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Joël Alwen1, Georg Fuchsbauer2, Marta Mularczyk1, and Doreen Riepel3

1 AWS Wickr, {alwenjo,mulmarta}@amazon.com
2 TU Wien, first.last@tuwien.ac.at

3 CISPA Helmholtz Center for Information Security, riepel@cispa.de

Abstract. Updatable Public-Key Encryption (UPKE) augments the security of PKE with
Forward Secrecy properties. While requiring more coordination between parties, UPKE
enables much more efficient constructions than full-fledged Forward-Secret PKE. Alwen,
Fuchsbauer and Mularczyk (AFM, Eurocrypt’24) presented the strongest security notion
to date. It is the first to meet the needs of UPKE’s most important applications: Secure
Group Messaging and Continuous Group Key Agreement. The authors provide a very
efficient construction meeting their notion with classic security based on the Computational
Diffie-Hellman (CDH) assumption in the Random Oracle Model (ROM).
In this work we present the first post-quantum secure UPKE construction meeting (a
slight relaxation of) the AFM security notion. Based on the Module LWE assumption, our
construction is practically efficient. Moreover, public key sizes are about 1/2 and ciphertext
sizes around 2/3 of those of the state-of-the-art lattice-based UPKE scheme in the ROM by
Abou Haidar, Passelègue and Stehlé – despite only being shown to satisfy a significantly
weaker security notion. As the AFM proofs relies on random self-reducibility of CDH, which
has no analogue for lattices, we develop a new proof technique for strong UPKE, identifying
the core properties required from the underlying (lattice-based) encryption scheme.
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1 Introduction

In light of the never ending parade of real-world security breaches, Forward Secrecy (FS)
has emerged as a critical security property. In the context of secure communication, FS
limits the security loss future corruptions can have on past communication. FS is especially
important for long-lasting cryptographic applications such as secure (group) messaging,
where a single protocol session can last for many years and involve a large number of
participating devices. For example, FS is a core design goal for protocols such as the
Double Ratchet [PM16] and the Messaging Layer Security (MLS) protocol [BBR+23],
both used in practice today.

For Public-Key Encryption (PKE), FS boils down to maintaining confidentiality (e.g.
IND-CCA security) for previously decrypted ciphertexts in the event that a decryption
key is leaked. As demonstrated in [ACDT20, ACJM20, ACDT21], the FS of the MLS and
related multi-party protocols can be substantially improved by replacing their use of PKE
with a forward secret variant.

Classic PKE uses a fixed decryption key. Leaking it at any point in time allows an
adversary to decrypt all past and future ciphertexts. To avoid this, [CHK03] introduced
Forward-Secure Public-Key Encryption (FS-PKE), which augments traditional PKE secu-
rity by adding FS guarantees. Intuitively, with FS-PKE, decrypting a ciphertext C also
punctures the decryption key removing its ability to ever decrypt C again.

Unfortunately, to date, the efficiency of FS-PKE constructions remains untenable for
most practical applications. Thus, [JMM19] introduced Updatable Public-Key Encryption
(UPKE), which provides similar FS guarantees as FS-PKE (also using evolving decryption
keys). However, to allow for improved efficiency, UPKE requires more coordination between
sending and receiving parties than needed for PKE and FS-PKE. Specifically, in addition
to decryption evolving a secret key ski into some ski+1, a UPKE encryption to public
key pki also produces a correspondingly updated public key pki+1. With this in mind,
correctness for UPKE (i.e. the guarantee that honest parties can decrypt each other’s
ciphertexts) is only guaranteed when encryption and decryption keys remain in sync with
each other. For example, Alice encrypting to Bob’s UPKE public key pki has the side
effect of updating pki to pki+1. So, once Bob decrypts the ciphertext from Alice, he will
update his secret key from ski to ski+1, which means that Charlie will first have to obtain
pki+1 before he can encrypt to Bob.

Fortunately, for multi-party protocols such as MLS and its relatives, the coordination
required to guarantee correctness is relatively easy to provide when using a reliable network.
This makes UPKE an attractive primitive for improving the FS of those applications.

Updatable Key Encapsulation Mechanisms. As in prior work [APS23, AFM24], the
technical focus of our work is actually Updatable Key Encapsulation Mechanisms (UKEM)
rather than UPKE. A standard KEM/DEM construction transforms any UKEM into a
UPKE with essentially the same security and efficiency. (To port a UKEM definition to
UPKE, we simply replace the real/random key challenge oracle with a chosen-message
challenge oracle.)

In fact, real-world UPKE applications (such as MLS) are already formulated as using
a KEM (not PKE). Of course, under the hood, they then use the KEM in a standard
KEM/DEM construction to realize PKE. Thus, although [ACDT20] speak of replacing
PKE with UPKE, to improve MLS’s FS it would be more in line with the original protocol
description to speak of replacing the KEM with a UKEM. Ultimately, the effect is exactly
the same. So, for the remainder of this work, we opt to stick with the slightly simpler
UKEM primitive.

3



UKEM security. In this work, with an eye towards the multi-party protocol uses of
UKEM, we target the UKEM security notion of [AFM24]. A key observation motivating
that notion is that an adversary controlling the network used by a multi-party protocol can
actually (quite easily) desynchronize honest parties to the point where UKEM correctness
might fail. For example, by simply selectively forwarding or re-ordering protocol messages
for different group members. Fortunately, subject to such network behavior the multi-party
protocols usually forgo availability requirements, so possible correctness failures for the
underlying UKEM scheme do not automatically present a problem.

However, even for the more challenging case of fully adversarial networks, the protocols
do still require strong (especially FS) security properties. Yet, no prior UKEM (nor UPKE)
security notion had adequately captured the types of desynchronized UKEM executions
implicit in such attacks on the higher-level multi-party protocols. Thus, it remained unclear
as to if/how UPKE (and UKEM) might be of use for such applications. This led the
authors of [AFM24] to introduce a significantly stronger UKEM security notion than prior
works capturing the full generality of attacks UKEM must resist for such use cases.

Our UKEM security vs [AFM24]. The UKEM security notion used in this work is identical
to the one in [AFM24] (e.g. capturing the full generality of desychnronization for use in
multi-party protocols) except for two caveats. First, the notion of [AFM24] implies two
types of UKEM security called “joiner” and “member” security. As all prior works except
[AFM24], we only consider the latter and leave constructing UKEM schemes with PQ
joiner security as an open problem. We stress that for most applications, member security
is crucial while joiner security provides additional guarantees in edge cases (to parties
joining a fake group created by the adversary). It is also difficult to achieve; the work
[AFM24] uses special (efficient) malleable non-interactive zero knowledge proofs (NIZKs)
with a security proof directly in the Algebraic Group Model [FKL18]. Second, our notion
is slightly weaker in that it allows to challenge fewer generations of a key pair. However,
we argue that this is irrelevant for applications; see Section 4.3 for a detailed discussion.

UPKE/UKEM constructions. The first explicit UPKE construction was introduced
in [JMM19], although prior implicit constructions can already be found in [JS18, PR18].
These were soon followed by many more (explicit and implicit) constructions including
[ACDT20, ALP22, AFM24], as well as constructions [JS18, PR18, EJKM22, DKW21,
AW23, APS23, ACJM20, AMT23] satisfying post-quantum (PQ) security. In particu-
lar, [EJKM22] is isogeny-based while both [DKW21, APS23] are lattice-based. The re-
maining PQ constructions rely exclusively on generic primitives with known post-quantum
secure instantiations.

Of all these constructions, only [AFM24] is shown to provide sufficient security for
high-level multi-party protocol applications while the rest are analyzed w.r.t. significantly
weaker notions. In this work we propose a construction with appropriate security, which is
most closely related to the one in [APS23] (albeit with significant differences described
below). Like [APS23], we rely on the NIZK techniques in [LNP22].

Practical efficiency. From the perspective of applied cryptography, an overarching goal
in the study of UPKE is to realize the promised FS gains of replacing PKE with UPKE in
MLS in the wild.4 We view the results in this work as making substantial progress towards
this goal. Indeed, demonstrating a practically efficient PQ UPKE scheme sufficiently strong

4 MLS is already in use in several applications including Cisco’s Webex and Discord, with many more to
come. For example, Google intends to deploy MLS to over a billion mobile devices as the E2EE layer
for securing all RCS text messages.
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for MLS was probably the single biggest hurdle till today on the path to more FS for MLS,
even just for classic security!

To really use UPKE in MLS widely in practice, we will need a UPKE (or UKEM)
standard, usually via the IETF. Indeed, MLS and every primitive in every one of its
standardized ciphersuites are all IETF standards. Nor would hardcoding a concrete
UPKE/UKEM construction in MLS directly be a viable approach as MLS (like TLS, SSH,
IPSSEC, Wireguard, etc.) is designed to work with a generic ciphersuite to be negotiated
at runtime by particpants. Fortunately, for the classic case, the practical efficiency of the
UKEM in [AFM24] makes real progress towards laying the foundations required to build
such a standard.

However, with advent of the post-quantum era, it’s problematic (at best) to establish
standards for new primitives (e.g. UPKE) or extend existing standards (e.g. switching
PKE to UPKE in MLS) without a clear path to PQ security in mind. Thus, the lack of a
plausible PQ alternative to UPKE for MLS presents a barrier preventing not just better
PQ FS for MLS, but even just improving classic FS for MLS. In light of this, although
we nominally consider only PQ security, this work takes a big step forward for the wider
goals of work on UPKE.

1.1 Technical Overview

We propose a new PQ-secure UKEM scheme, which improves upon the state-of-the-art
PQ-secure UKEM of [APS23] in two ways:

1. It enjoys a proof for a stronger security needed for real-world applications.
2. It is more efficient in terms of ciphertext and key size and computation cost.

We next outline our construction and then explain how our design and modularization
allows us to achieve the above contributions.

Our construction. At a high level, we construct our UKEM scheme generically from a
primitive called key-homomorphic (kh-)PKE (and other standard primitives such as PKE).
In kh-PKE, secret and public key spaces are (abelian) groups with a homomorphism
pk : sk 7→ pk. The concept can be efficiently instantiated by adapting standard IND-CPA
secure PKE schemes, such as ElGamal and most importantly the IND-CPA secure PKE
of Kyber [BDK+18].

We introduce a security notion for kh-PKE that we call Shifty-IND-CPA security.
It guarantees confidentiality of messages encrypted to a public key pk + pk where pk is
honestly generated and pk, the shift, corresponds to an sk chosen by the adversary.5

A public key in our UKEM scheme contains a public key pki for a kh-PKE scheme. The
encapsulation algorithm encrypts a random message m to pki. To get IND-CCA security,
we use the Fujisaki-Okamoto [FO99] transform and derive the encryption randomness
and the encapsulated key from a hash of m. In order to update the public key with no
additional overhead, we also derive a shift pk and the corresponding sk from another hash
of m. The updated public key is then pki+1 := pki + pk.

The above construction does not yet have public verifiability. This means that there
is no way for parties not knowing ski to verify that pki+1 can be trusted. (An adversary
could have freshly generated pki+1 and would thus know ski+1.) To achieve this, we add to

5 Note that e.g. for ElGamal, standard security implies shifty security: given an (additively denoted)
ciphertext c = (ρ ·g, ρ ·pk + m) and a secret key sk, c shifted to pk + pk is (c1, c2 + sk · c1); for LWE-based
schemes, this is in general not the case; see below.
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Table 1: Comparison of public key, ciphertexts and member-tag sizes between this work
and [APS23].

(a) Comparison for concrete parameters, for at most 220 updates and 137-bit security. See
details and more parameter sets in Section 7.

public key ciphertext with member-tag
[this work] 6.9 KB 86.3 KB
[APS23] 13.9 KB 129.6 KB

(b) Generic comparison depending on the following: the security parameter κ, and the
sizes of a public key pk and ciphertext c (encrypting κ bits) for the kh-PKE scheme, a
public key pkcrs and a ciphertext ccrs (encrypting a kh-PKE secret key) for the PKE used
in the NIZKPoK construction and the proof π for the NIZK used in the NIZKPoK.

public key6 ciphertext with member-tag
[this work] |pk|+ κ |c|+ |ccrs|+ |π|
[APS23] |pk|+ |pkcrs| |c|+ 2 · |ccrs|+ |πAPS|

(c) Statement proved in π and πAPS as a proxy for its size.

NIZK statement for π and πAPS

π
[this work] (pki, pki+1, pkcrs, ccrs) s.t. ccrs encrypts sk to pkcrs and pk(sk) = pki+1 − pki

πAPS
[APS23] (pki, pki+1, pkcrs, ccrs, c′

crs) s.t. “ccrs encrypts sk to pkcrs
and c′

crs encrypts sk to pkcrs and pk(sk) = pki+1 − pki

a ciphertext a non-interactive zero-knowledge proof of knowledge (NIZKPoK) of sk such
that

pk(sk) = pki+1 − pki . (1)

In the UKEM syntax of [AFM24], such a proof is called a member-tag. To achieve the strong
security we aim for, the NIZKPoK needs to satisfy straightline simulation extractability.
We construct such a NIZKPoK generically from a (simulation-sound) NIZK (not PoK)
and a (IND-CPA secure) PKE. The NIZKPoK’s common reference string CRS (which
will be part of the UKEM public key, sampled fresh together with the key pair) is a PKE
public key pkcrs and potentially a CRS for the used NIZK. A proof of knowledge of a shift
sk consists of (i) an encryption c of sk to pkcrs and (ii) a NIZK proof that c encrypts an sk
satisfying (1). We prove that one can define a straight-line extractor that extracts sk by
decrypting c. We then optimize the above NIZKPoK construction so that pkcrs is replaced
by a random string; see below.

More efficient instantiation from LWE. We build on the construction of Abou Haidar,
Passelègue and Stehlé (APS) [APS23]. In particular, we use their basic (IND-CPA-only)
lattice-based UPKE (without the updating functionality) as an instantiation of kh-PKE.
Their scheme is based on [LPS10] and Kyber [BDK+18]. Compared to Kyber, it requires
larger parameters in order to guarantee correctness after several key updates. (Every time
a public key pki is updated to pki+1 := pki + pk, the error increases, which for standard
Kyber parameters would make decryption impossible after a number of updates.)

6 Public key contains a Kyber public key (A, b) and seed s. In practice, A is derived by hashing a random
seed, which can also be used to derive s, reducing size to |pk|.
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We instantiate the standard PKE used within the NIZKPoK with the standard IND-
CPA secure scheme of Kyber and use the efficient lattice-based NIZK from [LNP22] that
has been argued to be (adaptively) simulation-sound in [BBP23, Lemma 2].

We next sketch how we improve upon the efficiency of APS, as outlined in Table 1.
Our first insight allows us to cut the public key size roughly in half. Since the secret

key skcrs is not used in the protocol, the corresponding pkcrs can be “fake”; that is, our key
generation samples a short seed s and derives pkcrs by hashing s. Thus, pkcrs is a random
matrix not necessarily in the support of Kyber key generation; however, modeling the
hash as a random oracle allows us to embed a real key in pkcrs. This can be done since,
under LWE, Kyber public keys look like random matrices.

Further, in APS the shift sk is freshly sampled and must be encrypted under pki, so
the holder of the corresponding ski can update ski to ski+1 := ski + sk. We avoid this by
deriving sk from the hash of the encrypted random message. Thus, a ciphertext in our
scheme consists of two Kyber ciphertexts: c encrypting the random message m to pki, and
ccrs encrypting sk to pkcrs (implicit in our proof of knowledge). In contrast, a ciphertext
in APS contains an additional Kyber ciphertext cup encrypting sk to pki.

Another source of improvement efficiency is the simpler NIZK statement compared
to APS. The NIZK is by far the largest (and most expensive to compute) part of a
ciphertext-tag pair, and a simpler statement results in smaller NIZK proofs. In particular,
our statement involves only one encryption of the secret key shift instead of two as in
APS; see Table 1. Note that an encryption of a secret key is larger than an encryption of
a short random message.

Finally, in contrast to APS, for the CRS we use a PKE scheme different from the kh-
PKE used for updates. Like in APS the modulus q for the kh-PKE needs to be increase so
correct decryption is still guaranteed for (many-times) updated keys (even with adversarial
shifts). This increase of key/ciphertext sizes and is not needed for the PKE. Thus, we can
use a more efficient PKE as long as it is compatible with the NIZK.

Strong security. At a high level, we can visualize the evolution of a UKEM key pair
as a path of nodes containing evolutions of a key pair, (pk0, sk0), (pk1, sk1), (pk2, sk2), . . .
Here (pk0, sk0) is a fresh key pair, (pk1, sk1) is a result of updating (pk0, sk0) and (pk2, sk2)
is a result of updating (pk1, sk1), etc.

Following [AFM24], we observe that to model asynchronous executions of the applica-
tion using UKEM (e.g. MLS), we need to consider not paths but more general (directed)
trees, see Fig. 1. The root of such a tree contains a fresh key pair (pk0, sk0). A node with
two children represents the result of a network split in the execution of an application
using the UKEM. For example, due to a network split, Alice may update pk0 to pk1 and
Bob may update pk0 to pk′1. This is represented as the root node 0 having two children,
one with pk1 and the other with pk′1.

All prior works on Kyber-based UKEMs [DKW21, APS23] restrict UKEM executions
to paths. Proving security of a Kyber-based UKEM in the setting with arbitrary trees
requires new techniques both for protocol design and the security proof.

UKEM security game. We use (a small variation of) the UKEM security notion of
[AFM24] which builds upon the above tree intuition. At a high level, a security experiment
is defined with the challenger and the adversary. The challenger generates a fresh root key
pair (pk0, sk0) and the adversary, given pk0, drives the key pair’s evolution. That is, the
challenger creates a tree with “honest” and “adversarial” edges. The adversary decides to
create an honest or adversarial edge using Enc and Dec oracles, respectively. For an honest
edge, the key pair of the child node is created by the challenger. For an adversarial edge,
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0 1 2 3
Ch

(a) A UKEM execution from the notion of
[DHW23, APS23]. The adversary corrupts
only node 3. After the challenge query, it can
no longer query the Dec oracle for nodes 0-2.

