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Abstract. Traitor tracing is a traditional cryptographic primitive designed for scenarios with multiple
legitimate receivers. When the plaintext - that is, the output of decryption - is leaked and more than
one legitimate receiver exists, it becomes imperative to identify the source of the leakage, a need that
has motivated the development of traitor tracing techniques. Recent advances in standard encryption
have enabled decryption outcomes to be defined in a fine-grained manner through the introduction of
Functional Encryption (FE). Constructing FE schemes is intriguing, and achieving the tracing property
adds an additional layer of complexity. Traitor tracing techniques have been actively developed for
more than three decades, yet they have always remained within the same framework - a single sender
responsible for encrypting all the data.
However, fine-grained decryption is particularly useful when data originates from multiple sources,
allowing for joint computation on personal data. This leads to the concept of multi-client functional
encryption (MCFE), where multiple concurrent senders independently encrypt their data while agreeing
on the decryption of a specific function (e.g., a statistical measure) computed on the aggregated data,
without revealing any additional information. In the era of cloud computing and big data, privacy-
preserving joint computation is crucial, and tracing the source of any breach by dishonest participants
becomes essential. Thus, in this paper we take the first step toward addressing the tracing problem in
the general context of joint computation with multiple senders. Our contributions are twofold:

• Conceptually: We propose the first tracing model in the context of multi-sender encryption, namely
Traceable Multi-Client Functional Encryption (TMCFE), which allows a pirate to extract secret
information from both receivers and senders. Our model supports strong and naturally admissible
decoders, removing artificial restrictions on the pirate decoder and thus addressing the shortcomings
of existing traceable functional encryption schemes designed for the single-sender setting.

• Technically: To achieve our conceptual objective, we build upon the recently introduced notion of
strong admissibility for MCFE. Our main technical contribution is a generic compiler that transforms
a large class of MCFE schemes with weak admissibility into schemes with strong admissibility. This
compiler not only helps overcome existing challenges but may also be of general interest within
the functional encryption domain. Finally, we present a concrete lattice-based scheme TMCFE for
inner-product functionalities that achieves post-quantum security under standard assumptions.
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1 Introduction

Traitor Tracing. Traitor tracing systems [CFN94] are a cryptographic technique designed to identify
malicious users who leak secret decryption keys in a broadcast environment. It is particularly relevant in
scenarios such as digital content protection, where content providers distribute encrypted media to legitimate
subscribers but need to prevent unauthorized redistribution. If any collection of users (which are called as
receivers in the context of network communication) attempts to create and sell a decoding box that can be
used to decrypt the content, the tracing algorithm, given access to such pirate decoder, is guaranteed to
identify at least one corrupt users, i.e., a member of those who contributed to the creation of the decoder.

In general, there are two main approaches to constructing traitor tracing schemes: the algebraic approach
(e.g., group-based or lattice-based schemes) and the combinatorial approach (e.g., tree-based or collusion-secure
code-based schemes). Algebraic schemes handle full collusion among traitors more effectively (e.g., [BSW06,
BW06,BZ14,GKW18,GKW19,KW20,Zha20,AKYY23,GLW23,BLM+24]) or provide better efficiency in
bounded-collusion settings (e.g., [BF99,LPSS14,ABP+17], among others). Meanwhile, combinatorial-approach
schemes often provide better black-box tracing capabilities (e.g., [CFN94,BS95,BP08,BN08,DPY20,BPR24],
among others). Many techniques were also developed to achieve systems with better efficiency [BZ14]
and better security properties such as anonymity [NWZ16,GKW19] and transparency [BLM+24]. In the
past decade, an important research direction has extended traitor tracing to more advanced encryption
paradigms. These include group encryption [LYJP14], attribute-based encryption [CVW+18], and, more
recently, functional encryption [DPP20,LAKWH22]. Throughout more than three decades of development,
traitor tracing techniques, however, have remained within the one-to-many setting, where a single sender is
responsible for encrypting all the data.

Fine-grained decryption. Recent advances in modern cryptography have enabled decryption outcome to
be defined in a fine-grained manner, notably through the advent of functional encryption [BSW11]. Functional
Encryption (FE) is an advanced encryption framework that enhances traditional public-key encryption by
providing fine-grained control over the information that is revealed. Unlike traditional encryption schemes,
which offer only an “all-or-nothing” decryption capability, where a legitimate decryption key of a user can
extract the entire plaintext from a ciphertext while others learn nothing. On the other hand, FE allows an
authorized user to obtain specific computed results from encrypted data without revealing any additional
information. However, the initial form of functional encryption requires the entire dataset to be encrypted
simultaneously by a single user or sender (i.e., following the one-to-many paradigm). For example, in the case
of the inner-product functionality, all vectors must be encrypted at the same time by the same user using a
common randomness. This constraint significantly limited real-world applicability—such as in aggregation
scenarios—where data often comes from different sources and is collected over time. To address this limitation,
multi-input and multi-client functional encryption schemes were proposed by [GGG+14], enabling independent
encryption by multiple senders. Such multi-client functional encryption (MCFE) schemes, which allow
multiple clients (i.e., senders) to encrypt data independently, can be considered as a (generalized) encryption
scheme with fine-grained decryption in the arguably more complicated framework of multi-sender, i.e., the
many-to-many communication.

On Private Key Encryption with Multi Clients Functional Encryption. Systematic studies on
the context of multiple senders for functional encryption are initiated by the seminal works of [GGG+14,
GKL+13,CDG+18a] that introduced and formalized the so-called notion of multi-client functional encryption
(MCFE). In this setting, multiple clients act as senders, each encrypting independently their own data to
obtain partial ciphertexts that can be jointly decrypted using a functional decryption key given by a trusted
authority, when all partial ciphertexts share a same tag. This setting is particularly relevant in a growing
number of applications where the encrypted data is collected from multiple independent sources6, where there

6 When there is a single sender knowing the function in advance, all-or-nothing public key encryption (PKE) is
sufficient as one can encrypt directly the function evaluations of the data. However, in the multi-sender setting, even
if there is only one function to be evaluated, the fact that multiple independent senders contibuting to the inputs
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are scenarios that require primitives richer than usual PKE. Furthermore, the private-key version of MCFE
where each client has a secret encrption key, is more relevant than its public-key counterpart, as argued
in [GGG+14,CDG+18a]. This comes from an essential observation that: in case the encryption is public, an
encryption of any target sender can be combined with encryptions of arbitrarily chosen values in place of other
senders, and a functional decryption key, as long as the same tag is used for all ciphertexts. The amount of
information leaked on the secret message of the target sender will be then too much, as different combinations
can be done using public encryptions then decrypting with the functional decryption key. More specifically,
this inherent leakage is captured by semantic security as follows. We say that an attack is trivial if correctness
alone allows breaking the indistinguishability of the ciphertexts on (x(0)

i )i versus on (x(1)

i )i for all clients i,
i.e., when the functional key on some function f gives f(x(0)

1 , . . . , x(0)
n ) ̸= f(x(1)

1 , . . . , x(1)
n ). In case of public key

encryption for MCFE, due to the above mix-and-match combination, to exclude trivial attacks, all functions
f for which the functional key is known by the adversary must satisfy: f(. . . , x(0)

i , . . . ) = f(. . . , x(1)

i , . . . ) for
each encryption slot i. This is a very strong condition that excludes almost all non-trivial functions of a given
class, and as a result the security notion becomes very weak. The private-key version of MCFE resolves this
issue, and still makes sense in practical scenarios where the encryption key is a private information to each
client.

Growing interests in MCFE is attested via a long line of works, in particular on realizing concrete function
classes of inner products [CDG+18b, ABKW19, ABG19, LT19, CDSG+20, SV23, NPS24]. Along the way,
fine-grained control of functional keys is also studied in [ACGU20,ATY23,Ngu24,NPP25,NPS25], together
with further enhancements of the security notion [NPP23]. This shows a rich body of works on this setting of
many-to-many private-key encryption of MCFE, where many senders (the clients) independently encrypt
their data to be jointly decrypted by potentially many users in possession of functional decryption keys. The
works [ATY23,Ngu24,NPP25,NPS25] ask and examine the question of how to control the functional keys
in the private-key MCFE setting where only authorized users can decrypt, leaving thus space for further
investigation on other important aspects, including tracing colluded decryption keys.

In this work, we envision a new model for traitor tracing in the multi-sender setting, and we propose the
first traitor tracing model for MCFE, that we refer to as traceable MCFE. We remark that the problem of
traitor tracing for many-to-many communication is interesting in its own right. Traitor tracing then comes
up naturally in virtually any application where multi-client functional encryption is applicable, especially in
the era of cloud computing and big data, where privacy-preserving joint computation is crucial. Unlike the
one-to-many setting, MCFE introduces additional challenges due to the presence of multiple parties with
distinct roles (e.g., senders, receivers, or both). Collusion between adversarial entities occupying different roles
could facilitate the construction of stronger pirate decoders, potentially rendering tracing infeasible. This
observation is critical within the context of MCFE, where encryption remains private, and the compromise of
secret encryption keys introduces further security risks.

Consequently, simply adapting existing techniques from the one-to-many traitor tracing paradigm is
insufficient for designing an MCFE scheme that incorporates tracing capabilities. Our work aims to address
these challenges by establishing a rigorous framework for traitor tracing in MCFE and proposing a construction
that ensures tracing mechanism in the many-to-many communication setting.

1.1 Our Contributions

We construct traitor tracing systems for multi-client functional encryption for inner-product functionality
from standard lattice assumptions, achieving anonymity of honest users and bounded collusion. Our main
contributions are summarized as follows.

(1) A new model for traitor tracing in the multi-sender setting. We introduce the notion of traceable
multi-client functional encryption (TMCFE) as a new model to build traitor tracing systems in the many-to-
many communication setting. In particular, we propose a standard and natural security model for TMCFE.

of the function means one cannot naively use PKE because the function evaluation is not known at independent
encryption time among senders.
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A natural starting point for defining such a system is the notion of traceable functional encryption, which
was first introduced in [DPP20]. [DPP20] also gives a concrete, efficient construction for the inner-product
functionality, however, their construction only achieves a very weak security of one-target security for tracing.
By adapting the technique of Agrawal et al. [ABP+17] into the functional encryption setting, a subsequent
work of [LAKWH22] proposes traceable functional encryption for inner-product schemes that offer stronger
security, specifically, multi-target security (referred to as adaptive tracing security). However, their security
notion still suffer from a major limitations: it introduces certain artificial conditions or restrictions that do
not align well with practical scenarios—making it incapable of tracing even relatively simple pirate decoders.
We discuss more on these limitations in Section 1.2. Our new security model for tracing not only improves
previous tracing security from previous works and but also extend it to the multi-sender setting.

Along the way, we also provide characterizations of our definition for TMCFE, and we show that public
tracing is impossible in general for MCFE. Interestingly, our impossibility exploits the possibility of corruption
of both senders (with private-key encryption) and receivers in the context of MCFE. Informally, our
impossibility says that public tracing and IND-CPA security cannot be achieve simultaneously.

(2) Bounded-Collusion Embedded Identities TMCFE for Inner-Product. We present a construction
of TMCFE for inner-product with bounded-collusion and embedded identities, based on standard Learning-
With-Errors assumptions. Informally, an embedded identities traitor tracing scheme preserves honest receivers’
privacy from the senders. While there are several traitor tracing schemes for PKE with bounded-collusion
and embedded identities that we can leverage, adapting these constructions to the MCFE setting requires
new cryptographic techniques. Furthermore, since (MC)FE for general circuits implies the existence of
indistinguishability obfuscation, which is far from being practical and we are interested in constructions that
can be based on standard assumptions with concrete efficiency, in this work, we focus on the construction of
less general functionalities which are still expressive enough for practical scenarios, namely, the inner-product
functionality.

(3) Enhancing tracing security for TMCFE from strong IND-CPA security. We identify a close
connection between the admissibility condition required7 in the IND-CPA security definition for MCFE and
the tracing security definition of TMCFE. Traceability and security have often been considered separately in
the context of traitor tracing for public key encryption (PKE). However, our work indicate that improving
one might enhance the other, and that the two are closely related in the context of TMCFE.

MCFE schemes for inner-product functionality typically adopt weak admissibility conditions due to the
deterministic nature of the encryption scheme [CDG+18a,LT19,ABG19], whereas an optimal and stronger
admissibility conditions for MCFE are only recently studied in the work of [NPP23]. Importantly, this strong
admissibility conditions of [NPP23] leads to a stronger IND-CPA security. On the other hand, we also show
that the same strong admissibility conditions are necessary for a robust tracing model, allowing the removal
of artificial restrictions present in prior works, such as those discussed in [DPP20] and [LAKWH22]. To that
end, we also construct a generic compiler that transforms MCFE for inner-product under certain structure of
decryption8 from weak admissibility to strong admissibility, with little overhead.

We expect the same relationship would hold in a broader context of multi-sender with fine-grained
decryption (for example, decentralized MCFE [CDG+18a]), and leave these interesting questions as open for
future work.

1.2 Technical Overview

The standard IND-CPA security model for MCFE [GGG+14, GKL+13, CDG+18a] consists of a security
experiment between a challenger and an adversary, where the adversary is given access to a number of oracles
(Initialise, Extract, Enc, Corrupt) and a challenge oracle LoR to which they can make queries. The
names of oracle are self-explanatory, in particular, the adversary can query to Corrupt to obtain the secret
7 Admissibility conditions are required to prevent trivial attacks in IND-CPA for MCFE.
8 All known constructions of MCFE from lattice assumptions satisfy these requirements.
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encryption keys, separately from the corruption of the decryption keys that are associated with functions,
which can be obtained via Extract. We remark that as MCFE/MIFE are secret-key primitives, there is an
Enc oracle to which the adversary can ask for any encryption of its choice for each encryption slot. The
ability to corrupt makes the adversary stronger and thus leads to a stronger notion of security, as reflected
via the notion of admissibility conditions for adversary. The admissibility conditions will be discussed later in
this sequel when it is relevant.

1.2.1 Definition of traitor tracing in the multi-client setting

We first motivate a particular type of traitor tracing with embedded identities. Embedded identities, first
studied by Nishimaki, Wichs, and Zhandry [NWZ16], enable the inclusion of arbitrary information within
secret keys. Ideally, a tracer would want to identify the traitor in order to prosecute or fine. Without
embedded identities (i.e., in an indexed traitor tracing system), the key issuer could maintain an explicit
mapping (as a look-up table) between the user identification information and the indices of their respective
decryption keys. Embedded identities address this issue by directly incorporating the necessary information
into the issued keys, eliminating the need for such a mapping. Our goal is then to construct embedded identity
traitor tracing (EITT) for multi-client functional encryption for the class of inner products (IPMCFE).

Traceable Multi-Client Functional Encryption. In the following, we refer to an encryptor as a “client”
and a decryptor as a “user”. We recall that our setting is multi-client, for independent encryption of partial
ciphertexts, with multi-receiver where each receiver can request for functional decryption keys that allow
decrypting clients’ ciphertexts under the same tag. The tracing adversary is allowed to obtain the secret
encryption keys by corrupting the clients, separately from the corruption of the decryption keys that are
associated with functions.

The first tracing model: Single-sender, One-target [DPP20]. The concept of traceable functional
encryption (FE) was first explored in [DPP20], where the authors introduced traceable inner product
functional encryption (TIPFE). In their construction, decryption keys are associated with tuples (j,y)
representing user indices and functional vectors. The ciphertexts are computed for some vector x in such a
manner that the decryption reveals nothing about the message x except the inner product ⟨x,y⟩. However,
they only achieve weak security of one-target black-box traceability, which imposes significant restrictions
on the adversary: (1) the adversary must commit to a single target function y∗ before it sees the public
key; (2) it is limited to requesting decryption keys solely for y∗; and (3) it outputs a black-box distinguisher
Dy∗ associated with y∗ and two messages (x(0) ̸= x(1)) such that ⟨x(0),y⟩ ̸= ⟨x(1),y⟩. Throughout this
sequel, we call a functional vector y as differentiating corresponding to a pair of messages (x(0) ̸= x(1)) if
⟨x(0),y⟩ ≠ ⟨x(1),y⟩ and non-differentiating otherwise. It is worth noting that it was argued in [DPP20]
that one-target traitor tracing for FE is already stronger than (indexed) bounded traitor tracing for plain PKE.

The second tracing model: Restrained Adversary, Single-sender, Multi-target [LAKWH22].
A subsequent improvement by [LAKWH22] introduced many-target black-box traceability (also referred to as
adaptive traceability) for TIPFE. This enhanced security model allows the adversary to request multiple
decryption keys adaptively for a set of functional vectors {yi}i, while still requiring that each yi is differentiat-
ing with respect to the chosen message pair. Specifically, the adversary must output a black-box distinguisher
D and two messages (x(0) ̸= x(1)) such that all queried vectors yi satisfy ⟨x(0),yi⟩ ̸= ⟨x(1),yi⟩ for all i.
Despite this improvement from [LAKWH22] compared to [DPP20], we argue that the traceability definition
in [LAKWH22] is overly restrictive and may fail to capture practical pirate decoders. Consider an adversary
that produces a distinguisher D associated with a functional key for y as y = y1+y2, where y is created from
a key for y1, which is non-differentiating on a tracing signal (x(0),x(1)), i.e. ⟨x(0),y1⟩ = ⟨x(1),y1⟩, together
with a differentiating key for y2, i.e. ⟨x(0),y2⟩ ≠ ⟨x(1),y2⟩. Since the adversary asked for a non-differentiating
key y2, it is deemed inadmissible in the tracing game under [LAKWH22]’s definition, even though the output
distinguisher D remains effective in distinguishing x(0) and x(1) with high probability. This counterexample
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suggests that a natural and stronger security notion should allow the adversary to obtain functional decryp-
tion keys without artificial constraints, thereby enabling a more robust traitor tracing for functional encryption.

Our tracing model: Multi-Sender, Multi-Target, No Restriction. We emphasize that the foregoing
discussion applies to the works on single-sender FE [DPP20,LAKWH22,ZZ23] and we will extend this to the
multi-sender setting, henceforth called multi-client following the standard of the FE community, in our work.
This is demonstrated in our below definitional choices.

Building upon the above insights, we extend traitor-tracing functional encryption to the multi-client setting,
with embedded identities. We propose a standard and natural model for traceable IPMCFE as follows. A traitor
tracing system for IPMCFE with n clients consists of five poly-time algorithms – Setup,KeyGen,Enc,Dec
and Trace, which expands with the new Trace into the standard syntax of MCFE. The Setup algorithm takes
as input security parameter λ, the identity space ID, and generates a master secret key msk, encryption
keys (eki)i∈[n] and a tracing key tk. The key generation algorithm KeyGen, on input an identity id and
a functional vector Y, where Y = [y1∥ · · · ∥yn], outputs a decryption key skid,Y. Each client can use the
encryption algorithm Enc to encrypt a vector message xi using encryption key eki. For correctness, given a
list of ciphertexts of all n clients under the same tag, the decryption algorithm can decrypt using any one
of the decryption key skid,Y to obtain ⟨X,Y⟩ where X = [x1∥ · · · ∥xn]. The tracing algorithm Trace takes
tracing key tk, two adversarially chosen challenges (x(0),x(1)), a challenge tag and some success parameter y,
and is given (black-box) oracle access to a pirate decoding algorithm D:

TraceD(tk, 1y, tag,x(0),x(1)) .

It outputs a set S ⊆ ID of users signaling that the keys skj for j ∈ S were used to create the pirate decoder
D. A crucial distinction between MCFE and public-key (functional) encryption lies in the private nature of
encryption keys: each client retains its encryption key privately, and the adversary is not only allowed to
request decryption keys (corrupting multiple users) but also allowed to corrupt the clients to obtain their
encryption keys (corrupting multiple senders). Two essential security properties include the security against
chosen-plaintext attacks (IND-CPA) and the tracing security. The IND-CPA follows as that of the “vanilla”
MCFE. The tracing security of the system states that: (i) the tracing algorithm outputs with high probability
at least one identity from the set of colluding users, and (ii) without false accusations of honest users, except
with negligible probability. We elaborate the notable design choices in our modeling below.

Strong Admissibility for IND-CPA. The standard approach to prove tracing security is to reduce it to
the IND-CPA security of the encryption scheme. At the heart of the IND-CPA is the notion of admissibility
condition for adversary, as with all security models for advanced encryption notion, where we have to exclude
attacks that trivially use the nature of the function class to break any efficient schemes. An attack is
admissible if it does require the specific details of the scheme to succeed. The evolution of how admissible an
adversary can be with respect to the security notion is highlighted in the seminal work on MCFE [CDG+18a]
and follow-up works to enhance MCFE with a more fine-grained corruption model [AGT21,NPP23]. In
particular, given the Corrupt oracle for the adversary to corrupt the secret encryption keys of some client(s)
i,

1. As the first generation of MCFE, security definitions in [CDG+18a] and a lot of the follow-ups [CDG+18b,
ABKW19,ABG19,LT19,CDSG+20,AGT21] imposed a common constraint on the adversary such that
x(0)

i = x(1)

i whenever client i is corrupted.
2. Very recently, the above condition was revised in [NPP23], which introduced a stronger and provably

optimal admissibility condition requiring that ⟨x(0)
i − x

(1)
i ,yi⟩ = 0 for any corrupted client i. This

condition allows more attack to be considered, thus making the security model more robust9. This already
launches a new generation of stronger MCFE schemes [NPP25].

9 To see the difference, the weak admissibility condition (Item 1) allows deterministic encryption, which is not justified
if we are to aim for IND-CPA, while the strong admissibility condition (Item 2) necessitates probabilistic encryption.
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In this paper we refer to the admissibility condition in [NPP23] (Item 2) as strong admissibility, meanwhile
the admissibility condition in [CDG+18a] (Item 1) as weak admissibility. It turns out that this strong (and
optimal) admissibility notion studied in [NPP23] (Item 2) is essential for a meaningful notion of traitor
tracing FE in the multi-client setting. Let us consider the extreme case of one client and where the adversary
corrupts this client, thereby obtaining the secret encryption key ek. Suppose the MCFE is IND-CPA secure,
we consider different cases as per the admissibility condition and want to perform a reduction from tracing
security to IND-CPA security, given in particular pair of distinct vectors (x(0) ̸= x(1)) for the only slot (there
is one client) that the tracing adversary chooses:

• Under the weak admissibility condition (Item 1), either (i) our reduction does not corrupt ek and forward
to the IND-CPA challenge oracle LoR and relies on the tracing adversary to break the resulted challenge
ciphertext, or (ii) our reduction corrupts ek (for instance, when the tracing adversary wants to corrupt ek
themselves) and is thus bound to the weak admissibility condition to submit only identical messages to
the IND-CPA challenge oracle LoR. The first case (i) leads to a winning only with negligible probability
as the tracing adversary is acting to break the IND-CPA security themselves, the second case (ii) ensues
an IND-CPA advantage no better than naive guessing 1

2 because the LoR returns a challenge ciphertext
that will be independent of the challenge bit (as the messages are identical).

• Under the strong admissibility condition (Item 2), the reduction can be done straightforwardly as we can
just forward the tracing adversary’s challenge to the IND-CPA challenge oracle LoR and and send the
resulted challenge ciphertext to the tracing adversary.

Moreover, from an application point of view, the corruption of encryption keys is a realistic scenario in the
context of traitor tracing, as it models the fact that malicious clients, who in conjunction with colluding users,
can play the role of creating pirate decoders (so that the decoder is good at distinguishing).

Black-Box but Private Tracing. Another aspect of the tracing security is the black-box nature of the
tracing algorithm, that is, the tracing algorithm ignores the implementation of the pirate decoder, only
makes queries to the decoder and observes the outputs. This limits the information that is available to the
tracing algorithm, and thus makes the tracing security more resilient. Moreover, it turns out that this choice
is also inherent to our current setting of multi-client functional encryption, where the encryption keys are
private to the clients. More specifically, we show that, given function classes with some solvability properties
(see Definition 14 for formal definition), public tracing with black-box access to the pirate decoder is not
possible, assuming the encryption scheme is IND-CPA secure.

Theorem 1 (Informal). There exist non-trivial function classes for joint computation of at least two
clients, including the class of inner products, for all traitor tracing MCFE scheme for any of these classes,
supporting at least two clients, if the scheme is correct and traceable with public black-box tracing, then it
cannot be IND-CPA secure with strong admissibility.

Two strengthening points of our theorem are worth noting: (i) - our IND-CPA adversary does not need
to corrupt even the encryption keys in order to run the public tracer (otherwise the tracing algorithm cannot
be public as it depends on secret information in this setting of private encryption keys for multi-clients),
and (ii) - the tracing succeeds even when running with black box access to the decoder. Point (i) means our
theorem extends even to more restrictive corruption settings where no encryption key can be corrupted by
the tracing adversary (ours allows both separated corruption of encryption and decryption keys). Point (ii)
only strengthens our theorem to cover impossibility in white box 10 public tracing, as all we rely on is the
traced results from the public tracer. As a corollary of Theorem 1, we have to restrict the tracing algorithm
to be private in order to have a secure traitor tracing MCFE scheme.

