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ABSTRACT

Highly-optimized assembly is commonly used to achieve the best

performance for popular cryptographic schemes such as the newly

standardized ML-KEM and ML-DSA. The majority of implementa-

tions today rely on hand-optimized assembly for the core building

blocks to achieve both security and performance. However, recent

work by Abdulrahman et al. takes a new approach, writing a read-

able base assembly implementation first and leaving the bulk of the

optimization work to a tool named SLOTHY based on constraint

programming. SLOTHY performs instruction scheduling, register al-

location, and software pipelining simultaneously using constraints

modeling the architectural and microarchitectural details of the

target platform.

In this work, we extend SLOTHY and investigate how it can

be used to migrate already highly hand-optimized assembly to a

different microarchitecture, while maximizing performance. As a

case study, we optimize state-of-the-art Arm Cortex-M4 implemen-

tations of ML-KEM and ML-DSA for the Arm Cortex-M7.

Our results suggest that this approach is promising: For the

number-theoretic transform (NTT) – the core building block of

both ML-DSA and ML-KEM – we achieve speed-ups of 1.97× and

1.69×, respectively. For Keccak– the permutation used by SHA-3

and SHAKE and also vastly used in ML-DSA and ML-KEM – we

achieve speed-ups of 30% compared to the M4 code and 5% com-

pared to hand-optimized M7 code. For many other building blocks,

we achieve similarly significant speed-ups of up to 2.35×. Overall,
this results in 11 to 33% faster code for the entire cryptosystems.
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1 INTRODUCTION

Modern implementations of cryptographic algorithms strive to

achieve the best possible performance on a given platform, while

at the same time being protected against timing side-channels or

more powerful attacks. For these reasons, handwritten assembly is

commonly employed in cryptographic implementations. However,

this comes at the cost of the implementation being less portable as

it is often specialized for a certain platform. If such specialization

includes heavy microarchitectural optimization, it often results in

relatively poor performance on different microarchitectures.

Recent work by Abdulrahman et al. [2] proposes an alternative

path: A readable ‘clean’ assembly implementation is written first

which is then optimized by a super-optimization tool performing

register allocation, instruction scheduling, and software pipelining.

The tool proposed in their work – named SLOTHY– uses constraint-
solving (instantiated with CP-SAT from Google’s OR-Tools [41])

to model both the architectural and microarchitectural details. It

has been used to transform clean implementations targeting the

Arm Neon and Arm Helium instruction sets into fast implementa-

tions for two different microarchitectures each. All the resulting

implementations exceed or match the performance of their hand-

optimized assembly counterparts.

However, the approach taken in [2] currently relies on a clean

implementations written by the authors, requiring full control over

the structure of the input source code. Thus, it remains an open

question whether their tool can also be applied to existing hand-

optimized implementations. In particular, in this work we study if

heavily hand-optimized assembly for one microarchitecture can be

automatically optimized for a different microarchitecture and yield

satisfactory performance.

A prime example of such heavily hand-optimized assembly are

implementations of the recently published post-quantum cryptogra-

phy (PQC) standards ML-KEM and ML-DSA which were the results

of a multi-year standardization effort by the US National Institute

of Standards and Technology (NIST). Early on in the process, NIST

asked the submission teams as well as the community to study high-

speed software implementations – which in most cases resulted

in handcrafted assembly implementations. A particularly popular

platform for PQC is the Arm Cortex-M4 – a 32-bit microcontroller.

It was also recommended by NIST as the primary microcontroller

optimization target [5] sparking a vast number of research projects

studying the performance of various post-quantum algorithms. The

pqm4 library [30] compiles most of the state-of-the-art PQC im-

plementations for the Arm Cortex-M4 into a single repository and

provides a common benchmarking framework.

Both ML-KEM [44, 14, 6, 3, 26] and ML-DSA [23, 22, 3, 25] were

the subject to a series of research papers studying highly efficient

Arm Cortex-M4 implementations. At the same time, with each new

publication and its implementation, the number of hand-optimized

routines commonly increased resulting in a myriad of functions

written in assembly for both ML-KEM and ML-DSA. In total, state-

of-the-art implementations of ML-KEM and ML-DSA make use

of 3633 and 3009 lines of assembly, respectively. As this code was

written for the Arm Cortex-M4 microarchitecture implementing

the Armv7E-M architecture, the code can also run on other mi-

croarchitectures implementing the same or newer versions of the

architectures. For example, the Arm Cortex-M7 also implements the

Armv7E-M architecture, while the Cortex-M23, and Cortex-M33

implement the newer Armv8-M. Consequently, all these cores can
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run the optimized Cortex-M4 implementations. However, whether

those implementations perform well is unclear.

A particularly interesting microarchitecture for our case study

is the Arm Cortex-M7
1
as it implements the exact same instruc-

tion set as the Cortex-M4 and it is, hence, conceivable that optimal

Cortex-M4 code also performs well on the Cortex-M7. Yet, in reality,

this is not the case and Cortex-M4 code often performs poorly on

the Cortex-M7. This is primarily due to the Arm Cortex-M7 being

a dual-issue CPU with a substantially more complex pipeline de-

sign than the Cortex-M4. For certain well-scheduled workloads, the

Arm Cortex-M7 can execute 2 instructions per cycle (IPC). Code

not optimized for the dual-issuing capability often runs at only

1 IPC and, thus, performance often falls short by a factor of two

or even more. While optimal performance of 2 IPC is not always

achievable, careful scheduling respecting the latencies of the indi-

vidual instructions and restrictions concerning which instructions

can execute in parallel can result in much faster code.

In this work, we undertake a case study, evaluating if SLOTHY
can be used to aid with the process of migrating hand-optimized

assembly code between different microarchitectures while maximiz-

ing the performance with ML-KEM and ML-DSA as examples. We

chose to pick the Arm Cortex-M4 and Cortex-M7 as our hardware

targets because they (a) offer a wide variety of hand-optimized

assembly routines, (b) share the same instruction set architecture

(ISA), and (c) differ significantly in their microarchitectural prop-

erties. As we integrate our work directly into the SLOTHY tool,

it can be used for any (micro-)architecture already supported by

SLOTHY, and further (micro-)architectures can be added easily.

Our contributions are the following:

• We extend the SLOTHY superoptimizer to support a much

broader class of assembly programs. This includes extend-

ing the loop capabilities, resulting in much more powerful

software pipelining than before. We also augment SLOTHY
to automatically replace specific instruction patterns that

may perform well on one microarchitecture but not on

another.

• We add support for the Armv7-M architecture to SLOTHY,
complementing existing support for AArch64 and Armv8-

M. Alongside this, we provide a microarchitectural model

of the Cortex-M7. As Arm does not provide any documen-

tation on this matter, we base our model on our own exper-

iments as well as on 3rd party reverse engineering.

• We present a Keccak implementation that is 30% faster

than a hand-optimized Cortex-M4 implementation running

on the M7 and 5% faster than the existing hand-optimized

Cortex-M7 [4] assembly.

• We apply SLOTHY to all assembly routines present in state-

of-the-art ML-KEM and ML-DSA implementations. Besides

Keccak which is dominating the performance of both ML-

KEM and ML-DSA, this covers scheme-specific functions

1
The Cortex-M7 is a popular microarchitecture, with commercial chips available from

all major vendors. However, it has not been as well studied as the Cortex-M4 in the

cryptography literature yet.

such as the number-theoretic transforms. For the vast ma-

jority of sub-routines, we get significant performance im-

provements. We achieve up to 2.3× performance improve-

ment for certain sub-routines, resulting in full-scheme speed-

ups of up to 32% for ML-DSA, and up to 27% for ML-KEM

when comparing to implementations from pqm4.