0

1
5 7

2 3
9

8

Ch

4 6

(b) A UKEM execution from the notion of [AFM24]. Ad-
versary defines the structure of the tree and can corrupt
any nodes that do not result in a trivial win, e.g. 6, 3,
5. It can also access the Dec oracle for any nodes at any
time.

Fig. 1: Illustrations of UKEM executions in the security notion of [DHW23, APS23] and the
stronger one of [AFM24]. “Ch” marks the edge created by challenge query. The adversary’s
goal is to distinguish the key outputted by the encapsulation call creating this edge from
a random key.

the key pair is created by the adversary: it provides an arbitrary updated public key, a
(valid) member tag and a ciphertext (which updates the secret key or not, if invalid). The
adversary can also corrupt arbitrary nodes to get updated secret keys (modelling FS) and
see the keys decapsulated by the challenger when creating adversarial edges (modelling
CCA). At some point, the adversary challenges a node, i.e., it gets a ciphertext and either
the real or a random key. It wins by guessing which is the case. (The challenge also creates
an honest edge.)

Reduction to Shifty-IND-CPA. Consider the line-execution in Fig. 1a as an example for
an execution of the weaker security game in [DKW21, APS23]. The adversary makes two
updates to the root key pk0, leading to pk2, which it then challenges, that is, it is given
an encapsulation and either the encapsulated or a random key and has to decide which.
pk2 is then updated by the experiment to pk3 and the adversary receives (“corrupts”) the
corresponding sk3.

We want to show that Shifty-IND-CPA of the kh-PKE scheme implies confidentiality
of the key K encapsulated to the public key pk2 in node 2. The reduction embeds the
challenge public key from its Shifty challenger as pk0. It can then request a challenge
ciphertext encrypted to pk2, as long as it provides the “shift” secret key sk2 − sk0 (which
we can extract from the proofs the adversary must provide). The Shifty-IND-CPA notion
moreover provides a key sk′, which is an honest update of the challenged secret key, that
is, sk2, in the example. The reduction can thus give the adversary sk3 := sk′.

This proof strategy is similar to [APS23], which instead of using the abstraction of
Shifty-IND-CPA, reduces security directly to their variant of LWE. However, since their
scheme (unlike ours) includes an encryption of the update secret key, they need to argue
that this does not leak information.

Unfortunately, the sketched strategy does not extend to the security notion of [AFM24],
where the adversary can corrupt other keys (which would not lead to a trivial break) in the
scheme. Considering Fig. 1b, the adversary can corrupt any nodes outside the challenge
path 0-1-2, for example node 4. The reduction to Shifty security thus has to provide sk4.
So, when the adversary asks to create node 4, the reduction could ask for another challenge
(under pk0) to get a key sk4 which is sk0 shifted by an unknown sk4. However, what if the
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adversary then challenges node 4 instead of node 2 (after creating nodes 1-4 via updates)?
Then the reduction fail as it can not longer embed a Shifty challenge ciphertext in pk4
(for which it knows the secret key). So to adjust the previous reduction strategy would
require guessing the challenge path, which incurs an exponential loss.

To deal with this, [AFM24] uses a more clever strategy. In their scheme sk2 is derived
from the hash H(m2), where m2 is the random message encrypted in c2. In addition to
improving efficiency, this also enables a different proof strategy that avoids a sequence of
hybrids overall, when modeling H as a random oracle. The reduction to (Shifty-)IND-CPA
embeds the challenge public key directly as pk2 (instead of pk0). In the random oracle
model, this is fine since c2 is independent of sk2 as long as the adversary does not query
H on m2. On the other hand, if it makes this query, then it has “broken” c2, and the
reduction could break Shifty security for pk1 (if it had embedded the challenge key there).
The reduction thus guesses which public key will be broken first and embeds its challenge
there. This only incurs a linear security loss, while allowing the adversary to adaptively
corrupt keys.

Unfortunately, this strategy does not work with LWE-based encryption schemes such
as Kyber. The reason is that, unlike with ElGamal used in [AFM24], pk2 is not distributed
like a fresh PKE key. In particular, say the edge 0-1 is created when the adversary injects
an update pk1, and the edge 1-2 is created by the game that generates a fresh update pk2.
Then pk2 = pk0 + pk1 + pk2. With ElGamal, + is an isomorphism so this is the same as
sampling pk2 at random and setting pk2 = pk2 − pk0 − pk1. This is not the case for Kyber,
where pk2 comes from the LWE distribution shifted by an honest pk2 and an adversarial
pk1.

We therefore devise a different proof strategy: instead of embedding the challenge in
pk2, we embed it in the update pk2. We then use our new “Shifty” variant of IND-CPA
to “shift” (challenge) ciphertexts encrypted to pk2 to ones encrypted to pk2. This way our
reduction can embed the challenge.

Security of NIZKPoK. Recall that when updating a key pk to pk′ = pk + pk, a member
tag mt is generated, which guarantees that if pk was “secure” then so is pk′ – even to users
that do not know the secret keys. The tag mt proves knowledge of sk corresponding to pk
by encrypting sk to pkcrs and including a NIZK for correctness.

Proving the stronger security notion abstracted by trees (cf. Fig. 1b) for LWE-based
schemes requires a stronger security for the proof of knowledge (PoK) than what was
necessary for previously considered UKEM security notions. For these, regular soundness
suffices, as the graph constructed by the adversary can only be a line (cf. Fig. 1a) and thus
the adversary can only corrupt the key (node 3 in the example) following the challenged
node. The security reduction extracts the sk’s corresponding to edges created by the
adversary (e.g. 0-1 and 1-2), so it can shift a challenge ciphertext for pk0 to pk2. Only after
the extraction, it needs to simulate the proof for this last edge (2-3 in the example).7

To prove that our scheme satisfies the stronger security from [AFM24], we require mt
to be straight-line simulation-extractable, which is achieved by using a simulation-sound
NIZK (while for the weaker security notion in [APS23], soundness would suffice). This is
necessary because our reduction to Shifty-IND-CPA has to extract from mt’s continuously

7 This is similar to the Naor-Yung construction [NY90] for IND-CCA1 security, for which a sound NIZK
is sufficient. We note that the security notion in [APS23] also only guarantees (and their scheme only
satisfies) IND-CCA1 security (for what in [APS23] is called the update ciphertext) whereas the stronger
security [AFM24] we consider allows further decryption queries, thus corresponding to IND-CCA2
security.
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during the simulation. Specifically, consider the reduction for the scenario in Fig. 1b, where
a challenge query for node 2 creates node 3.

Further, say node 1 is created honestly and node 2 is created by the adversary injecting
pk2 and mt2. This means that the reduction embeds its challenge key as the shift pk1
corresponding to the edge 0-1. When node 1 was created, the reduction, not knowing sk1,
had to simulate the PoK mt1. Then, when the adversary asks for the challenge encrypted
to pk2, the reduction has to get a Shifty-IND-CPA challenge c∗ encrypted to pk1 shifted
to pk2 = pk1 + (pk2 + pk0). Getting such a challenge requires extracting sk2 from mt2.
Moreover, the proof for the tag mt3 attached to c∗ needs to again be simulated.

Finally, we note that NIZK used in the scheme of [AFM24] only requires simulation
extractability, which need not be straight-line. Their reduction to computational Diffie-
Hellman does not need to extract during the simulation. Instead, it only extracts at the
very end of the experiment in order to “shift” its CDH solution.

2 Preliminaries

Notation. For integers n, we write [n] to denote the set {1, . . . , n}. If X is a finite set,
then x←$ X denotes picking x uniformly at random from X. y ← A(x1, x2, . . .) denotes
that on input x1, x2, . . ., the (possibly probabilistic) algorithm A returns y. AO denotes
that A has access to an oracle O.

Failures. We assume that an algorithm may “fail”, meaning it outputs a special failure
symbol ⊥; if it has multiple outputs, all of them are set to ⊥. The probability of this
happening is bounded by the respective correctness property. Further, we assume that
whenever an algorithm gets ⊥ as any of its inputs, the output(s) will be ⊥ as well. Some
algorithms or game procedures output a bit determined by a Boolean statement B. Here,
the notation (B) denotes the output 1 if B is true and 0 otherwise.

2.1 Public-Key Encryption

We generalize PKE slightly, as required by our constructions of key-homomorphic PKE and
NIZKPoK. In addition to a secret key space SK and a randomness space RS, PKE setup
also defines subspaces thereof: SK are “good” secret keys for which decryption succeeds,
and RS are “good” randomness values for which encryption succeeds. For example, for
LWE-based schemes, SK may be a ring Zn

q and SK a set of short vectors in Zn
q . Formally,

PKE is described the following PPT algorithms:

Setup. pp← PKE.Setup outputs public parameters pp, which also define:
– secret and public key spaces, respectively, SK and PK,
– a set SK ⊆ SK of secret keys outputted by key generation,
– a message space M and a randomness space RS,
– a set RS ⊆ RS of “good” randomness values.

Key Generation. (pk, sk)← PKE.KeyGen(pp), on input the public parameters, outputs a
public key pk ∈ PK and a secret key sk ∈ SK.

Encryption. c← PKE.Encrypt(pp, pk, m), on input a public key pk ∈ PK and a message,
outputs a ciphertext c.

Decryption. m← PKE.Decrypt(pp, sk, c), on input a secret key sk ∈ SK and a ciphertext c,
outputs a message m.
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Correctness. Using PKE for our proof system requires correct decryption whenever
encryption uses randomness from r ∈ RS. A PKE is δ-correct if for all pp ∈ PKE.Setup
we have:
– Pr[(pk, sk)← PKE.KeyGen(pp) : sk /∈ SK] ≤ δ;
– for all m ∈M and pk ∈ PK: Pr[c← PKE.Encrypt(pp, pk, m) : c = ⊥] ≤ δ; and
– for all m ∈ M, r ∈ RS and (pk, sk) output by PKE.KeyGen(pp): if sk ∈ SK and

Encrypt(pp, pk, m; r) ̸= ⊥ then Decrypt(pp, sk, c) = m.

2.2 Proof Systems

Non-Interactive Proof System (NIPS). A Non-Interactive Proof System (NIPS) for
an NP-relation R in the random oracle model is a triple of algorithms, all with access to a
random oracle H:
Setup. crs← SetupH outputs a common reference string crs.
Prove. π ← PH(crs, x, w) on input a statement x and a witness w, outputs a proof π that

(x, w) ∈ R.
Verification. 0/1 ← VH(crs, x, π) verifies a proof π of statement x, i.e., that (x, w) ∈ R

for some w.

Non-Interactive Zero-Knowledge proofs (NIZK). We consider NIPS that are
zero-knowledge and (adaptive) simulation-sound (formally defined in Appendix B). Zero
knowledge means that there exists a simulator that can produce proofs of (true) statements
without knowing the witness (but being able to program the random oracle) that are
indistinguishable of outputs of P. Adaptive Soundness means that no adversary, after
being given the CRS, can produce a proof for a false statement. Simulation soundness
means that soundness even holds against adversaries that can query simulated proofs of
(possibly false) statements.

NIZK Proof of Knowledge (NIZKPoK). We define NIZKPoKs as NIPS that are
zero-knowledge and straight-line-extractable (formally defined in Appendix B). Straight-
line simulation extractability requires two additional algorithms: first, an alternative setup
that outputs an “extraction trapdoor” together with a CRS that is indistinguishable from
the output of Setup; second, an extractor that, given the extraction trapdoor, can extract
witnesses from proofs generated by an adversary with access to a simulation oracle.

3 Key-Homomorphic PKE

The main building block for our UKEM construction is a key-homomorphic public-key
encryption (kh-PKE) scheme. A hk-PKE scheme is a PKE scheme (as defined in Section 2.1)
that satisfies the following definition.
Definition 1. A PKE is key-homomorphic if (SK, +) and (PK, +) are abelian groups
and there is a homomorphism pk : SK → PK.

Correctness. Let ℓ > 0 be an integer and δ > 0. A key-homomorphic PKE is (ℓ, δ)-correct
if for all pp ∈ Setup the following hold:
– Pr[(pk, sk)← PKE.KeyGen(pp) : sk /∈ SK] < δ.
– For all sk0, sk1, . . . , skℓ ∈ SK and m ∈M:

Pr
[
Decrypt

(
pp, sk, Encrypt(pp, pk(sk0 + sk1 + · · ·+ skℓ), m)

)
̸= m

]
< δ ,

where the probability is taken over the random coins of Encrypt.
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Game PKE Shifty-IND-CPA Security

ExpShifty-IND-CPA
PKE (A)

b←$ {0, 1}
pp← Setup
(pk∗, sk∗)← KeyGen(pp)
b′ ← AChal(pk∗)
return (b = b′)

Oracle Chal(m0, m1, (sk1, . . . , skj))

req j ≤ ℓ ∧ ∀i ∈ [j] : ski ∈ SK
sk← sk1 + · · ·+ skj

c← Encrypt(pp, pk∗ + pk(sk), mb)
(pk, sk)← KeyGen(pp)
sk′ ← sk∗ + sk + sk
return (c, sk′)

Fig. 2: The Shifty-IND-CPA security game for homomorphic PKE PKE = (Setup, KeyGen,
Encrypt, Decrypt), an integer ℓ and adversary A.

Security. We define a security notion for kh-PKE required for its use in our UKEM
construction. In UKEM security, the adversary will be able to choose update secret keys,
so the challenge public key might not be distributed according to the PKE key generation,
but “shifted”. This is not the case for ElGamal encryption, but it is for lattice-based
schemes. Therefore, our notion Shifty-IND-CPA extends standard CPA security to reflect
this.

Definition 2 (PKE Shifty-IND-CPA). Let ℓ be a positive integer. Let game Shifty-IND-CPA
for PKE be as defined in Fig. 2. The advantage of an adversary A in that game is defined
as

AdvShifty-IND-CPA
PKE (A) := 2 Pr

[
ExpShifty-IND-CPA

PKE (A) = 1
]
− 1.

4 Updatable KEM

4.1 Functionality

An updatable key encapsulation mechanism (UKEM) is a collection of the following PPT
algorithms (where we use the “short syntax” from [AFM24]):

Setup. pp ← Setup outputs public parameters pp, which implicitly define a secret key
space SK and K, the space of (symmetric) keys.

Key generation. (pk0, sk0)← KeyGen(pp), on input public parameters, outputs a key pair
(pk0, sk0) with sk0 ∈ SK.

Encapsulation. (K, c, pki+1, mti+1) ← Encaps(pp, pki), on input the current public key,
outputs a symmetric key K, a ciphertext c, an updated public key pki+1 and a member
tag mti+1.

Member-tag verification. 0/1← Verifymt(pp, pki, pki+1, mti+1) verifies the update from pki

to pki+1 using the tag mti+1.
Decapsulation. (K, ski+1)← Decaps(pp, ski, c, pki+1) outputs decapsulated key K and the

updated secret key ski+1, but only if it matches pki+1.

Comparison to APS. APS [APS23] use “long syntax”. To update public and secret
keys, they have separate algorithms UpdatePK, which returns an update ciphertext, and
UpdateSK. Long syntax can be easily transformed to short syntax by running those
algorithms inside Encaps and Decaps. An additional difference is that our syntax from
[AFM24] makes member tags explicit. Hence, Verifymt can be viewed as the analogue of
VerifyUpdate in APS, which was originally introduced in [DKW21].
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Correctness. Let ℓ > 0 be an integer and δ > 0. Let pp ← Setup and (pk0, sk0) ←
KeyGen(pp). For t ∈ [ℓ], let

(Kt, ct, pkt, mtt)← Encaps(pp, pkt−1) and (K ′t, skt)← Decaps(pp, skt−1, ct, pkt) .

We say that UKEM is (ℓ, δ)-correct if for all t ∈ [ℓ] we have

Pr
[
Kt = K ′t ∧ Verifymt(pp, pkt−1, pkt, mtt)

]
≥ 1− δ ,

where the probability is taken over the random coins of the underlying algorithms.

4.2 Security

The IND-CCA security of UKEM schemes is defined by the experiment in Fig. 3, which we
adapted from [AFM24]. As we focus on member security, we removed the parts related to
“joiner-security”, another notion they define.

Security notion of [AFM24]. At a high level, the IND-CCA challenger creates a tree
representing the evolution of a (single) UKEM key pair, driven by the adversary’s queries.
Each node in the tree has assigned a public key and possibly a matching secret key. We
call nodes with secret keys full nodes and those without half nodes. See the illustration in
Fig. 4.

The key pair of the root node is generated by the challenger using KeyGen. Key pairs
of other nodes are generated by updating the key pairs of their parents. New nodes can be
created as follows:

Enc edges. When A calls the Enc(i), the challenger “honestly” generates a child node of
i with the public key generated using Encaps. If i is a full node, then the secret key
of the new node is generated using Decaps (which may result in a half node if Decaps
returns (⊥,⊥) in case of correctness failure). The adversary receives the generated key
K, the ciphertext, the updated public key and the member tag.

Dec edges. When A calls Dec(i, c′, pk′, mt′), the challenger first checks if Verifymt accepts
pk′ and mt′. If so, it generates a child node of i with public key pk′ (chosen by A). If i
is a full node, then the secret key of the new node is generated using Decaps with c′

(which could return ⊥).
MChal edge. The adversary can make one call to the MChal oracle for a node of A’s

choice, for which a child node is generated, as with Enc. The oracle either returns the
generated key K(1) or a random and independent key K(0) and the adversary’s goal is
to distinguish the two cases.