1.2.2 Strong Admissibility with Fine-Grained Access Control in MCFE

We argue in our discussions above that the necessary condition for our strong tracing model is an IND-CPA
security with strong admissibility ( [NPP23], Item 2). It turns out that our concrete traitor tracing MCFE

10 The notion of white-box tracing is defined in [Zha21].
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construction for the function class computing inner products will use, as a building block, a MCFE scheme for a
richer class of functions and satisfying the strong admissibility condition. This function class of the underlying
building block is integrating access control into inner product computation (see Definition 1), as initiated in
previous works [ACGU20,NPP22,NPP25], i.e., following the definitional framework of [NPP22,NPP25]: (†) -
Each client encrypts their individual vector xi together with some attributes ac-cti. (‡) - The functional key
is associated with Y = [y1∥ · · · ∥yn] and some policy ac-k. (⋄) - The decryption algorithm outputs ⟨X,Y⟩ if
the policy ac-k is satisfied by the attributes (ac-cti)ni=1, where X = [x1∥ · · · ∥xn] being the concatenation of
the clients’ vectors. Putting forth our requirements for the final traitor tracing MCFE, we need the access
control to be as general as bounded depth circuits, e.g. as for the classical attribute-based constructions
from [BGG+14]. Existing works on MCFE for this function class of attribute-based inner products are either
not satisfying the strong admissibility condition [ACGU20,NPP22] or do not meet the expressiveness for the
access control [NPP25]. In order to handle this challenge, we proceed by two steps:

Solution - Step 1. We generalize the lattice-based techniques from [LLW21] to handle access control with
inner products [ALS16] for single-client. Then we generalize the transformation of [ABG19] to obtain
a MCFE scheme that satisfies IND-CPA under the weak admissibility condition. This construction is
presented in Section 8.

Solution - Step 2. As a complete novelty, we provide a new transformation that upgrades the MCFE
scheme from Step 1 to satisfy the strong admissibility condition (Item 2). Our transformation works
for the general case of access control with inner products, preserving the asymptotic efficiency of the
underlying MCFE with weak admissibility and turning it into a MCFE with strong admissibility.

One of our main technical contributions is our ideas for solving Step 2. For the rest of the technical overview,
we thus essentially focus on Step 2 below, after briefly explaining how to achieve Step 1.

Admissibility Conditions for Inner Product with Access Control. We first translate below an informal
version of the strong admissibility for for inner product with access control, followed the work of [NPP23].
The formal conditions are given in Remark 1.

S.1 For all challenge vectors data-attribute (x(0)

i ,x(1)

i , (tag, ac-cti)) that is queried to LoR, for all function-
policy ((yi)i∈[n], ac-k) to KeyGen, for all corrupted i, up to repetitions, it holds that: ⟨x(b)

i −x(1)

i ,yi⟩ = 0.
S.2 For all challenge vectors data-attribute (x(0)

i ,x(1)

i , (tag, ac-cti)) that is queried to LoR, for all function-
policy ((yi)i∈[n], ac-k) to KeyGen that can decrypt the challenge ciphertexts, i.e. the policy ac-k is
satisfied by the attributes (ac-cti)i∈[n], summing over all honest i, up to repetitions of xi at each i11,
does not differ between challenge bit b = 0 and b = 1.

When considering the weak admissibility condition from [CDG+18a], condition S.1 is replaced by

W.1 For all challenge vectors data-attribute (x(0)

i ,x(1)

i , (tag, ac-cti)) that is queried to LoR, for all corrupted
i, the two challenge components at i, up to repetitions, are equal: x(b)

i = x(1)

i .

At first glance, the strong admissibility condition S.1 is less restrictive than the weak admissibility condi-
tion W.1, thus leading to a more robust security notion that can cover more attacks.

In short, each client i in the MCFE scheme Ew, encrypts their eki,xi, (tag, ac-cti) using the encryption
Encone-slot(ppi, ⋆) from [LLW21] by:

cti,tag←Ew.Enc(eki = (ppone-sloti , {ki,j}j),xi, (tag, ac-cti)) = Eone-slot.Enc(ppone-sloti ,wi) ,

where wi := [0 ∥ . . . ∥ 0 ∥ xi ∥ 0 ∥ . . . ∥ 0] + ti,tag ,

with keys: dkY,ac-k←Ew.KeyExtract(msk = mskone-slot,Y, ac-k) = Eone-slot.KeyGen(msk,Y, ac-k) , (1)

11 This is a strong security guarantee that allows the adversary to reuse the tag at slots i, which is considered standard
in the context of MCFE [AGT21,NPS25,NPP25].
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and ti,tag ←
∑

j ̸=i(−1)j<iPRF(ki,j , tag). The eki is private for each i so that the PRF keys are secret. The
correctness can be verified when ever the attributes (ac-cti)i satisfy the policy ac-k in a key ((yi)i, ac-k). The
CPA-security is ensured by the CPA-security of the underlying single-client FE scheme for inner products
with access control, after applying the PRF security to the masks. Last but not least, a sophisticated proof
strategy can guarantee the dynamic corruption (of multi clients) security, which we also use ubiquitously in
this work.

From Weak Admissibility (W.1) to Strong Admissibility (S.2). The reasons that Ew above only
achieves security under admissibility condition W.1 are: (I) - when i is corrupted, the PRF masks are no
longer pseudorandom and we lose the effectiveness of the secret sharings ti,tag of 0. (II) - if one relaxes
condition W.1 aiming for the stronger security with S.1, an adversary can (IIa) - query x(0)

i ̸= x(1)

i to LoR,
(IIb) - obtaining the challenge cti,tag, (IIc) - makes use of the partial decryptions of Eone-slot knowing the
components of cti,tag contains Eone-slot.Enc(ppone-sloti ,wi) = Eone-slot.Enc(ppone-sloti , [0 ∥ . . . ∥ xi ∥ . . . ∥ 0]+ti,tag),
and (IId) - the preceding partial decryption leaks information about ⟨x(b)

i ,yi⟩ after the adversary makes use
of point (I). Hence, any relaxation of condition W.1 to S.1 will allow the adversary to choose x(0)

i ≠ x(1)

i so
that ⟨x(0)

i ,yi⟩ ≠ ⟨x(1)

i ,yi⟩ to win the IND-CPA game.
Our Solution towards Admissibility (S.1,S.2): Randomisation by a Layer of Inner Product
FE. We now describe the high-level idea of our transformation in Step 2, important ideas/observations
are underlined. From the aforementioned overview of our Step 1, the resultant MCFE can only be secure
under the weak admissibility condition, that is, under conditions S.2 (summing over honest clients does not
trivially break the scheme) and W.1 (as per weak admissibility, on any corrupt i the adversary can only
use identical challenges). Our transformation lifts condition W.1 to the strong admissibility condition S.1.
Our important observation is that the two structural properties: encryption and decryption can be done
partially, before a global finally linear combination and two-step decryption (a formal definition can be found
in [ABG19, Def. 3.1]) are preserved into the resultant MCFE, cf. the encryption in Equation (1). In particular,
we will make use the linearity that is preserved throughout . From the above exposition of the challenge
regarding Ew from the attack (II), our cornerstone idea is to randomise the component wi in the encryption
of Ew not relying entirely on the PRF masks ti,tag. In the following we describe our ideas at the level of Ew
and do not go lower to Eone-slot (we recall that Eone-slot is instantiated from [LLW21]). Roughly, we modify Ew
step-by-step as follows, new modifications are boxed :

• During Ew.Enc for client i, on xi with ac-cti, we first sample random ri, add in-place a randomness to
mask xi: wi = [0 ∥ . . . ∥ xi − ri · vi ∥ . . . ∥ 0] + ti,tag where vi is another secret specific for each client i,
generated at setup time.

• This quantity of random ri ·vi induces intuitively deviated values ⟨xi,yi⟩− ri · ⟨vi,yi⟩ , given the function
component yi at client i, during the partial decryption as per the two-step decryption property. We come
up with the idea of using another layer of public key IPFE (inner product FE) for each client i so as to
cancel out, thanks to the linearity, this error ri · ⟨vi,yi⟩ during the process of two-step decryption.

• To employ inner product FE, we rewrite ri · ⟨vi,yi⟩ = ⟨ri · ti, (vi[k]
ti[k]

)Nk=1 ◦ yi⟩, where N is the length of
the each slot, and ti contains non-zero values and is secret to each i sampled at setup time, where “◦” is
the Hadamard product. The part ri · ti can be now dealt with at encryption time by a ciphertext of the
IPFE scheme, the key for (vi[k]

ti[k]
)Nk=1 ◦ y is generated by the IPFE scheme, during the key generation for

the MCFE scheme knowing yi and the master secret key containing vi, ti. Using some IPFE Eals-ip, the
new encryption of the resultant E at i now looks like: ri is random

cti,tag = (ctwi , ct
als-ip
i )←E .Enc(eki,xi, (tag, ac-cti))

where ctwi ←Ew.Enc(ek
w
i , tag, xi − ri · vi , ac-cti), and ctals-ipi ←Eals-ip.Enc(pkals-ipi , ri · ti )

with: dkY,ac-k = (dkwY,ac-k, (dk
als-ip
i )i)←E .KeyExtract(msk,Y, ac-k)

where dkwY,ac-k←Ew.Extract(mskw,Y, ac-k) and dkals-ipi ←Eals-ip.Extract
(
mskals-ipi , (vi[k]

ti[k]
)Nk=1 ◦ yi

)
10



where as previously mentioned, the function is written Y = [y1∥ · · · ∥yn].

The correctness follows that of the single-client IPFE scheme Eals-ip, and the correctness of Ew notably with
the preserved structural properties. The full proof for IND-CPA security under the strong admissibility
condition is given with respect to Theorem 6. We highlight the main points below. Let b $← {0, 1} denote the
challenge bit,

• Focusing on lifting W.1 to S.1, the difficult case is when an adversary corrupts i and queries x(0)

i ̸= x(1)

i

to LoR.
• At an intuition level, the challenge at i contains ct(b)i,tag = (ct(w,b)i , ctals-ipi ) and ct(w,b)i ←Ew.Enc(ekwi , tag,

x(b)

i − ri · vi , ac-cti). This ensures that the difference ∆x := x(b)

i − x(1)

i
12 is hidden in the randomness

ri ·vi. Under even partial decryption, this leaks ⟨x(1)

i ,yi⟩−ri · ⟨vi,yi⟩− ⟨∆xi,yi⟩︸ ︷︷ ︸
=0 thanks to S.1

making the quantity

independent from b. This step is formalized using the two-step decryption property under IND-CPA of
Ew.

• For the above argument to work, we need to ensure that the IPFE layer leaks nothing but the inner
product evaluation, which is solely needed for error-correcting the two-step decryption. The simulator of
Eals-ip is used to simulate Simals-ip.Enc(pksim-als

i , ri · ti ), knowing the error-correcting values expected at
the corrupted client i is ⟨ri · ti, (vi[k]

ti[k]
)Nk=1 ◦ yi⟩ while leaking nothing else. This leads to an exigence of

simulation-based security for the IPFE scheme Eals-ip, else an indistinguishability-based cannot guarantee
no information on ri · ti is exposed, conditioned on the value ⟨ri · ti, (vi[k]

ti[k]
)Nk=1 ◦ yi⟩ where the adversary

knows (vi[k]
ti[k]

)Nk=1 ◦ yi due to corruption.
• We note that the private-repetitions of xi at (honest) client i is preserved thanks to ri freshly independently

sampled at random for each encryption. Moreover dynamic corruption is handled thanks to resilience of
Ew to dynamic corruption of its ekwi , meanwhile the encryption of Eals-ip is public-key and not affected by
the corruption of multi-clients.

• Last but not least, when the functional keys does not decrypt the challenge ciphertexts, the admissibility
condition S.2 over the sum of honest i is irrelevant, corrupted i is already treated above, and the simulation
security of Eals-ip also extends to this case, as the adversary can always decrypt this layer of IPFE Eals-ip
(which emphasizes once more the importance of the simulation-based security). The latter guarantees that
only values of ⟨ri · ti, (vi[k]

ti[k]
)Nk=1 ◦ yi⟩ are disposed, which is independent from x(b)

i . The rest is reduced to
the security of Ew in case dkwY,ac-k does not decrypt the ensemble (ctwi )i.

In the end, the details of our transformation are given in Section 6. By combining with our MCFE from Step
1 from LWE, the simulation secure IPFE scheme Eals-ip from LWE in [ALS16,ALMT20], the LWE-based PRFs
from [BPR12,BGM+16], we arrive at the first LWE-based MCFE for the class of inner products with access
control that satisfies the strong admissibility condition.

1.3 Organization

In Section 2, we present the preliminaries required for this work. Next, in Section 3, we have the traitor
tracing definitions, with two different variants for embedded identity tracing (EITT): indexed EITT and
bounded EITT. In Section 4, we extend the definition of private linear broadcast encryption to the multi-
client functional encryption setting (PL-MCFE) to give q-query PL-MCFE definitions and show how to use
PL-MCFE to construct traitor tracing schemes. In Section 5, we generalize the transformation from indexed
EITT to bounded EITT of [GKW19] to the multi-client setting. In Section 6, we present our compiler to
achieve strong admissible security from weak admissible security for AB-MCFE. By combining this compiler
with our AB-MCFE construction from Section 8, we derive the PL-MCFE construction from mixed FE and
AB-MCFE, as detailed in Section 7.
12 This is 0 when b = 1, possibly non-zero otherwise.
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2 Preliminaries

Notation. We denote the security parameter by λ. A polynomial time algorithm A runs in time polynomial
in the (implicit) security parameter λ. We denote “probabilistic polynomial time” by PPT. A function f(λ) is
negligible in λ if it is O(λ−c) for every c ∈ N. We write f = negl(λ) for short. Similarly, we write f = poly(λ)
if f(λ) is a polynomial with variable λ. If D is a probability distribution, x← D means that x is sampled
from D and if S is a set, x← S means that x is sampled uniformly and independently at random from S.
We also write |S| for the cardinality of set S. We denote with [n] the set {1, . . . , n} for n ∈ N. We use bold
font for (row) vectors, and capitals for matrices.

2.1 Multi-client Functional Encryption with Fine-grained Access Control

Definition 1 (Attribute-based Functionality). The function class F × AC-K for functional evaluation
with fine-grained access control is described below:

• The function class F × AC-K contains (Fλ, ac-k) having public attributes (AC-Cti)i∈[n].
• The function Fλ has domain Dλ,1 × · · · × Dλ,n and range Rλ.
• The public attributes of each i come from Tag × AC-Cti for some set AC-Cti.
• The access control is defined via a relation Rel : AC-K × AC-Ct1 × · · · × AC-Ctn → {0, 1}, for some set
AC-K.

The concrete evaluation is as follows:

(Fλ, ac-k) evaluates on ((xi, ac-cti)ni=1, ac-k)

=

{
Fλ(x1, . . . , xn) if Rel(ac-k, (ac-cti)i) = 1

⊥ otherwise
.

In our ABMCFE, a plaintext for client i consists of xi ∈ Dλ,i, where Dλ,i denotes the domain from which
each client i gets their inputs, together with public tags and attributes form Tag×AC-Cti for some set AC-Cti
and a tag space Tag = {0, 1}poly(λ). The corresponding ciphertexts can be decrypted to Fλ(x) using the
functional key skFλ,ac-k for ac-k ∈ AC-K if and only if that ciphertexts contain the same tag from Tag and
Rel(ac-k, (ac-cti)i) = 1.

In our FE with access control in this paper, we instantiate the computing class by F ip
N1,...,Nn

that is defined
in Definition 11. The key-policy via AC-K is modeled by bounded-depth circuits as in [BGG+14].

Definition 2 (Multi-client functional encryption with fine-grained access control). A multi-client
functional encryption (MCFE) scheme with fine-grained access control for the function class F × AC-K
consists of four algorithms (Setup,Extract,Enc,Dec):

Setup(1λ, 1k): Given as input a security parameter λ, output a master secret key msk and k = k(λ) encryption
keys (eki)i∈[k] where k : N→ N is a function.

Extract(msk, (Fλ, ac-k)): Given a circuit policy ac-k ∈ AC-K, a function description Fλ ∈ F , and the master
secret key msk, output a decryption key dkFλ,ac-k.

Enc(eki, tag, xi, ac-cti): Given as inputs public attributes ac-cti ∈ AC-Cti, an encryption key eki, a message
xi ∈ Dλ,i, and a tag tag, output a ciphertext (cttag,i, tag).

Dec(dkFλ,ac-k, c): Given the decryption key dkFλ,ac-k and a vector of ciphertexts c := (cttag,i, tag)i of length k,
output an element in Rλ or an invalid symbol ⊥.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[k])←Setup(1λ), (Fλ, ac-k) ∈ F×AC-K and dkFλ,ac-k←
Extract(msk, Fλ, ac-k), for all tag and (tagi)i satisfying

Rel(ac-k, (tagi)i) = 1
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for all (xi)i∈[k] ∈ Dλ,1 × · · ·× ∈ Dλ,k, if Fλ(x1, . . . , xk) ̸= ⊥, the following holds with overwhelming
probability:

Dec
(
dkFλ,ac-k, (Enc(eki, tag, xi, tagi))i∈[k]

)
= Fλ(x1, . . . , xk)

where Fλ : Dk
λ → Rλ and the probability is taken over the coins of algorithm.

Security. We follow the approach in the work by Chotard et al. [CDG+18a] so as to define the security game
with oracles Initialize, Corrupt, LoR, Enc, Extract, and Finalize. We need to exclude trivial attacks that
can be mounted in the security experiment. Those restrictions are encompassed in the notion of admissibility,
which is recently extended in [NPP23] from similar notions in the works of [CDG+18a,CDSG+20].

Definition 3 (Weakly admissible adversaries without attribute repetitions). Let A be a PPT
adversary and let E = (Setup,Extract,Enc,Dec) be an MCFE scheme with fine-grained access control for
the functionality class F × AC-K. In the security game given in Figure 1 for A considering E, let the sets
(C,Q,H) be the sets of corrupted clients, functional key queries, and honest clients, in that order. We say
that A is NOT admissible w.r.t (C,Q,H) if any of the following conditions holds:

1. There exists i ∈ C such that x(0)

i ̸= x(1)

i .
2. There exists (tag, ac-cti) for i ∈ [k], a function F ∈ F , and ac-k ∈ AC-K such that

• We have Rel(ac-k, (ac-cti)i) = 1 and (F, ac-k) ∈ Q.
• For all i ∈ H, there exists a query (i, x(0)

i , x(1)

i , tag, ac-cti) to LoR for (x(0)

i , x(1)

i ).
• For all i ∈ C, it holds that x(0)

i = x(1)

i .
• It holds that F ((x(0)

i )i∈[k]) ̸= F ((x(1)

i )i∈[k]).

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Definition 4 (Strong admissibility condition [NPP23]). Let A be a PPT adversary and let E =
(Setup,Extract,Enc,Dec) be an MCFE scheme with fine-grained access control for the functionality class
F × AC-K. In the security game given in Figure 1 for A considering E, let the sets (C,Q,H) be the sets of
corrupted clients, functional key queries, and honest clients, in that order. We say that A is NOT admissible
w.r.t (C,Q,H) if any of the following conditions holds:

There exist tag ∈ Tag, a function (F, ac-k) ∈ Q is queried to Extract, a set of 2n challenges
(x(0)

i , x(1)

i , (tag, ac-ct(chal)

i ))i∈[n] are queried to LoR, with public inputs ac-ct(chal)

i ∈ AC-Ctλ,i, a pair
(t(0), t(1),v(chal)) so that for b ∈ {0, 1}, ∀ i ∈ H : t(b)[i] = x(b)

i and v(chal)[i] = ac-ct(chal)

i , and
• The policy passes13: Rel(ac-k,v(chal)) = 1.
• (Private-inputs only repetitions) For any i ∈ [n], there exists a unique query of the form
(x(0)

i , x(1)

i , (tag, ∗)).
• The function evaluation differs:

F (t(0)) ̸= F (t(1)) . (2)

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Checking Admissibility. For all concrete classes that are considered in this work, the admissibility
condition can be checked in polynomial-time at the finalisation of the security game, after receiving the
guess b′ ∈ {0, 1} of the adversary for the challenge bit b

$← {0, 1}. Moreover, following [NPP23,NPP25], the
admissibility translated for all classes in this work is optimal, that is, they cannot be relaxed further and
the implicate security notion is the best we can hope for. In weaker notions, the checks are still taken into
account, e.g., for static corruption security, even after announcing the set of corrupted clients, the adversary
is still allowed querying on these corrupted slots and in the end those queries are checked against Condition 2.
Furthermore, in the foregoing case of static corruption, we implicitly assume that for corrupted slots the
admissibility condition holds for self-crafted ciphertexts by the adversary.
13 This is up to attributes replacement in the corrupted slots i ∈ C, therefore we only required v(chal) to coincide with

only with the honest attributes (ac-ct(chal)

i )i∈H and leave free the corrupted part.
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Remark 1 (Strong Admissibility for Inner Products with Access Control). The strong admissibility for
F ip

N1,...,Nn
× AC-K, followed the work of [NPP23] and deduced from Definition 4, is recalled below:

1. For all vectors (x(0,ji)

i ,x
(1,ji)

i , (tag, ac-cti)) that is queried to LoR, for all ((yi)i∈[n], ac-k) ∈ Q, let H be the
set of honest clients and b

$← {0, 1} be the challenge bit. Then fof any ji ∈ [Ji], if Rel(ac-k, (ac-cti)i) = 1
then:

∑
i∈H⟨x

(b,ji)

i −x
(1,ji)

i ,yi⟩ = 0. This implies ⟨x(b,ji)

i −x
(1,ji)

i ,yi⟩ is constant for any ji ∈ [Ji]. We recall
that we are in the private-inputs only repetitions and therefore there are no repetitions over (tag, ac-cti).

2. For all vectors (x
(0,ji)

i ,x
(1,ji)

i , (tag, ac-cti)) that is queried to LoR, for all ((yi)i∈[n], ac-k) ∈ Q. Let
C := [n] \ H be the set of corrupted clients. Then, for all i ∈ C, all ji ∈ [J ]: ⟨x(b,ji)

i − x
(1,ji)

i ,yi⟩ = 0.

We recall that these conditions are for the one-challenge, complete, with repetitions on private inputs case
and are checked in Finalise procedure at the end of the security experiment. Particularly, condition 2 is
checked for all corrupted clients i ∈ C and all ji ∈ [J ], given any queries that are made to the oracle LoR for
i ∈ C by the adversary14. Finally, condition 2 does not need to cover private inputs of corrupted i ∈ C that
are not queried to the oracle LoR because there exists no challenge bit b in those self-crafted ciphertexts
cttag,i←Enc(eki, zi, (tag, ac-cti)). Decrypting cttag,i jointly with others challenge ciphertexts ct(b)tag,j ̸=i under
some key dkac-k,(yi)i∈[n]

always gives the same i-th component ⟨zi,yi⟩ regardless of b.

Remark 2 (Weaker Admissibility for Inner Products with Access Control). On the other hand, below is the
weaker admissibility condition adm in Definition 3 for F ip

N1,...,Nn
× AC-K, which was used in [NPP22] and in

this work is first proved for our construction in Section 8 before passing via the transformationin Section 6 to
achieve strong admissibility as per Remark 1:

1. For all vectors (x(0,ji)

i ,x
(1,ji)

i , (tag, ac-cti)) that is queried to LoR, for all ((yi)i∈[n], ac-k) ∈ Q, let H be the
set of honest clients and b

$← {0, 1} be the challenge bit. Then fof any ji ∈ [Ji], if Rel(ac-k, (ac-cti)i) = 1
then:

∑
i∈H⟨x

(b,ji)

i −x
(1,ji)

i ,yi⟩ = 0. This implies ⟨x(b,ji)

i −x
(1,ji)

i ,yi⟩ is constant for any ji ∈ [Ji]. We recall
that we are in the private-inputs only repetitions and therefore there are no repetitions over (tag, ac-cti).

2. For all vectors (x
(0,ji)

i ,x
(1,ji)

i , (tag, ac-cti)) that is queried to LoR, for all ((yi)i∈[n], ac-k) ∈ Q. Let
C := [n] \ H be the set of corrupted clients. Then, for all i ∈ C, all ji ∈ [J ]: x

(b,ji)

i = x
(1,ji)

i .

Remark 3 (On Complete Challenge Messages). We remark that the challenges output by the adversary in
the message hiding game of Definition 22 are required to be complete and contain both messages for each
client i ∈ [n]. Since Definition 22 is a weaker notion of IND-CPA security, usual techniques from the literature
in cases of concrete classes such as inner product functions [CDG+18b,CDSG+20] or attribute-based inner
products [NPS25] can be used to allow incomplete challenge messages, i.e. lacking components potentially at
some i. In this paper our concrete constructions will always use complete challenge messages for the sake of
simplicity in proofs and main constructions’ ideas.

Definition 5 (Strong IND-security for MCFE). An MCFE scheme E = (Setup,Extract,Enc,Dec) for
the function class F = {Fλ}λ∈N is xx-secure if for all PPT adversaries A, and for all sufficiently large λ ∈ N,
the following probability is negligible

AdvxxE,F,A(1
λ) :=

∣∣∣∣Pr[ExprxxE,F,A(1
λ) = 1]− 1

2

∣∣∣∣ .

The game ExprxxE,F,A(1
λ) is depicted in Figure 1. The security level indicator xx can be: mc-ind-cpa to

indicate IND-security with adaptive challenges and dynamic corruption of (eki)ni=1; mc-sel-ind-cpa to indicate
selective IND-security with selective challenges constraint; mc-sa-ind-cpa to indicate semi-adaptive IND-
security with adaptive challenges but selective key queries ( i.e., all key queries must be sent up front)
contraint; mc-ind-cpa-1chal to indicate one-time IND-security with only one adaptive challenge tag and
dynamic corruption of ekey. The probability is taken over the random coins of A and the algorithms.

