
Adaptively Secure Fully Homomorphic Message
Authentication Code with Pre-processable

Verification

Jeongsu Kim and Aaram Yun

Ewha Womans University, Korea
jsk2357@gmail.com

aaramyun@ewha.ac.kr

Abstract. There has been remarkable progress in fully homomorphic
encryption, ever since Gentry’s first scheme. In contrast, fully homo-
morphic authentication primitives received relatively less attention, de-
spite existence of some previous constructions. While there exist various
schemes with different functionalities for fully homomorphic encryption,
there are only a few options for fully homomorphic authentication. More-
over, there are even fewer options when considering two of the most im-
portant properties: adaptive security, and pre-processable verification.
To our knowledge, except for some concurrent works, achieving both
properties requires the use of nested construction, which involves ho-
momorphically authenticating a homomorphic authentication tag of a
message, making the scheme costly and complicated.
In this work, we propose a dedicated scheme for (leveled) fully homo-
morphic message authentication code that is adaptively secure and has
pre-processable verification. Leveraging the secrecy of the primitive, we
demonstrate that a slight modification of a selectively secure (leveled)
fully homomorphic signature scheme yields an adaptively secure (leveled)
fully homomorphic message authentication code with pre-processable
verification. Additionally, we introduce a novel notion and generic trans-
form to enhance the security of a homomorphic message authentication
code, which also exploits the secrecy of the primitive.

Keywords: homomorphic message authentication code, homomorphic
authenticator, adaptive security, pre-processable verification

1 Introduction

As cloud computing has made extensive growth over time, the security of data
delegated to cloud servers has become an important issue as well. Followed by
Gentry’s first fully homomorphic encryption scheme, numerous schemes with
different functionalities have been suggested, all of which provides the privacy
of delegated data [20,10,9,19,13]. However, there has been relatively less works
about the authenticity of the evaluation of delegated data. While there already
exist schemes for fully homomorphic message authentication codes (HomMAC),

fully homomorphic authenticated encryption, and fully homomorphic signature,
achieving some important properties has been challenging [17,25,21]. Among
such properties, two of the most important are pre-processable verification and
adaptive security.

Most fully homomorphic authentication schemes have verification algorithms
with complexity proportional to the complexity of homomorphically evaluating
a circuit. Therefore, in order to make use of fully homomorphic authentication,
it is desirable to have pre-processable verification, which allows pre-processing
procedure that only needs a circuit as an input, and the rest of the verification
process is independent of the complexity of the circuit. Unfortunately, apart from
some concurrent works, the only viable options for pre-processable verification
are the variants of the first (leveled) fully homomorphic signature scheme of
Gorbunov, Vaikuntanathan, and Wichs [21].

While it is easier to construct a fully homomorphic authentication scheme
that is adaptively secure, the difficulty comes from achieving pre-processable
verification as well. To our knowledge, aside from certain concurrent works, the
only known way to achieve both properties is to use nested construction. More
specifically, an authentication of a messagem for such functionalities (informally)
consists of a selectively secure homomorphic authentication tag, HomAuth(m),
followed by an authentication of the previous tag, HomAuth(HomAuth(m)) [21].
Homomorphic evaluation of such scheme is much expensive as one should homo-
morphically evaluate homomorphic evaluation of a desired circuit.

1.1 Contribution and Application

Contribution. In this paper, we propose a new way to construct an adap-
tively secure (leveled) fully homomorphic authentication with pre-processable
verification, without relying on the nested construction. Exploiting the secrecy
of HomMAC, we construct a dedicated scheme for (leveled) fully homomorphic
MAC that is adaptively secure and has pre-processable verification, based on
the first (leveled) fully homomorphic signature scheme of Gorbunov, Vaikun-
tanathan, and Wichs [21]. Our scheme is secure against verification queries, and
is composable, allowing one to homomorphically evaluate on already homomor-
phically evaluated authentication tags.

In addition, we allow an adversary to make a forgery associated with a cir-
cuit, some of whose inputs have not yet been determined (note: we use ‘circuit’
and ‘inputs’ for simplicity, but we actually mean ‘labeled program’ and ‘input
labels’). To address such a forgery, we introduce a novel notion called (pseudo-
)ambiguity At a high level, a HomMAC is considered ambiguous when there exist
exponentially many possible candidates for an authentication tag associated with
a circuit with undetermined inputs. We call a HomMAC H is pseudo-ambiguous
when there exists an ambiguous HomMAC H ′ that is indistinguishable from
H. Using ambiguity of HomMAC, we can statistically get rid of the possibility
of an adversary to make a forgery associated with a circuit with undetermined
inputs. Pseudo-ambiguity also provides protection against such forgeries as well.

2

We also provide a novel generic construction that turns any HomMAC into a
pseudo-ambiguous one, using a pseudo-random function.

Application. As an application of our scheme, we may consider secure out-
sourcing of both storage and computation. A client, Alice, can authenticate her
data, send various pieces of data to the server together with authentication tags,
and erase local copies to save local storage. Alice can then ask the server to
compute a function on her data for her, receive the computed value together
with the authentication tag, and verify the correctness of the result.

As our scheme supports pre-processable verification, Alice can pre-process
computationally expensive part of the verification algorithm with respect to a
circuit of her choice. It can be done offline, since there is no communication
needed between Alice and the server. The result of the process is a short secret
key associated with the circuit, where the size of the resulting secret key is in-
dependent of the number of the inputs to the circuit. By storing the resulting
key, Alice can use it in the future to efficiently verify the computation of the
circuit she has chosen. After pre-processing, Alice only needs to be able to com-
pute the rest of verification algorithm, which is independent of the complexity
of evaluating the circuit, and the authentication algorithm.

Due to the adaptive security of our scheme, Alice can send data and its
authentication tag to the server as soon as she gains access to the data. Combined
with pre-processable verification, our scheme is especially useful for delegation
of computation of time-sensitive data, such as statistics of votes or stock indices.
Alice can pre-process the verification during idle periods, and verify delegated
computation very efficiently later.

In addition, as we consider a stronger version of the security of HomMAC,
as SUF-CMA is to UF-CMA, we can use our scheme to construct a (leveled)
fully homomorphic authenticated encryption in encrypt-then-authenticate man-
ner [25]. Moreover, using our scheme provides tighter security than the first
(leveled) fully homomorphic authenticated encryption scheme of Kim and Yun
because they used selectively secure (leveled) fully homomorphic MAC to deal
with an adaptive adversary [25].

1.2 Related Works

Security Notion of Fully Homomorphic Authentications. Catalano, Fiore,
and Nizzardo suggested a security notion for fully homomorphic signatures where
an adversary can create a forgery associated to a circuit, some of whose inputs
have not yet been determined [11]. Kim and Yun adopted this notion to homo-
morphic authenticated encryption and established the redundancy of a verifica-
tion query in symmetric homomorphic primitives [25].

The First Schemes for Fully Homomorphic Authentication Primitives
and Their Variants. Gennaro and Wichs proposed the first fully homomorphic
MAC scheme using fully homomorphic encryption [17]. However, their scheme

3

was only secure against adversaries that cannot make verification queries, and
did not support pre-processable verification. Later, Gorbunov, Vaikuntanathan,
and Wichs introduced the first (leveled) fully homomorphic signature scheme
with pre-processable verification. They have started with a selectively secure
scheme, and then generically converted such a scheme into an adaptively secure
one. The generic transform resembles chameleon hashing technique, and the
resultant signature (informally) consists of a selectively secure homomorphic
signature HomSign(m) followed by a homomorphic signature of the previous
signature HomSign(HomSign(m)).

Since the introduction of the first (leveled) fully homomorphic signature
scheme, a few variants have been proposed. Wang, Wang, Li, and Gao proposed
an identity-based (leveled) fully homomorphic signature scheme using trapdoor
delegation technique of Micciancio and Peikert [33,28]. Their base scheme was
selectively secure, and provided strong unforgeability. Boyen, Fan, and Shi sug-
gested an adaptively secure (leveled) fully homomorphic signature scheme, but
their signature was not compact because its size depended on the number of the
inputs of the evaluated circuit [7]. There have been other adaptively secure vari-
ants, but most of them could not preserve pre-processable verification [27,32,34]

Using the encrypt-then-authenticate paradigm, a well-known nested con-
struction, Kim and Yun proposed the first (leveled) fully homomorphic authenti-
cated encryption scheme [25]. They have presented how to generically construct
a (leveled) fully homomorphic authenticated encryption using an adaptively se-
cure, fully homomorphic encryption and a selectively secure (leveled) fully ho-
momorphic MAC. Their scheme provided pre-processable verification as well.