Further, A can corrupt nodes by calling the oracle Rev(i), which reveals the secret
key of node i. IND-CCA thus implies forward-secrecy. Not all nodes can be corrupted, e.g.
corrupting the root would allow A to trivially win. More precisely, A can corrupt all nodes
outside the challenge set of the node i∗ queried to MChal.

Challenge set. The challenge set S of a node i∗ contains the nodes on the challenge path
from the root to i∗ (corrupting any of these allows for a trivial win for any correct scheme).
Moreover, S includes duplicates (i.e., nodes that have the same public key) of nodes on the
challenge path. Finally, S includes branches, i.e., all nodes reachable from the challenge
path and its duplicates via Dec edges. (As argued in [AFM24], allowing corruption of
branches would require computationally heavy tools, such as hierarchical identity-based
encryption.)
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Game UKEM Security

ExpIND-CCA
UKEM (A)

pp← Setup
(pk0, sk0)← KeyGen(pp)
(par0, rev0, j, typ0)← (ϵ, 0, 0, ϵ)
(i∗, c∗)← (⊥,⊥)
b←$ {0, 1}
b′ ← AEnc,Dec,Rev,MChal(pp, pk0)
S ← chall-set(i∗)
return (b = b′) ∧ (∀j ∈ S : ¬revj)

Oracle MChal(i)
req i∗ = ⊥
i∗ ← i
K(0)←$K
(K(1), c∗, mt)← create-honest-node(i)
return (K(b), c∗, pkj , mt, (skj = ⊥))

Oracle Enc(i)

(K, c, mt)← create-honest-node(i)
return (K, c, pkj , mt, (skj = ⊥))

Oracle Rev(i)
req ski ̸= ⊥
revi ← 1
return ski

Oracle Dec(i′, c′, pk′, mt′)

req pki′ ̸= ⊥ // i-th node exists
if i∗ ̸= ⊥ then // implies c∗ ̸= ⊥

req c∗ ̸= c′ ∨ pki∗ ̸= pki′

req Verifymt(pp, pki′ , pk′, mt′)
j++
(pkj , skj , parj , revj , typj)← (pk′,⊥, i′, 0, “Dec”)
if ski′ ̸= ⊥ then

(K, skj)← Decaps(pp, ski′ , c′, pk′)
return ⊥

Helper create-honest-node(i)

req pki ̸= ⊥ // i-th node exists
j++
(K, c, pkj , mt)← Encaps(pp, pki)
(parj , revj , typj)← (i, 0, “Enc”)
if ski ̸= ⊥ then // i-th node is full

(∗, skj)← Decaps(pp, ski, c, pkj)
else

skj ← ⊥
return (K, c, mt)

Helper chall-set(i∗)
if i∗ ̸= ⊥ then

base← {i0, . . . , iℓ} where i0, . . . , iℓ is the path
from i0 = 0 to iℓ = i∗

else return ∅
extd-base← {i′ | ∃ i ∈ base : pki′ = pki}
// In [AFM24]: extd-base←
// {i′ | ∃ i ∈ base : (pki′ , mti′) = (pki, mti)}
return dec-closure(extd-base)

Helper dec-closure(S)
Return the set of all j reachable from some i ∈ S
via only edges created by Dec queries.

Fig. 3: IND-CCA security for UKEM = (Setup, KeyGen, Encaps, Decaps, Verifymt). By de-
fault, all variables are initialized to ⊥.

Definition 3 (UKEM Security). Let ExpIND-CCA
UKEM (A) be as defined in Fig. 3. The advan-

tage of an adversary A against IND-CCA security of UKEM is defined as

AdvIND-CCA
UKEM (A) := 2 Pr

[
ExpIND-CCA

UKEM (A) = 1
]
− 1 .

4.3 Comparison to AFM

Our security notion is weaker than the one in [AFM24] in three ways: we disallow slightly
more corruption queries and we do not consider “joiner security”; moreover, by considering
LWE- instead of DL-based schemes, we do not assume perfect correctness.

Fewer allowed corruptions. Our challenge set S of node i∗ (defining the disallowed
corruptions) is larger than in [AFM24] (cf. comment in chall-set in Fig. 3). There, a node is a
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(a) A queries MChal(i∗ = 4), which creates node 6.
The challenge set {0, 1, 2, 4} includes the challenge
path 0-2-4 and in addition 1 which is in its dec-
closure.
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(b) In a different execution, A can also challenge a
half node i.e. it queries MChal(i∗ = 3).

Fig. 4: Example trees in executions of the IND-CCA experiment in Fig. 3. Full and half
nodes are represented, resp., by full circles ( , ) and half circles ( , ). Edges are tagged
whether they were created by an Enc, a Dec or the Challenge query. The challenge set is
marked in orange. Any node outside of it can be corrupted.

“duplicate” if it has the same public key and member tag. (Unlike our definition, their notion
implies that given (honestly generated) pki, pkj and mt, it is hard to produce a different
mt′ for pki and pkj .) They achieve by using a NIZK that is strongly simulation-sound
(which ours is not).

This difference in UKEM security is irrelevant for most applications: for a party
receiving a key pkj it is important to receive some tag mt, as this already implies that pkj

can be trusted. It does not matter if mt is the exact tag outputted by encapsulation or
different.8

No joiner security. Like all UPKE/UKEM notions before [AFM24], we too omit the
property of joiner security defined in [AFM24]. Their construction achieves this notion
using statement-malleable NIZK proofs of knowledge, which they instantiated directly in
the algebraic group model [FKL18]. We are unaware of any analogous PQ constructions; so
achieving efficient lattice-based UPKE joiner security seems to require either a significant
breakthrough in lattice-based NIZK technology or a fundamentally new approach to
UPKE/UKEM constructions.

Mitigating the lack of joiner security is the following observation. Joiner security only
plays a role in the security of UPKE applications in a relatively specific corner case referred
to in [AFM24] as “fake group” security, relevant in the following scenario: First, an honest
party must join a “fake” group mid-session, which is using an adversarially generated
public cryptographic session state. Second, this state must include corrupted public keys
on behalf of one or more group members. Third, the joiner must perform the protocol
operations to remove any such members. Now, UPKE joiner security is needed to ensure
confidentiality for subsequent communication in the group for the joiner.

We note that, although practical protocols like MLS do include mechanisms aimed
at providing fake group security (cf. “parent hash” [BBR+23]), many academic protocols
do not [ACDT21, AAN+22, KPPW+21]. Similarly, formal security analyses of MLS and

8 Somewhat related to this, we note that the notion of [AFM24] does not prevent the adversary from
creating a pkj with multiple valid tags using some algorithm other than Encaps. Nor does it imply that
it is hard to create a different ciphertext than the one outputted by Encaps that is also accepted as
transitioning from pki to pkj .
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Construction LuKEMno-pv[PKE, H1, H2, H3]

Setup

ppPKE ← PKE.Setup
return pp = ppPKE

Encaps(pp = ppPKE, pki)

m←$ {0, 1}κ

// FO transform
K ← H1(ppPKE, pki, m)
r ← H2(ppPKE, pki, m) // r ∈ {0, 1}κ

c← PKE.Encrypt(ppPKE, pki, m; r)
// Update the public key
d← H3(ppPKE, pki, m) // d ∈ {0, 1}κ

(pk, sk)← PKE.KeyGen(ppPKE; d)
pki+1 ← pki + pk
return (K, c, pki+1, mti+1 = ϵ)

KeyGen(pp = ppPKE)

(pk, sk′)← PKE.KeyGen(ppPKE)
return (pk, sk = (sk′, pk))

Decaps(pp = ppPKE, ski = (sk′
i, pki), c, pki+1)

m← PKE.Decrypt(ppPKE, sk′
i, c)

// FO transform
K ← H1(ppPKE, pki, m)
r ← H2(ppPKE, pki, m) // r ∈ {0, 1}κ

req c = PKE.Encrypt(ppPKE, pki, m; r)
// Update the key pair
d← H3(ppPKE, pki, m) // d ∈ {0, 1}κ

(pk, sk)← PKE.KeyGen(ppPKE; d)
sk′

i+1 ← sk′
i + sk

req pki+1 = pki + pk
return (K, ski+1 = (sk′

i+1, pki+1))

Fig. 5: Our (key-homomorphic) UKEM construction without public verifiability from
kh-PKE and three random oracles. W.l.o.g. we define key space, PKE KeyGen and Encrypt
randomness spaces and message space to be {0, 1}κ.

related protocols often omit the case for simplicity, focusing instead on (presumably more
important) security properties.

No perfect correctness. The security notion of [AFM24] assumes perfect correctness.
Thus, when the Enc or MChal oracle creates the secret key of a new node via Decaps, this
is assumed to always succeed. In our notion, if Decaps outputs ⊥ as the secret key, the
challenger simply creates a half-node. A is also notified if there was a decryption error,
i.e., if the new secret key skj = ⊥. (Our syntax requires that in this case the decapsulated
key K ′ is ⊥ as well.) Further, key generation can output ⊥ as well, which means that the
root is a half node.

5 Our UKEM Construction

We build our Lattice-based updatable KEM in a modular and black-box way. From
kh-PKE (and hashes), we construct LuKEMno-pv, a key-homomorphic UKEM (defined
below), that does not yet provide public verifiability (and outputs “empty” member tags).
This is added by combining a kh-UKEM (instantiated with LuKEMno-pv) with a NIZK
proof of knowledge PoK, yielding LuKEM.

LuKEMno-pv. The scheme is defined in Fig. 5 and uses a kh-PKE scheme PKE. Encapsulation
samples a random message m and inputs it to three hash functions (modeled as random
oracles): The first two are used for the FO transform: H1 outputs the encapsulated key
K and H2 outputs the randomness for the encryption of m. The output of H3 is used as
randomness for kh-PKE key generation in order to derive the shift (pk, sk). Decapsulation
is analogous. In Section 6.1, we give a lattice-based instantiation of PKE based on [APS23].

LuKEM. The scheme LuKEM is defined in Fig. 6. It assumes two building blocks: a
NIZKPoK, and a key-homomorphic UKEM.
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Construction LuKEM[UKEM, PoK]

Setup

ppUKEM ← UKEM.Setup
crs← PoK.Setup
return pp = (ppUKEM, crs)

KeyGen(pp = (ppUKEM, ∗))

return UKEM.KeyGen(ppUKEM)

Encaps(pp = (ppUKEM, ppPoK), pki)

(K, c, pki+1, ∗, sk)← UKEM.Encaps(ppUKEM, pki)
mti+1 ← PoK.Prove(crs, (ppUKEM, pki, pki+1), sk)
return (K, c, pki+1, mti+1)

Decaps(pp = (ppUKEM, ∗), ski, c, pki+1)

return UKEM.Decaps(ppUKEM, ski, c, pki+1)

Verifymt(pp = (ppPKE, crs), pki, pki+1, mti+1)

return PoK.Verify(crs, (ppUKEM, pki, pki+1), mti+1)

Fig. 6: Our final construction, which achieves UKEM security (Definition 3) by extending
a key-homomorphic UKEM (Definition 4) with a proof of knowledge PoK for the language
in Eq. (2).

Definition 4. A UKEM is key-homomorphic if it has the following two properties: (i)
public and secret keys are kh-PKE public and secret keys, (ii) Encaps outputs the shift sk
corresponding to pki+1 − pki.

LuKEMno-pv can be easily made key-homomorphic by having Encaps also output sk. The
NIZKPoK PoK then proves knowledge of this shift: the proved statement is a pair of PKE
public keys pki, pki+1 and the corresponding witness is a secret key sk for pki+1 − pki. We
define the relation R:(

x=(ppPKE, pki, pki+1), w=sk
)
∈ R ⇐⇒ pk(sk) = pki+1 − pki ∧ sk ∈ SK , (2)

where ppPKE defines SK. We let LuKEM
[
PKE, PoK

]
denote LuKEM instantiated with

LuKEMno-pv[PKE, H1, H2, H3] and PoK using random oracles H1, H2, H3. We present a
lattice-based instantiation of PoK in Section 6.2. We also prove in Appendix E that
LuKEM

[
PKE, PoK

]
is robust, i.e., correct in the presence of adversarial updates, if PKE is

correct and PoK is complete.

5.1 Security

Our main theorem shows that our UKEM construction LuKEM is IND-CCA secure.

Theorem 1. Let PKE be a key-homomorphic PKE with message space {0, 1}κ that is
(ℓ, δ)-correct, γ-spread and Shifty-IND-CPA secure, and let PoK be a straightline extractable
zero-knowledge proof system for the relation in (2). Then LuKEM[PKE, PoK] is IND-CCA
secure in the ROM.

Specifically, for any adversary A against IND-CCA security of LuKEM that issues qro
RO queries, qenc Enc queries and qdec Dec queries and creates a tree of depth at most ℓ,
there exist adversaries B, B1, B2 and B3 such that

AdvIND-CCA
LuKEM (A) ≤ (qenc + qdec) · AdvShifty-IND-CPA

PKE (B)
+ 2 · AdvZK

PoK(B2) + 2 · AdvSI
PoK(B1) + 2 · AdvExt

PoK(B3)
+ qro · (qenc + 1) · 2−κ + qdec · 2−γ + (2qro + qenc + 1) · δ .
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Proof outline. The full proof is given in Appendix F. For a modular treatment, we split
the proof in three steps and define two intermediate security notions for key-homomorphic
UKEM’s that are “between” IND-CPA and IND-CCA. The first, IND-CPA+, is similar to
IND-CCA except that instead of a decryption oracle the adversary gets an oracle Upd(i, sk),
which lets the adversary create a “Dec” node by shifting the keys of node i by a (well-
formed) update sk of its choice. We show that if PKE is Shifty-IND-CPA secure, then
LuKEMno-pv is IND-CPA+ secure and give ample intuition below.

The second notion, IND-CCA−, has a (restricted) decryption oracle, which does not
yet capture public verifiability; the oracle only creates a new node if Decaps succeeds.
LuKEMno-pv achieves this notion by simulating decryption via the random oracles, using
the technique from the FO transform. By adding member tags via the NIZKPoK we then
obtain (in a black-box way) our final scheme LuKEM, for which we prove IND-CCA security
assuming the underlying key-homomorphic UKEM (as in Definition 4) is IND-CCA− and
PoK is a straightline simulation-extractable NIZK.

From IND-CPA to IND-CPA+. We show that if PKE is Shifty-IND-CPA secure and correct,
then LuKEMno-pv is IND-CPA+ secure.

Relying on δ-correctness of PKE, we can assume that key generation does not fail and
thus the updated secret keys computed by the challenger during Enc and MChal calls
(using Decaps) are not ⊥. This implies that there are no half-nodes in the experiment.
This entails the last term in the security bound in Theorem 1.

Let A be an adversary against the IND-CPA+ security of LuKEMno-pv. Consider the
event Brk that occurs when A queries (one of) the RO on the message m∗ encrypted in c∗

returned by MChal. Until Brk occurs, the “real” and “random” IND-CPA+ experiments are
identical; the challenge key K, as well as r and d chosen by Encaps during the MChal query
are random and independent of A’s view. A’s challenge bit is thus perfectly hidden, and it
remains to upper-bound the probability of Brk. To this end, we construct a reduction B
against the Shifty-IND-CPA security of PKE.

Assuming no Upd queries. We first describe the reduction B assuming that A does not
make Upd queries. B is given pk∗ and access to the Chal oracle in the Shifty game B
guesses the index i∗, hoping that A queries MChal(i∗). As illustrated in Fig. 7a, B embeds
pk∗ as the update from the parent p∗ of i∗ to i∗, i.e., pki∗ = pkp∗ + pk∗. This allows B to
embed its challenge c∗ as the ciphertext returned by MChal(i∗): B queries its own oracle
Chal with two random messages m(0), m(1)←$ {0, 1}κ and the key shift skp∗ 9 (since there
are no Upd queries, B chose skp∗ itself). Chal returns c∗ which encrypts m(b) to pkp∗ + pk∗,
and B forwards c∗ to A as the output of MChal.

If A queries the RO on an input containing m(b′) for some b′, then B stops and outputs
b′. Observe that if B’s challenge bit is b then m(1−b) is random and independent of A’s
view. Thus, the probability that an RO query by A contains m(1−b) (and thus B loses) is
at most 2−κ. So if A triggers Brk then B outputs the correct bit except with probability
qro · 2−κ (by the union bound).

Embedding pk∗ and challenges. When embedding pk∗ as the update from node p∗ to i∗,
B simulates the other outputs of the Enc oracle, Ki∗ and ci∗ , by running Encaps with a
random message mi∗ . This means that, not knowing sk∗, B cannot consistently answer

9 The Chal oracle of Shifty-IND-CPA expects a vector of secret keys as input and sums them. For readability,
we directly consider this sum. Since the Upd oracle requires the same condition on individual secret keys
and the maximum number of keys ℓ is that for correctness, the reduction will never make an invalid
query.
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0 p∗
i∗ j. . . Enc MCh

ci∗ pkp∗ + pk∗ c∗

(a) “Simple case”: B embeds pk∗ as the update from p∗ to i∗, queries Chal on two random messages and
the shift skp∗ (assuming Enc edges between 0 and p∗). Chal returns c∗, which B forwards as the ciphertext
returned by MChal.

0 p∗
i∗ j ic

j′

. . . Enc Enc . . . MCh
Enc

ci∗ pkp∗ + pk∗ c∗
j

c∗
j′

(b) B embeds pk∗ as the first update on the path from 0 to ic for which A will break some ciphertext. B
embeds one challenge in each Enc-edge going out of i∗.

