
The Security of Hash-and-Sign with Retry
against Superposition Attacks

Haruhisa Kosuge1 and Keita Xagawa2[0000−0002−6832−9940]

1 NTT Social Informatics Laboratories, Japan
hrhs.kosuge@ntt.com

2 Technology Innovation Institute, UAE
keita.xagawa@tii.ae

Abstract. Considering security against quantum adversaries, while it
is important to consider the traditional existential unforgeability (EUF-
CMA security), it is desirable to consider security against adversaries
making quantum queries to the signing oracle: Plus-one security (PO
security) and blind unforgeability (BU security) proposed by Boneh and
Zhandry (Crypto 2013) and Alagic et al. (EUROCRYPT 2020), respec-
tively. Hash-and-sign is one of the most common paradigms for con-
structing EUF-CMA-secure signature schemes in the quantum random
oracle model, employing a trapdoor function and a hash function. It is
known that its derandomized version is PO- and BU-secure. A variant
of hash-and-sign, known as hash-and-sign with retry (HSwR), formu-
lated by Kosuge and Xagawa (PKC 2024), is widespread since it allows
for weakening the security assumptions of a trapdoor function. Unfor-
tunately, it has not been known whether HSwR can achieve PO- and
BU-secure even with derandomization.
In this paper, we apply a derandomization with bounded loops to HSwR.
We demonstrate that HSwR can achieve PO and BU security through
this approach. Since derandomization with bounded loops offers advan-
tages in some implementations, our results support its wider adoption,
including in NIST PQC candidates.

Keywords: Post-quantum cryptography · Quantum random oracle model
· Superposition attack · Digital signature · Hash-and-sign.

1 Introduction

Security Models of Digital Signatures against Quantum Adversaries: Digital
signatures are crucial for ensuring the integrity and authenticity of digital com-
munications. The standard and traditional security notion for digital signatures
is existential unforgeability against a chosen-message attack (EUF-CMA) [13].
Roughly speaking, we say a signature scheme is EUF-CMA-secure if no efficient
adversary can forge a signature even if the adversary has access to a signing or-
acle, thereby capturing both non-repudiation and authentication.

The advent of quantum computers has raised concerns about the security
of digital signatures due to Shor’s algorithm [24]. Consequently, there has been

2 H. Kosuge and K. Xagawa

growing interest in post-quantum cryptography (PQC). In 2022, NIST selected
three candidates of digital signatures, namely Falcon, Dilithium (ML-DSA), and
SPHINCS+ (SLH-DSA), for standardization [22]. Furthermore, NIST initiated
an additional call for digital signatures [21].

Given that post-quantum signatures must withstand attacks from quantum
computers, their security proofs must be conducted in the quantum random
oracle model (QROM) [5], rather than in the random oracle model (ROM),
since the QROM models quantum adversaries having offline access to the hash
function. The EUF-CMA security in the QROM allows an adversary to make
quantum queries to the random oracle and classical queries to the signing oracle.

If quantum computing becomes ubiquitous, EUF-CMA might not adequately
capture the necessary security requirements for signatures, as end-users may use
personal quantum computers for signing. In that case, the adversary may carry
out superposition attacks, which force the generation of quantum superpositions
of signatures. Even in such a future, the security model of Boneh and Zhandry [6]
remains valid, as it assumes quantum queries to the signing oracle. This model
is called plus-one unforgeability (PO security, in short) [1] since the adversary
needs to generate q+1 pairs of message/signature with q quantum queries to the
signing oracle. Another model, proposed by Alagic et al. [1], is called blind un-
forgeability (BU security, in short). In this model, certain messages are blinded,
meaning that the signing oracle is designed not to return signatures for these
messages, and the adversary must forge signatures corresponding to the blinded
messages. Note that there are strong (PO, sBU, and sEUF-CMA) and weak
(wPO, BU, and EUF-CMA) security notions 3. Since a weak variant of PO is
not defined, we introduce a new definition: weak PO (wPO).

Regarding the relationship between security models, a MAC scheme that
is PO-secure but BU-insecure has been demonstrated [1, ePrint], as well as a
MAC/signature scheme that is BU-secure but PO-insecure [26, Appendix C,
ePrint]. We illustrate the relationship between these security notions in Fig. 1.
As shown in the diagram, the relationship between these security models remains
partially understood, necessitating independent evaluation of both PO and BU
security.

Hash-and-Sign with Retry: Two paradigms are typically employed to construct
EUF-CMA-secure signatures: Hash-and-sign (also known as full domain hash
(FDH)) [3, 4] and Fiat-Shamir [10]. This paper focuses on hash-and-sign. Hash-
and-sign constructs digital signatures from a trapdoor function (TDF) and a
hash function. For provable security, hash-and-sign requires a special TDF called
preimage-sampleable function (PSF) [12]. Since PSFs are generally hard to build,
hash-and-sign with retry (HSwR) [23, 19], which can construct signatures using
non-PSF TDFs, has been widely adopted among multivariate and code-based

3 The distinction between strong and weak security is determined by whether an ad-
versary’s forgery is considered successful if it targets messages for which the attacker
has already obtained information about the corresponding signatures through sign-
ing queries (strong) or targets completely new messages (weak).

The Security of Hash-and-Sign with Retry against Superposition Attacks 3

EUF-CMA

sEUF-CMA

wPO

PO

BU

sBU
6

[1]

6
[26]

Fig. 1: Relationship between different security notions

signatures, including new NIST PQC candidates, QR-UOV [11] and PROV [14].
In the signature generation, the paradigm repeatedly performs loop iterations
until certain conditions are met. Kosuge and Xagawa [19] have provided a re-
duction from the non-invertibility and preimage-simulatability of the underlying
TDF to the EUF-CMA security in the QROM 4.

Current Status of PO and BU Security Proofs: Boneh and Zhandry [6] and
Chatterjee, Chung, Liang, and Malavolta [7] showed that the derandomized ver-
sion of hash-and-sign (without retry) is PO- and BU-secure, respectively. Also,
Xagawa [26] demonstrated PO and BU security proofs of the derandomized
version of Fiat-Shamir with aborts [20] that has a similar structure as HSwR.
However, whether HSwR achieves PO/BU security even with derandomization
remains unclear. Thus, it is natural to pose the following question:

Can HSwR achieve PO and BU security (with derandomization)?

1.1 Contribution

We affirmatively answer the question. Applying the derandomization and bound-
ing the number of retries to HSwR, we show that the variant is PO- and
BU- secure. 5 We refer to this version of HSwR as derandomized hash-and-sign
with bounded retry (DHSwBR). Additionally, we demonstrate that DHSwBR
is EUF-CMA-secure under the same assumption as the existing proof for the
original HSwR [19], along with the pseudorandomness of the PRF used for the
derandomization.

Note that we evaluate both strong and weak security notions for PO, BU,
and EUF-CMA. Additionally, our proofs are reductions from the EUF-NMA
security of the original HSwR, where NMA stands for No Message Attack. Ko-
suge and Xagawa [19] have shown a reduction from non-invertibility of TDF
4 In general, non-invertibility of TDFs is called one-wayness. We make a distinction be-

tween them depending on the way to choose challenges (non-invertibility follows [16]
and one-wayness follows [3]).

5 Derandomized HSwR (with unbounded retry) is available as an option in PROV [14],
and its security has been evaluated in the ROM by Cogliati et al. [8]. (Unfortunately,
their proof contains an error).

4 H. Kosuge and K. Xagawa

Table 1: Summary of the existing and our security proofs in the QROM. In
“Paradigm”, HS, DHS, PHS, DPHS denote original, derandomized, probabilistic,
and derandomized probabilistic hash-and-sign, respectively, and +RF denotes
that it replaces PRFs with random functions (see the definitions in Appendix B).
In “Assumptions”, PSF indicates that the TDF is PSF, while INJ, CR, SPR,
and PS represent, in decreasing order of strength, the injection, collision re-
sistance, second-preimage resistance, and preimage-simulatability of the TDF,
respectively. Here, “(C-)” denotes that a computational bound may be used for
the preimage-simulatability. (q)PRF denotes (quantum) pseudo-randomness of
PRFs.

Proof Paradigm Security Assumptions
[5] HS +RF sEUF-CMA CR
[19] PHS EUF-CMA EUF-NMA, (C-)PS
[19] HSwR EUF-CMA EUF-NMA, (C-)PS
[19] HSwR sEUF-CMA EUF-NMA, INJ, (C-)PS
[6] DHS PO PSF, CR, qPRF
[26] DHS PO PSF, CR, qPRF
[26] DHS +RF PO PSF, CR
[7] DHS BU PSF, CR, qPRF
[26] DHS sBU PSF, CR, qPRF
Section 4.1 DHSwBR/DPHS PO EUF-NMA, CR, PS, qPRF
Section 4.1 DHSwBR/DPHS wPO EUF-NMA, PS, qPRF
Section 4.2 DHSwBR/DPHS sBU EUF-NMA, CR, PS, qPRF
Section 4.2 DHSwBR/DPHS BU EUF-NMA, PS, qPRF
Section 4.3 DHSwBR/DPHS sEUF-CMA EUF-NMA, SPR, (C-)PS, PRF
Section 4.3 DHSwBR/DPHS EUF-CMA EUF-NMA, (C-)PS, PRF

to EUF-NMA. By demonstrating reductions from the EUF-NMA security, we
not only establish reductions from non-invertibility but also enable adaptation
to new security properties that have yet to be discovered. We summarize the
results and their comparison to the existing proofs in Table 1. By setting the
number of retries as one, our proof can be applied to the security proof of the
derandomized probabilistic hash-and-sign.

Implications of Our Results: Since DHSwBR is interoperable with the original
HSwR, it can be considered an option for signature schemes adopting HSwR.
In addition to the security advantage of provable security against superposition
attacks, the option also offers advantages in certain implementations. When sig-
nature generation depends on the entropy of randomness, security is inherently
tied to the quality of the implementation. By the derandomization, security
can be maintained without relying on the random number generation. This is
particularly beneficial for platforms where sufficient entropy in random number
generation is not guaranteed. Due to the security and implementation advan-

The Security of Hash-and-Sign with Retry against Superposition Attacks 5

tages, derandomization with bounded loops should be recognized as a major
option for HSwR signatures.

1.2 Technical Overview

Before presenting the technical overview of our proof for (w)PO and (s)BU secu-
rity, we briefly explain HSwR, its variant DHSwBR, and preimage-simulatability.
HSwR uses a TDF that consists of (Gen,F, Inv). Gen generates a public/secret
key pair (vk , sk) that is also a key pair of the signature scheme. Taking vk and
x ∈ X as inputs, a hard-to-invert function F deterministicaly outputs y ∈ Y. The
function Inv is a probabilistic function that, given sk and y as input, returns an x
such that F(vk , x) = y with high probability, or outputs ⊥ (indicating inversion
failure). For a message m and a uniformly chosen salt r, the signing algorithm
computes Inv(sk ,H(r,m)), where H is a random function. If Inv(sk ,H(r,m)) fails
in inversion, a new r is chosen, and this process is repeated until the inversion
succeeds. Then, (r, x) is output as the signature. A signature (r, x) is verified if
F(vk , x) = H(r,m) holds. As for DHSwBR, in addition to sk , the signing key
includes keys s and s′ for PRFs PRF and PRF′. We use a counter k, which in-
crements by 1 with each loop iteration, to derive a salt as r := PRF(s,m, k)
and a random coin r′ := PRF′(s′,m, k) for Inv. Also, the number of retries is
bounded by a parameter B. Aside from the above derandomization in the sig-
nature generation, DHSwBR is identical to HSwR. An important property of
HSwR/DHSwBR is the preimage-simulatability, which assumes that the follow-
ing two are statistically or computationally indistinguishable [19]:

– x obtained after retrying y until y becomes invertible by Inv(sk , y).
– x obtained by a simulator that does not use the secret key sk .

Let us now proceed with the technical overview of our proof. In the reduction,
the EUF-NMA adversary, which does not possess the signing key, must simulate
the signing oracle. To achieve this, the following two steps are required:

– First, it must modify the output of the random function H to make simulated
signatures generated in the signing oracle valid.

– Second, the message/signature pair output by the (w)PO or (s)BU adver-
sary must be verified using the original random function. This condition is
essential for the EUF-NMA adversary to win its own game.

For the second step, this can be achieved by utilizing the techniques used by
Xagawa [26] in proving the PO and sBU security of Fiat-Shamir with aborts
taking derandomization with bounded loops. Let (m∗, r∗, x∗) be one of the mes-
sage/signature pairs output by a (w)PO or (s)BU adversary, and let (rm, xm)
be a signature generated by the signing oracle taking m. The random function H
is modified such that H(rm,m) = F(vk , xm) holds for any m to accept signatures
generated by the signing oracle. We can modify the game so that the adversary
can win if and only if r∗ 6= rm∗ holds 6. Since the values of H(r,m) for r 6= rm

6 In the PO/sBU security proofs, collision-resistance of the TDF is required.

6 H. Kosuge and K. Xagawa

remain unchanged from the original, the signature (m∗, r∗, x∗) can be verified
using the original random function if r∗ 6= rm∗ .