Homomorphic Signatures from Functional Commitments. In recent
years, there have been significant improvements in designing fully homomor-
phic signatures from functional commitments. Catalano, Fiore, and Tucker pro-
posed a multi-input homomorphic signature for constant-depth circuits based on
an additive-homomorphic functional commitment [12]. Balbás, Catalano, Fiore,
and Lai introduced the chainable functional commitment and proposed a homo-
morphic signature for circuits with polynomial width and depth based on it [6].
Wee and Wu further advanced this approach, constructing a homomorphic signa-
ture for circuits with polynomial width (and potentially unbounded depth) [35].
While these remarkable works advance the field, our focus lies in (leveled) fully
homomorphic authentications, which allow homomorphic evaluation of circuits
with polynomial depth (and potentially exponential width).

Homomorphic Signatures from Indistinguishability Obfuscation. Gay
and Ursu proposed the first unleveled fully homomorphic signature from falsifi-
able assumptions [16]. Their construction is based on indistinguishability obfus-
cation (iO), unleveled fully homomorphic encryption, and non-interactive zero-
knowledge proof system (NIZK). While their work enables a wide range of ap-
plications, we aim to develop a dedicated scheme for fully homomorphic MAC
with adaptive security and pre-processable verification.

4

Attribute-Based Signatures. Tsabary proved the equivalence between attribute-
based signatures and homomorphic signatures, and proposed new schemes based
on lattice trapdoors [31]. Tsabary also used nested construction to achieve adap-
tive security as the first (leveled) fully homomorphic signature scheme [21].
Through Tsabarys work, attribute-based signatures could be translated into ho-
momorphic signatures. Such signatures support circuits with polynomial width
[29,15,30,14,26] or based on succinct non-interactive arguments of knowledge
(SNARKs) [8], which is not yet known to be based on standard assumptions.

Concurrent Works. Until recently, options for fully homomorphic signatures
were limited, but significant advances have emerged. Goyal introduced mutable
batch arguments (mutable BARGs) to construct (leveled) fully homomorphic
signatures from standard assumptions [22]. While this signature could initially
be composed only a constant number of times, Afshar, Cheng, and Goyal later
improved the result so that it could be composed a polynomial number of times
[1]. Anthoine, Balbás, and Fiore proposed a fully-succinct multi-key (leveled)
fully homomorphic signatures from standard assumptions by combining BARGs
and functional commitments, while providing chained-composability (i.e., you
cannot compose two or more signatures) [5]. Hayashi, Sakai, and Yamada pro-
posed the first attribute-based signature for unbounded circuits with optimal
parameter size from standard assumptions, which could be translated into a fully
homomorphic signature [23]. While these signatures are excellent choices for fully
homomorphic MACs, our scheme is the only dedicated algorithm for adaptive
security and pre-processability, which brings simplicity. Also, our scheme does
not rely on common reference string (CRS), and is composable without any
limitation.

1.3 Technical Overview

In this section, we provide a high-level overview of our base construction. First,
we briefly review the construction and security of the first (leveled) fully ho-
momorphic signature [21]. We then identify a key reason why this construction
achieves only selective security. Finally, we describe how it is modified to obtain
an adaptively secure fully homomorphic MAC.

The First (Leveled) Fully Homomorphic Signatures. The base scheme
of the first (leveled) fully homomorphic signature is a lattice-based signature
scheme that follows hash-and-sign paradigm. KeyGen generates random matrices
V1, . . . ,VN ∈ Zk×l, and a trapdoor matrix A ∈ Zn×k with its trapdoor R that
satisfies following properties:

1. A
stat≈ A′ for a randomly chosen matrix A′ $← Zn×k.

2. For a random V
$← Zn×l, there exists an algorithm that can generate a

matrix U ∈ Zk×l with small entries such that AU = V using the trapdoor
R. There also exists a distribution U over Zk×l such that if U′ ← U and

V′ := AU′, then (A,R,U,V)
stat≈ (A,R,U′,V′).

5

KeyGen outputs V1, . . . ,VN , and A as public parameters, and keeps the trap-
door R secret. Sign(m1, . . . ,mN) generates the preimages U1, . . . ,UN of V1 −
m1G, . . . ,VN −mNG using the trapdoor R for some gadget matrix G ∈ Zn×l

so that AUi + miG = Vi for i = 1, . . . , N . Sign(m1, . . . ,mN) then outputs
U1, . . . ,UN as the signatures of m1, . . . ,mN ∈ {0, 1}. Verify(f,m,Um) de-
terministically generates Vf from V1, . . . ,VN , and outputs 1 if and only if
AUm +mG = Vf . Since the main focus of this overview is to describe how we
achieved adaptive security, we omit the description of homomorphic evaluation.

The security of the first (leveled) fully homomorphic signature scheme comes
from the hard lattice problem called short integer solution (SIS) problem. For
any adversary A that makes a forgery against the above scheme, there exists
an algorithm B that solves SIS problem by running A internally. B operates as
follows:

1. Receive A
$← Zn×k

2. Run A, and A makes a selective query (m1, . . . ,mN)
3. Sample U1, . . . ,UN ← U , and set Vi := AUi +miG for i = 1, . . . , N
4. Send U1, . . . ,UN to A as the response of the selective query.
5. A makes a forgery, and obtain two tuples (m,U) and (m′,U′) such that

Verify(f,m,U) = Verify(f,m′,U′) = 1
6. Make an SIS solution from (m,U) and (m′,U′)

Given two tuples (m,U) and (m′,U′) such that AU+mG = AU′+m′G = Vf

for some Vf ∈ Zn×l, one can generate an SIS solution for A [21,33]. If B’s sim-
ulation for A is statistically close to a real response of the selective query, then
B’s success probability in solving SIS is nearly the same as A’s probability of
forging a signature. Fortunately, due to the second property of the trapdoor ma-
trix, B’s simulation is statistically indistinguishable from a real query response.
Therefore, as long as the SIS problem is hard to solve, there does not exist an
adversary A that can forge the signature with non-negligible probability.

Selective Security and Public Verification. A reason the signature scheme
above is selectively secure is public verification. Public verification requiresV1, . . . ,VN

to be public, preventing B from setting Vi as AUi+miG for an adaptive signing
query mi. More specifically, to simulate the response of the ith signing query for
an adaptive adversary A, B must generate tuples (0,Ui) and (1,U′

i) such that
AUi + 0 ·G = AU′

i + 1 ·G = Vi. However, generating such tuples implies that
B can solve the SIS problem for A without A. There have been some modifica-
tions to the scheme to satisfy adaptive security, but they cost pre-processable
verification [27,32,34].

Adaptive Security from the Secrecy of HomMAC. In contrast, a fully
homomorphic MAC does not require public verification. Keeping Vi secret prior
to the ith adaptive query mi of A allows B to set Vi := AUi + miG, result-
ing adaptive security. Building on this idea, we modified the above signature

6

scheme into an adaptively secure fully homomorphic MAC while preserving pre-
processable verification. At a high level, our scheme works as follows: KeyGen
generates a random function F : N → Zk×l and a trapdoor matrix A with its
trapdoor R, outputs A as an evaluation key, and keeps the trapdoor R and F as
secret keys. For the ith authentication query m, Auth(i,m) sets Vi := F (i), gen-
erates the preimage Ui of Vi−miG so that AUi+miG = Vi, and outputs Ui.
Verify(f,m,Um) deterministically generates Vf from F , and outputs 1 if and
only if AUm +mG = Vf . Homomorphic evaluation process is the same as the
first (leveled) fully homomorphic scheme, which will be described in Section 5.

2 Preliminaries

Notations and Conventions. We write (τ, ·) ∈ S when there exists an x
such that (τ, x) ∈ S. Conversely, we write (τ, ·) ∕∈ S when there is no x such
that (τ, x) ∈ S. This can be generalized to two or more coordinates, such as
(·, x, ·) ∈ S and (τ, ·, ·) ∕∈ S. When a multivariate function f : X × Y → Z is
given, we let f(x, ·) : Y → Z be a function such that f(x, ·)(y) = f(x, y) for
any y ∈ Y. Similarly, when a multivariate algorithm Alg(x, y) is given, we let
Alg(x, ·) be an algorithm with x hard-wired, that takes an input y ∈ Y and
outputs Alg(x, y). We will use generalized versions of this notation for two or
more inputs such as f(·, x, ·) and Alg(x, y, ·, ·). If an algorithm takes variable
number of inputs, we will use the notation Alg(x, y, . . .).

