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Abstract. In this work, we explore the field of lattice-based Predicate Encryption (PE), with a focus
on enhancing compactness and refining functionality.
First, we present a more compact bounded collusion predicate encryption scheme compared to previous
constructions, significantly reducing both the per-unit expansion and fixed overhead, while maintaining
an optimal linear blow-up proportional to Q.
Next, we propose a Predicate Inner Product Functional Encryption (P-IPFE) scheme based on our con-
structed predicate encryption scheme. P-IPFE preserves the attribute-hiding property while enabling
decryption to reveal only the inner product between the key and message vectors, rather than the en-
tire message as in traditional PE. Our P-IPFE scheme also achieves bounded collusion resistance while
inheriting the linear compactness optimized in the underlying PE scheme. Additionally, it supports any
polynomial-sized and bounded-depth circuits, thereby extending beyond the inner-product predicate
class in prior works.
Furthermore, all the proposed schemes achieve selective fully attribute-hiding security in the simulation-
based model, therefore, can further attain semi-adaptive security by adopting existing upgrading tech-
niques.

1 Introduction

Functional Encryption (FE) [O’N10, BSW11] is a groundbreaking cryptographic paradigm that allows fine-
grained control over how encrypted data is accessed, moving beyond the traditional “all-or-nothing” approach.
In a FE scheme, given an encryption of input x, a functional secret key associated with a function f can de-
crypt the ciphertext to reveal the functional output f(x), while revealing nothing else about x. This contrasts
with traditional encryption schemes, where successful decryption yields the entire plaintext. Importantly, FE
forms the foundation for constructing advanced cryptographic primitives, such as reusable garbled circuit
schemes [GKP+13] and indistinguishability obfuscation (iO) [AJ15, BV15].

Within the broad framework of FE, Predicate Encryption (PE) [KSW08] stands out as a powerful and
practical special case, particularly useful in real-world applications. From the aspect of correctness require-
ment, PE operates similarly to Attribute-Based Encryption (ABE). Intuitively, the underlying message is
revealed only when the attribute associated with the ciphertext satisfies the predicate function tied to the
secret decryption key. Moreover, compared with traditional ABE which commonly assume public attributes,
PE offers enhanced privacy by keeping attributes hidden, making it a more suitable solution for scenarios
that requires attribute confidentiality. Consequently, the security definition of PE is also more complex due
to its additional attribute privacy.

The basic security guarantee for attributes in predicate encryption is weak attribute-hiding, which ensures
that attributes remain hidden as long as the adversary cannot decrypt corresponding ciphertexts. Specifically,
in the security game, the adversary is restricted to only querying secret keys for predicates fi such that
fi(x

∗) = false, where x∗ is the challenge attribute. In contrast, fully attribute-hiding security imposes no
such limitation, allowing the adversary to obtain any secret key, including those for predicates fi where
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fi(x
∗) = true. This stronger security notion thus guarantees that no information about the attribute is

revealed, regardless of whether the decryption succeeds or fails.
A predicate encryption scheme with fully attribute-hiding property can further imply FE, as shown

in the literature [Agr17, LLW21]. For instance, to construct a regular FE for the boolean function class
F : X → {0, 1}, one can rely on a PE scheme that supports the predicate class F and attribute space X .
In particular, the secret key for a function f ∈ F in FE scheme is set to the policy-related key for f in
the underlying PE scheme. The FE ciphertext for an input x ∈ X is accordingly computed by running the
PE encryption algorithm for the attribute x and an arbitrary message bit µ. The functionality value f(x)
can hence be determined by checking whether the decryption of the underlying PE, with the FE secret key
and ciphertext as inputs, succeeds or fails. Additionally, both the supporting function class and the achieved
security level are inherited in the resulting FE scheme.

On the other hand, the fully attribute-hiding functionality directly aligns with the concept of compu-
tation hiding discussed in [BSW11]. While, as proposed in [BSW11], it is more appropriate to consider a
simulation-based security definition for FE schemes whose functionality inherently provides computation
hiding. Therefore, most recent constructions [Agr17, DOT18, LLW21, DDM+23], including weak attribute-
hiding schemes [GVW15, BTVW17, Wee17], adopt the simulation-based security model.

In most practical application scenarios, an adversary typically has only limited computational power and
can only collude with a limited number of parties. Given this, bounded collusion-resistance aligns better
with realistic security requirements and efficiency needs. More specifically, it ensures security in the premise
that the adversary obtains at most a-prior bounded Q secret keys. Bounded collusion FE [GVW12, Agr17,
AR17, AV19, LLW21] has been extensively studied in the past decade following various technical approaches.
In [LLW21], Lai et al. made a significant progress by proposing a FE scheme achieving an additional O(Q)
blow-up in ciphertext and public key size. In addition, the security is ensured against up to Q autho-
rized key (1-key) queries and any polynomial number of unauthorized key (0-key) queries. As demonstrated
in [AGVW13], the ciphertext size of FE schemes grows at least linearly with the collusion bound Q. There-
fore, the construction in [LLW21] achieves an optimal blow-up, considering this lower bound. Nevertheless,
as we will explain more clearly in the technical background, a noticeable portion of the per-unit expansion
overhead in both ciphertexts and keys can be avoided. In other words, further optimization in compactness
is achievable by adopting a more efficient construction approach. Although this may seem theoretical, such
improvements in compactness are a necessary step toward practical applications.

To further refine the functionality of PE, each secret key can be tied to a key vector, in addition to
the predicate, allowing for more fine-grained operations. Furthermore, each ciphertext is linked to both a
message vector and an attribute. The decryption then outputs an inner product between the key vector and
the message vector, provided that the predicate-attribute pair matches. This extension not only enriches the
applicability of PE but also offers a step toward a Predicate Inner Product Functional Encryption (P-IPFE),
first introduced in [DDM+23]. As a practical class of FE, P-IPFE enables more expressive access control
while ensuring attribute privacy. Additionally, P-IPFE can be viewed as an Attribute-based IPFE (AB-
IPFE) scheme [ACGU20, LLW21] with additional attribute-hiding property, which is critical for sensitive
applications such as medical data management or voting systems.

In [DDM+23], Dowerah et al. presented pairing-based unbounded (non-)zero predicate IPFE schemes that
satisfy fully attribute-hiding. Specifically, the proposed unbounded non-zero predicate IPFE scheme achieves
strong attribute-hiding in the simulation-based model, while the supported predicate classes are restricted to
unbounded non-zero inner-product predicates, which are inherently linear. Although more complex predicates
can be supported by representing them as inner-product computations, the associated overhead may become
prohibitive. In other words, the inner-product predicate restricts their applicability for scenarios requiring
non-linear evaluations in some extent. Therefore, constructing a predicate IPFE scheme that supports a
more general class of predicate function, beyond linear functions, remains an interesting open question and
is one of the focuses of this work.

1.1 Our Contributions

In this work, we make several contributions to the field of Predicate Encryption:
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• More Compact Predicate Encryption Scheme. We propose a bounded collusion predicate encryption
scheme for any polynomial-sized, bounded-depth circuits. The construction significantly reduces the ci-
phertext and key size while preserving fully attribute-hiding security. More specifically, by adopting a
more efficient approach to achieving attribute-hiding, our scheme retains an optimal additional linear
blow-up with respect to the collusion bound Q and more importantly, optimizes both the per-unit expan-
sion and fixed overhead. We therefore offer a more compact design compared to previous constructions.
Comparison with prior schemes are provided in Table 1.

• Predicate IPFE Scheme for General Predicate Function. We present a predicate IPFE that allows any
polynomial sized, bounded-depth circuits, extending beyond the inner-product predicate supported in
prior constructions. Our scheme allows up to Q 1-keys and achieve fully attribute-hiding security in the
simulation-based security model. Through the techniques we developed for achieving attribute-hiding
and bounded collusion resistance, our constructed P-IPFE supports more refined functionality while
inheriting the linear compactness optimized in the PE scheme.

All the proposed schemes are formally proven to be selectively secure based on learning with errors (LWE)
assumptions in the standard model. Furthermore, they can be further upgraded to achieve semi-adaptive
security by following the approaches in [GKW16, BV16]. Particularly, our construction strategy is compatible
with the light-weight upgrading method in [BV16], enabling a more efficient semi-adaptive construction
compared with previous schemes. We refer the readers to Appendix E for semi-adaptive constructions and
further comparisons.

Succinctness is also achieved in all constructions, i.e., the ciphertext size is independent of the circuit
size. Furthermore, our proposed PE construction can naturally be used to construct FE for general circuits,
following the approach in [Agr17, LLW21]. Starting with the compact PE scheme presented in this work,
the resulting FE scheme preserves the succinctness and achieves improved efficiency.

|mpk| |ct|

[Agr17] (O(Q2) + ℓ · |hct|) · |Zn×m
q | ℓ · |hct|+ ((O(Q2) + ℓ · |hct|) · |Zm

q |
+(O(Q2) · |hct|+ |hsk|) · |Zn×m

q | +O(Q2) · |hct|+ (O(Q2) · |hct|+ |hsk|) · |Zm
q |

[LLW21] (O(Q) + ℓ · |hct|) · |Zn×m
q | ℓ · |hct|+ ((O(Q) + ℓ · |hct|) · |Zm

q |
+(O(Q) · |hct|+ |hsk|) · |Zn×m

q | +O(Q) · |hct|+ (O(Q) · |hct|+ |hsk|) · |Zm
q |

Ours (O(Q) + ℓ · |hct|) · |Zn×m
q | ℓ · |hct|+ ((O(Q) + ℓ · |hct|) · |Zm

q |

Table 1. Comparison with previous Q-collusion resistant PE constructions. Specifically, we compared our selective
PE with a selective PE [LLW21] and a very-selective one [Agr17]. We denote the bit-length of attribute as ℓ, the
size of homomorphic encryption ciphertext (for 1-bit) and secret key by |hct| and |hsk|, respectively. The size of an
element in Zn×m

q (resp. Zm
q ) is denoted by |Zn×m

q | (resp. |Zm
q |).

1.2 Technical Background

In this section, we review several crucial techniques for building Predicate Encryption from lattices that have
been developed in the past decade, and analyze which partial overhead in previous schemes can potentially
be further reduced.

In many cases, fully homomorphic encryption (FHE) is a powerful tool for achieving attribute-hiding while
also enabling homomorphic evaluation on encrypted attribute encodings, therefore effectively upgrading ABE
to PE. Intuitively, one can encrypt an attribute before generate its encoding. Similar to ABE, the decryption
process of PE must determine whether the attribute x satisfies the predicate f , i.e., whether f(x) = 0.
However, the homomorphic evaluation produces an encoding of encrypted f(x). This thus requires a process
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known as “eval-then-dec”, where the encrypted attribute encodings are first evaluated homomorphically,
followed by decryption, which yields the encoding for plaintext result f(x), as desired. The “eval” process
is essentially similar among prior constructions, while the approaches to implementing “dec” vary. Before
introducing the different approaches to achieving “dec”, we first review the structure of attribute encoding
and its homomorphism properties.

Attribute Encodings and Homomorphic Evaluations. Given a public matrix Aattr, the encoding for an at-
tribute x is computed as s⊤(Aattr + x⊤ ⊗G), where s is a chosen LWE secret and the underline denotes
the noise term. For a Boolean circuit f , we can compute a matrix Hf . Another matrix Hf,x can also be
computed when given x additionally. Moreover, the following key equations are hold.

(Aattr + x⊤ ⊗G) ·Hf,x = AattrHf + f(x) ·G
s⊤(Aattr + x⊤ ⊗G) ·Hf,x = s⊤(AattrHf + f(x) ·G)

When we use the GSW FHE [GSW13] to hide the attribute x, it can be first encrypted to Ψx =(
A

s⊤HEA+ e⊤

)
·Rx+x⊗G, where r⊤HE = (s⊤HE,−1) is the corresponding secret key and Rx is the encryption

randomness. Then, the encoding for the encrypted attribute Ψx will be formed as

s⊤(Aattr + Ψ⊤
x ⊗G)

Similarly, we can compute matrices HHEvalf and HHEvalf ,Ψx , where HEvalf describes the circuit of the homo-
morphic evaluation related to f . Based on the encoding homomorphism for matrix-valued circuit as proposed
in [BTVW17], we have

s⊤(Aattr + Ψ⊤
x ⊗G) ·HHEvalf ,Ψx = s⊤(AattrHHEvalf + Ψf(x))

Different Approaches to Decryting Encoding. To decrypt the resulting encoding, a natural approach is to
apply an operation analogous to the decryption process in FHE, using the corresponding FHE secret key
rHE. More precisely, we can first generate an additional encoding for the FHE secret key rHE. Then, the
evaluation procedure is defined as an FHE evaluation followed by FHE decryption, applied between the
secret key and the homomorphically evaluated ciphertext, as described below.

s⊤(Aattr + (Ψx|rHE)⊤ ⊗G) ·HHEvalf◦HDec,(Ψx,rHE)

= s⊤(AattrHHEvalf◦HDec + f(x) ·G)

According to the aforementioned properties, the evaluator must know rHE for homomorphic evaluations.
Obviously, including rHE in the ciphertext would expose the attribute entirely. On the positive side, FHE
decryption essentially reduces to an inner product between the secret key and the ciphertext, followed by a
threshold operation. Furthermore, as pointed out in [GVW15], the lack of secret key itself does not hinder
the evaluation of the inner product between the encoding of secret key and ciphertext. Indeed, the ciphertext
is sufficient for this encoding evaluation. Besides, a “lazy-OR” trick can be applied to bridge the gap between
threshold inner products and simple inner products. More precisely, a secret key is associated with a bunch of
predicate functions, each corresponding to a possible decryption noise value after the “eval-then-dec” process.

Another approach is to enable automatic decryption. Specifically, due to the structural similarity between
encodings and homomorphic evaluations in both GSW FHE scheme [GSW13] and the ABE scheme [BGG+14],
the same secret can be used for both encryption and encoding. Such a technique is introduced in [BTVW17]
and named by dual-use. By adopting the FHE secret key rHE as the randomness for encrypted attribute
encoding, the homomorphic evaluation output would automatically align with the decryption process as
follows.

r⊤HE(Aattr + Ψ⊤
x ⊗G) ·HHEvalf ,Ψx

= r⊤HE(AattrHHEvalf ) + r⊤HE · Ψf(x)︸ ︷︷ ︸
FHE decryption

= r⊤HE(AattrHHEvalf + f(x) ·G)
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Efficiency Analysis of Different Decryption Approaches. For weak attribute hiding PE schemes, the afore-
mentioned two decryption approaches bring relatively close efficiency performances. Shortly speaking, the
usage of the first approach will additionally bring a private attribute encoding for the FHE secret key in the
ciphertext, as well as corresponding encoding matrices in the public key.

For fully attribute-hiding PE schemes, however, we observe that all existing constructions adopt the
first approach. Specifically, the scheme [BTVW17], which uses the dual-use technique, only achieves weaker
security. We thus turn to analyzing fully attribute-hiding schemes built from the first approach. Technically,
in proving security, the challenger needs to simulate 1-key queries. Each 1-key should successfully decrypt the
challenge ciphertext by correctly recomputing the one-time pad (OTP). Moreover, as for Q bounded collusion
schemes, the adversary can obtain at most Q 1-keys. This requires that the OTPs computed by different 1-
keys remain independent from one another. To achieve this, cover-free set technique [GVW12, AV19, LLW21]
is leveraged [Agr17, AV19, LLW21] to sample independent subsets ∆ ⊆ [N ] for secret (1-)keys. Accordingly,
each ciphertext containsN copies of the payload, with independent public matrices. Intuitively, cover-freeness
ensures that each subset contains a unique index that does not appear in any of the other Q − 1 subsets.
Hence, the OTPs computed by different 1-keys can remain independent, as desired. On the other hand, this
also leads to a blow-up in both the public key and ciphertext size, proportional to Q. Though, as shown
in [AGVW13], such blow-up is unavoidable. Moreover, a novel sampling approach [LLW21] for cover-free
sets allows an optimal blow-up with O(Q).

Furthermore, as is pointed out in [Agr17], after applying the “lazy-OR” technique, a secret key would
expose the exact FHE decryption noise upon successful decryption, thus posing a security risk. To mitigate
this, additional FHE dummy ciphertexts must be introduced to mask the original FHE randomness, becom-
ing part of the public attribute alongside the encrypted attribute. These dummy ciphertexts must also be
replicated into N copies (in the Q-bounded collusion scheme), as the FHE noise resulting from each 1-key
needs to remain independent.

We observe that beyond the increase from FHE secret key encoding, the FHE dummy ciphertexts and
corresponding encoding matrices contribute significantly to the per-unit expansion, which is less than ideal.
More importantly, this overhead is directly attributed to the first decryption approach.

1.3 Technical Overview

In this section, we present the high-level idea of constructing succinct bounded collusion-resistant predicate
encryption and predicate IPFE scheme. Specifically, the proposed predicate encryption is more compact than
previous constructions.

More Compact Predicate Encryption Using Dual-Use Technique. To further reduce the per-unit
overhead, we explore constructing a bounded collusion PE scheme using the dual-use technique, following
the steps outlined below. We define (q1, q0) as the parameters describing the admissible number of 1-key and
0-key queries, respectively.

(0, poly) selective PE [BTVW17]
↓ two-stage sampling technique [LLW21]

(1, poly) selective PE
↓ cover-free set

(Q, poly) selective PE
↓ light-weight upgrading [BV16]

(Q, poly) semi-adaptive PE

Roughly speaking, the novel two-stage sampling technique, first proposed in [LLW21], allows answering 1-
key queries without requiring the adversary to submit 1-key queries before the public matrices been generated.
In other words, this enables us to upgrade the weak attribute-hiding PE scheme in [BTVW17] to fully
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attribute-hiding one against a single 1-key query. To further achieve bounded collusion-resistance, we can
rely on the improved cover-freeness property [LLW21] to sample independent subset ∆ ⊆ [N ] for each
secret key. Specifically, each ciphertext includes N = O(Q) independent copies of the payload. During the
proof, we can pre-sample Q subsets (or 2Q subsets, depending on whether the adversary queried for 1-
key before challenge) for the forthcoming 1-key queries, either in the pre-challenge or post-challenge phase.
Consequently, decryption correctness can be promised by carefully generating secret shares for the message
encoding. Due to the usage of dual-use technique, the predicate-related matrix for the 1-key is connected not
only to the randomness used for programming encoding matrix, but also to the encryption randomness Rx

of the FHE ciphertext Ψx. Therefore, we must carefully remove all dependencies on Rx except for Ψx step
by step. Finally, we show that the attribute x remains perfectly hidden by Leftover Hash Lemma (LHL).

Typically, our construction approach directly achieves fully attribute-hiding bounded collusion PE, get-
ting rid of building partially-hiding PE (PH-PE) as an intermediate step. We observe that the process of
upgrading from PH-PE to PE inherently requires the use of the “lazy-OR” technique. To explain further,
each ciphertext in the PH-PE scheme is associated with both a public and a private attribute. In order
to construct PE from PH-PE, the attribute is first encrypted using fully FHE and then set as the public
attribute of the PH-PE scheme. The corresponding FHE secret key is hidden by being set as the private
attribute. However, the PH-PE schemes in [GVW15, Agr17, LLW21] only support inner product predicates
over private attributes. Moreover, the decryption of FHE involves a threshold inner product, rather than
a simple inner product. As a result, to implement the “eval-then-dec” procedure using the PH-PE scheme,
FHE decryption is split into an inner product (between the ciphertext and the secret key), followed by noise
checking. This noise checking process thus requires “lazy-OR”.

In contrast, in our construction, we bypass the “lazy-OR” technique, saving the overhead associated
with encoding FHE secret keys and reducing the sizes of the public key, secret key, and ciphertexts. Upon
upgrading to the bounded collusion setting using cover-freeness, the blow-up overhead from dummy FHE
ciphertexts is further eliminated. Consequently, the proposed construction results in more compact keys and
ciphertexts, both in terms of per-unit expansion and fixed overhead, making our scheme more efficient in
practical scenarios.

Regarding to Attacks in [Agr17]. In the paper [Agr17], Agrawal pointed out two distinct 1-key attacks against
the previous predicate encryption scheme [GVW15]. Intuitively, the first attack utilizes a potential linear
relationship between the decryption noises obtained using different 1-keys for simple predicate functions.
Such linear correlation enables the adversary to solve the linear equations and extract the exact noise within
the ciphertext. To mitigate this, the noise parameter is carefully chosen to ensure sufficient noise flooding
within the decryption process. Furthermore, in the (Q, poly) scheme [Agr17], each decryption noise remains
independent for different key due to the use of cover-free set. In our scheme, we also adopt the appropriate
parameter choices and leverage cover-free set in the bounded collusion setting, to defend this first attack.

The second attack targets the leakage of the exact FHE decryption noise, which occurs upon successful
decryption in [GVW15]. To circumvent it, the dummy FHE ciphertext is used, though at the cost of increased
overhead. However, we avoid embedding direct information about the FHE decryption noise in the secret
key. As a result, the sensitive noise is effectively masked by other noise terms during decryption. Therefore,
our scheme is also resilient to this second attack.

Predicate Inner Product Functional Encryption. Following the construction outline of bounded col-
lusion secure PE, we first construct a predicate IPFE allowing a single pre-challenge 1-key query and then
upgrade it to allowing multiple 1-keys.

Constructing Predicate IPFE from PE. We begin with a weaker version of predicate IPFE, namely AB-
IPFE [LLW21], where the decryption mechanism and output are identical to P-IPFE, but the attribute
is explicitly included in the ciphertexts. An AB-IPFE scheme can be constructed by subtly combining
an ABE [BGG+14] with an Inner-Product Functional Encryption (IPFE) scheme [WFL19], as introduced
in [LLW21]. Broadly speaking, ABE provides the outer framework, ensuring that any further evaluations
on the plaintext vector is allowed only if the attribute satisfies the predicate. Inside this framework, the
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secret key and payload ciphertext are designed based on the IPFE paradigm. Notably, both the attribute
encoding and the attribute-predicate matching take place entirely within the ABE structure. Therefore, we
first attempt to build a P-IPFE by replacing the public-attribute ABE with our constructed PE scheme.

To prove the security of this initial construction, we must carefully handle the generation of both secret
key and ciphertext. Typically, upon receiving the challenge attribute x, we first encrypt x as Ψx and then
encode this encrypted challenge attribute Ψx into the attribute-encoding matrix Aattr. This enables us to
answer key queries by either the public trapdoor of gadget matrix or two-stage sampling algorithm. For the
challenge ciphertext, we rely on the underlying IPFE to show that it can be correctly simulated without
requiring the challenge message vector u∗. Note that in this simpler case, where only a single pre-challenge
1-key query for (f,v) is allowed, we can then compute a dummy message u′, satisfying the constraint that
⟨u′,v⟩ = ⟨u∗,v⟩, to replace u∗. In addition, the IPFE scheme [ALS16, ACGU20] with single-challenge
security is sufficient for our construction goal. To ensure that the distinguishing advantage of replacing the
encrypted message vector u∗ with u′ remains bounded by the security of the IPFE, we need to reduce the
indistinguishability of the challenge ciphertext in the P-IPFE scheme to the security of the underlying IPFE.

Obstacle to Proving Security. However, proving the security of this transformation for P-IPFE is more chal-
lenging than for AB-IPFE. The dual-use technique for achieving attribute-hiding requires the FHE secret key
used for encrypting the attribute to be consistent with the secret randomness used in the attribute encoding,
which must also match the randomness used in other LWE instances within the ciphertext. Specifically, in
the normal scheme, the attribute is encrypted under the FHE public key (A, s⊤A+ e⊤), where s⊤A+ e⊤ is
also the preamble ciphertext. When attempting to reduce the security to IPFE, we would need to simulate
the challenge ciphertext by invoking the IPFE challenger. Upon receiving the IPFE preamble ciphertext, we
would set it as the preamble ciphertext in the simulated ciphertext and also use it to encrypt the attribute.
The challenge then arises because we must set the attribute encoding matrix using the encrypted attribute
during the Setup phase, or we won’t be able to answer any secret key queries. However, since the encrypted
attribute is only available after the challenge phase, this contradicts the definition of the security experiment,
making the proof strategy infeasible.

