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Abstract. The vanishing short integer solution (vSIS) assumption [Cini-Lai-Malavolta, Crypto’23], at
its simplest form, asserts the hardness of finding a polynomial with short coefficients which vanishes at
a given random point. While vSIS has proven to be useful in applications such as succinct arguments,
not much is known about its theoretical hardness. Furthermore, without the ability to generate a hard
instance together with a trapdoor, the applicability of vSIS is significantly limited.
We revisit the vSIS assumption focusing on the univariate single-point constant-degree setting, which
can be seen as a generalisation of the (search) NTRU problem. In such a setting, we show that the vSIS
problem is as hard as finding the shortest vector in certain ideal lattices. We also show how to generate
a random vSIS instance together with a trapdoor, under the (decision) NTRU assumption. Interestingly,
a vSIS trapdoor allows to sample polynomials of short coefficients which evaluate to any given value at
the public point. By exploiting the multiplicativity of the polynomial ring, we use vSIS trapdoors to
build a new homomorphic signature scheme for low-degree polynomials.
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1 Introduction

The short integer solution (SIS) problem over a ring R asks to find a non-zero short vector u ∈ Rm such
that Au = 0 mod q for a given uniformly random wide matrix A ∈ Rn×m

q . The average-case hardness
of SIS immediately implies simple constructions of collision-resistant hash functions and computationally
binding commitments, both linearly homomorphic. Ajtai [Ajt96] showed that average-case SIS for R = Z is
as hard as several natural worst-case problems over Euclidean lattices. Subsequently, Gentry, Peikert and
Vaikuntanathan (GPV) [GPV08] and Micciancio and Peikert [MP12] showed how to sample a statistically
random instance A of SIS over Z together with a trapdoor, given which it is efficient to sample a random short
preimage u satisfying Au = v mod q for any given target vector v. These lattice trapdoors enable lattice-based
constructions of a wide variety of cryptographic primitives, ranging from hash-and-sign signatures [GPV08] to
attribute-based encryption schemes [BGG+14]. Motivated by efficiency, the above results are later generalised
to other choices of R (see e.g. [LPR10,LPR13,LS15]), notably the rings of integers of cyclotomic fields, and
are nowadays used as standard tools in the constructions increasingly complex primitives.

Vanishing SIS. In this work, we focus on a generalisation of SIS called vanishing SIS (vSIS), proposed by Cini,
Lai and Malavolta [CLM23]. The vSIS problem is in fact a family of problems parametrised by numerous
parameters. A basic variant asks to find a non-zero polynomial p with at most a prescribed degree and
with short coefficients such that p(ai) = 0 mod q at all n given uniformly random points a1, . . . ,an. The
SIS problem can be seen as a special case by restricting solutions p to lie in the class of m-variate linear
polynomials.

As demonstrated in [CLM23,KLNO24], the vSIS assumption can be used to construct commitments which
are both linearly and (somewhat) multiplicatively homomorphic, which can in turn be used to construct
succinct arguments with efficient provers and verifiers. Furthermore, due to the polynomial structure, the
vSIS commitment scheme can be instantiated to have very short commitment keys. For instance, relying on
the single-point (i.e. n = 1) univariate vSIS assumption, the vSIS commitment allows to commit to a short
vector u ∈ Rm against a commitment key consisting of a single element a ∈ Rq.
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However, for the vSIS assumption to serve as a drop-in replacement of the SIS assumption, at least two
challenges must be tackled:

1. To better understand the theoretical hardness of the vSIS problem, preferrably by connecting to worst-case
lattice problems.

2. To construct algorithms which sample hard vSIS instances together with their trapdoors, given which
short polynomials can be sampled that evaluate at the public point to any desired value.

1.1 Our Contributions

In this work, we make initial progress towards tackling both of the aforementioned challenges, focusing on the
univariate single-point constant-degree setting. We refer to the vSIS problem in this setting as “simple vSIS”.
Concretely, over the ring of integers R of some number field K, a simple vSIS problem asks the following:

Given a single random point v ←$Rq, find a non-zero polynomial p over R with degree at most d
with coefficients of norm at most β satisfying p(v) = 0 mod q.

Note that, for d = 1, we essentially recover the search NTRU problem, i.e. finding short f, g ∈ R such that
fv + g = 0 mod q, with a different instance distribution. Surrounding this problem, our contributions are
summarised as follows.

Reduction from IdSVP to vSIS. We show that solving the simple vSIS problem is as hard as finding
approximate shortest vectors in ideal lattices of the form

I = ⟨zd⟩ ∩ R,

where z ∈ K, under certain parameter conditions. Our reduction is a generalisation of a similar reduction by
Pellet-Mary and Stehlé [PS21], who showed that the search NTRU problem is as hard as finding short vectors
in ⟨z⟩ ∩ R. We remark that our reduction is worst-case to worst-case and average-case to average-case, where
the latter is for certain not necessarily uniform distributions.

vSIS Trapdoors. Assuming the hardness of decision NTRU, i.e. that v = f/g mod q is pseudorandom for
f, g sampled from a discrete Gaussian distribution over R, we show how to sample a pseudorandom simple
vSIS instance v together with a trapdoor. Using the trapdoor with an existing preimage sampling algorithm
(e.g. [GPV08]), on input any target point t ∈ Rq, we can sample a short degree-dK polynomial p satisfying
p(v) = t mod q. Similar to the above reduction, our vSIS construction is a generalisation of that of NTRU
trapdoors [HHP+03,DLP14].

Homomorphic Signatures for Low-Degree Polynomials. Compared to SIS trapdoors [GPV08,MP12], vSIS
trapdoors exhibit additional multiplicative properties which could be useful for additional applications. More
precisely, due to the ring structure of polynomials over Rq, if p1, p2 are polynomials with short coefficients,
say sampled by a vSIS trapdoor, such that p1(v) = t1 mod q and p2(v) = t2 mod q, then p1 · p2 is still a
short-ish polynomial such that (p1 · p2)(v) = t1 · t2 mod q.

Indeed, exploiting such a multiplicative property, we present a new construction of homomorphic signatures
which allows to evaluate low-degree polynomials with short coefficients over signed data. Although being
less expressive that the leveled fully homomorphic signatures of [GVW15], our scheme only uses generic
ring arithmetic, without needing to perform non-ring-arithmetic operations such as binary decomposition.
Furthermore, our construction admits a natural generalisation to the multi-key setting.

1.2 Limitations and Open Problems

We point out several limitations of our results in the hope that they will inspire improvements by future
works.
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Constant-degree. Perhaps the most significant limitation is that, for both our reduction from ideal SVP to
vSIS and our construction of vSIS trapdoors, the degree d of the vSIS instance is limited to a constant. In
particular, for the reduction, it means that the security of vSIS commitments [CLM23], which is meant for
committing to poly(λ)-dimensional messages, is not covered. The root cause of this limitation is that, often,
we need to argue that the d-th power of a short element is still short (relative to the modulus q). Thus, to
avoid picking a too large modulus, we limit the degree d to constants. To get around this limitation, it seems
that new fundamental tools for arguing about polynomials with short coefficients is needed, other than just
treating them as linear functions with short coefficients over the monomials.

Single-point. All results in this work concern about vSIS in the single-point setting, where the number of points
in vSIS corresponds to the module rank of (module-)SIS [LS15]. In other words, elements in the corresponding
“vSIS module” are required to satisfy only one linear equation over Rq. In applications [CLM23,KLNO24], it
is useful to be able to pick the number of points n flexibly, which allows fine-tuning the vSIS instance to
have a desired hardness level (under the heuristic that vSIS is as hard as SIS). Unfortunately, our current
techniques of constructing vSIS trapdoors do not seem to allow finding short module elements satisfying not
one but several linear equations at once. We note that a similar problem is open even in the simpler case of
(module-)NTRU trapdoors [HHP+03,DLP14,CKKS19,CPS+20] as well.

Univariate. In this work, we focus primarily on univariate vSIS instances. As discussed above, the currently
predominant use (so far) of vSIS is to commit to a large quantity of data. Using univariate vSIS, it would
mean that the degree d of the vSIS instance needs to be as large as the dimensionality of the data to be
committed. Since the number of monomials of a multivariate polynomial grows exponentially in the degree,
switching to multivariate vSIS would allow considering a much lower degree d, which is intuitively more
secure. Unfortunately, the presence of cross terms makes it difficult to adapt our trapdoor construction to
multivariate vSIS.