We let Zq be the ring of integers modulo q. We use integers in (−q/2, q/2] to
represent the elements in Zq. For a matrix U ∈ Zn×m

q , we write U∞ ≤ β if
every entry in U lies in [−β,β].

Let f be a function. We write f(λ) = poly(λ) if there exists a constant C > 0
such that f(λ) = O(λC). In contrast, we write f(λ) = negl(λ) if f(λ) = o(λ−C)
for any constant C. We often say a function is negligible (or polynomial) when
the function is negligible (or polynomial) with respect to the security parameter
λ.

Circuit. We define a circuit to be a directed acyclic graph, where each vertex
is a gate, with an associated operation. We assume that we have a dedicated
output wire in the circuit. For simplicity, we assume that every gate has 1 or 2
indegree.

Labeled program. Since HomMAC needs to verify whether a computed func-
tion value is correct, without having the original inputs to the function, we need
to be able to describe a function using labels of the input arguments. We will
adopt the notion of the labeled program [17] to do that.

Let M and T be a message space and a label space, respectively. A labeled
program is a tuple P = (f, τ1, . . . , τl) where f is a function from Ml to M, and
τi ∈ T is the associated label of the ith input. If messages m1, . . . ,ml ∈ M are
associated with labels τ1, . . . , τl ∈ T , then calculating P = (f, τ1, . . . , τl) means

7

evaluating f(m1, . . . ,ml). Also, we write P (m1, . . . ,ml) to indicate the value
f(m1, . . . ,ml). A label could be considered as an address, an index, or even a
‘metadata’ of a message (generalizing the ‘positional index’ 1, 2, 3 of the function
expression f(m1,m2,m3), for example), and one could assume that it is known
to public.

We say a labeled program P = (f, τ1, . . . , τl) is fully bound when there is a
path from any internal wire (including input wires) to the output wire. For any
labeled program P , we can divide P into two unique sub-programs, Ṗ and P̄ ,
that are not connected to each other such that Ṗ is fully bound and contains
the output wire of P . We call Ṗ the fully bound sub-program of P . Note that the
input wires of Ṗ are the only input wires of P that are needed to compute the
output of P . For example, suppose f(x, y, z, w) is a circuit that computes two
circuits f1(x, y) = x + y and f2(z, w) = z + w, and outputs f1(x, y). If we let
P := (f, τ1, τ2, τ3, τ4), then the fully bound sub-program of P is Ṗ := (f1, τ1, τ2)

Admissible program and function. Let H be a HomMAC. As we use la-
beled program to verify an authentication tag is correctly generated, we write a
program P is an admissible program of H when the homomorphic evaluation of
P is supported by H. We also define the space of admissible programs, denoted
by P, to be the set of labeled programs so that each element P ∈ P is supported
by H.

3 Homomorphic Message Authentication Code

3.1 Syntax

We consider homomorphic message authentication code (HomMAC) defined as
follows.

Definition 1 (HomMAC). A homomorphic message authentication code is a
tuple of probabilistic polynomial time algorithms (KeyGen,Auth,Eval,Verify) as
follows:

– (sk , ek) ← KeyGen(1λ): outputs a secret key sk and an evaluation key ek for
a given security parameter λ.

– σ ← Auth(sk , τ,m): outputs an authentication tag σ ∈ Σ of a message m
with respect to the label τ . This associates the message m to the label τ .

– σf ← Eval(ek , f, (m1,σ1), . . . , (ml,σl)): deterministically outputs homomor-
phically evaluated authentication tag σf , given a function f of arity l, and
message-tag tuples (m1,σ1), . . . , (ml,σl) ∈ M×Σ.

– b ← Verify(sk , P,m,σ): deterministically outputs acceptance bit b of an au-
thentication tag σ so that b represents the verification that a message m is
the output of the labeled program P ∈ P with respect to sk.

We let M, Σ, T , P to be the message space, the authentication tag space,
the label space, and the space of admissible programs of the HomMAC. For a

8

HomMAC H, we write H.KeyGen(), H.Auth(), H.Eval() and H.Verify() to denote
its algorithms. We say a HomMAC is (leveled) fully homomorphic when it can
homomorphically evaluate any depth d program, or equivalent version of such
program for some d = d(λ) = poly(λ).

Correctness. A HomMAC has to satisfy the following correctness properties
except for negligible probability:

– Correctness of the evaluation:

Verify(sk , (f, τ1, . . . , τl), f(m1, . . . ,ml),Eval(ek , f, (m1,σ1), . . . , (ml,σl))) = 1

where (sk , ek) ← KeyGen(1λ), σi ← Auth(sk , τi,mi) for i = 1, . . . , l, and
(f, τ1, . . . , τl) ∈ P.

– Projection preservation:

σi = Eval(ek ,πi, (m1,σ1), . . . , (ml,σl))

where (sk , ek) ← KeyGen(1λ), σi ← Auth(sk , τi,mi) for i = 1, . . . , l, and πi

is the ith projection function among l tuples.

Note that the correctness properties above imply the correctness of authentica-
tion tag:

Verify(sk , (id, τ),m,Auth(sk , τ,m)) = 1

when id is the identity function.

Compactness. We say a HomMAC is compact if (sk , ek) ← KeyGen(1λ) for
some security parameter λ and the sizes of the output of Auth(sk , ·, ·) and
Eval(ek , . . .) are bounded by a polynomial in λ which is determined indepen-
dently from the inputs of the algorithms. We require a HomMAC to be compact,
which implies the size of any authentication tag is independent of its homomor-
phically evaluated function f .

Pre-processable verification. We say a HomMAC supports pre-processable
verification when there is two additional algorithms with the following proper-
ties:

– skP ← Prep(sk , P): deterministically outputs a secret key skP associated
with given sk and a labeled program P .

– b ← EffVerify(skP ,m,σ): deterministically outputs acceptance bit b of an
authentication tag σ so that b represents the verification that a message m
is the output of labeled program P ∈ P using skP .

These algorithms must satisfy the following properties:

– Correctness: EffVerify(skP ,m,σ) = Verify(sk , P,m,σ) for anym ∈ M, σ ∈ Σ
and labeled program P when (sk , ek) ← KeyGen(1λ) and skP ← Prep(sk , P)

– Pre-processability : if we let t(l) to be the time required to compute an arity
l labeled program P , then the time required to compute EffVerify(skP , ·, ·) is
o(t(l)) when (sk , ek) ← KeyGen(1λ) and skP ← Prep(sk , P)

9

3.2 Security notion

We consider a strong variant of a security notion of a HomMAC. Our security
notion is similar to the one that Gennaro and Wichs suggested, except that ours
is stronger, as SUF-CMA is compared to EUF-CMA [17]. Moreover, our security
game allows non-redundant verification queries as a definition of a security game
of a homomorphic authenticated encryption of Kim and Yun [25]. The definitions
of a non-redundant verification query and a forgery are given after the description
of our security notion.

GameHomMAC
H,A (λ) :

Initialization. A keypair (sk , ek) ← KeyGen(1λ) is generated, and the evalua-
tion key ek is sent to A. The challenger initializes the query history as a set
S = ∅

Queries. A makes authentication and verification queries adaptively. The chal-
lenger responds to the queries as follows:
– On an authentication query (τ,m), if (τ, ·, ·) ∕∈ S, then the challenger

sends an authentication tag σ ← H.Auth(sk , τ,m), and updates S ←
S ∪ {(τ,m,σ)}. If (τ, ·, ·) ∈ S, then the challenger rejects the query.

– On a verification query (P,m,σ), if the query is non-redundant (which
we will define soon below) with respect to the query history S, then the
challenger sends the result of H.Verify(sk , P,m,σ) to A. If the query is
redundant, then the challenger rejects the query.

Finalization. If A made at least one forgery (which we define soon below),
then the game outputs 1. Otherwise, the game outputs 0.

We say a HomMAC is secure if the advantage

AdvHomMAC
H,A (λ) := Pr[GameHomMAC

H,A (1λ) = 1]

is negligible for any probabilistic polynomial time algorithm A.

Redundant queries. Let (P,m,σ) be a verification query, and Ṗ = (f, τ1, . . . , τl)
be the fully bound sub-program of P . The query (P,m,σ) is redundant with re-
spect to a query history S when, for all i ∈ {1, . . . , l}, there exist (unique)
tuples (mi,σi) ∈ M × Σ such that (τi,mi,σi) ∈ S, f(m1, . . . ,ml) = m, and
H.Eval(ek , f, (m1,σ1), . . . , (ml,σl)) = σ. We say a verification query is non-
redundant if it is not redundant. We often omit the query history and say
(P,m,σ) is redundant (respectively, non-redundant) when the query history is
clear.