Code. Our code (integrated into SLOTHY’s source tree) is avail-
able at https://github.com/slothy-optimizer/slothy under the MIT

license.

Related Work. The literature that relates to our work can be di-

vided into two groups. On the one hand, there exists a vast amount

of prior work from the domain of software optimization and super-

optimization. Work that considers superoptimization that may also

take the selection of instructions into account has been studied for

a long time [36, 28]. More recently, [43] presents a superoptimizer

operating on LLVM IR level, making use of satisfiability modulo the-

ories (SMT) solving to find missing opportunities for replacement

patterns. [31] presents “CryptOpt”, a tool that produces formally

verified high-speed cryptographic code for x86-64 central process-

ing units (CPUs) using random program search. Techniques from

the domain of deep learning are employed by the authors of [35],

who formalize the search for fast sorting algorithms as a single-

player game, being played by a deep reinforcement learning agent.

The area of superoptimization through constraint programming or

Integer Linear programming (ILP) that excludes the instruction se-

lection has received lots of interest in the 1990s, for example in [20,

8, 7]. The most recent and most relevant publication to this work

is [2], presenting the tool SLOTHY, which makes use of constraint

programming to simultaneously address instruction scheduling,

register allocation, and software pipelining. It has been applied to

several examples from the domain of cryptographic software.

The other group of related literature concerns high-speed imple-

mentations of PQC on embedded devices – most notably the Arm

Cortex-M4 microcontroller. For ML-KEM, an initial implementation

was provided by the Kyber submission team [44]. Later, Botros et

al. [14] wrote a faster implementation focusing on the performance

of the number-theoretic transform. Alkim et al. [6] improved this

implementation by proposing a faster Montgomery multiplication.

The implementation was further improved by Abdulrahman et

al. [3]. Most recently, Huang et al. [26] proposed a yet faster NTT

using Plantard multiplication. ML-DSA has a similar history of

heavy hand-optimization on the Cortex-M4. An initial implementa-

tion was proposed by Krausz et al. [23] which was later improved

by Greconici et al. [22]. This was again improved by Abdulrahman

et al. [3], with the most recent performance improvements being

part of [25] by Huang et al. A first evaluation of PQC schemes on

an Arm Cortex-M7 CPU has been done in [24], targeting the round-

3 variants of Dilithium and Falcon. The initial implementation

of Keccak used within most PQC implementations on the Arm

Cortex-M4 is provided by [17] and already tailored to Armv7-M. It

was improved by [4], applying the lazy rotation technique from [11]

to the Cortex-M4, while also introducing hand-optimized Keccak

code for the Cortex-M7.

https://github.com/slothy-optimizer/slothy
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Structure. We structure our paper by starting off with a descrip-

tion of relevant background information on PQC, software optimiza-

tion, and the tool SLOTHY in Section 2. Wemove on to a description

of our extensions to SLOTHY in Section 3, and continue explaining

our case study using the modified tool with workloads from the

PQC-domain in Section 4. Following, we present the results of our

efforts in Section 5 before concluding our work in Section 6.

2 PRELIMINARIES

In this section, we introduce the relevant background on the crypto-

graphic algorithms (ML-KEM,ML-DSA, and Keccak) and introduce

the Arm Cortex-M7 microarchitecture and compare it to the much

more popular Arm Cortex-M4 microarchitecture. We follow the

notation used in the NIST PQC standards [38, 39].

2.1 ML-KEM

The key encapsulation mechanism (KEM) Kyber [13] has been spec-

ified by NIST in Federal Information Processing Standard (FIPS)

203 [38] under the name ML-KEM. Its IND-CCA2 property is guar-

anteed by applying a tweaked Fujisaki-Okamoto (FO) transform

to the underlying IND-CPA secure public-key encryption (PKE)

scheme. The hardness of the scheme is based on the module learn-

ing with errors (MLWE) problem, which allows to scale the security

level by varying the module rank 𝑘 . The three available security

levels are called ML-KEM-512, ML-KEM-768, and ML-KEM-1024.

ML-KEM operates over the polynomial ring 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 + 1),
where 𝑛 is 256 and the modulus 𝑞 is the 12-bit prime 3329 making

polynomial arithmetic a core part of the scheme.

2.2 ML-DSA

Similarly, the digital signature scheme Dilithium [19] has been

standardized in FIPS 204 [39] and named ML-DSA. Just as ML-KEM,

ML-DSA relies on the MLWE problem. In addition, it is based on a

variant of the module short integer solution (MSIS) problem. Its con-

struction is based on the Fiat–Shamir with aborts pattern [34] and

believed to fulfill the SUF-CMA security property – even against

quantum adversaries. The scheme operates over a similar polyno-

mial ring as ML-KEM, namely 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 + 1) with 𝑛 = 256

but a larger 23-bit 𝑞 chosen as 8380417. The security level can be

adjusted by varying the lattice dimensions 𝑘 and ℓ leading to the

three security levels ML-DSA-44, ML-DSA-65, and ML-DSA-87.

2.3 Polynomial Arithmetic

With both, ML-KEM and ML-DSA operating over the polynomial

ring 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 + 1), polynomial arithmetic is a core part

of the schemes. Especially polynomial multiplications are gener-

ally expensive; their naive implementation using the school-book

method comes with a time complexity of O(𝑛2). To counteract this

inefficiency, the specification of both schemes prescribes the use

of the number-theoretic transform (NTT), a variant of the discrete

Fourier transform (DFT) defined over finite fields. After transform-

ing the input polynomials into the NTT domain, the polynomial

multiplication comes down to a pointwise multiplication with com-

plexity of O(𝑛) followed by an inverse number-theoretic transform

(INTT) to retrieve the result: 𝑓 · 𝑔 = iNTT(NTT(𝑓 ) ◦ NTT(𝑔)),
where 𝑓 , 𝑔 ∈ 𝑅𝑞 . Key to the efficiency is that the transformation

𝑎

𝑏

+

−×𝜔

𝑎 + 𝜔 · 𝑏

𝑎 − 𝜔 · 𝑏

(a) Cooley–Tukey-Butterfly.

𝑎

𝑏

+

− ×𝜔

𝑎 + 𝑏

𝜔 · (𝑎 − 𝑏)

(b) Gentleman–Sande-Butterfly.

Figure 1: Common Butterfly Operations.

itself can be computed efficiently in O(𝑛 log𝑛) time using a fast

Fourier transform (FFT) algorithm, shifting runtime away from

the actual multiplication towards the switch to a different domain.

Thus, the NTT and its inverse are the most critical and also most

costly operations when considering the performance of the poly-

nomial arithmetic in ML-KEM and ML-DSA. Note that in the case

of ML-KEM, where only 𝑛 | (𝑞 − 1) but not 2𝑛 | (𝑞 − 1), the NTT is

called “incomplete” and thus, the multiplication inside NTT-domain

amounts to the multiplication of linear polynomials over Z𝑞 . The
umbrella-term to refer to both, this, and the pointwise multiplica-

tion inside NTT-domain is called “base multiplication”, or short

basemul.

In order to understand some of our performance results, it is

crucial to revisit the core operation, that is part of the FFT-based

NTT and INTT algorithms: The “butterfly” operation. It comprises

one addition, one subtraction, and one modular multiplication with

a constant. We depict the most common types, the Cooley–Tukey

(CT) [16] and Gentleman–Sande (GS) [21] butterflies in Figure 1.