Class of ideal lattices and moduli. In our ideal SVP to vSIS reduction, we are forced to focus on very specific
ideal lattices of the form

I = ⟨zd⟩ ∩ R

and the vSIS instance has modulus qd. The restriction on the class of ideal lattices is concerning, since ideals
of this form becomes exponentially more scarce as d increases. Furthermore, the restriction on the modulus
in particular means that the reduction does not cover vSIS instances with prime or product of primes moduli,
which are usually the preferred choices. Lifting these restrictions seems to require a new reduction strategy
different from that of [PS21] which we generalise.

Worst-case vs. average-case. Our reduction is worst-case to worst-case and average-case to average-case,
whereas a worst-case to average-case reduction akin to that of [Ajt96] from SIVP to SIS is more preferable.
We note that this is a minor restriction, given the conditional worst-case to average-case reduction sketched
in [CLM23] under the decision NTRU or LWE assumption.

2 Preliminaries

Let λ ∈ N denote the security parameter. For a finite set S or a distribution χ, we write x←$ S and x←$ χ
for sampling from the uniform distribution over S and the distribution χ respectively. We use := to denote
deterministic assignment and y ← A(x) to denote the execution of a (potentially probabilistic) algorithm A.
Matrices and vectors are represented by bold upper- and lower-case letters respectively, e.g. M and v.

2.1 Linear Algebra

We recall the notion of Gram-Schmidt orthogonalisation (GSO).
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Definition 1 (Orthogonal projection). Let K be a field and V be an inner product space over K. For a
subspace W ⊆ V , we denote the orthogonal projection of v ∈ V onto W as projW (v). If {wi}i∈I for some
index set I is an orthogonal basis of W , then

projW (v) =
∑
i∈I

⟨v,wi⟩
⟨wi,wi⟩

wi.

An orthogonal projection onto a certain subspace is always unique and does not depend on the choice
of the basis. Using projW (v) as a subroutine, we can define the Gram-Schmidt orthogonalisation (GSO)
procedures.

Definition 2 (Gram-Schmidt orthogonalisation). Let K,V be as in Definition 1, b1, . . . ,bm be linearly
independent vectors in V and B =

[
b1 . . . bm

]
. We call B̃ =

[
b̃1 . . . b̃m

]
the Gram-Schmidt orthogonalisation

of B, and it is defined as {
b̃1 = b1

b̃i = bi − projspanK({b1,...,bi−1})(bi), i ≥ 2.

The Gram-Schmidt norm (GS-norm) of the matrix B is denoted ∥B∥GS and defined as the maximum of the
ℓ2 norm over the columns of B̃, i.e.

∥B∥GS = max
i
∥b̃i∥.

2.2 Lattice and Discrete Gaussian

For a full-rank matrix B ∈ Rn×k with k ≤ n, the lattice spanned by B is Λ = B · Zk and B is said to be a
basis of Λ. Its dual lattice is Λ∨ = {x ∈ spanR(Λ) : ⟨Λ,x⟩ ⊆ Z}.

For s > 0, denote ρs(x) := exp(−π∥x∥2/s2) for any X ∈ Rn the Gaussian function with parameter s.
For a lattice Λ ⊆ Rn, the discrete Gaussian distribution over a coset A of Λ with parameter s is defined as
DA,s(x) := ρs(x)/ρs(A) for any x ∈ A, where ρs(Λ) :=

∑
x′∈A ρs(x

′).

Definition 3 (Smoothing Parameter [MR07]). Let Λ ⊂ Rn be a lattice. For real ϵ > 0, the smoothing
parameter ηϵ(Λ) is the smallest real s > 0 such that ρ1/s(Λ∨ \ {0}) ≤ ϵ.

Lemma 1 ([GPV08, eprint Lemma 3.1]). Let Λ ⊂ Rn be a full-rank lattice and B ∈ Rn×n be a basis of
Λ. For any real ϵ > 0, we have

ηϵ(Λ) ≤ ∥B∥GS ·
√

log(2n · (1 + 1/ϵ))/π.

In particular, ηϵ(Λ) ≤ ∥B∥GS ·
√
n for some ϵ negligible in n.

Lemma 2 ([MR07, Lemma 4.4]). Let Λ ⊂ Rn be a lattice. For any c ∈ Rn, real ϵ ∈ (0, 1) and s ≥ ηϵ(Λ),
Pr[∥x− c∥ > s

√
n |x←$ DΛ,s,c ] ≤ 1+ϵ

1−ϵ · 2
−n.

Lemma 3 ([GPV08, eprint Corollary 2.8]). Let Ψ ⊆ Λ ⊂ Rn be full-rank lattices. For any ϵ ∈ (0, 1/2),
any real s ≥ ηϵ(Ψ), any any c ∈ Rn, the distribution DΛ,s,c mod Ψ and the uniform distribution over Λ/Ψ
are within statistical distance at most 2ϵ.

Lemma 4 ([GPV08, eprint Theorem 4.1]). There exists a PPT algorithm that, given a basis B ∈ Rn×n

of a lattice Λ, a parameter s ≥ ∥B∥GS ·
√
n, and a centre c ∈ Rn, outputs a sample from a distribution that is

statistically close in n to DΛ,s,c.
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2.3 Algebraic Number Theory

We use K to denote a number field of degree dK and R its ring of integers. We assume that a Z-basis
{b1, . . . , bdK} ⊂ R is fixed. We write σ = (σi)

dK
i=1 : K → CdK for the canonical embedding of K. The notation

of the embeddings is extended naturally to vectors by concatenation.
We define the ℓp-norm of field vectors via the canonical embedding, i.e. for x ∈ Kn, ∥x∥p := ∥σ(x)∥p. We

omit the subscript p when it is taken as p = 2. We write βK := maxi ∥bi∥∞ for the ℓ∞-norm of the longest
basis element. We extend the notation to polynomials over K by defining the norm of a polynomial to be the
maximum norm of the coefficients; i.e. for polynomial f =

∑d
i=0 fiX

i ∈ K[X], we denote ∥f∥p := maxdi=0 ∥fi∥p.

Proposition 1. For any x =
∑dK

i=1 bixi ∈ K where xi ∈ Q, denote {x} :=
∑dK

i=1 bi {xi} the fractional part of
x w.r.t. the Z-basis {b1, . . . , bdK}. It holds that

∥{x}∥∞ ≤ dK · βK/2.

Proof. Using elementary properties of σ we get ∥
∑

i bixi∥∞ ≤
∑

i ∥bixi∥∞ ≤
∑

i ∥bi∥∞∥xi∥∞ ≤ dK · βK/2.
⊓⊔

Definition 4. For x ∈ K, we define the matrix M(x) ∈ RdK×dK as

M(x) =
[
σ(xb1) · · · σ(xbd)

]
.

We extend the notation coefficient-wise to vectors in Kn and matrices in Km×n.

The discriminant of K is denoted by ∆K. For z ∈ K, write ⟨z⟩ for the (fractional) ideal generated by z.
The algebraic norm of a (fractional) ideal I of K is denoted as N (I).

Note that σ(K) is isomorphic to QdK ⊂ RdK . Therefore, any R-module M ⊆ Rm can be identified M
as a dKm-dimensional lattice via σ(M). In particular, for a matrix A ∈ Rn×m

q and a vector v ∈ Rn
q , we

consider the following R-module (lattice) Λ⊥
q (A) and its coset Λv

q (A):

Λ⊥
q (A) := {u ∈ Rm : Au = 0 mod q},

Λv
q (A) := {u ∈ Rm : Au = v mod q}.

The following is an immediate corollary of Lemma 4 for Λ = Λ⊥
q (A).

Corollary 1. There exists a PPT algorithm SampPre that, given a basis B ∈ Rm×m of Λ⊥
q (A), a target

v ∈ Rn
q and a parameter s ≥ ∥B∥GS ·

√
dKm, outputs a sample from a distribution that is statistically close

in dKm to DΛv
q (A),s.

2.4 Computational Problems

Definition 5 (Hermite Shortest Vector Problem (HSVP)). Let n ∈ N and µ ≥ 1. The HSVPn,µ

problem asks to find, given a basis B ∈ Rn×n of L = B · Zn, a vector x ∈ L \ {0} satisfying

∥x∥ ≤ µ ·
√
n · det(L) 1

n .