14 This makes sense even in the case of static corruption, since we do not prohibit such queries even after the set C is
fixed.
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Initialise(1λ)

b
$← {0, 1}

(msk, (eki)i∈[n])←Setup(1λ)
Q := ∅, C := ∅, H := [n]

LoR(i, x(0)

i , x(1)

i , (tag∗, ac-ct(chal)

i ))

Enc(eki, x
(b)

i , (tag∗, ac-ct(chal)

i ))→ ct(b)tag∗,i

Return ct(b)tag∗,i

Enc(i, xi, (tag, ac-cti))

Return Enc(eki, xi, (tag, ac-cti))

Corrupt(i)

C := C ∪ {i}
H := H \ {i}
Return eki

Finalise(b′)

If A is NOT admissible w.r.t (C,Q,H):
return 0

Else return
(
b′

?
= b
)

Extract(F, ac-k)

Q := Q∪ {(F, ac-k)}
dkF,ac-k←Extract(msk, F, ac-k)
Return dkF,ac-k

Fig. 1. The security games Exprmc-ind-cpa
E,F,A (1λ) for Definition 5. The strong admissibility condition is defined in

Definition 4, the weaker admissibility condition is defined in Definition 3.

2.2 Mixed Functional Encryption

The syntax of a mixed functional encryption (mixed FE) scheme is defined as follows, first introduced
in [GKW18]. The main idea behind mixed FE over functions with {0, 1}-output is allowing at the same time
both public-key and secret key encryption. The public-key encryption algorithm encrypts the all-1 function,
while the secret-key encryption algorithm encryptions functions in Dλ → {0, 1} so as to be evaluated on
functional keys that are associated to inputs x ∈ Dλ.

Definition 6. A mixed functional encryption scheme (mixedFE) for a function class F = {fλ : Dκ
λ →

{0, 1}}λ∈N, where κ = κ(λ) is a polynomial in λ, consists of the following algorithms:

Setup(1λ, 1κ): Given as input a security parameter λ and the arity κ, output a master secret key msk and
some public paramters pp.

Extract(msk, x): Given the master secret key msk and an input x ∈ Dλ, output a decryption key dkx.
Enc(pp): Given the public parameters, output a ciphertext ct.
SKEnc(msk, f): Given the the master secret key msk and a function f : Dκ

λ → {0, 1}, output a ciphertext ct.
Dec(dkx, ct): Given the decryption key dkx and a ciphertext ct, output a single bit.

Correctness. For sufficiently large λ ∈ N and κ : N → N polynomial, for all (msk, pp)← Setup(1λ, 1κ),
x ∈ Dλ and dkx←Extract(msk, x), for all f : Dλ → {0, 1}, the following holds with overwhelming probability:

Dec (dkx,Enc(pp)) = 1 and Dec (dkx,SKEnc(msk, f)) = f(x).

where the probability is taken over the coins of algorithm.

Security. The formal definitions are given in [GKW18], we recall the informal ideas below. There are two
main security properties: (i - Function Indistinguishability) for any PPT adversary, given any two functions
f0, f1 : Dλ → {0, 1} that evaluates equally on all obtained keys dkx of the adversary, i.e., f0(x) = f1(x)
for all dkx obtained from msk and x ∈ Dλ, the adversary cannot distinguish between SKEnc(msk, f0) and
SKEnc(msk, f1); (ii - Accept Indistinguishability) for any PPT adversary, given any function f : Dλ → {0, 1}
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that evaluates to 1 on all obtained keys dkx of the adversary, i.e., f(x) = 1 for all dkx obtained from msk
and x ∈ Dλ, the adversary cannot distinguish between Enc(pp) and SKEnc(msk, f). Formal definitions are
recalled below.

Definition 7 (q-SKEnc Function Indistinguishability). Let λ ∈ N and q = q(λ) be some fixed polynomial
in λ. A Mixed FE mixedFE = (Setup,Extract,Enc,SKEnc,Dec) scheme is said to satisfy adaptive q-SKEnc
function indistinguishability if for every stateful PPT adversary A, the following probability is negligible in λ:∣∣∣∣∣∣∣∣Pr

 AExtract(msk,·),SKEnc(msk,·)(ctb) = b

∣∣∣∣∣∣∣∣
(1κ)← A(1λ)

(msk, pp)← Setup(1λ, 1κ)
(f (0), f (1))← AExtract(msk,·),SKEnc(msk,·)(pp)

b←$ {0, 1}; ctb ← SKEnc(msk, f (b))

− 1

2

∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• SKEnc oracle: this oracle has msk hardwired, and implements the algorithm SKEnc(msk, ·). A can make
at most q queries to SKEnc.

• Extract oracle: this oracle has msk hardwired, and implements the algorithm Extract(msk, ·). Every query
x to Extract must staisfy f (0)(x) = f (1)(x).

A Mixed FE mixedFE scheme is said to satisfy restricted q-SKEnc function indistinguishability if we consider
only adversaries that output f (0), f (1) before seeing the public parameters.

Definition 8 (q-SKEnc Accept Indistinguishability). Let λ ∈ N and q = q(λ) be some fixed polynomial
in λ. A Mixed FE mixedFE = (Setup,Extract,Enc,SKEnc,Dec) scheme is said to satisfy adaptive q-SKEnc
accept indistinguishability if for every stateful PPT adversary A, the following probability is negligible in λ:∣∣∣∣∣∣∣∣∣∣

Pr

 AExtract(msk,·),SKEnc(msk,·)(ctb) = b

∣∣∣∣∣∣∣∣∣∣
(1κ)← A(1λ)

(msk, pp)← Setup(1λ, 1κ)
f (∗) ← AExtract(msk,·),SKEnc(msk,·)(pp)

b←$ {0, 1};
ct1 ← SKEnc(msk, f (∗)); ct0 ← Enc(pp)

− 1

2

∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• SKEnc oracle: this oracle has msk hardwired, and implements the algorithm SKEnc(msk, ·). A can make
at most q queries to SKEnc.

• Extract oracle: this oracle has msk hardwired, and implements the algorithm Extract(msk, ·). Every query
x to Extract must staisfy f (∗)(x) = 1.

A Mixed FE mixedFE scheme is said to satisfy restricted q-SKEnc accept indistinguishability if we consider
only adversaries that output f (∗) before seeing the public parameters.

2.3 Digital Signature

We recall the syntax and the existential unforgeability under chosen-message attack (EUF-CMA) security of
a signature scheme.

Definition 9 (Signature Schemes). Let λ ∈ N andM = {0, 1}∗ be the message space. A signature scheme
SS = (Setup,Sign,Verify) consists of three algorithms:

(sk, vk)←Setup(1λ): The setup algorithm takes as input the security parameter λ and outputs a signing key
sk and a verification key vk.

σ←Signsk(m): The signing algorithm takes as input the signing key sk and a message m ∈M and outputs a
signature σ.

b←Verifyvk(m,σ): The verification algorithm takes as input the verification key vk, a message m ∈M and a
signature σ and outputs a bit b ∈ {0, 1}, i.e. 1 for “accept” and 0 for “reject”.
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Correctness. A signature scheme is correct if for all λ ∈ N, for all (sk, vk)←Setup(1λ), all m ∈M and all
σ←Signsk(m), it holds that Verifyvk(m,σ) = 1.

Security. A signature scheme is defined to be secure following the below notion of existential unforgeability
under chosen-message attack (EUF-CMA) [PS00].

Definition 10 (EUF-CMA Security). Let λ ∈ N and M = {0, 1}∗ be the message space. A signature
scheme (Setup,Sign,Verify) is said to satisfy adaptive EUF-CMA security if for every stateful PPT adversary
A, the following probability is negligible in λ:

Pr

[
Verify(vk, σ∗) = 1

∣∣∣∣ (sk, vk)← Setup(1λ)

(m∗, σ∗)← ASignsk(·)(vk)

]
with the following oracle:

• Signsk(·): this oracle has sk hardwired, and implements the algorithm Sign(sk, ·). A it not allowed to query
m∗ to Signsk(·).

3 Definitions: MCFE Traitor Tracing with Embedded Identities

Inner-product Functionality. The computation over clients’ inputs this work is principally the sum of
inner products as per the following.

Definition 11 (Inner-Product Functionality). Let λ ∈ N. Let B = B(λ), n = n(λ), N1(λ), . . . , Nn(λ)

be polynomials and Di = [−B;B]Ni for i ∈ [n]. We denote by F ip
N1,...,Nn

= {fy1,...,yn : y1 ∈ D1, . . . ,yn ∈ Dn}
the family of functions where fy1,...,yn

: D1×· · ·×Dn → Zp is defined as fy1,...,yn
(x1, . . . ,xn) :=

∑n
i=1⟨xi,yi⟩.

3.1 Bounded Embedded-Identity Traitor Tracing

We will now present the syntax and definitions for general traitor tracing with embedded identities. In this
work, we only consider the bounded collusion setting, where we have an a priori bound nbd that is fixed
during setup, and security is guaranteed only if the adversary gets at most nbd secret keys.

Definition 12 ((Bounded) Embedded Identities Traceable Multi-Client Functional Encryption).
A bounded keys, embedded-identities tracing scheme T for a function class F consists of five algorithms
(Setup,KeyGen,Enc,Dec,Trace) that are defined below:

(msk, pp, (eki)i∈[n], tk)← Setup(1λ, 1n, 1κ, nbd): Given as input the security parameter λ, the number of clients
n, the identity space parameter κ, and bound on number of key queries nbd, output a master secret key
msk, public parameters pp, n encryption keys (eki)i∈[n] and a tracing key tk.

dkid,Fλ
← KeyGen(msk, id, Fλ): Given the master secret key msk, an identity id ∈ {0, 1}κ, a function descrip-

tion Fλ ∈ F , output a decryption key dkid,Fλ
.

cttag,i ← Enc(pp, eki, tag,xi): Given as inputs the public parameters pp, an encryption key eki, a message
xi ∈ Dλ,i, and a tag tag, output a ciphertext cttag,i.

z ← Dec(pp, dkFλ
, c): Given the public parameters pp, a decryption key dkFλ

and a vector of ciphertexts
c := (cttag,i)i of length n, output an element z ∈ Rλ ∪ {⊥}.

T ← TraceD(tk, 1y, tag,x(0),x(1)): Given oracle access to a program D, the tracing key tk, parameters y, a
tag tag and two messages (x(0),x(1)), output a set T of identities where T ⊆ {0, 1}κ.
We call the tracing as public or private depending on whether tk is equal to pp or it is kept secret.

The correctness requirement and the IND-CPA security definition is identical to the one in Definition 5.
We state here the tracing security.
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• 1κ, 1nbd ← A(1λ)
• (msk, pp, (eki)i∈[n], tk)←Setup(1λ, 1n, 1κ, nbd)
• (D, tag,x(0),x(1))← ACorrupt(·),KeyGen(·),Enc(·)(pp)
• Return T ← TraceD(tk, 1

1
ϵ(λ) , tag,x(0),x(1)).

Let SID be the set of identities queried by A to KeyGen(·).
Here, Corrupt(·) is an oracle that has (eki)i∈[n] hardwired, takes as input an index i ∈ [n] and outputs eki;
KeyGen is an oracle that has msk hardwired, takes as input an identity id ∈ {0, 1}κ, a function description
Fλ ∈ F and outputs KeyGen(msk, id, Fλ); Enc is an oracle that has (eki)i∈[n] hardwired, takes as input a
tag tag and a message xi (we implicitly assume that the index of the encryption slot is embedded in xi)
and outputs Enc(pp, eki, tag,xi).
Admissible tracing adversaries: A makes at most nbd queries to KeyGen.

Fig. 2. Experiment ExptTT−emb.

Definition 13 (Security of Tracing). For any non-negligible function ϵ(·), polynomial p(·), and all PPT
adversary A, consider the experiment ExptTT−emb

T ,A,ϵ (1λ) defined in Fig. 2.
Based on the above experiment in Fig. 2, we define the following events and corresponding probabilities

(which are a function of λ, parameterized by A, ϵ):

• GoodDec: Pr

[
D
(
(cttag,i)i∈[n]

)
= b |

b←$ {0, 1}, cttag,i ← Enc(pp, eki, tag,x
(b)
i )

]
≥ 1

2 + ϵ(λ).

Pr-GoodDecA,ϵ(λ) = Pr[GoodDec].
• CorrectTr: T ̸= ∅ ∧ T ⊆ SID.
Pr-CorrectTrA,ϵ(λ) = Pr[CorrectTr].

• FalseTr: T ̸⊆ SID.
Pr-FalseTrA,ϵ(λ) = Pr[FalseTr].

A traitor tracing scheme T is said to be secure if for every PPT admissible adversary A, polynomial q(·) and
non-negligible function ϵ(·), there exist negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying
ϵ(λ) > 1

q(λ) , it holds that Pr-FalseTrA,ϵ(λ) ≤ negl1(λ) and Pr-CorrectTrA,ϵ(λ) ≥ Pr-GoodDecA,ϵ(λ) −
negl2(λ).

We note that in the tracing security game of Figure 2, the adversary can extract separately secret
information from both senders (via Corrupt to obtain secret encryption keys) and receivers (via KeyGen to
obtain functional keys).

3.1.1 Impossibility

Next, we present justifications for our choices of modeling tracing security in the context of MCFE, that is,
given the fact that our works is the first to embark on traceability with multiple clients encrypting using their
secret keys so that their partial ciphertexts can be jointly decrypted under some functional key. In particular,
we show an impossibility that there cannot exist a secure traitor tracing MCFE (following Definition 13) with
a public tracing algorithm. We note that the definition we gave in Figure 2 only gives the tracer black-box
access to the pirate decoder. Our impossibility will thus be proven for public black-box tracing, but as we
will see later, our impossibility in fact applies to both black-box and non-black-box tracing.

In the follwing we refer to queries of functions that do not differ on the challenge messages (x(0),x(1)) as non-
differentiating queries. We require some structural properties of the function class, given non-differentiating
functions and the number of clients n ≥ 2, in the following sense:
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Definition 14 (Slot-Differentiating Solvability). Let λ ∈ N and F be a function class parameterized by
λ containing Fλ : D1 × · · · × Dn → Rλ, where n = poly(λ) ≥ 2. We say that F is slot-differentiating solvable
if there exists Fλ ∈ F , and fixed inputs x(0),x(1) ∈ D1 × · · · × Dn, such that F (x(0)) = F (x(1)) and there exists
a PPT algorithm that given (F,x(0),x(1)) outputs a set of indices ∅ ̸= S ⊆ [n] and (x̃(0)

i , x̃(1)

i )i∈S satisfying the
following F

(
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1

)
̸= F

(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
, where for b ∈ {0, 1}

∀ k ∈ [n] : ∆S(k, (x̃
(b)

i )i∈S , (x
(b)

i )i∈[n]\S) :=

{
x̃(b)

k if k ∈ S
x(b)

k if k ∈ [n] \ S
.

For the particular case of inner products that we consider in this work, A can even find (F,S, (x̃(0)

i , x̃(1)

i )i∈S)
on-the-fly by solving a linear system, for which we use inherently the condition that n ≥ 2 as the number of
clients/slots.

Theorem 1. Let T be a traitor tracing MCFE scheme, for at least 2 clients and for a slot-differentiating
solvable function class F , so that T is correct15 with public black-box tracing. If T is traceable (as
per Definition 13), then T is not IND-CPA secure as per Definition 5.

We first give an overview of the proof of Theorem 1. The goal is to show that if the tracing algorithm is
public and black-box, then the adversary can break the IND-CPA security of the MCFE scheme. We make
use of the two properties of the tracing algorithm:

• Since the tracing algorithm is public, the adversary will try to employ the tracing procedure to break
the IND-CPA security. In particular, as our tracing security in Definition 13 identifies identities of the
functional keys obtained to compose the priate decoder, the starting idea is to embed the challenge
ciphertext as the identity in the function query to the tracing algorithm. This can be done as simple
as identify the challenge ciphertext as some bitstring in the identity space, via some encoding: bin :
CiphSpace→ {0, 1}κ.

• Next, we have to deal with the strong admissibility of our reduction, in terms of queries to the oracles in
the IND-CPA game with repect to Definition 4. This is non-trivial since a tracing adversary is admissible
as long as the number of key queries in its tracing game is bounded by nbd.

• Our reduction to IND-CPA, acting as a tracing adversary, will first query a non-differentiating function
F on some challenge (x(0),x(1)), i.e. F (x(0)) = F (x(1)).

• Then, under the hypothesis that the number of clients n ≥ 2, our reduction solves for a set of indices ∅ ̸=
S ⊆ [n] and (x̃(0)

i , x̃(1)

i )i∈S such that F
(
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1

)
̸= F

(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
,

where for b ∈ {0, 1}

∀ k ∈ [n] : ∆S(k, (x̃
(b)

i )i∈S , (x
(b)

i )i∈[n]\S) :=

{
x̃(b)

k if k ∈ S
x(b)

k if k ∈ [n] \ S
.

This uses the fact that the number of clients is at least 2 and the function class is slot-differentiating
solvable (Definition 14).

• Then, the reduction runs the tracing algorithm, which has black-box access to a decoder that is embedded
with the functional key for the function F under the identity that encodes the IND-CPA challenge ciphertext.
The inputs to the tracing algorithm are ∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S), ∆S(k, (x̃
(1)

i )i∈S , (x
(1)

i )i∈[n]\S), for
k ∈ [n] (defined following the slot-differentiating solvability). This can be freely specified by our reduction
as the tracing algorithm is public.

• It can now be verified that the reduction is an admissible tracing adversary , the decoder that is
black-box to the tracing algorithm is a good distinguisher as per the result from slot-differentiating
solvability F

(
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1

)
̸= F

(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
. At the same time,

the reduction is also an admissible IND-CPA adversary (following Definition 4) thanks to the original
condition F (x(0)) = F (x(1)).

15 We do not require correctness to hold with probability 1, i.e. perfect, over the random coins of algorithms.
Overwhelming probability for correctness suffices.
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The remaining is running the tracing algorithm to output the set of identities, which include the identity that
encodes the challenge ciphertext with high probability as T is tracing secure, then deciding the IND-CPA
challenge bit (see the case-by-case decision in Equation (5)). As a final remark, we note that the fact that we
pass a new set of inputs to the tracing algorithm, which are differentiated by F , implicitly demonstrates the
ability to mix-and-match inputs in the context of MCFE and the later is not detected thanks to the black-box
nature of the tracing algorithm.

We now give the formal proof.

Proof of Theorem 1. Let ϵ = 1/2 and the number of keys p(λ) = 1. We describe A as an adversary against
the IND-CPA security of T as follows:

• A is given the public parameters pp.
• A outputs two distinct messages (x(0),x(1)) together with a tag tag, and receives a challenge ciphertext
ct(b).

• We denote by bin : CiphSpace→ {0, 1}κ an encoding function that maps a ciphertext to a bitstring in
the identity space ID = {0, 1}κ that acts as an identity16. A queries to KeyGen(·) oracle a function F ,
setting identity id(b) := bin(ct(b)) ∈ {0, 1}κ, where F (x(0)) = F (x(1)) but there exists ∅ ̸= S ⊆ [n], for
which we make use of the hypothesis n ≥ 2, and (x̃(0)

i , x̃(1)

i )i∈S such that

F
(
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1

)
̸= F

(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
(3)

where for b ∈ {0, 1}

∀ k ∈ [n] : ∆S(k, (x̃
(b)

i )i∈S , (x
(b)

i )i∈[n]\S) :=

{
x̃(b)

k if k ∈ S
x(b)

k if k ∈ [n] \ S
.

The query of F is possible because C = ∅ and thus there exists no deducible inputs to plug in the
condition over i ∈ C of Definition 4, except the trivial ones (x(0),x(1)). This means the admissibility
vacuously holds w.r.t (F,x(0),x(1)). We denote by dkF,id(b) the received functional decryption key. We can
suppose A is hardcoded with (F,∅ ≠ S ⊆ [n],x(0),x(1), (x̃(0)

i , x̃(1)

i )i∈S) for the sake of an efficient adversary.
The main idea behind embedding the challenge ciphertext as the identity id(b) in the function query is to
ensure that the tracing algorithm, supposedly secure, will identify id(b) in the set T later on, so that the
adversary can decide the bit b using this key dkF,id(b) and Equation (3).

• A receives a decryption key dkF,id(b) . Because the tracing algorithm is public, A can run

T ← TraceD
(

pp, 1
1

ϵ(λ) , p(λ), tag,
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1, ∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
, (4)

where D is the decryption algorithm hardwired with dkF,id(b) , receiving ciphertext ct, decrypting with
dkF,id(b) and outputs 1 if and only if

Dec(pp, dkF,id(b) , ct) = F
(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
.

We emphasize the public tracing algorithm is run on a decoder from the challenge identity id(b), but our
adversary A deliberately puts

∆S(k, (x̃
(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1, ∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

as inputs to the tracer.

16 This encoding bin can be as simple as the binary decomposition.
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• If T contains an index that represents a ciphertext bin(c̃t) ∈ {0, 1}κ, A decrypts using dkF,id(b) and defines{
result0 := F

(
∆S(k, (x̃

(0)

i )i∈S , (x
(0)

i )i∈[n]\S)
n
i=1

)
− Dec(pp, dkF,id(b) , c̃t)

result1 := F
(
∆S(k, (x̃

(1)

i )i∈S , (x
(1)

i )i∈[n]\S)
n
i=1

)
− Dec(pp, dkF,id(b) , c̃t)

.

Here the main idea is using the fact that (i) the identity id(b) is the challenge ciphertext, (ii) F (x(0)) =
F (x(1)), and (iii) the choices of (F,S, (x̃(0)

i , x̃(1)

i )i∈S) satisfying (3) to decide the bit b. A outputs
guess if ∃ guess ∈ {0, 1} s.t.

resultguess = F
(
∆S(k, (x̃

(guess)

i )i∈S , (x
(guess)

i )i∈[n]\S)
n
i=1

)
− F (x(guess))

b′
$← {0, 1} otherwise

. (5)

We recall that xguess ∈ {x(0),x(1)} and xguess contains components xguess
i for i ∈ [n].

For the ease of notation, we write

x̃(b) := ∆S(k, (x̃
(b)

i )i∈S , (x
(b)

i )i∈[n]\S)
n
i=1

for b ∈ {0, 1} Since D is a black-box and hardwired with dkF,id(b) differing on (x̃(0), x̃(1)), which is implied
by (3) and the fact that F is non-differentiating on (x(0),x(1)), combining with perfect correctness of T implies
that the event Pr-GoodDecA,ϵ,p(λ) = 1− negl(λ) for some negligible function negl(·). Because T is a secure
traitor tracing MCFE scheme, there is a negligible function negl2(·) such that it holds

Pr-CorrectTrA,ϵ,p(λ) ≥ Pr-GoodDecA,ϵ,p(λ)− negl2(λ)

= 1− negl(λ)− negl2(λ) (6)

and is overwhelming in λ. Additionally, there exists a negligible function negl1(·) such that

Pr-FalseTrA,ϵ,p(λ) ≤ negl1(λ) .

Finally, we observe the facts that F is differentiating on (x̃(0), x̃(1)) and the order of x̃(b) is consistent with the
order of x(b) for b ∈ {0, 1} when calling the tracing algorithm (4). Hence, whenever the tracing algorithm
outputs a set T containing an id that represents the encoded challenge ciphertext, which happens with
overwhelming probability thanks to (6), the differentiating functional key can decrypt and help A decide the
bit b as per (5) (the cases are well-defined because of the design of F from (3)).

3.2 Indexed Embedded-Identity Traitor Tracing

In this section, we will present the syntax and definitions for traitor tracing with embedded identities where
the number of users is bounded, and the key generation is “indexed”. The main motivation behind this indexed
version is that we provide, in our multi-client setting, a generic transformation that turns an indexed EITT
MCFE scheme into a (bounded) EITT MCFE (see an overview in Section 3.3).

Definition 15 (Indexed Embedded Identities Traceable Multi-Client Functional Encryption).
A indexed keys, embedded-identities tracing scheme T for a function class F consists of five algorithms
(Setup,KeyGen,Enc,Dec,Trace) that are defined below:

(msk, pp, (eki)i∈[n], tk)← Setup(1λ, 1n, 1κ, nindx): Given as input the security parameter λ, the number of
clients n, the identity space parameter κ and index space [nindx], output a master secret key msk, public
parameters pp, n encryption keys (eki)i∈[n] and a tracing key tk.

dk(id,j),Fλ
← KeyGen(msk, id, j, Fλ): Given the master secret key msk, an identity id ∈ {0, 1}κ, an index

j ∈ [nindx], and a function description Fλ ∈ F , output a decryption key dk(id,j),Fλ
.
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cttag,i ← Enc(pp, eki, tag,xi): Given as inputs the public parameters pp, an encryption key eki, a message
xi ∈ Dλ,i, and a tag tag, output a ciphertext cttag,i.

z ← Dec(pp, dkFλ
, c): Given the public parameters pp, a decryption key dkFλ

and a vector of ciphertexts
c := (cttag,i)i of length n, output an element z ∈ Rλ ∪ {⊥}.

T ← TraceD(tk, 1y, tag,x(0),x(1)): Given oracle access to a program D, the tracing key tk, parameters y, a
tag tag and two messages (x(0),x(1)), output a set T of identities where T ⊆ {0, 1}κ.
We call the tracing as public or private depending on whether tk is equal to pp or it is kept secret.

The correctness requirement and the IND-CPA security definition is identical to the one in Definition 5.
We state here the tracing security.