Double-Use of FHE Randomness. The reason we cannot complete the proof as described above is that the
generation of the attribute encoding matrix Aattr, which must occur before the challenge phase, heavily
depends on information from the challenge ciphertext—specifically, the preamble ciphertext s⊤A+e⊤. This
thus creates a timeline conflict. To resolve this, we attempt removing the reliance of the attribute encoding
matrix on the preamble ciphertext in the challenge ciphertext and instead program it using alternative
information.

In the normal scheme, each predicate function f defined over the plaintext attribute x is first encoded
into another function f̂ , defined as f̂ : Ψx 7→ Ψf(x), where Ψf(x) describes all but the last row of Ψf(x). For a

FHE ciphertext Ψx =

(
A

s⊤A+ e⊤

)
·Rx+x⊗G, the result after homomorphic evaluation takes the following

form:

Ψf(x) =

(
A

s⊤A+ e⊤

)
·Rf + f(x) ·G =

(
Ψf(x)
Ψf(x)

)
The upper part Ψf(x) = A ·Rf + f(x) ·G is independent of the FHE secret key (s⊤,−1) which encrypts

Ψf(x). This observation allows us to encrypt the attribute x once more using the same public key A and
encryption randomness Rx, but with another randomness s′. This yields:

Ψ ′
x =

(
A

s
′⊤A+ e

′⊤

)
·Rx + x⊗G

After the same homomorphic evaluation, we find that Ψ
′
f(x) = Ψf(x), meaning the upper part of the cipher-

text remains consistent across both encryptions! Thus, we can include both ciphertexts, Ψx and Ψ ′
x, in the

construction, using Ψ ′
x for encrypted attribute encoding, and retain the dual-use technique’s correctness.
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In the security reduction to IPFE, Ψ ′
x is computed using the fresh randomness s′, e′, and Rx, and is

therefore independent of other LWE instances in the ciphertext. It thus enables us to set the attribute
encoding matrix during Setup. Additionally, the computation of Ψx can be delayed until receiving the IPFE
challenge ciphertext. This method resolves the timeline conflict and allows the security reduction to IPFE
to proceed successfully.

Towards Bounded Collusion By Extending Dimensions. To construct a bounded collusion-resistant P-IPFE
scheme, we draw inspirations from both the (Q, poly) PE framework and the simulation-based secure IPFE
scheme proposed in [ALMT20]. Leveraging the cover-free set, as used in the (Q, poly) PE scheme, each key
generation involves independent subset sampling, and each ciphertext includes N copies of the payload. In
the proof, the challenge ciphertext can be easily simulated without knowing the challenge message u∗ if only
pre-challenge 1-key queries are allowed, as a dummy vector u′ can be computed to satisfy ⟨u′,vi⟩ = ⟨u∗,vi⟩
for all ever queried 1-key vectors vi. However, to accommodate post-challenge 1-key queries, additional
programming space is required.

The generic approach introduced in [ALMT20] provides insight into achieving simu-lation-based security
by doubling the dimension of both the underlying message and key spaces. Roughly speaking, the scheme
and its security proof hinge on the following equations:

⟨u,v⟩ =


⟨(u⊤, 0, 0), (v⊤, 1, r)⟩ (scheme)
⟨(u⊤,−r, 1), (v⊤, 1, r)⟩ (security proof/pre-challenge)
⟨(u⊤,−r, 1), (v⊤, 1, r + θ)⟩ (security proof/post-challenge)

When simulating the challenge ciphertext, a similar dummy vector u′ is computed to ensure decryption
correctness for all pre-challenge key queries. For post-challenge queries, the randomness r in the encoded key
vector additionally absorbs the difference θ between ⟨u∗,v⟩ and ⟨u′,v⟩.

The need for double dimensions in the simulation-based secure IPFE scheme [ALMT20] arises because
each independent randomness (i.e., r) encoded in the key vector requires a corresponding counterpart (i.e.,
−r) in the message vector. Consequently, the message vector must include all sampled randomness, while
for each secret key, only two slots are effectively utilized among the expanded dimensions. However, in our
(Q, poly) P-IPFE scheme, each additional ciphertext dimension effectively corresponds to N dimensions due
to the use of cover-free sets. This enables the counterparts in the message vector to be computed using
secret-sharing, where each independent randomness r in the key vector is recomputed by

∑
k∈∆ r

′
k. As a

result, two extra dimensions, combined with secret-sharing techniques, are sufficient to support the security
proof. In more detail, we rely on the following equations:

⟨u,v⟩ =


⟨
∑
k∈∆(

1
|∆|u

⊤, 0, 0), (v⊤, 1, r)⟩ (scheme)
⟨
∑
k∈∆(

1
|∆|u

⊤,−r′k, 1), (v⊤, 1, r)⟩ (security proof/pre-1-key)
⟨
∑
k∈∆(

1
|∆|u

⊤,−r′k, 1), (v⊤, 1, r + θ)⟩ (security proof/post-1-key)

The correctness of the normal scheme is naturally guaranteed as the extended plaintext vector is padded
by zeros. Regarding the security proof, we pre-sample Q cover-free subsets and independent randomness
{ri}i∈[Q] for the forthcoming Q 1-key queries. Additionally, we generate a secret sharing {r′k}k∈[N ] such that∑
∆i
r′k = ri for each i ∈ [Q], which is feasible by cover-freeness property. To ensure correct decryption, the

key vector is set as (v⊤, 1, ri) for pre-challenge 1-key queries, or as (v⊤, 1, ri + θi), where θi is artificially
added to eliminate the difference between the real challenge message and the dummy message vector.

2 Preliminaries

Notation. In this paper, Z, N and R denote sets of integers, positive integers and real numbers. We use λ
to denote the security parameter, which is the implicit input for all algorithms presented in this paper. A
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function f(λ) > 0 is negligible and is denoted by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc.
A probability is called overwhelming if it is 1−negl(λ). A function f(λ) > 0 is polynomial if there exists c ∈ N
and sufficiently large λ, f(λ) ∈ O(λc). Efficient is used to describe the algorithms that can be performed in
probabilistic polynomial time (PPT).

A column vector is denoted by a bold lowercase letter (e.g., x). A matrix is denoted by a bold upper
case letter (e.g., A). For a vector x, its Euclidean norm (also known as the ℓ2 norm) and infinity norm
is written as ∥x∥ and ∥x∥∞, respectively. For a matrix A, its i-th column vector is denoted by ai and its
transposition is denoted by A⊤. We use Ã to denote its Gram-Schmidt orthogonalization. The Euclidean
norm and spectral norm of a matrix A is denoted by ∥A∥ and s1(A), respectively.

For positive integers n, q, let [n] denote the set {1, ..., n} and Zq denote the ring of integers modulo q.
For a distribution or a set X, we write x $← X to denote the operation of sampling an uniformly random x

according toX. For two distributionsX,Y , we let SD(X,Y ) denote their statistical distance. We writeX
s
≈ Y

to mean that they are statistically close, and X
c
≈ Y to say that they are computationally indistinguishable.

2.1 Lattice Trapdoor and Gaussian Sampling

The gadget matrix G ∈ Zn×mq is a primitive matrix defined by gadget vector g as G := In ⊗ g⊤ ∈ Zn×nkq .
We usually consider gadget vector g⊤ := [1 2 4 · · · 2k−1] ∈ Z1×k

q , where k = ⌈log2 q⌉.

Gaussian Samplings.

Lemma 2.1 (TrapGen [MP12]) Let q, n,m be positive integers with q ≥ 2 and m = O(n log q). There is
a PPT algorithm TrapGen(1n, 1m, q) that with overwhelming probability (in n) outputs a pair (A,T) such
that A is statistically close to uniform in Zn×mq and T is a basis for Λ⊥(A) satisfying∥∥∥T̃∥∥∥ ≤ O(

√
n log q) and ∥T∥ ≤ O(n log q).

Lemma 2.2 (SampleLeft [ABB10]) Let q > 2, A,B ∈ Zn×mq be two full rank matrices with m > n, TA

be a trapdoor matrix for A, a matrix U ∈ Zn×lq and s ≥ ∥T̃A∥ · ω(
√
logm). Then there exists a PPT

algorithm SampleLeft(A,B,TA,U, s) that outputs a matrix K ∈ Z2m×l
q , which is distributed statistically

close to DΛUZ(A|B),s.

Lemma 2.3 (SampleRight [MP12]) Let q > 2, A ∈ Zn×mq be a full rank matrices with m > n, R ∈
Zm×m, U ∈ Zn×lq , γ ∈ Zq with γ ̸= 0 and s ≥

√
5 · s1(R) · ω

√
logm. Then there exists a PPT algo-

rithm SampleRight(A,G,R,U, s) that outputs a matrix K ∈ Z2m×l
q , which is distributed statistically close

to DΛU
q (A|A·R+γG),s.

Lemma 2.4 ([GPV08]) For any prime q, integers n ≥ 1, m ≥ 2n log q, s ≥ ω(
√
logm), the following two

distributions are statistically indistinguishable:

– (A,u,y): A $← Zn×mq , u $← Znq , y← DΛu
q ,s

.

– (A,u,y): A $← Zn×mq , y← DZm,s, u = Ay mod q.

Lemma 2.5 (Noise Rerandomization [KY16]) Let q, ℓ,m be positive integers and r a positive real sat-
isfying r > max{ηϵ(Zm), ηϵ(Zℓ)}. Let b ∈ Zmq be arbitrary and x chosen from DZm,r. Then for any V ∈ Zm×ℓ

and positive real σ > s1(V), there exists a PPT algorithm ReRand(V,b+ x, r, σ) that outputs b′ = bV+ x′

where the statistical distance of the discrete Gaussian DZℓ,2rσ and the distribution of x′ is within 8ϵ.

Theorem 2.1 (Two-Stage Sampling Algorithm [LLW21]) For integers q ≥ 2, n ≥ 1, sufficiently
large m = O(n log q), any R ∈ Zm×m, s ≥ ω

√
logm and ρ ≥ s

√
m∥R∥ · λω(1), the output distributions

(A,AR,y,u) of the following two procedures are statistically close.
Sampler-1 (R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input, this sampler conducts the
following steps in two stages.
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1. Stage 1: (without the need of R)

– Sample a random matrix A $← Zn×mq and its trapdoor TA using TrapGen(1n, 1m, q);

– Sample a random vector u $← Znq ;
2. Stage 2:

– Sample a random vector x← DZm,ρ;

– Sample a vector z′ =

(
z1
z2

)
← SampleLeft(A,AR,TA,u−Ax, s), such that (A|AR)

(
z1
z2

)
= u−Ax

mod q;

– Set y =

(
x+ z1
z2

)
∈ Z2m, satisfying (A|AR)y = u mod q;

– Output the tuple (A,AR,y,u).

Sampler-2 (R, ρ, s): Given a matrix R ∈ Zm×m and two values ρ, s ∈ R as input, this sampler conducts the
following steps in two stages.

1. Stage 1: (without the need of R)

– Sample a random matrix A $← Zn×mq ;

– Sample a random vector x← DZm,
√
ρ2+s2

and set u = Ax mod q;

2. Stage 2:

– Sample a random vector z2 ← DZm,s;

– Compute y =

(
x−Rz2

z2

)
∈ Z2m, satisfying (A|AR)y = u mod q;

– Output the tuple (A,AR,y,u).

We also provide a variant of two-stage sampling algorithm to support Q-tuples of output distributions
which is useful in proving security for bounded collusion setting, named by multi-output two-stage sampling
algorithm. The details of the algorithm and its proof can be found in Appendix A.2.

We will also need the following lemmas.

Lemma 2.6 (Leftover Hash Lemma [ABB10]) Suppose that m > (n+1) log q+ω(log n) and that q > 2
is prime. Let R be an m×k matrix chosen uniformly in {−1, 1}m×k mod q, where k = k(n) is polynomial in
n. Let A and B be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors e ∈ Zmq ,
the distribution (A,AR,R⊤e) is statistically close to the distribution (A,B,R⊤e).

Lemma 2.7 (Cover-free Set Sampling Algorithm [LLW21]) Let N = Qwκ2 and w = Θ(κ). There
exists an efficient sampler SamplerSet(N,Q, v) with the following properties: (1) The sampler always outputs
a set ∆ ⊂ [N ] with cardinality w; (2) For independent samples ∆1, . . . ,∆Q from SamplerSet(N,Q,w), the
sets are cover-free with probability 1− 2−Ω(κ), i.e., for all i ∈ [Q], Pr[∆i\(∪j̸=i∆j) ̸= ∅] ≥ 1− 2Q · 2−Ω(κ).

2.2 Leveled Fully Homomorphic Encryption

We now review the key and ciphertext formats of the leveled FHE scheme from [GSW13], along with the
specific properties relevant to our constructions.

Lemma 2.8 (Leveled FHE [GSW13]) In the leveled fully homomorphic encryption scheme in [GSW13],
the keys and ciphertexts are formed as follows:

• The public key is A =

(
B

r⊤B+ e⊤

)
, where B ∈ Zn×mq , r ∈ Znq and e ∈ Zm. The secret key is s⊤ =

(r⊤,−1) ∈ Zn+1.
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• A ciphertext of x ∈ {0, 1} is

Ψ = AR+ xG ∈ Z(n+1)×m
q ,

where R is the encryption randomness.

The decryption procedure for a ciphertext Ψ relies on the equation that

s⊤Ψ = −e⊤R+ x · s⊤G.

The plaintext x can be further extracted via multiplication by G−1(⌊q/2⌉en+1), where en+1 is (n+ 1)-th
canonical vector.

• Suppose Ψi = ARi + xiG for i ∈ [ℓ] with x ∈ {0, 1}ℓ, then for a Boolean circuit C : {0, 1}ℓ → {0, 1}, the
ciphertext ΨC generated by HEvalC is

ΨC = ARC + C(x)G,

where ∥RC∥∞ ≤ (n log q)O(dC) maxi∈[ℓ] ∥Ri∥. The depth of HEvalC is dC ·O(logm log log q).

2.3 Lattice Evaluation Algorithms

We use the evaluation algorithms for Boolean circuits as proposed in [BGG+14] and later extended to
matrix-valued circuits in [BTVW17].

Theorem 2.2 (Attribute Encoding and Homomorphic Evaluations) The attribute encoding and its
homomorphic evaluation work as follows:

• The attribute encoding matrix used to encode attributes x ∈ 0, 1ℓ is denoted as Aattr ∈ Zn×ℓmq .

• There exist efficient deterministic algorithms EvalF and EvalFX [BGG+14] such that for all n, q, ℓ ∈ N,
any depth-d Boolean circuit f : {0, 1}ℓ → {0, 1} and x ∈ {0, 1}ℓ, it holds that:

EvalF(Aattr, f) = Hf ∈ Zℓm×m

EvalFX(Aattr, f,x) = Hf,x ∈ Zℓm×m

[Aattr + x⊤ ⊗G] ·Hf,x = AattrHf + f(x)G

Specifically, the norm of Hf and Hf,x is bounded by (n log q)O(d).

• There exist efficient deterministic algorithms MEvalF and MEvalFX [BTVW17] such that for all n, q, ℓ ∈
N, any depth-d matrix-valued circuit f : {0, 1}ℓ 7→ Xf ∈ Zn×m and x ∈ {0, 1}ℓ, it holds that:

MEvalF(Aattr, f) = Hf ∈ Zℓm×m

MEvalFX(Aattr, f,x) = Hf,x ∈ Zℓm×m

[Aattr + x⊤ ⊗G] ·Hf,x = AattrHf +Xf

Specifically, the norm of Hf and Hf,x is bounded by (n log q)O(d)⌈log q⌉.

Dual-Use Technique [BTVW17]. In essence, the dual-use of the secret s in both generating FHE ci-
phertexts and attribute encodings enables automatic decryption during homomorphic evaluations.

In more detail, let f : {0, 1}ℓ → {0, 1} be a Boolean circuit, x ∈ {0, 1}ℓ be a bit-string. Each bit xi of x is
encrypted using leveled FHE encryption [GSW13] as Ψi. Given an attribute-encoding matrix Aattr ∈ Zn×Lmq

and ψ ∈ {0, 1}L being as the bit-representation of Ψ = (Ψ1, . . . , Ψℓ), the encoding of ψ is computed as follows:

s⊤[Aattr + ψ⊤ ⊗G] + e⊤attr ,

11



where the secret s is also served as the secret for encrypting Ψi.
Compute the matrix H ˆHEvalf ,ψ

for circuit ˆHEvalf that takes input as (the bit-representation of) Ψ and
outputs Ψf , where Ψf denotes all but last row of Ψf , using MEvalFX as follows:

H ˆHEvalf ,ψ
:= MEvalFX(Aattr, ˆHEvalf , ψ)

Thus, it holds that
(s⊤[Aattr + ψ⊤ ⊗G] + e⊤attr) ·H ˆHEvalf ,ψ

− Ψf
↓ (by encoding homomorphism)

≈ s⊤Aattr ·H ˆHEvalf
+ s⊤ ˆHEvalf (Ψ)− Ψf

↓ (by definition of ˆHEvalf )

≈ s⊤Aattr ·H ˆHEvalf
+ s⊤Ψf − Ψf︸ ︷︷ ︸

HE.Dec

≈ s⊤(Aattr ·H ˆHEvalf
+ f(x)G)

2.4 Fine-grained Functional Encryption

We note that both the predicate encryption (PE) and predicate inner-product functional encryption (P-
IPFE) can be captured within the framework of Fine-grained Functional Encryption. Concretely, we consider
a special class of FE with a function class F = P × G and an input space U = X ×M, where P, G, X , and
M represent the predicate space, key function space, attribute space, and message space, respectively. The
overall function operates as follows:

fP,g(x,m) :=

{
g(m) if P (x) = true
⊥ otherwise.

To capture PE, we define the key function as the identity function, i.e., g(m) = m. For P-IPFE, both the
key function and message are represented by vectors. Specifically, for v ∈ G and w ∈M, the overall function
is defined as follows:

fP,v(x,w) :=

{
⟨v,w⟩ if P (x) = true
⊥ otherwise.

Next, we describe the formal definition for FE with fine-grained syntax.

Definition 1 (Fine-grained Functional Encryption) A Functional Encryption scheme FE with fine-
grained syntax for a family F , defined by a predicate space P, key function space G, attribute space X and
message space M, consists of four algorithms (Setup,KeyGen,Enc,Dec).

• Setup(1λ,F)→ (mpk,msk): On input the security parameter λ and a description of the function family F ,
it outputs master public and secret keys (mpk,msk).

• KeyGen(msk, P, g) → skP,g: On input the master secret key msk, a predicate P ∈ P and a key function
g ∈ G, it outputs a secret key skP,g.

• Enc(mpk, x,m) → ct: On input the master public key mpk, an attribute x ∈ X and a message m ∈ M,
it outputs a ciphertext ct.

• Dec(skP,g, ct)→ µ/⊥: On input a secret key skP,g a ciphertext ct, it outputs either a function value µ or
⊥.
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Correctness. For all (mpk,msk)← Setup(1λ), any pair of attribute-message (x,m) ∈ X ×M and any pair
of predicate-key function (P, g) ∈ P × G, we require that

• For 1-keys, namely P (x) = true,

Pr

µ = g(m)

∣∣∣∣∣∣∣
skP,g ← KeyGen(msk, P, g)

ct← Enc(mpk, x,m)

µ← Dec(skP,g, ct)

 = 1− negl(λ) ,

• For 0-keys, namely P (x) = false,

Pr

µ = ⊥

∣∣∣∣∣∣∣
skP,g ← KeyGen(msk, P, g)

ct← Enc(mpk, x,m)

µ← Dec(skP,g, ct)

 = 1− negl(λ) ,

where the probabilities are taken over the coins of the setup algorithm Setup, secret keys skP,g ← KeyGen(msk, P, g)
and ciphertexts ct← Enc(mpk, x,m).

Security. We provide the security definition for the fine-grained FE scheme as follows. Specifically, the
collusion bound in this work refers to the number of admissible 1-key queries, i.e., q1 in the following
definition.

Definition 2 ((q1, q0)-xx-SIM security) Let FE be a functional encryption scheme for predicate-key func-
tion F = P ×G and attribute-message space U = X ×M. For every stateful PPT adversary Adv, a stateful
simulator Sim = (Setup∗,KeyGen∗pre,Enc

∗,KeyGen∗post) and every xx ∈ {sel, sa, ada}, consider the following
two experiments described in Fig. 1.

ExpRealFE,Adv(1
λ):

1: (mpk,msk)← Setup(1λ,F)
2: (x,m)← AdvOKeyGen(msk,·)(mpk)

3: ct∗ ← Enc(mpk, x,m)

4: α← AdvOKeyGen(msk,·)(ct∗)

ExpIdealFE,Sim(1
λ):

1: (mpk, st)← Setup∗(1λ,F)
2: (x,m)← AdvKeyGen

∗
pre(st,·)(mpk)

st := st ∪ {(fi, skfi , fi(x,m)}
3: ct∗ ← Enc∗(st)

4: α← AdvKeyGen
∗
post(st,·)(ct∗)

Fig. 1. Security experiments ExpRealFE,Adv(1
λ) and ExpIdealFE,Sim(1

λ) for Definition 2

We present the following supplementary notes.

• An adversary Adv is admissible if it queries at most q1 1-keys and q0 0-keys with respect to the challenge
index x during the experiment.
• {sel, sa, ada} refers to selective, semi-adaptive and adaptive, respectively. Selective security is defined by

requiring the adversary to announce the challenge attribute x before receiving the public key, whereas
semi-selective security requires the adversary to send the challenge attribute x after receiving the public
key but before submitting any key queries.
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The fine-grained functional encryption scheme FE is said to be (q1, q0)-xx-SIM secure if there exists a PPT
simulator Sim = (Setup∗,KeyGen∗pre,Enc

∗,KeyGen∗post) such that for every admissible PPT adversary Adv,
the following two distributions are computationally indistinguishable.{

ExpRealFE,Adv(1
λ)
}
λ∈N

c
≈
{
ExpIdealFE,Sim(1

λ)
}
λ∈N

.

3 Constructions of Predicate Encryption

3.1 (1, poly) Predicate Encryption

The proposed scheme (1, poly) PE is essentially built upon the (0, poly) predicate encryption of [BTVW17],
which achieves weak attribute-hiding security. However, the key generation process incorporates the two-stage
sampling algorithm from [LLW21]. The dual-use technique of [BTVW17] enables the automatic decryption
of encrypted attributes following homomorphic evaluation, thereby circumventing the “lazy-OR” operations
used in [GVW15, Agr17, LLW21] and corresponding attacks on PE when allowing 1-keys. The novel integra-
tion of the dual-use technique and two-stage sampling techniques results in a predicate encryption scheme
that not only ensures strong attribute-hiding directly but also achieves more compact efficiency compared
to prior constructions. Finally, we prove the strong attribute-hiding security of the resulting scheme using a
different approach than that employed in [BTVW17].

Notation. We use gadget matrices G ∈ Z(n+1)×(n+1) log q
q and write G ∈ Zn×(n+1) log q

q to denote all but the
last row of G. Similarly, we denote the last row of FHE ciphertext Ψ by Ψ and all but the last row of that by
Ψ . Specifically, throughout the whole paper, we will work on a predicate function class F : {0, 1}ℓ → {0, 1}
of depth denoted by d.

We describe the construction below.

Construction 1 ((1, poly) Predicate Encryption).

Setup(1λ, 1ℓ, 1d) Given as input the security parameter λ, the attribute length ℓ, and the depth of the circuit
family d, does the following:

1. Choose public parameters (q, ρ, s, sB , sD) as described in the following parameter setting paragraph.

2. Sample (B,TB)← TrapGen(1n, 1m, q).

3. Choose random matrices

Bj
$← Zn×(n+1) log q

q for j ∈ [L], P $← Zn×mq ,

where L = ℓ · (n+ 1)2 log2 q, m = (n+ 1) log q.

4. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L],P), msk := TB

KeyGen(msk, f) Given as input the master secret key msk and a circuit f , does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂ := MEvalF({Bj}j∈[L], f̂), Bf̂ := [B1| . . . |BL] ·Hf̂ .

2. Sample J← DZm×m,ρ.

3. Sample
[
K1

K2

]
← SampleLeft(B,Bf̂ ,TB,P−BJ, s), s.t. [B|Bf̂ ] ·

[
K1

K2

]
= P−BJ mod q.

4. Let Kf :=

[
K1

K2

]
+

[
J
0

]
, s.t. [B|Bf̂ ] ·Kf = P mod q.