The id-HSVPR,µ problem is a restriction of the HSVPn,µ problem, where n = dK, in that the input lattice is
restricted to be an ideal lattice in R.

Definition 6 (NTRU). Let R, q, χ be parametrised by λ, where R is a number ring, q is a positive integer,
and χ is a distribution over R. The dNTRUR,q,χ problem is to distinguish the uniform distribution over Rq

from the following distribution: {
h ∈ Rq :

f, g ←$ χ : ⟨f, g⟩ = R∧ g ∈ R×
q

h = f/g mod q

}
The dNTRUR,q,χ assumption states that no PPT algorithm solves the above problem with non-negligible
probability in λ.
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We recall the univariate single-point variant of the vanishing SIS assumption introduced in [CLM23].

Definition 7 (Vanishing-SIS (vSIS, [CLM23])). Let R, d, q, β be parametrised by λ, where d, q are
positive integers and β > 0. The vSISR,d,q,β assumption states that, for any PPT adversary A, it holds that

Pr

[
p(v) = 0 mod q

∧ 0 < ∥p∥ ≤ β

∣∣∣∣∣ v ←$R×
q

p← A(v)

]
≤ negl(λ)

where in the above p =
∑d

i=0 pi · Xi ∈ R[X] is a univariate polynomial of degree at most d and ∥p∥ :=
maxdi=0 ∥pi∥.

3 Reduction from Id-SVP to vSIS

The goal of this section is to generalise the results of [PS21], where the authors reduce search-NTRU from
ideal-HSVP. As a result, we obtain a reduction from a special distribution of ideal-HSVP to vSIS, under a
specific parameter regime.

Before going into the main theorem of the section, let us first state and prove a lemma that represents the
core of the reduction. Roughly, the lemma states the following: Given an ideal of the form I = ⟨zd⟩ ∩ R, we
can define a vSIS instance v = ⌊q/z⌉ mod qd such that (i) a short solution p exists, and (ii) for any sufficiently
short solution p′ the leading coefficient must belong to the ideal I.

Lemma 5 (Transforming ideal-HSVP instance to vSIS instance). Let q, d ∈ N such that q ≥ 2. Also,
let I ⊆ R be a non-zero ideal of form I = ⟨zd⟩ ∩ R where z ∈ K, and define v = ⌊q/z⌉ mod qd. Then, for
every such v we have

(i) there exists a non-zero polynomial p ∈ R[X] such that deg(p) ≤ d, p(v) = 0 mod qd and

∥p∥ ≤ d
d+ 1

2

K ·∆
1

2dK
K · βd

K · N (I)
1

dK ,

and
(ii) for any non-zero polynomial p′ ∈ R[X] satisfying deg(p′) ≤ d, p′(v) = 0 mod qd and

q

∥p′∥∞
> ∆

1
2dK
K ·N (I)

1
dK ·max

{
1,
∥∥z−1

∥∥d−1

∞ ,

(
βK · dK

2

)d
}
· (2d+1 − 2),

it holds that the leading coefficient of p′ is in I \ {0}.

Proof. Towards (i), let α be the shortest non-zero element in I, measured in the infinity norm. Let

p(X) = α ·
(
X +

{q
z

})d
.

We show that p is a short degree-d polynomial in R[X] vanishing at v modulo qd.
Observe that deg(p) = d by construction. To check the vanishing property, notice that v = q

z −
{

q
z

}
, and

thus
p(v) = α ·

(q
z

)d
= 0 mod qd

where the second equality follows from our assumptions: since α ∈ ⟨zd⟩ there exist r ∈ R such that α = rzd

and thus α/zd ∈ R.
Next, we show that the coefficients of p are in R. Observe that they are given by the binomial expansion

pi = α ·
(
d

i

)
·
{q
z

}d−i

, i ∈ {0, . . . , d}.
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We have

α ·
{q
z

}d−i

= α ·
(q
z
− v
)d−i

=

d−i∑
j=0

α ·
(
D − i

j

)
·
(q
z

)j
· (−v)d−i−j .

Since α ∈ ⟨zd⟩ ∩ R, all of the summands are in R and hence α {q/z}d−i ∈ R for all i ∈ {0, . . . , d}. This
implies p ∈ R[X].

Lastly, let us compute an upper bound on the norm of the solution. Minkowski’s bound implies ∥α∥∞ ≤
∆

1/(2dK)
K · N (I)1/dK and by equivalence of norms, ∥α∥ ≤

√
dK ·∆1/(2dK)

K · N (I)1/dK . Also, by Proposition 1
we have ∥ {q/z} ∥∞ ≤ βK · dK/2. Thus,

∥p∥ ≤ ∥α∥ · max
i∈{0,...,d}

{(
d

i

)}
·
∥∥∥{q

z

}∥∥∥d
∞

≤
√

dK ·∆
1

2dK
K · N (I)

1
dK · max

i∈{0,...,d}

{(
d

i

)}
·
(
βK · dK

2

)d

≤ d
d+ 1

2

K ·∆
1

2dK
K · βd

K · N (I)
1

dK

where we used the bound maxi∈{0,...,d}

{(
d
i

)}
≤
∑d

i=0

(
d
i

)
= (1 + 1)d = 2d.

Next, we prove (ii). Without loss of generality we may assume that deg(p′) = d; if deg(p′) = d∗ < d,
simply consider the polynomial Xd−d∗

p′ instead. We have

p′(v) =

d∑
i=0

p′i ·
(q
z
−
{q
z

})i
=

d∑
i=0

p′i ·
i∑

j=0

(
i

j

)
·
(q
z

)j
·
(
−
{q
z

})i−j

= qdr

for some r ∈ R. Multiplying both sides by α/qd and reordering yields

αp′d
zd

= αr − α

q
·


p′d ·

d−1∑
j=0

(
d

j

)
· q

j−d+1

zj
·
(
−
{q
z

})d−j

+

d−1∑
i=0

p′i ·
i∑

j=0

(
i

j

)
· q

j−d+1

zj
·
(
−
{q
z

})i−j

 .

Denote the second term on the right-hand side as θ; then, observe that ∥θ∥∞ is at most

∥α∥∞
q
· ∥p′∥∞ ·max

{
1,
∥∥z−1

∥∥d−1

∞ ,
∥∥∥{q

z

}∥∥∥d
∞

}
·

d−1∑
j=0

(
d

j

)
+

d−1∑
i=0

i∑
j=0

(
i

j

)
=

∆
1

2dK
K ·N (I)

1
dK

q
· ∥p′∥∞ ·max

{
1,
∥∥z−1

∥∥d−1

∞ ,

(
βK · dK

2

)d
}
· (2d+1 − 2)

where we used Minkowski’s bound on ∥α∥∞, as well as properties of geometric sums to get
∑d−1

j=0

(
d
j

)
+∑d−1

i=0

∑i
j=0

(
i
j

)
= 2d − 1 +

∑d−1
i=0 2i = 2d − 1 + 1−2d

1−2 = 2d+1 − 2. Therefore, by the assumption on ∥p′∥∞, we
have that ∥θ∥∞ < 1. Because α ∈ ⟨zd⟩, αp′d/zd ∈ R. We also have αr ∈ R, and R being an additive group
hence implies θ ∈ R. Since the infinity norm of any non-zero element in R is greater than or equal to 1, we
conclude that θ = 0.

As a result, αp′d/z
d = αr. Dividing both sides by α we get that p′

d

zd = r ∈ R and therefore p′d ∈ ⟨zd⟩,
concluding the proof. ⊓⊔

Now we are ready to prove the main theorem.
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Theorem 1. Let d,N0, N1, q, β, z0 ∈ N such that N0 ≤ N1,

β ≥ d
d+ 1

2

K ·∆
1

2dK
K · βd

K ·N
1

dK
1

and

q > β ·∆
1

2dK
K ·N

1
dK
1 ·max

{
1, zd−1

0 ,

(
βK · dK

2

)d
}
· (2d+1 − 2).

Also, define

µ =
β

√
dK ·∆1/(2dK)

K ·N1/dK
0

.

There is a PPT (with respect to size(z), log q and d) reduction from worst-case id-HSVPR,µ to worst-case
vSISR,d,qd,β for ideals I ⊆ R that

– satisfy N (I) ∈ [N0, N1],
– are of form I = ⟨zd⟩ ∩ R where z ∈ K satisfying ∥z−1∥∞ ≤ z0 and
– are assumed to be represented by the element z.