0 p∗
i∗ j ic

j′

. . . Enc Enc . . . MCh
Enc

ci∗ pkp∗ + pk∗ c∗
j pkj = pk′

j

skj = sk′
j(= skp∗ + sk∗ + skj)

c∗
j′

pkj = pk′
j′

skj′ = sk′
j′ (= skp∗ + sk∗ + skj′ )

(c) A can query the Rev oracle for any node outside the challenge path 0-ic. To answer such queries for
descendants of i∗, B uses its Chal oracle: Each time A queries Enc(i∗) creating node j, B queries Chal
which returns c∗

j , pk′
j′ and sk′

j′ . As the output of Enc, B returns c∗
j and pkj := pk′

j′ . As guaranteed by
Shifty-IND-CPA, sk′

j′ is the key skj′ .

Fig. 7: Simulations of the UKEM security experiment by reduction B to Shifty-IND-CPA
security running the UKEM adversary A, assuming there are no Upd edges. Orange marks
values obtained from the Shifty-IND-CPA challenger. Cyan marks nodes for which B does
not know the secret key and edges for which B doesn’t know the secret update sk.

if A queries mi∗ to the RO H3. But if A makes this query, then B should have guessed
differently and embedded pk∗ as the update from the parent of p∗ to p∗, and c∗ as ci∗ .

More generally, B’s strategy, as illustrated in Fig. 7b, is to guess the following index i∗:
Let ic denote the node for which A calls MChal(ic). Now guess the first node i∗ on the
challenge path (the nodes from the root 0 to ic) that has a child j created by an Enc or
MChal query, which returned cj , and A “breaks” cj . “Breaking” cj means that A queries
the message encrypted in cj to the RO. From another perspective, A breaking cj means
that B wins if it embeds c∗ as cj .

Observe that B does not know which child of i∗ will end up on the challenge path.
Therefore, it calls its Chal oracle for each query Enc(i∗) and MChal(i∗) and embeds the
challenge ciphertext as cj (where j is the new node) returned by its oracle Chal on fresh
random messages m

(0)
j and m

(1)
j .
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0 p∗
i∗ j∗ j ic

j′

. . . Enc Upd Upd Enc . . . MCh
Enc

ci∗

pkp∗ + pk∗ + pki∗→j∗

c∗
j pkj = pk′

j

skj = sk′
j

( = skp∗ + sk∗ + skj + ski∗→j∗ )

c∗
j′

pkj′ = pk′
j′

skj′ = sk′
j′ (= skp∗ + sk∗ + skj′ )

Fig. 8: Adjusting the strategy of the reduction B to deal with Upd queries. Magenta marks
edges for which A (playing in the IND-CPA+ game) provides secret keys sk. Later, these
edges will represent Dec queries for which the reduction will extract secret keys from
ciphertexts and RO queries (for A in the IND-CCAno-pv game) or PoKs (for A in the
IND-CCA game).

For this strategy we define a “break event” Brk that is more general than the one
defined above; it occurs whenever A queries any RO on the message encrypted in cj

returned by Enc(i∗) or MChal(i∗) for some i∗ on the challenge path. As soon as A makes
a query that contains any of the messages m

(b′)
j , B returns the bit b′. Again, if b is B’s

challenge bit, all m
(1−b)
j are independent of A’s view and B wins the Shifty-IND-CPA game

with overwhelming probability (if B’s guess was correct).

Answering Rev queries. Consider a query Enc(i∗) or MChal(i∗) which creates a new node
j′. If j′ does not end up on the challenge path, A can query Rev(j′). Thus, B needs to
generate an updated key pair (pkj′ , skj′) in a way that is consistent with A’s view. Recall
that in the game played by A the challenger sets pkj′ := pki∗ + pkj′ and skj′ := ski∗ + skj′

for a key pair (pkj′ , skj′) derived from d outputted by the RO on input m encrypted in c∗j′ .
B knows neither m nor ski∗ . However, unless Brk occurs (in which case B stops the

simulation), A does not query the RO on m. Therefore, from A’s perspective (pkj′ , skj′) is
generated independently at random, and so B can set the key pair (pkj′ , skj′) of revealed
node j′ to the value (pk′, sk′) it got from its Chal oracle when it created node j′. (Recall
that Chal computes sk′ := skp∗ + sk∗ + sk for a fresh sk, exactly as required.) See Fig. 7c.

Adding Upd queries. We modify B’s strategy to deal with A’s Upd queries. First, we look
at ancestors of p∗ that are created by Upd queries. This would be a problem if B did not
know skp∗ , which is the sum of the key shifts it sends to the Chal oracle. Fortunately,
since B has computed all nodes until then honestly, it knows all corresponding secret keys
including skp∗ .

Second, Upd queries mean that the parent of j for which A breaks cj may be created
by an Upd query, as illustrated in Fig. 8. Thus, we adjust B’s guessing strategy as follows.
Analogously to IND-CCA security (cf. Fig. 3), IND-CPA+ defines for an (honest) node i the
set dec-closure(i) of all its descendants reachable from i via only Upd edges. B’s strategy
is to guess the index i∗ of the first node created by an Enc query with a descendant
j∗ ∈ dec-closure(i∗) such that A breaks cj for some child j of j∗ created by an Enc query.
Accordingly, B embeds challenges in all Enc edges going out of dec-closure(i∗).

With the adjusted strategy, a challenge c∗j embedded by B is no longer encrypted to
pki∗ but to pkj∗ = pki∗ + pki∗→j∗ where pki∗→j∗ is the sum of updates chosen by A when
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it created the Upd edges between i∗ and j∗. This means that B needs to send to Chal
the key shifts that sum up to skp∗ + ski∗→j∗ . As we explained before, B can compute skp∗

honestly. Later (in Theorems 4 and 5), we will explain how Dec queries can be translated
to Upd queries.

6 Instantiation of Building Blocks

6.1 Key-Homomorphic PKE from Lattices

We start by recalling some background on lattices. The following definition is from [BF11]:

Definition 5 (Gaussian distribution). Let m ∈ N and c ∈ Rm and σ > 0. Define the
Gaussian function ρσ,c : Rm → R

ρσ,c(x) = exp
(
− π∥x− c∥22/σ2)

The Gaussian distribution on Zm with center c and parameter σ is defined as DZm,σ,c(x) =
ρσ,c(x)/

∑
y∈Zm ρσ,c(y). We write DZm,σ for DZm,σ,0. We further write DZm×n,σ for the

distribution obtained by sampling n vectors from DZm,σ and viewing them as the columns
of a matrix in Zm×n.

The following is from [BF11], adapted as [APS23, Lemma 2].

Definition 6 (Convolution). Let m ∈ N; let D1,D2 be two distributions on Zm. If two
independent random variables are distributed as X1 ∼ D1 and X2 ∼ D2, then their sum is
distributed as (

D1 ∗ D2
)
(x) :=

∑
y∈Zm

D1(x− y)D2(y) .

Lemma 1 (Gaussian convolution). Let c1, c2 ∈ Zn, let X1 ∼ DZn,σ1,c1, X2 ∼
DZn,σ2,c2, let Y be the distribution of X1 + X2 and let ε > 0. If

1/σ2
1 + 1/σ2

2 < π/
(

ln(2n(1 + 1/ε))
)

then
∆

(
Y,D

Zn,
√

σ2
1+σ2

2 ,c1+c2

)
< 2ε/(1− ε) .

Definition 7 (LWE assumption). Let q, n, m ≥ 0, S be a distribution on Zn
q and χ

be an error distribution on Zm. The goal of the adversary A in game LWEq,n,m,χ,S is to
distinguish between (A, b = As + e) and (A, u) for A←$ Zm×n

q , s ← S, e ← χm and
u←$ Zm

q . We define A’s advantage as

AdvLWE
q,n,m,χ,S(A) :=

∣∣ Pr
[
A(A, Ab + e)⇒ 1

]
− Pr

[
A(A, u)⇒ 1

]∣∣ .

For σ > 0, we write LWEq,n,m,σ to denote LWEq,n,m,χ,S when χ = DZm,σ and S the uniform
distribution over Zn

q .

The next definition is adapted from [APS23, Def. 13]. We state the “multi-secret variant”
in transposed form (which is how we use it in the proof of Theorem 2).
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Definition 8 (Multi-secret HNF adaptive extended LWE). Let q, n, m, k, B ≥ 0
and χ be an error distribution on Zm. We define the following game for β ∈ {0, 1}:

ExpmHaeLWE,(β)
q,n,m,k,χ,B (A)

A←$ Zn×m
q

(z0, z1, st)← A1(A)
if ∥z0∥∞ > B or ∥z1∥∞ > B

return 0
X← χk×n; E← χk×m; g← χk

h← Xz0 + Ez1 + g
if β = 0 then C← XA + E
if β = 1 then C←$ Zk×m

q

return A2(st, C, h)

We define A’s advantage as

AdvmHaeLWE
q,n,m,k,χ,B(A) :=

∣∣∣Pr
[
ExpmHaeLWE,(1)

q,n,m,k,χ,B (A)⇒ 1
]
− Pr

[
ExpmHaeLWE,(0)

q,n,m,k,χ,B (A)⇒ 1
]∣∣∣ .

As for LWE, we write AdvmHaeLWE
q,n,m,k,σ,B for AdvmHaeLWE

q,n,m,k,DZm,σ ,B. The (multi-) HaeLWE assump-
tion was shown to be implied by LWE for appropriate choices of parameters [APS23,
Lemma 5 and Theorem 1]. (We state the corollary for LWE with parameter σ/2, which is
how we will apply it in Corollary 2.)

Corollary 1. Let q ≥ 25 be a prime, n ≥ 1, m ≥ 16n + 4 log log q, γ, σ, B ≥ 0 with

σ ≥
√

8 ln(2(n + 1)(1 + 1/ε))/π and γ > σ
√

(1 + nB2)/2 .

Define m′ := m − 16n − 4 log log q. For any adversary A against multi-HaeLWE there
exists a reduction B with similar running time against LWE so that

AdvmHaeLWE
q,n,m′,k,γ,B(A) ≤ 4k ·

(
AdvLWE

q,n,m,σ/2(B) + 4ε/(1− ε)
)

.

The APS key-homomorphic PKE. In Fig. 9 we recall the PKE scheme from [APS23],
which is derived from Kyber [BDK+18], which is based on [LPS10]. The scheme depends
on several parameters.

For message space M := Zn
p , to guarantee that, after ℓ (called k in APS) subsequent

key updates, the decryption failure probability is bounded by δ, we require that for
y :=

√
−2 ln(δ/(4n)) we have

q > 2pσc · (2y2σnℓ + y) . (3)

For security, in terms of a statistical security parameter ε, we require that10

σ ≥
√

8 ln(2n(1 + 1/ε))/π and σc > 2σ
√

1 + n((ℓ + 1)yσ)2 ,

and that LWE holds for certain parameters (see Corollary 2).
For correctness, we first bound the norms ∥s∥∞ and ∥e∥∞:

10 The authors [APS23] claim to require σ ≥
√

2 ln(2n(1 + 1/ε))/π (i.e, only half of our bound), which
(by Lemma 1) guarantees that the sum of two DZn,σ-distributed random variables is close to DZn,

√
2σ;

however, in their proof, they require this also for random variables with variance σ/2.
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Construction PKELWE

Parameters: n, q, p, σ, σc

Setup

A←$ Zn×n
q // can be derived from seed

return pp = A

KeyGen(pp = A)

s, e← DZn,σ

b← As + e
return (pk = b, sk = (s, e))

Encrypt(pp = A, pk = b, m ∈ Zn
p )

X, E← DZn×n,σc

f ← DZn,σc

C← XA + E
c← Xb + f + ⌊q/p⌋ ·m mod q
return ct = (C, c)

Decrypt(pp = A, sk = (s, ∗), ct = (C, c))

v← c−Cs
return ⌊p/q · v⌉p

Fig. 9: LWE-based (key-homomorphic) PKE scheme.

Lemma 2. Pr
[
∥s∥∞ ≥ yσ ∨ ∥e∥∞ ≥ yσ

]
< δ/2.

Proof. Since ∥x∥2 ≤
√

n∥x∥∞, we have

Pr
x←DZn,σ

[
∥x∥∞ ≥ yσ

]
≤ Pr

x←DZn,σ

[
∥x∥2 ≥

√
nyσ

]
≤ e−(n/2)(

√
2π·y−1)2

,

where the last inequality follows from a Gaussian tail bound ([APS23, Lemma 1] for
t :=
√

2π · y). Since y > 1, we have
√

2π · y − 1 > y, and thus the above is (strictly) upper-
bounded by e−(n/2)y2 = (δ/4n)n ≤ δ/4. The lemma now follows by a union bound. ⊓⊔

Motivated by the above, we define the extended secret key space (which encompasses
keys that have been updated up to ℓ times) as

SKℓ :=
{
(s, e) ∈ Zn×n

∣∣ ∥s∥∞, ∥e∥∞ ≤ B
}

with B = (ℓ + 1)yσ .

The following correctness property was shown in [APS23, Appendix B.2]:

Proposition 1. Let ℓ > 1 and δ > 0. Consider the scheme in Fig. 9 with q satisfying (3)
for ℓ and δ. Let sk ∈ SKℓ and m ∈M. Then

Pr
[
Decrypt(sk, Encrypt(pk(sk), m) ̸= m

]
≤ δ .

Moreover, γ-spreadness was shown in [APS23, Appendix B.3].

Shifty Security of APS scheme. The basic security notion for UPKE defined in [APS23],
and shown to be satisfied by the APS scheme, is IND-CR-CPA. In the security game, the
adversary receives a public key (A, b∗ = As∗+e∗) and can ask for updates of this key using
randomness (si, ei) specified by the adversary. This results in key (A, b = b∗ + As + e)
with s :=

∑
si and e :=

∑
ei. The adversary then specifies (m0, m1) and is given an

encryption of mβ, for β ← {0, 1}, under key (A, b). It can then make more updates
(their total number required to be less than t), whose sum we denote by (ŝ, ê), resulting
in key (A, b̂). After one honest update, using (s, e), the adversary is (basically11) given
(s′ := s∗ + s + ŝ + s, e′ := e∗ + e + ê + e) as well as encryption of s under (A, b̂).
11 In addition to s′, the adversary is given pk′ := (A, b′ := As′ + e′) instead of e′, which can however be

computed from the former as b′ −As′.
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IND-CR-CPA from [APS23] implies a variant of Shifty-IND-CPA where the adversary
is only allowed one Chal query: Given an adversary A against Shifty, we construct B
against IND-CR-CPA: B is given (A, b∗) and forwards it to A. When A makes a query
Chal(m0, m1, (s, e)), B makes one update query (s, e) and returns (m0, m1). It receives
an encryption ct of mβ under (A, b := b∗ + As + e), makes no more update queries and
receives sk′ := (s∗ + s + s, e∗ + e + e) for random (s, e) as well as an encryption ct∗ of s.
Reduction B answers A’s Chal query with (ct, sk′) and returns A’s output bit.

We give a proof of Shifty security of APS, since (i) we achieve better bounds for
single-Chal security and (ii) we generalize to multiple challenge queries. (Note that single-
challenge security does not imply multi-challenge security by a standard hybrid argument,
since sk′ requires the secret key.)

Theorem 2. Let ε, δ ∈ (0, 1), ℓ > 0, q, p prime, σc ≥ σ ≥
√

8 ln(2n(1 + 1/ε))/π, and
n, m > 0, and B ≥ (ℓ + 1)yσ for y =

√
−2 log(δ/(4n)). Then for any adversary A making

at most k Chal queries for secretkeys from SKℓ−1, there is a multi HNF-adaptive extended
LWE adversary B and LWE adversary C s.t.

AdvShifty-IND-CPA
PKE (A) ≤ k · AdvmHaeLWE

q,n,n,n,σc,B(B) + AdvLWE
q,n,(k+1)n,σ/2(C) + (k + 6) 2ε

1− ε
+ δ

2 .

We give the proof12 in Appendix G. From Corollary 1, setting γ := σc, B := (ℓ + 1)yσ),
and m′, k := ℓ, we immediately get:

Corollary 2. Assume q ≥ 25, m ≥ 16n + 4 log log q, σ ≥
√

8 ln(2(n+1)(1+1/ε))/π and
σc > σ

√
(1+n((ℓ+1)yσ)2)/2 for y =

√
−2 log(δ/(4n)).

Let m := 17n + 4 log log q, Then for any adversary A making at most k Chal queries,
there exist LWE adversaries B and C such that

AdvShifty-IND-CPA
PKE (A) ≤ 4kn · AdvLWE

q,n,m,σ/2(B) + AdvLWE
q,n,(k+1)n,σ/2(C)

+
(
8kn + k + 6

) 2ε

1− ε
+ δ

2 .

We note that following the proof in [APS23] (and including a bad-key event) would
result in a bound

AdvShifty-IND-CPA
PKE (A) ≤ k · AdvmHaeLWE

q,n,(n+1),n,σc,B(B) + AdvLWE
q,n,n,σ/2(C)

+ (k(2n + 1) + 6)2ε/(1− ε) + δ/2 .