2.4 Keccak

Next to the polynomial arithmetic being a core part of ML-KEM and

ML-DSA, both schemes make heavy use of hashing using functions

from the sponge-construction based SHA-3 family [37]. It comprises

the fixed-length functions SHA3-{224, 256, 384, 512} as well as the
extended output functions (XOFs) SHAKE, denoted by SHAKE-
{128, 256}. Both the fixed-length functions and the XOFs are based

on the Keccak permutation [12], more precisely the Keccak-f1600
function that operates on a 1600 bit state over a course of 24 rounds,

where in each round, a sequence of five transformations is applied:

(𝜃 , 𝜌 , 𝜋 , 𝜒 , 𝜄).

All of these five steps mostly consist of bitwise logical opera-

tions, such as the “exclusive or” XOR, or rotations. As we abstain

from making any algorithmic changes to the hash function’s im-

plementation itself, we omit a more detailed description of the

algorithm except for mentioning one optimization technique that

will be relevant for the interpretation of our results.

Lazy Rotations. The concept of lazy rotations was introduced

in [11]: The idea behind it is to trade a larger number of explicit

rotations for fewer in a later step of the Keccak permutation, as well
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as a number of inline barrel shifts applied to the second operand of

logical instructions, that come at no performance penalty on many

ArmCPUs (e.g., Cortex-M4,manyAArch64 cores). This conceptwas

applied to Armv7-M in [4], where the author shows performance

gains for the Arm Cortex-M4, but conjecture that the approach will

be detrimental to the performance on Arm Cortex-M7 due to its

different pipeline structure.

2.5 Arm Cortex-M7 and Arm Cortex-M4

The Arm Cortex-M family is a series of microcontroller CPUs de-

signed as low-power embedded devices. Both, the Cortex-M4 and

Cortex-M7, implement the Armv7-M ISA with the additional digi-

tal signal processor (DSP) extension. The combination is referred

to as Armv7E-M. Armv7-M offers sixteen 32-bit general-purpose

registers (GPRs), r0 to r15, where r13 is designated as the stack

pointer, r14 as the link register, and r15 as the program counter.

In addition, there is potentially a floating point unit (FPU), which

adds 32 floating-point registers (FPRs) s0 to s31 with a width of

32 bits each. On the Cortex-M4 the presence of the FPU is optional,

while on the Cortex-M7 it is guaranteed.

Some notable features that are shared between both microarchi-

tectures are:

Barrel Shifter The barrel shifter allows shifting or rotating

the second input tomany logical and arithmetic instructions

before the operation is executed without any additional

latency to the instruction.

Thumb-2 The Thumb-2 instruction set allows for a more

compact code size by enabling a shorter 16-bit encoding for

some instructions. While this feature aids with code size,

it may cause performance penalties due to accesses to the

instruction memory not being 4-byte aligned.

In the following, we will introduce some key differences between

the two microarchitectures.

2.5.1 Arm Cortex-M4. The Arm Cortex-M4 offers a simple 3-stage

pipeline with most instructions taking a single clock cycle, except

branches and load instructions, which may take longer [9]. The

load instruction ldr typically takes two clock cycles to complete,

however, 𝑛 subsequent ldr instructions can pipeline their address

and data phases taking only 𝑛 + 1 clock cycles to complete.

2.5.2 Arm Cortex-M7. The Arm Cortex-M7 has a more complex 6-

stage pipeline and offers dual-issuing capabilities [18]. This means

that the Cortex-M7 can issue two instructions in every clock cycle.

In contrast to the Arm Cortex-M4, no detailed information about

the CPUs’s performance characteristics is available by Arm itself.

However, attempts to reverse-engineer the pipeline structure and

to gather details about the Cortex-M7 have been made by indepen-

dent individuals [27, 40]. General information about the pipeline

structure was revealed in [18], which we will describe here, while

we defer the exact microarchitectural specifics to Section 3.1.

The most important takeaways from [18] are:

• There are two 32-bit load-pipes.

• There are two arithmetic logic unit (ALU)-pipes, where only

one is capable of barrel shifting (ALU0), while the other one,

ALU1, is “skewed”.

• There is a single multiply-accumulate (MAC)-pipe capable

of computing a 32 × 32 + 64 bit product per cycle.

• There is a single 64-bit store-pipe (skewed).

• There is one FPU-pipe for ALU operation, and another one

capable of multiplication and division.

For a pipe to be considered “skewed”, it means that an instruction

can be sent to such pipes in an earlier stage of the execution, mak-

ing its result also available one stage earlier than usual, allowing

another pipe to consume it within the same cycle.

2.6 Software Optimization

We introduce the background on automated software optimization

underlying the SLOTHY superoptimizer that we extend in this

work. When optimizing the performance of a piece of code, there

are multiple different aspects to take into account.

Instruction Selection. In almost any case, there exist multiple

ways to implement the same functionality using a different se-

quence of instructions. Compilers commonly start this process

from a higher level language that gets translated into assembly,

oftentimes relying on heuristics to deliver acceptable results with a

restricted time budget. For high-speed implementations, developers

frequentlywrite assembly code themselves and, doing so, handle the

instruction selection on their own. Due to a more comprehensive

understanding of the optimization target’s semantic and a less re-

strictive time budget, humans can often find better-suited sequences

than compilers do. In addition, by hand-writing the code, devel-

opers can ensure security properties such as secret-independent

timing – those are crucial for cryptographic implementations, but

not enforced by most compilers.

Instruction Scheduling. The order in which instructions are sched-

uled on a CPU can have a significant impact on the performance.

Reasons for this may be an instruction’s latency characteristics

or throughput limitations. Especially on processors with multiple

execution units, a sensible ordering of instructions can lead to a

higher utilization of the available resources, and thus, faster code.

Even though out-of-order (OoO) execution is a common feature

in powerful CPUs that allows for ad-hoc instruction rescheduling,

there exists a large set of microarchitectures for which the order

within the source still matters, especially in-order microarchitec-

tures. Fixed-instruction superoptimization aims at finding an optimal

instruction scheduling without altering the set of instructions em-

ployed.

Register Allocation. The number and size of available registers

determines how much data can be kept at hand, avoiding spills to

memory. The choice of register allocation also impacts the flexibil-

ity of instruction re-scheduling. Register renaming is the process of

changing the choice of register allocation, and is typically consid-

ered alongside instruction (re-)scheduling. OoO microarchitectures

conduct both on the fly; on in-order microarchitectures, however,

they have to be done in software.

Software Pipelining. As introduced in [42, 32], software pipelin-

ing is a technique to overlap two or more iterations of a loop in

order to aid with data dependencies or exhaustion of processing
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resources and to increase instruction level parallelism. It is typi-

cally applied when a given loop iteration cannot progress and a

stall would occur. Then, instructions from the next iteration may be

issued in the current iteration, provided they are independent of the

current iteration’s data stream. A limiting factor to this technique is

the size of the register file: More parallelism can only be introduced

if there are enough registers available to hold the data required for

the additional instructions.

2.6.1 SLOTHY. The tool SLOTHY [2] automates the process of

instruction scheduling, register allocation, and software pipelin-

ing. It does so by constructing a constraint-programming problem

based on the input assembly and models of the target architecture

and microarchitecture. Notably, it considers instruction schedul-

ing, register allocation, and software pipelining simultaneously.

SLOTHY deploys CP-SAT from Google’s OR-Tools [41] to solve

the constraint problem, yielding optimal solutions based on the

provided microarchitectural model.

Why SLOTHY. In this work, we decide to use and extend SLOTHY
as a starting point for our migration process for multiple reasons.

Given the large amount of hand-optimized Cortex-M4 code for

ML-KEM and ML-DSA, automated optimization for a different mi-

croarchitecture promises fast implementations with limited manual

effort. First, we deem the scheduling of instructions, as well as the

allocation of registers as the most crucial parts of the optimiza-

tion process for the Arm Cortex-M7. We argue that the selection

of instructions – which SLOTHY is incapable of – is a task hu-

mans generally excell at, especially on simpler reduced instruction

set computer (RISC) architectures like Armv7E-M. In particular,

the routines of ML-KEM and ML-DSA we care about have been

steadily improved in the aforementioned publications and are now

readily available as a starting point for our optimization process.