Moreover, let Did-HSVP be a distribution over ideals satisfying the above conditions. Then, there exists a
distribution DvSIS over vSISR,d,qd,β instances and a PPT (w.r.t. size(z), log q and d) reduction from average-
case id-HSVPR,µ (for ideals sampled from Did-HSVP) to average-case vSISR,d,qd,β (for instances sampled from
DvSIS over vSISR,d,qd,β).

Proof. Let A be a PPT worst-case vSISR,d,qd,β oracle. Define the reduction id-HSVP-to-vSISAR,d,qd,β that
takes as input an ideal I = ⟨zd⟩ ∩ R satisfying N (I) ∈ [N0, N1].

id-HSVP-to-vSISAR,d,qd,β(I)

v :=
⌊ q
z

⌉
mod qd

p← A(v)
Let p∗ be the leading coefficient of the polynomial p
return p∗

Due to the lower bound on β, v is a valid vSISR,d,qd,β instance by the first claim of Lemma 5. Therefore p is
a non-zero polynomial in R[X] satisfying deg(p) ≤ d, p(v) = 0 mod qd and ∥p∥ ≤ β. Since ∥p∥∞ ≤ ∥p∥ and
thanks to q being bounded from below, the second claim of Lemma 5 implies that p∗ ∈ I \ {0}. Observe that

∥p∗∥ ≤ β ≤ µ ·
√

dK ·∆
1

2dK
K ·N

1
dK
0 ≤ µ ·

√
dK ·∆

1
2dK
K · N (I)

1
dK

and hence p∗ is a solution to the id-HSVPR,µ instance I.
To conclude the proof of the first part, it remains to bound the running time of the reduction. Notice

that we query the oracle once and the rest of the operations consist of division, rounding, taking residue and
finding the leading coefficient. All of these can be done in time poly(size(z), log q, d).

To prove the second part of the theorem, consider the same reduction as before but let A now be a
PPT average-case oracle with non-negligible success probability. By a similar argument that was used when
proving the first part, the reduction does not decrease the success probability and the running time is still
polynomial. ⊓⊔

The next corollary further emphasises the approximation factor of the reduction and follows from combining
the definition of µ and the lower bound on β in the previous theorem.
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Corollary 2. Use the same notations as in Theorem 1. Also, suppose that there exists a set of ideals of R
satisfying the conditions of the theorem and denote that set by S.

There exists a reduction from worst-case (respectively, average-case) id-HSVPR,µ for ideals in S to worst-
case (resp. average-case) vSISR,d,qd,β, with

µ = O
(
ddK · βd

K · (N1/N0)
1

dK

)
.

Assuming that (N1/N0)
1/dK = poly(dK, βK), the approximation factor is polynomial in dK and βK (for a

constant d).

Remark 1. Assuming (N1/N0)
1/dK to be polynomial in dK is not restrictive by itself. Note that we can choose

a lower bound N0 such that there exists sufficiently many ideals I ⊆ R with N (I) ≤ N0. Then, we claim
that if we set N1 = 2dKN0 (such that (N1/N0)

1/dK = 2), there are at least equally many ideals having their
norm within the interval [N0, N1]. This is because we can scale ideals with small norm up as discussed in
Section 4.1 of [PS21]. However, when combined with the other two conditions for the ideals, the situation is
not as clear. As such, we are currently unable to make an informed comment on whether the restrictions are
reasonable or not.

4 Trapdoors for vSIS

In this section, we construct trapdoors for pseudorandom univariate single-point constant-degree vSIS
instances under the decision NTRU assumption. Viewing NTRU as univariate single-point degree-1 vSIS,
our construction strategy is to extend the NTRU trapdoor generation algorithm to the setting of univariate
single-point constant-degree vSIS. In a nutshell, we construct a trapdoor generation algorithm TrapGen which
samples a pseudorandom point v ∈ Rq together with a trapdoor td. Then, using the trapdoor preimage
sampling algorithm SampPre from [GPV08] (recalled in Corollary 1), we can sample a polynomial f of a
prescribed degree with short coefficients such that f(v) = y mod q for any given image y ∈ Rq.

4.1 Trapdoor for Univariate Single-Point Constant-Degree vSIS

We extend NTRU trapdoors [HHP+03,DLP14] to the setting of univariate single-point constant-degree vSIS,
which we simply refer to as vSIS in this subsection.

vSIS Lattices. We begin by generalising the notion of NTRU lattices to that of vSIS lattices; these are free
R-modules that correspond to lattices via the canonical embedding.

Definition 8 (vSIS module). Let q, d ∈ N and v ∈ R. We denote the corresponding vSIS module asMv,d,q

and define it as

Mv,d,q =

{
(pd, . . . , p0) ∈ Rd+1

∣∣∣∣∣
d∑

i=0

piv
i = 0 mod q

}
.

Lemma 6 associates any vSIS module with a structured basis matrix.

Lemma 6. Mv,d,q is a free R-module of rank d+ 1 generated by the matrix

B =


1

−v

1
−v q

 ∈ R(d+1)×(d+1).
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Proof. Observe that all columns of B are in Mv,d,q. Thus, it remains to show that any (pd, . . . , p0) ∈Mv,d,q

can be expressed as Bx for some x ∈ Rd+1. Indeed, the components of such x can be given as

xi =


pd, i = 1

xi−1v + pd+1−i, i ∈ {2, . . . , d}
r, i = d+ 1.

⊓⊔

The trapdoor basis. Our trapdoor construction is driven by a simple observation: if v = f/g mod q as
in NTRU, v is computationally indistinguishable from uniform under the dNTRU-assumption. Moreover,
(g,−f, 0, . . . , 0), . . . , (0, . . . , 0, g,−f) ∈ Rd+1 is a set of d K-linearly independent elements in the module
Mv,d,q. A straight-forward adaptation of the techniques of [PP19] gives an efficient, recursive algorithm to
find one more module element to complete the basis, assuming that gcd(N (f),N (g)) = 1. The concrete
trapdoor generation algorithm TrapGen is defined in Figure 1.

TrapGen(1λ, 11, 1d+1, q)

repeat

repeat

f, g ←$ χ

until g ∈ R×
q , gcd(N (f),N (g)) = 1

v := fg−1 mod q

Compute (a0, . . . , ad) s.t.
d∑

i=0

fd−igiai = q (see Sec. 4 of [PP19])

T :=



g a0

−f a1

g ad−1

−f ad


until ∥M(T)∥GS ≤ B

return (v,T)

Fig. 1: vSIS trapdoor generation algorithm parametrised by χ and B, where χ is a distribution over R and B
is an upper bound on ∥M(T)∥GS; we will discuss selection of χ and B in Section 4.2. The choice of (a0, . . . , ad)
ensures that det(T) = det(B) = q (where B is as in Lemma 6), which is necessary for T to generate the
correct module.

Theorem 2. Use the same notation as in Figure 1 and suppose that the algorithm TrapGen returns (v,T).
Then, T generates the vSIS module Mv,d,q.

Proof. Let B be as in Lemma 6; we need to show that the modulesMB andMT (the R-modules generated by
the columns of B and T, respectively) are equal. Using the condition imposed on the coefficients (a0, . . . , ad)
we obtain

det(T) =

d∑
i=0

fd−igiai = q = det(B).
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Since both determinants are non-zero and the dimensions of the matrices are equal, we conclude that the
modules are of equal rank. Since the ranks are equal and det(T) = det(B), it suffices to show thatMT ⊆MB;
this can be seen from

T = B



g a0

vg − f va0 + a1

vd−2(vg − f) vg − f g
∑d−1

i=0 vd−1−iai

vd−1(vg − f)/q v(vg − f)/q (vg − f)/q
(∑d

i=0 v
d−iai

)
/q


. ⊓⊔

In the TrapGen algorithm constructed in Figure 1, the norm of the last column of T can in theory be
almost arbitrarily large. However, it can be reduced utilising a R-module analogue of Babai’s nearest plane
algorithm [Bab86]. A similar approach is used with NTRU trapdoors in [HHP+03] and [PP19]. In the formal
description of TrapGen in Figure 1, we handle this by only letting TrapGen output T until it finds one with
small enough Gram-Schmidt norm. It remains to be seen whether the algorithm TrapGen is efficient or
not. Similarly as with NTRU trapdoors (see e.g. [DLP14]), we can only present heuristic evidence. Our
numerical experiments, detailed in Section 4.2, suggest that the expected number of iterations is constant
when B = Ω(d ·∆1/(2dK)

K · q1/(d+1)).