However, modifying outputs of H to accept simulated signatures in the first
step cannot be achieved using the techniques from [9, 26]; they rely on the strong
assumption of statistical or divergence honest-verifier zero-knowledge (HVZK),
which requires simulation of succeeding and failing attempts, while preimage-
simulatability only requires that of succeeding attempt. We explain the diffi-
culty in simulating the signing oracle. In the real experiment, for a message m,
when inversion first succeeds at the k-th iteration, H(ri,m) = yi holds for each
{(ri, yi)}i=1,...,k, where ri and yi are generated sequentially from i = 1. To sim-
ulate this signing oracle, the EUF-NMA adversary must simulate {yi}i=1,...,k

without using sk ; however, preimage-simulatability only assures that the last yk
is simulated by F(vk , x) for some x.

To address this problem, we employ the one-way-to-hiding (O2H) lemma [25,
2]. Assuming that the guessing probability of {ri}i=1,...,k−1 is negligible, we can
eliminate the need for simulation of {yi}i=1,...,k−1, allowing the EUF-NMA ad-
versary to simulate signatures under the assumption of preimage-simulatability.
Note that we can only use statistical preimage-simulatability since we cannot per-
form adaptive reprogramming [15] in the quantum signing oracle setting, while
it is a common technique for establishing computational bound for simulating
signatures in the classical signing oracle [15, 9, 19].

1.3 Open Problems

In our proofs of (w)PO/(s)BU security, a computational bound for the preimage-
simulatability cannot be used. Since there are cryptographic schemes for which
statistical properties cannot be achieved, the relaxation from the statistical
bound to the computational one would expand the applicability of our secu-
rity proofs. One possible way is assuming quantum preimage-simulatability as in
the case of the Fiat-Shamir signatures [27]; however, this is a strong assumption.

1.4 Organization

Section 2 gives notations and definitions. Section 3 introduces the QROM and its
existing proof techniques used for our proofs. Section 4 presents the new security
proofs of DHSwBR.

2 Preliminaries

2.1 Notations and Terminology

For n ∈ N, we let [n] := {1, . . . , n}. We write any symbol for sets in calligraphic
font. For a finite set X , |X | is the cardinality of X and U(X) is the uniform
distribution over X . By x ←$ X and x ← DX , we denote the sampling of an
element from U(X) and DX (distribution on X). We denote a set of functions

The Security of Hash-and-Sign with Retry against Superposition Attacks 7

having a domain X and a range Y by Func(X ,Y). For a set of distributions over
Y indexed by D = {Dx : x ∈ X}, we define FuncX ,Y(D) as a distribution of f in
Func(X ,Y) such that, for each x ∈ X , f(x) is independently drawn from Dx.

We write any symbol for functions in sans-serif font, oracles in small capitals,
and adversaries in calligraphic font. If a function F is deterministic (resp., prob-
abilistic), we write y := F(x) (resp., y ← F(x)). We denote by y ← AOrcl(x)
(resp., y ← A|Orcl〉(x)) probabilistic computations of A on input x with a clas-
sical (resp., quantum) oracle access to an oracle Orcl. For a random function
H, we denote by Hx∗ 7→y∗ a function such that Hx∗ 7→y∗

(x) = H(x) for x 6= x∗ and
Hx∗ 7→y∗

(x∗) = y∗. The notation GA = y denotes an event in which a game G
played by A returns y. For i-th game Gi, we denote Wi as an event GAi =1.

We denote 1 if the Boolean statement is true (>) and 0 if the statement is
false (⊥). For a statement P , JP K denotes the truth value of P .

2.2 Digital Signature

We define the syntax of digital signature schemes as follows.

Definition 1 (Digital Signature). A digital signature scheme Sig consists of
three algorithms:

KeyGen(1λ): This algorithm takes 1λ, where λ is the security parameter, as
input and outputs a verification key vk and a signing key sk .

Sign(sk ,m): This algorithm takes a signing key sk and a message m as input
and outputs a signature σ.

Vrfy(vk ,m, σ): This algorithm takes a verification key vk , a message m, and a
signature σ as input, and outputs > (acceptance) or ⊥ (rejection).

Traditionally, the security of digital signatures is analyzed under EUF-CMA
(Existential UnForgeability against Chosen-Message Attack) or its stronger vari-
ant, sEUF-CMA (strong EUF-CMA), both of which consider an adversary
with access to a signing oracle attempting to forge a signature. Additionally,
EUF-NMA (No Message Attack) is used, where the adversary does not have
access to the signing oracle.

Definition 2 (Traditional Security of Signature). Let Sig be a signature
scheme. Using games given in Fig. 2, we define advantage functions of adver-
saries playing EUF-CMA, sEUF-CMA and EUF-NMA games against Sig as
AdvEUF-CMA

Sig (A)=Pr
[
EUF-CMAA=1

]
, AdvsEUF-CMA

Sig (A)=Pr
[
sEUF-CMAA=1

]
,

and AdvEUF-NMA
Sig (A)=Pr

[
EUF-NMAA=1

]
, respectively. We say Sig is EUF-CMA-

secure, sEUF-CMA-secure, or EUF-NMA-secure if its corresponding advan-
tage is negligible in the security parameter for any efficient adversary.

Security models that allow quantum queries to the signing oracle, which are
prohibited in traditional security models, have been actively studied in recent
years. Boneh and Zhandry [6] defined the security notion called EUF-qCMA.
We call the security notion as plus-one (PO) security following [1]. Also, we
define its weakened version as wPO (weak PO) security.

8 H. Kosuge and K. Xagawa

GAME (s)EUF-CMA/EUF-NMA

1 Q := ∅
2 (vk , sk)← KeyGen(1λ)

3 (m∗, σ∗)← ASign(vk) //(s)EUF-CMA
4 (m∗, σ∗)← A(vk) //EUF-NMA
5 if m∗ ∈ Q then //EUF-CMA
6 return ⊥ //EUF-CMA
7 if (m∗, σ∗) ∈ Q then //sEUF-CMA
8 return ⊥ //sEUF-CMA
9 return Vrfy(vk ,m∗, σ∗)

Sign(m)

10 σ ← Sign(sk ,mi)
11 Q := Q ∪ {m} //EUF-CMA
12 Q := Q ∪ {(m,σ)} //sEUF-CMA
13 return σ

Fig. 2: (s)EUF-CMA and EUF-NMA games

GAME wPO/PO

1 Q := ∅
2 (vk , sk)← KeyGen(1λ)

3 run A|Sign〉,Forge(vk)
4 return J|Q| > qSK

Forge(m,σ)

5 if Vrfy(vk ,m, σ) = > then
6 if m 6∈ Q then //wPO
7 Q := Q ∪ {m} //wPO
8 if (m,σ) 6∈ Q then //PO
9 Q := Q ∪ {(m,σ)} //PO

Sign(m)

/* generate r on each query. */
/* for m queried in superposition,

r is fixed. */
10 σ := Sign(sk ,m; r)
11 return σ

Fig. 3: PO and wPO games

Definition 3 (Plus-One Unforgeability). Let Sig be a signature scheme. Us-
ing games given in Fig. 3, we define advantage functions of adversary playing PO
and wPO games against Sig as AdvPO

Sig (A) = Pr
[
POA = 1

]
and AdvwPO

Sig (A) =

Pr
[
wPOA = 1

]
. We say Sig is PO-secure or wPO-secure if its corresponding

advantage is negligible in the security parameter for any efficient adversary.

In the PO game, the adversary must output qS+1 distinct pairs of message/sig-
nature from qS signing queries. In contrast, in the wPO game, the messages
in the qS + 1 pairs must be distinct. Since the condition for a successful attack
becomes more stringent, the security definition becomes weaker.

Alagic et al. [1] defined another security notion called blind unforgeability
(BU security) and its stronger version sBU (strong BU).

Definition 4 (Blind Unforgeability). Let Sig be a signature scheme. Using
games given in Fig. 4, we define advantage functions of adversary playing BU
(Blind Unforgeability) and sBU (strong BU) games against Sig as AdvBU

Sig (A) =
Pr
[
BUA = 1

]
and AdvsBU

Sig (A) = Pr
[
sBUA = 1

]
. We say Sig is BU-secure or

sBU-secure if its corresponding advantage is negligible in the security parameter
for any efficient adversary.

The Security of Hash-and-Sign with Retry against Superposition Attacks 9

GAME BU/sBU

1 Bε ← FuncM,{0,1}(Berε) //BU
2 Bε ← FuncM×Σ,{0,1}(Berε) //sBU
3 win := ⊥
4 (vk , sk)← Sig.KeyGen(1λ)

5 run A|BεSign〉,Forge(vk)
6 return win

Forge(m,σ)

7 if Sig.Vrfy(vk ,m, σ) = > then
8 if m ∈ Bε then //BU
9 win := > //BU

10 if (m,σ) ∈ Bε then //sBU
11 win := > //sBU

BεSign(m)

/* generate r on each query. */
/* for m queried in superposition,

r is fixed. */
12 if m ∈ Bε then //BU
13 return ⊥ //BU
14 σ := Sig.Sign(sk ,m; r)
15 if (m,σ) ∈ Bε then //sBU
16 return ⊥ //sBU
17 return σ

Fig. 4: BU and sBU games

GAME PRFb

1 if b = 0 then
2 k ←$ K
3 f ←$ PRF(k, ·)
4 else
5 f ←$ Func(X ,Y)
6 b∗ ← Af ()
7 return b∗

GAME qPRFb

1 if b = 0 then
2 k ←$ K
3 f ←$ PRF(k, ·)
4 else
5 f ←$ Func(X ,Y)
6 b∗ ← A|f〉()
7 return b∗

Fig. 5: PRF and qPRF games

Let ε ∈ {0, 1
2p , ...,

2p−1
2p } for some parameter p. In the BU game, Bε is a random

subset of M, where each m ∈ Bε is independently selected with probability ε.
The BU adversary attempts to find a valid pair (m,σ) such that m 6∈ Bε, given
access to the signing oracle blinded by Bε. In the sBU game, Bε is a random
subset of M× Σ, where Σ represents the signature space. Thus, messages are
not blinded independently in the sBU game.

2.3 Pseudorandom Function

Definition 5 ((Quantum) Pseudorandom Function). Let PRF : K×X →
Y be a deterministic function. Using games given in Fig. 5, we define ad-
vantage functions of adversaries playing the PRF and qPRF games against
PRF as AdvPRF

PRF (A) = |Pr
[
PRF0

A=1
]
− Pr

[
PRF1

A=1
]
| and AdvqPRF

PRF (A) =

|Pr
[
qPRF0

A=1
]
− Pr

[
qPRF1

A=1
]
|. We say PRF is pseudorandom or quantum

pseudorandom if its corresponding advantage is negligible in the security param-
eter for any efficient adversary.

2.4 Hash-and-Sign with Retry

We define the syntax of the trapdoor function (TDF) as follows.

10 H. Kosuge and K. Xagawa

GAME SPR

1 (vk , sk)← Gen(1λ)
2 x̂← DX
3 x∗ ← A(vk , x̂)
4 return Jx∗ 6= x̂ ∧ F(vk , x∗)=F(vk , x̂)K

GAME CR

1 (vk , sk)← Gen(1λ)
2 (x∗

1 , x
∗
2)← A(vk)

3 return
Jx∗

1 6= x∗
2 ∧ F(vk , x∗

1) = F(vk , x∗
2)K

Fig. 6: SPR and CR games

Definition 6 (Trapdoor Function). A TDF T consists of three algorithms:

Gen(1λ): This algorithm takes 1λ, where λ is the security parameter, as input
and a public key vk and a secret key sk .

F(vk , x): This algorithm takes a public key vk and x ∈ X as input and deter-
ministically outputs y ∈ Y.

Inv(sk , y): This algorithm takes a secret key sk and y ∈ Y and outputs x ∈ X
or ⊥.

T is (γ, β)-correct if for every (vk , sk)← Gen(1λ), the following holds:

Pr[y ←$ Y, x← Inv(sk , y) : F(vk , x) = y|x 6= ⊥] ≥ γ,

and Pr[y ←$ Y, x← Inv(sk , y) : x = ⊥] ≤ β.

There are some security notions for TDFs. In this paper, we use the following:

Definition 7 (Second-Preimage Resistance and Collision Resistance).
Let T be a TDF. Using games given in Fig. 6, we define advantage functions of

adversaries playing the SPR (Second-Preimage-Resistance) and CR (Collision-
Resistance) games against T as AdvSPR

T (A) = Pr
[
SPRA=1

]
and AdvCR

T (A) =
Pr
[
CRA=1

]
, respectively. We say T is second-preimage-resistant or collision-

resistant if its corresponding advantage is negligible in the security parameter for
any efficient adversary.

Let SampDom be a function to output x ← SampDom(vk) that simulates
Inv. By adding SampDom to the function set of Definition 6, we can define a
preimage sampleable function (PSF) [12]. In this paper, we consider preimage-
simulatability [19], which relaxes the conditions of a PSF.

Definition 8 (Preimage Simulatablity [19, Definition 7]). Let T be a
TDF with SampDom. Using a game defined in Fig. 7, we define an advantage
function of an adversary playing the PS (Preimage Sampling) game against T
as AdvPS

T (A) =
∣∣Pr[PS0A=1

]
− Pr

[
PS1
A=1

]∣∣. We say T is preimage-simulatable
if its advantage is negligible for any efficient adversary. Also, if Sample0 and
Sample1 are δ-close 7, we say T is δ-PS.