6.2 NIZKPoK

From NIZK to NIZKPoK. We give a black-box construction of a NIZKPoK from a
PKE with a public key space PK (e.g. for our UKEM, PK = Zm

q )13, a random oracle G
with range PK and a NIZK (that uses a different random oracle H). The construction Π
can be found in Fig. 10; in Fig. 18 we give the additional algorithms alternative setup,
simulation and extractor. In a nutshell, the NIZKPoK CRS crs contains a random seed s
and a NIZK CRS crs′. The seed s is expanded to a PKE public key pk ∈ PK via random
oracle G. To prove that (x, w) ∈ R, the prover encrypts w under pk and gives a NIZK proof
12 For simplicity, we assume the Chal oracle in the Shifty-IND-CPA game directly accepts keys from the

extended key space SKℓ rather than vectors of standard secret keys that are then summed up.
13 Note that PK may contain values outside support of key generation.
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Construction PoK[PKE, Π, G, H]

Setup

s←$ {0, 1}κ

crs′ ← Π.Setup
pp← PKE.Setup
crs← (s, crs′, pp)
return crs

PG(crs = (s, crs′, pp), x, w)

r←$ {0, 1}∗

pk← G(s)
c← Encrypt(pp, pk, w; r)
π′ ← Π.PH(crs′, (x, pk, c), (r, w))
return π = (c, π′)

VG(crs = (s, crs′, pp), x, π)

pk← G(s)
(π′, c)← π
return Π.VH(crs′, (x, pk, c), π′)

Fig. 10: The NIZKPoK construction making black box use of a PKE scheme PKE, a NIZK
Π and two random oracles G and H, where κ > 0 and G maps to PK. The additional
algorithms SetupAlt, S and Extract are given in Fig. 18.

(using random oracle H) that the ciphertext contains a witness for x.14 More precisely, we
require a NIZK for the following relation R̃:

(x̃ = (x, pp, pk, c), w̃ = (w, r)) ∈ R̃ ⇐⇒ c = Encrypt(pp, pk, w; r) ∧ (x, w) ∈ R.

Instantiating this with R used by our construction (cf. Eq. (2)), we get

(x̃ = ((ppPKE, pki, pki+1), pp, pk, c), w̃ = (sk, r)) ∈ R̃
⇐⇒ c = Encrypt(pp, pk, sk ; r) ∧ pk(sk) = pki+1 − pki ∧ sk ∈ SK, (4)

Alternative setup. The alternative setup algorithm samples s and a key pair (pk, sk). It
programs G(s) as pk and sets sk as the extraction trapdoor td. Outputs of the alternative
setup must be indistinguishable from outputs of the normal setup. For this, public keys
outputted by KeyGen must look like uniformly random elements of the public key space
PK. This property was previously defined in [BCP+23] where it is called fuzziness and
proved that for Kyber it is implied by (M-)LWE. The following lemma follows from a
straightforward reduction.

Lemma 3. If PKE is fuzzy then NIZKPoK in Fig. 10 guarantees setup-indistinguishability.
In particular, for any adversary A, there exists a reduction B such that

AdvSI
PoK(A) ≤ AdvFuzzy

PKE (B) .

Simulator. The simulator S, instead of encrypting the witness, encrypts zeros (making the
statement for the NIZK false). Thus, S uses the NIZK simulator to generate the NIZK
proof. This is formalized by the following lemma.

Lemma 4. If PKE is IND-CPA secure and NIZK is zero-knowledge, then NIZKPoK in
Fig. 10 is zero-knowledge (Definition 16). In particular, for any adversary A there exist
reductions B, B′ such that

AdvZK-PoK
PoK (A) ≤ AdvIND-CPA

PKE (B) + AdvZK-NIZK
Π (B′) .

14 Technically, PoK is defined with one RO. We use two for exposition, without loss of generality.
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Extractor. The trapdoor td for the extractor contains the secret key sampled by the
alternative setup. Thus, a witness can be extracted from a proof π by decrypting the
ciphertext contained in π. If π verifies then the contained NIZK verifies and by (simulation-
)soundness of NIZK the extractor will return a correct witness. We prove the following
lemma.

Lemma 5. If PKE is δ-correct and NIZK is adaptively simulation-sound, then NIZKPoK
in Fig. 10 is straightline simulation-sound (Definition 17). More precisely, if PKE is
δ-correct then for any adversary A there exist a reduction B such that

AdvExt
PoK(A) ≤ δ + AdvSS

Π (B) .

Instantiation from Lattices. To give a lattice-based instantiation of NIZKPoK from
Fig. 10, we instantiate PKE with Kyber [BDK+18] with PK = Rn

q . Fuzziness follows
from the Module LWE assumption [BCP+23, Cor. 1]. (Following APS, we propose to
instantiate the kh-PKE from Section 6.1 also in the module setting.) We let pkky = (A′, b′),
cky = (C, c) and rky = (X, E, f) denote a Kyber public key, ciphertext and randomness,
respectively. For more concrete parameters and distribution choices, we refer to [BDK+18].
Hence, formally, the NIZK relation from (4) becomes the following:

(x̃ = ((A, bi,bi+1), pkky, cky), w̃ = ((s, e), rky)) ∈ R̃
⇐⇒ cky = Kyber.Encrypt(pkky, (s, e); rky)

∧ As + e = bi+1 − bi ∧ ∥s∥2 ≤ B ∧ ∥e∥2 ≤ B

However, the secret key component e is implicitly defined as bi+1−bi−As, thus it suffices
to only encrypt s, leading to the following simpler relation:

(x̃ = ((A, bi, bi+1), pkky, cky), w̃ = ((s, e), rky)) ∈ R̃
⇐⇒ cky = Kyber.Encrypt(pkky, s; rky) ∧ ∥s∥2 ≤ B ∧ ∥bi+1 − bi −As∥2 ≤ B

⇐⇒ cky = (C, c) = (XA′ + E, Xb′ + f + ⌊q/p⌋ · [s | e]) (5)
∧ ∥X∥2, ∥E∥2, ∥f∥2 ≤ B′ ∧ ∥s∥2, ∥bi+1 − bi −As∥2 ≤ B

Proving a statement for R̃ therefore requires proving 2 norm bounds for matrices, 3
norm bounds for vectors and n2 + n linear equations over Rq. In contrast, [APS23] requires
4 norm bounds for matrices, 4 norm bounds for vectors and 2n2 + 2n linear equations. As
[APS23], we suggest to use the Lyubashevsky-Nguyen-Plançon framework [LNP22]. We
note that we need adaptive simulation-soundness for our NIZK, which has been argued to
hold for [LNP22] in [BBP23, Lemma 2].

7 Parameters

Following [APS23], we provide concrete parameters for the module variant of our scheme;
we replace the Gaussian distribution by a centered binomial distribution Bη defined in
[BDK+18] with η > 0 and elements contained in [−η, η]. Concretely, we suggest to use
η = 2, as done in [BDK+18]. We let R = Z[X]/(Xd + 1), Rq = R/qR and we consider the
base ring to be R instead of Z. For p prime, the message space is Rp, which is of size pd.
When encrypting vectors (as done when encrypting secret keys), the message space is Rn

p .
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Table 2: Size comparison for different parameter sets, where λ is the security level, η = 2,
p = 5 and δ ≈ 0 for all schemes. All sizes are without potential optimizations or compression.

λ q n d B ℓ |pk| |ct|+ |mt|
[APS23] 115 ≈ 221 3 256 1536 25 4.1 KB 61.1 KB

[this work] 115 ≈ 221 3 256 1536 25 2.0 KB 44.9 KB
[APS23] 125 ≈ 226 4 256 2048 210 6.7 KB 88.7 KB

[this work] 125 ≈ 226 4 256 2048 210 3.4 KB 60.1 KB
[APS23] 105 ≈ 231 2 512 2048 215 8.0 KB 81.0 KB

[this work] 105 ≈ 231 2 512 2048 215 4.0 KB 57.2 KB
[APS23] 137 ≈ 236 3 512 3072 220 13.9 KB 130.7 KB

[this work] 137 ≈ 236 3 512 3072 220 6.9 KB 86.9 KB

We adopt the parameters from [APS23], for which they have computed security and
correctness for various numbers of updates.15 The concrete parameters and sizes are given
in Table 2. The size of an element in Rq is computed as log(q)d. We can also use the bit
dropping technique that is used in Kyber to obtain more compact ciphertexts. In Table 2,
however, we naively compute the ciphertext sizes without any optimizations or compression
for our scheme and that of [APS23]. We explain how we computed the numbers below.

Our Sizes. Our UKEM ciphertext, which we denote by the components (c, d) ∈ R1×n
q ×Rq,

and key K for public key pk = (A, b) are computed as follows:

c = x⊤A + e⊤, d = x⊤b + f + ⌊q/p⌋ ·m, K = H1(pk, m), (6)

where x, e ∈ Rn
q , f ∈ Rq are derived (deterministically) from H2(pk, m) for a random

m ∈ Rp. Since the secret-key shift s, e ∈ support(Bn
η ) is also computed via a random

oracle, we do not need to encrypt it explicitly in the ciphertext. However, we do need
to encrypt s as part of the NIZKPoK in the member tag.16 Hence, we get an additional
ciphertext (c0, d0) ∈ Rn×n

q ×Rn
q for public key pkcrs = (A0, b0)17 computed as

c0 = X0A0 + E0, d0 = X0b0 + f0 + ⌊q/p⌋ · s, (7)

where X0, E0 ∈ Rn×n
q , f0 ∈ Rn

q ; and s ∈ Bn
η is represented as an element in Rn

p . Note
that we now have matrices since we encrypt a vector. The member tag then consists of
(c0, d0, π), where π is the proof for the statement in Eq. (5). The combined public key
consists of (A, b, A0, b0), where we derive all components except b via a seed, hence we
compute its size by log(q)dn + 256 bits.

We give estimates on the size of π using the LaZer library [LSS24]. LaZer lets us specify
lattice relations based on which it automatically creates parameters of a proof system
15 We have corrected the bit security levels using the lattice estimator [APS15] (commit 162c505). The

numbers given in [APS23] were incorrect, which was confirmed by the authors. Correctness after ℓ
updates was shown by [APS23] using the Kyber script in https://github.com/pq-crystals/security-
estimates.

16 Technically, our kh-PKE abstraction requires encrypting both s and e. We note that one can compute e
from s and the public key (A, b = As + e). Thus, we only count encrypting s towards the ciphertext
size.

17 Our scheme could potentially be further optimized by using the original Kyber parameters here, as
outlined in Section 6.2. However, since LaZer does not allow to specify such choices, we use the same
parameters as for the key-homomorphic PKE.
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along with proof sizes, using either the LNP framework [LNP22] or LaBRADOR [BS23].
We run LaZer on our relation from Section 6.2 for all four parameter sets and obtain proof
sizes from 34.1 KB (smallest parameter set) to 50.2 KB (biggest parameter set). Since we
consider a centered binomial distribution, we set the l2-norm bounds to B = B′ = n · η · d,
which is the worst case bound (in fact a tighter bound can be used, resulting in smaller
parameters).

The final sizes for four different parameter sets are summarized in Table 2.

APS Sizes. We now also recall how the UKEM scheme from [APS23] is constructed. Note
that their scheme (when adding a NIZK) achieves IND-CU-CCA security which is a weaker
notion than our IND-CCA definition. Still, our sizes improve upon theirs substantially. We
explain the reasons for this below.

Since our scheme is based on the underlying APS UPKE, the APS ciphertext (c, d) is
the same as in Eq. (6), however, for notational consistency we denote their public key by
(A0, b0). Then the ciphertext and UKEM key look as follows:

c = x⊤A0 + e⊤, d = x⊤b0 + f + ⌊q/p⌋ ·m, K = H1(m, c, d).

where x, e ∈ Rn
q , f ∈ Rq are derived (deterministically) from H0(pk, m) for a random

m ∈ Rp. Since APS use the long syntax, we also need to include an explicit update
ciphertext, computed via their dedicated update algorithms, and we obtain a second
ciphertext (c0, d0):

c0 = X0A0 + E0, d0 = X0b0 + f0 + ⌊q/p⌋ · s,

where variables (and thus sizes) are the same as in Eq. (7).
Finally, in order to achieve security against chosen updates, APS uses a NIZK proving

that two ciphertexts encrypt the same secret key shift. Hence, they compute a another
ciphertext (c1, d1) just as (c0, d0), but to an additional public key (A1, b1), and add a
NIZK proof πAPS for the following relation R̃APS:

(x̃ = (A0, A1, b0, b1, b, c0, d0, c1, d1), w̃ = (X0, X1, E0, E1, f0, f1, s, e)) ∈ R̃APS

⇐⇒ c0 = X0A0 + E0 ∧ d0 = X0b0 + f0 + ⌊q/p⌋ · s
∧ c1 = X1A1 + E1 ∧ d1 = X1b1 + f1 + ⌊q/p⌋ · s
∧ ∥X0∥2, ∥X1∥2, ∥E0∥2, ∥E1∥2, ∥f0∥2, ∥f1∥2 ≤ B′

∧ ∥s∥2, ∥b− b0 −A0s∥2 ≤ B.

Here B and B′ are the same as in our scheme and we give estimates on the NIZK sizes
using LaZer. Since we have more relations here, the proof sizes are larger. In particular,
they range from 42.2 KB (smallest parameter set) to 66.5 KB (biggest parameter set).

The total ciphertext (with member tag) is then (c, d, c0, d0, c1, d1, πAPS). The additional
ciphertext component adds another 8.1 KB (smallest parameter set) to 27.5 KB (biggest
parameter set). Moreover, public keys consist of b0, b1 and a seed to derive A0 and A1,
which explains the increase by around a factor 2 compared to our scheme.
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[AAN+22] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group
key agreement. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 815–844. Springer, Cham, May / June 2022.
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A PKE Definitions

For completeness, we first define spreadness and CPA security for PKE.

Definition 9 (γ-spreadness [HHK17]). Let γ > 0. We say that a (key-homomorphic)
PKE PKE is γ-spread if for all m ∈ M, c ∈ {0, 1}∗, pp ∈ PKE.Setup and (pk, sk) ∈
PKE.KeyGen(pp), we have Pr[Encrypt(pk, m) = c] ≤ 2−γ, where the probability is taken
over the random coins of Encrypt.

30

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/


Game PKE IND-CPA Security

ExpIND-CPA
PKE (A)

b←$ {0, 1}
pp← Setup
(pk, sk)← KeyGen(pp)
b′ ← AChal(pk)
return (b = b′)

Oracle Chal(m0, m1)

c← Encrypt(pp, pk, mb)
return c

Fig. 11: The IND-CPA security game for PKE PKE = (Setup, KeyGen, Encrypt, Decrypt)
and adversary A.

Definition 10 (PKE IND-CPA). Let game IND-CPA for PKE be as defined in Fig. 11.
The advantage of an adversary A in that game is defined as

AdvIND-CPA
PKE (A) := 2 Pr

[
ExpIND-CPA

PKE (A) = 1
]
− 1.

We further recall the definition of a fuzzy PKE, originally defined for KEMs [BCP+23].

Definition 11 (Fuzzy PKE). Let PKE be a PKE scheme and let pp← Setup such that
pp defines a public key space PK. We define the advantage of an adversary A in breaking
fuzziness of PKE as

AdvFuzzy
PKE (A) := |Pr[A(pp, pk) = 1 | (pk, sk)← KeyGen(pp)]− Pr[A(pp, pk) = 1 | pk←$ PK]| .

B Proof Systems

A Non-Interactive Proof System (NIPS) for an NP relation R in the random oracle (RO)
model is a triple of algorithms, all given access to an RO evaluation oracle H:

Setup. crs← SetupH outputs a common random string crs.
Setup. crs← Setup(idx ∈ I) outputs a common random string crs.
Prove. π ← PH(crs, x, w) on input a statement x and a witness w, outputs a proof π

that (x, w) ∈ R.
Verification. 0/1← VH(crs, x, π) verifies a proof π of statement x, i.e., that (x, w) ∈ R

for some w.

Completeness. For a NIPS we only define completeness. It requires that proofs outputted
by P are accepted by V for any statements generated by a (possibly undounded) adversary
adaptively depending on the random crs.18

Definition 12 (NIPS Completeness). Let Π be a NIPS and ExpComplete
Π be as defined

in Fig. 12. The advantage of a (possibly unbounded) adversary A against completeness of
Π is defined as

AdvComplete
Π (A) := Pr

[
ExpComplete

Π (A) = 1
]
.

We shorthand call a NIPS (and later NIZK, NIZKPoK) δ-complete if AdvComplete
Π (A) ≤ δ.

18 One sometimes considers a weaker notion of non-adaptive completeness that holds for all x and a
crs sampled independently from x. The following NIPS separates the two notions: Let R′ be an NP
relation. Define relation R as the set of (x = (a, x′), w) where a is arbitrary and (x′, w) ∈ R. Take any
adaptively-complete NIPS’ for R′ and construct a NIPS for R where P((a, x′), w) outputs P(x′, w) if
a ̸= crs and ⊥ otherwise. An adaptive adversary can break completeness with any statement (crs, ∗).
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Game Complete for Non-Interactive Proof Systems

ExpComplete
Π (A)

H[·]← ⊥
crs← SetupH

(x, w)← AH(crs)
if (x, w) /∈ R then return 0
π ← PH(crs, x, w)
return 1− VH(crs, x, π)

Oracle H(α)

if H[α] = ⊥ then
H[α]← $

return H[α]

Fig. 12: Completeness game for NIPS Π = (Setup, P, V) for NP relation R.

Non-Interactive Zero-Knowledge (NIZK). In the programmable random oracle (RO)
model, a Non-Interactive Zero Knowledge proof system (NIZK) for an NP relation R is
a NIPS for R with the following additional algorithm, given access to an RO evaluation
oracle H and an RO programming oracle P.
Simulation. π ← SH,P(crs, x) outputs a simulated proof π for statement x.19

We define two security properties of a NIZK: adaptive simulation-soundness and
zero-knowledge.
Definition 13 (NIZK Adaptive Simulation-Soundness). Let Π be a NIZK and
ExpSS

Π be as defined in Fig. 13. The advantage of a (possibly unbounded) adversary A
against adaptive simulation-soundness of Π is defined as

AdvSS
Π (A) := Pr

[
ExpSS

Π (A) = 1
]

.

Definition 14 (NIZK Zero-Knowledge). Let Π be a NIZK and ExpZK-NIZK
Π be as

defined in Fig. 14. The advantage of a (possibly unbounded) adversary A against zero-
knowledge of Π is defined as

AdvZK-NIZK
Π (A) := 2 Pr

[
ExpZK-NIZK

Π (A) = 1
]
− 1.