Types of verification queries and forgeries. Let (P,m,σ) be a verification
query, Ṗ := (f, τ1, . . . , τl) be the fully bound sub-program of P , and S be the
query history. We can categorize types of non-redundant verification queries with
respect to S as follows:

10

– Type I: There exists an i ∈ {1, . . . , l} such that (τi, ·, ·) ∕∈ S.
– Type II: For all i ∈ {1, . . . , l}, (τi,mi,σi) ∈ S for some (unique) (mi,σi) ∈

M×Σ and

(f(m1, . . . ,ml), H.Eval(ek , f, (m1,σ1), . . . , (ml,σl))) ∕= (m,σ)

We call a verification query (P,m,σ) a forgery if the query is non-redundant
with respect to S, and H.Verify(P,m,σ) = 1. We also apply the same criteria to
categorize a forgery as Type I or Type II.

Note also that the notion of forgery defined here is essentially a homomorphic
version of a weak forgery: it has to be valid, and eitherm is not correct, or σ is dif-
ferent from the canonical authentication tag H.Eval(ek , f, (m1,σ1), . . . , (ml,σl)).
Therefore, the security notion we have defined for HomMAC is a homomorphic
version of strong unforgeability.

Type II secure HomMAC. Let GameHomMAC,II
H,A (1λ) be a security game mod-

ified from GameHomMAC
H,A (1λ) so that an adversary A is only allowed to make

Type II verification queries. We say a HomMAC is Type II secure if the advan-
tage

AdvHomMAC,II
H,A (λ) := Pr[GameHomMAC,II

H,A (1λ) = 1]

is negligible for any probabilistic polynomial time algorithm A.

3.3 Ambiguous HomMAC

Ambiguity. We say a HomMAC H is ambiguous when the following holds. For
any admissible program P and its fully bound sub-program Ṗ = (f, τ1, . . . , τl),
let I ⊊ {1, . . . , l} be an arbitrary subset. Without loss of generality, we let
I = {1, . . . , i0} where i0 < l. For arbitrary messages m1, . . . ,ml ∈ M and
signatures σ1, . . . ,σi0 such that σi ← H.Auth(sk , τi,mi) for all i = 1, . . . , i0
where (sk , ek) ← KeyGen(1λ), and an arbitrary element σ ∈ Σ, the probability

Pr

H.Eval(ek , f, (m1,σ1), . . . , (ml,σl)) = σ

∀j = i0 + 1, . . . , l,

σj ← H.Auth(sk , τj ,mj)

is less than or equal to 2−λ with respect to λ.
Implication of ambiguous HomMAC is that if one of τ1, . . . , τl has not been

queried yet, then there are exponentially many candidates for the authentication
tag of P .

Using ambiguity of a HomMAC, we can statistically get rid of Type I forgery.

Theorem 1. Let H be a HomMAC. If H is ambiguous and Type II secure, then
it also is a secure HomMAC.

Proof. Let A be an adversary of H that makes at most Qv verification queries.
Let L be the maximum number of inputs of the fully bound sub-program Ṗ of
P , for all verification queries (P,m,σ) that A makes. Our purpose of the proof

11

is to show that there is a probabilistic polynomial time algorithm B against
GameHomMAC,II that makes at most Qv(L+ 2) verification queries such that

AdvHomMAC
H,A (λ) ≤ AdvHomMAC,II

H,B (λ) + negl(λ)

We first note that the only possible way for A to win the game is to make a
forgery. Moreover, the event that A makes a forgery can be categorized into two
events:

EI := {the first forgery that A makes is Type I forgery in GameHomMAC
H,A (1λ)}

EII := {the first forgery that A makes is Type II forgery in GameHomMAC
H,A (1λ)}

Therefore, we can write

AdvHomMAC
H,A (λ) = Pr

A makes a forgery in GameHomMAC

H,A (1λ)

= Pr[EI] +Pr[EII]

We now construct B against the challenger of GameHomMAC,II
H,B (1λ) that runs

A. At a high level, B converts the first forgery that A makes into B’s own forgery.
When A makes a Type II forgery, B just passes the forgery and wins the game.
When A makes a Type I forgery, B queries for undefined input labels of the
forgery. In this way, A’s forgery becomes either a redundant query or a Type II
forgery. The probability that the forgery becomes a redundant query is negligible
from the ambiguity of H. Therefore, B can always convert A’s first forgery into
a Type II forgery except for negligible probability.

Initialization. B gets ek from the challenger, and send ek to A. B initializes
sets SAuth and SI

Verify as ∅.
Queries. Except when A makes verification queries, B just passes the queries

and its responses between A and the challenger while updating SAuth the
same way as the challenger updates its authentication history S in GameHomMAC,II

H,B (1λ).
When A makes a verification query (P,m,σ), B checks if the query is redun-
dant, Type I, or Type II using SAuth. If (P,m,σ) is redundant, then B just
rejects the query. If (P,m,σ) is Type I verification query, B first updates
SI
Verify ← SI

Verify ∪ {(P,m,σ)}, then responds 0 to A. If (P,m,σ) is Type II
verification query, B forwards the query to the challenger and passes the
response of the challenger back to A.

Additional Queries. When A finishes its queries, B makes at most QvL ad-
ditional authentication queries (while updating SAuth the same as the chal-
lenger’s history S) such that every verification queries in SI

Verify becomes
Type II or redundant with respect to SAuth. After such additional queries,
if there exists at least one redundant verification query in SI

Verify with re-
spect to SAuth, then B returns ”Bad” and halts. Otherwise, B makes Type II
verification queries in SI

Verify in same order as A.

12

We can categorize the event that A makes a forgery against B as follows as
well.

EB
I := {the first forgery that A makes against B is Type I}

EB
II := {the first forgery that A makes against B is Type II}.

Note that Pr[EB
I] = Pr[EI] and Pr[EB

II] = Pr[EII] because, in A’s perspective,
B is indistinguishable from the challenger of GameHomMAC

H,A (1λ) before A’s first
forgery.

Now, let Bad := {B outputs ”Bad”}. From the fact that H is ambiguous, we
know that Pr[Bad] ≤ Qv

2λ
.

On event EB
II, B passes A’s Type II forgery to the challenger, and thus makes

Type II forgery. In other words,

Pr

EB

II

≤ Pr [B makes Type II forgery in Queries phase]

On event EB
I ∩Bad∁, B makes A’s Type I forgery into a Type II forgery. In other

words,

Pr

EB

I

= Pr

EB

I ∩ Bad∁

+Pr

EB

I ∩ Bad

≤ Pr

EB

I ∩ Bad∁

+Pr [Bad]

≤ Pr

EB

I ∩ Bad∁

+

Qv

2λ

≤ Pr [B makes Type II forgery in Additional Queries phase] +
Qv

2λ

Conclusively, we can write

AdvHomMAC
H,A (λ) ≤Pr[EI] +Pr[EII]

=Pr[EB
I] +Pr[EB

II]

≤Pr [B makes Type II forgery in Queries phase] +
Qv

2λ

+Pr [B makes Type II forgery in Additional Queries phase]

≤AdvHomMAC,II
H,B (λ) +

Qv

2λ

□

Remark 1. We can use the same analogy to define an ambiguous homomorphic
authenticated encryption. Moreover, we can also prove that if a homomorphic
authenticated encryption is Type II secure and ambiguous, then it is also secure.

While we can construct an ambiguous HomMAC using a random oracle, it
is more plausible to define and construct a pseudo-ambiguous scheme using a
pseudo random function.

13

Definition 2. We say a HomMAC H is pseudo-ambiguous if there exists an
ambiguous HomMAC H̃ such that

Pr

GameHomMAC

H,A (1λ) = 1

−Pr

GameHomMAC

H̃,A (1λ) = 1
 ≤ negl(λ)

for any probabilistic polynomial time algorithm A.

Theorem 2. Let H be a HomMAC. If H is pseudo-ambiguous and Type II
secure, then it is also a secure HomMAC.