Note that PSF is always preimage-simulatable since it can statistically simulate
an honestly generated preimage without retry.

The Security of Hash-and-Sign with Retry against Superposition Attacks 11

GAME PSb

1 (vk , sk)← Gen(1λ)

2 b∗ ← ASampleb(vk)
3 return b∗

Sample0()

4 repeat
5 y ←$ Y
6 x← Inv(sk , y)
7 until x 6= ⊥
8 return x

Sample1()

9 x← SampDom(vk)
10 return x

Fig. 7: PS game

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)
2 return (vk , sk)

Sign(sk ,m)

3 k := 0
4 repeat
5 k := k + 1
6 rk ←$ R
7 yk := H(rk,m)
8 xk ← Inv(sk , yk)
9 until xk 6= ⊥

10 return (rk, xk)

Vrfy(vk ,m, (r, x))

11 return JF(vk , x) = H(r,m)K

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)

2 (s, s′)←$ K×K
3 return (vk , (sk , s, s′))

Sign((sk , s, s′),m)

4 k := 0
5 repeat
6 k := k + 1
7 rk := PRF(s, (m, k))
8 yk := H(rk,m)

9 xk := Inv(sk , yk;PRF
′(s′, (m, k)))

10 until xk 6= ⊥ ∨ k ≥ B
11 return (rk, xk)

Vrfy(vk ,m, (r, x))

12 return JF(vk , x) = H(r,m)K

Fig. 8: Algorithms of hash-and-sign with retry (HSwR) and derandomized hash-
and-sign with bounded retry (DHSwBR)

Kosuge and Xagawa [19] formulated a paradigm used in signature schemes
proposed by Sakumoto et al. [23] as probabilistic hash-and-sign with retry, which
we refer to in this paper as hash-and-sign with retry (HSwR). In this paper, we
propose a variant referred to as derandomized hash-and-sign with bounded retry
(DHSwBR), as shown in Fig. 8. Let HSR[T,H] and DHSRB [T,H,PRF,PRF

′] be
HSwR and DHSwBR composing of a TDF T, a hash function H : R×M→ Y,
and PRFs PRF : K ×M × [B] → R and PRF′ : K ×M × [B] → R′, where B
denotes the maximum number of retries. PRF generates a salt r ∈ R for H and
PRF′ generates a random coin used for derandomizing Inv.

3 Quantum Random Oracle Model (QROM) and Proof
Techniques

In the ROM/QROM, a hash function H : X → Y is modeled as a random func-
tion H ←$ Func(X ,Y). The random function is under the control of the chal-
lenger, and the adversary makes queries to the random oracle (random oracle
7 For distributions D and D′ over y ∈ Y, we say D is δ-close to D′ if

∑
y∈Y |D(y) −

D′(y)| ≤ δ.

12 H. Kosuge and K. Xagawa

GAME GSPBλ

1 {λ(x)}x∈X ← A1

2 if ∃x ∈ X , λ(x) > λ then
3 return ⊥
4 for x ∈ X do
5 g(x)← Berλ(x)

6 x∗ ← A|g〉
2

7 return g(x∗)

Fig. 9: Generic search problem with bounded probabilities (GSPB)

GAME ARb

1 H0 ←$ Func(R×X ,Y)
2 H1 := H0

3 b∗ ← A|Hb〉,Repro()
4 return b∗

Repro(x)
5 r ←$ R
6 y ←$ Y
7 H1 := H

(r,x) 7→y
1

8 return r

Fig. 10: AR (Adaptive Reprogramming) game

queries) to compute the hash values. In the ROM, the challenger can choose
y ←$ Y and program H := Hx 7→y for queried x on-the-fly instead of choosing
H ←$ Func(X ,Y) at the beginning (lazy sampling technique). In the QROM,
the adversary makes queries to H in a superposition of many different values,
e.g.,

∑
x αx |x〉 |y〉. The challenger computes H and gives a superposition of the

results to the adversary,
∑

x αx |x〉 |y ⊕ H(x)〉. Due to the nature of superposition
queries and other constraints of quantum computation, traditional techniques in
the ROM cannot be directly applied to the QROM. However, recent advance-
ments in QROM research have led to the discovery of many proof techniques.
This section introduces the techniques used in this paper.

Generic Quantum Search [28, 17, 18]: Let X be a finite set. The generic search
problem (GSP, in short) is finding x ∈ X satisfying g(x) = 1 given access to
an oracle g : X → {0, 1}, where for each x ∈ X , g(x) is drawn independently
according to Berλ (Bernoulli distribution parameterized by λ).

Lemma 1. Let λ ∈ [0, 1]. For any quantum algorithm A = (A1,A2) making at
most q queries to |g〉, we have

Pr
[
GSPBAλ =1

]
≤ 8(q + 1)2λ,

where GSPBλ is defined in Fig. 9.

Tight Adaptive Reprogramming [15]: Let H0,H1 : R× X → Y be random func-
tions. Fig. 10 shows a game called AR (Adaptive Reprogramming) game, in
which the adversary Aar attempts to distinguish H0 (no reprogramming) from
H1 (reprogrammed by Repro). For a reprogramming query, the challenger repro-
grams H1 for r ←$ R and y ←$ Y, and gives r to A. A distinguishing advantage
of the AR game is defined by AdvAR

H (Aar) =
∣∣Pr[AR0

A=1
]
− Pr

[
AR1
A=1

]∣∣.

The Security of Hash-and-Sign with Retry against Superposition Attacks 13

Lemma 2 (Tight Adaptive Reprogramming [15, Proposition 2]). For
any quantum AR adversary A issuing at most qR classical reprogramming queries
and qH (quantum) random oracle queries to Hb, the distinguishing advantage of
the AR game is bounded by

AdvAR
H (A) ≤ 3

2
qR

√
qH
|R|

.

One-way to Hiding (O2H) [25, 2]: We consider two functions H0 and H1 such
that H0(x) = H1(x) for x 6∈ S. We can show the indistinguishability of H0 and
H1 using the following lemma.
Lemma 3 (Original O2H [2, Theorem 3]). Let H0,H1 : X → Y be func-
tions. Assume that H0(x) = H1(x) for all x 6∈ S. Let z be a random bitstring. (S,
H0, H1, z may have arbitrary joint distribution.) Let A be a quantum algorithm
with q quantum queries to H0 or H1. Then, there exists a quantum algorithm B
that, given access to the oracle H0 and A, finds an element in S such that∣∣∣Pr[A|H0〉(z) = 1

]
− Pr

[
A|H1〉(z) = 1

]∣∣∣ ≤ 2q
√
Pr
[
x← B|H0〉,A(z) : x ∈ S

]
.

When using the tight adaptive reprogramming shown in Lemma 2, Lemma 3
cannot be directly applied because it does not assume reprogrammed random
functions. Therefore, we extend the original O2H as follows.

Lemma 4 (O2H with Adaptive Reprogramming). Let H0,H1 : X → Y be
functions that are reprogrammed depending on classical queries to an oracle O
(H0 and H1 may be reprogrammed differently). Assume that H0(x) = H1(x) for
all x 6∈ S when O is queried the same number of times with the same inputs. Let
z be a random bitstring. (S, H0, H1, z may have arbitrary joint distribution.)
Let A be a quantum algorithm with q quantum queries to H0 or H1 and some
classical queries to O. Then, there exists a quantum algorithm B that, given
access to the oracle H0 and A, finds an element in S such that∣∣∣Pr[A|H0〉,O(z) = 1

]
− Pr

[
A|H1〉,O(z) = 1

]∣∣∣ ≤ 2q
√
Pr
[
x← B|H0〉,O,A(z) : x ∈ Si

]
.

We show the proof in Appendix A. We can use the semi-classical O2H [2, The-
orems 1 and 2] for the same purpose. Since the multiplicative factor of the
technique is 4q, Lemma 4 is tighter by a factor of 2.

Other Techniques: We introduce two lemmas proven by Boneh and Zhandry [6].

Lemma 5 (Oracle Indistinguishability [6, Lemma 2.5, ePrint]). Let X
and Y be two finite sets. Let D = {Dx} and D′ = {D′x} be two sets of efficiently
sampleable distributions over X indexed by x ∈ X . Let A be a quantum adversary
making q (quantum) queries to an oracle f : X → Y. If for each x ∈ X , Dx and
D′x are ε-close, then∣∣∣Pr[f ← FuncX ,Y(D) : A|f〉 = 1

]
− Pr

[
f ← FuncX ,Y(D′) : A|f〉 = 1

]∣∣∣ ≤√(6q)3ε.

14 H. Kosuge and K. Xagawa

Lemma 6 ([6, Lemma 2.6, ePrint]). Let X and Y be two finite sets. Fix a
set D of distributions Dx over Y indexed by x ∈ X . Let α be the minimum over
all x ∈ X of the min-entropy of the distribution Dx and f : X → Y be a function
chosen according to FuncX ,Y(D). Then, any q-query quantum algorithm can only
produce (q + 1) input/output pairs of f with probability at most q+1

b2αc .

4 Security Proofs for Derandomized Hash-and-sign with
Bounded Retry

In this section, we show reductions from the EUF-NMA security of HSwR to
the (w)PO, (s)BU, and (s)EUF-CMA security of DHSwBR. As Kosuge and
Xagawa [19] have shown reductions from the non-invertibility of the underlying
TDF to the EUF-NMA security of HSwR, these reductions are extended to
the reduction from the non-invertibility. Note that our proofs are applied to
derandomized probabilistic hash-and-sign by settingB = 1, where we can remove
terms only related to DHSwBR from the bounds.

4.1 (Weak) Plus-One Unforgeability

We show that DHSRB [T,H,PRF,PRF
′] shown in Fig. 8 is PO-secure.

Theorem 1 (EUF-NMA + CR + qPRF ⇒ PO). For any quantum PO
adversary Apo of DHSRB [T,H,PRF,PRF

′] issuing at most qH quantum queries
to H, qS quantum queries to Sign, and qF classical queries to Forge, there exist
an EUF-NMA adversary Anma of HSR[T,H], a CR adversary Acr of T, and
qPRF adversaries Aprf of PRF and A′prf of PRF′ issuing at most BqS queries
such that

AdvPO
DHSR(Apo) ≤ AdvEUF-NMA

HSR (Anma) + AdvCR
T (Acr) + AdvqPRF

PRF (Aprf)

+ AdvqPRF
PRF′ (A′prf) + 8(qH + qS + qF + 1)2

(
1− γ

(
1− βB

))
+

qS + 1

b|R|/Bc
+ 2(qH + qF)

√
B − 1

|R|
+2(qH + qS + qF)

√
2B(B − 1)

|R|

+

√
6 (qH + 2qF)

3
(δ + 2 (1− γ (1− βB))),

where T is (γ, β)-correct and δ-PS, and the running times of Anma, Acr, Aprf ,
and A′prf are about that of Apo.

Proof. We use the sequence of games shown in Fig. 11. Note that adversaries
who simulate the games employ 2q-wise independent functions [29] to simulate
random functions, and this applies to all the proofs in this paper as well.

Game G0: This is the original PO game, where we execute GetLogs for Sign,
and H is defined as RFH. We have Pr[W0] = AdvPO

DHSR(Apo).

The Security of Hash-and-Sign with Retry against Superposition Attacks 15

GAMES G0-G11

1 RFH ←$ Func(R×M,Y)
2 RFsalt ←$ Func(M× [B+1],R) //G1-G11

3 RFinv ←$ Func(M× [B],R′) //G1-G10.0

4 RF′
H ←$ Func(M× [B],Y) //G7-G10.0

5 RFsd ←$ Func(M,R′′) //G10.1-G11

6 Q := ∅
7 win := ⊥ //G5.0-G11

8 (vk , sk)← Gen(1λ)

9 (s, s′)←$ K×K //G0

10 run A|H〉,|Sign〉,Forge
po (vk)

11 return J|Q| > qSK //G0-G4

12 return J|Q| > qSK ∧win //G5.0

13 return win //G5.1-G11

H(r,m)

14 if GetLogs(m) = ` then //G3-G8

15 return ⊥ //G3-G8

16 (rk, yk, xk) := GetLogs(m)
//G2-G5.1 ·G8-G11

17 if r = rk then //G2-G5.1 ·G8-G11

18 return yk //G2-G5.1 ·G8-G11

19 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

20 if ∃i, r = ri then //G6-G7

21 return yi //G6-G7

22 return RFH(r,m)

Sign(m)

23 if GetLogs(m) = ` then //G3-G8

24 return ⊥ //G3-G8

25 (rk, yk, xk) := GetLogs(m)
//G0-G5.1 ·G8-G11

26 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

27 if xk = ⊥ then
28 return ⊥
29 return (rk, xk)

Forge(m, (r, x))

30 if GetLogs(m) = ` then //G3-G8

31 return ⊥ //G3-G8

32 (rk, yk, xk) := GetLogs(m)
//G2-G5.1 ·G8-G11

33 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

34 if F(vk , xk) 6= H(rk,m) then //G4-G11

35 return ` //G4-G11

36 if F(vk , x) = H(r,m) then
37 if (m, (r, x)) 6∈ Q then
38 Q := Q ∪ {(m, (r, x))}
39 if (r, x) 6= (rk, xk) then //G5.0-G10.1

40 win = > //G5.0-G10.1

41 if r 6= rk then //G11

42 win = > //G11

GetLogs(m) for G0

43 k := 0
44 repeat
45 k := k + 1
46 rk := PRF(s, (m, k))
47 yk := RFH(rk,m)

48 xk := Inv(sk , yk;PRF
′(s′, (m, k)))

49 until xk 6= ⊥ ∨ k ≥ B
50 return (rk, yk, xk)

GetLogs(m) for G10.1-G11

51 rk := RFsalt(m,B + 1)
52 xk := SampDom(vk ;RFsd(m))
53 yk := F(vk, xk)
54 return (rk, yk, xk)

GetLogs(m) for G1-G10.0

55 k := 0
56 repeat
57 k := k + 1
58 rk := RFsalt(m, k) //G1-G9

59 yk := RFH(rk,m) //G1-G6

60 yk := RF′
H(m, k) //G7-G10.0

61 xk := Inv(sk , yk;RFinv(m, k))
62 until xk 6= ⊥ ∨ k ≥ B
63 rk := RFsalt(m,B + 1) //G10.0

64 if ∃(i, j), ri = rj then //G3-G8

65 return ` //G3-G8

66 return (rk, yk, xk) //G1-G5.1 ·G8-G10.0

67 return {(ri, yi, xi)}i∈[k] //G6-G7

Fig. 11: Games for EUF-NMA⇒ PO

Game G1: We replace PRFs with random functions RFsalt (salt generation) and
RFinv (randomization of Inv).
Lemma 7. There exist qPRF adversaries Aprf of PRF and A′prf of PRF′ such
that

|Pr[W0]− Pr[W1]| ≤ AdvqPRF
PRF (Aprf) + AdvqPRF

PRF′ (A′prf).