Second, we believe that many of the sub-routines we will consider

are amenable to a complete search, i.e., finding an optimal solution

based on the given microarchitectural model.

Prerequisites. For SLOTHY to be able to run on a certain piece

of assembly code, the user is required to provide two models: The

architectural model for the target ISA is used to parse the source

code, provide basic information about the ISA, and to deliver in-

formation about the instructions’ data flow, declaring inputs and

outputs. In addition, SLOTHY requires amicroarchitectural model in

order to represent the target CPU’s intricacies in terms of latencies,

throughput, use of execution units, and other performance-relevant

characteristics such as forwarding paths, hazards, or slot restric-

tions. Note that both models can be built lazily, meaning that only

the instructions and features that are relevant for the optimization

process need to be defined.

Heuristics. As it was noted in the original paper on SLOTHY [2,

Section 7.4], there exist certain limits to the complexity of the

optimization problems that SLOTHY can solve optimally. These

limits depend on a number of different factors, e.g., the number

of instructions, the register pressure, the complexity of additional

constraints, esp. for data or structural hazards. To counteract this

limitation, SLOTHY offers multiple different types of heuristics.

Most importantly, the “splitting heuristic”, where SLOTHY only

considers a (small) “sliding window” of instructions at a time.

Address Offset Fixup. The address offset fixup is a feature of

SLOTHY that tries to maximize the possibilities for re-ordering of

load and store instructions that use an immediate offset to access

memory. Oftentimes, it is possible to change the order of two load

instructions using the same address register even if one of them

does modify the address register. It works by first ignoring the

exact offsets and then, after the optimization process, reconsidering

them to semantically match the input again. This increases the

flexibility in case one of the instructions increments the output

pointer, overwriting it and thus, posing as a natural barrier for re-

ordering of other memory operations to the same pointer. Ignoring

the offsets is implemented by removing the address register as an

output from load or store instructions that would increment the

address, thus, removing the dependency on the address register

and allowing for more freedom in the scheduling.

3 EXTENDING SLOTHY
We provide several extensions and improvements to SLOTHY to

enable and aide its use for automatic migration of code from Cortex-

M4 to Cortex-M7.

3.1 New Models

First, we add support for the Armv7E-M architecture to SLOTHY.
This is necessary for SLOTHY to parse the input code from the

pqm4 library and to generate the output code for the Cortex-M7.

Next, we build a microarchitectural model for the Cortex-M7,

which is a prerequisite for the optimization process. In the following,

we summarize the state-of-the-art public knowledge about the

Cortex-M7 pipeline details and its performance characteristics that

are relevant to the examples we consider in this work. We also

describe how to model these constraints in SLOTHY. The following
microarchitecture details are based on our own microbenchmarks

and we point to prior third party profiling [18, 27] confirmed by

our benchmarks.

We initially experimented with deriving a model from the mi-

croarchitecture model present in LLVM.
2
Unfortunately, we found

the LLVM model to be too inaccurate to obtain satisfactory results.

For example, the model restricts issuing of store instructions to one

of the two issue slots, which we have found to be incorrect in our

microbenchmarks and also contradicts the findings in [27].

ALU. The CPU offers two ALU units meaning that most oper-

ations on the ALU can dual-issue and complete with a latency of

1 cycle. One ALU offers a Barrel shifter at an earlier stage, and in-

structions that use this barrel shifter require the shifted operand to

be available one cycle earlier than usual. Modeling this in SLOTHY
is straightforward, as the routine to infer the latency called dur-

ing construction of the constraint model receives the source and

destination instructions as inputs.

Multiplications. The Cortex-M7 has a single MAC unit, so mul-

tiplications do not dual-issue. The latency of multiplications is 2

cycles, except for MAC-chains, where the latency into the accu-

mulator is reduced to 1. We model this in SLOTHY by setting the

default latency to 2 cycles, and adding a special case for cases where

2
https://github.com/llvm/llvm-project/blob/78a871abf7018f4a288b773c9c89f99cd5c

66b9c/llvm/lib/Target/ARM/ARMScheduleM7.td

https://github.com/llvm/llvm-project/blob/78a871abf7018f4a288b773c9c89f99cd5c66b9c/llvm/lib/Target/ARM/ARMScheduleM7.td
https://github.com/llvm/llvm-project/blob/78a871abf7018f4a288b773c9c89f99cd5c66b9c/llvm/lib/Target/ARM/ARMScheduleM7.td
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both the consumer and producer of a value are MAC instructions.

An additional restriction for multiplications is that they cannot

dual-issue with store instructions. In SLOTHY, we model this by

making store instructions also occupy the MAC unit.

Bit-Field & DSP. Some bit-field instructions like pkhtb, pkhbt,

and ubfx can only be issued on the ALU unit with the barrel shifter.

Moreover, neither bit-field, nor DSP instructions can dual-issue

with respect to each other. We express this in SLOTHY’s model by

adding a “fictional” execution unit for DSP instructions, which is

used in addition to an ALU unit for the respective instructions.

Memory. By default, loads have a latency of 2 clock cycles. How-

ever, due to the skewed design of the pipes (see Section 2.5.2) the

latency is reduced to just one cycle, in case the destination is an

arithmetic or logical instruction without a barrel shift. With two

load units, LOAD0 and LOAD1, they can even dual-issue – but only

if they target different memory banks, i.e., even and odd indexed

words. We model this using the following “best-effort” approach:

We assume that all pointers are aligned to 8 bytes. Then, based

on the immediate offset inside the load instruction, we evaluate

which of the memory banks is targeted by assessing whether the

index of the word is even or odd. If the index of the word is even,

we assign the load to the LOAD0 unit, otherwise to the LOAD1 unit.

Instructions that load or store 𝑛 words at a time have a latency of

𝑛 + 1 clock cycles. Thanks to the skewed store-pipe, store instruc-

tions can store results with zero cycles latency, meaning within the

same clock cycle. To evade load-after-store hazards, we augment

the model with a constraint that, for each time a load happens after

a store within the same memory region, mandates an offset of 8

clock cycles between the two instructions. This value has proven

itself empirically and accounts for, e.g., transferring elements from

the store buffer into random access memory (RAM).

Floating-Point. The only floating-point instructions relevant to

us – namely just different varieties of vmov – go down the FPU

ALU pipe. For the variant moving the value of an FPR to a GPR, the

latency is 1, while the vmov variants moving from a GPR to an FPR

have a latency of 3.

3.2 Instruction Splitting & Fusion

When considering two different microarchitectures, there com-

monly exist patterns of instructions that perform well on one, but

suboptimal on the other. For example, when it is desired to load

multiple 32-bit words from memory, the ldm instruction can be

used on an Armv7-M CPUs. On the Arm Cortex-M4, this instruction

takes 𝑛 + 1 clock cycles to load 𝑛 words. This is exactly the same

performance as one would get by issuing several individual ldr

instructions in a row. On the Cortex-M7, however, using ldm may

be detrimental to the performance even though a sequence of ldr

instructions and the ldmwould also take the same time to complete.