Proof. Let H̃ be an ambiguous HomMAC such that

Pr

GameHomMAC

H,A (1λ) = 1

−Pr

GameHomMAC

H̃,A (1λ) = 1
 ≤ negl(λ)

for any probabilistic polynomial time algorithm A. Using pseudo-ambiguity, we
first prove that H̃ is also Type II secure. For an arbitrary probabilistic polyno-
mial time algorithm A∗ and an arbitrary HomMAC H∗, we later construct a
probabilistic polynomial time algorithm A∗ such that

Pr

GameHomMAC,II

H∗,A∗ (1λ) = 1

= Pr

GameHomMAC

H∗,B∗ (1λ) = 1

.

Then, we can write that for any probabilistic algorithm Ã, we can find a prob-
abilistic polynomial time algorithm B̃ such that

Pr

GameHomMAC,II

H,Ã (1λ) = 1

= Pr

GameHomMAC

H,B̃ (1λ) = 1

Pr

GameHomMAC,II

H̃,Ã (1λ) = 1

= Pr

GameHomMAC

H̃,B̃ (1λ) = 1

,

and thus

Pr

GameHomMAC,II

H̃,Ã (1λ) = 1

≤Pr

GameHomMAC,II

H,Ã (1λ) = 1

+
Pr

GameHomMAC,II

H,Ã (1λ) = 1

−Pr

GameHomMAC,II

H̃,Ã (1λ) = 1

=Pr

GameHomMAC,II

H,Ã (1λ) = 1

+
Pr

GameHomMAC

H,B̃ (1λ) = 1

−Pr

GameHomMAC

H̃,B̃ (1λ) = 1

≤Pr

GameHomMAC,II

H,Ã (1λ) = 1

+ negl(λ),

which implies that H̃ is Type II secure since H is Type II secure. From Theo-
rem 1, H̃ becomes a secure HomMAC. Therefore, H is also a secure HomMAC.

All we have left to do is to construct A∗ above. We construct A∗ that runs
A∗ internally, and acts as the challenger of GameHomMAC,II

H∗,A∗ (1λ) as follows:

Authentication Queries. A∗ passes authentication queries and their responses
between A∗ and the challenger of GameHomMAC

H∗,B∗ (1λ), while maintaining the
query history SAuth in the same way as the query history S of the challenger.

14

Verification Queries. When A∗ makes a verification query, A∗ uses SAuth to
check if the query is redundant, Type I, or Type II. If the query is redundant
or Type I, then A∗ rejects A∗’s query. If the query is Type II, then A∗ makes
the same verification query to the challenger of GameHomMAC

H∗,B∗ (1λ) and sends
its response to A∗.

From the construction of A∗, in A∗’s perspective, A∗ acts exactly the same as
the challenger of GameHomMAC,II

H∗,A∗ (1λ). Therefore, the following probabilities are
the same:

Pr

GameHomMAC,II

H∗,A∗ (1λ) = 1

= Pr

GameHomMAC

H∗,B∗ (1λ) = 1

.

□

Remark 2. Note that the notions and theorems of this section can also be applied
to any other homomorphic authentication primitives. In other words, one can
define ambiguity and pseudo-ambiguity for homomorphic authenticated encryp-
tion or homomorphic signature, and apply variants of Theorem 1 and Theorem 2
to enhance their security.

4 Generic Construction for Security Enhancement

We now suggest a generic construction that converts an ordinary HomMAC into
a pseudo-ambiguous one using a pseudorandom function (PRF). Moreover, our
generic construction preserves Type II security and pre-processable verification.
Therefore, if we have a Type II secure (leveled) fully homomorphic MAC scheme
with pre-processable verification, then we can make the scheme into a (fully)
secure one. While there are existing generic constructions in [17,24] that utilizes
hash tree method, our generic construction is novel and simpler.

Construction 1 Let H ′ be a HomMAC, and M′, Σ′, T ′, P ′ be the message
space, the authentication tag space, the label space, and the admissible program
space of H ′, respectively. Let d be the maximum depth of the programs in H ′

and p be the smallest prime number that exceeds max(2λ, 2d). Let M := M′,
Σ := Σ′ × Zp, T := T ′, and P := P ′ be the message space, the authentication
tag space, the label space, and the admissible program space of a HomMAC H
that will be defined below. Let F : {0, 1}λ × T → Zp be a secure PRF. Using H ′

and F , we define H as follows.

– H.KeyGen(1λ): generate (sk ′, ek ′) ← H ′.KeyGen(1λ) and K
$← {0, 1}λ. Let

sk := sk ′K, ek := ek ′, and output (sk , ek).
– H.Auth(sk , τ,m): parse sk = sk ′K and let σ′ ← H ′.Auth(sk ′, τ,m) and

r := F (K, τ). Output σ := (σ′, r).
– H.Eval(ek , f, (m1,σ1), . . . , (ml,σl)): let ek ′ = ek, parse σi = (σ′

i, ri) for
i = 1, . . . , l. Compute σ′

f ← H ′.Eval(ek ′, f, (m1,σ
′
1), . . . , (ml,σ

′
l)) and r :=

f+(r1, . . . , rl) where f+ is the circuit f that every binary gate is replaced
to an addition gate over Zp, and every unary gate is replaced to an identity
gate. Output σf := (σ′

f , r).

15

– H.Verify(sk , P,m,σ): parse sk = sk ′K, P = (f, τ1, . . . , τl), and σ = (σ′, r).
Let ri := F (K, τi). If r = f+(r1, . . . , rl) and 1 = H ′.Verify(sk ′, P,m,σ′),
then output 1. Otherwise, output 0.

Remark 3. Construction 1 naturally satisfies correctness properties from the cor-
rectness of H ′ and the fact that f+ becomes a projection if f is a projection.

Remark 4. If H ′ supports pre-processable verification, then H also supports pre-
processable verification. We can define H.Prep and H.EffVerify as follows:

– H.Prep(sk , P): parse sk = sk ′K and P = (f, τ1, . . . , τl). Let r
′
i := F (K, τi),

r′ := f+(r′1, . . . , r
′
l), and sk ′

p := H ′.Prep(sk , P). Output skp := sk ′
pr′.

– H.EffVerify(skP ,m,σ): parse skP = sk ′
P r′ and σ = (σ′, r). If r = r′ and

1 = H ′.EffVerify(sk ′
P ,m,σ), then output 1. Otherwise, output 0.

Remark 5. We can know that an admissible program of H ′ is also admissible to
H. Therefore, if H ′ is (leveled) fully homomorphic, then so is H.

Remark 6. Suppose (P,m,σ = (σ′, r)) is a Type II forgery with respect to a
query history S. Let Ṗ := (f, τ1, . . . , τl) be the fully bound sub-program of
P . Then from the fact that (P,m,σ) is a Type II forgery, we can find (unique)
(mi,σi) ∈ M×Σ such that (τi,mi,σi) ∈ S for all i = 1, . . . , l. If we let (σ′′, r′) ←
H.Eval(ek , f, (m1,σ1), . . . , (ml,σl)), then we know that (σ′, r) ∕= (σ′′, r′) and
r = r′ = f+(F (K, τ1), . . . , F (K, τl)), which implies σ′ ∕= σ′′. Therefore, one can
make a Type II forgery of H into a Type II forgery of H ′. In other words, Type II
security of H ′ implies Type II security of H.

Theorem 3. If F is a secure pseudorandom function, then H is pseudo-ambiguous.

Proof. We write an advantage of differentiating PRF F from a random function
F ∗ : T → Zp as AdvPRF

F (λ). Let H∗ be the same as H except it uses a random
function instead of F (K, ·). H∗.KeyGen(1λ) samples a random function F ∗ :
T → Zp and lets sk := sk ′F ∗, and H∗.Auth and H∗.Verify use F ∗(·) instead of

F (K, ·). If there is an adversaryA that behaves differently in GameHomMAC
H,A (1λ)

compared to GameHomMAC
H∗,A (1λ), then one can use A to distinguish F from F ∗.