Proof. Since different keys are used for PRF and PRF′, each can be replaced
by a random function. The qPRF adversaries Aprf and A′prf can simulate the
outputs of PRF or PRF′ using the outputs of their oracles. Thus, the advantage
gap due to the above transformation is bounded by the qPRF advantages.

16 H. Kosuge and K. Xagawa

Game G2: The random function H(r,m) computes (rk, yk, xk) := GetLogs(m)
and returns yk if r = rk. Otherwise, H(r,m) returns RFH(r,m). Also, Forge
computes GetLogs. Since H(rk,m) is still computed by RFH(rk,m), this mod-
ification changes nothing. Therefore, Pr[W1] = Pr[W2] holds.

This is the first step in programming H to ensure that simulated signatures
are accepted. Note that the game hops of G2-G3 and G6-G10.1 are dedicated
to this purpose.

Game G3: We modify GetLogs to check if there is a collision among {ri}i∈[k].
If a collision is detected, GetLogs returns a special symbol `. When GetLogs
returns `, H, Sign, and Forge will return ⊥, where we add ⊥ to the range of
H. This step is required for G8, where we replace RFH with RF′H, which takes
only (m, k) as input. This replacement becomes infeasible if a salt collision
occurs. Additionally, in the next game hop, excluding salt collisions simplifies
the bound.

Lemma 8. We have

|Pr[W2]− Pr[W3]| ≤ (qH + qS + qF)

√
2B(B − 1)

|R|
.

Proof. The difference between G2 and G3 lies solely in the outputs of GetLogs
when there is a collision among {ri}i∈[k]. Hence, we apply the original O2H
(see Lemma 3) to GetLogs in G2 and G3. The outputs of GetLogs differ only
in S = {m|∃(i, j) ∈ [k]× [k], ri = rj}, where {(ri, yi, xi)}i∈[k] represents all
intermediate and final results inside GetLogs(m). Let Bo2h be an adversary
that finds m ∈ S by running Acma in G3. Since each ri is generated by the
random function RFsalt with distinct inputs, each ri is uniformly distributed.
Tightening the bound of [9, Lemma 11] slightly, the probability that {ri}i∈[k]
contains a collision is bounded by B(B−1)

2|R| . Given that Bo2h has no information
about S, the bound in this lemma follows from Lemma 3.

Game G4: We modify Forge such that it returns ` if F(vk , xk) 6= H(rk,m)
holds for (rk, yk, xk) := GetLogs(m) before checking the validity of the sub-
mitted query. This step is necessary for the simulation by the CR adversary
in bounding the advantage gap between G10.1 and G11. Note that G4-G5.1

and G11 are dedicated to ensuring that the EUF-NMA adversary simulating
G11 can obtain a winning message/signature pair from those in Q.

Lemma 9. Suppose that T is (γ, β)-correct. We have

|Pr[W3]− Pr[W4]| ≤ 8(qH + qS + qF + 1)2
(
1− γ

(
1− βB

))
.

Proof. If Forge does not return `, then G3 and G4 are indistinguishable. Let
bad4 be an event where F(vk , xk) 6= H(rk,m) holds (see Line 34 in Fig. 11)
and Forge returns ` in G4. Let Bgspb = (B1,B2) be a GSPB adversary shown
in Fig. 12, where the target function g outputs 1 if and only if the output of

The Security of Hash-and-Sign with Retry against Superposition Attacks 17

B1

1 (vk , sk)← Gen(1λ)

2 compute Sall and Sbad
3 ∀m ∈ M, λsk (m) := |Sbad|

|Sall|
4 return {λsk (m)}m∈M, (vk , sk)

B|g〉
2

5 RFU ←$ Func(M,RU)

6 RF′′
H ←$ Func(R×M,Y)

7 m̂ := ∅
8 run A|H〉,|Sign〉,Forge(vk)
9 return m̂

Samp(m)

10 if g(m) = 0 then
11 {(ri, yi, r

′
i)}i∈[B] :=U(Sall;RFU(m))

12 if g(m) = 1 then
13 {(ri, yi, r

′
i)}i∈[B] :=U(Sbad;RFU(m))

14 return {(ri, yi, r
′
i)}i∈[B]

RFsalt(m, k)

15 {(ri, yi, r
′
i)}i∈[B] := Samp(m)

16 return rk

RFH(r,m)

17 {(ri, yi, r
′
i)}i∈[B] := Samp(m)

18 if ∃i, r = ri then
19 return yi

20 return RF′′
H (r,m)

RFinv(m, k)

21 {(ri, yi, r
′
i)}i∈[B] := Samp(m)

22 return r′k

Forge(m, (r, x))

23 {(ri, yi, xi)}i∈[k] := GetLogs(m)
24 if F(vk , xk) 6= H(rk,m) then
25 m̂ := m

Fig. 12: Simulation by GSPB adversary

GetLogs(m) is invalid, that is, xi = ⊥ for all i ∈ [B] or there exist i such that
xi 6= ⊥ ∧ F(vk , xi) 6= yi. We define Sall ⊂ (R×Y ×R′)B as:

Sall = {{(ri, yi, r′i)}i∈[B] |∀i, j ∈ [B], ri = rj ⇒ yi = yj }.

Note that Sall is consistent between ri and yi. Such consistency is required to
simulate RFH since RFH(ri,m) = RFH(rj ,m) must hold if ri = rj . Then, we
define Sbad as:

Sbad =

{
{(ri, yi, r′i)}i∈[B] ∈ Sall

∣∣∣∣∣xi := Inv(sk , yi; r
′
i) : (∀i ∈ [B], xi = ⊥)

∨ (∃i ∈ [B], xi 6= ⊥ ∧ F(vk , xi) 6= yi)

}
.

B1 sets λsk (m) = λsk = |Sbad|
|Sall| for all m. Using the oracle access to g, B2

defines a function Samp which outputs {(ri, yi, r′i)}i∈[B] according to the value
of g(m). Samp uniformly chooses {(ri, yi, r′i)}i∈[B] from Sall or Sbad, where
the uniformity is ensured by a random function RFU. Since Samp is used to
simulate the random functions, RFsalt, RFH, and RFinv, B2 can simulate G4. B2
outputs m̂ that stores m satisfying F(pk , xk) 6= H(rk,m) in Line 25 of Fig. 12.

If bad4 occurs, GetLogs does not output ` (see Lines 30 and 31 in Fig. 11);
therefore, the salts {ri}i∈[B] do not collide in GetLogs. Hence, we can assume
that each element of {yi}i∈[B] is randomly generated and we have Exp[λsk] ≤
1− γ

(
1− βB

) 8. From Lemma 1, fixing (vk , sk), we have Pr[bad4|(vk , sk)] ≤

8 In [26, Lemma 5.2], which this proof is based on, a difference lies in consideration
of potential collisions among {ri}i∈[B]. By not considering collisions, we remove the
need to add an extra term related to collisions to the bound on Exp[λsk].

18 H. Kosuge and K. Xagawa

8(qH + qS + qF +1)2λsk . Averaging over keys, we have Pr[bad4] ≤ 8(qH + qS +
qF + 1)2

(
1− γ

(
1− βB

))
, and complete the proof.

Game G5.0: Let win be an event that (r, x) 6= (rk, xk) holds for queried (r, x)
and (rk, yk, xk) := GetLogs(m) in Forge. In G5.0, win = > is necessary to
win. With this modification, the adversary must forge at least one signature
that is not derived from the message m in order to achieve win = >.

Lemma 10. We have

|Pr[W4]− Pr[W5.0]| ≤
qS + 1

b|R|/Bc
.

Proof. G4 and G5.0 differ when |Q| > qS and win = ⊥ hold simultaneously
(i.e., (r, x) = (rk, xk) holds for all qS + 1 queries). We define this event as
bad5. The event bad5 implies that the adversary obtains at least qS + 1
input/output pairs of RFsalt. The outputs of RFsalt are obtained only through
Sign queries. Therefore, the adversary produces qS + 1 input/output pairs
from qS queries to RFsalt when bad5 occurs. From [26, Proposition 4.1], we
have maxr∈R Pr[rk := RFsalt(m, k) : rk = r|H] ≤ B

|R| for anym, where H in the
condition denotes that the adversary knows the whole table of H. Therefore,
the probability of bad5 is bounded by qS+1

b|R|/Bc from Lemma 6.

Game G5.1: We eliminate J|Q| > qSK from the winning condition. Since the
winning condition is relaxed, we have Pr[W5.0] ≤ Pr[W5.1]. Then, the adver-
sary can win the game without submitting qS + 1 valid message/signature
pairs.

Game G6: GetLogs outputs intermediate/final results {(ri, yi, xi)}i∈[k] gener-
ated during loop iteration instead of outputting only the final result. More-
over, H(r,m) outputs yi if there exists i such that r = ri. This modification
does not affect the adversary’s view, and we have Pr[W5.1] = Pr[W6]. This
step is necessary for replacing RFH in GetLogs in the next step.

Game G7: We change the way of generating yk in GetLogs from RFH(rk,m) to
RF′H(m, k). Since there are no collisions among {ri}i∈[k], both RFH(rk,m) and
RF′H(m, k) follow the uniform distribution. Therefore, the view of the adver-
sary does not change, and Pr[W6] = Pr[W7] holds. Due to this modification,
the value of yk is independently chosen for each (m, k), satisfying one of the
necessary conditions for signature simulation using δ-PS.

Game G8: We modify GetLogs so that it outputs only the final result (rk, yk, xk).
Then, only the outputs for which simulation is possible using δ-PS have been
programmed for H; thus, the preparation for simulation is complete.

Lemma 11. We have

|Pr[W7]− Pr[W8]| ≤ 2(qH + qF)

√
B − 1

|R|
.

The Security of Hash-and-Sign with Retry against Superposition Attacks 19

Proof. This modification only affects the outputs of H. For {(ri, yi, xi)}i∈[k]
generated inside GetLogs(m), we define S = {(r,m)|∃i ∈ [k−1], r = ri}. As the
outputs of H(r,m) are different between G7 and G8 if and only if (r,m) ∈ S,
we apply the original O2H shown in Lemma 3. Let B′o2h be an adversary that
executes Acma in G8 and identifies an element in S. Since B′o2h has no prior
information about S, the probability that B′o2h outputs (r,m) ∈ S is at most
B−1
|R| . Following Lemma 3, we obtain the bound 2(qH + qF)

√
B−1
|R| . Note that

H is called twice in Forge in Lines 34 and 36. However, (rk,m) 6∈ S is always
true since it is guaranteed that there are no collisions among {ri}i∈[k]. At
the time when GetLogs is executed, it is known that there are no collisions
among {ri}i∈[k]. Therefore, the H-query in Line 34 can be excluded from
consideration.

Game G9: We remove the collision check among {ri}i∈[k] from GetLogs since,
from the next hop, GetLogs is modified not to perform loop iterations. From
Lemma 8, we have

|Pr[W8]− Pr[W9]| ≤ (qH + qS + qF)

√
2B(B − 1)

|R|
.

Game G10.0: In GetLogs, rk := RFsalt(m, k) is generated by RFsalt(m,B + 1).
Note that we modify GetLogs to be performed without using sk in G10.0 and
G10.1.
Lemma 12. We have Pr[W9] = Pr[W10.0].
Proof. Since both RFsalt(m, k) and RFsalt(m,B+1) are uniformly distributed,
and the adversary obtains only RFsalt(m, k) (resp., RFsalt(m,B + 1)) in G9

(resp., G10.0), the adversary’s view remains unchanged.