Definition 16 (Security of Tracing). For any non-negligible function ϵ(·), and all PPT adversary A,
consider the experiment ExptTT−emb−index

T ,A,ϵ (1λ) defined in Fig. 3.

• 1κ, 1nindx ← A(1λ)
• (msk, pp, (eki)i∈[n], tk)←Setup(1λ, 1n, 1κ, nindx)
• (D, tag,x(0),x(1))← ACorrupt(·),KeyGen(·),Enc(·)(pp)
• Return T ← TraceD(tk, 1

1
ϵ(λ) , tag,x(0),x(1)).

Let SID be the set of identities queried by A to KeyGen(·).
Here, Corrupt(·) is an oracle that has (eki)i∈[n] hardwired, takes as input an index i ∈ [n] and outputs eki;
KeyGen is an oracle that has msk hardwired, takes as input a pair (j, id) ∈ [nindx]× {0, 1}κ, a function
description Fλ ∈ F and outputs KeyGen(msk, id, j, Fλ) if index j is distinct from all previous queries
made by A, and outputs ⊥ otherwise; Enc is an oracle that has (eki)i∈[n] hardwired, takes as input a tag
tag and a message xi (we implicitly assume that the index of the encryption slot is embedded in xi) and
outputs Enc(pp, eki, tag, xi).
In other words, A is allowed to make at most one query to KeyGen for each index j ∈ [nindx].

Fig. 3. Experiment ExptTT−emb−index.

Based on the above experiment in Fig. 3, we define the following events and corresponding probabilities
(which are a function of λ, parameterized by A, ϵ):

• GoodDec: Pr

[
D
(
(cttag,i)i∈[n]

)
= b |

b←$ {0, 1}, cttag,i ← Enc(pp, eki, tag,x
(b)
i )

]
≥ 1

2 + ϵ(λ).

Pr-GoodDecA,ϵ(λ) = Pr[GoodDec].
• CorrectTr: T ̸= ∅ ∧ T ⊆ SID.
Pr-CorrectTrA,ϵ(λ) = Pr[CorrectTr].

• FalseTr: T ̸⊆ SID.
Pr-FalseTrA,ϵ(λ) = Pr[FalseTr].

A scheme T is said to be secure if for every PPT adversary A, polynomial q(·) and non-negligible function
ϵ(·), there exist negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying ϵ(λ) > 1

q(λ) , it holds
that Pr-FalseTrA,ϵ(λ) ≤ negl1(λ) and Pr-CorrectTrA,ϵ(λ) ≥ Pr-GoodDecA,ϵ(λ)− negl2(λ).

3.3 Overview: Framework for Embedded-Identity Traitor Tracing MCFE

Before moving on to other sections, we give an overview of the framework that involves our newly defined
notions of bounded/indexed embedded-identity traitor tracing MCFE. In the setting of traitor tracing for
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public key encryption (PKE), the work of [GKW18,GKW19] provides a framework to build embedded-identity
traitor tracing (EITT) from indexed EITT. All this works and other follow-ups are in the setting of single-
client, that is there is only one sender that encrypts the message, facing multiple users that can decrypt on
keys embedded with identities. However, as it should be clear from the expository overview during the course
of Section 1.2.1, the traitor tracing MCFE model we propose are justified and effectively in the multi-client
setting. A constructive framework for our embedded-identity traitor tracing MCFE (EITT-MCFE) will be the
first to tackle this context and face the following challenges:

• We choose to trace privately and preferably in a black-box manner (this is due to our impossibility
Theorem 1).

• The complexity of private-key with corruption of multi-clients.
• The fine-grained separate corruptions of clients and functional keys under the necessity of strong admissi-

bility.

Generalizing [GKW18] to TMCFE. We generalize the framework of [GKW18] to the setting of multi-
client functional encryption, with traitor tracing capabilities facing multi-sender that can ask bounded number
of functional keys. The final primitive is the bounded EITT-MCFE (Definition 12), for the class computing
inner products

∑n
i=1⟨xi,yi⟩ between n clients. In particular, we develop on both definitional and constructive

aspects for the technique of private linear broadcast tracing with embedded identities [BSW06,GKW19]. Our
roadmap is as follows.

TMCFE.1 The above transformation reduces to the task of constructing indexed EITT for MCFE. To that
end, we first introduce a new intermediate primitive which we call embedded-identity private
linear multi-client functional encryption (EI-PLMCFE, Definition 17). As for all primitives we
extend to the multi-client setting, the security notions for EI-PLMCFE in Section 4.1.1 all imbue
the fine-grained corruption of multiple clients and functional keys, while the strong-amissibly
IND-CPA is reflected in the message-hiding of EI-PLCMFE (Definition 22). Eventually, we give
a generic transformation from EI-PLMCFE to indexed EITT for MCFE in Section 4.

TMCFE.2 Finally, we show how to build generically EI-PLMCFE from Mixed Functional Encryption (Mixed
FE) (introduced in [GKW18]) and MCFE for inner products with access control with strong
admissibility conditions (see Section 7). Both of them can be constructed based on standard
LWE assumptions.

TMCFE.3 Finally, we provide, in our multi-client setting, a generic transformation that turns an indexed
EITT MCFE scheme into a (bounded) EITT MCFE (see Section 5).

A corresponding overview with more details will also accompany in each of the referred sections.

4 Building Indexed EITT-MCFE

4.1 Embedded-Identity Private Linear MCFE

We develop a new notion of embedded-identity private linear MCFE (EI-PLMCFE), which can be seen as an
extension of classical embedded-identity private linear broadcast encryption introduced in [GKW19].

Definition 17. An embedded-identity private linear MCFE (EI-PLMCFE) EIPLMCFE for a function class F
and identity space ID = {0, 1}κ consists of five algorithms (Setup,KeyGen,Enc,SplEnc,Dec) that are defined
below:

(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx): Given as input the security parameter λ, the number of clients
n, the identity space parameter κ, and the index space [nindx], output a master secret key msk, public
parameters pp, and n encryption keys (eki)i∈[n].

dk(id,j),Fλ
← KeyGen(msk, id, j, Fλ): Given as input the master secret key msk, an identity id ∈ ID, an index

j ∈ [nindx], and a function description Fλ ∈ F , output a decryption key dk(id,j),Fλ
.
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cttag,i ← Enc(pp, eki, tag,xi): Given as inputs the public parameters pp, an encryption key eki, a tag tag, and
a message xi ∈ Dλ,i, output a ciphertext cttag,i.

cttag,i ← SplEnc(msk, t̂ag := (tag, (j, ℓ, b)),xi): Given as inputs the master secrete key msk, a tag tag, a triple
(j, ℓ, b) ∈ [nindx + 1]× ([κ] ∪ {⊥})× {0, 1}, and a message xi ∈ Dλ,i, and output a ciphertext cttag,i. For
simplicity, we will only write SplEnc(msk, tag, (j, ℓ, b),xi).

z ← Dec(pp, dkFλ
, c): Given the public parameters pp, a decryption key dkFλ

and a vector of ciphertexts
c := (cttag,i)i of length n, output an element z ∈ Rλ ∪ {⊥}.

Remark 4. For convenience, we make the following convention: we use i to denote the clients’ index (on
ciphertexts), and j (e.g., j, j′, . . .) to denote users’ index (on functional keys).

Correctness. An EI-PLMCFE scheme is said to be correct if for all λ, n, nindx, κ ∈ N, an identity space
ID = {0, 1}κ, F ∈ Fλ : Dλ,1×· · ·×Dλ,n → Rλ, i ∈ [n], j ∈ [nindx+1], j′ ∈ [nindx], id ∈ ID, ℓ ∈ [κ]∪{⊥}, b ∈
{0, 1}, tag and (xi)i∈[n] ∈ Dλ,1 × · · · × Dλ,n the following probability:

Pr

 Dec(pp, dkFλ
, (cttag,i)i∈[n])

= F (x1, . . . ,xn)

∣∣∣∣∣∣
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

dk(id,j),Fλ
← KeyGen(msk, id, j, Fλ)

(cttag,i)i∈[n] ← {Enc(pp, eki, tag,xi)}i∈[n]


is negligible in λ, and if j′ ≥ j + 1 or (j, ℓ) = (j′,⊥) or (j, idj) = (j′, 1− b) then

Pr

 Dec(pp, dkFλ
, (cttag,i)i∈[n])

= F (x1, . . . ,xn)

∣∣∣∣∣∣
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

dk(id,j′),Fλ
← KeyGen(msk, id, j′, Fλ)

(cttag,i)i∈[n] ← {SplEnc(msk, tag, (j, ℓ, b),xi)}i∈[n]


is negligible in λ, where the probabilities are taken over the random coins of algorithms.

4.1.1 q-Query EI-PLMCFE Security

In this section, we provide the formal security definitions for EI-PLMCFE.

Definition 18 (q-query Normal Hiding). Let λ ∈ N and q = q(λ) be some fixed polynomial in λ. An
EI-PLMCFE scheme satisfies q-query normal hiding security if for every stateful PPT adversary A, the
following probability is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


ASplEnc(·) (c(b)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, 1nindx)← A(1λ)
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

(tag,xi)← ASplEnc(·),KeyGen(·)
Enc(·),Corrupt(·) (pp)

b←$ {0, 1}
ct(0)i ← Enc(pp, eki, tag,xi)

ct(1)i ← SplEnc(msk, tag, (1,⊥, 0),xi)
c(b) ←

(
ct(b)i

)
i∈[n]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• Enc oracle: this oracle has (eki)i∈[n] hardwired, and implements the algorithm Enc(pp, eki, ·, ·).
• Corrupt oracle: this oracle has (eki)i∈[n] hardwired, and takes as input a client index i and returns eki.
• SplEnc oracle: this oracle has msk hardwired, and implements the algorithm SplEnc(msk, ·, ·, ·). A can

make at most q queries to SplEnc. And for each query on (j, ℓ, b) the user-index j has to be 1.
• KeyGen oracle: this oracle has msk hardwired, and implements the algorithm KeyGen(msk, ·, ·, ·). A can

make at most one query for each user-index j ∈ [nindx]. That is, let (id1, j1), . . . , (idk, jk) denote all the
key queries made by A, then ja ̸= jb for all a ̸= b.
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Definition 19 (q-query Index Hiding). Let λ ∈ N and q = q(λ) be some fixed polynomial in λ. An
EI-PLMCFE scheme satisfies q-query index hiding security if for every stateful PPT adversary A, the following
probability is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


ASplEnc(·)(c(b)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, 1nindx , j∗)← A(1λ)
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

(tag,xi)← ASplEnc(·),KeyGen(·)
Enc(·),Corrupt(·) (pp)

b←$ {0, 1}
ct(b) ← SplEnc(msk, tag, (j∗ + b,⊥, 0),xi)

c(b) ←
(
ct(b)i

)
i∈[n]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• Enc and Corrupt oracles are defined identically as in Definition 18.
• SplEnc oracle: this oracle has msk hardwired, and implements the algorithm SplEnc(msk, ·, ·, ·). A can

make at most q queries to SplEnc. And for each query on ((j, ℓ, b)) the user-index j has to be either j∗ or
j∗ + 1.

• KeyGen oracle: this oracle has msk hardwired, and implements the algorithm KeyGen(msk, ·, ·, ·). A can
make at most one query for each user-index j ∈ [nindx], and no key query of the form (id, j∗). That is,
let (id1, j1), . . . , (idk, jk) denote all the key queries made by A, then ja ̸= jb for all a ≠ b. And, ja ≠ j∗

for all a.

Definition 20 (q-query Upper Identity Hiding). Let λ ∈ N and q = q(λ) be some fixed polynomial in λ.
An EI-PLMCFE scheme satisfies q-query upper identity hiding security if for every stateful PPT adversary
A, the following probability is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


ASplEnc(·)(c(b)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, 1nindx , j∗, ℓ∗, b∗)← A(1λ)
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

(tag,xi)← ASplEnc(·),KeyGen(·)
Enc(·),Corrupt(·) (pp)

b←$ {0, 1}
ct(b)i ← SplEnc(msk, tag, (j∗ + 1,⊥, 0),xi)

ct(b)i ← SplEnc(msk, tag, (j∗, ℓ∗, b∗),xi)
c(b) ←

(
ct(b)i

)
i∈[n]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• Enc and Corrupt oracles are defined identically as in Definition 18.
• SplEnc oracle: this oracle has msk hardwired, and implements the algorithm SplEnc(msk, ·, ·, ·). A can

make at most q queries to SplEnc. And for each query on ((j, ℓ, b)) the user-index j has to be either j∗ or
j∗ + 1.

• KeyGen oracle: this oracle has msk hardwired, and implements the algorithm KeyGen(msk, ·, ·, ·). A can
make at most one query for each user-index j ∈ [nindx], and no key query of the form (id, j∗) where
idℓ∗ = 1− b∗. That is, let (id1, j1), . . . , (idk, jk) denote all the key queries made by A, then ja ̸= jb for all
a ̸= b. And, (ida)ℓ∗ ̸= 1− b∗ or ja ̸= j∗ for all a.

Definition 21 (q-query Lower Identity Hiding). Let λ ∈ N and q = q(λ) be some fixed polynomial in λ.
An EI-PLMCFE scheme satisfies q-query lower identity hiding security if for every stateful PPT adversary
A, the following probability is negligible in λ:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


ASplEnc(·)(c(b)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, 1nindx , j∗, ℓ∗, b∗)← A(1λ)
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)

(tag,xi)← ASplEnc(·),KeyGen(·)
Enc(·),Corrupt(·) (pp)

b←$ {0, 1}
ct(b)i ← SplEnc(msk, tag, (j∗,⊥, 0),xi)
ct(b)i ← SplEnc(msk, tag, (j∗, ℓ∗, b∗),xi)

c(b) ←
(
ct(b)i

)
i∈[n]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• Enc and Corrupt oracles are defined identically as in Definition 18.
• SplEnc oracle: this oracle has msk hardwired, and implements the algorithm SplEnc(msk, ·, ·, ·). A can

make at most q queries to SplEnc. And for each query on ((j, ℓ, b)) the user-index j has to be j∗.
• KeyGen oracle: this oracle has msk hardwired, and implements the algorithm KeyGen(msk, ·, ·, ·). A can

make at most one query for each user-index j ∈ [nindx], and no key query of the form (id, j∗) where
idℓ∗ = b∗. That is, let (id1, j1), . . . , (idk, jk) denote all the key queries made by A, then ja ̸= jb for all
a ̸= b. And, (ida)ℓ∗ ̸= b∗ or ja ̸= j∗ for all a.

The following Definition 22 defines the message hiding security for EI-PLMCFE, which intuitively captures
a weaker version of IND-CPA security that we will base the tracing security on: for any PPT adversay, after
constructing a decoder with oracle access to key-generation, encryption, as well as corruption oracles, on
chosen tag and challenge messages, given the challenge ciphertext, this adversarial decoder is not able to
distinguish the challenge bit. We remark that in [GKW19] the message hiding security is rather defined
similarly to the full-fledged IND-CPA security of PKE schemes.

Definition 22 (q-query Message Hiding). Let λ ∈ N and q = q(λ) be some fixed polynomial in λ. An
EI-PLMCFE scheme satisfies adaptive q-query message hiding security if for every admissible stateful PPT
adversary A, the following probability is negligible in λ:∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


ASplEnc(·)(c(b)) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1κ, 1nindx)← A(1λ)
(msk, pp, (eki)i∈[n])← Setup(1λ, 1n, 1κ, nindx)(
tag,

(
x(0)

i ,x(1)

i

)
i∈[n]

)
← ASplEnc(·),KeyGen(·)

Enc(·),Corrupt(·) (pp)

b←$ {0, 1}
ct(b)i ← SplEnc(msk, tag, (nindx + 1,⊥, 0),x(b)

i )

c(b) :=
(
ct(b)i

)n
i=1


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
with the following oracle restrictions:

• Enc and Corrupt oracles are defined identically as in Definition 18.
• SplEnc oracle: this oracle has msk hardwired, and implements the algorithm SplEnc(msk, ·, ·, ·). A can

make at most q queries to SplEnc. And for each query on ((nindx + 1, ℓ, b)) the user-index has to be
nindx + 1.

• KeyGen oracle: this oracle has msk hardwired, and implements the algorithm KeyGen(msk, ·, ·, ·). A can
make at most one query for each user-index j ∈ [nindx]. That is, let (id1, j1), . . . , (idk, jk) denote all the
key queries made by A, then ja ̸= jb for all a ̸= b.

Furthermore, the adversary is admissible if it satisfies Definition 23 for the specific function class computing
inner products.

Definition 23 (Strong Admissibility for Inner Products). Below we recall the strong admissibility
condition (against complete queries) for MCFE for the function class that compute inner products (Defini-
tion 11) of ⟨X,Y⟩ where X = x1∥ · · · ∥xn, and each eki is used to encryption a vector xi. We note that formal
definition of this strong admissibility is given in Definition 4, which is inspired by the definition in [NPP23].
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1. For all vectors (X(0),X(1)) that is queried to LoR, for all (tag,Y = (yi)
n
i ) ∈ Q,

∑
i∈H⟨∆xi,yi⟩ = 0 where

∆xi = x(0)

i − x(b)

i , where H := Hekey, for any b ∈ {0, 1}.
2. For all vectors (X(0),X(1)) that is queried to LoR, for all (tag,Y = (yi)

n
i ) ∈ Q, for all i ∈ Cekey, we have

⟨∆xi,yi⟩ = 0.

We recall that the admissbility condition is checked at the finalisation of the security game, after receiving
the guess b′ ∈ {0, 1} of the adversary for the challenge bit b $← {0, 1}. The conditions are applied to all queries
by the adversary during the game.

Remark 5 (Comparing with [GKW19]). The acute reader might notice that we do not allow the adversary’s
access to the KeyGen oracle after the challenge phase, while [GKW19] does allow. However, this oracle access
is not necessary, in both our security proofs in Section 4.2.1 and those of [GKW19]. In fact, it is crucial for
our construction as it only require the functional keys to be semi-adaptive, the security level of our building
blocks in Section 6 are compatible.

4.2 Building Indexed EITT from EI-PLMCFE

Our construction of indexed EITT for MCFE from EI-PLMCFE (Item TMCFE.1) consists of our new
integration of a tensoring technique for the multi-client setting, all along with non-interactive secret sharing
of 0 among clients, see the main transformation in Section 4.2.1. This extends fully the works of [ABG19]
and [LAKWH22] to the tracing of multi-sender setting. Starting from the case of one client encrypting a
message vector x, deryptable using a functional key for vector y, in order to index -trace the users’ decryption
keys, our main idea is letting the indexed EITT-MCFE tensors the vectors x,y with a pair of vectors (a,b)
of appropriate length that, by properties of tensor products, ⟨x⊗ a,y ⊗ b⟩ = ⟨x,y⟩ · ⟨a,b⟩. The part x⊗ a
intuitively is encrypted by the EI-PLMCFE (normal encryption) during encryption of indexed EITT-MCFE,
whereas the part y ⊗ b is extracted by the keygen of the EI-PLMCFE during key generation of indexed
EITT-MCFE. The decryption involves dividing by ⟨a,b⟩, and this is used crucially in our tracing-encryption
algorithm (subroutine of the main tracing, see Figure 4), for an index range nindx: (i) the tracer switches
to the special encryption algorithm of the underlying EI-PLMCFE scheme to teest index by index between
1, 2 . . . , nindx + 1, and (ii) the tracer send tracing signal such that running indexes in [nindx], a is chosen
as in the normal encryption but when the index tested is nindx + 1 the vector a makes ⟨a,b⟩ = 0. This
case of nindx + 1 allows choosing the tracing challenges to be x(0) ̸= x(1) such that ⟨x(0),y⟩ ≠ ⟨x(1),y⟩, for a
good decoder to trivially distinguish, but from the view of the special encryption for nindx + 1 it still holds
⟨x(0) ⊗ a,y ⊗ b⟩ = 0 = ⟨x(1) ⊗ a,y ⊗ b⟩. In the end, this implies a significant gap in the distinguishing
probability of the decoder between [nindx] and nindx + 1, helping the tracer of EITT-MCFE to identify the
index j that creates the significant jump in the distinguishing probability (j − 1, j). Last but not least, our
transformation in Section 4.2.1 generalizes this idea into the context of multi-client setting, while resolving
a new challenge that the x-vectors are now masked independently and non-interactively by each client i
with a secret share of 0. The idea to achieve this masking resembles the MCFE construction in Step 1
in Section 1.2.2.

4.2.1 Construction

Building blocks. We assume the existence of

• A secure n-client EIPLMCFE scheme for the inner product function F1 : Zn2·m·k
q × Zn2·m·k

q → Zq and
identity space {ID := {0, 1}κ}κ∈N. (So each client encrypts a vector of size n ·m · k.)

• Two families of pseudorandom functions PRF(k, ·),PRF2(k, ·) of appropriate input/output length.

We will build a traceable MCFE scheme for the inner product function F : Zn·m
q ×Zn·m

q → Zq with identical
identity space.
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Notations. We will denote
• X = x1∥ · · · ∥xn ∈ Zn·m

q , where each xi ∈ Zm
q , the message (which will be encrypted by n clients).

• Y = y1∥ · · · ∥yn ∈ Zn·m
q , where each yi ∈ Zm

q , the function (which will be input to the KeyGen oracle).

Construction.

Setup(1λ, 1n, 1κ, nindx): Do the following:
• For i ∈ [n],∀j ̸= i : ki,j = kj,i

$← {0, 1}λ.
• Sample kind

$← {0, 1}λ.
• Run EIPLMCFE.Setup(1λ, 1n, 1κ, nindx)→ (msk-eipl, (ek-eipli)i∈[n]).
• We return msk := (msk-eipl, {ki,j}j>i, kind) and the encryption keys eki := (ek-eipli, {ki,j}j>i).

KeyGen(msk, id, j,Y): Parse msk := (msk-eipl, {ki,j}j>i, kind) and do the following:
• Compute b = b1∥ · · · ∥bn ← PRF2(kind, j) ∈ Zn·k

q .
• Let zi = 0∥ · · · ∥ Y ⊗ bi︸ ︷︷ ︸

i-th coord. among n

∥ · · · ∥0 ∈ Zn2·m·k
q for all i ∈ [n].

• Output
(
(EIPLMCFE.KeyGen(msk-eipl, id, j, zi))i∈[n] ,b

)
as the decryption key.

Enc(pp, eki, tag,xi): Parse eki := (ek-eipli, {ki,j}j>i) and do the following:
• Compute ti,tag ←

∑
j ̸=i(−1)j<iPRF(ki,j , tag) ∈ Zn·m

q , where (−1)j<i := −1 if and only if j < i.
• Choose a random ai ∈ Zk

q .
• We define w̃i := 0∥ · · · ∥0∥xi∥0∥ · · · ∥0 + ti,tag ∈ Zn·m

q and compute wi = w̃i ⊗ ai ∈ Zn·m·k
q .

• Return (EIPLMCFE.Enc(pp, ek-eipli, tag,wi),ai).

Dec(pp, dk, ctag): Do the following:
• Parse dk :=

(
(dk-eipli)i∈[n],b1∥ · · · ∥bn

)
and ctag :=

(
ct-eipli,tag,ai

)
i∈[n].

• For each i ∈ [n], we use the specific i-th component key dk-eipli to decrypt the total ensemble of
EI-PLMCFE ciphertexts (ct-eipli,tag)i∈[n] and obtain

ei =
EIPLMCFE.Dec(pp, dk-eipli, (ct-eipli,tag)i∈[n])

⟨ai,bi⟩

=
⟨w̃1 ⊗ a1∥ · · · ∥w̃n ⊗ an, 0∥ · · · ∥Y ⊗ bi∥ · · · ∥0⟩

⟨ai,bi⟩

=
⟨w̃i ⊗ ai,Y ⊗ bi⟩

⟨ai,bi⟩

=
⟨w̃i,Y⟩ · ⟨ai,bi⟩

⟨ai,bi⟩
= ⟨xi,yi⟩+ ⟨ti,tag,Y⟩.

• Return
∑

i ei.

TraceD(msk, 11/ϵ, tag,x
(0)
i ,x

(1)
i ): Let y := 1/ϵ. Do the following:

• Set T index := ∅. For j = 1 to nindx:
◦ Compute b, p, q ← IndexTrace(msk, 1y, tag,x

(0)
i ,x

(1)
i , j), where the algorithm IndexTrace is given

in Fig. 5.
◦ If b = 1, set T index = T index ∪ {(j, p, q)}.

• Set T := ∅. For each (j, p, q) ∈ T index:
◦ Compute id ← IdTrace(msk, 1y, tag,x

(0)
i ,x

(1)
i , (j, p, q)), where the algorithm IdTrace is given

in Fig. 6.
◦ Set T = T ∪ {id}.

• Output T as the set of traitors.
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Input: Master secret key msk, a tag tag, a triple index-position-bit (j, ℓ, b), and messages
x
(0)
i ,x

(1)
i , and a challenge bit γ.

Algorithm: This algorithm will be used later in the tracing algorithm Trace. It does
the following:

• Parse msk to get kind. Then for each j′ ∈ [nindx + 1], re-compute

bj′ := bj′,1∥ · · · ∥bj′,n = PRF2(kind, j
′) ∈ Zn·k

q ,

as in the first step of KeyGen.
• Parse msk to get PRF keys and re-compute ti,tag ∈ Zn·m

q as in the first step of Enc.a
• Choose a random non-zero vector vi ←$ Zk

q \ {0}.
• Compute v

(γ)
i for γ ∈ {0, 1} as:

◦ If j < nindx + 1, set v
(0)
i = v

(1)
i = vi.