4.2 Empirical Results

Bounding the Gram-Schmidt norm. We study the Gram-Schmidt norm of M(T). Obtaining an upper
bound seems infeasible, as such a result has not been established even in the less complicated case of NTRU
trapdoors. This is why we can ultimately only provide heuristic results for the expected behavior.

Lemma 7. Let K be a cyclotomic field of degree dK and let x ∈ Kn and {v1, . . . ,vm} ⊆ Kn. Furthermore,
denote SK = spanK{v1, . . . ,vm} and SC = spanC

{
σ(viζ

j−1)
∣∣ i ∈ [m], j ∈ [d]

}
. Then, we have

σ(projSK
(x)) = projSC

(σ(x)),

where projection onto SK is defined by equipping K with the inner product inherited from C, i.e. ⟨x,y⟩ = x̄T ·y
where ·̄ denotes the complex conjugate.1

Proof. Write x = y + z where y = projSK
(x). Then, σ(x) = σ(y) + σ(z). Since y ∈ SK, there exists cij ∈ Q

such that y =
∑

i∈[m]

∑
j∈[d] cijζ

j−1vi and hence σ(y) =
∑

i∈[m]

∑
j∈[d] cijσ(ζ

j−1vi). Thus, σ(y) ∈ SC.
Secondly, by construction we have z ⊥ SK and thus ⟨z,viζ

j−1⟩ = 0 for all i ∈ [m], j ∈ [d]. This implies
⟨σ(z), σ(viζ

j−1)⟩ = 0 for i ∈ [m], j ∈ [d]. Therefore σ(z) ⊥ SC, concluding the proof. ⊓⊔

The following result is inspired by Lemma 2.2 of [CPS+20]. Observe that our setting is different due to
using the canonical embedding instead of the coefficient embedding.

Lemma 8. Let K, dK be as in Lemma 7, and denote B =
[
b1 · · · bn

]
∈ Kn×n and M(B) =

[
r1 · · · rndK

]
.

Then,

– r̃(i−1)dK+1 = σ
(
b̃i

)
for all i ∈ [n], and

– ∥M(B)∥GS = ∥B∥GS.

Proof. By definition of GSO we have

r̃(i−1)d+1 = r(i−1)d+1 − projspanK{r1,...,r(i−1)d}(r(i−1)d+1)

1 Note that any cyclotomic field K is closed under complex conjugation.
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for all i ∈ [n]. Using the fact that r(i−1)d+j = σ(biζ
j−1) for all i ∈ [n], j ∈ [d], yields the first claim together

with Lemma 7.
For the second claim we need to prove that ∥r̃(i−1)d+j∥ ≤ ∥σ(b̃i)∥ for all i ∈ [n], j ∈ {2, . . . , d}. Towards

this, denote

S1 = spanC
{
r̃1, . . . , r̃(i−1)d

}
,

S2 = spanC
{
r̃(i−1)d+1, . . . , r̃(i−1)d+j−1

}
,

p1 = projS1
(r(i−1)d+j), and

p2 = projS2
(r(i−1)d+j)

such that r̃(i−1)d+j = r(i−1)d+j − p1 − p2. By the properties of GSO we have S1 = spanC
{
r1, . . . , r(i−1)d

}
and hence

p1 = projspanC{r1,...,r(i−1)d}(r(i−1)d+j) = σ
(
projspanK{b1,...,bi−1}(biζ

j−1)
)

= σ
(
projspanK{b1,...,bi−1}(bi)ζ

j−1
)

= σ
(
bi − b̃i

)
◦
(
σ
(
ζj−1

)
, . . . , σ

(
ζj−1

))
where we applied Lemma 7 for the second equality, the third equality follows from linearity of the projection
and ◦ denotes the Hadamard product. Since all elements of σ(ζj−1) are of magnitude 1, we conclude that
∥p1∥ = ∥σ(bi − b̃i)∥. By a similar argument we also have ∥r(i−1)d+j∥ = ∥σ(bi)∥. Finally, by orthogonality
we obtain ∥∥r̃(i−1)d+j

∥∥2 =
∥∥r(i−1)d+j

∥∥2 − ∥p1∥2 − ∥p2∥2

= ∥σ(bi)∥2 −
∥∥∥σ(bi − b̃i)

∥∥∥2 − ∥p2∥2

=
∥∥∥σ(b̃i)

∥∥∥2 − ∥p2∥2 ≤
∥∥∥σ(b̃i)

∥∥∥2. ⊓⊔

In light of Lemma 8, to estimate the GS-norm of M(T) (with GSO performed over C(d+1)dK), it suffices
to consider the GS-norm of T (with GSO performed over Kd+1). This makes the task easier. Also, thanks to
the lemma, we can talk about the GS-norm of T interchangeably with that of M(T) without ambiguity.

With that out of the way, let us study ∥T∥GS. During this process, we generalise a series of results
from [DLP14]. We begin by noticing that as long as f, g are short ring elements (as in NTRU), t̃1, . . . , t̃d
are indeed short. However, we also need to estimate the norm of t̃d+1. The following result formalises this
observation.

Corollary 3. Use the same definitions as in Theorem 2; in addition, let K, dK be as in Lemma 7. We have

∥T∥GS = max
{
∥t1∥,

∥∥t̃dK+1

∥∥}.
Proof. By the structure of T, the vectors t1, . . . , td are permutations of each other and hence their norms are
equal. Moreover, by Lemma 8,

σ(t̃i) = σ(ti)− projS(ti)

where S = spanC
{
tjζ

k−1
∣∣ j ∈ [i− 1], k ∈ [dK]

}
. Combining these two observations we get ∥t̃i∥ ≤ ∥ti∥ =

∥t1∥ for all i ∈ [d]. ⊓⊔

Next, we derive an explicit expression for t̃d+1.

Lemma 9. Use the same definitions as in Corollary 3. Furthermore, let T̃ =
[
t̃1 · · · t̃d+1

]
be the GSO of T.

We have
t̃d+1 =

q∑d
i=0 f

d−igifd−igi

(
fd, fd−1g, . . . , fgd−1, gd

)
.
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Proof. Denote c = q∑d
i=0 fd−igifd−igi

(
fd, fd−1g, . . . , fgd−1, gd

)
. To prove that t̃d+1 = c it suffices to show

that c is of form td+1 − p where p is the orthogonal projection projspanK{t1,...,td}(td+1). This can be split
into two separate statements:

(i) p = td+1 − c ∈ spanK {t1, . . . , td}, and
(ii) c ⊥ spanK{t1, . . . , td}.

By the structure of T, {t1, . . . , td} is a linearly independent set and hence (i) is equivalent to showing that
the determinant of the matrix T′ =

[
t1 · · · td td+1 − c

]
is zero. Applying the Laplace expansion yields

det (T′) =

d∑
j=0

(
aj −

q∑d
i=0 f

d−igifd−igi
fd−jgj

)
fd−jgj

=

d∑
j=0

ajf
d−jgj − q∑d

i=0 f
d−igifd−igi

d∑
j=0

fd−jgjfd−jgj

=

d∑
j=0

ajf
d−jgj − q = 0.

For (ii), notice that for all i ∈ [D] we have

⟨ti,
(
fd, fd−1g, . . . , fgd−1, . . . , gd

)
⟩ = gfd−i+1gi−1 − ffd−igi = 0. ⊓⊔

The following result combines Corollary 4 and Lemma 9; it provides a way to compute ∥T∥GS given f, g
without going through the GSO process. In practice it allows one to quickly identify bad choices of f, g.

Corollary 4. Use the same definitions as in Corollary 3. We have

∥T∥GS = max

{
∥t1∥,

∥∥∥∥∥ q∑d
i=0 f

d−igifd−igi

(
fd, fd−1g, . . . , fgd−1, gd

)∥∥∥∥∥
}
.

Our construction also admits a lower bound for the norm of t̃d+1 that will aid in the analysis.

Lemma 10. Use the same definitions as in Corollary 3. Then,∥∥t̃d+1

∥∥ ≥ ∆
(d+1)/(2dK)
K · q

∥t1∥d
.