5. Output skf := Kf .
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Enc(mpk,x, µ) Given as input the master public key, an attribute x ∈ {0, 1}ℓ and a message µ ∈ {0, 1}, does
the following:

1. Sample s $← Znq , e← DZm,sB and e′ ← DZm,sD .

2. Sample Ri
$← {0, 1}m×m for i ∈ [ℓ] and compute

Ψi :=

(
B

s⊤B+ e⊤

)
Ri + xiG

Let ψ = (ψ1, . . . , ψL) denote the bit-representation of Ψ := [Ψ1| · · · |Ψℓ].
3. Let b = [0, . . . , 0, ⌈q/2⌉µ]⊤ ∈ Zmq . Compute

β0 := B⊤s+ e, κ := P⊤s+ e′ + b.

4. Sample Wj
$← {−1, 1}m×m for j ∈ [L] and compute

cj := [Bj + ψjG]⊤s+W⊤
j e.

5. Output the ciphertext ct := (Ψ, β0, κ, {cj}j∈[L]).

Dec(skf , ct) Given as input a secret key and a ciphertext, does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Ψf ← HEvalf (Ψ),

Hf̂ ,ψ := MEvalFX({Bj}j∈[L], f̂ , ψ),

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf .

2. Compute η = κ−K⊤
f

(
β0
cf̂

)
.

3. Round each coordinate of η. If [Round(η[1]), . . . ,Round(η[m])] = 0 then set µ = Round(η[m]) and
output µ. Otherwise, output ⊥.

Correctness. According to the key relation,

[B1 + ψ1G| . . . |BL + ψLG] ·Hf̂ ,ψ = [B1| . . . |BL] ·Hf̂ + Ψf = Bf̂ + Ψf .

Thus, we have
c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf
= s⊤[B1 + ψ1G| . . . |BL + ψLG] ·Hf̂ ,ψ − Ψf + eattr.Eval

= s⊤(Bf̂ + Ψf )− Ψf + eattr.Eval

= s⊤Bf̂ + [s⊤| − 1] · Ψf + eattr.Eval

The FHE ciphertext Ψf after homomorphic evaluation can be written as

Ψf =

(
B

s⊤B+ e⊤

)
Rf + f(x)G.

Then, we have
c⊤
f̂
= s⊤Bf̂ + [s⊤| − 1] · Ψf + eattr.Eval

= s⊤Bf̂ + f(x) · [s⊤| − 1] ·G+ eattr.Eval + eHE.Eval︸ ︷︷ ︸
eEval

= s⊤Bf̂ + eEval (when f(x) = 0)

Hence,
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K⊤
f

(
β0
cf̂

)
= P⊤s+K⊤

f

(
e

eEval

)
κ−K⊤

f

(
β0
cf̂

)
= b+

{
e′ −K⊤

f

(
e

eEval

)}
︸ ︷︷ ︸

edec

.

Thus, we require that when f(x) = 0, the first m − 1 coordinates of edec to be bounded by q/4, which can
be ensured by our parameter setting.

Parameters Setting. The parameters setting and the detailed proof of Theorem 3.1 can be found in
Appendix B.1.

Security.

Theorem 3.1 Assuming the hardness of LWE, then the construction 1 is a PE for the class F , achieving
(1, poly)-sel-SIM security that allows at most single 1-key pre-challenge query (and any polynomial number
of 0-keys), according to Definition 2.

3.2 More compact Bounded Collusion-Resistant PE

Construction 2 ((Q, poly) Predicate Encryption).

QPE.Setup(1λ, 1ℓ, 1d, 1Q) Given as input the security parameter λ, the attribute length ℓ, the depth of the
circuit family d and the upper bound of 1-key queries Q, does the following:

1. Choose public parameters (q, ρ, sB , sD, N,w) as described in the following parameter setting para-
graph.

2. Sample (B,TB)← TrapGen(1n, 1m, q).

3. Choose random matrices

Bj
$← Zn×(n+1) log q

q for j ∈ [L], Pk
$← Zn×mq for k ∈ [N ],

where L = ℓ · (n+ 1)2 log2 q, m = (n+ 1) log q.

4. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L], {Pk}k∈[N ]), msk := TB

QPE.KeyGen(msk, f) Given as input the master secret key msk and a circuit f , does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂ := MEvalF({Bj}j∈[L], f̂), Bf̂ := [B1| . . . |BL] ·Hf̂ .

2. Sample a random subset ∆ ⊂ [N ] according to sampler SamplerSet(N,Q,w) with |∆| = w, and
compute the sum of the subset P∆ =

∑
k∈∆Pk.

3. Sample J← DZm×m,ρ.

4. Sample
[
K1

K2

]
← SampleLeft(B,Bf̂ ,TB,P∆ −BJ, s), s.t. [B|Bf̂ ] ·

[
K1

K2

]
= P∆ −BJ mod q.

5. Let Kf :=

[
K1

K2

]
+

[
J
0

]
, s.t. [B|Bf̂ ] ·Kf = P∆ mod q.

6. Output skf := (∆,Kf ).

QPE.Enc(mpk,x, µ) Given as input the master public key, an attribute x ∈ {0, 1}ℓ and a message µ ∈ {0, 1},
does the following:

1. Sample s $← Znq , e← DZm,sB and e′k ← DZm,sD for k ∈ [N ].
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2. Sample Ri
$← {0, 1}m×m for i ∈ [l] and compute

Ψi :=

(
B

s⊤B+ e⊤

)
Ri + xiG

Let ψ = (ψ1, . . . , ψL) denote the bit-representation of Ψ := [Ψ1| · · · |Ψℓ].

3. Let bk = [0, . . . , 0, ⌈q/2⌉w µ]⊤ ∈ Zmq for k ∈ [N ]. Compute

β0 := B⊤s+ e, β1,k := P⊤
k s+ e′k + bk.

4. Sample Wj
$← {−1, 1}m×m for j ∈ [L] and compute

cj := [Bj + ψjG]⊤s+W⊤
j e.

5. Output the ciphertext ct := (Ψ, β0, {β1,k}k∈[N ], {cj}j∈[L]).

QPE.Dec(skf , ct) Given as input a secret key and a ciphertext, does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Ψf ← HEvalf (Ψ),

Hf̂ ,ψ := MEvalFX({Bj}j∈[L], f̂ , ψ),

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf .

2. Compute η =
∑
k∈∆ β1,k −K⊤

f

(
β0
cf̂

)
.

3. Round each coordinate of η. If [Round(η[1]), . . . ,Round(η[m])] = 0 then set µ = Round(η[m]) and
output µ. Otherwise, output ⊥.

Correctness. Similar to the (1, poly) PE scheme, the encrypted attribute encoding after the homomorphic
evaluation would take the following form:

c⊤
f̂
= s⊤Bf̂ + [s⊤| − 1] · Ψf + eattr.Eval

= s⊤Bf̂ + f(x) · [s⊤| − 1] ·G+ eattr.Eval + eHE.Eval︸ ︷︷ ︸
eEval

= s⊤Bf̂ + eEval (when f(x) = 0)

Hence,

K⊤
f

(
β0
cf̂

)
= P⊤

∆ · s+K⊤
f ·
(

e
eEval

)
∑
k∈∆ β1,k −K⊤

f

(
β0
cf̂

)
= b+

{∑
k∈∆

e′k −K⊤
f

(
e

eEval

)}
︸ ︷︷ ︸

edec

.

Thus, we require that when f(x) = 0, the first m − 1 coordinates of edec to be bounded by q/4, which can
be ensured by our parameter setting.

Parameters Setting. The parameters setting and the detailed proof of Theorem 3.2 can be found in
Appendix B.2.

Security.

Theorem 3.2 Assuming the hardness of LWE, then the construction 2 is a PE for the class F , achieving
(Q, poly)-sel-SIM security that allows up to Q 1-key pre-challenge query (and any polynomial number of
0-keys), according to Definition 2.
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4 Constructions of Predicate Inner Product Encryption scheme

In this section, we begin by constructing a P-IPFE scheme that permits only a single pre-challenge 1-key
query. In this case, the basic version of ALS IPFE scheme [ALS16] is sufficient. Next, we leverage techniques
involving the extension of dimensions and cover-free sets to present a bounded collusion predicate IPFE
scheme that relies on the security of a modified N -ALS IPFE construction [WFL19].

4.1 (1, poly) Predicate Inner Product Functional Encryption

We now introduce our (1, poly) P-IPFE construction and prove its fully attribute-hiding (selective) security.
Specifically, we consider the message vector space U = {1, . . . , U − 1}t and the key vector space V =
{1, . . . , V − 1}t for some integer U,P and dimension t = poly(λ). The inner products are evaluated over Z
and belongs to {1, . . . , Y − 1} with Y = tUV .

Construction 3 ((1, poly) Predicate IPFE).

Setup(1λ, 1ℓ, 1d, 1t) Given as input the security parameter λ, the attribute length ℓ, the depth d of the circuit
family and the length of message (key) vector t, does the following:

1. Choose public parameters (q, s, ρ, sB , sD) as described in the following parameter setting paragraph.

2. Sample (B,TB)← TrapGen(1n, 1m, q).

3. Choose random matrices

Bj
$← Zn×(n+1) log q

q for j ∈ [L], P $← Zn×tq ,

where L = ℓ · (n+ 1)2 log2 q, m = (n+ 1) log q.

4. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L],P), msk := TB

KeyGen(msk, f,v) Given as input the master secret key msk, a circuit f and a key vector v ∈ V, does the
following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂
:= MEvalF({Bj}j∈[L], f̂), Bf̂

:= [B1| . . . |BL] ·Hf̂ .

2. Sample J← DZm×t,ρ.

3. Sample
[
K1

K2

]
← SampleLeft(B,Bf̂ ,TB,P−BJ, s), s.t. [B|Bf̂ ] ·

[
K1

K2

]
= P−BJ mod q.

4. Let Kf :=

[
K1

K2

]
+

[
J
0

]
, s.t. [B|Bf̂ ] ·Kf = P mod q.

5. Output skf,v := Kf · v.

Enc(mpk,x,u) Given as input the master public key, an attribute x ∈ {0, 1}ℓ and a message vector u ∈ U ,
does the following:

1. Sample s, s′ $← Znq , e0, e′0 ← DZm,sB and e1 ← DZt,sD .

2. Sample Ri
$← {0, 1}m×m for i ∈ [ℓ] and compute

Ψi :=

(
B

s⊤B+ e⊤0

)
Ri + xiG, Ψ ′

i :=

(
B

s′⊤B+ e′⊤0

)
Ri + xiG,

Let ψ′ = (ψ′
1, . . . , ψ

′
L) denote the bit-representation of Ψ ′ := [Ψ ′

1| · · · |Ψ ′
ℓ].

3. Compute

β0 := B⊤s+ e0, β1 := P⊤s+ e1 +
⌊
q
Y

⌋
· u.
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4. Sample Wj
$← {−1, 1}m×m for j ∈ [L] and compute

cj := [Bj + ψjG]⊤s+W⊤
j e0.

5. Output the ciphertext ct := (Ψ, Ψ ′, β0, β1, {cj}j∈[L]).
Dec(sk, ct) Given as input a secret key and a ciphertext, does the following:

1. Compute HEvalf (Ψ) = Ψf =

(
Ψf
Ψf

)
.

2. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂ ,ψ′ := MEvalFX({Bj}j∈[L], f̂ , ψ
′),

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf .

3. Compute µ′ = ⟨β1,v⟩ −
(
β0
cf̂

)⊤

· skf,v mod q.

4. Output the value µ ∈ {−Y + 1, . . . , Y − 1} that minimizes |
⌊
q
Y

⌋
· µ− µ′|.

Correctness. Notice that the FHE ciphertexts Ψ and Ψ ′ share the same encryption randomness and public
matrix B, thus we have

Ψf =

(
B

s⊤B+ e⊤0

)
Rf + f(x)G, Ψ ′

f =

(
B

s′⊤B+ e′⊤0

)
Rf + f(x)G.

In other words, Ψf = Ψ
′
f . Thus, the homomorphic evaluation results as follows:

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf

= s⊤(Bf̂ + Ψ
′
f )− Ψf + eattr.Eval

= s⊤Bf̂ + [s⊤| − 1] · Ψf + eattr.Eval

= s⊤Bf̂ + eattr.Eval + eHE.Eval︸ ︷︷ ︸
eEval

(when f(x) = 0)

Hence,
⟨β1,v⟩

= (P⊤s+ e1 +
⌊ q
Y

⌋
u)⊤ · v

= s⊤P · v + ⟨e1,v⟩+
⌊ q
Y

⌋
⟨u,v⟩,(

β0
cf̂

)⊤

· skf,v

= (s⊤B+ e0 | s⊤Bf̂ + eEval) ·Kf · v

= s⊤P · v +

(
e0
eEval

)⊤

Kf · v.

It is easy to check that when f(x) = 0,

µ′ =
⌊ q
Y

⌋
⟨u,v⟩+ ⟨e1,v⟩ −

(
e0
eEval

)⊤

Kf · v︸ ︷︷ ︸
edec

=
⌊ q
Y

⌋
⟨u,v⟩+ edec.

If the magnitude of error term edec is bounded by q/2Y with overwhelming probability, which can be ensured
by our parameter setting, then the correctness holds with overwhelming probability.
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Parameters Setting. The parameters setting and the detailed proof of Theorem 4.1 can be found in
Appendix C.1.

Security.

Theorem 4.1 Assuming the hardness of LWE, then the scheme described in Section 4.1 is a P-IPFE for
the predicate class F , message vector space U and key vector space V, achieving (1, poly)-sel-SIM security
that allows at most single 1-key pre-challenge query (and any polynomial number of 0-keys), according to
Definition 2.

4.2 (Q, poly)-Predicate Inner Product Functional Encryption

We now propose a predicate IPFE scheme that allows up to Q 1-key queries and any polynomial number of
0-keys as follows. Specifically, we consider the inner products modulo prime p, hence, the plaintext and key
vectors belong to Ztp.

Construction 4 ((Q, poly) Predicate IPFE).

QSetup(1λ, 1ℓ, 1d, 1t, 1Q) Given as input the security parameter λ, the attribute length ℓ, the depth of the
circuit family d, the length of message (key) vector t and the upper bound of 1-key queries Q, does the
following:

1. Choose public parameters (q, ρ, s, sB , sD, N,w) as described in the following parameter setting para-
graph.

2. Sample (B,TB)← TrapGen(1n, 1m, q).

3. Choose random matrices

Bj
$← Zn×(n+1) log q

q for j ∈ [L], Pk
$← Zn×(t+2)

q for k ∈ [N ],

where L = ℓ · (n+ 1)2 log2 q, m = (n+ 1) log q.

4. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L], {Pk}k∈[N ]), msk := TB

QKeyGen(msk, f,v) Given as input the master secret key msk, a circuit f and a key vector v ∈ Ztp, does the
following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂
:= MEvalF({Bj}j∈[L], f̂), Bf̂

:= [B1| . . . |BL] ·Hf̂ .

2. Sample a random subset ∆ ⊂ [N ] according to sampler SamplerSet(N,Q,w) with |∆| = w, and
compute the sum of the subset P∆ =

∑
k∈∆Pk.

3. Sample J← DZm×(t+2),ρ.

4. Sample
[
K1

K2

]
← SampleLeft(B,Bf̂ ,TB,P∆ −BJ, s), s.t. [B|Bf̂ ] ·

[
K1

K2

]
= P∆ −BJ mod q.

5. Let Kf :=

[
K1

K2

]
+

[
J
0

]
, s.t. [B|Bf̂ ] ·Kf = P∆ mod q.

6. Sample r $← Zp, set v′⊤ = (v⊤, 1, r)⊤.

7. Compute skf,v := (∆,v′,kf,v := Kf · v′).

QEnc(mpk,x,u) Given as input the master public key, an attribute x ∈ {0, 1}ℓ and a message vector u, does
the following:

1. Sample s, s′ $← Znq , e0, e′0 ← DZm,sB and e1,k ← DZt+2,sD for k ∈ [N ].

2. Sample Ri
$← {0, 1}m×m for i ∈ [ℓ] and compute
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Ψi :=

(
B

s⊤B+ e⊤0

)
Ri + xiG, Ψ ′

i :=

(
B

s′⊤B+ e′⊤0

)
Ri + xiG,

Let ψ′ = (ψ′
1, . . . , ψ

′
L) denote the bit-representation of Ψ ′ := [Ψ ′

1| · · · |Ψ ′
ℓ].

3. Set u′
k := ( 1

wu
⊤, 0, 0)⊤ ∈ Zt+2

p for k ∈ [N ]. Compute

β0 := B⊤s+ e0, β1,k := P⊤
k s+ e1,k + pe−1u′

k.
4. Sample Wj

$← {−1, 1}m×m for j ∈ [L] and compute

cj := [Bj + ψ′
jG]⊤s+W⊤

j e0.
5. Output the ciphertext ct := (Ψ, Ψ ′, β0, {β1,k}k∈[N ], {cj}j∈[L]).

QDec(skf,v, ct) Given as input a secret key and a ciphertext, does the following:

1. Compute HEvalf (Ψ) = Ψf =

(
Ψf
Ψf

)
.

2. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂ ,ψ′ := MEvalFX({Bj}j∈[L], f̂ , ψ
′),

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf .

3. Compute µ′ = ⟨
∑
k∈∆ β1,k,v

′⟩ −
(
β0
cf̂

)⊤

· kf,v mod q.

4. Output the value µ ∈ Zp that minimizes |pe−1 · µ− µ′|.

Correctness. Essentially, the attribute encoding components in the ciphertext are the same as the (1, poly) P-IPFE
scheme in Section 4.1. Therefore, when f(x) = 0, we could easily obtain c⊤

f̂
= s⊤Bf̂ + eEval. Moreover, we

have
⟨
∑
k∈∆

β1,k,v
′⟩

= (
∑
k∈∆

P⊤
k s+ e1,k + pe−1u′

k)
⊤ · v′

= s⊤P∆ · v′ +

(∑
k∈∆

e1,k

)⊤

︸ ︷︷ ︸
e1

·v′ + pe−1

(∑
k∈∆

u′
k

)⊤

︸ ︷︷ ︸
(u⊤,0,0)

·v′,

along with (
β0
cf̂

)⊤

· kf,v

= (s⊤B+ e)0 | s⊤Bf̂ + eEval) ·Kf · v′

= s⊤P∆ · v′ +

(
e0
eEval

)⊤

Kf · v′.

Therefore, when f(x) = 0, we have

µ′ = pe−1⟨(u⊤, 0, 0), (v⊤, 1, r)⟩+ ⟨e1,v′⟩ −
(

e0
eEval

)⊤

Kf · v′︸ ︷︷ ︸
edec

= pe−1⟨u,v⟩+ edec.

If the magnitude of error term edec is bounded by pe−1/2 with overwhelming probability, which can be
ensured by our parameter setting, then the correctness holds with overwhelming probability.
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Parameters Setting. The parameters setting and the detailed proof of Theorem 4.2 can be found in
Appendix C.2.

Security.

Theorem 4.2 Assuming the hardness of LWE, then the scheme described in Section 4.2 is a P-IPFE for the
predicate class F , message vector space U and key vector space V, achieving (Q, poly)-sel-SIM security that
allows up to Q 1-key pre-challenge query (and any polynomial number of 0-keys), according to Definition 2.

For clarity of the presentation, we just describe the simulator Sim for Theorem 4.2 here, and defer the
detailed proof to the full version.

Simulator. QSim∗(1λ, 1|x|, 1|u|):

1. QSetup∗(1λ, 1|x|, 1|u|): It generates all public parameters as in the real QSetup, except that it runs

(B′,TB′) ← TrapGen(1n+1, 1m, q), then parse B′ =

[
B
z⊤

]
, where B ∈ Zn×mq , and sets B be the public

matrix in mpk. Then, it initializes st := ∅.
2. QKeyGen∗pre(st, f,v): It generates all secret keys as in the real QKeyGen algorithm and simultaneously

maintains st that contains {fî,vî, skî = (∆î,v
′
î
,Kî · v′

î
)}î∈[Q′] for fî such that fî(x

∗) = 0.

3. QEnc∗(st): It takes as input st that contains dpre
î

= ⟨u∗,vpre

î
⟩ if the adversary has queried for (fî,vî) such

that fî(x
∗) = 0 before the challenge query, then constructs the challenge ciphertext as follows.

(a) It samples β0, {cj}j∈[L] independently and uniformly from Zmq .

(b) Samples {Ψi, Ψ ′
i}i∈[ℓ] uniformly from Z(n+1)×(n+1) log q

q .

(c) If st = ∅, i.e., the adversary did not make any 1-key in the pre-challenge phase, it computes {β1,k}k∈[N ]

as follows:
– Choose Q random subset (∆1, . . . ,∆Q) with size w according sampler SamplerSet(N,Q,w), sam-

ple rî
$← Zp for î ∈ [Q].

– Generate random shares {r′k}k∈[N ] over Zp under the following constraints: for î ∈ [Q],
∑
k∈∆î

r′k =

rî. This can be done efficiently by the cover-freeness of the subsets, using the following standard
procedure.
Let δî be a unique index that appears only in ∆î but not in the other subsets. To generate the
random shares {r′k}k∈[N ], we first sample r′k randomly for all k ∈ [N ]\{δî}î∈[Q], and then fix
r′δî

= rî −
∑
k∈∆î\{δî}

r′k for î ∈ [Q].

– For k ∈ [N ], set u′
k = ( 1

w ũ
⊤,−r′k, 1)⊤ ∈ Zt+2

p for ũ $← Ztp, sample β̃k $← Zmq , e1,k ← DZm,sD .
– Set β1,k = β̃k + e1,k + u′

k mod q.
(d) Otherwise, if the adversary has submitted Q′ 1-key queries in the pre-challenge phase, then up-

date st = st ∥ {dpre
î

= ⟨u∗,vpre

î
⟩}î∈[Q′], then QEnc∗ generates {β1,k}k∈[N ] to satisfy the decryption

consistency as follows.
– For î ∈ [Q′], compute Ψfî := HEvalfî(Ψ). Let f̂î denote the circuit computing Ψ 7→ Ψfî , compute

Hf̂î,Ψ
′ := MEvalFX({Bj}j∈[L], f̂î, Ψ

′), c⊤
f̂î

:= [c⊤1 | . . . |c⊤L ] ·Hf̂î,Ψ
′ − Ψfî .

– Compute u ∈ Ztp satisfying ⟨ũ,vpre

î
⟩ = dpre

î
mod p for î ∈ [Q′].

– Sample Q−Q′ random subsets of cardinality w using SamplerSet(N,Q,w), i.e. {∆î}î∈[Q′+1,Q]. By
our setting of parameters, the subsets {∆î}î∈[Q] are cover-free with an overwhelming probability.

– For î ∈ [Q′ + 1, Q], sample rî
$← Zp. Generate random shares {r′k}k∈[N ] over Zp under the

constraints that
∑
k∈∆î

r′k = rî holds for î ∈ [Q], which also can be computed by the cover-
freeness.
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– For k ∈ [N ], set u′
k = ( 1

w ũ
⊤,−r′k, 1)⊤ ∈ Zt+2

p .

– Sample random vectors {β̃k}k∈[N ] condition on the following equations:

∑
k∈∆î

β̃k = K⊤
î
·
(
β0
cf̂î

)
for î ∈ [Q′].

– Sample e1,k ← DZm,sD for k ∈ [N ], Set β1,k = β̃k + e1,k + u′
k mod q.

(e) It outputs the simulated ciphertext

ct∗ := (Ψ, Ψ ′, β0, {β1,k}k∈[N ], {cj}j∈[L]).

4. QKeyGen∗post(st, f,v) generates as in the real QKeyGen algorithm for all 0-key queries. Otherwise, assume
that the current state contains Q′(< Q) tuples of fî,vî, skî = (∆î,v

′
î
,Kî · v′

î
) for fî, for a 1-key query

(fîp ,vîp), the simulator computes as follows.

– Set ∆ = ∆îp
for which is chosen during QEnc∗ algorithm.

– Compute P∆ =
∑
k∈∆Pk and β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ] are chosen during QEnc∗.

– Compute Ψf := HEvalf (Ψ), Hf̂ and Hf̂ ,ψ′ , and use these results to compute Bf̂ and cf̂ , respectively.

– Sample Jîp ← DZm×m,s, use TB′ to sample

[
Kîp,1

Kîp,2

]
by SampleLeft such that

[
B Bf̂îp

z⊤ cf̂îp

]
·

[
Kîp,1

Kîp,2

]
=

[
P∆

β̃⊤
∆

]
−
[
B
z⊤

]
· Jîp .