NIZK Proof of Knowledge (NIZKPoK). In the programmable random oracle model,
a NIZK Proof of Knowledge (NIZKPoK) for an NP relation R is a NIPS for R with
three additional algorithms, both given access to an RO evaluation oracle H and an RO
programming oracle P:
Alternative Setup. (crs, td)← SetupAltH,P outputs a common random string crs with

trapdoor td.
Simulation. π ← SH,P(td, x) outputs a simulated proof π for statement x.
Extraction. w ← ExtractH,P(td, x, π) outputs a witness w for theorem x given trapdoor

td and a proof π for x.

Remark 1. In contrast to NIZK, we define NIZKPoK with an alternative setup that outputs
a trapdoor for the simulator and extractor. For simplicity, we use the same trapdoor in
both algorithms. This is the setting needed for our construction.20

19 For simplicity, we define NIZK with CRS but without an alternative setup algorithm outputting a CRS
with a trapdoor for the simulator. This is the setting required for the lattice-based NIZK we use; the
simulator only needs to program the RO.

20 In fact, our simulator does not need a trapdoor but we need the zero-knowledge definition to use the
trapdoored setup.
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Game SS for Adaptive Simulation-Soundness

ExpSS
Π (A)

H[·], π[·]← ⊥
crs← SetupH

(x, π)← AH,Simulate(crs)
return VH(crs, x, π) ∧ ((x, ·) ̸∈ R)

∧ (π[x] = ⊥)

Oracle Simulate(x)

if π[x] = ⊥ then
π[x]← SH,P(crs, x)

return π[x]

Oracle H(α)

if H[α] = ⊥ then
H[α]← $

return H[α]

Oracle P(α, β)

req H[α] ∈ {⊥, β}
H[α]← β

Fig. 13: The adaptive simulation-soundness security game for NIZK Π = (Setup, P, V, S)
for NP relation R.

Game ZK-NIZK and ZK-PoK for Zero Knowledge

ExpZK-NIZK
Π (A), ExpZK-PoK

Π (A)

b←$ {0, 1}

H[·], π[·]← ⊥

crs← SetupH // ZK-NIZK

(crs, td)← SetupAltH,P// ZK-PoK

b′ ← AH,Prove(crs)
return (b = b′)

Oracle Prove(x, w)

req (x, w) ∈ R
if π[x] = ⊥ then

if b = 0 then
π[x]← PH(crs, x, w)

else

// ZK-NIZK
π[x]← SH,P(crs, x)

// ZK-PoK
π[x]← SH,P(td, x)

return π[x]

Oracle H(α)

if H[α] = ⊥ then
H[α]← $

return H[α]

Oracle P(α, β)

req H[α] ∈ {⊥, β}
H[α]← β

Fig. 14: The adaptive zero knowledge security game for NIZK and NIZKPoK for NP
relation R.

In addition to NIZK properties, a NIZKPoK should provide the following: setup-
indistinguishability and straightline simulation-extractability. We note that the latter
implies soundness. We also modify the zero-knowledge definition by replacing Setup with
SetupAlt.

Definition 15 (NIZKPoK Setup Inditstinguishability). Let Π be a NIZKPoK and
ExpSI

Π be as defined in Fig. 15. The advantage of a (possibly unbounded) adversary A
against setup indistinguishability of Π is defined as

AdvSI
Π(A) := 2 Pr

[
ExpSI

Π(A) = 1
]
− 1.

Definition 16 (NIZKPoK Zero-Knowledge). Let Π be a NIZKPoK and ExpZK-PoK
Π

be as defined in Fig. 14. The advantage of a (possibly unbounded) adversary A against
zero-knowledge of Π is defined as

AdvZK-PoK
Π (A) := 2 Pr

[
ExpZK-PoK

Π (A) = 1
]
− 1.
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Game SI for Setup Indistinguishability

ExpSI
Π(A)

b←$ {0, 1}
H[·], π[·]← ⊥
crs0 ← SetupH

(crs1, ∗)← SetupAltH,P

b′ ← AH(crsb)
return (b = b′)

Oracle H(α)

if H[α] = ⊥ then
H[α]← $

return H[α]

Oracle P(α, β)

req H[α] ∈ {⊥, β}
H[α]← β

Fig. 15: The setup-indistinguishability game for NIZKPoK Π for NP relation R with setup
Setup and trapdoor setup SetupAlt.

Game Ext for Straight-Line Simulation-Extractability

ExpExt
Π (A)

result← 0
H[·], π[·]← ⊥
(crs, td)← SetupAltH,P

AH,Simulate,Test(crs)
return result

Oracle Test(x, π)

req VH(crs, x, π) = 1
w ← ExtractH,P(td, x, π)
if π[x] = ⊥ ∧ (x, w) ̸∈ R then

result← 1
return w

Oracle Simulate(x)

if π[x] = ⊥ then
π[x]← SH,P(td, x)

return π[x]

Oracle H(α)

if H[α] = ⊥ then
H[α]← $

return H[α]

Oracle P(α, β)

req H[α] ∈ {⊥, β}
H[α]← β

Fig. 16: The extractability security game for NIZKPoK Π = (Setup, S, P, V, SetupAlt,
Extract) for NP relation R and random oracle H.

Definition 17 (NIZKPoK Straightline Simulation-Extractability). Let Π be a
NIZKPoK and ExpExt

Π be as defined in Fig. 16. The advantage of a (possibly unbounded)
adversary A against setup indistinguishability of Π is defined as

AdvExt
Π (A) := Pr

[
ExpExt

Π (A) = 1
]

.

C UKEM Robustness

Correctness, as defined in Section 4, concerns honest executions of the scheme. To capture
correctness in the presence of adversarially chosen updates we define the notion of robust-
ness. Intuitively, in UKEM applications the adversary may inject arbitrary ciphertexts
to an honest Alice and arbitrary corresponding updates to an honest Bob. Robustness
guarantees that (if Alice and Bob accept the ciphertexts and updates) then Alice’s updated
secret key decrypt Bob’s ciphertexts encrypted to the updated public key. In other words,
the adversary cannot make honest parties accept a non-functional key pair.

Definition 18 (UKEM Robustness). Let ExpRob
UKEM(A) be as defined in Fig. 17. The

advantage of a (possibly unbounded) adversary A in that game is defined as

AdvRob
UKEM(A) := Pr

[
ExpRob

UKEM(A) = 1
]
.
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Game Rob for Robustness

ExpRob
UKEM(A)

(j, win)← (0, 0)
pp← Setup
(pk0, sk0)← KeyGen(pp)
AEnc,Dec(pp, pk0, sk0)
return win

Oracle Dec(i, c, pk)

req ski ̸= ⊥
j ← j + 1
(K, skj)← Decaps(pp, ski, c, pk)
req skj ̸= ⊥
pkj ← pk
return (K, skj)

Oracle Enc(i)

req ski ̸= ⊥
(K, c, pk, mt)← Encaps(pp, pki)
(K′, sk′)← Decaps(pp, ski, c, pk)
if K = ⊥ ∨K ̸= K′ then

win← 1
if ¬Verifymt(pp, pki, pk, mt) then

win← 1

Fig. 17: Robustness game for UKEM = (Setup, KeyGen, Encaps, Decaps, Verifymt) and ad-
versary A. We use req condition to denote that if condition is false, then the current
function, and any function calling it, stops and returns ⊥.

Construction PoK Alternative Setup, Simulator and Extractor

SetupAltG,H,P

s←$ {0, 1}κ

crs′ ← Π.Setup
crs← (s, crs′)
(pk, sk)← PKE.KeyGen
P(s, pk)// Program G(s)← pk
return (crs, td = (crs, sk))

SG,H,P(td, x)

(crs, ∗)← td
(s, crs′)← crs
pk := G(s)
c← Encrypt(pk, 0ℓ)
x′ := (x, pk, c)
π′ ← Π.S(crs′, x′)
return π = (c, π′)

ExtractG,H,P(td, x, π)

(∗, sk)← td
(c, ∗)← π
w ← PKE.Decrypt(sk, c)
return w

Fig. 18: The alternative setup, simulator and extraction algorithms for NIZKPoK construc-
tion PoK[PKE, Π, G, H] in Fig. 10. We assume w has constant length ℓ.

Further, for ℓ > 0 and δ > 0, we say that UKEM is (ℓ, δ)-robust if for any (possibly
unbounded) adversary A that creates a tree of depth at most ℓ, we have

Pr
[
ExpRob

UKEM(A) = 1
]
≤ δ.

D Security of NIZKPoK construction

Additional Algorithms. The additional algorithms of NIZKPoK are in Fig. 18.

Completeness

Lemma 6. If PKE is δ1-correct and NIZK is δ2-complete, then NIZKPoK in Fig. 10 is
(δ1 + δ2)-complete.

Proof. Consider the completeness game with the NIZKPoK from Fig. 10. The challenger
first picks a seed s and then runs the NIZK crs′ ← Π.Setup. The adversary A receives
(s, crs′) and has access to random oracle G which maps bit strings to PKE public keys.
When A outputs a statement x = (pki, pki+1) and witness w = sk, the challenger checks
whether (x, w) ∈ R via Eq. (2). It samples randomness r and computes a ciphertext c
that is an encryption of w to pk = G(s) using r. Then it runs the NIZK prover and verifier
algorithm. If verification fails, A wins. In order to bound A’s advantage, note that the
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prover algorithm may fail if encryption fails. By the second property of PKE correctness,
this happens with probability at most δ1. Then, by completeness of the NIZK, verification
only fails with probability at most δ2. Hence, A wins with probability at most δ1 + δ2. ⊓⊔

Zero-Knowledge
Proof (of Lemma 4). The proof proceeds in two steps. We start with the ZK-PoK game
with the bit b = 0. In the first step we modify the honest prover to produce a simulated
proof π′. The zero knowledge property of Π implies that the adversaries views in the
original and modified experiments are identical.

In the second step we modify the prover to encrypt 0 instead of the witness. The
CPA security of PKE implies that the adversaries views in the previous and modified
experiments are indistinguishable.

Finally, we observe that after these two modifications, the view of the adversary is
identical to that in the ZK-PoK game when b = 1 which concludes the proof. ⊓⊔

Straightline Simulation-Extractability
Proof (of Lemma 5). Let A be an adversary against extractability of PoK. If A wins (i.e.
result = 1), then the following event occurs
Event Win. Occurs when A calls Test with x and π = (c, π′) s.t. the following conditions

hold:
1. Extract outputs an incorrect witness w′ ((x, w′) /∈ R) and
2. no proof has been simulated for x (π[x] = ⊥) and
3. V(crs, x, π) = 1.

Condition 1 can happen for two reasons: either Decrypt fails or the decrypted witness is
incorrect. Observe that we cannot simply say that the former implies breaking correctness
of PKE since A may have generated a malformed ciphertext c. Fortunately, verifying the
NIZK proof π in Condition 3 enforces that only well-formed ciphertexts c are passed to
Decrypt. We formalize this next using a game hop.

Game 0. This is the Ext experiment for PoK.

AdvExt
PoK(A) := Pr

[
Exp0(A)

]
. (8)

Game 1. The experiment Exp1 differs from Exp0 in that the challenger stops and A loses
if the following event occurs:
Event BrkSS. Occurs when Win occurs with x, c and π′ such that there does not exist r

and w with c = Encrypt(pk, w; r) and (x, w) ∈ R.

Claim. There exists a reduction B such that

|[Exp1(A)
]
− [Exp0(A)

]
| ≤ AdvSS

NIZK(B) .

The above claim is straightforward with the reduction B simulating the Ext game for A
as follows: It receives crs′ from the NIZK challenger and picks a PKE key pair (pk, sk).
If A asks for a simulated proof, then B encrypts 0ℓ and queries its own simulate oracle
to obtain a proof π′. If BrkSS occurs for x, c and π′, then B breaks simulation soundness
with statement x̃ = (x, pk, c) and proof π′. Indeed, Condition 3 of Win implies that
NIZK.V accepts x̃ and π′. Further, Condition 2 of Win implies that no proof for x̃ has
been simulated by B’s Simulate oracle. Finally BrkSS implies that x̃ is not in the NIZK
language.
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Claim. In Exp1 we have Pr[Win] ≤ δ.

IfA wins in Exp1 then Win occurs but BrkSS does not. So assumeA wins with x, c, π′. Since
BrkSS does not occur, there exists some randomness r ∈ RS such that c = Encrypt(pk, w; r)
and w is a correct witness for x. But by Condition 1, Decrypt outputs an incorrect witness
w′ (which may also be ⊥). By correctness of PKE, since w ∈ M, r ∈ RS, this can only
happen if sk /∈ SK, which in turn happens with probability at most δ. ⊓⊔

E Robustness of the LuKEM Scheme

Lemma 7. Let PKE be key-homomorphic and (ℓ, δ1)-correct and let PoK be δ2-complete.
Then LuKEM[PKE, PoK] is (ℓ, δ′)-robust for δ′ ≤ qenc(δ1 + δ2), where qenc is the number of
Enc queries A makes.

Proof. Let A be an adversary in the robustness game. Note that when Decaps does not
fail, the secret key at depth j is of the form sk0 + · · · + skj , where all individual secret
keys are in SK, because the decryption algorithm of LuKEM generates them using KeyGen
(with the randomness sampled using the random oracle) which (c.f., the syntax) outputs
keys in SK. Since A can make ℓ queries to Dec, this is consistent with the correctness
definition of key-homomorphic PKE. Using a union bound over the number of encryption
queries, we can upper bound robustness by the correctness of PKE and completeness of
PoK. ⊓⊔

F Proof of Theorem 1

We prove Theorem 1 via Theorems 3 to 5. To this end, we define the two intermediate
security notions IND-CPA+ and IND-CCA− (Appendix F.1). First, we show that if PKE
is Shifty-IND-CPA secure, then LuKEMno-pv is IND-CPA+ secure (Appendix F.2). Second,
we show that if LuKEMno-pv is IND-CPA+ secure and PKE is correct and γ-spread, then
LuKEMno-pv is also IND-CCA− secure (Appendix F.3). Finally, we show that if LuKEMno-pv
is IND-CCA− secure and PoK is straightline simulation extractable (along with the other
PoK properties), then LuKEM is IND-CCA secure (Appendix F.4).

F.1 Intermediate Security Notions

Consider an IND-CPA notion which differs from IND-CCA in that there is no Dec oracle.
Our first intermediate notion, IND-CPA+, strengthens IND-CPA by adding an Upd oracle
which allows the adversary to create new nodes by providing the difference sk between the
new and the old secret key (for this to make sense, we assume that the UKEM scheme
is key-homomorphic). This means that all nodes in the IND-CPA+ experiment are full,
unless a correctness error occurs.

Our second intermediate notion, IND-CCA−, strengthens IND-CPA+ by adding a Dec−
oracle that differs from Dec in that it does not takes as input a member-tag and it only
creates a new node if decryption succeeds. In that case it outputs K and ⊥ otherwise. The
Upd and Dec− oracle are shown in Fig. 19.

Remark 2. We note that IND-CPA+ is technically similar to “chosen-randomness IND-CPA“
notions from the literature, e.g., [ACDT20]. In the latter, the adversary has an Upd oracle
where it provides randomness used in Encaps. This is motivated by modeling attacks on
random-number generators used by honest parties.
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The Upd and Dec− Oracles for Intermediate Security Notions

Oracle Upd(i′, sk)

req pki′ ̸= ⊥ // i-th node exists
req sk ∈ SK
j++
pk′ ← pki′ + pk(sk)
sk′ ← ski′ + sk
(pkj , skj , parj , revj , typj)← (pk′, sk′, i′, 0, “Dec”)
return ⊥

Oracle Dec−(i′, c′, pk′)

req ski′ ̸= ⊥ // i-th node exists and full
if i∗ ̸= ⊥ then // implies c∗ ̸= ⊥

req c∗ ̸= c′ ∨ pk∗ ̸= pki′

(K, sk′)← Decaps(pp, ski′ , c′, pk′)
if K ̸= ⊥ then

j++
(pkj , parj , revj , typj , skj)

← (pk′, i′, 0, “Dec”, sk′)
return K

return ⊥

Fig. 19: Oracles for the intermediate notions: IND-CPA+ is the same as IND-CCA in Fig. 3
except that in IND-CPA+ the Dec oracle is replaced by Upd. IND-CCA− is the same as
IND-CPA+ and additionally provides the Dec− oracle.

Our IND-CPA+ is (strictly) stronger, since the adversary can create nodes for arbitrary
sk, while chosen-randomness notions restrict it to creating nodes for which it knows Encaps
randomness r. For example in our scheme, sk is generated by hashing r and running key
generation on the hash output.

We do not see any real-world motivation for this strengthening. However, it is needed
for our reduction from IND-CPA+ to IND-CCA. Indeed, the reduction will extract sk from
the PoK proofs sent by the adversary to the Dec oracle. However, it will not know the
randomness r, i.e. (part of) the hash input resulting in sk. We note that alternative
constructions that do allow to extract r are significantly less efficient. For instance, in
previous constructions [DKW21, APS23] Encaps encrypts a random and independent sk
using a PKE.

Definition 19 (UKEM IND-CPA+ and IND-CCA− Security). Let ATK ∈ {CPA+, CCA−}.
Let ExpIND-ATK(A) be as defined in Fig. 19. The advantage of an adversary A against the
IND-ATK security of a key-homomorphic UKEM scheme is defined as

AdvIND-ATK
UKEM (A) := 2 Pr

[
ExpIND-ATK

UKEM (A) = 1
]
− 1 .

F.2 From Shifty-IND-CPA to IND-CPA+

In the first step, we show that the scheme LuKEMno-pv is IND-CPA+ secure.