Therefore, we can write

Pr

GameHomMAC

H,A (1λ) = 1

−Pr

GameHomMAC

H∗,A (1λ) = 1
 ≤ AdvPRF

F (λ) ≤ negl(λ)

from the security of the PRF F .
All we have left to do is showing that H∗ is ambiguous. For any admissible

program P and its fully bound sub-program Ṗ = (f, τ1, . . . , τl), let I ⊊ {1, . . . , l}
be an arbitrary subset. Without loss of generality, we let I = {1, . . . , i0} where
i0 < l. For arbitrary messages m1, . . . ,ml and authentication tags σ1, . . . ,σi0

such that

∀i = 1, . . . , i0, σi = (σ′
i, ri) ← H∗.Auth(sk , τi,mi)

16

for some (ek , sk) ← H∗.KeyGen(1λ), and arbitrary element σ = (σ′, r) ∈ Σ, we
can write

Pr

H∗.Eval(ek , f, (m1,σ1), . . . , (ml,σl)) = σ

∀j = i0 + 1, . . . , l,

σj = (σ′
j , rj) ← H∗.Auth(sk , τj ,mj)

≤Pr

f+(r1, . . . , ri0 , ri0+1, . . . , rl) = r | ∀j = i0 + 1, . . . , l, rj = F ∗(τj)]

where f+ is the circuit f that every binary gate is replaced to an addition gate
over Zp, and every unary gate is replaced to an identity gate. Note that we can
write

f+(r∗1 , . . . , r
∗
l) =

l

i=1

air
∗
i (mod p)

for any r∗1 , . . . , r
∗
l where 1 ≤ ai ≤ 2d < p for i = 1, . . . , l (1 ≤ ai because Ṗ =

(f, τ1, . . . , τl) is the fully bound sub-program of P). Now, define a polynomial h
with respect to variables r∗i0+1, . . . , r

∗
l as

h(r∗i0+1, . . . , r
∗
l) =f+(r1, . . . , ri0 , r

∗
i0+1, . . . , r

∗
l)− r

=

l

j=i0+1

ajr
∗
j +

i0

k=1

akrk − r

then since 1 ≤ ai < p for all i = 1, . . . , l, we can know that h is a degree 1 poly-
nomial with respect to r∗i0+1, . . . , r

∗
l . Therefore, from Schwartz-Zippel lemma,

≤Pr

f+(r1, . . . , ri0 , ri0+1, . . . , rl) = r | ∀j = i0 + 1, . . . , l, rj = F ∗(τj)]

=Pr [h(ri0+1, . . . , rl) = 0 | ∀j = i0 + 1, . . . , l, rj = F ∗(τj)]

=Pr

h(ri0+1, . . . , rl) = 0

 ∀j = i0 + 1, . . . , l, rj
$← Zp

≤1

p
≤ 1

2λ

□

Remark 7. The very technique employed in Construction 1 is also applicable to
homomorphic authenticated encryption as well, to achieve stronger security while
preserving pre-processable verification. However, it is not directly applicable to
homomorphic signatures due to the public verification.

5 Type II Secure (Leveled) Fully Homomorphic Message
Authentication Code

We construct a secure HomMAC using a primitive called homomorphic trapdoor
function (HTDF) as Gorbunov, Vaikuntanathan, and Wichs [21]. We first intro-
duce the definition of HTDF and its security notion, and provide a construction

17

of leveled fully homomorphic trapdoor function from lattice trapdoors. We then
propose an adaptively secure (leveled) fully homomorphic MAC scheme with
pre-processable verification using a leveled fully homomorphic trapdoor func-
tion.

5.1 Homomorphic trapdoor function

Definition 3 (HTDF). A homomorphic trapdoor function is a tuple of proba-
bilistic polynomial time algorithms (KeyGen, ρ, Inv,Evalin,Evalout) as follows:

– (pk , sk) ← KeyGen(1λ) : outputs a public key pk and a secret key sk for a
given security parameter λ

– ρpk ,m : U → V : a deterministic function indexed by a public key pk and a
message m ∈ M.

– Invsk ,,m : V → U : a probabilistic inverting algorithm of ρ indexed by a secret
key sk, and a message m.

– uf ← Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl)) : a deterministic evaluation al-
gorithm for inputs of ρ, given an admissible function f ∈ F of arity l and
(m1, u1, v1), . . . , (ml, ul, vl) ∈ M× U × V.

– vf ← Evalout(f, v1, . . . , vl) : a deterministic evaluation algorithm for outputs
of ρ, given an admissible function f ∈ F of arity l and v1, . . . , vl ∈ V.

We assume that a public key pk implicitly contains the information about the
message space M, the input space U , the output space V, and the admissible
function space F . As HomMAC, we say an HTDF is leveled fully homomorphic
if it can homomorphically evaluate any depth d circuit f , or equivalent version
of such circuit, for some d = d(λ) = poly(λ).

Correctness. An HTDF is required to satisfy the following correctness prop-
erties except for negligible probability.

– Correctness of the evaluation: For any m1, . . . ,ml ∈ M, arity-l admissible
function f : Ml → M, security parameter λ, and (pk , sk) ← KeyGen(1λ),
let

uf =Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl))

vf =Evalout(f, v1, . . . , vl),

where vi = ρpk ,mi(ui) for i = 1, . . . , l. Then

vf = ρpk ,f(m1,...,ml)(uf)

holds.
– Projection preservation: For anym1, . . . ,ml ∈ M, arity-l admissible function

f : Ml → M, security parameter λ and (pk , sk) ← KeyGen(1λ),

ui =Evalin(πi, (m1, u1, v1), . . . , (ml, ul, vl)),

vi =Evalout(πi, v1, . . . , vl)

holds where πi is the ith projection function and vi = ρpk ,mi(ui) for i =
1, . . . , l

18

Relaxation of correctness In a leveled fully homomorphic scheme, each
ui ∈ U will have noise βi ∈ Z. There is an initial input distribution DU with
each of the element has small noise βinit. The noise βf of an evaluated input

uf ← Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl)) depends on the inputs of Evalin and
βi for i = 1, . . . , l. If the noise βf exceeds a certain threshold βf > βmax , then
the correctness of evaluation above does not hold. Therefore, we define the ad-
missible functions accordingly: the function f is admissible if the noise βf of

uf ← Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl)) does not exceed the noise threshold
βmax for any choices of m1, . . . ,ml ∈ M, where each noise βi of ui does not
exceed βinit for all i = 1, . . . , l.

Distributional equivalence of inversion Let (pk , sk) ← KeyGen(1λ) then
the following two distributions are statistically indistinguishable

(pk , sk ,m, u, v)
stat≈ (pk , sk ,m, u′, v′)

where m ∈ M, u ← DU , v = ρpk ,m(u), v′
$← V and u′ ← Invsk ,m(v′).

HTDF security We define the security of an HTDF. Originally, Gorbunov,
Vaikuntanathan, and Wichs [21] required an HTDF to satisfy claw-freeness.
Similarly, we require an HTDF to satisfy strong claw-freeness that can be defined
by the game below. Let T = (T.KeyGen, ρ, Inv, T.Evalin, T.Evalout) be an HTDF.

GameHTDF
T,A (λ) :

Key generation. The challenger generates (pk , sk) ← T.KeyGen(1λ) and send
pk to A.

Finalization. A outputs (u, u′,m,m′) where u, u′ ∈ U , m,m′ ∈ M. The game
outputs 1 if (m,u) ∕= (m′, u′) and

ρpk ,m(u) = ρpk ,m′(u′)

Otherwise, the game outputs 0

The advantage of the adversary A in the game for the scheme T is defined as

AdvHTDF
T,A (λ) := Pr[GameHTDF

T,A (λ) = 1]

We say that an HTDF T satisfies strong claw-freeness, if the advantageAdvHTDF
T,A (λ)

is negligible for any probabilistic polynomial time adversary A.

Lattice-based homomorphic trapdoor function We construct a lattice-
based HTDF using lattice trapdoors as Gorbunov, Vaikuntanathan, andWichs [21]
based on SIS problem. For given a security parameter λ, let n = poly(λ),
k = poly(λ), q = 2poly(λ), and β = β(λ) where β < q. We define SISn,k,q,β

hardness assumption to imply the following: For any random matrix A
$← Zn×k

q ,

there is no probabilistic polynomial time algorithm A(1λ,A) that outputs a
nonzero vector u ∈ Zk

q such that Au = 0 and u∞ ≤ β.

19

Lemma 1. ([3,18,4,28,2]) For given integers n and q, we let k1 = n⌈log q⌉,
k0 = O(n log q), k = k0 + k1 and βsam = βsam(n, q) = O(n

√
log q). We also let

In be the n-dimensional identity matrix, gT =

1 2 22 . . . 2⌈log q⌉−1

, and G0 =

In⊗gT ∈ Zn×nk1
q . For such numbers and an arbitrary k̄ = k̄(n) = poly(n), there

exist efficient algorithms Sam, TrapGen, and SamPre that satisfy the following:

1. U ← Sam(1k, 1k̄, q) outputs a matrix U ∈ Zk×k̄
q such that U∞ ≤ βsam .

2. (A, td) ← TrapGen(A0,H) takes a random matrix A0
$← Zn×k0

q and an
arbitrary invertible matrix H ∈ Zn×n

q as its inputs, and outputs a random

matrix R ← DR from certain distribution DR over Zk0×k1
q , and a matrix

A = [A0|HG0−A0R]. Especially, (A,R) and SamPre satisfies the following:

– A
stat≈ A′ for a randomly chosen matrix A′ $← Zn×k

q

– (A,R,U,V)
stat≈ (A,R,U′,V′) when U ← Sam(1k, 1k̄, q) and V :=

AU, whereas V′ $← Zn×k̄
q and U′ ← SamPre(A0,R,H,V). Moreover,

the output U′ of SamPre satisfies AU′ = V′ and U′∞ ≤ βsam .