Proof. Denote the GSO of M(T) as
[
r̃1 · · · r̃(d+1)dK

]
. By orthogonality of the vectors r̃i we have

|det (M(T))| =
(d+1)dK∏

i=1

∥r̃i∥ ≤ ∥t1∥d·dK ·
∥∥t̃d+1

∥∥dK (1)

where the inequality follows from Lemma 8 and Corollary 3. By Theorem 2, M(T) generates the same lattice
as 

M(1)

M(−v)

M(1)
M(−v) M(q)

.
Thus, det(M(T)) = det(M(1))d · det(M(q)) = det(M(1))d+1 · qdK = ∆

(d+1)/2
K · qdK . Substituting this to

Equation (1) yields the desired bound. ⊓⊔
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The first lower bound of the following corollary is an immediate result of Corollary 3 and Lemma 10; the
second one is obtained by minimising the first expression with respect to ∥t1∥.

Corollary 5. Use the same definitions as in Corollary 3. We have

∥T∥GS ≥ max

{
∥t1∥, ∆(d+1)/(2dK)

K · q

∥t1∥d

}
.

Thus, the theoretical lower bound over different choices of ∥t1∥ is

∥T∥GS ≥ ∆
1/(2dK)
K · q1/(d+1).

In the algorithm TrapGen we have control over the norm of t1. Therefore, the latter bound is important,
asserting a concrete bound on the quality of the trapdoor. For ease of notation in the following sections, let
us define the shorthand cK,q,d = ∆

1/(2dK)
K · q1/(d+1).

Numerical results. The results of the previous section provide a solid basis for understanding the GS norm
of T. In what follows, we attempt to complete the picture by providing results from numerical experiments. It
will turn out that, with careful choice of parameters, we can sample the trapdoor from a distribution where
∥M(T)∥GS is (heuristically) expected to be little over the theoretical lower bound, cK,q,d.

Our experiments were motivated by the numerical results of [DLP14] for NTRU trapdoors, as well as
those of [CKKS19,CPS+20] for module-NTRU trapdoors. In all of these, the norm of the last column of the
trapdoor was found to be not much greater than the theoretical lower bound. We expected to observe a similar
pattern for the vSIS trapdoors, i.e., that the norm of t̃d+1 would be somewhat close to ∆

(d+1)/(2dK)
K · q/∥t1∥d

as given by Lemma 10.
We conducted our experiments using SageMath. In the experiments, we sampled several independent

f ∈ Rq, g ∈ R×
q by picking their coefficient vectors from a discrete Gaussian distribution. The Gaussian

parameter was varied to obtain range of different values for ∥t1∥. Then, for each pair f, g, we computed
∥t̃d+1∥ using Lemma 9 and plotted ∥t̃d+1∥ against ∥t1∥ to analyse how the former depends on the latter.

This process was repeated for all different combinations of K = Q(ζf) for

f ∈ {64, 128}, q ∈ {1000193, 1000000513}, and d ∈ [6],

sampling 200 independent pairs f, g for each of them. The choices of q were to ensure that q is totally split in
Q(ζf), which is a popular choice for practical applications.

The results of the experiments for a subset of parameters are shown in Figure 2. It is in line with our
expectations, since most samples result in ∥t̃d+1∥ close to the lower bound. Some ∥t̃d+1∥ are still significantly
larger (especially for larger d), which might seem alarming. However, in practice we may simply reject such
f, g if the proportion of such outliers is sufficiently small; this is similar to what is done in Algorithm 2
of [DLP14].

To understand the average behavior of ∥t̃d+1∥, we fitted a linear least squares model to the data points
(ln(∥t1∥), ln(∥td+1∥)). Heuristically, we assume that the optimal choice of ∥t1∥ is roughly where the model
intersects the line y = ∥t1∥. In this region, approximately one half of the resulting ∥t̃d+1∥ are less than or
equal to ∥t1∥, in which case ∥T∥GS ≤ ∥t1∥.

In light of this discussion, the y-coordinate of the intersection between the least squares model and the
line y = ∥t1∥ can be viewed as an estimate of the practically achievable ∥T∥GS. Inspired by [CPS+20], we
express this value as gs_slack · cK,q,d where gs_slack is a constant. According to Figure 3, gs_slack appears
to grow roughly linearly with respect to d. In contrast, our experiments do not suggest that the degree of K
or the choice of modulus q would significantly affect gs_slack.

Remark 2. Increasing d leads to better trapdoors only as long as (i) the decrease of q1/(d+1) subdues the
(presumably) linear growth of gs_slack and (ii) we are able to sample t1 with norm cK,q,d. In other words,
∥T∥GS cannot be improved indefinitely by increasing the vSIS degree and it may even get worse after (i) is
no longer satisfied.
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Fig. 2: The norm of the last column of T̃ as a function of ∥t1∥ for K = Q(ζ128), q = 1000193 and different
values of d. The plots use logarithmic scales for both the x and y axes, with the least squares model estimating
the expected behavior.

5 Homomorphic Signatures

To demonstrate the utility of vSIS trapdoors, we present a simple construction of homomorphic signatures
(HS) for constant-degree polynomials over R with short coefficients, where a signature is itself a polynomial
s ∈ R[X] with short coefficients. For simplicity, we first focus our discussion on a scheme which allows signing
a single dataset with selective security, and defer discussions about full (i.e. adaptive) and multi-dataset
security to Section 5.3. We then briefly discuss our construction in relation to existing schemes in Section 5.4.
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Fig. 3: Growth of gs_slack as a function of d. Here we used the moduli q1 = 1000193 and q2 = 1000000513.

5.1 Definitions

Definition 9 (Single-dataset HS). A single-dataset homomorphic signature (HS) scheme for message
space X and admissible functions G over X consists of a tuple of algorithms (PrmsGen,KeyGen,Sign,Eval,
Process,Verify) with the following syntax.

– pp ← PrmsGen(1λ, 1N ): Gets the security parameter λ and a data-size bound N . Generates the public
parameters pp.

– (pk, sk)← KeyGen(1λ, pp): Gets the security parameter along with the public parameters. Generates the
public key and the secret key.

– (s1, . . . , sN )← Signsk(x1, . . . , xN ): Signs a tuple of data (x1, . . . , xN ) ∈ XN .
– s∗ ← Evalpp(g, (x1, s1), . . . , (xl, sl)): Homomorphically evaluates function g ∈ G, outputting a new signature

s∗.
– αg ← Processpp(g): Computes a “public key” of g that is later used in the verification step.
– b← Verifypk(αg, y, s

∗): Uses the signature s∗ to check that y is equal to g(x1, . . . , xl); outputs 1 if that is
the case, 0 otherwise.

Definition 10 (Correctness). Let Σ be a single-dataset HS scheme as defined in Definition 9. We say that
Σ is correct if it satisfies the following two notions for pp← PrmsGen(1λ, 1N ) and (pk, sk)← KeyGen(1λ, 1N ):

– Signing correctness. Let idi : XN → X be defined as the canonical extension of idi(x1, . . . , xN ) = xi. We
require that for any i ∈ [N ], (x1, . . . , xN ) ∈ XN and (s1, . . . , sN )← Signsk(x1, . . . , xN ), it holds that

Verifypk(Processpp(idi), xi, si) = 1

except with negligible probability in λ, with probability taken over the randomness of PrmsGen,KeyGen
and Signsk.

– Evaluation correctness. For any g ∈ G, (x1, . . . , xN ) ∈ XN , (s1, . . . , sN ) ← Signsk(x1, . . . , xN ) and
s∗ ← Evalpp(g, (x1, s1), . . . , (xN , sN )), it holds that

Verifypk(Processpp(g), g(x1, . . . , xN ), s∗) = 1

except with negligible probability in λ, with probability taken over the randomness of PrmsGen,KeyGen,
Signsk and Evalpp.
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Remark 3. In the above, we only define single-hop evaluation correctness for simplicity. It is clear how the
definition can be extended to capture multi-hop evaluation correctness.