Theorem 3. Let PKE be a key-homomorphic PKE with message space {0, 1}κ. If PKE
is (ℓ, δ)-correct and Shifty-IND-CPA secure, then the construction LuKEMno-pv in Fig. 5
is IND-CPA+ secure in the ROM. Specifically, for any adversary A against IND-CPA+

security of LuKEMno-pv that issues qro RO queries, qenc Enc queries, qupd Upd queries
and creates a tree of depth at most ℓ, there exists an adversary B against Shifty-IND-CPA
security of PKE such that

AdvIND-CPA+
LuKEMno-pv(A) ≤ (qenc + 1) · δ + (qenc + qupd) ·AdvShifty-IND-CPA

PKE (B) + qro · (qenc + 1) · 2−κ ,

where B issues at most qenc + 1 Chal queries.

For an intuition we refer to Section 5.1. Here we give the full proof.
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Proof of Theorem 3. We now prove the theorem formally. In the following, we denote
by Pr[Expi(A)] the probability of game i returning 1.

Game 0. This is the IND-CPA+ experiment for LuKEMno-pv and adversary A. We have

AdvIND-CPA+
LuKEMno-pv(A) = 2 Pr

[
Exp0(A)

]
− 1 .

Game 1. In this game, the challenger aborts when a correctness error occurs during the
creation on an honest node. This way, it is ensured that all nodes will indeed be full nodes.
We can bound the difference between Game 0 and Game 1 by robustness of LuKEMno-pv
and hence by the (k, δ)-correctness of PKE. We have∣∣Pr

[
Exp0(A)

]
− Pr

[
Exp1(A)

]∣∣ ≤ (qenc + 1) · δ .

The “break” event. Let Brk be the event from the above intuition. More concretely let
i0, . . . , ic be the challenge path from the root 0 to the node ic inputted by A to MChal.
For an index i∗, the event Brk(i∗) occurs if all of the following hold:

(1) i∗ is on the challenge path,
(2) i∗ was created by an Enc query (and not an Upd query),
(3) there exists a j∗ s.t. j∗ = i∗ or j∗ is reachable from i∗ via only Dec edges (these

are created via Upd queries), and for some child j of j∗, A queries any RO on
the message Mj that the challenger encrypted to obtain cj returned by Enc(j∗) or
MChal(j∗).

We will show that
2 Pr

[
Exp1(A)

]
− 1 ≤ Pr[∃i∗ : Brk(i∗)]. (9)

We then define the following event Brk∗: an index i∗ is chosen (by the reduction) at
random independently of A’s view. Brk∗ occurs if Brk(i∗) occurs and among the nodes i
on the challenge path for which Brk(i) occurs, i∗ is the one closest to the root.

Pr[Brk] ≤ (qenc + qupd) · Pr[Brk∗]. (10)

Finally, we construct a reduction B such that

Pr[Brk∗] ≤ AdvShifty-IND-CPA
PKE (B) + qro · (qenc + 1) · 2−κ. (11)

Combining Eqs. (9) to (11), we get the bound from the theorem.

Proof of Eq. (9). The reason Eq. (9) holds is that if A does not trigger Brk then in
particular A does not query the RO H1 on M∗ encrypted by the challenger to obtain A’s
challenge ciphertext c∗. Recall that the real key is K(1) = H1(ppPKE, pk∗, M∗). So until A
sends M∗ to the RO the experiment is independent of the challenge bit b.

Reduction (proof of Eq. (11)). We now construct a reduction B against Shifty-IND-CPA
that guesses i∗ and simulates the experiment for A until event Brk∗ occurs or until the
guess becomes incorrect, in which case it aborts.
B gets as input the public key pk∗, which it embeds as follows. If i∗ = 0 then B embeds

pk∗ as pk0 and proceeds as described in the next paragraph. If i∗ > 0 then B samples
(pk0, sk0) itself. It answers all Enc queries from A honestly by running Encaps until i∗ is
created. Assume the node i∗ is created via an Enc(p∗) query; else condition (2) of Brk(i∗)
is false and the experiment stops. Thus, B can embed pk∗ as the update from pkp∗ to
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pki∗ , i.e., it sets pki∗ := pkp∗ + sk∗. For the ciphertext returned by Enc(p∗), B encrypts a
random message m. It also samples the key K returned by Enc(p∗) at random. Observe
that this simulation is identical to the IND-CPA+ experiment until A queries M to an RO
(which for H3 would output sk∗). However, if A makes such a query, then Brk(p∗) occurs —
this means that Brk occurs for a node closer to the root than i∗, so Brk∗ can no longer
happen and the experiment stops.

Observe that B knows the secret keys of all nodes outside the subtree rooted at i∗ and
thus can answer all queries perfectly for these nodes.

We now describe how B deals with queries related to descendants j∗ of i∗. Recall
that the IND-CPA+ experiment (c.f. Fig. 3) allows A to corrupt nodes outside the set
dec-closure(S) where S contains the challenge path (and any nodes with the same public
keys) and dec-closure extends S by all nodes reachable from it via only Dec edges. B will
(in principle) support more corruptions — it will know the secret keys of all nodes outside
dec-closure({i∗}) which is a subset of dec-closure(S) since i∗ is on the challenge path (else
the guess is incorrect and the experiment stops).

This means that B can answer queries for nodes outside dec-closure({i∗}) perfectly. It
remains to show how B deals with queries for nodes j∗ ∈ dec-closure({i∗}). Rev(j∗) is not
allowed and Upd(j∗) is answered honestly (recording sk provided by A). The remaining
queries are Enc(j∗) and MChal(j∗). For such a query creating a node j′ /∈ dec-closure({i∗}),
B queries its Chal oracle.

If j∗ = i∗ then B queries Chal on skp∗ and two random messages m
(0)
j′ and m

(1)
j′ . Recall

that B knows all the individual secret keys that sum up to skp∗ which are those expected by
the Shifty-IND-CPA challenger. It receives (c∗j′ , pkj′ , skj′), where pkj′ = pk(skp∗) + pk∗ + pk
and skj′ = skp∗ + sk∗ + sk for a fresh key pair (pk, sk). Further, c∗j′ is an encryption of
m

(b)
j , where b is the challenge bit in the Shifty-IND-CPA game. B samples K∗j′ uniformly

at random and outputs K∗j′ , c∗j′ , pkj′ to A. Hence, it will know skj′ to answer future Rev
queries of A.
B proceeds similarly when there are Upd edges in between i∗ and j∗. Since A provides

sk whenever it queries the Upd oracle, B can query its Chal oracle on skp∗ + ski∗→j∗ and
random messages M

(0)
j , m

(1)
j . It will receive (c∗j , pkj , skj) for the descendant j of j∗. It will

again sample a random key K∗j and return (K∗j , c∗j , pkj) to A.
Using the above strategy B can simulate all nodes, no matter which one will end up

being on the challenge path. It remains to explain that when Brk∗ indeed happens, B can
win the Shifty-IND-CPA game. It observes A’s RO queries and as soon as A makes a query
on an input containing m

(b′)
j for some b′ and j, then B outputs b′. If B’s bit is b, then the

probability that an RO query from A contains m
(1−b)
j (which is random and independent

of A’s view) for some j is at most (qenc + 1) · 2−κ (since B embeds at most (qenc + 1)
challenges). So if A triggers Brk then B wins except with probability qro · (qenc + 1) · 2−κ,
which proves Eq. (11). ⊓⊔

F.3 From IND-CPA+ to IND-CCA− by observing the RO

We show that the scheme already satisfies the stronger notion of IND-CCA−. Compared
to the previous proof, we have to show that the reduction can correctly simulate the
(restricted) decapsulation oracle Dec− from Fig. 19. We will later see how this notion
enables us to prove full IND-CCA security.

Theorem 4. If LuKEMno-pv is IND-CPA+ secure and PKE is δ-correct and γ-spread, then
LuKEMno-pv is IND-CCA− secure in the non-programmable ROM. More specifically, for
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any adversary A against IND-CCA− security of LuKEMno-pv that issues qro random oracle
queries, qenc encryption queries, qdec decryption queries and creates a tree of depth at most
ℓ, there exists an adversary B against IND-CPA+ security of LuKEMno-pv such that

AdvIND-CCA−

LuKEMno-pv(A) ≤ 2qro · δ + qdec · 2−γ + AdvIND-CPA+
LuKEMno-pv(B) ,

where B issues at most 3qro random oracle queries, qenc encryption queries and as many
Upd queries as A.

Proof Intuition. We extend the strategy from Theorem 3 to deal with A’s Dec− queries.
For this, we will use the fact that the scheme is based on the Fujisaki-Okamoto (FO)
transform.

We want to construct a reduction B that plays in the IND-CPA+ game, meaning it
has only access to an Upd oracle. Fortunately, whenever we decryption succeeds, we will
also know the secret key shift that the adversary used to create the new public key pk′.
Thus, using the techniques from security proofs of the FO transform, we construct B that
extracts not only K but also sk from A’s RO queries as follows.

Observing random oracles. We now explain how B answers Dec− queries in more detail.
Since B is playing in the IND-CPA+ game for LuKEMno-pv, B’s challenger also provides
access to the random oracles. B will simulate A’s random oracle queries by forwarding
them to its challenger.

To simulate the Dec− oracle, B uses a list LD that tracks A’s random oracle queries.
Essentially, B will only need to answer Dec− queries when A has previously queried H1. To
simplify the analysis, we will simulate all random oracles together, meaning that as soon as
A queries one of the RO’s on a new value (pk, m), B sends (pk, m) to all RO’s H1, H2 and
H3 (emulated by its challenger), which output, respectively, r, K and d. Then B stores in
LD a record (pk, pk′, sk, m, c, K) where c = Encrypt(pp, pk, m; r), (pk, sk) = KeyGen(d) and
pk′ = pk + pk. This will allow us to answer Dec− queries without searching through all
random oracle queries. More specifically, if A queries Dec− on input (i, c′, pk′), B simply
checks whether there exists an entry (pki, pk′, sk, m, c′, K) ∈ LD for some sk, m, K. If so,
the “re-encryption check” has succeeded. B creates a new node by querying the Upd oracle
on (i, sk) and outputs K. Else, it outputs ⊥.

We now give the full proof, where we also deal with correctness errors and the probability
that a decryption query succeeds, where the adversary did not query the random oracle.

F.4 From IND-CCA− to IND-CCA using PoK

In the final step, we consider LuKEM shown in Fig. 6. It differs from LuKEMno-pv in
that it uses a member-tag mti+1 which is a PoK proving knowledge of sk such that
pki + pk(sk) = pki+1 and sk ∈ SK. We show that LuKEM is IND-CCA secure if the
underlying key-homomorphic UKEM is IND-CCA− secure and PoK is straightline simulation-
extractable. For our final scheme, we instantiate UKEM with LuKEMno-pv.

Theorem 5. If UKEM is key-homomorphic and IND-CCA− secure and PoK is straightline
simulation extractable, then LuKEM is IND-CCA secure. More specifically, for any adversary
A against IND-CCA security of LuKEM, there exist adversaries B, B1, B2 and B3 against the
IND-CCA− security of UKEM, the setup indistinguishability game of pk, the zero-knowledge
game of PoK and the extractability security game of PoK such that

AdvIND-CCA
LuKEM (A) ≤ AdvIND-CCA−

UKEM (B) + 2 · (AdvSI
PoK(B1) + AdvZK

PoK(B2) + AdvExt
PoK(B3)) .
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0

pk0

1

pk1

2

pk2 = pk1

Enc

Dec

(a) A queries Enc(0), which cre-
ates node 1, and then queries
Dec(1,⊥, pk1, mt1) which creates a
half-node 2 with the same key. The
reduction B only creates a node on the
Enc query.

0

pk0

1

pk1

2

pk2 = pk1

3

pk3

4

pk4 = pk0

5

pk5 = pk1

Enc

Dec

Dec

Dec Dec

(b) A more subtle scenario. A again queries Dec and creates
node 3 with pk3 := pk0 + pk(sk) using Encaps in its head. Then
it creates a half-node 4 by “subtracting” the difference pk(sk)
i.e. it queries Dec(3,⊥, pk0, mt). Note, A can compute mt which
proves knowledge of the secret key corresponding to pk0− pk3 =
−pk(sk) = −sk (latter equality holds for any homomorphism pk).
Then it forwards the outputs of the first Enc query to create a
child of 4.

Fig. 20: Illustration of how A can copy honestly generated keys to Dec nodes. Each colour
marks nodes with the same public key, corresponding to one node in the IND-CCA− game.

Proof Intuition. Let A be an adversary against the IND-CCA security of LuKEM. We
construct a reduction B against IND-CCA− security of UKEM. In general, there will be
a one-to-one correspondence between nodes in the IND-CCA experiment and nodes in
the IND-CCA− experiment. Note that all nodes in the IND-CCA− game are full (up to
robustness), so half-nodes in the IND-CCA experiment will correspond to full nodes in the
IND-CCA− game. The reduction B keeps track itself of which nodes are half-nodes in the
IND-CCA experiment it emulates. In the following, we look at how nodes are created in
both experiments.

When A instructs its emulated challenger to create an Enc-node j by calling Enc(i) or
MChal(i), B also instructs the IND-CCA− challenger to create an Enc-node j by calling
Enc(i) or MChal(i). Recall, these oracles output K, c, pkj and mt. The schemes UKEM
and LuKEM differ only on the last output mt; in UKEM mt is empty, and in LuKEM mt is
a PoK π proving knowledge of sk such that pki + pk(sk) = pkj . The reduction B does not
know sk chosen by its challenger. Thus, it simulates π using PoK.S. Finally, B marks the
new node j as full if node i was full.

WhenA instructs its emulated challenger to create a Dec-node j by calling Dec(i′, c′, pk′,
mt′), B first checks whether mt′ is a valid member-tag. Then it queries its restricted Dec−
oracle to check whether c′ successfully decrypts in which case it gets K as a response and
knows that its challenger has created a Dec-node. If c′ is not a valid ciphertext, B must
still create a Dec-node for A. It simulates those nodes using its own Upd oracle. Recall
that Upd takes as input i′ and sk such that pki′ + pk(sk) = pk′. B uses the (straightline)
extractor PoK.Extract to extract sk from mt′ provided by A.21

Whenever A calls Rev(i), B does as follows: If i is a half-node, it outputs ⊥. Else, it
calls its Rev oracle to get ski.

21 This means that in the simulated experiment we have multiple simulated proofs interleaved with multiple
extractions. This is why we require PoK to be straightline simulation-extractable.
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Extracting from adversarial proofs. So far, we assumed that whenever A calls Dec and
decapsulation fails, B can extract sk from the PoK mt′ sent by A to the Dec oracle. However,
extraction does not work for statements (pkp, pki) for which B previously simulated PoK’s
using PoK.S.

For example, say A queries Enc(p), which creates node i with pki and outputs K, c,
pki and the simulated proof mt. Then A replays p, pki and mt together with some c′ to
the Dec oracle. See the illustration in Fig. 20. If decapsulation fails (maybe c′ is random),
B has to create a half-node i′. However, it cannot use the strategy from the previous
paragraph since it cannot extract from a simulated proof mt (nor from any proof mt′ for
the corresponding statement (pkp, pki)). However, extraction is not needed, since nodes i′

and i are equivalent! That is, i′ and i have the same public keys and the half-node i′ has
no secret key, thus, B can use its oracles for i to deal with i′.

More precisely, we adjust B’s strategy as follows: Each Enc-node i in the IND-CCA−
experiment corresponds to multiple nodes in the IND-CCA experiment: one Enc-node with
public key pki and a set copied(i) of half-nodes with the same public key pki that A created
by copying as described above. (This means that indices no longer match between the
experiments, complicating bookkeeping a bit.) If A queries Dec with the parent of i (in
the IND-CCA experiment) and pki, and Dec− returns ⊥ (and A’s member tag is valid),
then B simply creates a new half-node with pki and adds it to copied(i). If A queries Enc
(or MChal) with a node in copied(i), B queries Enc (or MChal) with i. Thus, a new node
is created in both experiments.

Now say A queries Dec with a node in copied(i) and some pkj and mt. Fortunately, this
only creates a half-node in IND-CCA. If B has not simulated a PoK for (pki, pkj), which
would be the case if pkj was outputted by Enc (or MChal) with a node in copied(i), then
B can extract skj from mt and forward it to the Upd oracle as before to create a new (full)
node in IND-CCA−. Otherwise, B creates a new half-node in copied(j).

Trivial wins with copied nodes. Assume A queries MChal(ic) for a node ic such that B,
mapping ic to the respective node i∗ in its own game, queries MChal(i∗). Recall that A is
not allowed to corrupt nodes in the extd-base set which includes all nodes with the same
public key as pkic

. Since all nodes in copied(i∗) are half-nodes, A cannot violate trivial-win
restrictions by corrupting them. All other nodes that A creates also exist in B’s game. For
example, note that A may create a full-node copy of an Enc-node by replaying not only
pkj and mt but also the corresponding ciphertext outputted by B’s challenger. Although
B cannot extract from mt, it can query Dec− to create a new node. If on the challenge
path, such a node will be in the extd-base set in both games.

This reasoning extends to other nodes on the challenge path 0-i∗. This way, we can
argue that if A’s corruptions do not violate trivial-win restrictions in IND-CCA, then B’s
corruptions do not violate the trivial-wins either.

A similar argument applies to the trivial-win restriction in the Dec oracle. If B violates
the restriction by sending c∗ or pki∗ to Dec−, then A is violating its restriction too.
Indeed, if B called MChal(i∗) which returned c∗, then A called MChal(ic) for some
ic ∈ copied(i∗) ∪ {i∗} which also returned c∗. So, A cannot call Dec on c∗ or pki∗ = pkic

.