3. If we let G := [G0|0] ∈ Zn×k
q , then there exist a deterministic algorithm

G−1 such that for an arbitrary input V ∈ Zn×k̄
q , G−1 outputs B ← G−1(V)

that satisfies GB = V and B ∈ {0, 1}k×k̄.

Using the result of the above lemma, we construct a lattice-based fully ho-
momorphic trapdoor function as follows.

Construction 2 For a security parameter λ, we first choose a parameter d =
d(λ) = poly(λ) which is related to the depth of the admissible functions and let
βmax = 2ω(log λ)d,βSIS = 2ω(log λ)βmax. Then, we choose n = poly(λ) = ω(log λ),
a prime q = 2poly(λ) so that SISn,k,q,βSIS

hardness assumption holds, where k0 =
Θ(n log q), k1 = n⌈log q⌉ and k = k0+k1. Let DR be the distribution in Lemma 1,
DU be the distribution of the outputs of Sam(1k, 1k, q), and βinit = βsam . Let
M = {0, 1}, U = {U ∈ Zk×k

q | U∞ ≤ βmax}, V = Zn×k
q , and

F ={f : Ml → M | U ← T.Evalin(f, (m1,U1,V1), . . . , (ml,Ul,Vl))

satisfies U∞ ≤ βmax for any choices of Ui ← DU , and mi ∈ M, where

Vi = ρpk ,m(Ui), for all i = 1, . . . , l}

where T.Evalin is defined below. We define a leveled fully homomorphic HTDF
T as follows:

– T.KeyGen(1λ) : sample A0
$← Zn×k0

q , R ← DR and let A = [A0|A1] =
[A0|HG−A0R] where H ∈ Zn×n

q is an invertible matrix. Output (pk , sk) =
(A, (A0,R,H)).

– ρpk ,m : U → V : let A = pk. For an input U ∈ U , deterministically output
ρpk ,m(U) = AU+mG where G is defined the same as Lemma 1.

– Invsk ,m : V → U : parse sk = (A0,R,H). For an input V ∈ V, run the
probabilistic algorithm U ← SamPre(A0,R,H,V −mG) and output U.

20

– U ← T.Evalin(f, (m1,U1,V1), . . . , (ml,Ul,Vl)) and V ← T.Evalout(f,V1, . . . ,Vl)
are defined by evaluation of each gates as follows:

1. When f(m1,m2) = m1 +m2 is an addition gate,

U = U1 +U2, V = V1 +V2

2. When f(m1,m2) = m1 ·m2 is a multiplication gate,

U = m2U1 +U2G
−1(V1), V = V2G

−1(V1)

3. When f(m1) = m1 + a is an addition with constant gate for some con-
stant a ∈ Zq,

U = U1, V = V1 + aG

4. When f(m1) = a · m1 is a multiplication with constant gate for some
constant a ∈ Zq,

U = aU1, V = aV1

Remark 8. The HTDF T defined on Construction 2 satisfies the correctness
properties and the distributional equivalence of inversion from Lemma 1.

Remark 9. The HTDF T is leveled fully homomorphic. Think of the NAND gate
g(m1,m2) = 1−m1m2 and U1,U2 ∈ U such that U1∞ ≤ β and U2∞ ≤ β
for some β > 0, andU ← T.Evalin(g, (m1,U1, ρpk ,m1

(U1)), (m2,U2, ρpk ,m2
(U2))).

From the description of T.Evalin, we can know that the homomorphically eval-
uated input U satisfies U∞ ≤ (k + 1)β. Therefore, for any depth d circuit f
that consists of NAND gates, if we let Ui∞ ≤ βinit and Vi := ρpk ,mi

(Ui) for
some mi ∈ M for all i = 1, . . . , l, then the homomorphically evaluated input
U ← T.Evalin(f, (m1,U1,V1), . . . , (ml,Ul,Vl)) satisfies U∞ ≤ (k+1)dβinit ≤
2O(log λ)·d ≤ βmax. Let c be the constant that represents the maximal depth
to represent any gate with NAND gate. Since any depth d circuit consists of
NAND gate is admissible to T , any circuit with depth d′ = ⌊d/c⌋, or equiva-
lent of such circuit, is admissible to T as well. As c is a constant, we can write
d′ = d′(λ) = poly(λ).

Remark 10. Using Barrington’s theorem, one can convert a depth d circuit into
a length 4d permutation branching program, and the norm of homomorphically
evaluated input of such program becomes (3 · 4dk + 1)βinit [33]. Therefore, we
can set βmax to satisfy (3 · 4dk + 1) ≤ 2O(log λ) · 22d ≤ βmax. In this way, one can
reduce the size of βmax and q.

Theorem 4 ([21,33]). The leveled fully homomorphic HTDF scheme T defined
on Construction 2 satisfies strong claw-freeness under SISn,k,q,βSIS hardness as-
sumption.

21

5.2 (Leveled) Fully Homomorphic MAC from HTDF

Using a leveled fully homomorphic trapdoor function that satisfies strong claw-
freeness, we can construct a secure (leveled) fully homomorphic MAC scheme
with pre-processable verification as follows.

Construction 3 Let T be an HTDF. Let MT , UT , VT , and FT be the message
space, the input space, the output space and the admissible function space of T .
Let M = MT , Σ = UT , T , P = {(f, τ1, . . . , τl) | f ∈ FT } be the message space,
the ciphertext space, the data identifier space, and the admissible program space
of H.

Let F : {0, 1}λ × T → VT be a secure PRF.

Using T and F , we can construct an HomMAC H as follows.

– H.KeyGen(1λ) : sample kF
$← {0, 1}λ, (pkT , skT) ← T.KeyGen(1λ), and

output (sk , ek) := (pkT skT kF , pkT)

– H.Auth(sk , τ,m) : parse sk = pkT skT kF , let v := F (kF , τ), run u ←
InvskT ,m(v), and output u.

– H.Eval(ek , f, (m1, u1), . . . , (ml, ul)) : let pkT = ek and vi = ρpkT ,mi
(ui)

for i = 1, . . . , l. Compute u ← T.Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl)) and
m = f(m1, . . . ,ml). Output u.

– H.Prep(sk , P) : parse sk = pkT skT kF and P = (f, τ1, . . . , τl). Let vi :=
F (kF , τi) for i = 1, . . . , l. Let v ← T.Evalout(f, v1, . . . , vl), and output skP :=
pkT v.

– H.EffVerify(skP ,m, u) : parse skP = pkT v. If v = ρpkT ,m(u), output 1.
Otherwise, output 0.

– H.Verify(sk , P,m, u) = H.EffVerify(H.Prep(sk , P),m, u).

Remark 11. From the correctness of the HTDF T , H satisfies the correctness
properties of HomMAC. Since H.EffVerify is independent of the complexity of
P , H supports pre-processable verification. If T is leveled fully homomorphic,
then so is H.

Note that Construction 3 resembles the first (leveled) fully homomorphic
signature scheme except for the fact that kF remains secret. Using this secrecy,
we can prove that Construction 3 is adaptively secure against Type II forgery.

Theorem 5. If T satisfies strong claw-freeness, then H of Construction 3 is
Type II secure.

Proof. Define AdvPRF
F (λ) to be distinguishing advantage of F (kF , ·) from a ran-

dom function F ′ : T → VT for randomly chosen kF with respect to the security
parameter λ. Now, we switch pseudorandom function F with a random function
using the games defined as follows:

Game 0(λ) : The original security game GameHomMAC,II
H,A (λ).

22

Game 1(λ) : The same as Game 0(λ), but uses a slightly different construction
H ′ which is the same as H except for the parts that use F . In this game,
H ′.KeyGen(1λ) samples a random function F ′ : T → VT and lets sk :=
pk ′sk ′F ′ as a secret key. Also, H ′.Auth and H ′.Prep use F ′(·) instead of
F (kF , ·).