Definition 11 (Security). Let N be a function of λ. We define the security of single-dataset HS via the
following security games:

Selective-securityΣ,A(1
λ)

(x1, . . . , xN )← A

pp← PrmsGen(1λ, 1N )

(pk, sk)← KeyGen(1λ, pp)

(s1, . . . , sN )← Signsk(x1, . . . , xN )

(g, y, s)← A(pp, pk, (s1, . . . , sN ))

b0 = Verifypk(Processpp(g), y, s)

b1 = (g(x1, . . . , xN ) ̸= y)

b2 = (g ∈ G)
return b0 ∧ b1 ∧ b2

Full-securityΣ,A(1
λ)

pp← PrmsGen(1λ, 1N )

(pk, sk)← KeyGen(1λ, pp)

(x1, . . . , xN )← A(pp, pk)
(s1, . . . , sN )← Signsk(x1, . . . , xN )

(g, y, s)← A((s1, . . . , sN ))

b0 = Verifypk(Processpp(g), y, s)

b1 = (g(x1, . . . , xN ) ̸= y)

b2 = (g ∈ G)
return b0 ∧ b1 ∧ b2

An HS scheme is said to be selectively secure if, for any polynomially bounded adversary A, the probability
Pr
[
Selective-securityΣ,A(1

λ) = 1
]

is negligible in λ. The scheme is called fully secure if the same holds for
Pr
[
Full-securityΣ,A(1

λ) = 1
]
.

5.2 Construction

In this section let q,N, dinit, deval, dmax ∈ N, βinit, βeval, βmax > 0 be some norm bounds, s > 0 be a Gaussian
parameter, Using this notation, Figure 4 presents a vSIS-based single-dataset HS scheme over message space
X that allows evaluation of degree-deval N -variate polynomials of norm at most βeval.

PrmsGen(1λ, 1N )

pp := (r1, . . . , rN )←$RN
q

return pp

Evalpp(g, f1, . . . , fN )

h := g(f1, . . . , fN )

return h

KeyGen(1λ, pp)

(v, td)← TrapGen(1λ, 11, 1dinit , q)

(pk, sk) := (v, td)

return (pk, sk)

Processpp(g)

assert deg(g) ≤ deval and ∥g∥ ≤ βeval

αg := g(r1, . . . , rN ) mod q

return αg

Signsk((xi)i∈[N ])

for i ∈ [N ] do

f ′
i(X)← SampPre

(
td,

ri − xi

v
, s
)

fi(X) := X · f ′
i + xi

return (f1, . . . , fN )

Verifypk(αg, y, h)

if h(v) = αg mod q and h(0) = y and

deg(h) ≤ dmax and ∥h∥ ≤ βmax

return 1

return 0

Fig. 4: A vSIS-based HS where TrapGen is as constructed in Figure 1 and SampPre is the algorithm described
in Corollary 1 where an output is interpreted as a polynomial f of degree at most dinit − 1.
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Remark 4. In the construction of Figure 4, we must require that v is a unit in Rq. This means that we have
to use a slightly modified version of the algorithm TrapGen. However, over a suitable choice of R and q, e.g.
when Rq splits into super-polynomial-size fields, the overwhelming majority of elements in Rq are units.
Thus, neither the output distribution nor the efficiency changes drastically.

Theorem 3. Let q,N, dinit, deval, dmax ∈ N with dinit ≥ 2 and dmax ≥ dinit ·deval. Let βtd, βinit, βeval, βmax, s >

0 be such that βtd ≥ gs_slack ·∆1/(2dK)
K · q1/dinit for some constant gs_slack > 0, βinit ≥ s

√
dK · dinit,

βmax ≥
(
deval +N

deval

)
· (dinit + 1)

deval · βdeval

init · βeval,

and s ≥ βtd ·
√
dK · dinit. Let R be the ring of integers of a power-of-2 cyclotomic field of degree dK with Rq

splitting into super-polynomial-size fields. Let TrapGen be such that it returns td = B with ∥B∥GS ≤ βtd with
overwhelming probability in λ. Let the message space X be the set of all R elements of norm at most βinit.
Let the set of admissible functions G be the set of all degree-deval N-variate polynomials of norm at most
βeval. Then, the HS scheme of Figure 4 is correct. Furthermore, it is selectively secure under the dNTRUR,χ

and vSISR,dmax,q,2βmax
assumptions, where χ = DR,s.

Proof. Signing correctness follows directly from the definition of the algorithm Sign, the guarantee of ∥B∥GS

by the assumption on TrapGen, the guarantee of SampPre by Corollary 1, and the Gaussian tail bound
Lemma 2. In particular, fresh signatures fi are of norm ∥fi∥ ≤ βinit with overwhelming probability in λ.

For evaluation correctness, let (fi)i∈[N ] ← Signpk,sk((xi)i∈[N ]), g : XN → X be a multivariate polynomial
satisfying deg(g) ≤ deval, ∥g∥ ≤ βeval and let h ← Eval(g, (fi)i∈[N ]). By signing correctness we have h(v) =
g(f1(v), . . . , fN (v)) = g(r1, . . . , rN ) mod q and h(0) = g(x1, . . . , xN ) mod q, and by the degree bounds
deg(g) ≤ deval (by assumption) and deg(fi) ≤ dinit (by construction) we have deg(h) ≤ dmax. We are left to
bound the norm of h; writing g(X1, . . . , XN ) =

∑
α:|α|≤deval

gα ·
∏

i∈[N ] X
αi
i where α = (α1, . . . , αN ) ranges

over tuples of non-negative integers with ℓ1-norm at most deval and fi(X) =
∑dinit

j=0 fi,jX
j , observe that

∥h∥ =

∥∥∥∥∥∥
∑

α:|α|≤deval

gα
∏

i∈[N ]

dinit∑
j=0

fi,jX
j

αi
∥∥∥∥∥∥

≤
∑

α:|α|≤deval

∥∥∥∥∥∥gα
∏

i∈[N ]

dinit∑
j=0

fi,jX
j

αi
∥∥∥∥∥∥ // triangle inequaliy

≤
∑

α:|α|≤deval

βeval ·

∥∥∥∥∥∥
∏

i∈[N ]

dinit∑
j=0

fi,jX
j

αi
∥∥∥∥∥∥ // ∥g∥ ≤ βeval

≤
∑

α:|α|≤deval

βeval ·

∥∥∥∥∥∥
∏

i∈[N ]

βαi

init ·

dinit∑
j=0

Xj

αi
∥∥∥∥∥∥ // ∥fi∥ ≤ βinit

=
∑

α:|α|≤deval

βeval · β|α|
init ·

∥∥∥∥∥∥∥
dinit∑

j=0

Xj

|α|
∥∥∥∥∥∥∥︸ ︷︷ ︸

≤ (dinit + 1)
|α| by induction on |α|

≤
∑

α:|α|≤deval

βeval · βdeval

init · (dinit + 1)
deval // |α| ≤ deval

=

(
deval +N

deval

)
· βeval · βdeval

init · (dinit + 1)
deval // counting monomials

≤ βmax.
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Towards security, suppose that A is a PPT adversary that breaks the selective security of the scheme.
Given a vSIS instance v, we can construct a reduction which queries A for the messages (xi)i∈[N ] ∈ XN .
Then, for all i ∈ [N ] it generates a degree-dinit polynomial fi by setting the constant coefficient equal to
xi and sampling the rest of the coefficients at random from DR,s. Moreover, for all i ∈ [N ] it computes
ri = fi(v) mod q. The reduction gives the tuple ((fi)i∈[N ], v, (ri)i∈[N ]) to A and receives (g, y, h) in return.

We argue that the reduction faithfully simulates the selective security game for A. We first consider an
intermediate distribution of ((fi)i∈[N ], v, (ri)i∈[N ]) where v is sampled by TrapGen and the rest of the tuple
is simulated as in the reduction. Define Λ := Λ⊥

q (1, v, . . . , v
dinit−1). By our assumption on TrapGen, with

overwhelming probability in λ, we have ηϵ(Λ) ≤ s for some ϵ negligible in λ. Then, by Lemma 3, the simulated
((fi)i∈[N ], (ri)i∈[N ]) are statistically close to those in the real experiment.

To move from the intermediate distribution to that induced by the reduction, we note that a genuine
public key v as constructed in Figure 1 is an NTRU instance, which is indistinguishable to a uniformly random
R×

q element by the dNTRUR,χ assumption and by the assumption that Rq splits into super-polynomial-size
fields.

Next, we analyse the output (g, y, h) received by the reduction from the adversary. With a non-negligible
probability (g, y, h) is a forgery, that is, it satisfies

g(x1, . . . , xN ) ̸= y,

h(v) = g(r1, . . . , rN ) mod q,

h(0) = y,

deg(h) ≤ dmax,

∥h∥ ≤ βmax.

(2)

We claim that if this is the case, then p := h − g((fi)i∈[N ]) is a solution to the vSISR,dmax,q,2βmax
problem.