Game G10.1: We simulate GetLogs using SampDom, where RFsd ←$ Func(M,R′′)
is used for generating a random coin for SampDom.
Lemma 13. Suppose that T is (γ, β)-correct and δ-PS. We have

|Pr[W10.0]− Pr[W10.1]| ≤
√

6 (qH + 2qF)
3
(δ + 2 (1− γ (1− βB))).

Proof. We consider the oracle-indistinguishability of GetLogs in G10.0 and
G10.1 by considering the difference in distributions of (x, y) ∈ X ′ × Y output
from GetLogs, where X ′ = X ∪ {⊥}. Let Dm and D′m be distributions of
(x, y) ∈ X ′ × Y output from GetLogs(m) in G10.0 and G10.1, respectively.
Since T is δ-PS (see Definition 8), the distance between x generated by Inv
after unbounded retries and x ← SampDom(vk) is bounded by δ. We define
D∞m as the distribution of (x, y, k) ∈ X × Y × Z>0, where GetLogs(m) retries
without any limit, and an additional variable k denotes the number of retries
within GetLogs(m). By marginalizing D∞m and D′m over y ∈ Y, we have

∑
x∈X

∣∣∣∣∣∣
∑
y∈Y

 ∑
k∈Z>0

D∞m (x, y, k)−D′m(x, y)

∣∣∣∣∣∣ ≤ δ. (1)

20 H. Kosuge and K. Xagawa

If GetLogs in G10.0 outputs x 6= ⊥, then the number of retries will be less
than or equal to B; therefore, for any (x, y) ∈ X × Y, we have

Dm(x, y) =
∑
k∈[B]

D∞m (x, y, k). (2)

In addition, the probability of outputting x 6= ⊥ such that F(vk , x) = y is at
least γ(1− βB) due to the (γ, β)-correctness. Therefore, we have∑

x∈X
Dm(x,F(vk , x)) ≥ γ

(
1− βB

)
. (3)

Then, we can derive a bound on δ′ =
∑

(x,y)∈X ′×Y |Dm(x, y)−D′m(x, y)|
as follows.

δ′ =
∑

(x,y)∈X ′×Y
:x 6=⊥∧F(vk ,x)=y

|Dm(x, y)−D′m(x, y)|+
∑

(x,y)∈X ′×Y
:x=⊥∨F(vk ,x) 6=y

Dm(x, y)

=
∑
x∈X
|Dm(x,F(vk , x))−D′m(x,F(vk , x))|+ 1−

∑
x∈X
Dm(x,F(vk , x))

(2)
=
∑
x∈X

∣∣∣∣∣∣
∑
k∈[B]

D∞m (x,F(vk , x), k)−D′m(x,F(vk , x))

∣∣∣∣∣∣+1−
∑
x∈X
Dm(x,F(vk , x))

(∗)
≤
∑
x∈X

∣∣∣∣∣∣
∑
y∈Y

 ∑
k∈Z>0

D∞m (x, y, k)−D′m(x, y)

∣∣∣∣∣∣+ 1−
∑
x∈X
Dm(x,F(vk , x))

+
∑
x∈X

∑
y∈Y

∑
k∈Z>0

D∞m (x, y, k)−
∑
k∈[B]

D∞m (x,F(vk , x), k)


(1)(2)

≤ δ + 2

(
1−

∑
x∈X
Dm(x,F(vk , x))

)
(3)

≤ δ + 2
(
1− γ

(
1− βB

))
Here, (*) follows from D′m(x,F(vk , x)) =

∑
y∈Y D′m(x, y) and the triangle

inequality, where we do not take the absolute value for the last term because∑
y∈Y

∑
k∈Z>0

D∞m (x, y, k) includes all the terms of
∑

k∈[B]D∞m (x,F(vk , x), k).
Using Lemma 5, we can derive the bound on |Pr[W10.0]− Pr[W10.1]|.

Game G11: We change the condition of win = > from (r, x) 6= (rk, xk) to
r 6= rk in Forge. Though the condition (r, x) 6= (rk, xk) allows for the pos-
sibility that H may not match RFH for a queried pair (r,m) in Forge, this
modification ensures that they do. Then, all the necessary conditions for the
simulation by the EUF-NMA adversary are now complete.

Lemma 14. There exists a CR adversary Acr of T such that

|Pr[W10.1]− Pr[W11]| ≤ AdvCR
T (Acr).

The Security of Hash-and-Sign with Retry against Superposition Attacks 21

AĤ
nma(vk)

1 RFsalt ←$ Func(M× [B+1],R)

2 RFsd ←$ Func(M,R′′)
3 win = ⊥
4 run A|H〉,|Sign〉,Forge

po (vk)

5 if win then
6 return (m∗, (r∗, x∗))
7 return ⊥

H(r,m)

8 (rk, yk, xk) := GetLogs(m)
9 if r = rk then

10 return yk

11 return Ĥ(r,m)

Sign(m)

12 (rk, yk, xk) := GetLogs(m)
13 if xk = ⊥ then
14 return ⊥
15 return (rk, xk)

Forge(m, (r, x))

16 (rk, yk, xk) := GetLogs(m)
17 if F(vk , xk) 6= H(rk,m) then
18 return `
19 if F(vk , x) = H(r,m) ∧ r 6= rk then
20 win = >
21 (m∗, (r∗, x∗)) := (m, (r, x))

GetLogs(m)

22 rk := RFsalt(m,B + 1)
23 xk := SampDom(vk ;RFsd(m))
24 yk := F(vk, xk)
25 return (rk, yk, xk)

Fig. 13: Simulation of the modified PO game by EUF-NMA adversary

Proof. G10.1 and G11 differ only if the adversary submits (r, x) such that
r = rk and x 6= xk (i.e., win = > holds only in G10.1). Let bad11 denote this
event, and note that |Pr[W10.1]− Pr[W11]| ≤ Pr[bad11] holds.

We now bound Pr[bad11]. Due to the modification introduced in G4, we
have H(rk,m) = F(vk , xk) when Forge does not return `. Therefore, when
bad11 occurs, a collision pair (x, xk) satisfying F(vk , x) = F(vk , xk) = H(r,m)
is found. If bad11 occurs during the CR adversary’s simulation, the adversary
can obtain the colliding pair (x, xk). Thus, we conclude that Pr[bad11] ≤
AdvCR

T (Acr).

We conclude the proof by the EUF-NMA adversary’s simulation.

Lemma 15. There exists an EUF-NMA adversary Anma of HSR[T,H] such
that

Pr[W11] ≤ AdvEUF-NMA
HSR (Anma).

Proof. To avoid a confusion, we consider HSR[T, Ĥ] instead of HSR[T,H], where
Ĥ : R ×M → Y is a random oracle. The EUF-NMA adversary Anma against
HSR[T, Ĥ] with oracle access to Ĥ can simulate G11 since it can simulate all the
oracles by using SampDom as in Fig. 13. The EUF-NMA adversary outputs
(m∗, (r∗, x∗)) such that F(vk , x∗) = H(r∗,m∗) and r∗ 6= rk = RFsalt(m

∗, B + 1)

hold in Forge. Note that H(r∗,m∗) = Ĥ(r∗,m∗) holds since r∗ 6= rk. Therefore,
Anma can win the game and Pr[W11] is bounded by the EUF-NMA advantage.
Since HSR[T, Ĥ] is equivalent to HSR[T,H], this shows the lemma.

ut

The wPO-security does not require the collision-resistance of T as follows.

22 H. Kosuge and K. Xagawa

Corollary 1 (EUF-NMA + qPRF ⇒ wPO). For any quantum wPO ad-
versary Apo of DHSRB [T,H,PRF,PRF

′] issuing at most qH quantum queries to
H, qS quantum queries to Sign, and qF classical queries to Forge, there exist an
EUF-NMA adversary Anma of HSR[T,H] and qPRF adversaries Aprf of PRF
and A′prf of PRF′ issuing at most BqS queries such that

AdvwPO
DHSR(Apo) ≤ AdvEUF-NMA

HSR (Anma) + AdvqPRF
PRF (Aprf) + AdvqPRF

PRF′ (A′prf)

+ 8(qH + qS + qF + 1)2
(
1− γ

(
1− βB

))
+

qS + 1

b|R|/Bc

+ 2(qH + qF)

√
B − 1

|R|
+ 2(qH + qS + qF)

√
2B(B − 1)

|R|

+

√
6 (qH + 2qF)

3
(δ + 2 (1− γ (1− βB))),

where T is (γ, β)-correct and δ-PS, and the running times of Anma, Aprf , and
A′prf are about that of Apo.

Proof. In the proof of Theorem 1, we can modify G5.0 by changing the winning
condition from (r, x) 6= (rk, xk) to r 6= rk (see Line 39 in Fig. 11) and remove G11.
Note that G11 is unnecessary for the simulation by the EUF-NMA adversary
since the condition of win = > has already been F(vk , x) = H(r,m) and r 6= rk
in Forge. Hence, the collision-resistance of T is not necessary. ut

Remark 1. By assuming quantum preimage-simulatability, we can use a compu-
tational bound. This is an adaptation of the quantum special HVZK used in the
BU security proof of Fiat-Shamir [27] to the HSwR context. We define quantum
preimage-simulatability by allowing quantum queries in the PS game. We mod-
ify the oracles in the PS game to take a message as input and perform preimage
sampling corresponding to the message. The advantage of the quantum version
of the PS game can be used to bound |Pr[W10.0]−Pr[W10.1]| in Theorem 1. See
Appendix C for details.

4.2 (Strong) Blind Unforgeability

We show that DHSRB [T,H,PRF,PRF
′] is also sBU-secure.

Theorem 2 (EUF-NMA + CR + qPRF ⇒ sBU). For any quantum sBU
adversary Abu of DHSRB [T,H,PRF,PRF

′] issuing at most qH quantum queries
to H, qS quantum queries to Sign, and qF classical queries to Forge, there exist
an EUF-NMA adversary Anma of HSR[T,H], a CR adversary Acr of T, and
qPRF adversaries Aprf of PRF and A′prf of PRF′ issuing at most BqS queries

The Security of Hash-and-Sign with Retry against Superposition Attacks 23

such that

AdvsBU
DHSR(Abu) ≤ AdvEUF-NMA

HSR (Anma) + AdvCR
T (Acr) + AdvqPRF

PRF (Aprf)

+ AdvqPRF
PRF′ (A′prf) + 8(qH + qS + qF + 1)2

(
1− γ

(
1− βB

))
+
BqF
|R|

+ 2(qH + qF)

√
B − 1

|R|
+ 2(qH + qS + qF)

√
2B(B − 1)

|R|

+

√
6 (qH + 2qF)

3
(δ + 2 (1− γ (1− βB))),

where T is (γ, β)-correct and δ-PS, and the running times of Anma, Acr, Aprf ,
and A′prf are about that of Abu.

Proof. We use the sequence of games shown in Fig. 14. Note that this proof is
almost identical to Theorem 1, with the only difference lying in G5. Here, the
effect of introducing G5 in Theorem 2 is the same as that of G5.0 and G5.1 in
Theorem 1. However, the method for bounding |Pr[W4]−Pr[W5]| differs due to
the distinctions between the PO and sBU games.

Game G0: This is the original sBU game: Pr[W0] = AdvsBU
DHSR(Abu).

Game G1: We replace PRFs with random functions RFsalt and RFinv. From
Lemma 7, we have |Pr[W0]− Pr[W1]| ≤ AdvqPRF

PRF (Aprf) + AdvqPRF
PRF′ (A′prf).

Game G2: The oracles H and Forge compute GetLogs. Since this is a concep-
tual change, we have Pr[W1] = Pr[W2].

Game G3: We check if a collision occurs among {ri}i∈[k] in GetLogs. If a collision
occurs, GetLogs returns `. From Lemma 8, we have

|Pr[W2]− Pr[W3]| ≤ (qH + qS + qF)

√
2B(B − 1)

|R|
.

Game G4: Forge returns ` if F(vk , xk) 6= H(rk,m) holds, where (rk, xk) is
a signature generated by GetLogs(m). From Lemma 9, we have |Pr[W3] −
Pr[W4]| ≤ 8(qH + qS + qF + 1)2

(
1− γ

(
1− βB

))
.

Game G5: We add an additional condition to let win = >, that is, (r, x) 6=
(rk, xk) holds.
Lemma 16. We have

|Pr[W4]− Pr[W5]| ≤
BqF
|R|

.

Proof. G4 and G5 differ only when the adversary submits a query (m, (r, x))
such that F(vk , x) = H(r,m), (m, (r, x)) ∈ Bε, and (r, x) = (rk, xk) holds,
because win becomes > in G4 but remains ⊥ in G5. Let bad5 denote this
event. We have |Pr[W4] − Pr[W5]| ≤ Pr[bad5]. Since (m, (rk, xk)) ∈ Bε, the
adversary cannot obtain rk := RFsalt(m, k) from the queries to BεSign. There-
fore, the adversary needs to guess r = rk without knowing rk. As shown in
Lemma 10, maxr∈R Pr[rk := RFsalt(m, k) : rk = r|H] ≤ B

|R| holds. Since the
adversary makes qF queries to Forge, Pr[bad5] ≤ BqF

|R| holds.