If we define AdvGame x,Game y
A (λ) := |Pr[Game x(λ) = 1]−Pr[Game y(λ) = 1]|

for any indices x and y, then we can write

AdvPRF
F (λ) ≥ AdvGame 0,Game 1

A (λ)

Let A be an adversary of H against Game 1 with at most q queries. We
define a probabilistic polynomial time adversary B that runs A internally to win
the game GameHTDF

T,B (λ) as follows.

When GameHTDF
T,B (λ) starts, the challenger initializes the keys (pkT , skT) ←

T.KeyGen(1λ) and sends pkT to B. Now, without knowing skT , B simulates the
challenger of Game 1 as follows:

– B samples a random function F ′ : T → VT and sends ek = pkT to A.

– B initializes a set S as ∅.
– For each authentication query (τ,m), B first checks if (τ, ·, ·) ∈ S. If (τ, ·, ·) ∕∈

S, then B samples u ← DU (which is defined in Construction 2), computes
v := ρpkT ,m(u), programs F ′ to satisfy F ′(τ) = v, and updates S ← S ∪
{(τ,m, u)}. If (τ, ·, ·) ∈ S, then B rejects the query.

– For each verification query (P,m, u), B first checks if the query is redundant,
Type I, or Type II with respect to S. If the query is redundant or Type I with
respect to S, then B rejects the verification query. If the query is Type II
with respect to S, then we let Ṗ := (f, τ1, . . . , τl) be the fully bound sub-
program of P , and find (unique) (mi, ui) ∈ M×Σ such that (τi,mi, ui) ∈ S.
Since (P,m, u) is Type II verification query, we can know that

(f(m1, . . . ,ml), H
′.Eval(ek , f, (m1, u1), . . . , (ml, ul))) ∕= (m,u)

AsH ′.Prep andH ′.Verify does not use skT , B can compute b = H ′.Verify(sk , P,m, u)
using pkT and F ′. If b = 0, then B also send 0 to A. If b = 1, then
B lets (m′, u′) := (f(m1, . . . ,ml), H

′.Eval(ek , f, (m1, u1), . . . , (ml, ul))) and
outputs (u, u′,m,m′) and halts.

If we let vi := ρpkT ,mi
(ui) and v := T.Evalout(f, v1, . . . , vl), then we can write

u′ =H ′.Eval(ek , f, (m1, u1), . . . , (ml, ul))

=T.Evalin(f, (m1, u1, v1), . . . , (ml, ul, vl))

and ρpkT ,m(u) = ρpkT ,m′(u′) = v from the correctness of T and the fact that
(P,m, u) is a Type II forgery. Since (m,u) ∕= (m′, u′), B’s output (u, u′,m,m′)
becomes a claw of T and wins GameHTDF

T,B (λ).

23

InA’s perspective, thanks to Lemma 1, B’s simulation is statistically indistin-
guishable to the challenger of Game 1(λ). Therefore, if we let AdvGame i

A (λ) :=
Pr[A wins Game i(λ)] for i = 1, 2, then we can write

AdvGame 1
A (λ) ≤ AdvHTDF

T,B (λ) + negl()

and conclude that

AdvHomMAC,II
H,A (λ) = AdvGame 0

A (λ) ≤AdvGame 0,Game 1
A +AdvGame 1

A (λ)

≤AdvPRF
F (λ) +AdvHTDF

T,B (λ) + negl()

□

6 Conclusion

In this work, we suggest a dedicated scheme for (leveled) fully homomorphic
MAC that is adaptively secure, and has pre-processable verification. However,
due to the secrecy of the primitive, it is yet unknown how to convert a single-
dataset scheme into a multi-dataset scheme while preserving security and pre-
processable verification.

References

1. Afshar, A., Cheng, J., Goyal, R.: Leveled fully-homomorphic signatures from batch
arguments. Cryptology ePrint Archive (2024)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H) IBE in the standard model.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 553–572. Springer (2010)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: International
Colloquium on Automata, Languages, and Programming. pp. 1–9. Springer (1999)

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices (2009)
5. Anthoine, G., Balbás, D., Fiore, D.: Fully-succinct multi-key homomorphic signa-

tures from standard assumptions. In: Annual International Cryptology Conference.
pp. 317–351. Springer (2024)

6. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.: Chainable functional commitments
for unbounded-depth circuits. In: Theory of Cryptography Conference. pp. 363–
393. Springer (2023)

7. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based
on lattices. Cryptology ePrint Archive (2014)

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: International workshop on public key cryptography. pp. 501–519. Springer
(2014)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 13 (2014)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM Journal on computing 43(2), 831–871 (2014)

24

11. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic sig-
natures. In: Preneel, B., Vercauteren, F. (eds.) Applied Cryptography and Network
Security - 16th International Conference, ACNS 2018, Leuven, Belgium, July 2-4,
2018, Proceedings. Lecture Notes in Computer Science, vol. 10892, pp. 183–201.
Springer (2018)

12. Catalano, D., Fiore, D., Tucker, I.: Additive-homomorphic functional commitments
and applications to homomorphic signatures. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 159–188.
Springer (2022)

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23. pp. 409–437. Springer (2017)

14. Datta, P., Dutta, R., Mukhopadhyay, S.: Short attribute-based signatures for ar-
bitrary turing machines from standard assumptions. Designs, Codes and Cryptog-
raphy 91(5), 1845–1872 (2023)

15. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the rom and efficient instantiations from lattices. In: Public-Key Cryptography–
PKC 2018: 21st IACR International Conference on Practice and Theory of Public-
Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part
II 21. pp. 89–119. Springer (2018)

16. Gay, R., Ursu, B.: On instantiating unleveled fully-homomorphic signatures from
falsifiable assumptions. In: IACR International Conference on Public-Key Cryp-
tography. pp. 74–104. Springer (2024)

17. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K.,
Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013 - 19th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 8270, pp. 301–320. Springer (2013)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 197–206. ACM (2008)

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual
Cryptology Conference. pp. 75–92. Springer (2013)

20. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc.
vol. 9, pp. 169–178 (2009)

21. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015. pp. 469–477. ACM (2015)

22. Goyal, R.: Mutable batch arguments and applications. Cryptology ePrint Archive
(2024)

23. Hayashi, R., Sakai, Y., Yamada, S.: Attribute-based signatures for circuits with
optimal parameter size from standard assumptions. Cryptology ePrint Archive
(2024)

24. Joo, C., Yun, A.: Homomorphic authenticated encryption secure against chosen-
ciphertext attack. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application

25

of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874,
pp. 173–192. Springer (2014)

25. Kim, J., Yun, A.: Secure fully homomorphic authenticated encryption. IEEE Ac-
cess 9, 107279–107297 (2021)

26. Ling, S., Nguyen, K., Phan, D.H., Tang, K.H., Wang, H., Xu, Y.: Fully dynamic
attribute-based signatures for circuits from codes. In: IACR International Confer-
ence on Public-Key Cryptography. pp. 37–73. Springer (2024)

27. Luo, F., Wang, F., Wang, K., Chen, K.: A more efficient leveled strongly-
unforgeable fully homomorphic signature scheme. Information Sciences 480, 70–89
(2019)

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 700–718. Springer (2012)

29. Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for circuits
from bilinear map. In: Public-Key Cryptography–PKC 2016: 19th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part I. pp. 283–300. Springer (2016)

30. Sakai, Y., Katsumata, S., Attrapadung, N., Hanaoka, G.: Attribute-based sig-
natures for unbounded languages from standard assumptions. In: Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part II 24. pp. 493–522. Springer (2018)

31. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Theory of Cryptography Confer-
ence. pp. 489–518. Springer (2017)

32. Wang, C., Wu, B., Yao, H.: Leveled adaptively strong-unforgeable identity-based
fully homomorphic signatures. IEEE Access 8, 119431–119447 (2020)

33. Wang, F., Wang, K., Li, B., Gao, Y.: Leveled strongly-unforgeable identity-based
fully homomorphic signatures. In: López, J., Mitchell, C.J. (eds.) Information Se-
curity - 18th International Conference, ISC 2015, Trondheim, Norway, September
9-11, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9290, pp. 42–60.
Springer (2015)

34. Wang, Y., Wang, M.: A new fully homomorphic signatures from standard lattices.
In: International Conference on Wireless Algorithms, Systems, and Applications.
pp. 494–506. Springer (2020)

35. Wee, H., Wu, D.J.: Succinct functional commitments for circuits from k-lin. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 280–310. Springer (2024)

26