Indeed, by the first and third conditions of Equation (2) we have

p(0) = h(0)− g(f1(0), . . . , fN (0)) = y − g(x1, . . . , xN ) ̸= 0,

the second one implies

p(v) = h(v)− g(f1(v), . . . , fN (v)) = h(v)− g(r1, . . . , rN ) = 0 mod q

and by the fourth one the degree is low enough. Finally, by applying a similar reasoning as in the proof of
evaluation correctness we get ∥g(f1, . . . , fN )∥ ≤ βmax. Hence, the fifth condition of Equation (2) yields the
desired bound on ∥p∥. ⊓⊔

Note that our scheme can be easily turned into a multi-key scheme [FMNP16]. In more detail, since a
signature si ∈ R[Xi] signed by user i can be interpreted as a constant-degree polynomial with formal variable
Xi, homomorphically evaluating a constant-degree multivariate polynomial on (si)i would yield another
constant-degree polynomial with formal variable (Xi)i, which can then be verified against the vector of public
keys obtained by concatenating the public keys of all signers.

5.3 Adaptive and Multi-Dataset Security

Our construction in Section 5.2 achieves selective security in the single-dataset setting. We next discuss how
generic transforms in [GVW14,GVW15] can be applied to obtain fully (i.e. adaptively) secure multi-dataset
schemes.

First, we observe that the single-dataset to multi-dataset transform in [GVW14, Theorem 5.1], which
preserves adaptive security, also preserves selective security. That is, the same transform turns a selectively
secure single-dataset HS into a selectively secure multi-dataset HS. Notably, this transformation does not
require the public parameters pp to be succinct, i.e. sublinear in N .

To upgrade a selectively secure single-dataset HS directly to an adaptively secure multi-dataset HS, we can
alternatively use the generic transform in [GVW14, Theorem A.1]. A caveat is that this transform requires
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the public parameters pp of the underlying single-dataset HS to be of size sublinear in N , which is not the
case for our construction. However, since our pp only consists of N uniformly random Rq elements, they can
be generated from a short seed using a random oracle. Consequently, we can obtain an adaptively secure
multi-dataset HS based on the same assumptions as in Theorem 3 in the random oracle model. Note that,
however, as discussed in [GVW14, Appendix A] this transform results in HS schemes which are not suitable
for verifiable outsourcing since they do not support verification preprocessing.

Finally, we note that one could potentially cast our single-dataset HS as a homomorphic trapdoor function
(HTDF) and combine it with (another instance of) the HS via [GVW14, Theorem 4.3] to obtain an adaptively
secure single-dataset HS, which can then be further upgraded to an adaptively secure multi-dataset HS using
[GVW14, Theorem 5.1].

5.4 Related Work on Homomorphic Signatures

There is a long line of research on the construction of homomorphic signatures for various classes of functions
based on different assumptions. We refer to [ABF24] for a recent summary and focus on comparing our
construction with the most related ones in the literature below.

Our HS construction features a simple evaluation algorithm for constant-degree bounded-norm multivariate
polynomials. We emphasise that our construction is meant to demonstrate the utility of vSIS trapdoors, but
is unlikely to be concretely efficient (at least in its current form). The main bottleneck is that the lower
bound of βmax in terms of βinit in Theorem 3 and the linear dependency of βinit on q1/dinit forces the modulus
q to be concretely large even for small values of N , βeval and deval.

Homomorphic signatures for beyond linear functions was first realised by [BF11] who constructed an HS
for bounded-degree polynomials from lattices. Their idea is to let signatures be short elements in R and
encode the message in the quotient ring R/I for some ideal I, so that signatures can be multiplied using
multiplication over R. In our construction signatures instead live in the polynomial ring R[X] and messages
are encoded in R. HS for (bounded polynomial depth arithmetic) circuits was first constructed in [GVW15]
from lattices, based on which our construction is adapted. Signature multiplication in that scheme is based
on the homomorphic computation technique developed in [GSW13,BGG+14].

Apart from direct constructions, [CFT22] presented a generic construction of HS for a function class
from functional commitments (FC) for the same function class. For example, when instantiating with
FCs for constant-degree polynomials [ACL+22,CFT22,CLM23], one obtains HS for low-degree polynomials.
Furthermore, if the FC is chainable [BCFL23], then the resulting HS supports multi-hop evaluation. However,
as discussed in [BCFL23], HS obtained in this way are not arbitrarily composable, unlike [BF11,GVW15]
and our construction.

Acknowledgments. We thank the anonymous PKC 2025 reviewers for their helpful comments. The research of Russell
W. F. Lai is supported by Research Council of Finland grants 358951.

References

ABF24. Gaspard Anthoine, David Balbás, and Dario Fiore. Fully-succinct multi-key homomorphic signatures from
standard assumptions. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume
14922 of LNCS, pages 317–351. Springer, Cham, August 2024. 20

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan
Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively composable -
(extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 102–132. Springer, Cham, August 2022. 20

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC,
pages 99–108. ACM Press, May 1996. 1, 3

Bab86. László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13,
1986. 11

20



BCFL23. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional commitments for
unbounded-depth circuits. In Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part III, volume
14371 of LNCS, pages 363–393. Springer, Cham, November / December 2023. 20

BF11. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Berlin, Heidelberg,
May 2011. 20

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-
tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE
and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Berlin, Heidelberg, May 2014. 1, 20

CFT22. Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments and appli-
cations to homomorphic signatures. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,
Part IV, volume 13794 of LNCS, pages 159–188. Springer, Cham, December 2022. 20

CKKS19. Jung Hee Cheon, Duhyeong Kim, Taechan Kim, and Yongha Son. A new trapdoor over module-NTRU
lattice and its application to ID-based encryption. Cryptology ePrint Archive, Report 2019/1468, 2019. 3,
14

CLM23. Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from vanishing
polynomials - (extended abstract). In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part II, volume 14082 of LNCS, pages 72–105. Springer, Cham, August 2023. 1, 3, 6, 20

CPS+20. Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet, and Keita Xagawa. Mod-
Falcon: Compact signatures based on module-NTRU lattices. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei
Gu, and Giuseppe Ateniese, editors, ASIACCS 20, pages 853–866. ACM Press, October 2020. 3, 11, 14

DLP14. Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over NTRU
lattices. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 22–41. Springer, Berlin, Heidelberg, December 2014. 2, 3, 9, 11, 12, 14

FMNP16. Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic authenti-
cators. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 499–530. Springer, Berlin, Heidelberg, December 2016. 19

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008. 1, 2, 4, 9

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Berlin, Heidelberg, August 2013. 20

GVW14. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. Cryptology ePrint Archive, Report 2014/897, 2014. 19, 20

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015. 2, 19, 20

HHP+03. Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Marc Joye, editor, CT-RSA 2003, volume 2612
of LNCS, pages 122–140. Springer, Berlin, Heidelberg, April 2003. 2, 3, 9, 11

KLNO24. Michael Klooß, Russell W. F. Lai, Ngoc Khanh Nguyen, and Michal Osadnik. RoK, paper, SISsors toolkit
for lattice-based succinct arguments - (extended abstract). In Kai-Min Chung and Yu Sasaki, editors,
ASIACRYPT 2024, Part V, volume 15488 of LNCS, pages 203–235. Springer, Singapore, December 2024.
1, 3

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Berlin,
Heidelberg, May / June 2010. 1

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer,
Berlin, Heidelberg, May 2013. 1

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. DCC,
75(3):565–599, 2015. 1, 3

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718.
Springer, Berlin, Heidelberg, April 2012. 1, 2

21



MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. 4

PP19. Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU key generation using the field
norm. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 504–533.
Springer, Cham, April 2019. 10, 11

PS21. Alice Pellet-Mary and Damien Stehlé. On the hardness of the NTRU problem. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 3–35. Springer, Cham,
December 2021. 2, 3, 6, 9

22


	Vanishing Short Integer Solution, Revisited
	Introduction
	Our Contributions
	Limitations and Open Problems

	Preliminaries
	Linear Algebra
	Lattice and Discrete Gaussian
	Algebraic Number Theory
	Computational Problems

	Reduction from Id-SVP to vSIS
	Trapdoors for vSIS
	Trapdoor for Univariate Single-Point Constant-Degree vSIS
	Empirical Results

	Homomorphic Signatures
	Definitions
	Construction
	Adaptive and Multi-Dataset Security
	Related Work on Homomorphic Signatures