24 H. Kosuge and K. Xagawa

GAMES G0-G11

1 RFH ←$ Func(R×M,Y)
2 RFsalt ←$ Func(M× [B+1],R) //G1-G11

3 RFinv ←$ Func(M× [B],R′) //G1-G10.0

4 RF′
H ←$ Func(M× [B],Y) //G7-G10.0

5 RFsd ←$ Func(M,R′′) //G10.1-G11

6 Bε ← FuncM×(R×X),{0,1}(Berε)
7 win := ⊥
8 (vk , sk)← Gen(1λ)

9 (s, s′)←$ K×K //G0

10 run A|H〉,|BεSign〉,Forge
bu (vk)

11 return win

H(r,m)

12 if GetLogs(m) = ` then //G3-G8

13 return ⊥ //G3-G8

14 (rk, yk, xk) := GetLogs(m)
//G2-G5 ·G8-G11

15 if r = rk then //G2-G5 ·G8-G11

16 return yk //G2-G5 ·G8-G11

17 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

18 if ∃i, r = ri then //G6-G7

19 return yi //G6-G7

20 return RFH(r,m)

BεSign(m)

21 if GetLogs(m) = ` then //G3-G8

22 return ⊥ //G3-G8

23 (rk, yk, xk) := GetLogs(m)
//G0-G5 ·G8-G11

24 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

25 if xk = ⊥ ∨ (m, (rk, xk)) ∈ Bε then
26 return ⊥
27 return (rk, xk)

Forge(m, (r, x))

28 if GetLogs(m) = ` then //G3-G8

29 return ⊥ //G3-G8

30 (rk, yk, xk) := GetLogs(m)
//G2-G5 ·G8-G11

31 {(ri, yi, xi)}i∈[k] :=GetLogs(m) //G6-G7

32 if F(vk , xk) 6= H(rk,m) then //G4-G11

33 return ` //G4-G11

34 if F(vk , x) = H(r,m) ∧ (m, (r, x)) ∈ Bε

then
35 win = > //G0-G4

36 if (r, x) 6= (rk, xk) then //G5-G10.1

37 win = > //G5-G10.1

38 if r 6= rk then //G11

39 win = > //G11

GetLogs(m) for G0

40 k := 0
41 repeat
42 k := k + 1
43 rk := PRF(s, (m, k))
44 yk := RFH(rk,m)

45 xk := Inv(sk , yk;PRF
′(s′, (m, k)))

46 until xk 6= ⊥ ∨ k ≥ B
47 return (rk, yk, xk)

GetLogs(m) for G10.1-G11

48 rk := RFsalt(m,B + 1)
49 xk := SampDom(vk ;RFsd(m))
50 yk := F(vk, xk)
51 return (rk, yk, xk)

GetLogs(m) for G1-G10.0

52 k := 0
53 repeat
54 k := k + 1
55 rk := RFsalt(m, k) //G1-G8

56 yk := RFH(rk,m) //G1-G2

57 yk := RF′
H(m, k) //G7-G10.0

58 xk := Inv(sk , yk;RFinv(m, k))
59 until xk 6= ⊥ ∨ k ≥ B
60 rk := RFsalt(m,B + 1) //G10.0

61 if ∃(i, j), ri = rj then //G3-G8

62 return ` //G3-G8

63 return (rk, yk, xk) //G1-G5 ·G8-G10.0

64 return {(ri, yi, xi)}i∈[k] //G6-G7

Fig. 14: Games for EUF-NMA⇒ sBU

Game G6: GetLogs outputs {(ri, yi, xi)}i∈[k] generated during loop iteration
instead of outputting the final result, and H(r,m) outputs yi if there exists ri
such that r = ri. This modification does not affect the adversary’s view, and
we have Pr[W5] = Pr[W6].

Game G7: Instead of RFH(rk,m), RF′H(m, k) generates yk in GetLogs. Since
there are no collisions among {ri}i∈[k], the adversary’s view does not change;
therefore, we have Pr[W6] = Pr[W7].

Game G8: GetLogs only outputs the final result after retries. From Lemma 11,
we have

|Pr[W7]− Pr[W8]| ≤ 2(qH + qF)

√
B − 1

|R|
.

The Security of Hash-and-Sign with Retry against Superposition Attacks 25

Game G9: GetLogs does not check collisions among {ri}i∈[k]. From Lemma 8,
we have

|Pr[W8]− Pr[W9]| ≤ (qH + qS + qF)

√
2B(B − 1)

|R|
.

Game G10.0: In GetLogs, we change the salt generation from rk := RFsalt(m, k)
to rk := RFsalt(m,B + 1) for k such that xk 6= ⊥. Since the view of the
adversary does not change, we have Pr[W9] = Pr[W10].

Game G10.1: We simulate GetLogs using SampDom. From Lemma 13, we have

|Pr[W9]− Pr[W10]| ≤
√

6 (qH + 2qF)
3
(δ + 2 (1− γ (1− βB))).

Game G11: We change the condition ofwin = > from (r, x) 6= (rk, xk) to r 6= rk
in Forge. From Lemma 14, we have |Pr[W10]− Pr[W11]| ≤ AdvCR

T (Acr).

The EUF-NMA adversary Anma against HSR[T, Ĥ] with oracle access to Ĥ can
simulate G11 since it can simulate all the oracles by using SampDom. Similar to
Lemma 15, the EUF-NMA adversary outputs (m∗, (r∗, x∗)) that was queried
in Forge and caused win to become >. Since F(vk , x∗) = Ĥ(r∗,m∗) holds, the
EUF-NMA adversary can win its game if win = > in G11. Hence, there exists
an EUF-NMA adversary Anma such that Pr[W11] ≤ AdvEUF-NMA

HSR (Anma). Since
HSR[T, Ĥ] is equivalent to HSR[T,H], this completes the proof. ut

The BU security does not require the collision-resistance of T; therefore, we
can eliminate the CR assumption in the BU security as follows:

Corollary 2 (EUF-NMA + qPRF⇒ BU). For any quantum BU adversary
Abu of DHSRB [T,H,PRF,PRF

′] issuing at most qH quantum queries to H, qS
quantum queries to Sign, and qF classical queries to Forge, there exist an
EUF-NMA adversary Anma of HSR[T,H] and qPRF adversaries Aprf of PRF
and A′prf of PRF′ issuing at most BqS queries such that

AdvBU
DHSR(Abu) ≤ AdvEUF-NMA

HSR (Anma) + AdvqPRF
PRF (Aprf) + AdvqPRF

PRF′ (A′prf)
+ 8(qH + qS + qF + 1)2

(
1− γ

(
1− βB

))
+
BqF
|R|

+ 2(qH + qF)

√
B − 1

|R|
+ 2(qH + qS + qF)

√
2B(B − 1)

|R|

+

√
6 (qH + 2qF)

3
(δ + 2 (1− γ (1− βB))),

where T is (γ, β)-correct and δ-PS, and the running times of Anma, Aprf , and
A′prf are about that of Apo.

Proof. In Theorem 2, we can change the winning condition in G5 from (r, x) 6=
(rk, xk) to r 6= rk (see Line 36 in Fig. 14). Therefore, we can remove G11 and
the collision-resistance of T is unnecessary for the BU security. ut

26 H. Kosuge and K. Xagawa

4.3 (Strong) Existential Unforgeability

We can prove DHSRB [T,H,PRF,PRF
′] is sEUF-CMA-secure.

Theorem 3 (EUF-NMA + PS + SPR + PRF ⇒ sEUF-CMA). For
any quantum sEUF-CMA adversary Acma of DHSRB [T,H,PRF,PRF

′] issuing
at most qH quantum queries to H and qS quantum queries to Sign, there exist an
EUF-NMA adversary Anma of HSR[T,H], a PS adversary Aps issuing at most
qS queries, SPR adversary Aspr of T, and PRF adversaries Aprf of PRF and
A′prf of PRF′ issuing at most BqS queries such that

AdvsEUF-CMA
DHSR (Acma) ≤ AdvEUF-NMA

HSR (Anma) + AdvPS
T (Aps) + qSAdvSPR

T (Aspr)

+ AdvPRF
PRF (Aprf) + AdvPRF

PRF′(A′prf) + qS
(
1− γ

(
1− βB

))
+

3

2
BqS

√
qH +BqS + 1

|R|
+ 2(qH + 1)

√
B − 1

|R|
,

where T is (γ, β)-correct and the running times of Anma, Aps, Aspr, Aprf , and
A′prf are about that of Acma.

Proof. We use the sequence of games shown in Fig. 15.

Game G0: This is the original sEUF-CMA game: Pr[W0] = AdvsEUF-CMA
DHSR (Acma).

Game G1: We replace PRF and PRF′ with random functions RFsalt and RFinv,
respectively.

Lemma 17. There exist PRF adversaries Aprf of PRF and A′prf of PRF′ such
that

|Pr[W0]− Pr[W1]| ≤ AdvPRF
PRF (Aprf) + AdvPRF

PRF′(A′prf).

Proof. As in Lemma 7, we can replace PRF(s, ·) and PRF′(s′, ·) separately.
Since the PRFs are classically executed, the (classical) PRF adversaries Aprf

and A′prf can simulate the outputs of PRF and PRF′ using the outputs of
their oracles. Thus, the advantage gap due to the above transformation can
be bounded by the PRF advantages.

Game G2: Let σ be a database of signatures indexed by messages, where each
signature σ[m] corresponds to a message m used in generating the signature.
The signing oracle Sign returns σ[m] ifm has been queried previously (σ[m] 6=
∅). Since this is a conceptual change, we have Pr[W1] = Pr[W2].

Storing σ ensures that, in the subsequent game hops, when randomness is
generated without using the random function, the same randomness is used
for the same m.

Game G3: The signing oracle Sign uniformly chooses yk and reprograms H :=
H(rk,m)7→yk for the chosen yk. This step is crucial in the simulation of the sign-
ing oracle, as it requires generating yk independently of (rk,m) and treating
yk as the output of H when (rk,m) is given as input.

The Security of Hash-and-Sign with Retry against Superposition Attacks 27

GAMES G0-G6

1 RFH ←$ Func(R×M,Y)
2 RFsalt ←$ Func(M× [B+1],R) //G1-G5.1

3 RFinv ←$ Func(M× [B],R′) //G1-G5.1

4 Q := ∅
5 (vk , sk)← Gen(1λ)

6 (s, s′)←$ K×K //G0

7 (m∗, (r∗, x∗))← ASign,|H〉
cma (vk)

8 if (m∗, (r∗, x∗)) ∈ Q then //G0-G5.1

9 return ⊥ //G0-G5.1

10 if (m∗, r∗) ∈ Q then //G6

11 return ⊥ //G6

12 return JF(vk, x∗) = H(r∗,m∗)K

H(r,m)

13 return RFH(r,m)

Sign(m)

14 if σ[m] 6= ∅ then //G2-G6

15 return σ[m] //G2-G6

16 (rk, yk, xk) := GetLogs(m)
17 if xk = ⊥ then
18 σ[m] := ⊥ //G2-G6

19 return ⊥
20 σ[m] := (rk, xk) //G2-G6

21 Q := Q ∪ {(m, (rk, xk))} //G2-G5.1

22 Q := Q ∪ {(m, rk)} //G6

23 return (rk, xk)

GetLogs(m) for G0

24 k := 0
25 repeat
26 k := k + 1
27 rk := PRF(s, (m, k))
28 yk := RFH(rk,m)

29 xk := Inv(sk , yk;PRF
′(s′, (m, k)))

30 until xk 6= ⊥ ∨ k ≥ B
31 return (rk, yk, xk)

GetLogs(m) for G5.1-G6

32 rk := RFsalt(m,B + 1)
33 xk ← SampDom(vk)
34 yk := F(vk, xk)

35 RFH := RF
(rk,m) 7→yk

H
36 return (rk, yk, xk)

GetLogs(m) for G1-G5.0

37 k := 0
38 repeat
39 k := k + 1
40 rk := RFsalt(m, k)
41 yk := RFH(rk,m) //G1-G2

42 yk ←$ Y //G3-G5.0

43 xk := Inv(sk , yk;RFinv(m, k))

44 RFH := RF
(rk,m) 7→yk

H //G3

45 until xk 6= ⊥ ∨ k ≥ B
46 rk := RFsalt(m,B + 1) //G5.0

47 RFH := RF
(rk,m) 7→yk

H //G4-G5.0

48 return (rk, yk, xk)

Fig. 15: Games for EUF-NMA⇒ sEUF-CMA

Lemma 18. We have

|Pr[W2]− Pr[W3]| ≤
3

2
BqS

√
qH +BqS + 1

|R|
.

Proof. The AR adversary Bar (see Fig. 10) can simulateG2 andG3, where RFH

is a random function reprogrammed in the AR game. To simulate GetLogs,
givenm, Bar submitsm to its oracle Repro and obtains random rk ←$ R until
(xk 6= ⊥)∨ (k ≥ B). Note that rk = RFsalt(m, k) is uniformly distributed over
R in both games. Note also that Bar can return σ[m] without using Repro
if the same m is queried again. Hence, Bar can use the oracle’s output as
the salts in GetLogs. If Bar plays AR0, RFH is not reprogrammed; therefore,
it can simulate G2; otherwise RFH is reprogrammed for random y and Bar
can simulates G3. Therefore, there exists an AR adversary Bar such that
|Pr[W2] − Pr[W3]| ≤ AdvAR

H (Bar). Since RFH is reprogrammed at most BqS
times, we have the bound in this lemma from Lemma 2.