– Set Kfîp
=

[
Jîp +Kî,1

Kî,2

]
.

– Given dpost = ⟨u∗,v⟩, compute θ = dpost − ⟨ũ,v⟩ and set v′ = (v, 1, θ + r) for r := rî.

– Output skf,v := (∆,v′,Kf · v′).
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A Additional Preliminaries

A.1 Lattices Background

Let A ∈ Zn×mq be arbitrary matrix for some positive integers n,m, q, define the full-rank m-dimensional q-ary
lattices as follows:

Λ(A) =
{
z ∈ Zm | ∃ s ∈ Znq , s.t. A

⊤s = z mod q
}

Λ⊥
q (A) = {z ∈ Zm | Az = 0 mod q}.

For a fixed u ∈ Znq , define a coset of Λ⊥ as:

Λu
q (A) = {z ∈ Zm | Az = u mod q}.

The Learning with Errors problem, or LWE, is the problem of distinguishing noisy inner products from
random.

Definition 3 (LWE [Reg05]) Let n ≥ 1 and q ≥ 2 be integers, and let X be a probability distribution on
Zq. For s ∈ Zq, let As,X be the probability distribution on Znq × Zq obtained by choosing a vector a ∈ Zq
uniformly at random, choosing e ∈ Zq according to X , and outputting (a, ⟨a, s⟩+ e).

The decision-LWEq,n,X problem is: for uniformly random s ∈ Zq, given a poly number of samples that
are either (all) from As,X or (all) uniformly random in Znq × Zq, output 0 if the former holds and 1 if the
latter holds.

We say the decision-LWEq,n,X problem is infeasible if for all polynomial-time algorithmsA, the probability
that A solves the decision-LWEq,n,X problem (over s and A’s random coins) is negligibly close to 1/2 as a
function of n.

Suppose that the error distribution X has a bound B, then solving LWEq,n,X is as hard as (quantumly)
approximating certain worst case lattice problems to a factor of Õ(n · q/B). These lattice problems are hard
to approximate even for subexponential q/B, i.e., 2n

ϵ

for some fixed 0 < ϵ < 1/2.

Lemma A.1 ([DM14]) Let X ∈ Rn×m be a subgaussian random matrix with parameter s. There exists a
universal constant c ≈ 1/

√
2π such that for any t > 0, we have s1(X) ≤ c · s · (

√
m +

√
n + t) except with

probability at most 2/eπt
2

.

The following are useful facts about Gaussian distributions.

Lemma A.2 ([DGK+10], Lemma 2) Let σ > 0, the vector x ∈ Zn be arbitrary and y ← DZn,σ. With
overwhelming probability over the choice of y, |x⊤y| ≤ ∥x∥ · ∥y∥, where ∥y∥2 ≤ σ ·

√
n and ∥y∥∞ ≤

σ · ω(
√
log n).

Lemma A.3 (Noise Flooding [GKPV10], Lemma 3) Let n ∈ N. For any real σ = ω(
√
log n), and

any c ∈ Zn,
SD(DZn,σ,DZn,σ,c) ≤ ∥c∥/σ

A.2 Multi-Output Two-Stage Sampling Algorithm

We begin by recalling several lemmas that will be useful in the subsequent proof and then present the the
Multi-Output Two-Stage Sampling Algorithm and prove its security.

Lemma A.4 ([GPV08]) Let n,m, q are integers such that m > 2n log q. Then for all but an at most q−n
fraction of A ∈ Zn×mq , we have λ∞1 (Λq(A)) > q/4. Furthermore, for such A and any function ω(

√
logm),

there is a negligible function ε(m) such that ηε(Λ⊥
q (A)) ≤ ω(

√
logm).
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Lemma A.5 ([LLW21]) Let n,m, q are integers such that m > 2n log q, and R ∈ Zm×m
q . Then for all but

an at most q−n fraction of A ∈ Zn×mq , we have Λ∞
1 (Λq(A|AR)) > q/4. Furthermore, for such A and any

function ω(
√
logm), there is a negligible function ε(m) such that ηε(Λ⊥

q (A|AR)) ≤ ω(
√
logm).

The following algorithm is extended from the two-stage sampling algorithm 2.1 to support Q-tuples
of output distributions by defining QSampler-1 and QSampler-2. Note that for the both two new-defined
QSampler, each pair of the output component (yi,ui) is generated independently among all i ∈ [Q]. Hence,
the indistinguishability of the output by QSampler-1 and QSampler-2 can be guaranteed by Theorem 2.1.

Lemma A.6 (Multi-Output Two-Stage Sampling Algorithm) For integers q ≥ 2, n ≥ 1, sufficiently
large m = O(n log q), any Ri ∈ Zm×m, s ≥ ω

√
logm and ρ ≥ s

√
m ∥Ri∥ · λω(1) for i ∈ [Q], the output

distributions {(A,ARi, yi,ui)}i∈[Q] of the following two procedures are statistically close.
QSampler-1 ({Ri}i∈[Q], ρ, s): Given matrices {Ri}i∈[Q] ∈ Zm×m and two values ρ, s ∈ R as input, this
sampler performs the following steps in two stages.

1. Stage 1: (without the need of Ri)
– Sample a random matrix A $← Zn×mq ;
– Sample random vectors ui

$← Znq for i ∈ [Q];
2. Stage 2:

– For each i ∈ [Q],
• Sample a random vector xi ← DZm,ρ;

• Sample a vector z′i =
(
zi,1
zi,2

)
← SampleLeft(A,ARi,TA,ui−A·xi, s), such that (A|ARi)

(
zi,1
zi,2

)
=

ui −A · xi mod q;

• Set yi =
(
xi + zi,1

zi,2

)
∈ Z2m, satisfying (A|ARi)yi = ui mod q;

– Output the tuples {(A,ARi,yi,ui)}i∈[Q].

QSampler-2 ({Ri}i∈[Q], ρ, s): Given matrices {Ri}i∈[Q] ∈ Zm×m and two values ρ, s ∈ R as input, this
sampler conducts the following steps in two stages.

1. Stage 1: (without the need of R)
– Sample a random matrix A $← Zn×mq ;
– For each i ∈ [Q], sample a random vector xi ← DZm,

√
ρ2+s2

and set ui = A · xi mod q;

2. Stage 2:
– For each i ∈ [Q],
• Sample a random vector zi,2 ← DZm,s;

• Compute yi =

(
xi −Rzi,2

zi,2

)
∈ Z2m, satisfying (A|ARi)yi = ui mod q;

– Output the tuples {(A,ARi,yi,ui)}i∈[Q].

Proof. We proceed through a series of hybrid samplers QSampler-1q defined as follows. The first q− 1 tuples
{(A,ARi,yi,ui)}i∈[q−1] are generated following the procedure of QSampler-2, the remaining Q−q+1 tuples
{(A,ARi,yi,ui)}i∈[q;Q] are generated in the manner of QSampler-1.
QSampler-1q ({Ri}i∈[Q], ρ, s): Given matrices {Ri}i∈[Q] ∈ Zm×m and ρ, s ∈ R as input, this sampler performs
the following steps in two stages.

1. Stage 1: (without the need of Ri)
– Sample a random matrix A $← Zn×mq ;
– For i ∈ [1; q − 1], sample a random vector xi ← DZm,

√
ρ2+s2

and set ui = A · xi mod q;
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– For i ∈ [q;Q], sample random vectors ui
$← Znq ;

2. Stage 2:
– For i ∈ [1; q − 1],
• Sample a random vector xi ← DZm,ρ;

• Sample a vector z′i =
(
zi,1
zi,2

)
← SampleLeft(A,ARi,TA,ui−A·xi, s), such that (A|ARi)

(
zi,1
zi,2

)
=

ui −A · xi mod q;

• Set yi =

(
xi + zi,1

zi,2

)
∈ Z2m, satisfying (A|ARi)yi = ui mod q;

– For i ∈ [q;Q],
• Sample a random vector zi,2 ← DZm,s;

• Compute yi =

(
xi −Rzi,2

zi,2

)
∈ Z2m, satisfying (A|ARi)yi = ui mod q;

– Output the tuples {(A,ARi,yi,ui)}i∈[Q].

Note that QSampler-11 is the same as QSampler-1 and QSampler-1Q+1 is the same as QSampler-2. Denote
the output distribution of QSampler-1q by Dq. Thus, it is sufficient to prove that Dq−1 is statistically close
to Dq for q ∈ [Q + 1], implying that the output distributions {(A,ARi,yi,ui)}i∈[Q] of QSampler-1 and
QSampler-2 are statistically close.

Intuitively, the indistinguishability of the output Dq−1 and Dq can be guaranteed by 2-Stage sampling
algorithm. Specifically, suppose that there exists an efficient distinguisher being able to tell Dq−1 from Dq,
we can then break the indistinguishability of Theorem 2.1.

Given the challenge element (A,uq), namely the output of Stage 1 that generated by either Sampler 1 or
2, we construct QSampler-3 taking input {Ri}i∈[Q] as follows.

– For each i ∈ [q − 1],
• Sample random vectors x′

i ← DZm,
√
ρ2+s2

and zi,2 ← DZm,s;

• Compute ui := (A|ARi)

(
x′
i

zi,2

)
mod q and denote yi =

(
x′
i

zi,2

)
;

– For i = q, query the Stage 2 oracle of Sampler and get response (A,ARq, yq,uq) satisfying (A|ARq)·yq =
uq.

– For i ∈ [q + 1;Q], generate as QSampler-2 do.
• Sample a random vector zi,2 ← DZm,s;

• Compute yi =

(
xi −Rzi,2

zi,2

)
∈ Z2m, satisfying (A|ARi)yi = ui mod q;

– Output the tuples {(A,ARi,yi,ui)}i∈[Q].

Obviously, the distribution of last Q − q tuples {(A,ARi,yi,ui)}i∈[q+1;Q] from above are the same as
Dq−1 (and Dq).

To analyze the first q−1 output distribution of {(A,ARi,yi,ui)}i∈[q−1], we firstly consider the following
two distributions:

– D̃1.
(
A,ARi,

(
zi,1
zi,2

)
,u′

i

)
i∈[q−1]

: A $← Zn×mq , u′
i

$← Znq ,(
zi,1
zi,2

)
← D

Λ
u′
i

q (A|ARi),s
for i ∈ [q − 1].

– D̃2.
(
A,ARi,

(
zi,1
zi,2

)
,u′

i

)
i∈[q−1]

: A $← Zn×mq ,
(
zi,1
zi,2

)
← DZ2m,s,

u′
i = (A|ARi)

(
zi,1
zi,2

)
mod q for i ∈ [q − 1].
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By Lemma A.4 and A.5, for all but an at most q−n fraction of A ∈ Zn×mq , the two distributions D̃1 and
D̃2 are statistically close. Note that we have ηε(λ⊥q (A|ARi)) ≤ ω(

√
logm) < s. For each i ∈ [q − 1], the

distribution of (A|ARi)

(
zi,1
zi,2

)
is uniformly random Znq , and the conditional distribution of

(
zi,1
zi,2

)
under

the constraint is D
Λ

u′
i

q (A|ARi),s
. Due to the reason that each tuple for i ∈ [q− 1] is generated independently,

the joint distribution D̃1
s
≈ D̃2.

Next, we decompose the component x′
i sampled in the Stage 1 of QSampler-3 into xi + zi,1 (within

a negligible statistical distance), where xi ← DZm,ρ, zi,1 ← DZm,s. The decomposition holds as we have
ρ > s > ηε(Zm) for some ε = negl(λ). Again, each component for i ∈ [q − 1] is generated independently, the
above indistinguishability thus immediately implies the indistinguishability of the following two distributions:

– D̃′
1.
(
A,ARi,

(
zi,1 + xi

zi,2

)
,u′

i +Axi

)
i∈[q−1]

: xi ← DZm,ρ, the other random variables are sampled as

D̃1.

– D̃′
2.
(
A,ARi,

(
zi,1 + xi

zi,2

)
,u′

i +Axi

)
i∈[q−1]

: xi ← DZm,ρ, the other random variables are sampled as

D̃2.

By replacing the variable ui of u′
i+Axi, the marginal distribution of {ui} is found to be still uniformly random

in D̃′
1. Then it is not hard to see that D̃′

1 is distributed identical as the tuples {(A,ARi,yi,ui)}i∈[q−1] output
by the defined both QSampler-1q−1 and QSampler-1q, D̃′

2 is distributed statistically close to that output by
QSampler-3.

Hence, QSampler-3 successfully simulates all the output of QSampler-1q−1 and QSampler-1q except the
q-th tuple (A,ARq,yq,uq). If the response (A,ARq,yq,uq) returned by the Stage 2 oracle of Sampler is
computed using Sampler-1, then QSampler-3 simulates Dq−1, otherwise QSampler-3 simulates Dq. In other
words, Dq−1

s
≈ Dq for q ∈ [Q+ 1]. This completes the proof.

⊓⊔
⊓⊔

B Supplementary Material of Section 3

In this section, we provide the parameters setting and security proofs for the predicate encryption schemes
described in Section 3, which were omitted from the main text due to space limitations.

B.1 Supplementary Material of (1, poly) PE Scheme in Section 3.1

Parameter Setting. We choose the parameters so that correctness and security of the scheme are satisfied.
We must satisfy the following constraints.

1. For correctness, the final magnitude of error obtained must be below q/4. Let us recall the decryption
procedure and analyze the noise component eEval causing by homomorphic evaluations.

c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf
= s⊤[B1 + ψ1G| . . . |BL + ψLG] ·Hf̂ ,ψ + e⊤ [W1| . . . |WL] ·Hf̂ ,ψ︸ ︷︷ ︸

Wf̂

−Ψf

= s⊤(Bf̂ + Ψf )− Ψf + e⊤Wf̂︸ ︷︷ ︸
eattr.Eval

= s⊤Bf̂ + f(x) · [s⊤| − 1] ·G+ eattr.Eval − e⊤Rf︸ ︷︷ ︸
eHE.Eval
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Thus, eEval = eattr.Eval+eHE.Eval = (Wf̂−Rf )
⊤e, where Wf̂ is bound by Lemma 2.2, Rf is the randomness

of FHE ciphertext Ψf and is then bound by Lemma 2.8. As a result, edec = e′ −K⊤
f

(
e

(Wf̂ −Rf )
⊤e

)
.

2. We must choose m large enough for the algorithm TrapGen (Lemma 2.1).
3. We must choose sB such that LWEq,n,sB assumption holds.
4. We set s used in SampleLeft (Lemma 2.2) and SampleRight (Lemma 2.3) such that the output matrices

are statistically indistinguishable.
5. We set s and ρ to meet the requirements of two-stage sampling techniques (Theorem 2.1).
6. We must choose the parameter sD used to sample the error e′ in κ large enough so that the following

equations are both satisfied:

e′
s
≈ J∗⊤ · e+ e′,

where e← DZm,sB , J∗ ← DZm×m,
√
ρ2+s2

.

Similarly to [Agr17, BTVW17, LLW21], we choose our parameters to satisfy these constraints. Our
parameters may be chosen as: n = poly(λ), m = (n+1) log q, sB = O(

√
n), s = O(Ln log q)O(d̂) ·ω(

√
logm),

ρ = O(Ln log q)O(d̂) ·ω(
√
logm)·λω(1), sD =

√
n·m·ρ·λω(1), q = 4m

√
nm·ρ·λω(1), where L = ℓ·(n+1)2 log q2,

d̂ = d ·O(logm log log q).

Theorem (Restatement of Theorem 3.1) Assuming the hardness of LWE, then the construction 1 is a
PE for the class F , achieving (1, poly)-sel-SIM security that allows at most single 1-key pre-challenge query
(and any polynomial number of 0-keys), according to Definition 2.

Proof. We define a PPT simulator Sim and prove that for any PPT adversary A, the ideal experiment with
respect to Sim is computationally indistinguishable (under the LWE assumption) from the output of the real
experiment.

Simulator. Sim(1λ, 1|x|):

1. Setup∗(1λ, 1|x|) generates all public parameters as in the real Setup and initializes st := ∅.
2. KeyGen∗pre(st, f) generates all public parameters as in the real KeyGen and maintains st that contains

(f, skf ) if the adversary queried for 1-key such that f(x∗) = 0.

3. Enc∗(st) takes as the state value st and constructs the challenge ciphertext as follows.

– Sample β0, {cj}j∈[L] independently and uniformly from Zmq .

– Sample {Ψi}i∈[ℓ] uniformly from Z(n+1)×(n+1) log q
q .

– If st = ∅, then sample κ randomly from Zmq .

– Otherwise, if st = (f, skf = Kf , µ), which means that the adversary has made a pre-challenge 1-key
query for f . Then, Enc∗ generates κ to satisfy the decryption consistency as follows.

• Compute Ψf := HEvalf (Ψ) and Hf̂ ,ψ := MEvalFX({Bj}j∈[L], f̂ , ψ).

• Compute c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf .

• Set κ = K⊤
f

(
β0
cf̂

)
+ e′ + b for e′ ← DZm,sD and b = [0, . . . , 0, ⌈q/2⌉µ]⊤.

– It outputs the simulated ciphertext

ct∗ := (Ψ, β0, κ, {cj}j∈[L])

4. KeyGen∗post(st, f): It generates all secret keys as in the real KeyGen.
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Auxiliary Algorithms.

Setup∗1(1
λ,x∗): Do the following:

1. Sample (B,TB)← TrapGen(1n, 1m, q).
2. Sample s $← Znq , e← DZm,sB , compute c⊤ := s⊤B+ e⊤.
3. Sample Ri

$← {0, 1}m×m for i ∈ [ℓ] and compute

Ψi :=

(
B
c⊤

)
Ri + x∗iG.

Let ψ = (ψ1, . . . , ψL) denote the bit-representation of Ψ := [Ψ1| · · · |Ψℓ].
4. Let Bj = B ·Wj − ψj ·G for j ∈ [L], where Wj

$← {−1, 1}m×m for j ∈ [L].
5. Sample J∗ ← DZm×m,

√
ρ2+s2

and set P = B · J∗ mod q.

6. Initialize st := ∅. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L],P), msk := (TB, {Ri}i∈[ℓ], {Wj}j∈[L],J
∗, s).

Enc∗1(mpk,msk, µ): Do the following:

1. Set β0 := c.
2. Sample e′ ← DZm,sD , set b = [0, . . . , 0, ⌈q/2⌉µ]⊤ ∈ Zmq and compute κ := P⊤s+ e′ + b.

3. For j ∈ [L], compute cj := W⊤
j β0, where Wj are the matrices in the msk generated by Setup∗1.

4. Output the ciphertext ct∗ := (Ψ, β0, κ, {cj}j∈[L]).

KeyGen∗1(msk, st, f): Do the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂ := MEvalF({Bj}j∈[L], f̂).

Bf̂ := [B1 | · · · | BL] ·Hf̂

= [B1 + ψ1G | · · · | BL + ψLG] ·Hf̂ ,ψ − Ψf
= B[W1 | · · · |WL] ·Hf̂ ,ψ − Ψf
= B(Wf̂ −Rf )− f(x∗)G

where

Wf̂ := [W1 | · · · |WL] ·Hf̂ ,ψ,

Ψf =

(
B
c⊤

)
Rf + f(x∗)

(
G
G

)
=

(
Ψf
Ψf

)
=

(
BRf + f(x∗)G
c⊤Rf + f(x∗)G

)
.

2. For 0-key query such that f(x∗) ̸= 0, generate

Kf ← SampleRight(B,G,Wf̂ −Rf ,P, s).

3. For 1-key query such that f(x∗) = 0, sample K2 ← DZm×m,s, set skf as Kf and update st to contain
(f, skf ).
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Kf :=

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]
.

4. Output skf := Kf .

Enc∗2(mpk,msk, st, µ): Do the following:

1. Generate β0, {cj}j∈[L] as in Enc∗1.

2. Sample e′ ← DZm,sD , set b = [0, . . . , 0, ⌈q/2⌉µ]⊤ ∈ Zmq and compute κ as follows:

– If there is no pre-challenge 1-key query, then it computes κ = J∗⊤ · β0 + e′ + b.

– If the adversary has already queried the 1-key for f , then it computes κ = (skf )
⊤ ·
(
β0
cf̂

)
+ e′ + b,

where c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf .

3. Output the ciphertext ct∗ := (Ψ, β0, κ, {cj}j∈[L]).

Setup∗2(1
λ,x∗): Sample B $← Zn×mq , c $← Zmq . Compute and set the remaining components as in Setup∗1.

KeyGen∗2(msk, st, f) : Do the following:

1. For 0-key query, generate the key Kf as in KeyGen.

2. For 1-key query, set the key Kf as in KeyGen∗1.

3. Output skf := Kf .

Enc∗3(mpk,msk, st, µ): If there is no pre-challenge 1-key, it samples κ randomly from Zmq . Otherwise, compute
the ciphertext as in Enc∗2.
Enc∗4(mpk,msk, st, µ): Sample cj uniformly. Compute the remaining ciphertext elements as in Enc∗3.
Enc∗5(mpk,msk, st): Do the following:

1. Sample c $← Zmq and set β0, cj , κ as in Enc∗4.

2. Sample Ri
$← {0, 1}m×(n+1) log q for i ∈ [ℓ] and compute

Ψi :=

(
B
c⊤

)
Ri + x∗iG.

3. Output the ciphertext ct∗ := (Ψ, β0, κ, {cj}j∈[L]).

Hybrids.

H0 : The real experiment.
H1 : The real game algorithms Setup and Enc are replaced with Setup∗1 and Enc∗1, which use the knowledge
of x∗ to generate the public parameters, the master public/secret keys, and additionally sets P = B ·J∗. H0

and H1 are statistically close by an application of the Leftover Hash Lemma.
H2 : The real game algorithm KeyGen is replaced with KeyGen∗1 where instead of using the trapdoor TB

of the matrix B, secret keys for a 0-key queries are sampled using the public trapdoor TG along with the
trapdoor information generated in Setup∗1, and the secret key for the 1-key query for function f is computed

as Kf :=

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]
.

H3 : Enc∗1 is replaced by Enc∗2, in which κ is computed from J∗ if there is no 1-key queried before, or otherwise
from the 1-key computed by KeyGen∗1.
H4 : Setup∗1 is replaced by Setup∗2, in which B and c are chosen randomly and thus all public matrices and
ciphertext elements are derived from (B, c).
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H5 : KeyGen∗1 is replaced by KeyGen∗2. The algorithm KeyGen∗2 is as the same as KeyGen∗1 except for the
response to the 1-key query.
H6 : Enc∗2 is replaced by Enc∗3. The difference between Enc∗2 and Enc∗3 is that when there is no pre-challenge
1-key query, then in the former, κ is computed from J∗ whereas in the latter, κ is chosen randomly.
H7 : The key generation algorithm is changed from KeyGen∗2 to KeyGen∗ algorithm.
H8 : The encryption algorithm is changed from Enc∗3 to Enc∗4, in which the ciphertext elements cj are switched
to random.
H9 : The algorithms Setup∗2 and Enc∗4 are replaced with the real Setup and Enc∗5. This hybrid is identical to
the ideal experiment except that the FHE ciphertexts are computed during encryption.
H10 : Enc∗5 is replaced by Enc∗. This hybrid is identical to the ideal experiment when running the simulator
Sim.

Next, we will prove that each pair of adjacent hybrid arguments is indistinguishable.

Lemma B.1 H0 and H1 are statistically indistinguishable.

Proof. The difference between the two hybrids is in how the public parameters and the ciphertext are
generated.

1. The public parameters
The matrix B in both two hybrids is generated using TrapGen algorithm and hence distributed close
to uniform by Lemma 2.1. The difference of public parameters between the two hybrids is how the
remaining public parameters are generated. In H0, public matrices {Bj}j∈[L],P are chosen uniformly
and independently. In H1, we set Bj = BWj − ψjG,P := BJ∗ for j ∈ [L] for Wj

$← {0, 1}m×m,
J∗ ← DZm×m,

√
ρ2+s2

.

By Leftover Hash Lemma (Lemma 2.6), we have

(B,BWj − ψjG,W⊤
j e)

s
≈ (B,U ,W⊤

j e),

where U denote the uniform distribution over Zn×mq .
By Lemma 2.4, we have

(B,B · J∗)
s
≈ (B,U(Zn×mq )).

Therefore, the distribution of the public parameters {Bj}j∈[L],P in H1 is statistically close to that in
H0.