◦ If j = nindx + 1, choose random v
(0)
i ̸= v

(1)
i ∈ Zk

q such that:
1. ⟨bj′,i,v

(0)
i ⟩ = 0 for all j′ ∈ [nindx].

2. ⟨bj′,i,v
(1)
i ⟩ = 0 for all j′ ∈ [nindx].

• Compute w
(γ)
i = (0∥ · · · ∥x(γ)

i ∥ · · · ∥0 + ti,tag)⊗ v
(γ)
i ∈ Zm·k

q .
• Return
◦ (EIPLMCFE.SplEnc(msk, tag, (j, ℓ, b),w

(γ)
i ),vi)

if j < nindx + 1.
◦ (EIPLMCFE.SplEnc(msk, tag, (j, ℓ, b),w

(γ)
i ),v

(γ)
i ), otherwise.

a Recall that i is the challenge index embedded in the messages.

Fig. 4. Algorithm TraceEnc(msk, tag, (j, ℓ, b),x
(0)
i ,x

(1)
i , γ).

Correctness. Correctness comes from the fact that for any tag,
∑

i ti,tag = 0. The parameter k is chosen
by Setup so that 2nindx < k, to guarantee the tracing algorithm works, i.e., the vectors v

(0)
i and v

(1)
i in

Equations (1)-(2) are guaranteed to exist.

Theorem 2. If EIPLMCFE is a 1-query secure EIPLMCFE as per Definition 18 to Definition 22, then
construction in Section 4.2.1 is secure, as per

• adaptive one-challenge IND-CPA security with complete queries and repetitions, under all-but-two
adaptive corruption (Definition 5),

• tracing security (Definition 16),

where the admissibility condition is checked for the inner product function class (Definition 11) and all-but-two
adaptive corruption means at most (n− 2)-among-n clients can be adaptively corrupted.17

The proof of this theorem follows from the two following theorems.

Theorem 3. If EIPLMCFE is a 1-query secure EIPLMCFE as per Definition 18 to Definition 22, then
the construction in Section 4.2.1 is adaptive one-challenge IND-CPA security with complete queries and
repetitions, under all-but-two adaptive corruption (Definition 5), where all-but-two adaptive corruption
means at most (n− 2)-among-n clients can be adaptively corrupted.

Theorem 4. If EIPLMCFE is a 1-query secure EIPLMCFE as per Definition 18 to Definition 22, then the
construction in Section 4.2.1 is securely traceable (Definition 16).
17 We make this corruption restriction to ease the proof presentation. Similar techniques from [ABG19] can be used to

treat the particular case of only 1 honest client.
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Input: Master secret key msk, parameter y, a tag tag, two messages x
(0)
i ,x

(1)
i and an

index j.
Algorithm:
Let ϵ = ⌊1/y⌋. It sets N = λ · nindx/ϵ and count1 = count2 = 0. For γ = 1 to N , it
computes the following:

1. Choose bγ ←$ {0, 1} and compute

ctj,1 ← TraceEnc(msk, tag, (j,⊥, 0),x(0)
i ,x

(1)
i , bγ)

and send ctj,1 to D, where TraceEnc is defined in Fig. 4. If D output bγ , set
count1 = count1 + 1, otherwise set count1 = count1 − 1.

2. Chose cγ ←$ {0, 1} and compute

ctj,2 ← TraceEnc(msk, tag, (j + 1,⊥, 0),x(0)
i ,x

(1)
i , cγ)

and send ctj,2 to D. If D output cγ , set count2 = count2 + 1, otherwise set
count2 = count2 − 1.

If count1−count2
N > ϵ

4nindx
, output (1, count1

N , count2
N ), else output (0,⊥,⊥).

Fig. 5. Algorithm IndexTrace(msk, 1y, tag,x
(0)
i ,x

(1)
i , j).

Input: Master secret key msk, parameter y, a tag tag, two messages x
(0)
i ,x

(1)
i and an

index j and probabilities p, q.
Algorithm:
Let ϵ = ⌊1/y⌋. It sets N = λ · nindx/ϵ and countℓ = 0 for ℓ ∈ [κ].

1. For each ℓ = 1 to κ, for γ = 1 to N , choose bγ ←$ {0, 1} and compute

ctj ← TraceEnc(msk, tag, (j, ℓ, 0),x
(0)
i ,x

(1)
i , bγ)

and send ctj to D. If D output bγ , set countℓ = countℓ + 1, otherwise set countℓ =
countℓ − 1.

2. It then sets id := ⊥. For ℓ = 1 to κ, it computes the following: if p+q
2 > countℓ

N , set
idℓ = 0, else set idℓ = 1.

3. Finally, output id.

Fig. 6. Algorithm IdTrace(msk, 1y, tag,x
(0)
i ,x

(1)
i , (j, p, q)).

The proof of Theorem 3 is given in Section 4.2.1, and the proof of Theorem 4 is given in Section 4.2.1.

4.2.2 Proof of Theorem 3

We translate the strong admissibility from Definition 4 for general function classes to the case of inner
products. These concrete conditions are used in the proof of Theorem 3.
Proof of Theorem 3. We give the main ideas of the game transitions. The changes that make the transitions
between games are highlighted in gray . The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := Pr[Gi = 1] .
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G0: This is the original security game following Definition 5, where the challenge bit is b = 0. We recall
that we impose the one challenge restriction, where the only challenge tag in (⋆, ⋆, tag) to LoR can
be repetitively queried to both Enc and LoR with different xi for the same i. For simplicity, we add
a constraint that the challenge tag tag is not queried to Enc. This incurs a multiplicative loss factor
in advantage up to an inverse of polynomial in λ, where we can reduce to the normal one challenge
restriction by guessing the challenge tag among the tags for encryption, and responding all of its Enc
queries (i,xi, tag) by LoR(i,xi,xi, tag).

G1: The simulator guesses the number of honest clients h ≤ n by sampling h
$← [n], i.e. equivalently at the

end of the game |H| = h and |C| = n − h is the number of adaptively corrupted clients. If the guess
h is incorrect before Finalize, the simulator aborts and outputs 0. The correct guess happens with
probability 1/(n+ 1) and we can calculate that Adv(G1) ≤ 1/(n+ 1) · Adv(G0).

G2: The set of honest clients is ordered by appearance and indexed by H = {i1, . . . , ih}, where h ≥ 2 results
from the guess of the size of H from the previous game. The simulator samples u2, . . . ,uh

$← Zn·m
q and

computes tĩ,tag for each i ∈ H below, changes are grayed :
• If ĩ = i1, define

tĩ,tag :=
∑
j ̸=ĩ

(−1)j<ĩPRF(kĩ,j , tag) +
∑h

ℓ=2 uℓ ∈ Zn·m
q .

• If ĩ = iℓ for ℓ ∈ {2, 3, . . . , h}, define

tĩ,tag :=
∑
j ̸=ĩ

(−1)j<ĩPRF(kĩ,j , tag)− uℓ ∈ Zn·m
q .

The rest of the game is unchanged, where the simulation of Setup, Extract, and LoR queries is identical
to the real game using the set up parameters. We remark that the order of apperance of an honest ĩ is
defined as per the queries to LoR, which involves the above calculation of tĩ,tag.
We argue the indistinguishability between G1 and G2 by a hybrid argument, following a sequence
G1 = G1.0,G1.1, . . . ,G1.h = G2 in which the calculation of ti,tag is done in G1.µ for µ ∈ [h] below,
highlighted in boxes :

• If µ = 1, G1.µ is identical to G1.µ−1.
• If µ ≥ 2, for ĩ = i1, define

tĩ,tag :=
∑
j ̸=ĩ

(−1)j<ĩPRF(kĩ,j , tag) +
∑µ

ℓ=2 uℓ ∈ Zn·m
q .

• If µ ≥ 2, for ĩ = iℓ for ℓ ∈ {2, 3, . . . , µ}, define

tĩ,tag :=
∑
j ̸=ĩ

(−1)j<ĩPRF(kĩ,j , tag)− uℓ ∈ Zn·m
q .

• If µ ≥ 2, for ĩ = iℓ for ℓ ∈ {µ+ 1, . . . , h},

tĩ,tag :=
∑

j ̸=ĩ(−1)j<ĩPRF(kĩ,j , tag) ∈ Zn·m
q .

Roughly speaking, in the game G1.µ where 2 ≤ µ ≤ h, we embed a µ-out-of-µ secret sharing of 0 among
the first µ honest clients, ordered by appearance in H = {i1, . . . , ih}. The hybrid argument consists of
two steps: (i) Going from G1.1 to G1.2, and (ii) Going from G1.µ to G1.µ+1 for µ ∈ {2, 3, . . . , h}. We give
details below:

• Step (i): The transition from G1.1 to G1.2 is indistinguishable by the PRF security. The reduction
first guesses the first two honest i1, i2 and samples u2

$← Zn·m
q . If the guess is incorrect, the reduction
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aborts and outputs 0. Otherwise, for i1, the reduction computes

ti1,tag =
∑

j /∈{i1,i2}

(−1)j<i1PRF(ki1,j , tag) + ChPRF((i1, i2), tag) + u2

whereas for i2, the reduction computes

ti2,tag =
∑

j /∈{i1,i2}

(−1)j<i2PRF(ki2,j , tag)− ChPRF((i1, i2), tag)− u2

where ChPRF((i1, i2), tag) is the challenge PRF query with respect to the key ki1,i2 . We remark that
both i1, i2 are honest and the PRF key ki1,i2 is never revealed to the adversary by construction of
eki1 containing {ki1,i2 = ki2,i1} and the latter is in eki2 . We apply the PRF security twice:

PRF(ki1,i2 , tag)︸ ︷︷ ︸
in G1.1

(∗)∼c RF(i1,i2)(tag)
(†)
≡ RF(i1,i2)(tag) + u2

(∗∗)∼c

in G1.2︷ ︸︸ ︷
PRF(ki1,i2 , tag) + u2 ,

where (∗) follows from the PRF security, (†) follows from the fact that u2 is uniformly random, and
(∗∗) follows from the PRF security. The transition is indistinguishable by the PRF security and the
correct guess probability of 2

n(n−1) for guess i1, i2.
• Step (ii): The transition from G1.µ to G1.µ+1 for µ ∈ {2, 3, . . . , h − 1} is indistinguishable by the

PRF security. The reduction first guesses the next honest client iµ+1 and samples uµ+1
$← Zn·m

q . The
reduction performs similarly as in the case of i1, i2 in Step (i), by querying the PRF challenge with
respect to the key kiµ,iµ+1

. It is important to recall that iµ, iµ+1 are honest and the PRF key kiµ,iµ+1

is never revealed to the adversary by construction of ekiµ containing {kiµ,iµ+1
= kiµ+1,iµ} and the

latter is in ekiµ+1 . Finally, is indistinguishable by the PRF security and the correct guess probability
of 1

n for guess iµ+1.

A sequence of the above steps results in the indistinguishability between G1 = G1.0 and G2 = G1.h.
G3: We switch the vector bid,j into a uniformly random vector

bid,j,1∥ · · · ∥bid,j,n
$← Zn·k

q ,

noting that the PRF key kind is part of the master secret key msk and never revealed to the adversary. We
index the vector bid,j by id, j that is associated to each Extract query. The transition is indistinguishable
under the PRF security.

G4: For i ∈ H honest that are ordered by appearance and resulting from the games G1 and G2, the
corresponding challenge ciphertext component is computed differently where we define

w̃i := 0∥ · · · ∥0∥x(1)

i ∥0∥ · · · ∥0 + ti,tag ∈ Zn·m
q ,

and compute wi = w̃i⊗ai ∈ Zn·m·k
q . We perform a reduction to the underlying security of the EI-PLMCFE

scheme below:

1. Our simulator starts the IND-CPA game with the challgenger against the EI-PLMCFE scheme.
The Initialize is run so that the challenger generates (msk-eipl, (ek-eipli)i∈[n]) for the EI-PLMCFE.
The simulator sets up the rest of the msk by sampling for i ∈ [n],∀j ̸= i : ki,j = kj,i

$← {0, 1}λ,
kind

$← {0, 1}λ, as in the previous game. When the adversary A outputs a static corruption set C, the
simulator demands the challenger to corrupt the corresponding i ∈ C and returns to A for every i ∈ C
the key eki := (ek-eipli, {ki,j}j>i).

32



2. Upon an Extraction query for id, j,Y by the adversaryA, the simulator samples bid,j = bid,j,1∥ . . . ∥bid,j,n
$←

Zn·k
q as in G3, then zi = 0∥ · · · ∥ Y ⊗ bi︸ ︷︷ ︸

i-th coord. among n

∥ · · · ∥0 ∈ Zn2·m·k
q for all i ∈ [n]. For each i ∈ [n] our

simulator queries to the EI-PLMCFE-challenger on (msk-eipl, id, j, zi) and obtain dkeipli . Finally, the
simulator returns

(
(dkeipli )i∈[n],bid,j

)
to the adversary.

3. Upon a LoR query for (i,x(0)

i ,x(1)

i , tag) by the adversary A, the simulator:

• samples ri,tag
$← Zn·m

q for i ∈ H so that they form a sharing of 0, and sets the share ti,tag←ri,tag,
as in G2

• samples b
$← {0, 1}, ai

$← Zk
q as in the game for A, then computes

w̃(eipl,0)

i := 0∥ · · · ∥0∥x(b)

i ∥0∥ · · · ∥0 + ti,tag ∈ Zn·m
q ,

w̃(eipl,1)

i := 0∥ · · · ∥0∥x(1)

i ∥0∥ · · · ∥0 + ti,tag ∈ Zn·m
q

and computes w(eipl,0)

i = w̃(eipl,0)

i ⊗ ai and w(eipl,1)

i = w̃(eipl,1)

i ⊗ ai
• sends an LoR query (i,w(eipl,0)

i ,w(eipl,1)

i , tag) to the EI-PLMCFE-LoR, receives the ciphertext
ct(eipl,b

′)
i , in which b′

$← {0, 1} is the EI-PLMCFE challenger’s bit.
• returns (ct(eipl,b

′)
i ,ai) to the adversary A.

The above simulation is done for each LoR query by A, with respect to repetitions ji for each
i ∈ [n]. Thanks to the fresh randomness ajii

$← Zk
q at step 3 for a repetition ji, each repetitive LoR

(i,x
(0,ji)

i ,x
(1,ji)

i , tag) query by A, indexed by ji for fixed i ∈ [n] and challenge tag tag, will induce
a different (i,w

(eipl,0,ji)

i ,w
(eipl,1,ji)

i , tag) query to the EI-PLMCFE-LoR at repetition ji for the same
(i, tag)

4. Upon an Enc query for (i,xi, tag) by the adversary A, the simulator performs a similar simulation
as in the previous step 3, except that the simulator sends an Enc query (i,w(eipl)

i , tag′) to the EI-
PLMCFE-Enc that encrypts the message w(eipl)

i under the tag tag′:

w̃(eipl)

i := 0∥ · · · ∥0∥xi ∥0∥ · · · ∥0 + ti,tag′ ∈ Zn·m
q ,

where the share ti,tag′ is computed as in G2. As previously, the simulation is done with respect to
each repetition ji for each i ∈ [n]. We recall that thanks to G0, the challenge tag tag is not queried to
the EI-PLMCFE-Enc.

We argue that the adversary’s view in G4 is computationally indistinguishable from the real game G3:

• When the EI-PLMCFE-LoR is queried with (i,w(0)

i ,w(1)

i , tag), when b′ = 0, the returned ciphertext
ct(eipl,0)i is computed as in G3, with the challenge x(b)

i . An i-slot decryption vis-à-vis some functional
decryption key

(
(dkeipli )i∈[n],bid,j

)
returns

ei =
EIPLMCFE.Dec(pp, dkeipli , (ct(eipl,1)i )i∈[n])

⟨ai,bi⟩
= ⟨x(b)

i ,yi⟩+ ⟨ti,tag,Y⟩ .
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• When b′ = 1, the returned ciphertext ct(eipl,1)i encrypts the challenge x(1)

i , as in G4. Necessarily, we
verify that an i-slot decryption vis-à-vis some functional decryption key

(
(dkeipli )i∈[n],bid,j

)
leads to

ei =
EIPLMCFE.Dec(pp, dkeipli , (ct(eipl,1)i )i∈[n])

⟨ai,bi⟩

=
⟨w̃(eipl,1)

1 ⊗ a1∥ · · · ∥w̃(eipl,1)
n ⊗ an, 0∥ · · · ∥Y ⊗ bi∥ · · · ∥0⟩
⟨ai,bi⟩

=
⟨w̃(eipl,1)

i ⊗ ai,Y ⊗ bi⟩
⟨ai,bi⟩

= ⟨x(b)

i ,yi⟩+ ⟨ti,tag,Y⟩+ ⟨∆xi,yi⟩.

First of all, thanks to the setting of ti,tag := ri,tag
$← Zn·m

q from G2, the term ⟨ti,tag,Y⟩ preserves
the distribution of the partial term ei, in comparison to the case b′ = 0. We then use that fact that
∆xi = x

(1,ji)

i − x
(b,ji)

i is the difference of the challenge plaintext component, at repetition ji for slot
i, and is constant over the repetitions ji thanks to condition 1 for the admissiblity with respect to
all repetitions (note that for i ∈ C the added ⟨∆xi,yi⟩ = 0 is trivial, by condition 2). Furthermore,
once again, thanks to condition 1 it holds that

∑
i∈H⟨∆xi,yi⟩ = 0 and thus the function evaluation

is exactly preserved.
• As a consequence, if A is an admissibile adversary against the IND-CPA security game for the Indexed

EITT, then our simulator is an admissible adversary against the IND-CPA security game for the
underlying EI-PLMCFE scheme. The security of EI-PLMCFE under consideration is IND-CPA with
one-challenge, complete ciphertexts, and all-but-two adaptive corruption, while being resilient against
adaptive adversaries with repetitions.

This concludes that the advantage of A in distinguishing G3 and G4 is upper bounded by the advantage
of the simulator in winning the IND-CPA game against the underlying EI-PLMCFE.

In game G4, the challenge bit b is not involved in the computation of the ciphertext, and the adversary’s view
is independent of b. This concludes the proof.

4.2.3 Proof of Theorem 4

Our proof of correctness of tracing follows almost identically as that of [GKW19], with modifications in
computing the correct trace probability, adapted to the multi-client setting. In particular, we show that the
false trace probability is bounded by a negligible function, and the correct trace probability is close to the
probability of A outputting an ϵ-successful decoding box for some non-negligible ϵ.

We first define some notations. Given any pirate decoder box D, any tag tag, and two messages (x(0),x(1)),
for any j ∈ [nindx + 1], ℓ ∈ [κ], let w

(0)
i ,w

(1)
i be the messages created from x

(0)
i ,x

(1)
i , respectively, together

with some uniformly random vector vi as in the Return step of TraceEnc, where we use the index i to identify
the i-th client’s encryption slot. We define

pDj,⊥ := Pr

[
D
(
(cti,vi)i∈[n]

)
= b

∣∣∣∣ b←$ {0, 1}
cti ← SplEnc(msk, tag, (j,⊥, 0),w(b)

i )

]
pDj,ℓ := Pr

[
D
(
(cti,vi)i∈[n]

)
= b

∣∣∣∣ b←$ {0, 1}
cti ← SplEnc(msk, tag, (j, ℓ, 0),w

(b)
i )

]
pDnrml := Pr

[
D
(
(cti,vi)i∈[n]

)
= b | b←$ {0, 1}, cti ← Enc(eki, tag,w

(b)
i )
]

where the probability is taken over random coins of decoder D as well as the randomness used during
encryption of EIPLMCFE. For simplicity of notation, we will drop dependence on decoder D whenever it is
clear from context.
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In the following, we note that the generation of w(b)
i for b ∈ {0, 1} in TraceEnc is exactly the same as

that in Enc for all user-indices j ∈ [nindx]. The only difference is that TraceEnc uses the special encryption
algorithm SplEnc instead of the normal encryption algorithm Enc. Looking ahead, this allows us to relate
the probability pnrml of the normal encryption in the tracing game to the probabilities pj,ℓ of the special
encryption in the tracing algorithm. For the exception in the case of the index j = nindx + 1, we give a
formal treatment in the proof of Claim 4.1. We note that the same argument can be used anywhere involving
indistinguishability on this index j = nindx + 1.

We show that false trace probability is upper bounded by some negligible function.
Lemma 1. If the scheme EIPLMCFE is a 1-query secure EIPLMCFE scheme as per Definition 18 to Defi-
nition 22, then for every PPT adversary A, polynomial q(·) and non-negligible function ϵ(·), there exists a
negligible function negl(·) such that for all λ ∈ N satisfying ϵ(λ) > 1/q(λ),

Pr-FalseTrA,ϵ(λ) ≤ negl(λ),

where Pr-FalseTrA,ϵ(·) is defined in Definition 16.

Proof. The proof of this lemma is similar to that in [GKW19, Theorem 5.2]. We sketch the high level idea of
the proof and inform the reader modifications in their proof adapted to our multi-client setting.

Let S ⊆ [nindx]×{0, 1}κ be the set of index-identity pairs queried by the adversary A for decryption keys,
Sindx ⊆ [nindx] be the set of indices queried by the adversary A for decryption keys, and let D be the decoder
box output by A.

In the following we skip the dependence of ε(·) on λ for simplicity of notation. For j ∈ [nindx], ℓ ∈ [κ], we
define events

Diff-AdvDj : pDj,⊥ − pDj+1,⊥ > ε/8nindx

Diff-AdvDj,ℓ,lwr : pDj,⊥ − pDj,ℓ > ε/16nindx

Diff-AdvDj,ℓ,upr : pDj,ℓ − pDj+1,⊥ > ε/16nindx

Diff-AdvD :
∨

j∈[nindx]\Sindx

Diff-AdvDj
∨

(j,id)∈S,ℓ∈[κ] s.t. idℓ=1

Diff-AdvDj,ℓ,lwr∨
(j,id)∈S,ℓ∈[κ] s.t. idℓ=0

Diff-AdvDj,ℓ,upr.

Next, note that the probability of the event false trace can be rewritten (using union bound) as follows by
conditioning on the events defined above:

Pr[Fal-Tr] ≤Pr
[
Fal-Tr | Diff-Adv

]
+

∑
j∈[nindx]

Pr[j /∈ Sindx ∧ Diff-Advj ]

+
∑

(j,ℓ)∈[nindx]×[κ]

Pr

[
∃id ∈ {0, 1}κ s.t. (j, id) ∈ S ∧

(
(Diff-Advj,ℓ,lwr ∧ idℓ = 1)
∨(Diff-Advj,ℓ,upr ∧ idℓ = 0)

)]
.

The first term is bounded by a negligible function identically as in [GKW19, Lemma 5.2]. The second
term is bounded by a negligible function as proven in Lemma 2. The third one is bounded similarly as that
of [GKW19, Lemma 5.4], whose proof is adapted to our setting as in Lemma 2. The lemma follows.

Lemma 2. If the scheme EIPLMCFE is a 1-query index hiding secure EI-PLMCFE scheme as per Defini-
tion 19, then for every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a
negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ) and j ∈ [nindx],

Pr[j /∈ Sindx ∧ Diff-Advj ] ≤ negl(λ).
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Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial q(·) and non-negligible func-
tions ε(·), δ(·), such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), there exists an j ∈ [nindx] such that
Pr[j /∈ Sindx ∧ Diff-Advj ] ≥ δ(λ). Then we can use A to build a PPT reduction algorithm B that breaks the
index hiding security property of EIPLMCFE.

The reduction algorithm B first receives (1nindx , 1κ) from the adversary A, which it forwards to the
challenger. It then receives the EIPLMCFE public parameters pp from the challenger, which it sends to A.
Next, it randomly guesses the index hiding challenger with which it interacts by choosing an index j∗ ← [nindx]
and sends it to the EIPLMCFE challenger. The adversary A then queries to its oracles. B forwards A’s queries
on Enc and Corrupt oracles to its corresponding oracles. If A queries KeyGen on index j∗, B aborts and sends
a random guess to the EIPLMCFE challenger. Else, on KeyGen query for (j, id) from A, B forwards (j, id)
to the EIPLMCFE challenger and forwards the challenger’s response to the adversary A. After all queries,
the adversary sends a decoding box D, messages (x(0),x(1)), and a tag tag to B. The reduction algorithm
then chooses two bits α, β uniformly at random. Next, B sends (tag,x(α)) to the EIPLMCFE challenger, and
receives back a challenge ciphertext ct(b). It also queries the EIPLMCFE challenger for a special-encryption
of x(α) for index-position-value tuple (j∗ + β,⊥, 0). Let ct(β) be the challenger’s response. Finally, B runs
decoder box D on ct(β) and ct(b) independently, and if D(ct(b)) = D(ct(β)), it outputs b′ = β, else it outputs
b′ = 1− β as its guess.

First, note that B is an admissible adversary in the index hiding security game. This is because B
does not query KeyGen on index-identity pair (j, id) such that j = j∗. Additionally, it only makes a single
special-encryption query on index-position-value tuple (j∗,⊥, 0) or (j∗ + 1,⊥, 0).

Let pj∗,β = Pr
[
β = D(ct(β))

]
. Recall we have that Pr[j /∈ Sindx ∧ Diff-Advj ] ≥ δ(λ). Thus we can write

Pr[j /∈ S ∧ ((pj,0 + pj,1)/2− (pj+1,0 − pj+1,1)/2) ≥ ε/8nindx] ≥ δ(λ)

⇒Pr[j∗ = j ∧ j /∈ S ∧ ((pj,0 + pj,1)/2− (pj+1,0 − pj+1,1)/2) ≥ ε/8nindx] ≥ δ(λ)/nindx.