This is due to the M7’s dual-issuing capabilities, the Cortex-M7 can

already start to compute, e.g., arithmetic operations on the output

of one ldr from the sequence, while the other ldr instructions are

still pending. This is not possible when using the ldm instruction,

which would stall the pipeline until all words are loaded. To address

this issue, we introduce a splitting and fusion feature to SLOTHY.
This allows the merging of multiple instructions into fewer, or –

more useful in our case – the splitting of one instruction into mul-

tiple. Using this feature, we can split ldm instructions into multiple

ldr instructions, which can be scheduled in parallel to, e.g., addi-

tions, in the following code, making better use of the entirety of

the CPU’s resources. Let us consider the output of two SLOTHY

optimization runs in Listing 1 for an illustration of the power of this

feature. The input to both runs has been one ldm instruction loading

eight registers, followed by eight uadd16 instructions that add the

register r1 onto the loaded data. This would be a performance-wise

valid approach on the Cortex-M4. Naively optimizing this code for

the Cortex-M7 yields the output given in Listing 1a, which does not

improve over the original input as there is no meaningful way to

alter the scheduling. By enabling the splitting feature, SLOTHY can

generate the code in Listing 1b, which splits the ldm instruction

into multiple ldr instructions, which can be scheduled in parallel

to the uadd16 instructions. By considering the comment at the top

of SLOTHY’s outputs, we can see that the expected number of clock

cycles based on our microarchitectural model has been reduced

from 12 clock cycles to just 9 – a 33% improvement. We confirm

this by benchmarking both snippets on-device. Each column in the

comments next to the output source code represents one clock cycle.

An asterisk symbolizes the issuing of the respective instruction,

meaning two “stacked” asterisks indicate that two instructions are

dual-issued.

A note on security: It’s the developers responsibility to ensure

that the fusion they add to SLOTHY is (a) semantically correct

and (b) does not alter the program in a way that introduces side-

channel leakage. If it would be desired to implement an “unsafe”

replacement, a possible, future addition to SLOTHY could be the

ability to mark registers as either public or secret, and to enforce

that the fusion may not interact with secret registers in a way that

would introduce leakage.

3.3 Re-Worked Loop Handling

SLOTHY supports the ability to parse loops in the input assembly

in order to enable the use of software pipelining. This is necessary

since the pre- and post-amble need to be sensibly embedded into the

optimized code and modifications to the counter need to be made.

However, SLOTHY has so far only been able to operate on loops

that used a static counter register that gets decremented by one in

each iteration using subs with a following conditional branch in-

struction bne. This instruction pair is subsequently not considered

as part of the loop kernel, as the so called “loop boundary” which

SLOTHY is blind to during the optimization process.

There exist two reasons why we decided to take on SLOTHY’s
abilities to detect and handle loops during the optimization process.

(1) While the authors of [2] could work with the aforemen-

tioned limitation in their “clean” code, we found that the

code present in the pqm4 library makes use of a multitude

of different structures for loops, which would not be recog-

nized by SLOTHY. A prominent example for this is that the

loop counter is not a dedicated register but the last iteration

of the loop is instead inferred based on the value a pointer,

which gets incremented with each iteration.
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// Expected cycles: 12
ldm r0, {r2-r9} // *...........
uadd16 r8, r8, r1 // ....*.......
uadd16 r5, r5, r1 // .....*......
uadd16 r7, r7, r1 // ......*.....
uadd16 r6, r6, r1 // .......*....
uadd16 r4, r4, r1 // ........*...
uadd16 r3, r3, r1 // .........*..
uadd16 r2, r2, r1 // ..........*.
uadd16 r9, r9, r1 // ...........*

(a) SLOTHY-optimized code without splitting.

// Expected cycles: 9
ldr r10, [r0, #0] // *........
uadd16 r2, r10, r1 // .*.......
ldr r11, [r0, #28] // .*.......
uadd16 r9, r11, r1 // ..*......
ldr r14, [r0, #4] // ..*......
uadd16 r3, r14, r1 // ...*.....
ldr r4, [r0, #8] // ...*.....
uadd16 r4, r4, r1 // ....*....
ldr r8, [r0, #12] // ....*....
uadd16 r5, r8, r1 // .....*...
ldr r12, [r0, #24] // .....*...
uadd16 r8, r12, r1 // ......*..
ldr r6, [r0, #16] // ......*..
uadd16 r6, r6, r1 // .......*.
ldr r7, [r0, #20] // .......*.
uadd16 r7, r7, r1 // ........*

(b) SLOTHY-optimized code with splitting.

Listing 1: Example for SLOTHY’s splitting feature.

(2) When tuning code for the highest performance, every in-

struction counts. For this reason, hiding multiple instruc-

tions as part of the loop boundary from SLOTHY and thus,

loosing opportunities for scheduling, limits performance

gains. A logical consequence was to merge the loop bound-

ary into the loop and to make it part of the constraint model

that SLOTHY is building.

Every architectural model can now be extended with multiple

different loop classes with SLOTHY picking a suitable one for the

code at hand. The most general form of loop we add to the Armv7-
M model only requires a start label as well as a branch instruction

back to the label to be present in the input source. Based on that,

we extended SLOTHY to automatically infer details about the struc-

ture of the loop, enabling it to take all instructions, including the

branch, into account when scheduling. The information we infer

automatically, for example, includes by how much the loop counter

is modified in each iteration. This is an important piece of informa-

tion, as the loop counter needs to be modified accordingly ahead of

time in case software pipelining is deployed and thus, one iteration

of the loop gets “unrolled”.

The performance advantage of this technique can be easily un-

derstood based on an example. While Arm Cortex-M7 has the capa-

bility to dual-issue instructions, it can only issue one multiplication

in each clock cycle as there is only one execution unit for these

available. However, many of the functions related to polynomial

multiplications are dominated by instructions occupying the MAC

unit, meaning that in case there are more multiplications than any

other type of instruction, there will inevitably occur stalls due to

resource hazards. Having one or more additional instructions from

the loop boundary that can be used to balance out the multiplica-

tions can potentially save multiple cycles per iteration.

Limitation. Two limitations to the loop handling still remain.

First, when making use of the address offset fixup feature in combi-

nation with a loop, that relies on a pointer that gets incremented

using a load or store instruction, it is required to manually an-

notate the input source code to inform SLOTHY that the load or

store instruction used for the increment needs to appear before

the flag-setting instruction (e.g., cmp). The reason for this is that

the address offset fixup removes the address-output from the load

or store instruction to allow for the flexible reordering during the

fixup. However, this also removes the dependency between the

incrementing instruction and the flag-setting instruction, meaning

they could be swapped – resulting in incorrect code. Second, the

loop handling is not yet capable of determining the counter register

on its own, we require the order of arguments to the cmp instruc-

tion to follow the convention of the first register being the one that

gets incremented, while the second marks the end-value.

3.4 Further Changes

0-Latency. A new capability we added to SLOTHY is the ability to

model instructions that have a latency of 0, which was unsupported

before but is a feature for certain instructions on the Cortex-M7.

Assembly Directives. With respect to parsing, we also extended

the support for assembly directives, adding the ability to resolve

(recursive) .if ... .else directives and to interpret definitions

made through the .equ directive.

4 CASE STUDY

In this section, we will describe the process of deploying SLOTHY,
including our extensions, for the task of optimizing the ML-KEM

andML-DSA implementations for the ArmCortex-M7.Wewill start

by explaining our starting point for the process, giving context to

the functions we are considering, and then describe the changes

we made to the input assembly files to make them compatible with

SLOTHY.
As a starting point for the optimization process, we use the

assembly files that are present in the pqm4 library [30] (as of Jan

16, 2025, commit 49ce5bea).

4.1 Target Routines

Next, we will introduce the routines that are subject to our optimiza-

tion efforts. As the most time-consuming operations within both

ML-KEM and ML-DSA are actually symmetric primitives based

on the Keccak permutation, we start by looking at Keccak as

https://github.com/mupq/pqm4/commit/49ce5bea56c2a00da2671a54949d9f214936ca21
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even small speed-ups in Keccak often have more impact on the

performance of the full scheme.