2. The ciphertext
The difference of the ciphertext between the two hybrids is in how the ciphertext elements cj are gener-
ated. In H0, for j ∈ [L], we have

cj := [Bj + ψjG]⊤s+W⊤
j e

In H1, for j ∈ [L], since β⊤
0 = s⊤B+ e⊤, we can rewrite cj = W⊤

j β0 as:

cj = W⊤
j (B

⊤ · s+ e)

= (BWj)
⊤ · s+ e

= (Bj + ψjG)⊤ · s+W⊤
j e (as in H0).

Hence, the joint distribution of the public parameters and ciphertext is statistically indistinguishable between
the two hybrids. ⊓⊔

⊓⊔

Lemma B.2 H1 and H2 are statistically indistinguishable.
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Proof. In both H1 and H2, due to the reason that in Setup∗1 the attribute encoding matrices Bj are pro-
grammed as BWj − ψjG, the encoding matrix Bf̂ after homomorphic evaluation is in the exact same form
B(Wf̂ −Rf )− f(x∗)G as described in KeyGen∗1.

The difference between the two hybrids is in the way the queried secret keys are generated. We consider
the following two cases:

1. For the 0-key query of f , in H1, these keys are sampled using the SampleLeft algorithm, whereas in
H2, they are sampled using the SampleRight algorithm. By employing the lemma 2.3, the resulting
distributions are statistically indistinguishable.

2. For the 1-key query of f , in H1, the secret key is sampled using the Sample-1, while in H2, the secret key
is sampled using the Sample-2. Thus, by Theorem 2.1, the two hybrids are statistically indistinguishable.

⊓⊔
⊓⊔

Lemma B.3 H2 and H3 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way how the ciphertext element κ is generated.
In H2, κ = P⊤ · s+ e′ + b. In H3, we consider the following two cases:

1. If there is no pre-challenge 1-key query, then

κ = J∗⊤ · β0 + e′ + b

= BJ⊤ · s+ J∗⊤ · e+ e′ + b

= P⊤ · s+ J∗⊤ · e+ e′ + b

Thus, it suffices to ensure that
e′

s
≈ J∗⊤ · e+ e′.

By the noise flooding (Lemma A.3) and our setting of parameters, the above equation is satisfied.
2. If the adversary has already queried the 1-key for f , we have

κ = (skf )
⊤ ·
(
β0
cf̂

)
+ e′ + b.

Recall that
c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ − Ψf
= β⊤

0 [W1 | · · · |WL] ·Hf̂ ,ψ − Ψf
= β⊤

0 Wf̂ − c⊤Rf

Thus,

κ := K⊤
f ·
(
β0
cf̂

)
+ e1 + b

=

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]⊤(
β0

(Wf̂ −Rf )
⊤β0

)
+ e′ + b

= J∗⊤β0 + e′ + b,

as in the first case.

⊓⊔
⊓⊔

Lemma B.4 H3 and H4 are computationally indistinguishable under the LWE assumption.
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Proof. We show how the LWE assumption can be broken given an adversary that distinguishes between
Hybrid 3 and Hybrid 4. Given the LWE challenge sample (B, c) where c is either real or random. The
reduction does as follows:

1. Run Setup∗2 given the instance (B, c). We note that the generation of public parameters can be imple-
mented without the trapdoor of B.

2. Run KeyGen∗1 and Enc∗2 accordingly.

Note that if c = B⊤s+ e, then we simulate the distribution of H3, while we simulate H4 if c is random. ⊓⊔
⊓⊔

Lemma B.5 H4 and H5 are statistically indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between H1 and H2 for generating secret
keys of 0-key queries. ⊓⊔

⊓⊔

Lemma B.6 H5 and H6 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way of generating ciphertext element κ in the case that
there is no pre-challenge 1-key queried.

In H5, if there is no 1-key queried,
κ = J∗⊤ · β0 + e′ + b

Since β0 := c $← Zmq , then J∗⊤ · β0
s
≈ U by Lemma 2.6. Thus, κ

s
≈ U , as is in H6. ⊓⊔

⊓⊔

Lemma B.7 H6 and H7 are statistically indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between H1 and H2 for generating secret
keys of 1-key queries. ⊓⊔

⊓⊔

Lemma B.8 H7 and H8 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way to generate ciphertext elements cj .
In H7, the ciphertext elements are set as cj = W⊤

j β0. While, in H8, cj are chosen independently and
randomly from Zmq .

Recall that β0
s
≈ U in both hybrids, thus the indistinguishability of two hybrids follows from the Leftover

Hash Lemma (Lemma 2.6):

(B, β0, {BWj ,W
⊤
j β0})

s
≈ (B, β0, {U ,U}).

⊓⊔
⊓⊔

Lemma B.9 H8 and H9 are statistically indistinguishable.

Proof. The proof follows similarly as the proof of indistinguishability between H0 and H1. ⊓⊔
⊓⊔

Lemma B.10 H9 and H10 are statistically indistinguishable.
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Proof. The difference between the two hybrids is how the FHE ciphertext elements Ψi are generated.
In H9, the FHE ciphertext elements Ψi are computed by

Ψi :=

(
B
c⊤

)
Ri + x∗iG

where Ri is randomness chosen independently from {0, 1}m×m. By Leftover Hash Lemma (Lemma 2.6), we

have that
(
B
c⊤

)
Ri is statistically close to uniform.

Therefore, Ψi
s
≈ U , as in H10 (ideal experiment). ⊓⊔

⊓⊔

⊓⊔
⊓⊔

B.2 Supplementary Material of (Q, poly) PE Scheme in Section 3.2

Parameter Setting. We choose the parameters so that correctness and security of the scheme are satisfied.
We must satisfy the following constraints.

1. For correctness, the final magnitude of error obtained must be below q/4.
2. We must choose m large enough for the algorithm TrapGen (Lemma 2.1).
3. We must choose sB such that LWEq,n,sB assumption holds.
4. We set s used in SampleLeft (Lemma 2.2) and SampleRight (Lemma 2.3) such that the output matrices

are statistically indistinguishable.
5. We set s and ρ to meet the requirements of two-stage sampling techniques (Theorem 2.1).
6. We must choose the parameter sD used to sample the error e′k in βk large enough so that the following

equations are satisfied for k ∈ [N ]:

e′k
s
≈ J⊤

k · e+ e′k,

where e← DZm,sB , Jk ← DZm×m,s for k ∈ {δ1, . . . , δQ} and Jk
s
≈ DZm×m,

√
ρ2+s2

for k ∈ [N ]\{δ1, . . . , δQ}.
7. We must choose N,w,Q for cover-freeness (Lemma 2.7).

Similarly to the parameter choices for (1,poly)-PE scheme (Construction 1), we choose our parameters
to satisfy these constraints. Our parameters may be chosen as: n = poly(λ), m = (n + 1) log q, Q = O(λ),
w = Θ(λ),N = O(wλ3), sB = O(

√
n), s = O(Ln log q)O(d̂)·ω(

√
logm), ρ = O(Ln log q)O(d̂)·ω(

√
logm)·λω(1),

sD =
√
n ·m · ρ · λω(1), q = 4m

√
wnm · ρ · λω(1), where L = ℓ · (n+ 1)2 log q2, d̂ = d ·O(logm log log q).

Theorem (Restatement of Theorem 3.2) Assuming the hardness of LWE, then the construction 2 is a
PE for the class F , achieving (Q, poly)-sel-SIM security that allows up to Q 1-key pre-challenge query (and
any polynomial number of 0-keys), according to Definition 2.

Proof. We define a PPT simulator Sim and prove that for any PPT adversary A, the ideal experiment with
respect to Sim is computationally indistinguishable (under the LWE assumption) from the output of the real
experiment.

Simulator. Sim(1λ, 1|x|):

1. QSetup∗(1λ, 1|x|) generates all public parameters as in the real QPE.Setup, except that it runs (B′,TB′)←

TrapGen(1n+1, 1m, q), then parses B′ =

[
B
z⊤

]
, where B ∈ Zn×mq . Set B as the public matrix in mpk and

initialize st := ∅.
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2. QKeyGen∗pre(st.f) generates all secret keys as in the real QPE.KeyGen and maintains st to contain {fî, skî =
(∆î,Kî)} for 1-key query that fî(x

∗) = 0.

3. QEnc∗(st) takes as input the stateful value st and construct the challenge ciphertext as follows.

– Sample {cj}j∈[L] independently and uniformly from Zmq , and sets β0 = z, where z is prepared during
QSetup∗.

– Sample {Ψi}i∈[ℓ] uniformly from Z(n+1)×(n+1) log q
q . Let ψ = (ψ1, . . . , ψL) denote the bit-representation

of Ψ := [Ψ1| · · · |Ψℓ].
– If st = ∅, i.e., the adversary did not make any 1-key pre-challenge query, it computes {β1,k}k∈[N ] as

follows:

• Choose 2Q random subset (∆1, . . . ,∆Q) and (∆′
1, . . . ,∆

′
Q) with size w according sampler SamplerSet

(N, 2Q,w).
• Generate random shares {bk}k∈[N ] over Zq under the following constraints: for î ∈ [Q],

∑
k∈∆î

bk =

0,
∑
k∈∆′

î

bk = ⌈q/2⌉. This can be done efficiently by the cover-freeness of the subsets, using the
following standard procedure.
Let δî and δ′

î
be the unique index of∆î and∆′

î
, respectively. To generate random shares {bk}k∈[N ],

we first sample bk randomly for all k ∈ [N ]\{δî, δ′î}î∈[Q], and then fix bδî = −
∑
k∈∆î\{δî}

bk and
bδ′

î
= ⌈q/2⌉ −

∑
k∈∆′

î
\{δ′

î
} bk for î ∈ [Q].

• Set bk = [0, . . . , 0, bk]
⊤ ∈ Zmq , sample β̃k $← Zmq and e′k ← DZm,sD for k ∈ [N ].

• Set β1,k = β̃k + e′k + bk mod q.

– If st = ({fî, skî = (∆î,Kî)}î∈[Q′], µ), which means that the adversary has already made Q′ 1-key
queries. Then, QEnc∗ generates {β1,k}k∈[N ] to satisfy the decryption consistency as follows.

• Compute Ψfî := HEvalfî(Ψ) and Hf̂î,Ψ
:= MEvalFX({Bj}j∈[L], f̂î, Ψ) for î ∈ [Q′].

• Sample Q − Q′ random subsets of cardinality w according sampler SamplerSet(N,Q,w), i.e.,
{∆î}î∈[Q′+1,Q]. By our setting of parameters, the subsets {∆î}î∈[Q] are cover-free with an over-
whelming probability.

• Sample random shares {bk}k∈[N ] over Zq under the following constraints: for î ∈ [Q],
∑
k∈∆î

bk =

⌈q/2⌉µ. Set bk = [0, . . . , 0, bk].

• Sample random vectors {β̃k}k∈[N ] ∈ Zmq condition on the following equations:∑
k∈∆î

β̃k = K⊤
î
·
(
β0
cf̂î

)
for î ∈ [Q′].

• Sample e′k ← DZm,sD for k ∈ [N ], Set β1,k = β̃k + e′k + bk mod q.

– It outputs the simulated ciphertext

ct∗ := (Ψ, β0, {β1,k}k∈[N ], {cj}j∈[L]).

4. QKeyGen∗post(st, f) generates as in the real QPE.KeyGen algorithm for all 0-key queries. Otherwise, assume
that the current state contains Q′(< Q) tuples of (fî, skî = (∆î,Kî)) and corresponding functionality
value, for a 1-key query fîp , the simulator computes as follows.

– If the adversary did not make 1-key queried before the challenge, i.e., Q = 0, then update st := ∅∪µ.
Next, set ∆ = ∆îp

if µ = 0, otherwise as ∆ = ∆′
îp

.

– If the current state is not empty, then set ∆ = ∆îp
for which is chosen during QEnc∗ algorithm.

– Compute P∆ =
∑
k∈∆Pk and β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ] are chosen during QEnc∗.

– Compute Ψf := HEvalf (Ψ), Hf̂ and Hf̂ ,ψ′ , and use these results to compute Bf̂ and cf̂ , respectively.
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– Sample Jîp ← DZm×m,s, use TB′ to sample

[
Kîp,1

Kîp,2

]
by SampleLeft such that

[
B Bf̂îp

z⊤ cf̂îp

]
·

[
Kîp,1

Kîp,2

]
=

[
P∆

β̃⊤
∆

]
−
[
B
z⊤

]
· Jîp .

– Set Kfîp
=

[
Jîp +Kî,1

Kî,2

]
and output skfîp := (∆,Kfîp

).

Auxiliary Algorithms.

QPE.Setup∗1(1
λ,x∗): Do the following:

1. Generate (B,TB)← TrapGen(1n, 1m, q).
2. Sample s $← Znq , e← DZm,sB , compute z⊤ := s⊤B+ e⊤.

3. Sample Ri
$← {0, 1}m×m for i ∈ [ℓ] and compute Ψi :=

(
B
z⊤

)
Ri + x∗iG. Let ψ = (ψ1, . . . , ψL) denote

the bit-representation of Ψ := [Ψ1| · · · |Ψℓ].
4. Set Bj = B ·Wj − ψj ·G for j ∈ [L], where Wj

$← {−1, 1}m×m for j ∈ [L].
5. Choose Q random subset (∆1, . . . ,∆Q) with size w according sampler SamplerSet(N,Q,w). By cover-

freeness, for every î ∈ [Q], there exists a unique index δî that only appears in ∆î but not the other
subsets. Sample J∗

î
← DZm×m,

√
ρ2+s2

for î ∈ [Q].

6. Sample Pk
$← Zn×mq for k ∈ [N ] under the constraints that

∑
k∈∆î

Pk = B ·J∗
î

for each î ∈ [Q]. Denote∑
k∈∆î

Pk as P∆î
.

7. Initialize st := ∅. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L], {Pk}k∈[N ]),
msk := (TB, {Ri}i∈[ℓ], {Wj}j∈[L], {J∗

î
}î∈[Q], s).

QPE.Enc∗1(mpk,msk, st, µ): Do the following:

1. Set β0 := z.
2. For j ∈ [L], compute cj := W⊤

j β0, where Wj are chosen in QSetup∗1.
3. {β1,k}k∈[N ] is computed as real encryption algorithm, except that the secret randomness s is set the
one chosen in QSetup∗1.
4. Output the ciphertext ct∗ := (Ψ, β0, {β1,k}k∈[N ], {cj}j∈[L]).

QPE.KeyGen∗1(msk, st, f) : This algorithm is stateful that keeps track of how many keys have been queried
before. Particularly, it does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute the homomorphic public key corresponding to
circuit f̂ as

Hf̂ := MEvalF({Bj}j∈[L], f̂),

Bf̂ := [B1 | · · · | BL] ·Hf̂

= [B1 + ψ1G | · · · | BL + ψLG] ·Hf̂ ,ψ − Ψf
= B[W1 | · · · |WL] ·Hf̂ ,ψ − Ψf
= B(Wf̂ −Rf )− f(x∗)G
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where Wf̂ := [W1 | · · · |WL] ·Hf̂ ,ψ, Ψf =

(
B
z⊤

)
Rf + f(x∗)

(
G
G

)
.

2. For 0-key query such that f(x∗) ̸= 0, first sample a fresh random subset ∆ ⊆ [N ] with cardinality w
according sampler SamplerSet(N,Q,w), then generate

Kf ← SampleRight(B,G,Wf̂ −Rf ,
∑
k∈∆Pk, s),

satisfying [B|Bf̂ ] ·Kf = P∆ =
∑
k∈∆Pk.

3. For 1-key query f = fî that fî(x
∗) = 0, the algorithm does the following. We use index î ∈ [Q] to

denote the number of overall 1-key queries currently.
– Set ∆ = ∆î instead of sampling it freshly. Recall that ∆î is sampled in the QPE.Setup∗1, so as J∗

î
.

– Sample Kî,2 ← DZm×m,s, and set

Kfî
:=

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

]
.

Then, by the construction, we have

[B|Bf̂î
] ·Kf = [B|B(Wf̂î

−Rfî
)] ·Kf = BJ∗

î
=
∑
k∈∆

Pk.

– Update st := st ∪ (fî, skî = (∆î,Kî)).
4. Return skf = (∆,Kf ).

QPE.Setup∗2(1
λ,x∗): Do the following:

1. Sample J∗
î
← DZm×m,

√
ρ2+s2

for î ∈ [Q].

2. Sample Jk ← DZm×m,
√
ρ2+s2

for k ∈ [N ]\{δ1, . . . , δQ}, where δî is a unique index that only appears in

∆î but not the other subsets. Set Jδî = J∗
î
−
∑
k∈∆∗

i \{δî}
Jk for î ∈ [Q], then we have J∗

î
=
∑
k∈∆î

Jk.

3. Sample B randomly and set Pk = B · Jk for k ∈ [N ].
4. Compute and set the remaining components as in QPE.Setup∗1.

QPE.Enc∗2(mpk,msk, st, µ): Do the following:

1. Generate β0, {cj}j∈[L] as in QPE.Enc∗1.
2. For k ∈ [N ], compute β1,k as follows:

– Sample e′k ← DZm,sD and set bk = [0, . . . , 0, ⌈q/2⌉w µ]⊤ ∈ Zmq .

– Compute β1,k = J⊤
k · β0 + e′k + bk mod q.

3. Output ct∗ := (Ψ, β0, {β1,k}k∈[N ], {cj}j∈[L]).

QPE.Setup∗3(1
λ,x∗): Sample z $← Zmq . Compute and set the remaining components as in QSetup∗2.

QPE.KeyGen∗2(msk, st, f): Do the following:

1. For 0-key query, generate the key Kf as in QPE.KeyGen.

2. For 1-key query, set the key Kf as in QPE.KeyGen∗1.

3. Output skf := (∆,Kf ).

QPE.Setup∗4(1
λ,x∗): Do the following:

1. Generate (B′,TB′)← TrapGen(1n+1, 1m, q), then parse B′ =

[
B
z⊤

]
.
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2. Define β̃k = J⊤
k · z for k ∈ [N ].

3. Set B as the public matrix in mpk.

4. Compute remaining elements as in QPE.Setup∗2. Additionally, add {β̃k}k∈[N ] into msk.

QPE.Enc∗3(mpk,msk, st, µ): Compute and set the ciphertext components the same as in QPE.Enc∗2, except
that β1,k = β̃k + e′k + bk for k ∈ [N ].
QPE.KeyGen∗3(msk, st, f): Do the following:

1. For 0-key query, generate the key Kf as in QPE.KeyGen∗2.

2. For 1-key query, let fî be the î-th 1-key query, set∆ = ∆î (∆î is the subset sampled in the QPE.Setup∗1).

– Sample Jî ← DZm×m,ρ. Use TB′ to sample
[
Kî,1

Kî,2

]
by SampleLeft such that[

B Bf̂

z⊤ cf̂

]
·
[
Kî,1

Kî,2

]
= −

[
B
z⊤

]
· Jî +

[
P∆

β̃⊤
∆

]
.

– Set Kf =

[
Jî +Kî,1

Kî,2

]
.

3. Output skf := (∆,Kf ).

QPE.Setup∗5(1
λ,x∗): Do the following:

1. Sample Pk randomly from Zm×n
q under the constraint that

∑
k∈∆î

Pk = B·J∗
î
, which is thus distributed

exactly the same as in QPE.Setup∗1.

2. Sample β̃k randomly from Zmq for under the constraint that
∑
k∈∆î

β̃k = J∗
î
· z, denote

∑
k∈∆î

β̃k as

β̃∆î
.

QPE.Setup∗6(1
λ,x∗): Sample {Bj} and {Pk} as in the normal QPE.Setup, and sample β̃k $← Zmq for k ∈ [N ].

The remaining components are generated as in QPE.Setup∗5.
QPE.Enc∗4(mpk,msk, st, µ): Sample {cj}j∈[L] and Ψ randomly. Compute the remaining components as in
QPE.Enc∗3.
QPE.Enc∗5(mpk,msk, st, µ): Generate random shares {bk}k∈[N ] over Zq under the following constraints: for
î ∈ [Q],

∑
k∈∆î

bk = ⌈q/2⌉µ. Compute the remaining components as in QPE.Enc∗4.

Hybrids.

H0 : The real experiment.
H1 : The real game algorithms QPE.Setup and QPE.Enc are replaced with QPE.Setup∗1 and QPE.Enc∗1, which
use the knowledge of x∗ to generate the public parameters, the master public/secret keys, and additionally
samples random Pk under the constrain

∑
k∈∆î

Pk = B · J∗
î
. H0 and H1 are statistically close by an

application of the Leftover Hash Lemma.
H2 : The real game algorithm QPE.KeyGen is replaced with QPE.KeyGen∗1 where instead of using the trapdoor
TB of the matrix B, secret keys for a 0-key queries are sampled using the public trapdoor TG along with
the trapdoor information generated in QPE.Setup∗1, and the secret key for the î-th 1-key query for function

fî is generated as

(
∆î,

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

])
.

H3 : QPE.Setup∗1 is replaced by QPE.Setup∗2. In this hybrid, B is sampled randomly, the public matrices
{Pk} are generated by first sampling matrices Jk from Gaussian distributions, then setting Pk = B · Jk.
H4 : QPE.Enc∗1 is replaced by QPE.Enc∗2, in which β1,k is computed using β0 and Jk.
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H5 : QPE.Setup∗2 is replaced by QPE.Setup∗3, in which z is chosen from uniformly random and thus all
ciphertext elements are derived from it.

H6 : The algorithms QPE.Setup∗3 and QPE.Enc∗2 are replaced by QPE.Setup∗4 and QPE.Enc∗3, where the

TrapGen algorithm outputs the public matrix B′ =

[
B
z⊤

]
together with TB′ , the vector z is set as last row

of output matrix B′ from TrapGen algorithm instead of sampling uniformly and the vectors {β̃k}k∈[N ] are
added into the master secret key. QPE.Enc∗3 is almost the same as the QPE.Enc∗2 except that β1,k is computed
using β̃k.

H7 : QPE.Setup∗4 is replaced by QPE.Setup∗5, where Pk and β̃k are instead sampled randomly under specific
conditions.

H8 : QPE.KeyGen∗1 is replaced by QPE.KeyGen∗2. The algorithm QPE.KeyGen∗2 is as the same as QPE.KeyGen∗1
except for the response to the 1-key queries.

H9 : QPE.KeyGen∗2 is replaced by QPE.KeyGen∗3, where the responses to the 1-key queries are generated by
using the trapdoor TB′ such that [

B Bf̂

z⊤ cf̂

]
·
[
Kî,1

Kî,2

]
=

[
P∆

β̃⊤
∆

]
−
[
B
z⊤

]
· Jî.

H10 : The algorithms QPE.Setup∗5 and QPE.Enc∗3 are replaced by QPE.Setup∗6 and QPE.Enc∗4, where the public
matrices {Bj}, {Pk} are generated as the real world, and {β̃k}k∈[N ] are sampled uniformly at random. Also
the ciphertext components {cj}j∈[L] and Ψ are sampled uniformly.
H11 : QPE.Enc∗4 is replaced by QPE.Enc∗5, where the secret sharing is generated following a different approach.
H12 : The ideal experiment.

Next, we will prove that each pair of adjacent hybrid arguments is indistinguishable.

Lemma B.11 H0 and H1 are statistically indistinguishable.

Proof. The difference between the two hybrids lies in how the public parameters and the ciphertext are
generated.

1. The public parameters
The matrix B in both two hybrids is generated using TrapGen algorithm. The difference of public pa-
rameters between the two hybrids is how the remaining public parameters are generated. {Bj}, {Pk} are
sampled from uniformly random in H0. In H1, Bj is set as BWj−ψjG for Wj

$← {0, 1}m×m. {Pk}k∈[N ]

are sampled randomly under the condition
∑
k∈∆î

Pk = B · J∗
î

for î ∈ [Q], where J∗
î
← DZm×m,

√
ρ2+s2

.

Notice that B is generated using TrapGen algorithm, by Lemma 2.1, we have that B
s
≈ U , where U

denotes the uniform distribution over Zn×mq .

By Leftover Hash Lemma (Lemma 2.6), we have (B,BWj − ψjG,W⊤
j e)

s
≈ (B,U ,W⊤

j e). Moreover,
we have (B, {B · J∗

î
}î∈[Q])

s
≈ (B, {U}î∈[Q]), by relying on Lemma 2.4. Hence, the matrices Pk is also

distributed as uniform, as in H0.
2. The ciphertext

The ciphertext components cj are statistical close in H0 and H1, due to the similar reason in the proof
of Lemma B.1.

