g0,e({0, 1}λ)

Which is precisely the set of values which arise in T ′
sim and not in T ′

real. We note that

|S0| ≥ 22λ − 2λ and |S1| ≥ 22λ − 2λ. (1)

Equality is the best case, where gi,e is injective for both i ∈ {0, 1}. Hence, we have:

∆(Treal, Tsim) ≥ ∆(T ′
real, T ′

sim) (By Lemma 1)
≥ |Pr[T ′

real ∈ S0 ∪ S1]− Pr[T ′
sim ∈ S0 ∪ S1]| (By Lemma 2)

= |0− Pr[T ′
sim ∈ S0 ∪ S1]|

= Pr[T ′
sim ∈ S0 ∪ S1]

= |S0 ∪ S1|
|{0, 1} × {0, 1}2λ|
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≥ 22λ − 2λ + 22λ − 2λ

2 · 22λ
(By Equation (1))

= 1− 2−2λ−1

Hence we have that real and protocol transcripts for a fixed instance (x, w) ∈ RCROSS-ID
are far from statistically indistinguishable, with statistical distance at least 1− 2−2λ−1 =
1− negl(n)(λ).

Conclusion In short, the problem present in CROSS-ID is that the commitments sent to
the verifier are not hiding. Generally, a hash based commitment needs fresh, independent
randomness in order to be hiding. We believe this flaw is due to the extreme optimisations
of CROSS, in an attempt to minimise their signature sizes.
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