Thus, we can also write that there exists a bit b such that

Pr[j∗ = j ∧ j /∈ S ∧ (pj+1,b − pj,b) ≥ ε/8nindx] ≥ δ(λ)/nindx.

Now since the reduction algorithm B simply randomly guesses this bit b, thus we have that with probability
at least δ(λ)/2nindx, B outputs a message x(b) such that D can distinguish between encryptions of x(b) to
indices j∗ and j∗ + 1 with advantage at least ε/8nindx. Thus, the lemma follows.

Next we show that if D output by the adversary A is a good decoder, then with overwhelming probability
the tracing algorithm outputs a non-empty set T . In particular, we show the following lemma.

Lemma 3. If the scheme EIPLMCFE is a 1-query secure EIPLMCFE scheme as per Definition 18 to Defi-
nition 22, then for every PPT adversary A, polynomial q(·) and non-negligible function ϵ(·), there exists a
negligible function negl(·) such that for all λ ∈ N satisfying ϵ(λ) > 1/q(λ),

Pr-CorrectTrA,ϵ(λ) ≥ Pr-GoodDecA,ϵ(λ)− negl(λ),

where Pr-CorrectTrA,ϵ(·) and Pr-GoodDecA,ϵ(·) are defined in Definition 16.

We first state a claim required to prove Lemma 3, and then assume correctness of this claim to prove
Lemma 3. In the rest of this section, we prove the required claim, which is the bulk of our proof.

Claim 4.1. If the scheme EIPLMCFE is a 1-query message hiding EIPLMCFE scheme as per Definition 22,

pnindx+1,⊥ ≤
1

2
+ negl2(λ),

for some negligible function negl2(·).

Assuming Claim 4.1, we are ready to prove Lemma 3.
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Proof of Lemma 3. The proof is almost identical to that of [GKW19, Theorem 5.3]. We first analyze the
probability that the tracing algorithm outputs a non-empty set T .

Let Sindex ⊆ [nindx] be the set of indices j ∈ [nindx] such that pj,⊥ − pj+1,⊥ > ϵ
2nindx

. By using a Chernoff
bound, we get that

∀ j ∈ Sindex, Pr[p̂j,⊥ − p̂j+1,⊥ < ϵ/4nindx] ≤ 2−O(λ) = negl1(λ), (7)

where p̂ denotes the corresponding estimate computed by the tracing algorithm (i.e., the estimation output
by IndexTrace) using N = λ · nindx/ϵ independent samples.18

Furthermore, by definition, when the event GoodDec happens, we have pnrml ≥ 1
2+ϵ for some non-negligible

ϵ. By 1-query normal hiding security, we have that pnrml − p1,⊥ ≤ negl3(λ) for some negligible function
negl3(·). Combining with Claim 4.1, we have

p1,⊥ − pnindx+1,⊥ ≥ ϵ− negl2(λ)− negl3(λ) ≥ ϵ/2.

This allows us to conclude that whenever GoodDec occurs, Sindex is a non-empty set. Together with Eq. (7),
we have that if GoodDec occurs, with overwhelming probability the following holds:

T index ̸= ∅, and∀ (j, p, q) ∈ T index : p− q >
ϵ

4nindx
.

Notice that the algorithm IdTrace simply checks for each ℓ ∈ [κ], either pj,ℓ > q+q
2 and sets idℓ = 1, and

idℓ = 0 otherwise. Thus, for any triple (j, p, q) ∈ T index, IdTrace always outputs some identity id. This means
that T index ̸= ∅ implies T ̸= ∅. Therefore, we can write

Pr[T ̸= ∅] ≥ (1− nindx · negl1(λ))Pr-GoodDecA,ϵ(λ) ≥ Pr-GoodDecA,ϵ(λ)− negl(λ).

Finally, combining this with Lemma 1, we obtain

Pr-CorrectTrA,ϵ(λ) ≥ Pr-GoodDecA,ϵ(λ)− negl(λ),

which concludes the proof.

Overall, Lemma 1 and Lemma 3 together conclude the proof of Theorem 4.

4.2.4 Proof of Claim 4.1

Proof. Let A be the adversary in the tracing game defined in Definition 16. We will show that if pnindx+1,⊥ ≥
1
2 + ε, with respect to some decoder D output by A, for some non-negligible ε, then we can build an adversary
B for the 1-query message-hiding security of EIPLMCFE. The crucial part of the proof is to make our reduction
algorithm B an admissible adversary (see Definition 4) for the message-hiding security game, even though we
do not have any restriction on the key queries and the challenge output by the adversary A.

The construction of B is as follows.

1. Setup. Upon receiving the parameters (1κ, 1nindx) from A, B outputs (1κ, 1nindx) and obtains pp from
(·, pp, ·)← EIPLMCFE.Setup(1λ, 1n, 1κ, nindx). B generates random PRF keys {ki,i′}i,i′∈[n] as in the first
step of Setup and kind as in the second step of Setup. Then, B sends pp to A.
Furthermore, B also makes n queries to the EIPLMCFE.Corrupt oracle on different inputs i ∈ [n] to obtain
all encryption keys (eki)i∈[n].

2. Simulate KeyGen queries. B simulates each query to the KeyGen oracle by A by using kind and making
n queries to its EIPLMCFE.KeyGen oracle.

3. Simulate Corrupt queries. For each query to the Corrupt oracle by A on input i ∈ [n], B returns
(eki, {ki,i′}i′∈[n]) to A. (Note that B already obtained all encryption keys from the setup phase above, so
it needs not to make any queries to its EIPLMCFE.Corrupt in this step.)

18 A formal proof follows similarly those provided in [GKW18, Lemma 4.4] and [GKRW18, Lemma 5.3].
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4. Simulate Enc queries. On the query input xi from A, B answers by computing Enc itself. Note that B
can simulate these encryption queries because it has all PRF keys {ki,i′}i,i′∈[n] as well as encryption keys
(eki)i∈[n].

5. Simulate challenge query. Whenever A outputs two challenge message x
(γ)
i for γ ∈ {0, 1}, B computes

w
(γ)
i as in TraceEnc. Again note that to compute w

(γ)
i , B only needs

• the PRF key kind which it already generated itself;
• the PRF keys {ki,j}i,j which it obtained from the corrupted encryption keys (eki)i.

B outputs (w
(0)
i ,w

(1)
i ) as its challenge plaintexts.

6. Output. Upon receiving the challenge ciphertext (ct
(b)
i )i from the EIPLMCFE challenger, where ct

(b)
i ←

EIPLMCFE.SplEnc(msk, tag, (nindx + 1,⊥, 0),w(b)
i ) for b←$ {0, 1}, B runs D on (ctbi , v̂i)i which outputs

a bit b′ ∈ {0, 1}, where v̂i is some uniformly random vector generated in the previous step during the
generation of w(b)

i . Finally, B outputs the same bit b′ as its own guess of b.

We finish the proof by showing that: (i) B simulates A perfectly; and (ii) B is admissible in the message-hiding
security game of EIPLMCFE (Definition 22).

The former is easy to see, except that now A (or more precisely, the decoder D) now receives a special
encryption for its challenge on index j = nindx + 1, instead of a normal encryption. On a special encryption
on index j = nindx + 1, A receives a ciphertext of EIPLMCFE.SplEnc together with a vector v̂i := v

(γ)
i + vi

(which plays the same role as the vector ai in EIPLMCFE.Enc). However, this vector v̂i is one-time padded
and perfectly indistinguishable from uniformly random (since vi is uniformly random and perfectly hidden
from A). Note that without one-time pad encryption, A can easily detect if it is currently in the tracing
mode, by checking the Equations (1)-(2) in TraceEnc on the vectors v̂i.19 This shows that the probability
that B outputs a correct guess is exactly pnindx+1,⊥.

Next, we argue that B is admissible in the message-hiding security game of EIPLMCFE. For each slot
i ∈ [n], let zi = y ⊗ bj,i be any key query on y and index j from A. Since B corrupts all n encryption keys,
we need to show that

⟨w(0)
nindx+1,i, zi⟩ = ⟨w

(1)
nindx+1,i, zi⟩, ∀ i ∈ [n],

which follows from the fact that

⟨w(γ)
nindx+1,i, zi⟩ = ⟨(x

(γ)
i + ti,tag)⊗ v

(γ)
i ,y ⊗ bj,i⟩

= ⟨(x(γ)
i + ti,tag),y⟩ · ⟨v(γ)

i ,bj,i⟩ = 0,

where the last equation comes follows from the way v
(γ)
i are chosen in Equations (1)-(2).

This concludes our proof.

5 Embedded Identities Traceable Multi-Client Function: From Indexed to
Bounded Schemes

In this section we use our indexed embedded identities traceable multi-client functional encryption from
previous Section 4 to construct a bounded embedded identities traceable MCFE scheme, as per Definition 12.
The function class is F ip

N1,...,Nn
that is defined in Definition 11. Putting forth our ideas, the transformation

makes use of an additional signature scheme, while developing new ideas different from [GKW19] to handle
slot-by-slot secret sharing in the context of multi-client (the foregoing work treats only the case of public key
encryption and there is only one encryptor).

A crucial step is to obtain a bounded EITT-MCFE from the indexed EITT-MCFE (Item TMCFE.3).
We achieve a generic transformation in the multi-client that relies on minimal assumption of the existence

19 Note that A can efficiently verify this condition because it has all the vectors (bj)j∈[nindx] from its key queries, in
case it corrupts all decryption keys with indices j ∈ [nindx].
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of signatures, this means our transformation is as efficient as the one in [GKW19] which is in the simpler
single-client setting20. Our transformation is given in Section 5. Under a parameter nbd that bounds the
number of functional keys that can be asked under an identity, we use the indexed EITT-MCFE with index
space [2n2

bd] to construct a bounded EITT-MCFE with respect to nbd. The bounded EITT-MCFE generates
a key for y under an identity id by first signing id, concatenating the signature to id to get îd for the indexed
EITT-MCFE, and then extracting a functional key for Y under îd with a random index from [2n2

bd]. To
encrypt under a tag tag, the bounded EITT-MCFE secretly shares the message xi of a client i into λ
shares, λ is the security parameter. Illustratively each i fills in a column of a matrix of size λ× n via the
encryption under tagj := tag ⊕ j of the indexed EITT-MCFE. Then, at decryption time, for each j ∈ [λ] we
regroup in a non-interactive way row by row the shares of the clients, by decrypting under the tag tagj each
row having n clients. The last computation is a lienar combination of all the row-decryption. As the last but
not least challenge, in the IND-CPA proof of our bounded EITT-MCFE, this amplification of the tags tag to
tagj for all j ∈ [λ] means the total keys that must be used is λnbd = Ω(

√
nindx), where nindx = 2n2

bd of the
indexed EITT-MCFE. Our reduction from bounded to indexed EITT-MCFE, the key queries KeyGen from
the bounded adversary, in which no index is repeated, are handled by a careful sampling of index, then querying
for key queries to the indexed EITT-MCFE challenger. Roughly speaking, our sampler has to somehow
beat the birthday bound over the index space [2n2

bd], and we perform the index sampling over small ranges,
keeping track of the aready chosen, and increase the ranges over time. As the birthday bound in our case is
tightly giving significant collision probablity, we can only achieve an inverse-of-poly success probablity for our
sampler (see Lemma 4). This technique fully extends the one for single-client in [GKW19] to the multi-client
setting.

5.1 From Indexed EITT to Bounded EITT

Let F ip
N1,...,Nn

be the function class defined in Definition 11. We now present our construction of
a bounded embedded identities traceable multi-client functional encryption scheme for the function class
F ip

N1,...,Nn
. Let λ ∈ N and ID = {0, 1}κ be the identity space where κ = κ(λ) is a polynomial in λ. Let

SS = (Setup,Sign,Verify) be a signature scheme over a message space M := ID with a signature space
{0, 1}ℓsig , where ℓsig = ℓsig(λ) is a polynomial in λ, and EITT-Idx = (Setup,Enc,Extract,Dec,Trace) be an
indexed EITT-MCFE scheme F ip

N1,...,Nn
with identities from ID. We construct a bounded EITT-MCFE

scheme EITT-Bnd = (Setup,Enc,Extract,Dec,Trace) as follows.
(msk, pp, (eki)i∈[n], tk)← Setup(1λ, 1n, 1κ, nbd): Given as input a security parameter λ, identity space index

κ, a number of clients 1n, and some bound on number of key queries nbd, first run tht set up of EITT-Idx
to get λ copies of n-client ensemble of keys, that is,

∀ j ∈ [λ] : (mskei-idxj , ppei-idxj , (ekei-idxj,i )i∈[n], tk
ei-idx
j )← Setupei-idx(1λ, 1κ+ℓsig , 1ν , 1n)

where the index space is of size ν := 2 · n2
bd. Then, set up the signature keys (sk, vk)←SS.Setup(1λ).

Define and publish the public parameters as pp := (ppei-idx1 , . . . , ppei-idxλ , vk). The master secret key is
msk := (mskei-idx1 , . . . ,mskei-idxλ , sk), for each client i ∈ [n] the encryption key is eki := (ekei-idx1,i , . . . , ekei-idxλ,i ).

dkid,Y ← KeyGen(msk, id,Y): Given the master secret key msk, an identity id ∈ {0, 1}κ, a function description
Y = y1∥ · · · ∥yn ∈ Zn·N

p , where each yi ∈ ZN
p with respect to F ip

N1,...,Nn
and N = maxi(Ni) with padding of

zeroes if need be, first parse msk as (mskei-idx1 , . . . ,mskei-idxλ , sk). Then, sign the identity id to get a signature
σ := Sign(sk, id). The new identity to pass to the indexed EITT-MCFE scheme is îd := id∥σ ∈ {0, 1}κ+ℓsig .
For each j ∈ [λ], choose an index uniformly at random idxj

$← [ν] and run the key generation algorithm

20 We recall that our EITT-MCFE is under strong admissiblity, its IND-CPA covers the case of single-client via recent
results [NPP25].
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of EITT-Idx to get the decryption key dkei-idx
îd,Y,j

←KeyGenei-idx(msk, îd, idxj ,Y). Return

dkid,Y := (dkîd,Y,1, . . . , dkîd,Y,λ) .

cttag,i ← Enc(pp, eki, tag,xi): Given as inputs the public parameters pp, an encryption key eki, a message
xi ∈∈ ZN

p , and a tag tag, perform the following steps:
• Parse the public parameters as (ppei-idx1 , . . . , ppei-idxλ , vk) and the encryption key as (ekei-idx1,i , . . . , ekei-idxλ,i ).
• Sample λ− 1 random vectors rj,i

$← ZN
p for j ∈ [λ− 1] and define rλ,i := −

∑
j∈[λ−1] rj,i + xi. The

ensemble r1,i, . . . , rλ,i forms a λ-out-of-λ secret sharing of xi.
• Run the encryption of the underlying EITT-Idx scheme to get

∀ j ∈ [λ] : ctei-idxj,i := Encei-idx(ppei-idxj , ekei-idxj,i , t̂agj := tag ⊕ j, rj,i)

where t̂agj is the tag for the indexed EITT-MCFE scheme.
The ciphertext is cttag,i := (ctei-idx1,i , . . . , ctei-idxλ,i ).

z ← Dec(pp, dkFλ
, c): Given the public parameters pp, a decryption key dkFλ

and a vector of ciphertexts
c := (cttag,i)i of length n, first for each i ∈ [n] parse cttag,i as (ctei-idx1,i , . . . , ctei-idxλ,i ). The parse the key as
(dkîd,Y,1, . . . , dkîd,Y,λ). Perform the following steps:
1. For each j ∈ [λ], run the decryption of the underlying EITT-Idx scheme to get

∀ j ∈ [λ] : ⟨rj,1∥ · · · ∥rj,n,Y⟩ := Decei-idx(ppei-idxj , dkei-idx
îd,Y,j

, (ctei-idxj,i )ni=1)

where îd is the identity with the signature.
2. Compute the output as z :=

∑
j∈[λ]⟨rj,1∥ · · · ∥rj,n,Y⟩.

Then output z.
T ← TraceD(tk, 1y, tag,x(0),x(1)): Given oracle access to a program D, the tracing key tk, parameters y, a

tag tag and two messages (x(0),x(1)), output a set T of identities where T ⊆ {0, 1}κ.
We call the tracing as public or private depending on whether tk is equal to pp or it is kept secret.

Correctness. Step 1 of the decryption algorithm is correct by the correctness of the underlying EITT-Idx
scheme, while decrypting a set of n-client ciphertexts (ctei-idxj,i )ni=1 with respect to a common tag t̂agj . The
final sum gives

z =
∑
j∈[λ]

⟨rj,1∥ · · · ∥rj,n,Y⟩ = ⟨
λ∑

j=1

rj,1∥ . . . ∥
λ∑

j=1

rj,n,Y⟩

(∗)
= ⟨x1∥ . . . ∥xn,Y⟩

=

n∑
i=1

⟨xi,yi⟩ ,

where (∗) follows from the fact that rλ,i = −
∑

j∈[λ−1] rj,i + xi.

Security. We show the IND-CPA security of the scheme, as per Definition 5.
We also note that the tracing security given in [GKW19] is generically applicable to our construction. We

thus omit the security proof for tracing.

Theorem 5. For the class F ip
N1,...,Nn

, for sufficiently large λ ∈ N, suppose EITT-Idx satisfies adaptive
one-challenge IND-CPA security (Definition 5) with complete queries and repetitions, under all-but-two
adaptive corruption, where all-but-two adaptive corruption means at most (n− 2)-among-n clients can be
adaptively corrupted. Then, bounded embedded identities traitor tracing multi-client function scheme EITT-Bnd
in Section 5 satisfies adaptive one-challenge IND-CPA security with complete queries and repetitions, under
all-but-two adaptive corruption.
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Proof of Theorem 5. The strong admissibility condition for the bounded EITT-MCFE scheme is the same as
the one for the indexed EITT-MCFE scheme, as it is for the class F ip

N1,...,Nn
. We recall that the details are

given in Definition 23, and recalled below:

1. For all vectors (X(0),X(1)) that is queried to LoR, for all (tag,Y = (yi)
n
i ) ∈ Q,

∑
i∈H⟨∆xi,yi⟩ = 0 where

∆xi = x(0)

i − x(b)

i , where H := Hekey, for any b ∈ {0, 1}.
2. For all vectors (X(0),X(1)) that is queried to LoR, for all (tag,Y = (yi)

n
i ) ∈ Q, for all i ∈ Cekey, we have

⟨∆xi,yi⟩ = 0.

We perform a direct reduction from the adversary A that breaks the IND-CPA security of the bounded
EITT-MCFE scheme to the adversary B that breaks the IND-CPA security of the indexed EITT-MCFE
scheme. The simulation of the security game for the bounded EITT-MCFE, by B for A, is as follows.

Setup: The adversary B runs the setup of the signature scheme to get the keys (sk, vk), as well as the
parameters for signature length ℓsig. Then B receives the parameters from A for the bounded EITT-MCFE
scheme, including (1λ, 1κ, 1n, nbd). The identities for the indexed EITT-MCFE scheme are of length
κ + ℓsig, B also defines an index space of size ν := 2 · n2

bd. Then B asks the IND-CPA challenger of
EITT-Idx runs the setup of the indexed EITT-MCFE scheme Setupei-idx(1λ, 1κ+ℓsig , 1ν , 1n) to get the keys
(ppei-idx) . Then B defines

ppei-idx1 := ppei-idx ,

and for j ∈ [2;λ], runs on its own

(mskei-idxj , ppei-idxj , (ekei-idxj,i )i∈[n], tk
ei-idx
j )← Setupei-idx(1λ, 1κ+ℓsig , 1ν , 1n)

that is, B using the first challenge instance of the indexed EITT-MCFE scheme and simulate the remaining
λ− 1. The public parameters are pp := ((ppei-idx)λj=1, vk), B then sends to A the public parameters pp
and the master secret key msk. B also initialize a set QKGen := ∅ to keep track of the indices that will be
made to the Extract oracle of the indexed EITT-MCFE scheme.

Queries: The adversary B simulates the queries of A as follows.
• Extract: Upon receiving a key query (id(t),Y(t)) from A, where the index t ∈ [nbd] as A is restrained

to ask at most nbd key queries, B uses the secret signing key sk to sign the identity id(t) to get
a signature σ(t) := Sign(sk, idt). The new identity to pass to the indexed EITT-MCFE scheme is
îd

(t)

:= id(t)∥σ(t) ∈ {0, 1}κ+ℓsig . For each j ∈ [λ], B performs the following Sampling-Idx(t, j,QKGen)
procedure:
◦ Define ν̃ := (t− 1) · λ+ j ∈ N.
◦ Define functions ϵ = ϵ(λ, nbd), θ = θ(λ, nbd), η = η(λ, nbd) where ϵ, θ, η : N× N→ R>0 are such

that: for sufficiently large λ ∈ N and nbd ∈ N,
1
2 · (log(θν̃) + 1) + θ · ν̃ + log λ > 2 · ν̃
θ = e

e−1 − ϵ > 1

η =
(

e
e−1 − ϵ

)
· ν̃ν

(8)

◦ Sample idx(t)

j
$← Set[ην] uniformly at random, repeat if idx(t)

j ∈ QKGen. We denote here Set[ην]

a random subset of size ην of [ν]. In other words, B samples idx(t)

j uniformly from Set[ην] with
rejection, until condition idx(t)

j /∈ {idx(t)

1 , . . . , idx(t)

j−1} ∪ QKGen.
◦ Add idx(t)

j to QKGen.
B then queries the indexed EITT-MCFE challenger obtain the decryption key dk-ididx(t)

îd,Y,j
←

KeyGenei-idx(msk, îd
(t)

, idx(t)

j ,Y(t)). B returns to A the key

dkei-bndid,Y := (dk-ididx(t)

îd,Y,1
, . . . , dk-ididx(t)

îd,Y,λ
) .
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Since B samples idxj with rejection until getting a new index, we bound the probability that
conditioned on fixed (t, j) no collisions happen for the first t − 1 keys from A and the first j − 1
choices of the t-th query, the following event happens:

idx(t)

j /∈ {idx(t)

1 , . . . , idx(t)

j−1} ∪ QKGen, over the choices of idx(t)

j
$← [ην].

The following Lemma 4 shows that B runs in PPT time to simulate the key queries of A. This will
make sure B’s indexed key queries respect the contrain that no index idx(t)

j is asked twice over all
simulated queries for nbd keys asked by A, and the rejection sampling for idx(t)

j is PPT.

Lemma 4. On fixed (t, j) and suppose no collisions happen for the first t− 1 keys from A and the
first j − 1 choices of the t-th query, the probability that Sampling-Idx(t, j,QKGen) outputs a fresh
idx(t)

j is at least 1− 1/λ.

Proof of Lemma 4. System 8 always has asymptotic solutions for ϵ, θ, η and large enough λ ∈ N
and nbd ∈ N where nbd is a polynomial in λ. This is thanks to the fact that linear function is
always asymptotically larger than logarithmic function (so as to solve for θ(λ, nbd)). Next, we call
“ idx(t)

j /∈ {idx(t)

1 , . . . , idx(t)

j−1} ∪ QKGen” as NoCollisions(t)j and “on fixed (t, j) no collisions happen for the
first t− 1 keys from A and the first j − 1 choices of the t-th query” as NoPriorCollisions(t)j . For any
fixed (t, j), as ν̃ = (t− 1) · λ+ j < ην, any subset of size ην of [ν] has one fresh idx(t)

j . The following
step is to bound the probability that Sampling-Idx(t, j,QKGen) outputs a fresh idx(t)

j . It is then
sufficient to caculate and bound:

Pr
(t,j)∈[nbd]×[ν]

idx
(t)
j

$←[ην]

[
NoCollisions(t)j |NoPriorCollisions

(t)

j

]

=
ην · (ην − 1) · · · (ην − ((t− 1) · λ+ j) + 1)

ην(t−1)·λ+j

=
(ην)!

((ην)− (t− 1)λ− j)! · (ην)(t−1)·λ+j

(∗)
≥

√
2πην

(
ην
e

)ην · exp( 1
12ην+1 )√

2π(ην − ν̃)
(

ην−ν̃
e

)ην−ν̃
· exp( 1

12(ην−ν̃) )

· 1

(ην)ν̃

where ν̃ := (t− 1) · λ+ j

(∗∗)
>

(
ην

ην − ν̃

)1/2

·
(

(ην)ην

exp(ν̃) · (ην − ν̃)ην−ν̃

)
· 1

(ην)ν̃

=

(
ην

e · (ην − ν̃)

)ην−ν̃+1/2

· 1

exp(2ν̃ − ην − 1/2)
,

where (∗) follows from Stirling’s approximation

√
2πn

(n
e

)n
· exp

(
1

12n+ 1

)
< n! <

√
2πn

(n
e

)n
· exp

(
1

12n

)

and (∗∗) follows from the fact that
exp( 1

12ην+1 )

exp( 1
12(ην−ν̃)

)
> 1. In order for

Pr
(t,j)∈[nbd]×[ν]

idx
(t)
j

$←[ην]

[
NoCollisions(t)j |NoPriorCollisions

(t)

j

]
≥ 1

λ
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it suffices to verify that the existing asymptotic solutions for ϵ, θ, η from Equation (8) satisfy the
system of inequalities given nbd, λ:{

ην ≥ e
e−1 · ν̃ where ν̃ = (t− 1) · λ+ j ≤ nbdλ

exp(2ν̃ − ην − 1/2) ≤ (ην)1/2 · λ .