⊓⊔
⊓⊔

Lemma B.12 H1 and H2 are statistically indistinguishable.
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Proof. In both H1 and H2, due to the reason that in QPE.Setup∗1 the attribute encoding matrices Bj are
programmed as BWj − ψjG, the encoding matrix Bf̂ after homomorphic evaluation is in the exact same
form B(Wf̂ −Rf )− f(x∗)G as described in QPE.KeyGen∗1.

The difference between the two hybrids is in the way the queried secret keys are generated. We consider
the following two cases:

1. For the 0-key query of f , in H1, these keys are sampled using the SampleLeft algorithm, whereas in
H2, they are sampled using the SampleRight algorithm. By employing the lemma 2.3, the resulting
distributions are statistically indistinguishable.

2. For the 1-key query of f , we note that {Pk} are chosen the same way in both H1 and H2.

– In H1, for î ∈ [Q], we sample Kfî
=

[
J∗
î
+Kî,1

Kî,2

]
by firstly sampling J∗

î
← DZm×m,ρ, then using

SampleLeft algorithem to sample
[
Kî,1

Kî,2

]
such that

[B | Bf̂ ] ·
[
Kî,1

Kî,2

]
=
∑
k∈∆î

Pk −BJ∗
î

mod q,

where the marginal distribution of
∑
k∈∆î

Pk = BJ∗
î

is uniformly at random, as J∗
î

is hidden in the
view of adversary in this case.

– In H2, for î ∈ [Q], we generate Kfî
:=

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

]
, where J∗

î
← DZm×m,

√
ρ2+s2

,

Kî,2 ← DZm×m,s.
Just as we previously analyzed the indistinguishability in proving Lemma B.2 for the (1,poly)-PE scheme,
the key generation in H1 is exactly the procedure of Sample-1, while in H2, these keys are sampled using
the Sample-2. Hence, by Theorem 2.1, the two cases are statistically indistinguishable. Via a simple
hybrid argument, the indistinguishability also holds for Q key queries.

This completes the proof. ⊓⊔
⊓⊔

Lemma B.13 H2 and H3 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way how the public matrices {Pk} are generated. In H2,
Pk is chosen from uniformly random under the constrain that

∑
k∈∆î

Pk = B·J∗
î
, where J∗

î
← DZm×m,

√
ρ2+s2

for î ∈ [Q]. In H3, Pk is set as Pk = B · Jk, where Jk ← DZm×m,
√
ρ2+s2

for k ∈ [N ]\{δ1, . . . , δQ} and

Jδî = J∗
î
−
∑
k∈∆∗

i \{δî}
Jk for î ∈ [Q]. In other words, it still holds that J∗

î
=
∑
k∈∆î

Jk. Hence,
∑
k∈∆î

Pk =∑
k∈∆î

B · Jk = B ·
∑
k∈∆î

Jk = B · J∗
î
, as in H2. As {Pk}k∈[N ] in the two hybrids are under the same

constraint, it remains to analyze the marginal distribution of Pk in H3. By lemma 2.6 and the parameter
settings, we have (B, {B · Jk}k∈[N ])

s
≈ (B, {U}k∈[N ]). ⊓⊔

⊓⊔

Lemma B.14 H3 and H4 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way how the ciphertext element {β1,k}k∈[N ] is generated.
In details, we have

β1,k = J⊤
k · β0 + e′k + bk (in H4)

= BJ⊤
k · s+ J⊤

k · e+ e′k + bk

= P⊤
k · s+ J⊤

k · e+ e′k + bk
s
≈ P⊤

k · s+ e′k + bk (in H3)
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The last
s
≈ relies on noise flooding e′k

s
≈ J⊤

k · e+ e′k and our parameter choices. ⊓⊔
⊓⊔

Lemma B.15 H4 and H5 are computationally indistinguishable under the LWE assumption.

The proof of this lemma is similar to the proof of Lemma B.4 and is therefore omitted for brevity.

Lemma B.16 H5 and H6 are statistically indistinguishable.

Proof. The difference between the two hybrids is how the public matrix B, the trapdoor and the vector z are
generated. B and z are sampled randomly in H6. In H7, we first run TrapGen(1n+1, 1m, q) to get (B′,TB′),

then parse B′ =

[
B
z⊤

]
. By applying the property of TrapGen (Lemma 2.1), (B, z) in these two cases are both

statistically close to the uniform distribution, and thus they are indistinguishable in two hybrids..
Furthermore, as β̃k is set as J⊤

k z and β0 := z, β1,k is identically distributed in the two hybrids. ⊓⊔
⊓⊔

Lemma B.17 H6 and H7 are statistically indistinguishable.

Proof. The difference between the two hybrids is how the public matrices {Pk} and vectors {β̃k} are gener-
ated.

Analogously to the proof of indistinguishability between H2 and H3 (Lemma B.13), the matrices {Pk}
are statistically indistinguishable in two hybrids.

For β̃k, in H7, β̃k = J⊤
k · z′, where Jk satisfies the constraint J∗

î
=
∑
k∈∆î

Jk for î ∈ [Q]. By Lemma 2.6,

the marginal distribution of {β̃k} statistically close to uniformly random distribution under the constraint∑
k∈∆î

β̃k = J∗
î
· z for k ∈ [N ], which is exactly the distribution of {β̃k} in H8. ⊓⊔

⊓⊔

Lemma B.18 H7 and H8 are statistically indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between H1 and H2 for generating secret
keys of 0-key queries. Specifically, based on Lemma 2.1, TB′ is also a trapdoor of B for Key generation
algorithm. As the secret keys are sampled from the same Gaussian distribution over the same lattice for
these two hybrids, it does not matter which trapdoor is used. ⊓⊔

⊓⊔

Lemma B.19 H8 and H9 are statistically indistinguishable.

Proof. The only difference between the two hybrids lies in the way how the Q 1-keys are generated. In H8,
the secret keys are sampled using the QSampler-2 without trapdoor, while in H9, the secret keys are sampled
using the QSampler-1 with TB′ . Thus, by Lemma A.6, the two hybrids are statistically indistinguishable.

⊓⊔
⊓⊔

Lemma B.20 H9 and H10 are statistically indistinguishable.

Proof. The only difference between the two hybrids lies in the way of how the public parameters and the
ciphertext are generated.

– {Bj}j∈[L], {Pk}k∈[N ]

The indistinguishability of the distribution of {Bj}, {Pk} in H9 and H10 follows similarly as the proof
of indistinguishability between H0 and H1.

– {β̃k}k∈[N ]

In H9, the marginal distribution of {β̃k} is statistically close to uniformly random according to Lemma
2.6, as in H10.
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– {Bj}j∈[L]

In H9, the ciphertext elements are set as cj = W⊤
j β0. While, in H10, cj are chosen independently and

randomly from Zmq .

Recall that β0
s
≈ U in both hybrids, thus the indistinguishability of two hybrids follows from the Leftover

Hash Lemma (Lemma 2.6):

(B, β0, {BWj ,W
⊤
j β0})

s
≈ (B, β0, {U ,U}).

– Ψ = (Ψ1, . . . , Ψℓ)

In H9, the FHE ciphertext elements Ψi are computed by

Ψi :=

(
B
z⊤

)
Ri + x∗iG,

where Ri is the randomness chosen independently from {0, 1}m×m. From Leftover Hash Lemma (Lemma

2.6), we have that
(
B
z⊤

)
Ri is statistically close to uniform. Therefore, Ψi

s
≈ U , as in H10.

Hence, the two hybrids are statistically close. ⊓⊔
⊓⊔

Lemma B.21 H10 and H11 are statistically indistinguishable.

Proof. The only difference between the two hybrids is the way to generate the message encoding vectors bk
in the ciphertext elements β1,k for k ∈ [N ]. In both hybrids, β1,k is set as β̃k + e′k + bk for β̃k $← Zmq . In
addition, secret keys for 1-keys are generated to satisfy the constraint[

B Bf̂î
z⊤ cf̂î

]
· skfî =

[
P∆î

β̃⊤
∆î

]
,

which will guarantee the correctness of the decryption. In other words, β̃k plays the role of a one-time pad
in β1,k to hide message pieces bk if no 1-key has ever been queried. On the other hand, the adversary will
only learn the value

∑
∆î
bk = ⌈q/2⌉µ given the secret key for 1-key query f̂î. The value

∑
∆î
bk is set to be

identical in both hybrids. Therefore, H10 and H11 are statistically indistinguishable.
⊓⊔
⊓⊔

Lemma B.22 H11 and H12 are statistically indistinguishable.

Proof. From the viewpoint of the adversary, the available transcript after the whole experiment will contain
(mpk, {skfi}i∈poly, {skfî}î∈[Q], ct

∗). We observe that the distribution of (mpk, {skfi}i∈poly) are identical in
both hybrids. It remains to show the indistinguishability of the remaining components in two hybrids.

The only difference for generating ct∗ between the two hybrids is the procedure of message secret-sharing.
As analyzed in Lemma B.21, the distributions of ct∗ in two hybrids are statistically close as long as the
summation

∑
∆î
bk stays the same.

To show the statistical indistinguishability of {skfî = (∆î,Kî)}î∈[Q], we firstly consider the distribution
of {∆î}î∈[Q] in the following two cases:

1. If there is no pre-challenge 1-key query, then all Q subsets are chosen during QPE.Setup∗6 phase in H11,
while these subsets are all sampled in QPE.Enc∗ in H12. The distributions of Q subsets in the two hybrids
are thus identical.
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2. If the adversary has queried Q′ 1-keys in the pre-challenge phase, then in H12, each of the first Q′ subsets
{∆î}î∈[Q′] is sampled independently during each 1-key generation in the pre-challenge key query phase,
while the remaining Q − Q′ subsets {∆î}î∈[Q′+1,Q] are sampled in QPE.Enc ∗. In H11, all the subsets
{∆î}î∈[Q] are chosen during QPE.Setup∗6. As each subset ∆î is sampled independently, the distribution
of {∆î}î∈[Q] in the two hybrids are identical according to Lemma 2.7.

In addition, the distributions of Kî in the two hybrids are statistically close, since the generating approaches
are identical. Therefore, H11 and H12 are statistically indistinguishable. ⊓⊔

⊓⊔

This completes the security proof.
⊓⊔
⊓⊔

C Supplementary Material of Section 4

In this section, we provide the parameters setting and security proofs for the predicate encryption schemes
described in Section 4, which were omitted from the main text due to space limitations.

C.1 Supplementary Material of (1, poly) P-IPFE Scheme in Section 4.1

Parameter Setting. We choose the parameters so that correctness and security of the scheme are satisfied.
We must satisfy the following constraints.

1. For the security and correctness of ALS scheme, we set nALS, mALS, qALS, σALS, ρALS, αALS as chosen
in the IPFE scheme described in Appendix D.1.

2. For correctness, the final magnitude of error obtained must be below q/2Y .
3. We set s used in SampleLeft (Lemma 2.2) and SampleRight (Lemma 2.3) such that the output matrices

are statistically indistinguishable.
4. We must choose m large enough for the algorithm TrapGen (Lemma 2.1).
5. We must choose sB such that LWEq,n,sB assumption holds.
6. We set s and ρ to meet the requirements of two-stage sampling techniques (Theorem 2.1).
7. We must choose the parameter sD used to sample the error e1 in β1 large enough so that the following

relationship is satisfied:

e1
s
≈ J∗⊤ · e0 + e1 for J∗ ← DZm×t,

√
ρ2+s2

.

8. We require τ > s1(J
∗) in order to rely on ReRand algorithm for security proof. According to Lemma A.1,

s1(J
∗) is bounded by 1/

√
2π ·

√
ρ2 + s2 · (

√
t+
√
m+

√
λ).

Our parameters may be chosen as: n = poly(λ), m = (n + 1) log q, sB = ω(
√
log n), s = O(Ln log q)O(d̂) ·

ω(
√
logm), ρ = O(Ln log q)O(d̂)·ω(

√
logm)·λω(1), τ =

√
ρ2 + s2·(

√
t+
√
m+
√
λ), sD = ρ·m·ω(

√
log n)·λω(1),

q = 2sD · t · V · Y , where L = ℓ · (n+ 1)2 log q2, d̂ = d ·O(logm log log q).

Security.

Theorem (Restatement of Theorem 4.1) Assuming the hardness of LWE, then the scheme described in
Section 4.1 is a P-IPFE for the predicate class F , message vector space U and key vector space V, achieving
(1, poly)-sel-SIM security that allows at most single 1-key pre-challenge query (and any polynomial number
of 0-keys), according to Definition 2.

Proof. We define a PPT simulator Sim and prove that for any PPT adversary A, the ideal experiment with
respect to Sim is computationally indistinguishable (under the LWE assumption) from the output of the real
experiment.
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Simulator. Sim(1λ, 1|x|, 1|u|):

1. Setup∗(1λ, 1|x|, 1|u|) generates all public parameters as in the real Setup and initializes st := ∅.
2. KeyGen∗pre(st, f,v): It generates all secret keys as in the real KeyGen.

3. Enc∗(st): It takes as input st that contains d∗ = ⟨u∗,v⟩ if the adversary has queried for (f,v) such that
f(x∗) = 0 before the challenge query, then constructs the challenge ciphertext as follows.

(a) It samples β0, {cj}j∈[L] independently and uniformly from Zmq .

(b) Samples {Ψi, Ψ ′
i}i∈[ℓ] uniformly from Z(n+1)×(n+1) log q

q .

(c) If st = ∅, it randomly samples β1 from Zmq .

(d) If st = (f,v, skf,v, d
∗ = ⟨u∗,v⟩), then Enc∗ generates β1 to satisfy the decryption consistency as

follows.

– Let Ψf := HEvalf (Ψ), let f̂ denote the circuit computing Ψ ′ 7→ Ψ
′
f , compute Hf̂ ,ψ′ := MEvalFX({Bj}j∈[L], f̂ , ψ

′).

– Set c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf .

– Compute β1 = K⊤
f

(
β0
cf̂

)
+ e1 +

⌊
q
Y

⌋
ũ, for e1 ← DZt,sD and ũ such that ⟨ũ,v⟩ = d∗.

(e) It outputs the simulated ciphertext

ct∗ := (Ψ, Ψ ′, β0, β1, {cj}j∈[L]).

4. KeyGen∗post(st, f,v): It generates all secret keys as in the real KeyGen.

Auxiliary Algorithms.

Setup∗1(1
λ, 1|u|,x∗): Do the following:

1. Sample (B,TB)← TrapGen(1n, 1m, q).
2. Sample s′ $← Znq , e′0 ← DZm,sB , compute z′⊤ = s′⊤B+ e′⊤0 .
3. Sample Ri

$← {0, 1}m×m for i ∈ [ℓ] and compute

Ψ ′
i :=

(
B
z′⊤

)
Ri + x∗iG.

Let ψ′
1, . . . , ψ

′
L denote the bit-representation of Ψ := [Ψ ′

1| · · · |Ψ ′
ℓ].

4. Let Bj = B ·Wj − ψ′
j ·G for j ∈ [L], where Wj

$← {−1, 1}m×m for j ∈ [L].
5. Sample J∗ ← DZm×t,

√
ρ2+s2

and set P = B · J∗ mod q.

6. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L],P), msk := (TB, {Ri}i∈[ℓ], {Wj}j∈[L],J
∗).

Enc∗1(mpk,msk,x∗,u∗): Do the following:

1. Sample s $← Znq , e0 ← DZm,sB and e1 ← DZt,sD .

2. Compute β0 := z = B⊤s+ e0, β1 := P⊤s+ e1 +
⌊
q
Y

⌋
· u∗.

3. Compute Ψi :=
(
B
z⊤

)
Ri + x∗iG for i ∈ [ℓ], where Ri are chosen during Setup∗1.

4. Compute cj := W⊤
j β0 for j ∈ [L], where Wj re chosen during Setup∗1.

5. Output the ciphertext ct∗ := (Ψ, Ψ ′, β0, β1, {cj}j∈[L]).

46



KeyGen∗1(msk, f,v): Do the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute

Hf̂
:= MEvalF({Bj}j∈[L], f̂),

Bf̂
:= [B1 | · · · | BL] ·Hf̂

= [B1 + ψ′
1G | · · · | BL + ψ′

LG] ·Hf̂ ,ψ′ − Ψ
′
f

= B[W1 | · · · |WL] ·Hf̂ ,ψ′ − Ψ
′
f

= B(Wf̂ −Rf )− f(x∗)G

where

Wf̂
:= [W1 | · · · |WL] ·Hf̂ ,ψ′ , Ψ ′

f =

(
B
z′⊤

)
Rf + f(x∗)

(
G
G

)
.

2. For 0-key query such that f(x∗) ̸= 0, generate

Kf ← SampleRight(B,G,Wf̂ −Rf ,P, s).

3. For 1-key query such that f(x∗) = 0, sample K2 ← DZm×m,s, and set

Kf :=

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]
.

4. Output skf,v := Kf · v. Update st := st ∪ (f,v, skf,v, d
∗ = ⟨u∗,v⟩) if there is a pre-challenge 1-key

query (f,v).

Setup∗2(1
λ, 1|u|,x∗): Same as Setup∗1, except that B is sampled uniformly from Zn×mq .

Enc∗2(mpk,msk, st): Do the following:

1. Generate Ψ, Ψ ′, β0, {cj}j∈[L] as in Enc∗1.
2. Sample e1 ← DZm,sD , compute β1 as follows:

– If there is no pre-challenge 1-key query, then it computes β1 as in Enc∗1.
– If the adversary has already queried the 1-key for (f,v), then it first computes a vector ũ satisfying
⟨ũ,v⟩ = d∗ and computes β1 = P⊤s+ e1 +

⌊
q
Y

⌋
ũ.

3. Output the ciphertext ct∗ := (Ψ, Ψ ′, β0, β1, {cj}j∈[L]).

Enc∗3(mpk,msk, st): Do the following:

1. Generate Ψ, Ψ ′, β0, {cj}j∈[L] as in Enc∗2.
2. Sample e1 ← DZm,sD and compute β1 as follows:

– If there is no pre-challenge 1-key query, then it computes β1 = J∗⊤ · β0 + e1 + u∗.

– If the adversary has already queried the 1-key for (f, v), then it computes β1 = K⊤
f ·
(
β0
cf̂

)
+ e1 + ũ,

where c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf .

3. Output the ciphertext ct∗ := (Ψ, β0, β1, {cj}j∈[L]).
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Setup∗3(1
λ, 1|u|,x∗): Sample z′ $← Zmq . Compute and set the remaining components as in Setup∗2.

Enc∗4(mpk,msk, st): Sample z $← Zmq . Compute and set the remaining components as in Enc∗3.

Setup∗4(1
λ, 1|u|,x∗): Same as Setup∗3, except that B is generated by running TrapGen algorithm.

Enc∗5(mpk,msk, st): Sample cj uniformly. If there is no pre-challenge 1-key, it samples β1 randomly from Zmq .
Otherwise, compute β1 as in Enc∗4.
Enc∗6(mpk,msk, st): Same as Enc∗5, except that it additionally samples z,Ri uniformly from corresponding
distributions and computes Ψ ′ as in Enc∗5.

Hybrids.

H0 : The real experiment.
H1 : The real game algorithms Setup and Enc are replaced with Setup∗1 and Enc∗1. The challenge attribute x∗

is used to generate the master public key and master secret key. Additionally, P is set as B ·J∗. By applying
the Leftover Hash Lemma, H0 and H1 are statistically close.
H2 : The real game algorithms KeyGen is replaced with KeyGen∗1, where, instead of using the trapdoor TB

of matrix B, the secret keys for a 0-key queries are sampled using the public trapdoor TG, along with the
trapdoor information generated in Setup∗1, and the secret key for the 1-key query for the function (f,v) is

computed as Kf :=

[
J− (Wf̂ −Rf ) ·K2

K2

]
.

H3 : Setup∗1 is replaced by Setup∗2, where B is directly sampled uniformly from Zn×mq instead of being
generated by TrapGen algorithm.
H4 : Enc∗1 is replaced by Enc∗2, where β1 is computed using ũ instead of u∗ if there is no 1-key queried before.
H5 : Enc∗2 is replaced by Enc∗3, where β1 is computed from J∗ if there is no 1-key queried before, or otherwise
from the 1-key computed by KeyGen∗1.
H6 : Setup∗2 is replaced by Setup∗3, where z′ is chosen from uniformly random and public matrices {Bj} are
derived from it.
H7 : Enc∗3 is replaced by Enc∗4, where z is chosen from uniformly random and thus the ciphertext elements
(β0, β1, Ψ

′, {cj}j∈[L]) are derived from it.
H8 : Setup∗3 and KeyGen∗1 are replaced by Setup∗4 and KeyGen∗, respectively. Specifically, B is generated using
TrapGen algorithm and all secret keys are computed by SampleLeft using TB.
H9 : Enc∗4 is replaced by Enc∗5, where {cj}j∈[L] and β1 (in the case that there is no pre-challenge 1-key query)
are chosen from uniformly random.
H10 : Setup∗4 is replaced by Setup∗, where all public matrices {Bj},P are sampled uniformly without relying
on the information of the challenge attribute x∗. Additionally, Enc∗5 is switched to Enc∗6 to handle the sampling
of z,Ri,Wj , along with the computation of Ψ ′, ensuring consistency with with H9.
H11 : Enc∗6 is replaced by Enc∗, where the FHE encryption (Ψ, Ψ ′) of x∗ are directly chosen from uniformly
random. Note that this hybrid is identical to the ideal experiment, specifically, no direct information about
the challenge (x∗,u∗) is provided to the simulator, except for the inner-product value that the adversary
may obtain if a 1-key query is made prior to the challenge.

Next, we will prove that each pair of adjacent hybrid arguments is indistinguishable.

Lemma C.1 H0 and H1 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.1 and is therefore omitted for brevity.

Lemma C.2 H1 and H2 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.2 and is therefore omitted for brevity.

Lemma C.3 H2 and H3 are statistically indistinguishable.
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Proof. The only difference between the two hybrids lies in how the public matrix B is generated. In H2, B is
generated using TrapGen algorithm, and is therefore distributed statistically close to uniform, as it is when
sampled directly in H3. ⊓⊔

⊓⊔

Lemma C.4 H3 and H4 are computationally indistinguishable assuming the security of ALS IPFE scheme.

Proof. The difference between H3 and H4 lies in how the ciphertext component β1 is computed when the
adversary has queried for 1-key before the challenge query. We reduce the distinguishing advantage of H4

and H3 to the security of ALS IPFE scheme.
On receiving the public key (AALS,DALS) ∈ Zm×n

q × Zt×nq from the ALS challenger (as described in
Appendix D.1), we simulate the view of the distinguisher for H3 versus H4 as follows.

– Setup: Set B := A⊤
ALS. Sample J∗ ← DZm×t,

√
ρ2+s2

and set P := D⊤
ALS +BJ∗. Compute {Bj}j∈[L] as in

Setup∗2. Return the mpk = (B, {Bj}j∈[L],P) to the distinguisher.

– KeyGen: For key query (f,v),

• For the case where f(x∗) ̸= 0, generate the secret keys as in H3.

• For the case where f(x∗) = 0, set v′ := v and submit the key query v′ to the ALS challenger, receiving

iskv′ in response. Then, compute and return the skf,v as
[
iskv′

0

]
+

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]
· v.

– Enc: Set u′
0 = u∗. If no pre-challenge key query has been made, set u′

1 = u∗. Otherwise, compute ũ such
that ⟨ũ,v⟩ = ⟨u∗,v⟩ for the 1-key query (f,v) and set u′

1 = ũ. Send (u′
0,u

′
1) to the ALS challenger.

Upon receiving (ict0, ict1), compute as follows:

β0 := ict0, c∗j := (W∗
j )

⊤β0,
β1 := ict1 + ReRand(J∗, ct0, σALS, τ) + e1 for e1 ← DZt,sD ,

Ψi :=

(
B
z⊤

)
Ri + x∗iG for i ∈ [ℓ], where z := β0.

Return ct∗ := (Ψ, β0, β1, {cj}j∈[L]).