4.1.1 Keccak. Only a single assembly implementation of Keccak

is part of pqm4 and it is shared among the other cryptosystems

using it. Currently, it is an implementation specifically tuned for the

Arm Cortex-M4, presented in [4], which is based on [17] adapting

recent techniques from [11]. The implementation from [17] was

previously used in pqm4. Next to these implementations targeting

the Arm Cortex-M4, a hand-optimized implementation for the Arm

Cortex-M7 was introduced in [4] as well.

In this work, we decide to play out one advantage of SLOTHY:
The ability to swiftly evaluate how amenable different implemen-

tations of the same algorithm are to the optimization for a certain

target platform. We, hence, evaluate all three implementations.

For all three implementations, we target the core of the algorithm,

the Keccak-f permutation KeccakF1600_StatePermute. In the fol-

lowing, we will suffix the original implementation from [17] with

“xkcp”, the Cortex-M4-tuned implementation from [4] with “adom-

nicai_m4”, and the Cortex-M7-tuned implementation from [4] with

“adomnicai_m7”.

4.1.2 ML-KEM. The assembly functions contained in pqm4 for

ML-KEM can be split in three groups:

Polynomial Multiplication Most crucial to the polynomial

multiplication are the functions for the NTT and INTT.

They are responsible for transforming between the NTT-

domain and “regular” domain. Alongside these, we have a

set of basemul functions targeting the multiplication inside

the NTT-domain. Multiple variants to these exist: Func-

tions that carry the prefix “frombytes”, implicitly unpack

the wire-representation of the polynomial before perform-

ing the multiplication itself. Functions containing either

combination of {16, 32} in their name belong to the speed-

optimized implementation that makes use of the “better

accumulation” strategy [15].

Polynomial Arithmetic Next to the polynomial multiplica-

tions, we consider functions for polynomial addition and

subtraction poly_add and poly_sub. A function implement-

ing the Barrett reduction is also part of the code.

Polynomial Sampling Functions prefixedwith “matacc” aid

with the acceleration of the sampling of the public matrix

𝐴 ∈ 𝑅𝑘×𝑘𝑞 whilst multiplying it with a vector of polynomials

on the fly. Again, functions carrying a suffix containing

{16, 32} are deploying a performance optimization pattern

using caching in memory.

It is important to note that pqm4 contains both a stack- and a

speed-optimized implementation. Some of the functions we tar-

get are only used in one of the two. For example, all sub-routines

containing {16, 32} are only used in the speed-optimized implemen-

tation, while the stack-optimized implementation uses a more stack

friendly variant not using the “better accumulation”.

4.1.3 ML-DSA. For ML-DSA, we can see a similar picture:

Polynomial Multiplication Routines computing the NTT,

INTT, and basemul using the ML-DSA-prime 8380417 be-

long to the most performance critical routines and are thus

subject to our optimizations. Proposed in [3], some of the

transformations and basemuls in ML-DSA can be replaced

by more efficient ones, making use of smaller moduli 257 or

769. In the case of the Fermat number 257, the transforma-

tion is then called Fermat number transform (FNT), instead

of NTT. If a basemul routine contains the term “asymmet-

ric”, it is designed to make use of an optimization technique

introduced in [10], which re-uses part of the result from

the NTT/FNT during the basemul.

Other Routines Just as for ML-KEM, a routine for Barrett

reduction is part of the implementation. In addition, the

function caddq is used to transform polynomial coefficients

that are reduced to a representative that may be negative,

to one that is in the range [0, 𝑞).
Similar as for ML-KEM, there is a speed- and a stack- optimized

implementation. However, those use mostly the same assembly.

Although it has been shown to be inferior in performance to the

769 arithmetic [26], we also consider the 257 arithmetic as it has

been part of pqm4 up until very recently
3
. However, we exclusively

deploy the 769 arithmetic for our full scheme implementations.

4.2 Changes to Input Assembly

Although large parts of the transition to the Cortex-M7 are auto-

mated, some manual changes to the input assembly files have been

necessary or helpful with easing the process. We deem all of these

changes as minor but still explain them in the following.

First, we split files from pqm4 in such a way, that always only one

global function remains per file. This eases experimentation across

multiple optimization runs. Further, we renamed some functions

and symbols in the input assembly to avoid naming collisions or to

make the function names more descriptive.

In rare cases, the LLVM assembler, used for a self-test feature of

SLOTHY4, would not accept the “short” notation of an instruction

being forced into the 32-bit wide encoding, e.g., add.w r0, #<

imm>would cause an error, while add.w r0, r0, #<imm> passed

just fine. In these cases, we manually expanded the short notation

into the long one. The other way around, sometimes, when giving

the “long” notation of an instruction and simultaneously forcing it

to the 32-bit encoding would cause an error as well, e.g., neg.w r0

, r0 would fail, while neg r0, r0 would work while still being

encoded as a 32-bit instruction.

The majority of changes are due to limitations in SLOTHY’s
abilities of parsing the assembly source and in order to circum-

vent major engineering efforts. We had to rename some constants

defined through the .equ directive, as SLOTHY does not support

overwriting these in case they get re-defined within a function.

Also, SLOTHY does not support parsing macros which take other

macro names as arguments. We resolved this by directly invoking

the appropriate macro. Further, we sometimes switched the order

of arguments in the cmp instruction at the end of a loop to allow

SLOTHY to automatically infer the loop structure as we identify

the counter register based on the ordering of the arguments. As

3
It was changed in 1a04a91

4
The self-test feature within SLOTHY assembles the code before and after optimization

and executes it in the Unicorn emulator on random inputs to check that it produces

the same outputs. While using this feature is not strictly necessary, it is very helpful

in finding mistakes in the architecture model and SLOTHY itself as early as possible.

https://github.com/mupq/pqm4/commit/1a04a91573096aa79e6e8f1394bf804c9a89a1a5
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a last point on the parsing, we removed the use of the .rept di-

rective from three input files as it (a) complicates the parsing, esp.

for general cases in combination with other directives, (b) does not

add much value, and (c) is trivial to replace (i.e., just deleting the

directive). Note that this change makes the input code the slightest

bit less performant as the inlining spared some loop handling (e.g.,

comparisons and branches), while at the same time reducing the

code size as a side effect.

Further, we added SLOTHY tag annotations to the input assembly

files to give certain hints to SLOTHY, e.g., about the interaction
with the memory or about the loop structure. Lastly, we push more

callee-save registers to the stack at the beginning of some functions

– in case not all have been pushed anyways – in order to avoid

restrictions with respect to renaming and unlock more flexible

scheduling.

4.3 SLOTHY Configuration

After integrating the input assembly files into SLOTHY, the opti-
mization process could be started. This requires to provide a con-

figuration on the parameters used during optimization – at least

providing the target platform, input file, and the region or loop of

the file to be optimized.

However, there are several configuration options that may im-

pact the performance. In the following, we go over the performance-

relevant parts of the configuration for the critical routines.

4.3.1 ML-DSA NTT & INTT. For the NTT and INTT in ML-DSA

using 𝑞 as 8380417, the number of instructions per loop varies

between 33 and 86 and we are able to optimize all of the loops

without the use of heuristics and with software pipelining enabled,

terminating within approximately one hour (on an Apple M1).

In contrast, the implementation of the FNT and its inverse con-

tain some loops that cover up to 407 instructions, which is beyond

SLOTHY’s capabilities for optimization without the use of the split-

ting heuristic. We use a splitting factor between 6 and 8, with a

step size between 10 and 15%. In addition, we set a timeout of 180

seconds that interrupts the solver and continues with the solution

found at that point. Further, we make use of our new fusion-feature

in order to split vldm instructions, loading multiple FPRs at once,

into a sequence of vldr instructions.