The first inequality is satisfied by the choice of η and ϵ such that η =
(

e
e−1 − ϵ

)
· ν̃ν in Equation (8).

The second inequality is satisfied by the choice of η, ϵ and θ such that:

1

2
· (log(θν̃) + 1) + θ · ν̃ + log λ > 2 · ν̃

θ =
e

e− 1
− ϵ > 1 .

We emphasize that we only need asymptotic solutions for ϵ, θ, η and large enough λ ∈ N and nbd ∈ N.
The proof is concluded.

• Encrypt: Upon receiving an encryption query (tag, i,xi) from A,
◦ Sample λ − 1 random vectors rj,i

$← ZN
p for j ∈ [λ − 1] and define rλ,i := −

∑
j∈[λ−1] rj,i + xi.

The ensemble r1,i, . . . , rλ,i forms a λ-out-of-λ secret sharing of xi.
◦ For j = 1, B queries Enc of the indexed EITT-MCFE challenger to get the ciphertexts ctei-idx1,i for
(ekei-idx1,i , t̂agj := tag ⊕ 1, r1,i).
◦ For j = 2, . . . , λ Run the encryption of the underlying EITT-Idx scheme to get

∀ j ∈ [λ] : ctei-idxj,i := Encei-idx(ppei-idxj , ekei-idxj,i , t̂agj := tag ⊕ j, rj,i)

where t̂agj is the tag for the indexed EITT-MCFE scheme.
The ciphertext is cttag,i := (ctei-idx1,i , . . . , ctei-idxλ,i ).

• Corruption: Upon receiving a corruption query i from A, B corrupts ek-ididx1,i from its indexed
EITT-MCFE challenger. Then B takes the λ − 1 set up keys ek-ididxj,i for j ∈ [2;λ] and returns
(ek-ididx1,i, . . . , ek-ididxλ,i) to A.

Challenge: Upon receiving a challenge (tag∗,x(0),x(1)) from A, B performs as in the Encrypt query to get
the ciphertexts

ct(b)tag,i := (ctei-idx,b1,i , . . . , ctei-idx,bλ,i ) .

The first component ctei-idx,b1,i is obtained from the indexed EITT-MCFE challenger, while the rest are
obtained by the set up parameters by B. It remains to verify the admissibility:

• Over honest i, it holds that, for each j ∈ [λ− 1]:

⟨
∑
i∈H

r(b)

j,i,yi⟩ = ⟨
∑
i∈H

r(b)

j,i,yi⟩ ,

because by construction the λ− 1 random vectors r(b)

j,i
$← ZN

p for j ∈ [λ− 1] are independent of the
challenge x(b)

i .
• Over honest i, it holds that, for j = λ:

⟨
∑
i∈H

r(b)

λ,i,yi⟩ = ⟨
∑
i∈H

r(b)

λ,i,yi⟩ ,

thanks to the fact that r(b)

λ,i = −
∑

j∈[λ−1] r
(b)

j,i + x(b)

i = const+ x(b)

i .
• Over corrupted i, it is worth noting that each corrupted eki reveals the whole set of ciphertexts
cttag,i, i.e. ek-ididxj,i for all j ∈ [λ] are revealed. Thus we do not need to verify for individual j ∈ [λ],
meanwhile for individual i ∈ [n] the admissibility for corrupted i follows the admissibility of A.
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Finally, when A outputs a guess b′, B outputs b′ as well.

It can be verified from the above simulation that B runs in PPT and if A wins the IND-CPA game for
the bounded EITT-MCFE scheme, then B wins the IND-CPA game for the indexed EITT-MCFE scheme.
The proof is concluded.

6 From Weak Admissibility to Strong Admissibility for MCFE for Inner
Products with Access Control

We present a transformation to turn an MCFE that is provably secure under the weak admissiblity condition
(Definition 3) into an MCFE that is provably secure under the strong admissibility condition (Definition 4), for
the function class F ip

N1,...,Nn
× AC-K. Let Ew = (Setupw,Extractw,Encw,Decw) be an MCFE that is provably

secure under the weak admissiblity condition for the function class F ip
N1,...,Nn

× AC-K (F ip
N1,...,Nn

is defined in
Definition 11). We remark that the function class captures computation of sums of inner products of vectors,
where the vectors are indexed by clients i ∈ [n], together with an access control via AC-K. We require the
following properties for Ew:

1. The functional key of Ew can be decomposed dkwY,ac-k = (d̃k
w

i )i for i ∈ [n].
2. Ew satisfies a form of decryption that:

Ew.Dec(dkY,ac-k, (cti)
n
i=1) = decode

(
n∑

i=1

PartialDec(d̃k
w

i , c̃t
w
i )

)

where PartialDec(d̃k
w

i , c̃t
w
i ) = encode (⟨x̃i, ỹi⟩+ sharei), encode is homomorphic under+ and decode(encode(·))

is identity only over a polynomially large interval, and sharei is an n-out-of-n share of 0, or maybe some
value T fixed and used only for decryption (e.g. the case of [LT19]).

The usage of encode and decode resembles the two-step decryption requirement in the transformation
from FE to MIFE in [ACF+18], later treated in the multi-user setting in [ABKW19]. We denote by
Eals-ip = (Setupals-ip,Extractals-ip,Encals-ip,Decals-ip) a generic (single-client) public key IPFE scheme, i.e., for
F ip

N1,...,N1
. We transform Ew into another MCFE E = (Setup,Extract,Enc,Dec) for the same function class

F ip
N1,...,Nn

× AC-K as in Figure 7.

6.1 Security

In the following Theorem 6 we prove the adaptively one-challenge (with private-input repetitions) IND-security
of the transformed MCFE E , under dynamic corruption and selective functions (yi)i with adaptive/selective
access control ac-k, assuming the adaptively one-challenge (with private-input repetitions) IND-security of Ew,
under the same constraints, and the adaptive SIM-security of Eals-ip.

Theorem 6. The MCFE scheme E = (Setup,DKeyGen,Enc,Dec) is one-challenge (with private-input repe-
titions) IND-CPA secure, under dynamic corruption and semi-adaptive queries (adaptive challenges with
selective key queries for functions (yi)i) with adaptive/selective access control ac-k (Definition 5), if Ew is
one-challenge (with private-input repetitions) IND-secure under the same constraint and Eals-ip is SIM-secure.

Remark 6. We note that for SIM-security of Eals-ip, we can instantiate using a SIM-secure (variant of) LWE-
based IPFE by Agrawal, Libert, and Stehlé [ALS16], that is proved one-challenge SIM-secure in [ALMT20].
Moreover, the transformation produces a MCFE that is secure under the strong admissibility condition,
resilient to dynamic corruption, adaptive challenges with selective functions (yi)i, and adaptive access control
ac-k. The selective function constraint is due to the usage of the simulator of Eals-ip. Putting forth our final
traitor tracing MCFE scheme, this semi-adaptive IND-CPA under strong admissibility suffices so that any
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Setup(1λ): Run {
Ew.Setup(1λ) = mskw, (ekwi )

n
i=1

Eals-ip.Setupals-ip(1λ, 1Ni) = (mski, pki) for each i
.

Sample vi
$← ZNi

q , ti
$← (Z∗q)Ni and output the encryption keys as well as the secret keys as follows:{

eki = (pkals-ipi , ekwi , ti,vi)

msk = ((mskals-ipi )ni=1,mskw, (vi[k]/ti[k])
Ni

k=1)
.

Extract(msk, (yi)
n
i=1, ac-k): The parameters are yi ∈ ZNi

q defining a function to compute inner products
with respect to Y = [y1 ∥ . . . ∥ yn]. Parse the master secret key

msk = ((mskals-ipi )ni=1,mskw, (vi[k]/ti[k])
Ni

k=1)

and compute
dkwY,ac-k←Ew.Extract(mskw, (yi)

n
i=1, ac-k)

then for each i, generate dkals-ipi ← Eals-ip.Extract(mskals-ipi , (vi[k]·yi[k]
ti[k]

)Ni

k=1). Output dkY,ac-k =

(dkwY,ac-k, (dk
als-ip
i )i).

Enc(eki, tag,xi ∈ ZNi
q , ac-cti): Given a vector xi ∈ ZNi

q , and public attributes ac-cti, parse the encryption

key eki = (pkals-ipi , ekwi , ti,vi). Then, sample ri
$← Zq and compute

ctwi ←Ew.Enc(ek
w
i , tag,xi − ri · vi, ac-cti)

and ctals-ipi ←Eals-ip.Enc(pkals-ipi , ri · ti). Output the ciphertext cti = (ctwi , ct
als-ip
i ).

Dec(dkY,ac-k, (cti)
n
i=1): Parse dkY,ac-k = (dkwY,ac-k, (dk

als-ip
i )i) and cti = (ctwi , ct

als-ip
i ). Compute

outw =

n∑
i=1

PartialDec(dkwi , ct
w
i ) =

n∑
i=1

encode (⟨xi − rivi,yi⟩+ sharei)

= encode(
n∑

i=1

⟨xi − rivi,yi⟩)

We also compute

outals-ip =
n∑

i=1

encode(Eals-ip.Dec(dkals-ipi , ctals-ipi )) =

n∑
i=1

encode(⟨rivi,yi⟩)

= encode(
n∑

i=1

⟨rivi,yi⟩) .

In the end we compute

decode
(
outw + outals-ip

)
= decode

(
encode(

n∑
i=1

⟨xi,yi⟩)

)
=

n∑
i=1

⟨xi,yi⟩

due to properties of the function class that
∑n

i=1⟨xi,yi⟩ lies in a polynomially large interval.

Fig. 7. The transformation of an MCFE with weak admissibility into an MCFE with strong admissibility.
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tracing advaersry A can still query adaptive functions (yi)i up to the point of construting its pirate decoder
(Definition 22): it is only when the decoder is defined (hence all the queried functions are known) we will
reduce to the security of the MCFE for F ip

N1,...,Nn
× AC-K with strong admissibility.

Proof Of Theorem 6. The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi.

Game G0: This is the one-challenge (with repetitions) security game, with strong admissibility. The private-
input repetitions at each position i ∈ [n] are indexed by rep ∈ [Ji] where Ji is the maximum repetitions
queried for position i. We note that for different i, the bound Ji can be different. The challenge ciphertext
encrypts subvectors x(b,rep)

i ∈ ZN
q . For simplicity, we add a constraint that the challenge tag tag is not

queried to Enc. This incurs a multiplicative loss factor in advantage up to an inverse of polynomial in λ,
where we can reduce to the normal 1chal by guessing the challenge tag among the tags for encryption,
and responding all of its Enc queries (i,xi, (tag, ac-cti)) by LoR(i,xi,xi, (tag, ac-cti)).

Game G1: If ∆xi = x(0)

i − x(1)

i = 0, our simulator encrypts x(0)

i using LoRw of Ew to simulate the partial
challenge ciphertexts. There are two cases:

• If later i is corrupted, the admissibility condition 2 of Ew is satisfied by x(0)

i = x(1)

i , and this gives us a
reduction to the IND-security of Ew.

• Else, i stays honest and the admissibility condition 1 of Ew is satisfied by x(0)

i = x(1)

i and the fact that
the admissibility condition of E is also satisfied over the sum of i ∈ H (condition 1), which also gives
us a reduction to the IND-security of Ew.

The change is bounded by Advmc-pos-ind-1chal-cpa
Ew,F ip

N1,...,Nn
×AC-K

(1λ).

Game G2: We treat the case ∆x ̸= 0 by programming the master secret (ti,vi) and switching from b
$← {0, 1}

to 0. When receiving (x(0)

i ,x(1)

i ) and x(0)

i ̸= x(1)

i , the simulator implicitly replaces vi in the ciphertext
challenge query to its oracle LoRw of Ew by

ṽi := vi −
1

ri
∆xi

where ∆xi := x(0)

i − x(1)

i is known at the time of simulating ciphertext challenge queries. Moreover,
ri is chosen at the time of encryption to query LoR of Ew. Since vi

$← ZNi
q and ri

$← Zq, the newly
programmed ṽi has the same distribution as that of vi. Concretely, the pair of challenge queries to the
LoRw of Ew is now

(x(0)

i − rivi,x
(1)

i − riṽi) = (x(0)

i − rivi,x
(0)

i − rivi) (9)

and the returned Ew ciphetext does not depend on b anymore. Finally, using the simulator of Eals-ip to
simulate the parts ct(als-ip,chal)

i of the challenge ciphertexts, for encrypting E sim-als.Enc(pksim-als
i , ri · ti) using

their simuatled key pksim-als
i . The challenges to return the adversary are (ct(w,chal)

i , ct(als-ip,chal)

i ). We consider
case by case:

• Necessarily the changes on vi into ṽi stay indistinguishable under the one-challenge SIM-security
of Eals-ip, using the simulated Simals-ip.Enc(pksim-als

i , ri · ti), knowing the evaluations encode(⟨rivi,yi⟩)
due to the selective function constraint on the adversary.

• For the keys that ac-k is satisfied Rel(ac-k, (ac-cti)i) = 1:
◦ If i is corrupted, the weak admissibility for corrupted i is ensured by (9).
◦ In any cases, the strong admissibility condition 4 of E ensures ⟨∆xi,yi⟩ = 0 and correctness

is ensured by Ew.Dec = decode
(∑n

i=1 PartialDec(d̃k
w

i , c̃t
w
i )
)
. We recall that PartialDec(dkwi , ct

w
i )

= encode
(
⟨x(0)

i ,yi⟩+ sharei
)

and the share sharei of 0 will absorb ⟨∆xi,yi⟩.
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• For the keys that ac-k is not satisfied Rel(ac-k, (ac-cti)i) = 0. It is potentially that ⟨∆xi,yi⟩ ̸= 0.
Thanks to the private-input repetitions, there exists one unique set of attributes ac-cti that corresponds
to ∆xi ̸= 0, and moreover corresponds to the unique ct(w,chal)

i . This allows us to rely on the private-
input repetitions security of Ew.

The difference in advantages is Advmc-pos-ind-1chal-cpa
Ew,F ip

N1,...,Nn
×AC-K

(1λ) + Advsim-1chal
Eals-ip,F ip

N1,...,N1

(1λ).

At the end of G2, all ciphertext are encrypted with respect to x(0)

i , independently of b.

7 Building EI-PLMCFE from Mixed FE and Attribute-Based MCFE

We generalize the approach in [GKW18,CVW+18,GKW19] and construct an EI-PLMCFE scheme from a mixed
functional encryption scheme and a key-policy ABMCFE scheme as follows. Let ABMCFE = (Setup,Extract,
Enc,Dec) be a multi-client functional encryption (MCFE) scheme with fine-grained access control (Definition 2)
for the function class F × AC-K (Definition 1). Let mixedFE = (Setup,Extract,Enc,SKEnc,Dec) be a mixed
functional encryption scheme for a function class Fmfe = {fmfe

κ(λ)}λ∈N, message space {Iκ}λ∈N, and ciphertexts
of length ℓ(κ, λ), where κ = κ(λ) is a polynomial in λ meanwhile ℓ(κ, λ) is a polynomial in κ and λ. Let
ID = {0, 1}log(κ) be the identity space whose size is κ = κ(λ). We make the following conventions:

• Fixing λ ∈ N, for each index size ν = ν(λ) that is polynomially large in λ, we choose the polynomial
κ = κ(ν) and the set Iκ such that there exists an injective mapping {0, 1}log(ν)+log(κ) ↪−→ Iκ.

• The function class Fmfe contains “comparison” (>) operators between bitstrings of length log(ν) and
bit-checking for identities:

Fmfe =
{
fmfe
κ(ν) : {0, 1}

log(ν) × {0, 1}log(ν) × ([log(κ)] ∪ {⊥})× {0, 1} × ID → {0, 1}
}

and fmfe
κ(ν)(j, j

′, ℓ, b, id) = 1 ⇐⇒ j′ > j OR (j, ℓ) = (j′,⊥) OR (j′, idℓ) = (j, 1− b) . (10)

When j, ℓ, b are fixed, we write “fmfe
κ(ν),j,ℓ,b(j

′, id)” to denote the function evaluation fmfe
κ(ν)(j, j

′, ℓ, b, id).
• Fixing λ ∈ N, for each index size ν = ν(λ) polynomially large in λ, for κ = κ(ν) chosen as above, for

each ℓ(κ, λ) polynomial in κ and λ, we choose the polynomial κ̃ = κ̃(λ, κ) such that for each i ∈ [ν] there
exists an injective mapping {0, 1}ℓ(κ,λ) ↪−→ AC-Ctκ̃,i. We recall that the set of attributes AC-Ctκ̃,i comes
from the definition of F × AC-K (Definition 1) (where the parameter index κ̃ is implicit).

• The relation associated to F × AC-K is defined as follows: Rel : AC-K× AC-Ct1 × · · · × AC-Ctν → {0, 1}
where


AC-K ⊇ {mixedFE.Dec(dkmfe

j , ·) : λ, n, ν, j ∈ [ν], id ∈ ID,
and dkmfe

id,j←mixedFE.Extract(mskmfe, (j, id))}
Rel(ac-k, ac-ct1, . . . , ac-ctν) =

∏ν
i=1 mixedFE.Dec(dkmfe

id,j , ac-cti)
. (11)

We recall that the set AC-K and the relation Rel come from the definition of F × AC-K (Definition 1).

On Obtaining EI-PLMCFE. First of all, the transformation to obtain an embedded identities private
linear broadcast tracing for MCFE (Item TMCFE.2) in its own is non-trivial due to the requirement of
powerful primitive such as the MCFE for attribute-based inner products with enhanced security, combining
with a general-purpose mixed FE. For this former instantiation we already have to dedicate an independent
section Section 1.2.2 to develop our new security bootstrapping technique. Using our transformation in Sec-
tion 7, from a LWE-based MCFE for inner products with access control, combining with a strong enough
LWE-based mixed FE for bounded depth circuits from [CVW+18], we can obtain an EI-PLMCFE from LWE
for computing inner products.
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7.1 Construction

Our construction for EI-PLMCFE is given below.

(msk, pp, (eki)i∈[n])← Setup(1λ, 1κ, 1ν , 1n): Given as input the security parameter λ, the identity space
parameter κ, and an index size ν, output a master secret key msk, public parameters pp, and n = n(λ)
encryption keys (eki)i∈[n] by running the following:

• (mskmfe, ppmfe)← mixedFE.Setup(1λ, 1κ).
• (mskabmc, ppabmc, (ekabmc

i )i∈[n]) ← ABMCFE.Setup(1λ, 1n, 1κ̃), where 1κ̃ additionally specifies the
length of ciphertexts chosen as above.

Output 
msk = (mskmfe,mskabmc, (ekabmc

i )ni=1)

pp = (ppmfe, ppabmc)

eki = ekabmc
i for i ∈ [n]

.

dk(id,j),Fλ
← KeyGen(msk, id, j, Fλ): Given as input the master secret key msk, an identity id ∈ {0, 1}κ, an

index j ∈ [ν], and a function description Fλ ∈ F , generate the decryption for the indexed embedded-identity
private linear broadcast aspect combiningly with the functional aspect as follows:

• Given j ∈ [ν] and id ∈ ID, generate a mixedFE key dkmfe
id,j ← mixedFE.Extract(mskmfe, (j, id)).

• Then, the ABMCFE is used to generate the decryption key on the policy:

dkabmc
(id,j),Fλ

← ABMCFE.Extract
(
mskabmc,

(
Fλ,mixedFE.Dec(dkmfe

id,j , ·)
))

,

where mixedFE.Dec(dkmfe
id,j , ·) plays the role of the policy and is a function that takes a mixedFE

ciphertext and decrypts as per mixedFE to output a bit.
Then, output dk(id,j),Fλ

:= dkabmc
(id,j),Fλ

.
cttag,i ← Enc(pp, eki, tag, xi): Given as inputs the public parameters pp, an encryption key eki, a tag tag, a

message xi ∈ Dλ,i, first run the public mixedFE encryption and output a ciphertext mixedFE.Enc(ppmfe)→
ctmfe

pub. Then, run and output the usual ciphertext of the ABMCFE scheme ABMCFE.Enc(ppabmc, eki, t̃ag :=

(tag, (0,⊥, 0)), (xi, ct
mfe
pub))→ cttag,i, where t̃ag is the tag for the ABMCFE scheme (specifying index 0 and

not considering the identity’s positions with respect to (⊥, 0)).
cttag,i ← SplEnc(msk, (tag, (j, ℓ, b)), xi): Given as inputs the master secret key msk, a tag tag, a triple (j, ℓ, b) ∈

[ν + 1] × ([log(κ)] ∪ {⊥}) × {0, 1}, a message xi ∈ Dλ,i, where ι is the size of the identity space ID,
first run the mixedFE encryption on the function fmfe

κ(ν),j,ℓ,b : ID × {0, 1}log(ν) → {0, 1} to obtain a
ciphertext mixedFE.SKEnc(mskmfe, fmfe

κ(ν),j,ℓ,b) → ctmfe
j,ℓ,b. Then, run the ABMCFE encryption on the

message xi with the tag t̂ag := (tag, (j, ℓ, b)), having the attribute ctmfe
j,ℓ,b ∈ AC-Ctκ̃,i by set up, and output

ABMCFE.Enc(ppabmc, eki, t̂ag, (xi, ct
mfe
j,ℓ,b))→ cttag,i.

z ← Dec(pp, dkid,j,Fλ
, c): Given the public parameters pp, a decryption key dkid,j,Fλ

and a vector of ciphertexts
c := (cttag,i)i of length n, run and output z←ABMCFE.Dec(dkid,j,Fλ

, c) where z ∈ Rλ ∪ {⊥}.

Correctness. The correctness of the scheme follows from the correctness of the underlying mixed functional
encryption and ABMCFE schemes. First of all decrypting by ABMCFE controls the decryption following (11):

• (Normal encryption) For a fixed same tag, for each i ∈ [n], for a normal ciphertext cttag,i ← Enc(pp, eki, tag, xi),
the attribute is a public-key mixedFE ciphertext on the trivial all-1 function, which upon correct mixedFE
decryption will output 1 on all (id, j) ∈ ID × [ν] (by (11)), In other words, for any i, the attribute of a
normal ciphertext cttag,i is always accept by the policy mixedFE.Dec(dkmfe

id,j , ·) embedded in the ABMCFE
key. Since the same t̃ag := (tag, (0,⊥, 0)) is used, the correctness of ABMCFE decryption allows recover
the function evaluation Fλ(x1, . . . , xn).
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• (Special encryption) Similarly, for a fixed same tag, for each i ∈ [n], for (j, ℓ, b) ∈ {0, 1}log(ν) × ([log(κ)] ∪
{⊥})× {0, 1}, for a special ciphertext cttag,i ← SplEnc(msk, (tag, (j, ℓ, b)), xi), the attribute is a mixedFE
ciphertext on the function fmfe

κ(ν),j,ℓ,b, which upon correct mixedFE decryption will output 1 as per Equa-
tion (11) on (id, j′) where j′ > j or (j, ℓ) = (j′,⊥) or (j′, idℓ) = (j, 1 − b). The mixedFE key dkmfe

id,j

is generated for each (id, j′), and the policy mixedFE.Dec(dkmfe
id,j , ·) that represents a correct mixedFE

decryption, is embedded in the ABMCFE key. Finally, the correctness of ABMCFE decryption allows
recover the function evaluation Fλ(x1, . . . , xn).

7.2 Security Proof

We now show the 1-bounded security of the EI-PLMCFE scheme.

Theorem 7 (1-query Security). Let ABMCFE = (Setup,Extract,Enc,Dec) be a multi-client func-
tional encryption (MCFE) scheme with fine-grained access control (Definition 2) for the function class
F × AC-K (Definition 1). Let ID = {0, 1}log(κ) be the identity space whose size is κ = κ(λ). Let
mixedFE = (Setup,Extract,Enc,SKEnc,Dec) be a mixed functional encryption scheme for a function class
Fmfe = {fmfe

κ(λ)}λ∈N and fmfe
κ(λ) is defined as per (10) for identities in ID and indices in [ν(λ)], message space

{Iκ}λ∈N, and ciphertexts of length ℓ(κ, λ),
Suppose ABMCFE is one-challenge selective-attribute IND-CPA secure, with private-input repetitions,

and mixedFE is 1-SKEnc function indistinguishability secure and 1-SKEnc accept indistinguishability secure.
Then, the EI-PLMCFE scheme from Section 7.1 is 1-query Normal Hiding (Definition 18), 1-query Index
Hiding (Definition 19), 1-query Upper/Lower Identity Hiding (Definition 20/Definition 21), and 1-query
Complete Message Hiding (Definition 22) for the class F with embedded identities from ID and indices from
[ν].

Proof for Theorem 7. We present the main ideas of the proof, adding details at places that we deem more
technical.

1-query Normal Hiding. We prove that the EIPLMCFE from Section 7.1 is 1-query Normal Hiding
(Definition 18). We perform a reduction to the 1-SKEnc accept indistinguishability security of the underlying
mixedFE scheme.

• Setup. Our simulator runs

(mskabmc, ppabmc, (ekabmc
i )i∈[n])← ABMCFE.Setup(1λ, 1n, 1κ̃) .

It then interacts with the challenger for the 1-SKEnc accept indistinguishability game, receiving the
public parameters ppmfe. The nomal hiding adversary then gets pp := (ppabmc, ppmfe) and (eki)i∈[n] :=

(ekabmc
i )i∈[n].