Proof of Theorem 5. We define a sequence of games to prove the theorem, where we will
follow the strategy explained in the intuition and denote by Pr[Expi(A)] the probability
of game i returning 1.

Game 0. This is the IND-CCA experiment for LuKEM[UKEM, PoK], where UKEM is a
key-homomorphic UKEM and the PoK statement is defined in Eq. (2). Hence, for an
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adversary A in that game we have

AdvIND-CCA
LuKEM (A) := 2 Pr

[
Exp0(A)

]
− 1 . (12)

Game 1 (Switch setup). Game 1 differs from Game 0 in that the challenger replaces the
call to PoK.Setup during initialization to PoK.SetupAltH . The challenger also emulates the
random oracle H for PoK.SetupAlt and A by running its code. For the straightforward
reduction B1 we have

|[Exp0(A)
]
− [Exp1(A)

]
| ≤ AdvSI

PoK(B1) . (13)

Game 2 (Simulate proofs). In Game 2, the challenger replaces all proofs mt outputted
by the Enc and MChal oracles by simulated ones. Indistinguishability is implied by the
zero-knowledge property of PoK.

More precisely, for each Enc and the MChal query, it first computes (K, c, pkj , sk) as in
the underlying UKEM. However, instead of computing mtj ← PoK.Prove(crs, (pki, pkj), sk),
it uses the simulator algorithm to compute mtj ← PoK.SH(td, (pki, pkj)), where td is the
trapdoor output by PoK.SetupAlt. It outputs (K, c, pkj , mtj) to A. As in Game 1, it
emulates the random oracle H for PoK.SetupAlt and PoK.S by running its code. For the
straightforward reduction B2 we have

|[Exp1(A)
]
− [Exp2(A)

]
| ≤ AdvZK

PoK(B2) . (14)

Game 3 (Extract from A’s proofs). In Game 3, the challenger additionally extracts
witnesses from member-tags provided by A using PoK.ExtractH . Indistinguishability is
implied by straight-line simulation-extractability of PoK.

We now also introduce the helper set copied(i) that stores indices of half-nodes that
are copies of node i and hence have the same public key pki. This way, the challenger
can identify Dec queries for which it will need to extract (and store) the secret key sk
and those which are simply copies of Enc-nodes. More specifically, when A makes a Dec
query (i′, c′, pk′, mt′) such that mt′ is valid (otherwise, the challenger outputs ⊥ directly),
we distinguish 2 cases:

1. Replay of public key from Enc query. If pk′ was previously output of an Enc query,
then the challenger has previously simulated a proof for statement (pki′ , pk′). However,
in order to define the set copied(·) such that the final reduction to IND-CCA− works,
we need to make a more subtle case distinction. The reason is that i′ might have
been created via Dec itself. Hence, we first let i be the index of the node with public
key pk′ that was previously created via Enc, i.e., pkpar(i) = pki′ , but crucially par(i)
may not be the same as i′.22 Node i will be the one that determines the set copied(i).
More specifically, we distinguish the following cases:

(a) If i′ is a half-node, the challenger records j as a half-node, adds j to copied(i)
and outputs ⊥.

(b) If i′ is a full-node, the challenger decrypts c′. If successful, it records j as a
full-node and outputs the result to A. (It does not use copied(i) here.) In case
decryption fails, this node is a half-node and is added to copied(i).

22 To see this, consider Fig. 20b. The given scenario is illustrated for i = 1, par(i) = 0, i′ = 4, and j = 5
(assuming at least one of these nodes is a half-node). Note also that the set copied(1) does not only
contain 5, but also 2 in case it is a half-node.
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2. All other queries. In this case, the challenger has not previously output a sim-
ulated proof for statement (pki′ , pk′). The challenger hence runs the extractor
PoK.Extract(td, (pki′ , pk′), mt′) to obtain A’s witness sk. It additionally checks whether
pki′ + pk(sk) = pk′. If this is not the case, the challenger aborts the game. Note that
this means that A can be turned into an adversary B′ that wins the extractability
game. If i′ is a full node, the challenger additionally decrypts c′ and creates a full node
(if successful) or a half-node (if decryption fails). If i′ is a half-node, the challenger
creates a half-node.

Based on the above, we can construct an adversary B3 in the extractability game (cf. Fig. 16).
To create simulated proofs, B3 calls the Simulate oracle. To extract from member-tags,
B3 calls the Test oracle. Random oracle queries from A can simply be forwarded. If at
any point in time, pki′ + pk(sk) ̸= pk′ happens in Case 2 above, then B3 has queried the
Test oracle on (x = (pki′ , pk′), mt′) such that π[pki′ , pk′] = ⊥ before the query and hence
B3 wins. We get

|[Exp2(A)
]
− [Exp3(A)

]
| ≤ AdvExt

PoK(B3) .

Final reduction. We can now construct an adversary B such that

2 Pr
[
Exp3(A)

]
− 1 ≤ AdvIND-CCA−

UKEM (B) .

Adversary B simulates Game 2 as follows. It gets as input pk0 and has access to oracles Enc,
Rev, MChal, Upd as well as the Dec− oracle that only creates nodes if decryption does not
fail. When A queries its own oracles Enc, Rev and MChal, B simply forwards these queries.
Note that for this B needs to use of the set copied to map indices from the IND-CCA
game to the IND-CCA− game. Additionally, it uses PoK.S to compute member-tags mt
and PoK.Extract to extract from A’s proofs as described above. The main challenge is the
simulation of A’s Dec queries, however, we will argue that B’s oracles Upd and Dec− allow
to simulate A’s view perfectly.
B simulates decryption queries following the case distinction above. If A makes a Dec

query (i′, c′, pk′, mt′) and there exists an index i with (pkpari
, pkj) = (pki′ , pk′), then this

was a replay. If this is a half-node, it simply creates a half-node j and adds j to copied(i).
Otherwise, B forwards this query to Dec−. If successful, B’s challenger created a node and
B simply forwards the result to A. If decryption failed, B creates a half-node j locally,
adds j to copied(i) and outputs ⊥.

For all other Dec queries, B first queries Dec−. If successful, B’s challenger created
a node and B again simply forwards the result. Otherwise, it runs the extractor to get
sk and creates a new node via Upd. Otherwise, it records that the new node is also a
half-node and returns ⊥.

Eventually, A will output a guess b′ and B will return the same b′ to its challenger. If
A does not make any queries that violate its winning condition, B also does not make such
queries. This is due to the fact that by definition copied sets only contain half-nodes and
all other nodes are the same in both experiments. Hence, the full-nodes in set extd-base
are the same for both A and B. Further, if A wins, then so does B. This concludes the
proof of Theorem 5. ⊓⊔

G Proof of Theorem 2

Proof of Theorem 2. In Fig. 21 (ignoring all boxes) we instantiate the security notion
from Definition 2 with the scheme given in Fig. 9. Note that we compute the second
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Shifty Security for APS, Hybrid 1 , Hybrid 2 , Hybrid 3

ExpShifty-IND-CPA
PKE (A)

β←$ {0, 1}
A← U(Zn×n

q )
s∗, e∗ ← DZn,σ

s+, e+ ← DZn,
√

2σ

s∗
1, e∗

1 ← DZn,σ/2

s∗
2 ← DZn,σ/2, s+/2

e∗
2 ← DZn,σ/2, e+/2

s∗ ← s∗
1 + s∗

2

e∗ ← e∗
1 + e∗

2

b∗ ← As∗ + e∗

b∗ ← U(Zn
q )

β′ ← AChal(A, b∗)
return (β = β′)

Oracle Chal(m0, m1, (s, e))

req (s, e) ∈ SK
X, E← DZn×n,σc

f ← DZn,σc

C← XA + E

C← U(Zn×n
q )

c← C(s∗ + s) + E(−s∗ − s) + X(e∗ + e) + f + ⌊q/p⌋ ·mβ mod q
// c = X(b∗ + As + e) + f + ⌊q/p⌋ ·mβ mod q

f1 ← DZn,σ/2; f2 ← DZn,
√

σ2
c −σ2/4

c← (C−E)(s∗ + s) + X(e∗ + e) + f1 + f2 + ⌊q/p⌋ ·mβ mod q

c← U(Zn
q )

ct← (C, c)
s, e← DZn,σ

sk′ ← (s∗ + s + s, e∗ + e + e)

sk′ ← (s+ + s, e+ + e)
return (ct, sk′)

Fig. 21: The Shifty-IND-CPA security game for homomorphic PKE from [APS23] and
hybrid games in the proof of Theorem 2: Hybrid 1 only includes the white box , Hybrid 2
additionally the gray boxes and Hybrid 3 contains all boxes.

ciphertext component c in a different but equivalent way. We proceed via hybrid games,
all defined in Fig. 21 as well, and argue that all games are indistinguishable and the last
one can only be won with probability 1/2.

Original game → Hybrid 1. Indistinguishability of Hybrid 1 is shown via k game hops
(where k is the maximal number of Chal queries), from G0, which is Shifty-IND-CPA to
Gk, which is Hybrid 1. In Gi, the first i Chal queries are answered as in Hybrid 1, while
the remaining queries are answered as in the original game.

Thus, the hop from Gi−1 to Gi replaces, in the i-th query, the component C =
XA + E of the ciphertext by a uniform element (which also changes the distribution of c).
Indistinguishability of the hop follows from the (multi-secret) HNF adaptive extended LWE
assumption, which, in addition to a challenge C, provides the adversary with Xz0 +Ez1 + f
for adversarially chosen short z0 and z1 and a Gaussian f . In Fig. 22 we define the reduction
B(i), which, depending on its input, simulates either Gi−1 or Gi to adversary A. W.l.o.g.
we assume that A makes exactly k queries and uses correct values (s, e).
Note that B(i)’s query satisfies ∥z1∥∞ ≤ ∥s∗∥∞ + ∥s∥∞ ≤ yσ + ℓyσ (by the above
abort condition and (s, e) ∈ SKℓ−1), which is thus bounded by B. Analogously, we have
∥z0∥∞ ≤ B, and thus∣∣AdvGi−1(A)− AdvGi(A)

∣∣ ≤ AdvmHaeLWE
q,n,n,n,σc,B(B(i)) .

Therefore, there exists B := B(i) for some i s.t.∣∣AdvHybrid 1(A)− AdvShifty-IND-CPA
PKE (A)

∣∣ ≤ k · AdvmHaeLWE
q,n,n,n,σc,B(B) . (15)
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B(i)
1 (A)

β←$ {0, 1}; j ← 0
s∗, e∗ ← DZn,σ

b∗ ← As∗ + e∗

run AChal(A, b∗)
while query Chal(m0, m1, (s, e)):

j ← j + 1
if j = i

st = (A, s∗, e∗, mβ , (s, e),A’s state)
stop and return

(st, z0 = e∗ + e, z1 = −s∗ − s)
X, E← DZn×n,σc

; f ← DZn,σc

C← U(Zn×n
q )

c← C(s∗ + s) + E(−s∗ − s)+
X(e∗ + e) + f + ⌊q/p⌋ ·mβ mod q

s, e← DZn,σ

sk′ ← (s∗ + s + s, e∗ + e + e)
answer ((C, c), sk′)

B(i)
2 (st, C, h)

// C = XA + E or C← Zn×n
q

// h = X(e∗ + e) + E(−s∗ − s) + f
c← C(s∗ + s) + h + ⌊q/p⌋ ·mβ mod q
s, e← DZn,σ

sk′ ← (s∗ + s + s, e∗ + e + e)
answer A’s i-th query: ((C, c), sk′)
while query Chal(m0, m1, sk = (s, e)):

ct← Encrypt((A, b∗) + pk(sk), mβ)
(pk, sk)← KeyGen(pp)
sk′ ← sk∗ + sk + sk
reply with (ct, sk′)

get A’s output β′

return (β = β′)

Fig. 22: The reduction B(i) to (multi-secret) HNF adaptive extended LWE for showing
indistinguishability of the hop Gi−1 to Gi between Hybrids 1 and 2.

Hybrid 1 → Hybrid 2. This statistical argument follows from the Convolution Lemma
(Lemma 1).

We first define an intermediate hybrid as follows. Instead of sampling s∗ ← DZn,σ

and s← DZn,σ and defining s+ := s∗ + s (implicit in sk′), the game samples s+ directly
from DZn,σ′ with σ′ :=

√
2σ =

√
σ2 + σ2 which, by Lemma 1, is ε′ := 2ε/(1− ε)-close to

the distribution of s+ in Hybrid 1. Note that, since σ >
√

8 ln(2n(1 + 1/ε))/π, we have
8/σ2 < π/ ln(2n(1 + 1/ε)), and thus the premise of Lemma 1 is satisfied for σ1, σ2 := σ/2
(required below), and a forteriori for σ1, σ2 := σ.

The original secret s∗ is now sampled from DZn, σ/
√

2, e+/2, which in the adversary’s
view is ε′-close to its distribution in Hybrid 1, as shown in [APS23]: for any x, we have

Pr
[
s∗ = x

]
=

∑
y∈Zn

Pr
[
s∗ = x

∣∣ s+ = y
]
Pr

[
s+ = y

]
=

∑
y∈Zn

DZn,σ/
√

2(x− y/2)DZn,
√

2σ(y)

=
∑

y∈Zn

DZn,
√

2σ(2x− y)DZn,
√

2σ(y) ,

by the definition of Gaussian distributions (Definition 5). The latter is the evaluation of the
convolution (Definition 6) of two Gaussian distributions with σ1 = σ2 =

√
2σ, evaluated

at 2x. By Lemma 1, this convolution is ε′-close to D
Zn,
√

σ2
1+σ2

2
= DZn,2σ. The above is

thus ε′-close DZn,2σ(2x) = DZn,σ(x), which is how s∗ was sampled in Hybrid 1.
In Hybrid 2, instead of sampling s∗ ← DZn,σ/

√
2, s+/2, we sample it as s∗ := s∗1 + s∗2

for s∗1 ← DZn,σ/2 and s∗2 ← DZn,σ/2, s+/2, which, again by Lemma 1, is ε′-close. (We have
already argued above that the premise of Lemma 1 is satisfied for σ1, σ2 := σ/2.)

The exact same changes happens to e∗ (becoming e∗1 + e∗2) and e+, which induces
another statistical difference of 3ε′.

Finally, for all (up to k) Chal queries, instead of sampling f ← DZn,σc , it is defined as
f := f1 + f2 for f1 ← DZn,σ/2 and f2 ← DZn,

√
σ2

c−σ2/4, which is ε′-close to the distribution
of f in Hybrid 1. (Note that, since σc > σ/

√
2, we have

√
σ2

c − σ2/4 > σ/2, and thus, by
the above, the premise is again satisfied.) In total, we get:∣∣AdvHybrid 2(A)− AdvHybrid 1(A)

∣∣ ≤ (6 + k) · 2ε/(1− ε) . (16)
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C
(
A, b)

j ← 0
parse A as [A⊤∥D⊤

1 ∥ . . . ∥D⊤
k ]⊤

parse b as [b⊤∥d⊤
1 ∥ . . . ∥d⊤

k ]⊤
// b = As∗

1 + e∗
1 or b← Zn

q

// di = Dis∗
1 + f ∗

i,1 or di ← Zn
q

β←$ {0, 1}
s+, e+ ← DZn,σ

√
2

s∗
2 ← DZn,σ/2, s+/2

e∗
2 ← DZn,σ/2, e+/2

b∗ ← b + As∗
2 + e∗

2
β′ ← AChal(A, b∗)
return (β = β′)

Oracle Chal(m0, m1, (s, e))

j ← j + 1
req (s, e) ∈ SK
X, E← DZn×n,σc

C← XA + E + Dj

f2 ← DZn,
√

σ2
c −σ2/4

// c = (C−E)(s∗ + s) + X(e∗ + e) + f1
// +f2 + ⌊q/p⌋ ·mβ mod q
c← X(b + A(s∗

2 + s) + e∗
2 + e) + dj

+ Dj(s∗
2 + s) + f2 + ⌊q/p⌋ ·mβ mod q

ct← (C, c)
sk′ ← (s+ + s, e+ + e)
return (ct, sk′)

Fig. 23: The reduction C to LWE showing indistinguishability of Hybrids 2 and 3.

Hybrid 2 → Hybrid 3. The last hop is by reduction to LWE with parameters m :=
(k + 1)n and variance σ/2, against which we construct the reduction C in Fig. 23:
We first analyze the case when [b⊤∥d⊤1 ∥ . . . ∥d⊤k ]⊤ follows the LWE-distribution, that is,

b = As∗1 + e∗1 dj = Djs∗1 + fj,1 for all j

for s∗1, e∗1, fj,1 ← DZn,σ/2. Reduction C then simulates Hybrid 2, since

b∗ = (As∗1 + e∗1) + As∗2 + e∗2 = A(s∗1 + s∗2) + e∗1 + e∗2

and moreover for the j-th call to Chal:

c = X
(
A(s∗1 + s∗2 + s) + e∗1 + e∗2 + e

)
+ Dj(s∗1 + s∗2 + s)

+ fj,1 + f2 + ⌊q/p⌋ ·mβ mod q

= (C−E)(s∗1 + s∗2 + s) + X(e∗1 + e∗2 + e) + fj,1 + f2 + ⌊q/p⌋ ·mβ mod q ,

since XA + Dj = C−E.
On the other hand, if b and dj are independently uniform then b∗ and c are indepen-

dently uniform as well and C thus simulates Hybrid 3. We thus have∣∣AdvHybrid 3(A)− AdvHybrid 2(A)
∣∣ ≤ AdvLWE

q,n,(k+1)n,σ/2(C) . (17)

In Hybrid 3, the ciphertext is independent of β and thus the adversary’s advantage is 0.
This, together with Equations (15), (16) and (17) implies the theorem statement. ⊓⊔
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