Notice that all the queries submitted to the ALS challenger are admissible, as ensured by the setting of
challenge vectors. For ict0 = AALS · s + eALS,0, we know that ReRand(J∗, ict0, σALS, τ) = (BJ∗)⊤ · s + e′

for τ > s1(J
∗), where e′

s
≈ DZt,2σALSτ by the property of ReRand (Lemma D.1). Therefore, we obtain the

following result:

β1 = DALS · s+ eALS,1 +
⌊ q
Y

⌋
· u′

b + (BJ∗)⊤ · s+ e′ + e1

= P⊤ · s+ eALS,1 + e′ + e1 +
⌊ q
Y

⌋
· u′

b

s
≈ P⊤ · s+ e1 +

⌊ q
Y

⌋
· u′

b.

The last
s
≈ relies on the noise flooding with suitable parameter choices. Hence, we successfully simulate the

hybird H3 or H4 depending on the challenge bit chosen by the ALS challenger. ⊓⊔
⊓⊔

Lemma C.5 H4 and H5 are statistically indistinguishable.

Proof. The difference between the two hybrids is the way how the ciphertext element β1 is generated.
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1. If there is no pre-challenge 1-key query, then

β1 = J∗⊤ · β0 + e1 + u∗ (in H5)

= BJ∗⊤ · s+ J∗⊤ · e0 + e1 + u∗

= P⊤ · s+ J∗⊤ · e0 + e1 + u∗

s
≈ P⊤ · s+ e1 + u∗ (in H4)

In other words, β1 in H4 and H5 are statistically close, as ensured by noise flooding (Lemma A.3) and
our parameters setting .

2. If the adversary has already queried a 1-key for (f,v), then

β1 = K⊤
f ·
(
β0
cf̂

)
+ e1 + ũ (in H5)

Notice that
c⊤
f̂
:= [c⊤1 | . . . |c⊤L ] ·Hf̂ ,ψ′ − Ψf
= β⊤

0 [W1 | · · · |WL] ·Hf̂ ,ψ′ − Ψf
= β⊤

0 Wf̂ − z⊤Rf

= β⊤
0 (Wf̂ −Rf ).

Hence, we have

β1 =

[
J∗ − (Wf̂ −Rf ) ·K2

K2

]⊤(
β0

(Wf̂ −Rf )
⊤β0

)
+ e1 + ũ (in H5)

= J∗⊤β0 + e1 + ũ
s
≈ P⊤ · s+ e1 + ũ (in H4)

Similar to the first case, the resulting β1 in H5 is statistically close to that in H4 due to noise flooding.

⊓⊔
⊓⊔

Lemma C.6 H5 and H6 are computationally indistinguishable under the LWE assumption.

Proof. We show how the LWE assumption can be broken given an adversary that distinguishes between
H4 and H5. Given the LWE challenge sample (B, z′) where z′ is either pseduorandom or truly random, run
Setup∗2, KeyGen

∗
1 and Enc∗3 accordingly. Note that if z′ = B⊤s + e′0, then we simulate the transcript of H4,

otherwise that of H5 if z′ is random. ⊓⊔
⊓⊔

Lemma C.7 H6 and H7 are computationally indistinguishable under the LWE assumption.

The proof of this lemma is similar to the proof of Lemma C.6 and is therefore omitted for brevity.

Lemma C.8 H7 and H8 are are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma C.2 and C.3, and is therefore omitted for brevity.

Lemma C.9 H8 and H9 are are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.6 and B.9, and is therefore omitted for brevity.

Lemma C.10 H9 and H10 are are statistically indistinguishable.
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The proof of this lemma is similar to the proof of Lemma C.1 and is therefore omitted for brevity.

Lemma C.11 H10 and H11 are are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.10 and is therefore omitted for brevity.
⊓⊔
⊓⊔

C.2 Supplementary Material of (Q, poly) P-IPFE Scheme in Section 4.2

Parameter Setting. We choose the parameters so that correctness and security of the scheme are satisfied.
We must satisfy the following constraints.

1. For the security and correctness of N -ALS scheme, we set nALS, mALS, qALS, σALS, ρALS, αALS as chosen
in the N -ALS scheme as described in Appendix D.2.

2. For correctness, the final magnitude of error obtained must be below pe−1/2.
3. We set s used in SampleLeft (Lemma 2.2) and SampleRight (Lemma 2.3) such that the output matrices

are statistically indistinguishable.
4. We must choose m large enough for the algorithm TrapGen (Lemma 2.1).
5. We must choose sB such that LWEq,n,sB assumption holds.
6. We set s and ρ to meet the requirements of two-stage sampling techniques (Theorem 2.1).
7. We must choose the parameter sD used to sample the error e1,k in βk large enough so that the following

equations are satisfied for k ∈ [N ]:

e1,k
s
≈ J⊤

k · e0 + e1,k,

where e0 ← DZm,sB , Jk ← DZm×m,s for k ∈ {δ1, . . . , δQ} and Jk
s
≈ DZm×m,

√
ρ2+s2

for k ∈ [N ]\{δ1, . . . , δQ}.
8. We require τ > s1(J

∗
î
) in order to rely on ReRand algorithm for security proof. According to Lemma A.1,

s1(J
∗
î
) is bounded by 1/

√
2π ·

√
ρ2 + s2 · (

√
t+
√
m+

√
λ).

9. We choose N,Q,w to satisfy the requirement for Cover-free Set (Lemma 2.7).

Our parameters may be chosen as: n = poly(λ), m = (n + 1) log q, Q = O(λ), w = Θ(λ), N = O(wλ3),
sB = ω(

√
log n), s = O(Ln log q)O(d̂) · ω(

√
logm), ρ = O(Ln log q)O(d̂) · ω(

√
logm) · λω(1), τ =

√
ρ2 + s2 ·

(
√
t +
√
m +

√
λ), sD = ρ ·m · ω(

√
log n) · λω(1), q = 2

√
w · p2 · sD · (t + 2), where L = ℓ · (n + 1)2 log q2,

d̂ = d ·O(logm log log q).

Security.

Theorem (Restatement of Theorem 4.2) Assuming the hardness of LWE, then the scheme described in
Section 4.2 is a P-IPFE for the predicate class F , message vector space U and key vector space V, achieving
(Q, poly)-sel-SIM security that allows up to Q 1-key pre-challenge query (and any polynomial number of
0-keys), according to Definition 2.

Proof. We define a PPT simulator Sim and prove that for any PPT adversary A, the ideal experiment with
respect to Sim is computationally indistinguishable (under the LWE assumption) from the output of the real
experiment.

Simulator. QSim∗(1λ, 1|x|, 1|u|):

1. QSetup∗(1λ, 1|x|, 1|u|): It generates all public parameters as in the real QSetup, except that it runs

(B′,TB′) ← TrapGen(1n+1, 1m, q), then parse B′ =

[
B
z⊤

]
, where B ∈ Zn×mq , and sets B be the public

matrix in mpk. Then, it initializes st := ∅.
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2. QKeyGen∗pre(st, f,v): It generates all secret keys as in the real QKeyGen algorithm and simultaneously
maintains st that contains {fî,vî, skî = (∆î,v

′
î
,Kî · v′

î
)}î∈[Q′] for fî such that fî(x

∗) = 0.

3. QEnc∗(st): It takes as input st that contains dpre
î

= ⟨u∗,vpre

î
⟩ if the adversary has queried for (fî,vî) such

that fî(x
∗) = 0 before the challenge query, then constructs the challenge ciphertext as follows.

(a) It samples β0, {cj}j∈[L] independently and uniformly from Zmq .

(b) Samples {Ψi, Ψ ′
i}i∈[ℓ] uniformly from Z(n+1)×(n+1) log q

q .

(c) If st = ∅, i.e., the adversary did not make any 1-key in the pre-challenge phase, it computes {β1,k}k∈[N ]

as follows:

– Choose Q random subset (∆1, . . . ,∆Q) with size w according sampler SamplerSet(N,Q,w), sam-
ple rî

$← Zp for î ∈ [Q].
– Generate random shares {r′k}k∈[N ] over Zp under the following constraints: for î ∈ [Q],

∑
k∈∆î

r′k =

rî. This can be done efficiently by the cover-freeness of the subsets, using the following standard
procedure.
Let δî be a unique index that appears only in ∆î but not in the other subsets. To generate the
random shares {r′k}k∈[N ], we first sample r′k randomly for all k ∈ [N ]\{δî}î∈[Q], and then fix
r′δî

= rî −
∑
k∈∆î\{δî}

r′k for î ∈ [Q].

– For k ∈ [N ], set u′
k = ( 1

w ũ
⊤,−r′k, 1)⊤ ∈ Zt+2

p for ũ $← Ztp, sample β̃k $← Zmq , e1,k ← DZm,sD .
– Set β1,k = β̃k + e1,k + u′

k mod q.

(d) Otherwise, if the adversary has submitted Q′ 1-key queries in the pre-challenge phase, then up-
date st = st ∥ {dpre

î
= ⟨u∗,vpre

î
⟩}î∈[Q′], then QEnc∗ generates {β1,k}k∈[N ] to satisfy the decryption

consistency as follows.

– For î ∈ [Q′], compute Ψfî := HEvalfî(Ψ). Let f̂î denote the circuit computing Ψ 7→ Ψfî , compute
Hf̂î,Ψ

′ := MEvalFX({Bj}j∈[L], f̂î, Ψ
′), c⊤

f̂î
:= [c⊤1 | . . . |c⊤L ] ·Hf̂î,Ψ

′ − Ψfî .

– Compute u ∈ Ztp satisfying ⟨ũ,vpre

î
⟩ = dpre

î
mod p for î ∈ [Q′].

– Sample Q−Q′ random subsets of cardinality w using SamplerSet(N,Q,w), i.e. {∆î}î∈[Q′+1,Q]. By
our setting of parameters, the subsets {∆î}î∈[Q] are cover-free with an overwhelming probability.

– For î ∈ [Q′ + 1, Q], sample rî
$← Zp. Generate random shares {r′k}k∈[N ] over Zp under the

constraints that
∑
k∈∆î

r′k = rî holds for î ∈ [Q], which also can be computed by the cover-
freeness.

– For k ∈ [N ], set u′
k = ( 1

w ũ
⊤,−r′k, 1)⊤ ∈ Zt+2

p .

– Sample random vectors {β̃k}k∈[N ] condition on the following equations:

∑
k∈∆î

β̃k = K⊤
î
·
(
β0
cf̂î

)
for î ∈ [Q′].

– Sample e1,k ← DZm,sD for k ∈ [N ], Set β1,k = β̃k + e1,k + u′
k mod q.

(e) It outputs the simulated ciphertext

ct∗ := (Ψ, Ψ ′, β0, {β1,k}k∈[N ], {cj}j∈[L]).

4. QKeyGen∗post(st, f,v) generates as in the real QKeyGen algorithm for all 0-key queries. Otherwise, assume
that the current state contains Q′(< Q) tuples of fî,vî, skî = (∆î,v

′
î
,Kî · v′

î
) for fî, for a 1-key query

(fîp ,vîp), the simulator computes as follows.

– Set ∆ = ∆îp
for which is chosen during QEnc∗ algorithm.
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– Compute P∆ =
∑
k∈∆Pk and β̃∆ =

∑
k∈∆ β̃k, where {β̃k}k∈[N ] are chosen during QEnc∗.

– Compute Ψf := HEvalf (Ψ), Hf̂ and Hf̂ ,ψ′ , and use these results to compute Bf̂ and cf̂ , respectively.

– Sample Jîp ← DZm×m,s, use TB′ to sample

[
Kîp,1

Kîp,2

]
by SampleLeft such that

[
B Bf̂îp

z⊤ cf̂îp

]
·

[
Kîp,1

Kîp,2

]
=

[
P∆

β̃⊤
∆

]
−
[
B
z⊤

]
· Jîp .

– Set Kfîp
=

[
Jîp +Kî,1

Kî,2

]
.

– Given dpost = ⟨u∗,v⟩, compute θ = dpost − ⟨ũ,v⟩ and set v′ = (v, 1, θ + r) for r := rî.

– Output skf,v := (∆,v′,Kf · v′).

Auxiliary Algorithms.

QSetup∗1(1
λ, 1|u|,x∗): Do the following:

1. Generate (B,TB)← TrapGen(1n, 1m, q).
2. Sample s $← Znq , e← DZm,sB , compute z⊤ := s⊤B+ e⊤0 .
3. Sample Ri

$← {0, 1}m×m for i ∈ [ℓ] and compute

Ψ ′
i :=

(
B
z⊤

)
Ri + x∗iG.

Let ψ′ = (ψ′
1, . . . , ψ

′
L) denote the bit-representation of Ψ := [Ψ1| · · · |Ψℓ].

4. Set Bj = B ·Wj − ψj ·G for j ∈ [L], where Wj
$← {−1, 1}m×m for j ∈ [L].

5. Choose Q random subsets (∆1, . . . ,∆Q) with cardinality w according sampler SamplerSet(N,Q,w). By
cover-freeness, for every î ∈ [Q], there exists a unique index δî that only appears in ALSî but not the
other subsets.

6. Sample J∗
î
← DZm×m,

√
ρ2+s2

for î ∈ [Q], and sample Pk
$← Zn×mq for k ∈ [N ] under the constraint∑

k∈∆î
Pk = B · J∗

î
. Denote

∑
k∈∆î

Pk as P∆î
.

7. Sample rî
$← Zp for î ∈ [Q]. Generate random shares {r′k}k∈[N ] over Zp under the constraints that∑

k∈∆î
r′k = rî holds for î ∈ [Q], which also can be computed by the cover-freeness.

8. Output the public and master secret keys.

mpk := (B, {Bj}j∈[L], {Pk}k∈[N ]),
msk := (TB, {Ri}i∈[ℓ], {Wj}j∈[L], {J∗

î
, rî}î∈[Q], s).

QEnc∗1(mpk,msk, st,u∗): Do the following:

1. Set β0 := z.
2. For j ∈ [L], compute cj := W⊤

j β0, where Wj are the matrices in the msk generated by Setup∗1.
3. {β1,k}k∈[N ] is computed as real encryption algorithm, except that the secret randomness s is set the
one chosen in Setup∗1.
4. Output the ciphertext ct∗ := (Ψ, β0, {β1,k}k∈[N ], {cj}j∈[L]).
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QKeyGen∗1(msk, st, f,v): This algorithm is stateful that keeps track of how many keys have been queried
before. Particularly, it does the following:

1. Let f̂ denote the circuit computing Ψ 7→ Ψf , compute the homomorphic public key corresponding to
circuit f̂ as

Hf̂
:= MEvalF({Bj}j∈[L], f̂),

Bf̂
:= [B1 | · · · | BL] ·Hf̂

= [B1 + ψ′
1G | · · · | BL + ψ′

LG] ·Hf̂ ,ψ′ − Ψ
′
f

= B[W1 | · · · |WL] ·Hf̂ ,ψ′ − Ψ
′
f

= B(Wf̂ −Rf )− f(x∗)G

where Wf̂
:= [W1 | · · · |WL] ·Hf̂ ,ψ′ , Ψ ′

f =

(
B
z′⊤

)
Rf + f(x∗)G.

2. For 0-key query (f,v) such that f(x∗) ̸= 0, firstly sample a randomness r $← Zp and a fresh random
subset ∆ ⊆ [N ] with cardinality w according sampler SamplerSet(N,Q,w), then generate

Kf ← SampleRight(B,G,Wf̂ −Rf ,
∑
k∈∆Pk, s),

satisfying [B|Bf̂ ] ·Kf = P∆ =
∑
k∈∆Pk.

3. For 1-key query (fî,vî) such that fî(x
∗) = 0, the algorithm does the following. We use index î ∈ [Q]

to denote the number of overall 1-key queries currently.
– Set ∆ := ∆î and r := rî. Notice that ∆î, rî and J∗

î
are all sampled during the QSetup∗1.

– Sample Kî,2 ← DZm×(t+2),s, and set

Kfî
:=

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

]
.

Then, by the construction, we have

[B|Bf̂î
] ·Kf = [B|B(Wf̂î

−Rfî
)] ·Kf = BJ∗

î
=
∑
k∈∆

Pk.

4. Set v′ = (v⊤, 1, r)⊤.
5. Return skf,v = (∆,v′,Kf · v′) and update st := st ∪ (fî,vî, skî = (∆î,v

′
î
,Kî · v′

î
)) if f(x∗) = 0.

QKeyGen∗2(msk, st, f,v): Same as QKeyGen∗1, except for the way of generating v′ for post-challenge 1-key
queries. Note that in the post-challenge phase, the challenger has access to dpost = ⟨u∗,v⟩ for key query (f,v)
where f(x∗) = 0, and {dpre

î
= ⟨u∗,vî⟩}î∈[Q′] for Q′ pre-challenge key queries. Specifically, if the adversary

made no 1-key query in the pre-challenge phase, i.e., Q′ = 0, then the challenger samples a random ũ $← Ztp.
Otherwise, the challenger computes ũ ∈ Ztp satisfying ⟨ũ,vî⟩ mod p for all î ∈ [Q′]. Next, the challenger
computes θ = dpost − ⟨ũ,v⟩ mod p and set v′ = (v, 1, θ + r) for r := rî.
QSetup∗2(1

λ, 1|u|,x∗): Same as QSetup∗1, except that B is sampled uniformly from Zn×mq .

QEnc∗2(mpk,msk, st,u∗): Same as in QEnc∗1, except that each u′
k is set as ( 1

w ũ
⊤,−r′k, 1

w )
⊤ ∈ Zt+2

p , where r′k
is sampled during QSetup∗2 and ũ is computed depending on whether there are pre-challenge 1-key queries.
Assume that the adversary has made Q′ 1-key queries before the challenge phase, then the challenger samples
ũ $← Ztp if Q′ = 0, otherwise the challenger computes ũ such that ⟨ũ,vî⟩ = dpre

î
mod p for î ∈ [Q′].

QSetup∗3(1
λ, 1|u|,x∗): Same as QSetup∗2, except that {Pk}k∈[N ] are chosen as follows.
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1. Sample J∗
î
← DZm×m,

√
ρ2+s2

for î ∈ [Q], as in QSetup∗2.

2. Sample Jk ← DZm×m,
√
ρ2+s2

for k ∈ [N ]\{δ1, . . . , δQ} and set Jδî = J∗
î
−
∑
k∈∆∗

i \{δî}
Jk for î ∈ [Q],

then we have J∗
î
=
∑
k∈∆î

Jk.

3. Set Pk = B · Jk for k ∈ [N ].

QEnc∗3(mpk,msk, st): Same as QEnc∗2, except the way of generating β1,k. Specifically, the challenge computes
β1,k = J⊤

k · β0 + e1,k + u′
k mod q for e1,k ← DZt+2,sD and u′

k chosen as in QEnc∗2.
QSetup∗4(1

λ, 1|u|,x∗): Same as QSetup∗3, except that the challenger samples z′ $← Zmq .
QEnc∗4(mpk,msk, st): Same as QEnc∗3, except that the challenger samples z $← Zmq .
QSetup∗5(1

λ, 1|u|,x∗): Same as QSetup∗4, except for generating B and z as follows:

1. Generate (B′,TB′)← TrapGen(1n+1, 1m, q), then parse B′ as
[
B
z⊤

]
.

2. Define β̃k = J⊤
k · z for k ∈ [N ].

3. Set B as the public matrix in mpk.

4. Compute remaining elements as in QSetup∗4. Additionally, add {β̃k}k∈[N ] into msk.

QEnc∗5(mpk,msk, st): Same as QEnc∗4, except that β1,k is computed as β̃k + e1,k + u′
k mod q.

QSetup∗6(1
λ, 1|u|,x∗): Same as QSetup∗5, except for generating Pk and β̃k as follows:

1. Sample Pk randomly from Zm×n
q under the constraint that

∑
k∈∆î

Pk = B·J∗
î
, which is thus distributed

exactly the same as in QPE.Setup∗1.

2. Sample β̃k randomly from Zmq for under the constraint that
∑
k∈∆î

β̃k = J∗
î
· z, denote

∑
k∈∆î

β̃k as

β̃∆î
.

It is important to note that the generation of {Jk}k∈[N ] is no longer required in the QSetup∗6 algorithm.
QKeyGen∗3(msk, st, f,v): Do the following:

1. For 0-key query, generate and return the key skf,v as in QKeyGen∗2.

2. For 1-key query, let fî be the î-th 1-key query, set v′
î

and ∆ = ∆î as in QKeyGen∗2.

– Sample Jî ← DZm×m,ρ. Use TB′ to sample
[
Kî,1

Kî,2

]
by SampleLeft such that[

B Bf̂

z⊤ cf̂

]
·
[
Kî,1

Kî,2

]
= −

[
B
z⊤

]
· Jî +

[
P∆

β̃⊤
∆

]
.

– Set Kf =

[
Jî +Kî,1

Kî,2

]
.

– Return skf,v := (∆,v′,Kf · v′).

QSetup∗7(1
λ, 1|u|, 1|x|): Same as QSetup∗6, except that sample {Bj} and {Pk} from random as in the normal

QPE.Setup, as well as sample β̃k $← Zmq for k ∈ [N ].
QEnc∗6(mpk,msk, st): Same as QEnc∗5, except that sample {cj}j∈[L] and Ψ, Ψ ′ randomly.

Hybrids.

H0 : The real experiment.
H1 : The real game algorithms QSetup and QEnc are replaced with QSetup∗1 and QEnc∗1, which use the
knowledge of x∗ to generate the public parameters, the master public/secret keys, and additionally samples
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random Pk under the constrain
∑
k∈ALSî

Pk = B ·J∗
î
. H0 and H1 are statistically close by an application of

the Leftover Hash Lemma.
H2 : The real game algorithm QKeyGen is replaced with QKeyGen∗1 where instead of using the trapdoor
TB, secret keys for a 0-key queries are sampled using the public trapdoor TG along with the trapdoor
information generated in QSetup∗1, and the secret key for the î-th 1-key query for function (fî,vî) is generated

as

(
∆î,v

′
î
= (v⊤

î
, 1, rî)

⊤,

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

]
· v′

î

)
.

H3 : QKeyGen∗1 is replaced with QKeyGen∗2, in which the randomness component encoded in each v′ is
computed differently.
H4 : QSetup∗1 is replaced by QSetup∗2, in which B is sampled randomly.
H5 : QEnc∗1 is replaced by QEnc∗2, in which the message vector u′

k is computed using randomness values
{rk} sampled during QSetup∗2, along with additional information. Note that the challenger computes ũ in
the same manner as in QKeyGen∗2. Therefore, the computation of ũ can be viewed as being transferred from
QKeyGen∗2 to QEnc∗2, following the same generation approach.
H6 : QSetup∗2 is replaced by QSetup∗3, in which the public matrices {Pk} are generated by first sampling
matrices Jk from Gaussian distributions, then setting Pk = B · Jk.
H7 : QEnc∗2 is replaced by QEnc∗3, in which β1,k is computed using β0 and Jk.
H8 : QSetup∗3 is replaced by QSetup∗4, in which z′ is chosen from uniformly random and thus public matrices
{Bj}j∈[L] are derived from it.
H9 : QEnc∗3 is replaced by QEnc∗4, in which z is chosen from uniformly random and thus ciphertext elements
(β0, {β1,k}k∈[N ], Ψ

′, {cj}j∈[L]) are derived from it.
H10 : QSetup∗4 and QEnc∗4 are replaced by QSetup∗5 and QEnc∗5. In QSetup∗5, the TrapGen algorithm outputs

the public matrix B′ =

[
B
z⊤

]
together with TB′ , the vector z is set as last row of output matrix B′ from

TrapGen algorithm instead of sampling uniformly and the vectors {β̃k}k∈[N ] are added into the master secret
key. QEnc∗5 is almost the same as the QEnc∗4 except that β1,k is computed using β̃k.
H11 : QSetup∗5 is replaced by QSetup∗6, in which Pk and β̃k are instead sampled randomly under specific
conditions.
H12 : QKeyGen∗2 is replaced with QKeyGen∗3, in which the response to 1-key query is generated using the
trapdoor TB′ such that [

B Bf̂

z⊤ cf̂

]
·
[
P∆

β̃⊤
∆

]
−
[
B
z⊤

]
· Jî.

H13 : QSetup∗6 and QEnc∗5 are replaced by QSetup∗7 and QEnc∗6. In particular, the public matrices {Bj}, {Pk}
are generated as the real world, and {β̃k}k∈[N ] are sampled uniformly at random. Also the ciphertext com-
ponents {cj}j∈[L] and Ψ, Ψ ′ are sampled uniformly.
H14 : The ideal experiment.