As the 769 NTT and INTT are based on to the ML-KEM imple-

mentations using 3329 as the modulus and thus require very similar

configuration, we skip the description here and refer the reader to

the next subsection.

4.3.2 ML-KEM NTT & INTT. The code for the (inverse) NTT in

ML-KEM consists of loops with 113–304 instructions. In case of

our model for the Arm Cortex-M7, we found that the optimization

of the ML-KEM NTT and INTT is not feasible without the use of

the splitting heuristics. Therefore, we configure it to split the code

into 3–6 parts, moving the window by 10–20% in each step with

a timeout of 360 seconds. In the case of ML-KEM, we use fusion

to split ldrd instructions, loading two GPRs at once, into pairs of

ldr instructions, and do just the same for vldm instructions as we

did in the FNT.

4.3.3 Keccak. Since high-performance implementations of Kec-

cak such as the ones presented in [4] commonly rely on heavy

loop-unrolling, the number of instructions to consider in the op-

timization of Keccak is significantly higher than for the NTTs.

The Cortex-M4-tuned implementation from [4] consists of 1521

instructions in its main loop, which by far exceeds the threshold for

SLOTHY to be able to optimally solve the problem. Thus, we again

deploy the splitting heuristic and configure it to split the code into

22 parts, with a step-size of 5%. Moreover, we allow SLOTHY to take

two passes over the code using the heuristic, to further facilitate

the interleaving. We disable software pipelining as it would (1) be

too complex to solve in this case and (2) blow up the code size

significantly.

While optimizing the Cortex-M4 Keccak code from [4], SLOTHY
identified a useless instruction buried deeply in the Keccak imple-

mentation’s macros storing to the same memory location twice.

While it is very hard to spot this instruction manually, SLOTHYwill

by default flag such useless instructions. We removed the useless

instruction.

4.3.4 Other Functions. For all other functions, optimization is more

straightforward and we can optimize the main loop of each func-

tion without the use of heuristics. One exception are the “matacc”

functions within ML-KEM. Those include branches to external

functions (SHAKE) as well as conditionals for sampling values < 𝑞

using rejection sampling. Neither sub-routine calls, nor conditionals

are currently supported by SLOTHY and adding support does not

promise much room for improvement as there is close to no flexibil-

ity in scheduling these instructions. Thus, we limit the optimization

to only the arithmetic part of these function.

5 RESULTS

In this section, we present the performance of the target functions

on the Arm Cortex-M7 before and after optimization. For reference,

we also present cycle counts on the Arm Cortex-M4 and from prior

work.

The development board we used is a Nucleo-F767ZI which fea-

tures a STM32F767ZImicrocontroller. It has 2048 KiB of flash mem-

ory, 512 KiB of SRAM of which 128 KiB are tightly-coupled memory

(DTCM). It runs at a frequency of up to 216 MHz offering a signifi-

cant boost over common Cortex-M4 microcontrollers such as the

STM32F407VG.
To perform component benchmarks and tests, we make use of

the pqmx [1] framework that comes with SLOTHY. For scheme

benchmarks and tests, we extend the popular benchmarking frame-

work pqm4 [29]. For both, we add support for the STM32F767ZI
as well as the QEMU Cortex-M7 platform mps2-an500. The former

allows for realistic benchmarking on actual hardware, while the

latter allows running functional tests without the actual hardware,

easing development and allowing to perform tests in a continuous-

integration environment.

As usual on microcontrollers, we run the devices at a reduced

frequency of 24 MHz to eliminate wait states when fetching in-

structions from flash memory. We only use the DTCM memory as

it offers better performance and 128 KiB of memory is sufficient for

all of our benchmarks. Like pqm4, we make use of libopencm3 [33]

easing setup of serial communication, clock configuration, and use

of the hardware random number generator. For SHA-3 and SHAKE,
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we use the code available in pqm4 except for the KeccakF1600 per-

mutation itself which we replace as detailed in the following. With

this setup we were able to reproduce cycle counts reported in prior

work [4] up to only 5 clock cycles difference.

For obtaining cycle counts prior to optimization on the Arm

Cortex-M4, we make use of the common STM32F407-DICOVERY
board with an STM32F407VG and use the default configuration

in pqm4. For pqm4 comparison, we use pqm4 as of Jan 16, 2025

(Commit 49ce5bea).
For all benchmarks, we use the Arm GNU toolchain version

13.3.Rel1.
5

5.1 Component benchmarks

To demonstrate the effectiveness of SLOTHY, we first present re-
sults for the individual functions that were optimized. For stable

benchmarking, we run the code in a loop 100 times, and repeat the

experiment 100 times reporting the median cycle counts.

Keccak. Our results for Keccak are shown Table 1. Prior to

optimization, the best performing implementation is the hand-

optimized Cortex-M7 implementation presented in [4]. Note that

this implementation already achieves 1.79 IPC, which is close to

optimal. Nonetheless, SLOTHY manages to find a 5% improvement,

resulting in 1.87 IPC. Surprisingly, however, this is not the fastest im-

plementation we found: Optimizing the Cortex-M4 implementation

presented in [4] results in even fewer cycles. This implementation

has a lower IPC of 1.77, yet it achieves better performance than

the 1.87 IPC implementation. This is primarily due to the use of

lazy rotations as described before in Section 2. This confirms that

SLOTHY can outperform manual hand-optimization even when

starting with code written for another microarchitecture. We also

tried to run SLOTHY on a previous version of Keccak from [17],

but it did not result in an implementation outperforming the other

two after optimization. Code size remains mostly unaffected by

our optimizations. Some differences are expected due to occasional

switching between 16-bit and 32-bit instruction encoding because

of other register choices by SLOTHY. The differences between the

input implementations are due to varying degrees of unrolling.

ML-DSA. Table 2 contains the performance benchmarks of the

core polynomial arithmetic in ML-DSA. For polynomial arithmetic

modulo the ML-DSA prime, we see the Cortex-M4 code performing

very poorly, achieving only around 1 IPC or even less. SLOTHY
finds vastly better code for these functions with speed-ups rang-

ing from 1.75× to 1.97×. For small polynomial multiplication, we

evaluate both the 257 and 769 arithmetic proposed in [3] (with

the former only being applicable to ML-DSA-44 and ML-DSA-87).

SLOTHY achieves significant speeds-up for all those functions. We

see particularly good speed-ups for the pointwise multiplications

of 2.35× and 2.14×. The reader may be surprised to see a speed-up

of larger than two. However, this can be explained by the particu-

larly poor performance of the original code achieving only 0.74 IPC

and 0.78 IPC. This poor performance is mainly due to consecutive

multiplications depending on each other. As multiplications cannot

dual-issue and have a latency of two cycles, this leads to an extra

5arm-none-eabi-gcc from https://developer.arm.com/downloads/-/arm-gnu-

toolchain-downloads

stall and at worst 3 unused issue slots. This effect occurs in other

places as well but is particularly pronounced for these pointwise

multiplications. In addition, this choice keeps the comparability

of the results to prior work such that differences all relate to opti-

mizations by SLOTHY. We also see small speed-ups for the Barrett

reduction and conditional addition. Code size increases by a factor

of almost 2 for all examples that make use of software pipelining.

It also increases moderately in the cases where an ldm gets split

into multiple instructions. Small variations in the code size are also

expected due to switching between 16-bit and 32-bit instruction

encoding.