Game G4: We cancel the reprogramming executed for intermediate results, and
RFH is reprogrammed only for the final (rk, yk) (see Line 47). By eliminating

28 H. Kosuge and K. Xagawa

the need to simulate intermediate results, we are now ready to simulate the
signing oracle.

Lemma 19. We have

|Pr[W3]− Pr[W4]| ≤ 2(qH + 1)

√
B − 1

|R|
.

Proof. The reprogrammings during retries are canceled in G4. The random
function H in G3 is reprogrammed for each retry attempt, while H in G4 is
reprogrammed only for the final result; therefore, differences of these random
functions are all in S := {(r,m)|∃i ∈ [k − 1], r = ri} for {(ri, yi, xi)}i∈[k]
generated inside GetLogs(m). Since the random function is reprogrammed,
we use Lemma 4 (O2H with adaptive reprogramming), where we set O as
Sign. Let Bo2h be an adversary who runs Acma in G4 and finds an element
in S. Choosing i←$ [qH], Bo2h measures the query input register of Acma and
returns the result. Bo2h has no information on S and |S|

|R×M| ≤
(B−1)|M|
|R||M| =

B−1
|R| holds. From Lemma 4, we have this lemma.

Game G5.0: We modify GetLogs in two steps to make it simulatable. Firstly,
the value rk := RFsalt(m, k) is generated by RFsalt(m,B+1) in GetLogs. Since
both RFsalt(m, k) and RFsalt(m,B+1) are uniformly distributed and the adver-
sary can only access outputs of RFsalt via Sign, the adversary’s view remains
unchanged. Consequently, we have Pr[W4] = Pr[W5.0].

Game G5.1: Secondly, we simulate Sign using SampDom.

Lemma 20. Suppose that T is (γ, β)-correct. There exists a PS adversary
Aps of T such that

|Pr[W5.0]− Pr[W5.1]| ≤ AdvPS
T (Aps) + qS

(
1− γ

(
1− βB

))
.

Proof. We consider the simulation by the PS adversary Aps. For the signing
query, Aps returns rk := RFsalt(m,B+1) and xk, which is output by its oracle
Sampleb. If Aps plays PS1, xk is generated by SampDom, allowing us to
simulate G5.1. If Aps plays PS0, we need to account for the possibility that
the number of retries exceeds B or that inversion fails (F(vk , xk) 6= yk), which
we define as bad5. When bad5 does not occur, Aps simulates G5.1. Since bad5

happens with a probability of at most qS(1−γ(1−βB)), we have this lemma.

Game G6: We change the condition to output ⊥ from (m∗, (r∗, x∗)) ∈ Q to
(m∗, r∗) ∈ Q. As the condition (m∗, (r∗, x∗)) 6∈ Q allows for the possibility
that H may be reprogrammed on (r∗,m∗), the new condition (m∗, r∗) 6∈ Q
eliminates that possibility. Then, the EUF-NMA adversary can win its game
by submitting Acma’s output if Acma wins G6.

Lemma 21. There exists an SPR adversary Aspr of T such that

|Pr[W5.1]− Pr[W6]| ≤ qSAdvSPR
T (Aspr).

The Security of Hash-and-Sign with Retry against Superposition Attacks 29

AĤ
nma(vk)

1 RFsalt ←$ Func(M× [B+1],R)
2 Q := ∅
3 (m∗, (r∗, x∗))← ASign,|H〉

cma (vk)
4 if (m∗, r∗) ∈ Q then
5 return ⊥
6 return (m∗, (r∗, x∗))

H(r,m)

7 if σ[m] 6= ∅ ∧ σ[m] 6= ⊥ then
8 (rk, xk) := σ[m]
9 if r = rk then

10 return F(vk , xk)

11 return Ĥ(r,m)

Sign(m)

12 if σ[m] 6= ∅ then
13 return σ[m]
14 (rk, yk, xk) := GetLogs(m)
15 if xk = ⊥ then
16 σ[m] := ⊥
17 return ⊥
18 σ[m] := (rk, xk)
19 Q := Q ∪ {(m, rk)}
20 return (rk, xk)

GetLogs(m)

21 rk := RFsalt(m,B + 1)
22 xk := SampDom(vk)
23 yk := F(vk, xk)
24 return (rk, yk, xk)

Fig. 16: Simulation of the modified sEUF-CMA game by EUF-NMA adversary

Proof. G5.1 and G6 differ only if the adversary submits (m∗, (r∗, x∗)) such
that (m∗, (r∗, x∗)) 6∈ Q in G5.1, (m∗, r∗) ∈ Q in G6, and F(vk , x∗) = H(r∗,m∗)
holds in both games. That is, r∗ = rk and x∗ 6= xk, where (rk, xk) is generated
by Sign(m∗); therefore, F(vk , x∗) = F(vk , xk) = H(rk,m

∗) holds. Let bad6

be such an event and |Pr[W5.1]− Pr[W6]| ≤ Pr[bad6] holds.
We show a bound on bad6 using the SPR game shown in Definition 7.

Note that we assume that the distribution of the challenge x̂ follows the one
of SampDom(vk) in the SPR game. The SPR adversary Aspr simulates G6

by setting its challenge x̂ as the output of SampDom in i-th query to Sign,
where i ←$ [qS]. When bad6 occurs for (m∗, (r∗, x∗)) and m∗ is i-th query,
F(vk , x∗) = F(vk , x̂) = H(r∗,m∗) holds. Hence, Aspr can win the SPR game
by submitting x∗ as a second preimage of x̂. Since Aspr correctly guesses i
with 1

qS
, Pr[bad6] ≤ qSAdvSPR

T (Aspr) holds.

Then, we can conclude this theorem by bounding Pr[W6].

Lemma 22. There exists an EUF-NMA adversary Anma of HSR[T,H] such
that

Pr[W6] ≤ AdvEUF-NMA
HSR (Anma).

Proof. The EUF-NMA adversary Anma with oracle access to Ĥ can simulate
G6 as in Fig. 16. Note that Anma sets H = Ĥ and outputs of H and Ĥ differ
for reprogrammed points. To simulate the reprogramming in the execution of
Sign, H(r,m) outputs F(vk , xk) for (rk, xk) = σ[m] if r = rk holds (see Lines 7
to 10). When Acma wins the game by submitting (m∗, (r∗, x∗)), H(r∗,m∗) is not
reprogrammed from (m∗, r∗) 6∈ Q. Therefore, F(vk , x∗) = Ĥ(r∗,m∗) holds and
Anma can win the game by submitting (m∗, (r∗, x∗)).

ut

The EUF-CMA security does not require second-preimage resistance of T
as follows:

30 H. Kosuge and K. Xagawa

Corollary 3 (EUF-NMA + PS + PRF ⇒ EUF-CMA). For any quan-
tum EUF-CMA adversary Acma of DHSRB [T,H,PRF,PRF

′] issuing at most qH
quantum queries to H and qS quantum queries to Sign, there exist an EUF-NMA
adversary Anma of HSR[T,H], a PS adversary Aps issuing at most qS queries,
and PRF adversaries Aprf of PRF and A′prf of PRF′ issuing at most BqS queries
such that

AdvEUF-CMA
DHSR (Acma) ≤ AdvEUF-NMA

HSR (Anma) + AdvPS
T (Aps) + AdvPRF

PRF (Aprf)

+ AdvPRF
PRF′(A′prf) + qS

(
1− γ

(
1− βB

))
+

3

2
BqS

√
qH +BqS + 1

|R|
+ 2(qH + 1)

√
B − 1

|R|
,

where T is (γ, β)-correct and the running times of Anma, Aps, Aprf , and A′prf are
about that of Acma.

Proof. Since Q stores only messages, if m∗ 6∈ Q, then RFH(r
∗,m∗) is not repro-

grammed in the proof of Theorem 3. Therefore, we can skip the last game G6 and
the second-preimage resistance of T is not required for EUF-CMA security. ut

Remark 2. We compare the result with the existing proof for the original HSwR
by Kosuge and Xagawa [19]. First, we improve the tightness utilizing the deran-
domization with bounded loop. The security bound of the original HSwR shown
in [19] is as follows.

Adv
(s)EUF-CMA
HSwR (Acma) ≤ AdvEUF-NMA

HSwR (Anma) + AdvPS
T (Aps)

+
3

2
q′S

√
qH + q′S + 1

|R|
+ 2(qH + 2)

√
q′S − qS
|R|

,

where q′S is a bound on the total number of retries during qS signing queries
(q′S ≤ BqS holds in DHSwBR). The last term is replaced with 2(qH+1)

√
B−1
|R| in

Theorem 3 and Corollary 3. However, as a drawback, the PRF advantage (due
to the derandomization) and the probability that no valid signature is generated
in signing queries (due to the bounded loop) are added to the security bound.
These terms become negligible when well-evaluated PRFs are used and B is set
appropriately based on the failing probability β.

Second, we relax the condition of T required for the sEUF-CMA security
from injection to second-preimage-resistance, where this relaxation is also ap-
plied to the original HSwR.

References

1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message au-
thentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (May
2020). https://doi.org/10.1007/978-3-030-45727-3_27 2, 3, 7, 8

https://doi.org/10.1007/978-3-030-45727-3_27

The Security of Hash-and-Sign with Retry against Superposition Attacks 31

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part II. LNCS, vol. 11693, pp. 269–295. Springer, Cham (Aug 2019). https://-
doi.org/10.1007/978-3-030-26951-7_10 6, 13, 33, 34

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://-
doi.org/10.1145/168588.168596 2, 3

4. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp.
399–416. Springer, Berlin, Heidelberg (May 1996). https://doi.org/10.1007/3-540-
68339-9_34 2

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Berlin, Heidelberg (Dec
2011). https://doi.org/10.1007/978-3-642-25385-0_3 2, 4

6. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Berlin, Heidelberg (Aug 2013).
https://doi.org/10.1007/978-3-642-40084-1_21 2, 3, 4, 7, 13, 14

7. Chatterjee, R., Chung, K.M., Liang, X., Malavolta, G.: A note on the post-quantum
security of (ring) signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022, Part II. LNCS, vol. 13178, pp. 407–436. Springer, Cham (Mar 2022).
https://doi.org/10.1007/978-3-030-97131-1_14 3, 4

8. Cogliati, B., Fouque, P.A., Goubin, L., Minaud, B.: New security proofs and tech-
niques for hash-and-sign with retry signature schemes. Cryptology ePrint Archive,
Report 2024/609 (2024), https://eprint.iacr.org/2024/609 3

9. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of Fiat-
Shamir with aborts. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 327–357. Springer, Cham (Aug 2023). https://-
doi.org/10.1007/978-3-031-38554-4_11 6, 16

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-
47721-7_12 2

11. Furue, H., Ikematsu, Y., Hoshino, F., Takagi, T., Yasuda, K., Miyazawa, T.,
Saito, T., Nagai, A.: QR-UOV. Tech. rep., National Institute of Standards
and Technology (2023), available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures 3

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407 2,
10

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017 1

14. Goubin, L., Cogliati, B., Faugère, J., Fouque, P., Larrieu, R., Macario-Rat, G.,
Minaud, B., Patarin, J.: PROV — PRovable unbalanced Oil and Vinegar. Tech.
rep., National Institute of Standards and Technology (2023), available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures 3

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-030-97131-1_14
https://eprint.iacr.org/2024/609
https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

32 H. Kosuge and K. Xagawa

15. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive repro-
gramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part I. LNCS, vol. 13090, pp. 637–667. Springer, Cham (Dec 2021). https://-
doi.org/10.1007/978-3-030-92062-3_22 6, 12, 13

16. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ci-
phers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 275–304. Springer,
Cham (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_10 3

17. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-
based signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Berlin, Heidelberg (Mar
2016). https://doi.org/10.1007/978-3-662-49384-7_15 12

18. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer,
Cham (Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_18 12

19. Kosuge, H., Xagawa, K.: Probabilistic hash-and-sign with retry in the quantum
random oracle model. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part I. LNCS,
vol. 14601, pp. 259–288. Springer, Cham (Apr 2024). https://doi.org/10.1007/978-
3-031-57718-5_9 2, 3, 4, 5, 6, 10, 11, 14, 30

20. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Berlin, Heidelberg (Dec 2009). https://doi.org/10.1007/978-3-
642-10366-7_35 3

21. NIST: Call for additional digital signature schemes for the post-quantum cryp-
tography standardization process (Sep 2022), https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf 2

22. NIST: Status report on the third round of the nist post-quantum cryptogra-
phy standardization process (Sep 2022), https://csrc.nist.gov/publications/detail/
nistir/8413/final 2

23. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE sig-
nature schemes against chosen-message attack. In: Yang, B.Y. (ed.) Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011. pp. 68–82. Springer,
Berlin, Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_-
5 2, 11

24. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700 1

25. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Os-
wald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer, Berlin,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_8 6, 13

26. Xagawa, K.: Signatures with memory-tight security in the quantum random oracle
model. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part VII. LNCS, vol.
14657, pp. 30–58. Springer, Cham (May 2024). https://doi.org/10.1007/978-3-031-
58754-2_2 2, 3, 4, 5, 6, 17, 18

27. Yuan, Q., Sun, C., Takagi, T.: Revisiting the security of Fiat-Shamir sig-
nature schemes under superposition attacks. In: Zhu, T., Li, Y. (eds.)
ACISP 2024, Part II. LNCS, vol. 14896, pp. 164–184. Springer, Heidelberg
(2024). https://doi.org/10.1007/978-981-97-5028-3_9, https://doi.org/10.1007/
978-981-97-5028-3_9 6, 22

https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-031-58754-2_2
https://doi.org/10.1007/978-3-031-58754-2_2
https://doi.org/10.1007/978-981-97-5028-3_9
https://doi.org/10.1007/978-981-97-5028-3_9
https://doi.org/10.1007/978-981-97-5028-3_9

The Security of Hash-and-Sign with Retry against Superposition Attacks 33

28. Zhandry, M.: How to construct quantum random functions. In: 53rd
FOCS. pp. 679–687. IEEE Computer Society Press (Oct 2012). https://-
doi.org/10.1109/FOCS.2012.37 12

29. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Berlin, Heidelberg (Aug 2012). https://doi.org/10.1007/978-3-
642-32009-5_44 14

A Proof of Lemma 4

We modify the original O2H to make it applicable in environments where the
random function is being reprogrammed. Specifically, we demonstrate that O2H
applies in the existence of an oracle that triggers reprogramming as in the tight
adaptive reprogramming.