Next, we will prove that each pair of adjacent hybrid arguments is indistinguishable.

Lemma C.12 H0 and H1 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.11 and is therefore omitted for brevity.

Lemma C.13 H1 and H2 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.12 and is therefore omitted for brevity.

Lemma C.14 H2 and H3 are equivalent.

Proof. The only difference of H2 and H3 lies in how the vector v′ is set for post-challenge 1-key queries.
Specifically, we set vî as (v⊤

î
, 1, rî) in H2, and as (v⊤

î
, 1, θî + rî) in H3. Since each rî is chosen as random
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over Zp and θî is computed independently for î ∈ [Q′], the resulting θî + rî) is still distributed as uniformly
random in Zp. Therefore, the distribution of v′ in two hybrids are identically distributed. Furthermore, notice
that each message vector u′

k is of the form ( 1
wu

∗⊤, 0, 0), the decryption outputs stay consistent. Thus, we
have H2 ≡ H3. ⊓⊔

⊓⊔

Lemma C.15 H3 and H4 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma C.3 and is therefore omitted for brevity.

Lemma C.16 H4 and H5 are computationally indistinguishable assuming the security of N -ALS scheme.

Proof. The difference between H4 and H5 lies in how the message vector u′
k is computed. We reduce the

distinguishing advantage of H4 and H5 to the security of N -ALS scheme.
On receiving the public key (AALS, {DALS,k}k∈[N ]) ∈ Zm×n

q × Z(t+2)×n
q from the N -ALS challenger (as

described in Appendix D.2), we simulate the view of the distinguisher for H4 versus H5 as follows.

– Setup(1λ, 1ℓ, 1d, 1Q,x∗):

1. Set B := A⊤
ALS.

2. Sample s′ $← Znq , e′0 ← DZm,sB , compute z′⊤ := s′⊤B+ e′⊤0 .

3. Sample Ri
$← {0, 1}m×m for i ∈ [ℓ] and compute Ψ ′

i :=

(
B
z′⊤

)
Ri + x∗iG. Let ψ′

1, . . . , ψ
′
L denote the

bit-representation of Ψ ′ := [Ψ ′
1| · · · |Ψ ′

ℓ].

4. Set Bj = B ·Wj − ψ′
j ·G for j ∈ [L], where Wj

$← {−1, 1}m×m.

5. Sample J∗
î
← DZm×t,

√
ρ2+s2

for î ∈ [Q].

6. Choose Q random subsets (∆1, . . . ,∆Q) with cardinality w according sampler SamplerSet(N,Q,w).
By cover-freeness, for every î ∈ [Q], there exists a unique index δî that only appears in ∆î but not
the other subsets.

7. For k ∈ {δ1, . . . , δQ}, set Pk := D⊤
ALS,k +BJ∗

î
, otherwise, set Pk := D⊤

ALS,k.

8. Sample rî
$← Zp for î ∈ [Q]. Generate random shares {r′k}k∈[N ] over Zp under the constraints that∑

k∈∆î
r′k = rî holds for î ∈ [Q].

9. Set and return mpk = (B, {Bj}j∈[L], {Pk}k∈[N ]) to the distinguisher.

– OKeyGen(msk, st, f,v): For key query (f,v),

• For the case where f(x∗) ̸= 0, generate the secret keys using TG, as in H4.

• For the case where fî(x
∗) = 0, the challenger sets v′

î
and vALS,̂i,k as follows:

v′
î
=

{
(v⊤
î
, 1, rî)

⊤ for pre-challenge query
(v⊤
î
, 1, θî + rî)

⊤ for post-challenge query

vALS,̂i,k =

{
v′
î

for k ∈ ∆î

0 for k ∈ [N ]\∆î

where rî is chosen during Setup∗, θî is computed as in QKeyGen∗2.

Next, the challenger submits the key query {vALS,̂i,k}k∈[N ] to the N -ALS challenger, receiving iskî
in response. Next, compute

kî :=

[
iskv′

0

]
+

[
J∗
î
− (Wf̂î

−Rfî
) ·Kî,2

Kî,2

]
· v′

î
,
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where Kî,2 ← DZm×(t+2),s. Return skî = (∆î,v
′
î
,kî).

– OEnc(mpk,msk, st,u∗):
• Set uALS,0,k = ( 1

wu
∗⊤, 0, 0)⊤.

• Set uALS,1,k = ( 1
w ũ

⊤,−r′k, 1
w )

⊤, where ũ is chosen as random if the adversary made no 1-key in the
pre-challenge phase, otherwise is computed to satisfy ⟨ũ,vî⟩ = dpre

î
mod p for pre-challenge 1-key

queries î ∈ [Q′].

• Send the challenge query ({uALS,0,k,uALS,1,k}k∈[N ]) to theN -ALS challenger. When receiving (ict0, ict1,k),
compute the challenge ciphertext as follows:

β0 := ict0, cj := W⊤
j β0,

Ψi =

(
B
z⊤

)
Ri + x∗iG, where z := β0,

β1,k =

{
ict1,k + e1,k for k ∈ [N ]\{δ1, . . . , δQ}
ReRand(ict0,J

∗
î
, σALS, τ) + ict1,k + e1,k for k ∈ {δ1, . . . , δQ}

• Return ct∗ := (Ψ, Ψ ′, β0, {β1,k}k∈[N ], {cj}j∈[L]).

We claim that all the queries submitted to the N -ALS challenger are admissible. First, notice that we have∑
k∈[N ]

⟨vALS,̂i,k,uALS,0,k⟩

=
∑
k∈∆î

⟨(v⊤
î
, 1, rî)

⊤, (
1

w
u∗, 0, 0)⟩

=⟨vî,u
∗⟩.

For key queries that transformed from pre-challenge queries, we have∑
k∈[N ]

⟨vALS,̂i,k,uALS,1,k⟩

=
∑
k∈∆î

⟨(v⊤
î
, 1, rî)

⊤, (
1

w
ũ⊤,−r′k,

1

w
)⟩

=(v⊤
î
, 1, rî) · (ũ

⊤,−
∑
k∈∆î

r′k, 1)

=⟨vî, ũ⟩

The last equations is ensured by the choices of r′k, which satisfies
∑
k∈∆î

r′k = rî. Under the constraint for
computing ũ, it holds that ⟨vî, ũ⟩ = ⟨vî,u∗⟩. Similarly, we have the following relationship for queries that
obtained from post-challenge 1-key query.∑

k∈[N ]

⟨vALS,̂i,k,uALS,1,k⟩

=
∑
k∈∆î

⟨(v⊤
î
, 1, θî + rî)

⊤, (
1

w
ũ⊤,−r′k,

1

w
)⟩

=(v⊤
î
, 1, θî + rî) · (ũ

⊤,−
∑
k∈∆î

r′k, 1)

=⟨vî, ũ⟩+ θî = ⟨vî,u
∗⟩
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Relying on the setting of θî being as dpost
î
− ⟨vî, ũ⟩ for dpost

î
= ⟨vî,u∗⟩, the last equation thus holds.

In addition, for ict0 = AALS · s + eALS,0, we know that ReRand(J∗
î
, ict0, σALS, τ) = (BJ∗

î
)⊤ · s + e′

î
for

τ > s1(J
∗
î
), where e′

î

s
≈ DZ(t+2),2σALSτ by the property of ReRand (Lemma D.1). Therefore, we obtain the

following result:

β1,δi = DALS,δi · s+ eALS,1,δi + pe−1uALS,b,δi + (BJ∗
î
)⊤ · s+ e′

î
+ e1,δi

= P⊤ · s+ eALS,1,δi + e′
î
+ e1,δi + pe−1uALS,b,δi

s
≈ P⊤ · s+ e1,δi + pe−1uALS,b,δi .

The simulated transcript corresponds to H4 if the N -ALS challenger selects the challenge bit b = 0, and to
H5 if b = 1. Therefore, we successfully simulate either H4 or H5 based on the challenge bit chosen by the
N -ALS challenger. ⊓⊔

⊓⊔

Lemma C.17 H5 and H6 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.13 and is therefore omitted for brevity.

Lemma C.18 H6 and H7 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.14 and is therefore omitted for brevity.

Lemma C.19 H7 and H8 are computationally indistinguishable under the LWE assumption.

Lemma C.20 H8 and H9 are computationally indistinguishable under the LWE assumption.

The proof of Lemma C.19 and C.20 are similar to the proof of Lemma C.6 and are therefore omitted for
brevity.

Lemma C.21 H9 and H10 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.16 and is therefore omitted for brevity.

Lemma C.22 H10 and H11 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.17 and is therefore omitted for brevity.

Lemma C.23 H11 and H12 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.18 and is therefore omitted for brevity.

Lemma C.24 H12 and H13 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.20 and is therefore omitted for brevity.

Lemma C.25 H13 and H14 are statistically indistinguishable.

The proof of this lemma is similar to the proof of Lemma B.22 and is therefore omitted for brevity. ⊓⊔
⊓⊔

D Inner Product Functional Encryption Schemes

In this section, we review IPFE schemes which are required for security proofs of our proposed predicate
IPFE schemes.
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D.1 ALS Inner Product Functional Encryption Scheme [ACGU20]

We adopt the ALS IPFE scheme introduced in [ACGU20], which can be proven secure under the standard
LWE assumption using the noise re-randomization technique during proof. Specifically, we consider the
message vector space U = {1, . . . , U − 1}t and the key vector space V = {1, . . . , V − 1}t for some integer
U,P and dimension t = poly(λ). The inner products are evaluated over Z and belongs to {1, . . . , Y − 1} with
Y = tUV .

Construction 5 (Inner Product Functional Encryption from LWE [ACGU20]).

Setup(1λ) takes as input the security parameter 1λ,

1. Set parameters n,m, σ, ρ, q.

2. Sample A $← Zm×n
q and Z← DZt×m,ρ.

3. Compute D = Z ·A ∈ Zt×nq .

4. Output the public and master secret keys

mpk := (A,D),msk := Z.

KeyGen(msk,v) takes as input msk and key vector v, compute and return skv := zv = Z⊤v.

Enc(mpk,u) takes as input mpk and a message u,

1. Sample s $← Znq , e0 ← DZm,σ, e1 ← DZt,σ.

2. Compute

ct0 := A · s+ e0, ct1 := D · s+ e1 + ⌊ qY ⌋ · u.

3. Output the ciphertext ct := (ct0, ct1).

Dec(sk, ct) takes as input sk and ct,

1. Compute µ′ = v⊤ct1 − z⊤v ct0 mod q.

2. Output µ ∈ {0, . . . , Y + 1} that minimizes |⌊ qY ⌋ · µ− µ
′|.

Parameters Setting. The parameters should satisfy the following constraints aiming for the correctness
and security.

1. The final magnitude of decryption error must be less than q
2Y for the correctness.

2. To ensure the hardness of LWEq,n,α, we require αq ≥ Ω(n).
3. We require τ > s1(Z) in order to rely on ReRand algorithm (Lemma D.1) for security proof. According

to Lemma A.1, s1(Z) is bounded by 1/
√
2π · ρ · (

√
t+
√
m+

√
λ).

4. To ensure large enough entropy, we require ρ > ω(
√
log λ) and m ≥ (2n log q + 2n)/ log(4/3).

The parameters could be chosen as: n = poly(λ), m = 2(n log q), ρ > ω(
√
log λ), τ = 1/

√
2π · ρ · (

√
t +√

m+
√
λ), σ = 2αqτ , q > 2Y t

√
tω(log2 n).

Lemma D.1 (Noise Rerandomization [KY16]) Let q, ℓ,m be positive integers and r a positive real sat-
isfying r > max{ηϵ(Zm), ηϵ(Zℓ)}. Let b ∈ Zmq be arbitrary and x chosen from DZm,r. Then for any V ∈ Zm×ℓ

and positive real σ > s1(V), there exists a PPT algorithm ReRand(V,b+ x, r, σ) that outputs b′ = bV+ x′

where the statistical distance of the discrete Gaussian DZℓ,2rσ and the distribution of x′ is within 8ϵ.

D.2 N-ALS Inner Product Functional Encryption Scheme [WFL19]

We now review the N -ALS IPFE scheme proposed in [WFL19] with the master secret key Zk chosen from
discrete Gaussian, as in [ACGU20]. Specifically, we consider the inner products modulo prime p, the plaintext
and key vectors belong to Ztp.
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Construction 6 (N-ALS Inner Product Functional Encryption from LWE [WFL19]).

Setup(1λ) takes as input the security parameter 1λ,

1. Set parameters n,m, σ, ρ, q = pk for some integer k.

2. Sample A $← Zm×n
q and Zk ← DZt×m,ρ for k ∈ [N ].

3. Compute Dk = Zk ·A ∈ Zt×nq .

4. Output the public and master secret keys

mpk := (A, {Dk}k∈[N ]),msk := {Zk}k∈[N ].

KeyGen(msk,v) takes as input msk and key vector v = (v⊤
1 , . . . ,v

⊤
N ) ∈ ZN ·t

p , compute and return skv :=∑
k∈[N ](Z

⊤
k vi).

Enc(mpk,u) takes as input mpk and a message u = (u⊤
1 , . . . ,u

⊤
N ) ∈ ZN ·t

p ,

1. Sample s $← Znq , e0 ← DZm,σ, e1,k ← DZt,σ.

2. Compute

ct0 := A · s+ e0, ct1,k := D · s+ e1,k + pk−1 · ui for k ∈ [N ].

3. Output the ciphertext ct := (ct0, {ct1,k}k∈[N ]).

Dec(sk, ct) takes as input sk and ct,

1. Compute µ′ =
∑
k∈[N ] v

⊤
i ct1,k − z⊤v ct0 mod q.

2. Output µ ∈ Zp that minimizes |pk−1 · µ− µ′|.

Parameters Setting. The parameters should satisfy the following constraints aiming for the correctness
and security.

1. The final magnitude of decryption error must be less than 1
2p
k−1 for the correctness.

2. To ensure the hardness of LWEq,n,α, we require αq ≥ Ω(n).
3. We require τ > s1(Zk) in order to rely on ReRand algorithm (Lemma D.1) for security proof. According

to Lemma A.1, s1(Zk) is bounded by 1/
√
2π · ρ · (

√
t+
√
m+

√
λ).

4. To ensure large enough entropy, we require ρ > ω(
√
log λ) and m ≥ (2n log q + 2n)/ log(4/3).

The parameters could be chosen as: n = poly(λ), m = O(n log q), ρ > ω(
√
log λ), τ = 1/

√
2π · ρ · (

√
t +√

m+
√
λ), σ = 2αqτ , q = N · p2 · σt(1 + ρm).

E Predicate Encryption with Semi-adaptive security

In this section, we present (Q, poly) semi-adaptively secure predicate encryption scheme, constructed from
(Q, poly)-sel PE scheme introduced in Section 3.2 and the upgrading approach proposed in [BV16]. At a high
level, our construction idea is similar to that in [LLW21], which is also inspired by [BV16].

In the selective security game of a PE scheme, the adversary is asked to submit its challenge attribute
x∗ at the very beginning. The challenger can then encode the information of x∗ into public parameters.
This preparation is commonly used for further reductions and key generations. In the semi-adaptive security
game, however, the adversary is allowed to submit its challenge attribute x∗ after the Setup phase (but
before any secret key queries). Thus, the challenger in the semi-adaptive game must complete Setup without
having access to the challenge attribute information.

As suggested in [BV16, LLW21], one approach is to use a substitute to play the role of the challenge
attribute during the Setup process. More precisely, in the absence of information about x∗, we can still sample
a random string r and use it as a placeholder for the challenge attribute in generating both public parameters
and the challenge ciphertext. To ensure correctness, the secret key for a predicate f is generated for an offset
function fr′ , defined as fr′(x) = f(x⊕r′), rather than for f itself. Specifically, r′ is set as r⊕x∗ for each secret
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key, once the challenge attribute x∗ is available. According to the security definition, the challenger indeed
obtains x∗ before receiving any key queries. As a result, we have fr′(r) = f(r⊕ r∗) = f(r⊕ r⊕x∗) = f(x∗),
ensuring the consistency of predicate function results. Clearly, the secret random offset r is the key for
achieving semi-adaptive security. On the other hand, in the normal scheme, to match offset functions fr for
a random r, ciphertexts should be computed for x ⊕ r accordingly. However, we cannot publish r as part
of public encryption key. Therefore, an encryptor is required to generate ciphertext for all possible r first.
To prevent security leakage, these ciphertext are then encrypted by an outer-layer encryption scheme. In
addition, the corresponding decryption keys for the outer-layer encryption are included in each secret key.

Technically, although we adopt a similar upgrading approach, our semi-adaptively secure bounded col-
lusion PE scheme is more compact than the scheme in [LLW21]. The primary reason is that both the
private attribute (i.e., FHE secret key) and the majority public attribute (i.e., dummy FHE ciphertexts)
have been eliminated in our construction. In particular, these additional attributes needs to be encrypted for
two layers: first by the underlying PE scheme and then by the outer encryption. This results in additional
overhead for both ciphertexts and the corresponding public keys (inclued in the final master public key).
Detail comparisons are provided in Table 2.

|mpk| |ct|

[LLW21]

(O(Q) + ℓ · |hct|) · |Zn×m
q | O(Q)|Zm

q |+ 2ℓ · |hct| · |pke.ct|(1 + |Zm
q |)

+2ℓ · |hct| · |pke.pk| 2O(Q)|hct| · |pke.ct|(1 + |Zm
q |)

+(O(Q) · |hct|+ |hsk|) · |Zn×m
q | 2|hsk| · |Zm

q | · |pke.ct|
+2ℓ(O(Q) · |hct|+ |hsk|) · |pke.pk|

Ours (O(Q) + ℓ · |hct|) · |Zn×m
q |

O(Q)|Zm
q |+ 2ℓ · |hct| · |pke.ct|(1 + |Zm

q |)+2ℓ · |hct| · |pke.pk|

Table 2. Comparison with semi-adaptively Q-collusion resistant PE construction in [LLW21]. We denote the bit-
length of attribute as ℓ, the size of homomorphic encryption ciphertext (for 1-bit) and secret key by |hct| and |hsk|,
respectively. We denote the size of ciphertext and public key of public key encryption scheme by |pke.ct| and |pke.pk|,
respectively. The size of an element in Zn×m

q (resp. Zm
q ) is denoted by |Zn×m

q | (resp. |Zm
q |).

Construction 7 ((Q, poly) semi-adaptively secure PE).

Our construction uses the following building blocks:

– a (Q, poly) selectively secure PE scheme PEsel = (QPE.Setup,QPE.KeyGen,QPE.Enc,QPE.Dec) for
predicate space F , attribute space X and message space M. Specifically, the encryption algorithm
QPE.Enc is decomposed into two parts: QPE.Encmsg(µ; rand) and {QPE.Encattr(xi; rand)}i∈[ℓ], where
rand is the common randomness within two sub-algorithms.

– a semantically secure public key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec).

Setup(1λ, 1ℓ, 1d, 1Q) Given as input the security parameter λ, the attribute length ℓ, the depth of the circuit
family d, and Q as the upper bound of 1-key queries, does the following:

1. Run (mpksel,msksel)← QPE.Setup(1λ, 1ℓ, 1d, 1Q).

2. Run PKE.Gen(1λ) for 2ℓ times to get {(PKE.pki,b,PKE.ski,b)}i∈[ℓ],b∈{0,1}.

3. Sample r $← {0, 1}ℓ.
4. Output mpk = (mpksel, {(PKE.pki,b)}i∈[ℓ],b∈{0,1}) and msk = (msksel, {(PKE.ski,b)}i∈[ℓ],b∈{0,1}, r).

KeyGen(msk, f) Given as input the master secret key msk and a circuit f ∈ F , does the following:

1. Define a function fr(x) := f(x⊕ r).
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2. Generate sksel,f ← QPE.KeyGen(msksel, fr).

3. Return skf := (sksel,f , r, {(PKE.ski,ri)}i∈[ℓ])

Enc(mpk,x, µ) Given as input the master public key, an attribute x ∈ {0, 1}ℓ and a message µ, does the
following:

1. Sample randomness rand and run

ctmsg ← QPE.Encmsg(µ; rand),
{ctattr,i,b ← QPE.Encattr(xi ⊕ b; rand)}i∈[ℓ],b∈{0,1}.

2. Compute {PKE.cti,b ← PKE.Enc(PKE.pki,b, ctattr,i,b)}i∈[ℓ],b∈{0,1}.

3. Return ct = (ctmsg, {PKE.cti,b}i∈[ℓ],b∈{0,1}).

Dec(skf , ct) Given as input a secret key and a ciphertext, does the following:

1. Select {PKE.cti,ri}i∈[ℓ] according to r.

2. Compute ctattr,i,ri ← PKE.Dec(PKE.cti,ri ,PKE.ski,ri).

3. Run QPE.Dec taking input as ctsel = (ctmsg, {ctattr,i,ri}i∈[ℓ]) and sksel,f .

4. Return the output of QPE.Dec.

Correctness. The correctness of the construction 7 follows from the correctness of the underlying PKE
schemes and the designing of each offset functions. Firstly, a bunch of PKE decryption reveals the original
attribute-related ciphertext {ctattr,i,ri}i∈[ℓ] for the attribute x ⊕ r of the underlying selectively secure PE
scheme. This thus allows to reconstruct a complete PE ciphertext ctsel = (ctmsg, {ctattr,i,ri}i∈[ℓ]). Secondly,
by generating secret key for fr that satisfies fr(x⊕ r) := f(x⊕ r⊕ r) = f(x), we can correctly decrypt the
ciphertext by running the decryption of the underlying PE scheme on input ctsel and sksel,f .

Security.

Theorem E.1 Assume that PKE is semantically secure and PEsel is (Q, poly)-sel-SIM secure for the predicate
class F , then the construction 7 is (Q, poly)-sa-SIM secure for the same predicate class F , according to
Definition 2.

The high level proof idea is similar to that of prior schemes [BV16, LLW21]. For conciseness, we outline a
proof sketch below.

Proof (sketch). To construct the simulator Sim, we need to rely on the simulator Simsel = (QSetup∗,QKeyGen∗pre,
QEnc∗,QKeyGen∗post).

Simulator. Sim(1λ, 1|x|):

1. Setup∗(1λ, 1|x|) generates PKE scheme key pairs and samples r as in the real scheme. After receiving
mpksel from the simulator QSetup∗, it sets and returns mpk = (mpksel, {(PKE.pki,b)}i∈[ℓ],b∈{0,1}) Then, it
initializes st := ∅.

2. KeyGen∗pre(st, f) first defines the function fr(x) := f(x ⊕ r) and submits key query fr to QKeyGen∗pre.
Once receiving sksel,f , it sets and returns skf = (sksel,f , r, {(PKE.ski,ri)}i∈[ℓ]), as in the real scheme.
Additionally, it updates st with 1-key queries information.

3. Enc∗(st) first invokes QEnc∗ with the input st. After receiving the challenge ciphertext ct∗sel, it parses
ct∗sel as (ctsel,msg, {ctsel,attr,i}i∈[ℓ]). Next, it sets {ctsel,attr,i,1−ri}i∈[ℓ] as uniformly random from correspond-
ing ciphertext space. Then, it computes {PKE.cti,1−ri ← PKE.Enc(PKE.pki,1−ri , ctsel,attr,i,1−ri)}i∈[ℓ] and
{PKE.cti,ri ← PKE.Enc(PKE.pki,ri , ctsel,attr,i)}i∈[ℓ] as in the real scheme. Finally, it returns ct = (ctmsg,
{PKE.cti,b}i∈[ℓ],b∈{0,1}).

4. QKeyGen∗post(st, f) generates secret keys and maintains st as in the KeyGen∗pre.
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Starting from the real experiment of semi-adaptive security (denoted by H0), we can first replace the
ciphertext components {PKE.cti,1−ri}i∈[ℓ] with the PKE encryptions of random plaintexts. H0

c
≈ H1 then

follows from the semantically security of underlying PKE schemes. Clearly, the distinguishability advantage
between H1 and the ideal experiment is bounded by the security of selectively secure PE scheme. For a
detailed proof, we refer the reader to [BV16]. ⊓⊔

⊓⊔

Furthermore, by applying the similar transformation, our proposed P-IPFE scheme can also be upgraded
to semi-adaptively secure.

Corollary 1. Assuming the hardness of LWE with appropriate parameter choices, there exists a predicate
IPFE scheme with (Q, poly)-sa-SIM security.
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