ML-KEM. We present the component results for ML-KEM in Ta-

ble 3. Similar toML-DSA, the Cortex-M4 code for the NTT and iNTT

performs poorly on the Cortex-M7, not exceeding 1.04 IPC. SLOTHY
finds code that performs 1.62× and 1.64× faster. We achieve similar

speed-ups for the various base multiplications deployed in ML-

KEM, as well as the Barrett reduction. For the Barrett reduction,

we see a vast increase in IPC as well, however, this is partly due to

the splitting of ldm instruction which improves the IPC more than

the performance. Lastly, we see only very small improvements for

the matacc functions. These functions inline the sampling of the

matrix A into the computation of the rejection sampling and base

multiplication resulting in complex assembly including multiple

loops with function calls. We can only apply SLOTHY to a share

of this computation, namely the base multiplication which greatly

limits the speed-ups we see. Note that these functions also perform

function calls to Keccak to sample the matrix. We exclude the cy-

cles spent in Keccak in the benchmarks here to ease interpretation.

Code size changes similarly as for the ML-DSA.

5.2 ML-DSA results

We report the full scheme results in Table 4. For fairness reasons we

mainly compare our implementation to two others: One referred

to as ‘pqm4’ which is the current implementation in pqm4 (Com-

mit 49ce5bea) including the Cortex-M4 Keccak implementation.

This is the Keccak implementation that was used to obtain our fast

Cortex-M7 implementation. We also compare to a second imple-

mentation called ‘pqm4*’ which is the same implementation but

using the Cortex-M7 Keccak permutation from [4]. This can be

seen as the state-of-the-art prior to our work. Compared to ‘pqm4’,

we achieve speed-ups of 11% to 33%. Compared to ‘pqm4*’, we

achieve speed-ups of 2% to 21%. We also present the results from

[24] which benchmarks Cortex-M4 implementations on the Cortex-

M7. However, these results were obtained from an older Cortex-M4

implementation and does not include Keccak optimized for the M7

and, hence, the performance is slower than the state of the art. As

a reference, we also report Cortex-M4 cycles obtained from pqm4.

Compared to those our Cortex-M7 implementations require 1.58×
to 1.82× fewer cycles.

5.3 ML-KEM results

Table 5 contains our full scheme results forML-KEM.We present the

same comparisons as for ML-DSA in the previous section except

that there are no previous results published on the Cortex-M7.

Compared to the ‘pqm4‘ implementation (M4-optimized code and

M4 Keccak), we achieve speed-ups of 22% to 27%. Compared to the

https://github.com/mupq/pqm4/commit/49ce5bea56c2a00da2671a54949d9f214936ca21
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://github.com/mupq/pqm4/commit/49ce5bea56c2a00da2671a54949d9f214936ca21
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Table 1: Keccak benchmarking results before and after optimizations. We report speed in clock cycles and code size in bytes.

Impl.

Before M4 Before M7 After M7 Speed-

clock cycles clock cycles IPC code size clock cycles IPC code size up

XKCP [17] 13368 6262 1.59 6642 5376 1.85 6642 1.16×
M4 [4] 9397 6691 1.37 6030 5149 1.77 6010 1.30×
M7 [4] 12399 5573 1.79 2906 5322 1.87 3334 1.05×

Table 2: ML-DSA components results. We report performance of the input code in clock cycles on both the Cortex-M4 and the

Cortex-M7 prior to optimization. Performance after optimization is reported for the Cortex-M7. Code size before and after

optimization is reported in bytes.

Function

Before M4 Before M7 After M7

Speedup

clock cycles clock cycles IPC code size clock cycles IPC code size

NTT 8145 8139 0.95 860 4141 1.87 1704 1.97×
iNTT 8683 8207 0.95 1052 4547 1.72 1498 1.80×
Basemul 1914 2080 0.82 132 1063 1.61 212 1.96×
Basemul Acc. 2511 2166 1.03 164 1235 1.80 268 1.75×
NTT 769 4446 4013 1.04 1692 2418 1.75 1702 1.66×
iNTT 769 4575 4194 1.00 2008 2555 1.69 2060 1.64×
Pointmul 769 1025 1053 0.79 124 448 1.87 228 2.35×
Basemul asym. 769 1700 1887 0.82 124 1007 1.56 220 1.87×
FNT 257 5480 5130 0.99 1864 3903 1.34 2090 1.31×
iFNT 257 5552 4988 1.04 1680 3411 1.56 1738 1.46×
Pointmul 257 1155 1311 0.74 136 612 1.59 256 2.14×
Basemul asym. 257 1184 862 1.19 76 608 1.69 140 1.42×
Barrett reduction 1439 989 1.37 190 833 1.62 340 1.19×
caddq 1183 668 1.64 140 636 1.72 150 1.05×

‘pqm4*‘ implementation (M4-optimized code and M7 Keccak), we

achieve speed-ups of 9% to 14%. When comparing to cycles on the

less powerful Cortex-M4, we require 1.66× to 1.74× fewer cycles.

6 CONCLUSION

In this paper, we have shown that migrating highly hand-optimized

code to a new microarchitecture with SLOTHY is feasible and can

yield significant performance improvements. As we demonstrated

based on the ML-KEM and ML-DSA code from pqm4 and Keccak

from [4], with only little to no manual modifications to the source, it

is possible to obtain fast implementations for the target of our case

study, the Arm Cortex-M7. While building the architectural and

microarchitectural models has been time-consuming, this is a one-

time-effort that can be approached lazily. Note that for platforms,

where the CPU designer provides a software optimization guide,

this task would be vastly simplified.

Beyond the general result from our study, we were able to dis-

prove a conjecture from [4], claiming that lazy rotations are not

beneficial for Keccak on the Cortex-M7, while at the same time

providing the currently fastest, open-source Keccak implementa-

tion for the Cortex-M7. We also identified a useless instruction in

the state-of-the-art Cortex-M4 implementation in Keccak.

Moreover, we provide the first open-source implementation of

ML-KEM and ML-DSA specifically tuned for the Arm Cortex-M7,

with many subroutines delivering near-optimal performance with

close to 2 IPC. This, together with our improved Keccak imple-

mentation, yields performance gains of up to 32 % compared to the

original pqm4 code on the Cortex-M7.
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Table 4: ML-DSA full scheme results. The ‘pqm4’ implementation refers to the current implementation in pqm4 including the

Keccak which is the Cortex-M4 implementation described in [4]. ‘pqm4*’ refers to the same implementation but using the

Cortex-M7 Keccak permutation from [4]. The ‘pqm4’ Cortex-M4 results are directly taken from the pqm4 tables. We report

the mean of 5000 executions.

CPU impl KeyGen Sign Verify

m
4
f

4
4

M7 Ours 813378 (×1.00) 2127982 (×1.00) 813339 (×1.00)
M7 pqm4 1017840 (×1.25) 2821229 (×1.33) 1032625 (×1.27)
M7 pqm4* 902168 (×1.11) 2564933 (×1.21) 923587 (×1.14)
M7 [24] 1437000 (×1.77) 3658000 (×1.72) 1429000 (×1.76)
M4 pqm4 1425492 (×1.75) 3822701 (×1.80) 1421600 (×1.75)

6
5

M7 Ours 1446421 (×1.00) 3412174 (×1.00) 1380098 (×1.00)
M7 pqm4 1808627 (×1.25) 4489455 (×1.32) 1753730 (×1.27)
M7 pqm4* 1591914 (×1.10) 4064951 (×1.19) 1552298 (×1.12)
M7 [24] 2566000 (×1.77) 6009000 (×1.76) 2453000 (×1.78)
M4 pqm4 2516006 (×1.74) 6193171 (×1.82) 2415944 (×1.75)

8
7

M7 Ours 2449052 (×1.00) 4509525 (×1.00) 2401930 (×1.00)
M7 pqm4 3063089 (×1.25) 5926412 (×1.31) 3040658 (×1.27)
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M4 pqm4 4274513 (×1.75) 8204023 (×1.82) 4193228 (×1.75)

m
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s
t
a
c
k

4
4
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