Lemma 4 (O2H with Adaptive Reprogramming). Let H0,H1 : X → Y be
functions that are reprogrammed depending on classical queries to an oracle O
(H0 and H1 may be reprogrammed differently). Assume that H0(x) = H1(x) for
all x 6∈ S when O is queried the same number of times with the same inputs. Let
z be a random bitstring. (S, H0, H1, z may have arbitrary joint distribution.)
Let A be a quantum algorithm with q quantum queries to H0 or H1 and some
classical queries to O. Then, there exists a quantum algorithm B that, given
access to the oracle H0 and A, finds an element in S such that∣∣∣Pr[A|H0〉,O(z) = 1

]
− Pr

[
A|H1〉,O(z) = 1

]∣∣∣ ≤ 2q
√
Pr
[
x← B|H0〉,O,A(z) : x ∈ Si

]
.

Proof. Lemma 4 is an adaptation of [2, Theorem 3], which consists of [2, Lemma
8] (proof assuming a pure state) and [2, Lemma 9] (proof assuming a mixed
state). We only modify the former and use the latter as it is.

Let
∣∣ψi

H0

〉
and

∣∣ψi
H1

〉
be the states of AH0,O(z) and AH1,O(z) just before the

(i + 1)-th query, including the query input register. In [2, Lemma 8], a bound
on Di =

∥∥∣∣ψi
H0

〉
−
∣∣ψi

H1

〉∥∥2 is obtained, from which
√
Dq =

∥∥∣∣ψq
H0

〉
−
∣∣ψq

H1

〉∥∥ is
derived. In this proof, in addition to the adversary’s state, we define states

∣∣φiH0

〉
and

∣∣φiH1

〉
that store results of past queries to O by AH0,O(z) and AH1,O(z), re-

spectively. Let OHb
be a unitary operation corresponding to the oracle queries of

Hb (b ∈ {0, 1}) that returns Hb(x) by reading the query input register along with∣∣φiHb

〉
. Note that Hb is reprogrammed depending on

∣∣φiHb

〉
, and OHb

∣∣φiHb

〉
|x, y〉 =

|x, y ⊕ Hb(x)〉 holds. Define PS as the orthogonal projector that projects the
query register onto the subspace spanned by states |x〉 such that x ∈ S. For-
mally, this is given by PS =

∑
x∈S |x〉 〈x|. This projector PS ensures that only

those states corresponding to x ∈ S are selected. Let Bi =
∥∥PS ∣∣ψi−1

H0

〉∥∥2 be the
probability of obtaining x ∈ S by measuring query input register of AH0,O(z)
just before the i-th query.

Setting D′i =
∥∥∣∣φiH0

ψi
H0

〉
−
∣∣φiH1

ψi
H1

〉∥∥2 and letting U be the state transition
operation between the queries to Hb (U includes queries to O), the following

https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44

34 H. Kosuge and K. Xagawa

bound is obtained.

D′i =
∥∥UOH0

∣∣φi−1H0
ψi−1
H0

〉
− UOH1

∣∣φi−1H1
ψi−1
H1

〉∥∥2
=
∥∥(OH0

∣∣φi−1H0
ψi−1
H0

〉
−OH1

∣∣φi−1H0
ψi−1
H0

〉)
+
(
OH1

∣∣φi−1H0
ψi−1
H0

〉
−OH1

∣∣φi−1H1
ψi−1
H1

〉)∥∥2
≤
∥∥(OH0 −OH1)

∣∣φi−1H0
ψi−1
H0

〉∥∥2 + ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥2
+ 2

∥∥(OH0 −OH1)
∣∣φi−1H0

ψi−1
H0

〉∥∥ · ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥
=
∥∥(OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉) ∣∣ψi−1
H0

〉∥∥2 + ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥2
+ 2

∥∥(OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉) ∣∣ψi−1
H0

〉∥∥ · ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥
=
∥∥(OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
PS
∣∣ψi−1

H0

〉∥∥2 + ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥2
+ 2

∥∥(OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
PS
∣∣ψi−1

H0

〉∥∥ · ∥∥OH1

(∣∣φi−1H0
ψi−1
H0

〉
−
∣∣φi−1H1

ψi−1
H1

〉)∥∥
≤ 4

∥∥PS ∣∣ψi−1
H0

〉∥∥2 + ∥∥∣∣φi−1H0
ψi−1
H0

〉
−
∣∣ψi

H1
φiH1

〉∥∥2
+ 4

∥∥PS ∣∣ψi−1
H0

〉∥∥ · ∥∥∣∣φi−1H0
ψi−1
H0

〉
−
∣∣ψi

H1
φiH1

〉∥∥
= 4Bi +D′i−1 + 4

√
BiD′i−1 =

(√
D′i−1 + 2

√
Bi

)2
Since OH0

and OH1
both read the same state

∣∣φi−1H0

〉
, it follows that H0(x) =

H1(x) for all x 6∈ S. Therefore,
(
OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
only applies to |x, y〉

such that x ∈ S. Consequently, even if PS projects the query input register
onto the subspace spanned by |x〉 such that x ∈ S, the state after applying(
OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
does not change. Therefore, we have(

OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
PS =

(
OH0

∣∣φi−1H0

〉
−OH1

∣∣φi−1H0

〉)
.

Since D′0 = 0 and
√
Dq ≤

√
D′q hold, we have

√
Dq ≤

√
D′q ≤ 2

∑
i∈[q]

√
Bi ≤ 2q

√√√√∑
i∈[q]

1

q
Bi = 2q

√
Pr
[
x← B|H0〉,A(z) : x ∈ S

]
.

Hence, we have
∥∥∣∣ψq

H0

〉
−
∣∣ψq

H1

〉∥∥ ≤ 2q
√
Pr
[
x← B|H0〉,A(z) : x ∈ S

]
. Extending

this result to O2H for mixed states using the proof of [2, Lemma 9], we have this
lemma. ut

B Variations of Hash-and-Sign

We present the original hash-and-sign and its three variations in Figs. 17 and 18.

C Quantum Preimage-Simulatability

We define the quantum preimage-simulatability as follows.

The Security of Hash-and-Sign with Retry against Superposition Attacks 35

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)
2 return (vk , sk)

Sign(sk ,m)

3 y := H(m)
4 x← Inv(sk , y)
5 return x

Vrfy(vk ,m, x)

6 return JF(vk , x) = H(m)K

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)

2 s′ ←$ K
3 return (vk , (sk , s′))

Sign((sk , s′),m)

4 y := H(m)

5 x := Inv(sk , y;PRF′(s′,m))
6 return x

Vrfy(vk ,m, x)

7 return JF(vk , x) = H(m)K

Fig. 17: Algorithms of original hash-and-sign (HS) and derandomized hash-and-
sign (DHS)

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)
2 return (vk , sk)

Sign(sk ,m)

3 r ←$ R
4 y := H(r,m)
5 x← Inv(sk , y)
6 return (r, x)

Vrfy(vk ,m, (r, x))

7 return JF(vk , x) = H(r,m)K

KeyGen(1λ)

1 (vk , sk)← Gen(1λ)

2 (s, s′)←$ K×K
3 return (vk , (sk , s, s′))

Sign((sk , s, s′),m)

4 r := PRF(s,m)
5 y := H(r,m)

6 x := Inv(sk , y;PRF′(s′,m))
7 return (r, x)

Vrfy(vk ,m, (r, x))

8 return JF(vk , x) = H(r,m)K

Fig. 18: Algorithms of probabilistic hash-and-sign (PHS) and derandomized
probabilistic hash-and-sign (DPHS)

Definition 9 (Quantum Preimage Simulatablity). Let T be a TDF with
SampDom. Using a game defined in Fig. 19, we define an advantage function of
an adversary playing the qPS (Quantum Preimage Sampling) game against T as
AdvqPS

T (A) =
∣∣Pr[qPS0A=1

]
− Pr

[
qPS1

A=1
]∣∣. We say T is quantum preimage-

simulatable if its advantage is negligible for any efficient adversary.

In the proof of Theorem 1, we have the following lemma.

Lemma 23. Suppose that T is (γ, β)-correct. There exists a qPS adversary Aqps

of T such that

|Pr[W10.0]− Pr[W10.1]| ≤ AdvqPS
T (Aqps) +

√
6 (qH + 2qF)

3
(1− γ (1− βB)).

Proof. Before taking the bound using the qPS advantage, we introduce an inter-
mediate game G10.05 between G10.0 and G10.1, in which GetLogs obtains xk after
the unbounded loop iterations and computes yk := F(vk , xk) instead of using

36 H. Kosuge and K. Xagawa

GAME qPSb

1 RFinv ←$ Func(M× [B],R′)

2 RF′
H ←$ Func(M× [B],Y)

3 RFsd ←$ Func(M,R′′)

4 (vk , sk)← Gen(1λ)

5 b∗ ← A|QSampleb〉(vk)
6 return b∗

QSample0(m)

7 k := 0
8 repeat
9 k := k + 1

10 y := RF′
H(m, k)

11 x := Inv(sk , y;RFinv(m, k))
12 until x 6= ⊥
13 return x

QSample1(m)

14 x := SampDom(vk ;RFsd(m))
15 return x

Fig. 19: qPS game

the yk generated during the loop. Let Dm and D′m denote the distributions of
(x, y) ∈ X ′ × Y output by GetLogs(m) in G10.0 and G10.05, respectively, where
X ′ = X ∪{⊥}. The outputs of GetLogs(m) differ in cases where it returns x = ⊥
or when x 6= ⊥ but F(vk , x) 6= y holds in G10.05. Thus, the statistical distance
between Dm and D′m is bounded as follows:∑

(x,y)∈X ′×Y

|Dm(x, y)−D′m(x, y)| =
∑

(x,y)∈X ′×Y
:x=⊥∨F(vk ,x)6=y

Dm(x, y)

= 1−
∑
x∈X
Dm(x,F(vk , x))

≤ 1− γ
(
1− βB

)
Applying Lemma 5, we have

|Pr[W10.05]− Pr[W10.1]| ≤
√
6 (qH + 2qF)

3
(1− γ (1− βB)). (4)

Then, the qPS adversary Aqps can simulate G10.05 and G10.1 as in Fig. 20.
The qPS adversary Aqps simulates G10.05 if b = 0; otherwise, it simulates G10.1.
Therefore,

|Pr[W10.05]− Pr[W10.1]| ≤ AdvqPS
T (Aqps) (5)

From Eqs. (4) and (5), we have the bound in this lemma.

The Security of Hash-and-Sign with Retry against Superposition Attacks 37

A|QSampleb〉
qps (vk)

1 RFH ←$ Func(R× [M,Y)
2 RFsalt ←$ Func(M× [B+1],R)
3 win = ⊥
4 run A|H〉,|Sign〉,Forge

po (vk)

5 return win

H(r,m)

6 (rk, yk, xk) := GetLogs(m)
7 if r = rk then
8 return yk

9 return RFH(r,m)

Sign(m)

10 (rk, yk, xk) := GetLogs(m)
11 if xk = ⊥ then
12 return ⊥
13 return (rk, xk)

Forge(m, (r, x))

14 (rk, yk, xk) := GetLogs(m)
15 if F(vk , xk) 6= H(rk,m) then
16 return `
17 if F(vk , x) = H(r,m) ∧ (r, x) 6= (rk, xk) then
18 win = >

GetLogs(m)

19 rk := RFsalt(m,B + 1)
20 xk := QSampleb(m)
21 yk := F(vk , xk)
22 return (rk, yk, xk)

Fig. 20: Simulation of the modified PO game by qPS adversary

	 The Security of Hash-and-Sign with Retry against Superposition Attacks