• Query Phase. The normal hiding adversary makes queries to the key generation of the EI-PLMCFE
scheme: given a such query (id, j, Fλ), our simulator asks (id, j) to the challenger for the mixedFE key
dkmfe

id,j then uses the set up mskabmc to simulate:

dkabmc
(id,j),Fλ

← ABMCFE.Extract
(
mskabmc,

(
Fλ,mixedFE.Dec(dkmfe

id,j , ·)
))

.

Moreover, the single SplEnc query is simulated by: given a such query (tag, (j, ℓ, b)), xi, our simulator
asks the challenger for the mixedFE encryption mixedFE.SKEnc(mskmfe, fmfe

κ(ν),j,ℓ,b)→ ctmfe
j,ℓ,b, then uses the

set up ekabmc
i to simulate:

ABMCFE.Enc(ppabmc, eki, t̂ag, (xi, ct
mfe
j,ℓ,b))→ cttag,i .

The simulation is done uniformly before and after seeing the challenge from the normal hiding adversary.
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• Challenge. Upon receiving (tag, xi) from the normal hiding adversary, our simulator forwards a challenge
query f (∗) to the challenger for the 1-SKEnc accept indistinguishability game, by defining

f (∗) := fmfe
κ(ν),1,⊥,0 : ID × {0, 1}log(ν) → {0, 1}

and fmfe
κ(ν),1,⊥,0 behaves as per Equation (10), and f (∗) = fmfe

κ(ν),1,⊥,0 is indeed an all-1 function for all
allowed key queries that have id ∈ ID and j ∈ [ν]. When obtaining the challenge ciphertext ct∗, our
simulator forwards it to the normal hiding adversary.

• Guess. The normal hiding adversary outputs a guess bit b′. Our simulator outputs b′ as well.

It can be inspected that the advantage our simulator has in the 1-SKEnc accept indistinguishability game is
the same as the advantage of the normal hiding adversary in the EI-PLMCFE scheme.

1-query Index Hiding. We now prove the 1-query Index Hiding (Definition 19) property of the EI-PLMCFE
scheme. We perform a reduction to the 1-SKEnc function indistinguishability security of the underlying
mixedFE scheme. The simulation of Setup and Query Phase is the same as in the 1-query Normal Hiding
proof. For Challenge, we remark that the challenges forwarded to the function indistinguishability challenger
consist of: the challenge index j∗ ∈ {0, 1}log(ν) is output by the index hiding adversary,

f (0) := fmfe
κ(ν),j∗,⊥,0 : ID × {0, 1}log(ν) → {0, 1} (12)

f (1) := fmfe
κ(ν),j∗+1,⊥,0 : ID × {0, 1}log(ν) → {0, 1} (13)

and these satisfy f (0)(id, j) = f (1)(id, j) = 1 for all allowed key queries to EI-PLMCFE (that incurs a key query
to the function indistinguishability challenger of mixedFE) that have id ∈ ID and j ̸= j∗. We insist that the
particular case of j = j∗ + 1 is covered in the definition of the mixedFE function class (c.f. Equation (10)):
f (0)(·, j∗ + 1) = 1 because j∗ + 1 > j∗ and f (1)(·, j∗ + 1) = 1 because f (1) := fmfe

κ(ν),j∗+1,⊥,0. The conclusion of
the proof is the same as in the 1-query Normal Hiding proof.

1-query Upper/Lower Identity Hiding. We prove the 1-query Upper/Lower Identity Hiding (Defini-
tion 20/Definition 21) properties of the EI-PLMCFE scheme. We demonstrate the proof for the Upper
Identity Hiding property, the Lower Identity Hiding property is proven similarly. The proof for the Upper
Identity Hiding property is a reduction to the 1-SKEnc function indistinguishability security of the underlying
mixedFE scheme. The simulation of Setup and Query Phase is the same as in the 1-query Index Hiding
proof. For Challenge, we remark that the challenges forwarded to the function indistinguishability challenger
consist of: the challenge (index, identity’s position, bit-value) (j∗, ℓ∗, b∗) ∈ {0, 1}log(ν) ∈ {0, 1}log(κ) × {0, 1}
is output by the index hiding adversary,

f (0) := fmfe
κ(ν),j∗+1,⊥,0 : ID × {0, 1}log(ν) → {0, 1}

f (1) := fmfe
κ(ν),j∗,ℓ∗,b∗ : ID × {0, 1}log(ν) → {0, 1}

and these satisfy f (0)(id, j) = f (1)(id, j) for all allowed key queries to EI-PLMCFE (that incurs a key query to
the function indistinguishability challenger of mixedFE) that do not satisfy (id, j∗) and idℓ∗ = 1−b∗. It suffices
to verify that the two functions equals on (id, j∗), using Equation (10): f (0)(id, j∗) = 0 and f (1)(id, j∗) = 0 be-
cause the identity’s position ℓ∗ ̸= ⊥ on the same input index j∗ but the constraint on key queries idℓ∗ = b∗

not meeting the bitchecking of f (1) := fmfe
κ(ν),j∗,ℓ∗,b∗ . The conclusion of the proof is the same as in the 1-query

Index Hiding proof.

1-query Complete Message Hiding. We prove the 1-query Complete Message Hiding (Definition 22)
property of the EI-PLMCFE scheme. It is for this property that we need the one-challenge selective-attribute
IND-CPA security of the underlying ABMCFE scheme, with private-input repetitions, i.e. fixing a tag and
i ∈ [n], only the message xi can be queried multiple times to the ABMCFE challenger. The main steps are
given below. We perform a reduction to we need the one-challenge selective-attribute IND-CPA security of
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the underlying ABMCFE scheme, with private-input repetitions. The challenge ciphertexts by SplEnc are now
computed as follows: by setting t̂ag := (tag, (ν + 2,⊥, 0))

c(b) :=
(
ct(b)i

)n
i=1

; ct(b)i ← SplEnc(msk, tag, ν + 1,⊥, 0, x(b)

i ) proceeds by{
mixedFE.SKEnc(mskmfe, fmfe

κ(ν),ν+1,⊥,0)→ ctmfe
ν+1,⊥,0

ABMCFE.Enc(ppabmc, ekabmc
i , t̂ag, (x(b)

i , ctmfe
ν+1,⊥,0))→ ct(b)i

.

Our simulator is against the security of ABMCFE. The simulation is as follows:

• Setup. The simulator runs the mixedFE set up to obtain (mskmfe, ppmfe)← mixedFE.Setup(1λ, 1κ). Then
it computes the challenge attributes using mixedFE parameters:

mixedFE.SKEnc(mskmfe, fmfe
κ(ν),ν+1,⊥,0)→ ctmfe

ν+1,⊥,0

and send ctmfe
ν+1,⊥,0 to the ABMCFE challenger as the selective-attribute for challenge. We remark that

fmfe
κ(ν),ν+1,⊥,0(id, j) = 0 for all allowed key queries (id, j) to EI-PLMCFE (that incurs a key query to the

ABMCFE challenger), where j ∈ [ν] as restrained in Definition 22. Our simulator then receives the public
parameters ppabmc, returns pp := (ppabmc, ppmfe) to the 1-query message hiding adversary.

• Query phase. The queries to Corrupt are forwarded to the ABMCFE challenger as the eki := ekabmc
i by

construction. Others are treated below:
◦ For KeyGen oracle: on query id, j, our simulator uses the mixedFE sercret key to

dkmfe
id,j ← mixedFE.Extract(mskmfe, (j, id)) .

Then it queries to the ABMCFE challenger for key extraction of

dkabmc
(id,j),Fλ

← ABMCFE.Extract
(
mskabmc,

(
Fλ,mixedFE.Dec(dkmfe

id,j , ·)
))

and returns dk(id,j),Fλ
:= dkabmc

(id,j),Fλ
to the 1-query message hiding adversary.

◦ For the only SplEnc query (tag, (ν+1, ℓ, b), xi) by the 1-query message hiding adversary, our simulator
uses the set mixedFE parameters to compute mixedFE.SKEnc(mskmfe, fmfe

κ(ν),ν+1,ℓ,b)→ ctmfe
ν+1,ℓ,b. Then

it queries to the ABMCFE challenger the ABMCFE encryption of t̂ag, (xi, ct
mfe
ν+1,ℓ,b).

◦ For the simulation of the Enc oracle: our simulator can use the public-key encryption of the mixedFE
scheme to first simulate mixedFE.Enc(ppmfe)→ ctmfe

pub and queries to the ABMCFE challenger the
ABMCFE encryption using ekabmc

i , obtains the ABMCFE ciphertext and respond as Enc oracle to the
message hiding adversary.

• Challenge. When the message hiding adversary outputs
(
D, tag,

(
x(0)

i , x(1)

i

)
i∈[n]

)
, our simulator forwards

the challenge
(
x(0)

i , x(0)

i

)
i∈[n]

to the ABMCFE challenger, knowing the selective attribute ctmfe
ν+1,⊥,0 is

declared up front. This change goes indistinguishable thanks to:
◦ The private-input repetitions of the ABMCFE scheme, combining with the fact that the mixedFE

encryption of fmfe
κ(ν),ν+1,⊥,0 is used as the challenge attribute. This latter is an all-0 function for all

allowed key queries to KeyGen (that incurs a key query to the ABMCFE challenger).
◦ Next, since no keys allow decryption, and no new attributes are allowed to be queried on the challenge

tag (to switch policy control to 1), the change is indistinguishable thanks to the one-challenge
selective-attribute IND-CPA security of the ABMCFE scheme.

We note that we do use the admissibility property to ensure for any i ∈ C, the corrupted eki do not
trivially distinguish given as challenge

(
D, tag,

(
x(0)

i , x(1)

i

)
i∈H

)
. In particular, even thought the C slots

are controlled by the adversary, given function evaluations for keys from KeyGen that might decrypts
these corrupted slots on some Fλ, the strong admissibility (Definition 4) makes sure those evaluations do
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not trivially affect the i ∈ H. Finally, the admissibility over H ensures security vacuously since no keys
decrypt the challenge.

The conclusion follows.

8 Attribute-based Multi-client FE for Inner-Product

The last missing piece in our construction is an AB-MCFE scheme for inner-product. Our AB-MCFE for
inner-product needs to satisfy the following requirements:

R.1 Support a specific access control where all clients have the same attribute, evaluated over the same policy
function. This is enough for our application of building EI-PLMCFE in Section 7, as the attributes are
chosen by the reduction.

R.2 Adaptive corruption, which follows from the fact that the adversary in our tracing model can corrupt
any client adaptively before outputting a pirate decoder.

R.3 Security against semi-adaptive chosen functions, selective chosen attribute and adaptive chosen policies,
which again due to the construction given in Section 7.

R.4 Security against an adversary who can ask polynomially-many number of challenge queries on arbitrary
challenge plaintext pairs and arbitrary tag. In the IND-CPA security game of MCFE, this is captured
as allowing repetition on both private-inputs (i.e., the plaintexts) and public-inputs (i.e., the tags) in
the admissibility condition. We refer the reader to Section 2.1 for the definition of repetition in the
IND-CPA security game of MCFE. This is due to the fact that in our tracing definitions (Definition 12
and Definition 15), the adversary has no restriction on what it can ask to the KeyGen and Enc oracle
before outputting its pirate decoder, along with a pair of challenge plaintexts and a tag. We note
that this is stronger that what is typically considered in the IND-CPA security for MCFE, where the
adversary is not allowed to learn encryption of plaintexts under its challenge tag.21

Requirements (R.1) and (R.2) can be obtained using known techniques. Even though we do not know how
to achieve requirement (R.4) in the most general case, our main observation is to use requirement (R.1) to
reduce requirement (R.4) to a weaker one with private-inputs repetition. Our idea is very simple: repetition
queries are only useful when the decryption key is decryptable (i.e., the attribute of the ciphertext satisfies
the policy of the decryption key). Thus, we can consider the attribute as a part of the tag for each encryption.
The adversary is then forced to use the same attribute and the same tag for each complete challenge query.
This effectively prevents the adversary from taking the advantages of mix-and-match attacks.

Consequently, we only need to consider the weak security with private-inputs only repetition, where the
adversary can ask many challenge queries for a single tag. In this section, we show how to construct an
AB-MCFE for inner-product satisfying these requirements. In particular, we give a construction of key-policies
AB-MCFE for circuits f : {0, 1}ℓ → {0, 1} of depth d and size s. We call a key dkf a 1-key with respect to
an attribute u if f(u) = 1, and a 0-key otherwise. In our language, a 0-key allows to open the ciphertext, but
a 1-key does not. We note that in this section, we change our notation and use n as a part of the public
parameter of the scheme, instead of the number of clients, and use k to denote the number of clients.

8.1 Lattice Preliminaries

Throughout this section, let n,m, q ∈ N such that n = poly(λ) and m ≥ n⌈log q⌉. We define G ∈ Zn×m
q to be

the gadget matrix as the matrix of rank n obtained by padding In ⊗ (1, 2, 4, . . . , 2⌈log q⌉) with zero-columns.
For any t ∈ Z, we define G−1 : Zn×t

q → {0, 1}m×t to be the deterministic algorithm that inputs a matrix
A ∈ Zn×t

q and outputs a binary matrix G−1(A) ∈ {0, 1}m×t such that G ·G−1(A) = A. Let DZ,τ denote
the discrete Gaussian distribution over Z with standard deviation τ .
21 We also note that achieving the strong security notion with full repetition (both on plaintexts and tags) is still

open, known constructions achieve private-inputs repetition only.
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Lattice trapdoors and preimage sampling. In the following, consider a matrix A ∈ Zn×m
q . For all

v ∈ Zn
q , we let A−1τ (v) denote the random variable whose distribution is Dm

Z,τ conditioned on A ·A−1τ (v) = v.
A τ -trapdoor for A is a procedure that can sample from a distribution within 2n statistical distance of A−1τ (v)
in time poly(n,m, log q), for any v ∈ Zn

q . We slightly overload notation and denote a τ -trapdoor for A by
A−1τ . The following properties had been established in a long sequence of works [GPV08,CHKP10,ABB10a,
ABB10b,MP12,BLP+13].

Lemma 5 (Properties of Lattice Trapdoors).
• Given A−1τ , it is efficient to generate a trapdoor [A∥B]−1τ ′ for all B ∈ Zn×m

q , for all m ∈ N and τ ′ ≥ τ .
• There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1τ0 ) where A ∈ Zn×m

q for some
m = O(n log q) and is 2n-close to uniform, where τ0 = ω(

√
n log q logm).

Lemma 6 (Preimage Sampling [MP12,GPV08,LLW21]). Let q > 2 be any integer.
• Let A,B ∈ Zn×m

q be two full rank matrices with m > n, TA be a trapdoor matrix for A, a matrix
U ∈ Zn×ℓ

q and s ≥ ∥TA∥ · ω(
√
logm). Then there exists a PPT algorithm SampleLeft(A,TA,B,U, s)

that outputs a sample from [A∥B]−1(U, s).
• Let A ∈ Zn×m

q be a full rank matrix with m > n, R ∈ Zm×m, U ∈ Zn×ℓ
q , y ∈ Zq with y ̸= 0, and

s ≥
√
5 · s1(R) · ω(

√
logm), where s1(R) denotes the spectral norm of R. Then there exists a PPT

algorithm SampleRight(A,R, y,U, s) that outputs a sample from [A∥A ·R+ yG]−1(U, s).
• Let R ∈ Zm×m

q , and two values ρ, s ∈ R. Then there exists a PPT algorithm Sampler-2(R, ρ, s) that
runs in two stages. The output of the first stage is a full rank matrix A ∈ Zn×m

q for m > n, a vector
u ∈ Zm

q along with its preimage x ∈ A−1(u, ρ2 + s2). The output of the second stage is a sample from
[A∥AR]−1(u, s).

Learning with Errors. We recall the learning with errors assumption and its variants.

Assumption 1 (LWE). Given n,m, q, χ ∈ N, the LWEn,m,q,χ assumption states that

(A, sA+ e) ≈c (A, c),

where
A← Zn×m

q , s← Zn
q , e← Dm

Z,χ, c← Zm
q .

Lattice evaluation. We recall Tsabary’s presentation [Tsa19] of the LWE evaluation procedure introduced
in [BGG+14].

Lemma 7 (Fully Homomorphic Computation [BGG+14]). Fix parameters n, q, ℓ and m = O(n log q).
There exists a pair of deterministic algorithms (EvalF,EvalFX) with the following properties.

• Af ∈ Zn×m
q ← EvalF(A, f). Here A ∈ Zn×mℓ

q and f : {0, 1}ℓ → {0, 1} is a circuit.
• HA,f,u ∈ Zmℓ×m

q ← EvalFX(A, f,u). Here u ∈ {0, 1}ℓ is a binary string whose first bit is 0 and the
second bit is 1, and f : {0, 1}ℓ → {0, 1} is a circuit with depth d that ignores the first and the second bit
of the input.22 Then we have:

[A− u⊗G]HA,f,u = Af − f(u)G mod q,

where we denote [u1G∥ · · · ∥uℓG] by u⊗G. Furthermore, we have ∥HA,f,u∥∞ ≤ m · 2O(d). Finally, we
have that the topmost m rows of HA,f,u constitutes an identity matrix.

• The running time of (EvalF,EvalFX) is bounded by poly
(
n,m, log q, 2d

)
.

We also require the standard smudging lemma.

Lemma 8 (Smudging Lemma [WWW22]). Take any a ∈ Z where |a| ≤ B. Suppose χ ≥ Bλω(1). Then
the statistical distance between the distributions {z : z ← DZ,χ} and {z + a : z ← DZ,χ} is negl(λ).
22 We refer the reader to [ARYY23, Remark 2.7] for an explanation of this requirement.
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8.2 Our Construction

In the following construction, we assume public parameters

pp := (λ, k, n0, t, ℓ, d,X, Y, p, q, n,m,Q,N, v),

consisting of the security parameter λ and the following quantities:

• The description of a tag space T = {0, 1}t for some t = poly(λ), such that tags may be arbitrary strings
(e.g., time period numbers or dataset names).

• Let k = poly(λ) be the number of users, the function space is the set of all inner-product functions
fy : Zn0·k

p → Zp indexed by an integer vector y ∈ Zn0·k
p . The message space will be X := Zn0·k

p . The
vectors satisfy the following bounds: ∥xi∥∞ < X, ∥yi∥∞ < Y for i ∈ [k], and p > n0 · k ·X · Y .

• Let ℓ be the length of the attribute in each slot. The construction supports general policy circuits
g : {0, 1}ℓ → {0, 1} with bounded depth d and the decryption is possible when g(u) = 0, where u is the
attribute associated with each client.

• Let Q be the upper bound of 0-key (i.e., decryptable key) queries.

Let G ∈ Zn×m
q , be the gadget matrix of rank n. For any k ∈ {0, 1}λ, PRF(k, ·) : {0, 1}t → Zn0·k

p is a
pseudorandom function. Our construction goes as follows.

(mpk,msk)← Setup(pp, 1k): On input the public parameter pp and a number of users k, do the following:
• Sample (A,A−1τ )← TrapGen(1n, 1m, q) from Lemma 5 where A is uniform full-rank matrix in Zn×m

q .
• Choose uniformly random matrices B ∈ Zn×mℓ

q , Pj ∈ Zn×n0
q for j ∈ [N ].

• For i ∈ [k], j > i : sample ki,j = kj,i
$← {0, 1}λ. Define eki :=

(
ki,j
)
j∈[k].

• Output
mpk :=

(
pp,A,B, {Pj}j∈[N ]

)
; msk :=

(
A−1τ , (eki)

k
i=1

)
dky,g ← Extract(msk, fy, g): Given the master secret key msk, a function fy : Zn0·k

p → Zp defined by an integer
vector y := [y1∥ · · · ∥yk] ∈ Zn0·k

p which maps an input x := [x1∥ · · · ∥xk] ∈ Zn0·k
p to fy(x) := ⟨x,y⟩ ∈ Zp,

and a policy function g : {0, 1}ℓ → {0, 1}, do the following:
• Compute Bg ← EvalF(B, g)
• Sample a random subset ∆ ⊂ [N ] with |∆| = v according to the sampler SamplerSet(N,Q, v), and

compute the subset sum P∆ ←
∑

j∈∆ Pj .
• Sample matrix J← Dm×n0

Z,ρ and let U← P∆ −AJ mod q.

• Sample Kg ← [A∥Bg]
−1
τ (U) +

(
J
0

)
using A−1τ .

• Output the decryption key dky,g := (∆,Rg ← Kg · y⊤).
ci,tag,u ← Encrypt(mpk, eki,xi, tag,u): Given mpk, the encryption key eki, a message xi ∈ Zn0

p with tag
tag ∈ {0, 1}t and an attribute u ∈ {0, 1}ℓ, do the following:

• Compute ti,tag ←
∑

j ̸=i(−1)j<iPRF(ki,j , tag∥u) ∈ Zn0k
p

• Set wi,tag ←
[
0∥ · · · ∥0∥xi∥0∥ · · · ∥0

]
+ ti,tag mod p.

• Sample s← Zn
q ,Rj ← {−1, 1}m×m for j ∈ [ℓ], and error terms e1 ← Dm

Z,χ1
, e2,j ← Dn0

Z,χ2
for j ∈ [N ].

• Set an encoding of wi,tag ∈ Zn0k
p as {w′i,tag,j}j∈[N ], where w′i,tag,j =

⌈q/2⌉
v wi,tag.

• Let e← e1 · [Im∥R1∥ · · · ∥Rℓ] ∈ Z(ℓ+1)m
q .

• Compute c1 ← s[A∥B− u⊗G] + e.
• Compute c2,j ← sPi + e2,j + pe−1 ·w′i,tag,j for j ∈ [N ].
• Output the ciphertext ci,tag,u as cti,tag,u := (c1, {c2,j}j∈[N ]).

Decrypt(mpk, dky,g, tag, ct): On input a functional decryption key dky,g for a vector y ∈ Zn0k
p , a tag tag ∈

{0, 1}t and a k-vector of ciphertexts ct := (ct1,tag,u, . . . , ctk,tag,u), do the following:
• If g(u) ̸= 0, output ⊥.
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• Compute HB,g,u ← EvalFX(B, g,u).
• For each i ∈ [k], parse cti,tag,u as (c1,i, {c2,i,j}j∈[N ]) then compute the following:

d1,i ← c1,i ·
[

Im
HB,g,u

]
, d2,i ←

∑
j∈∆

c2,i,j , d3,i ← d1,i ·Rg − d2,i · y⊤.

• Compute µ′ ←
∑k

i d3,i and output the value µ ∈ Zp that minimizes
∣∣pe−1 · µ− µ′

∣∣.
8.3 Correctness

Correctness. Here, we show correctness of the scheme. Fix g,u such that g(u) = 0.
We have:

d1,i = c1,i ·
[

Im
HB,g,u

]
= si[A∥Bg] + e′1,i

d2,i =
∑
j∈∆

c2,i,j = siP∆ + e′2,i

d3,i = d1,iRg − d2,iy
⊤ = (e′1,i ·Rg − e′2,i) · y⊤ + pe−1⟨wi,tag,y⟩,

µ′ =
∑
i∈[k]

d3,i = e4 + pe−1⟨x,y⟩

where we define e′1,i = ei ·
[

Im
HB,g,u

]
, e′2,i =

∑
j∈∆ e2,i,j , and e4 =

∑
i∈[k](e

′
1,i ·Rg−e′2,i) ·y⊤. The last line fol-

lows from the fact that (ti,tag)i∈[k] are pseudorandom zero-shares. Thus, writing wi ←
[
0∥ · · · ∥0∥xi∥0∥ · · · ∥0

]
+

ti,tag mod p, we have
∑k

i=1 wi,tag mod p = x mod p ∈ Zn0k
p .

The error term is bounded as follows.

∥e′4∥∞ ≤ max
i∈[k]

k ·
(∥∥(e′1,i ·Rg − e′2,i) · y⊤

∥∥
∞

)
≤ max

i∈[k]
k ·
(∥∥e′1,i ·Rg · y⊤

∥∥
∞ +

∥∥e′2,i · y⊤∥∥∞)
≤ k · (χ1βρτY + χ2vn0Y ) poly(m) ≤ β0.

Parameters. We set the parameters as follows.

n = poly(λ, d, k, n0),

β = (2m)d,

τ = O
(√

nm log q
)
,

q = β0λ
ω(1) = pe.

m = O(n log q),

ρ = χ1 = χ2 = λω(1),

β0 = kβρτχ1vnY λω(1),

8.4 Security

Theorem 8. Under the LWE assumption, our construction given in Section 8.2 is IND-CPA secure with

• weak admissibility with one-challenge, complete, and repetitions on private inputs(Definition 3),
• adaptive corruption,
• selectively chosen attributes,
• adaptively chosen policies and functions.
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Proof (Sketch). The security of our construction relies on the compiled multi-client IPFE of [ALS16] using
[ABG19]’s compiler. The proof follows identically as the original ABIPFE scheme in the single-input setting
of [LLW21]. At a high level, the bulk of the proof is to simulate the key generation without msk, i.e., the
trapdoor A−1. It was done by using SampleRight to answer 1-key queries, and use Sampler-2 from Lemma 5
to answer 0-key queries. We note that weak admissibility and adaptive corruption comes from the security of
the underlying MCFE scheme compiled from [ALS16] using [ABG19]’s compiler. Selectively chosen attributes,
and adaptively chosen policies and functions is due to [LLW21, Theorem 7.7], where the attributes need to
be chosen selectively for the decryption key simulation. We refer the reader to [LLW21, Theorem 7.7] for
which our proof is based on.
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