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Abstract. In a secret sharing scheme with polynomial sharing, the se-
cret is an element of a finite field, and the shares are obtained by eval-
uating polynomials on the secret and some random field elements, i.e.,
for every party there is a set of polynomials that computes the share of
the party. These schemes generalize the linear ones, adding more expres-
sivity and giving room for more efficient schemes. To identify the access
structures for which this efficiency gain is relevant, we need a systematic
method to identify the access structure of polynomial schemes; i.e., to
identify which sets can reconstruct the secret in the scheme. As a first
step, we study ideal polynomial secret sharing schemes where there is a
single polynomial for each party. Ideal schemes have optimal share size
because the size of each share is the size of the secret.
Our goal is to generalize results of linear secret sharing schemes, i.e.,
schemes in which the shares are computed by applying linear mappings
and the linear dependency of these mappings determines their access
structures. To achieve this goal, we study the connection between the
algebraic dependency of the sharing polynomials and the access structure
of the polynomial scheme. Our first result shows that if the degree of
the sharing polynomials is not too big compared to the size of the field,
then the algebraic dependence of the sharing polynomials determines the
access structure of the scheme. This contributes to the characterization
of ideal polynomial schemes and establishes a new connection between
families of ideal schemes and algebraic matroids.
Conversely, we ask the question: If we associate a polynomial with each
party and the dealer, can we use these polynomials to realize the access
structure determined by the algebraic dependency of the polynomials?
Our second result shows that these access structures admit statistical
schemes with small shares. Finally, we extend this result to the general
case where each party may have more than one polynomial.
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1 Introduction

Secret sharing schemes are a cryptographic primitive designed to protect a secret
value by distributing it into shares. In these schemes, the secret is held by the
dealer, and each share is privately sent to a different party. A subset of parties
is authorized if their shares determine the secret value. The access structure of
a secret sharing scheme is the family of authorized subsets. A scheme is perfect
if subsets of parties that are not authorized cannot obtain any information on
the secret, in the information-theoretic sense. Secret sharing schemes were in-
troduced by Blakley [20] and Shamir [61] in 1979, and are used to prevent the
disclosure or the loss of the secret value in many different cryptographic appli-
cations (see [8], for example, for a list of applications). For these applications,
there is a need for efficient schemes and, in particular, shares should be as short
as possible. This leads to the problem of minimizing the share size (or the in-
formation ratio, which is the ratio between the size of the secret and the size of
the largest share).

The most common secret sharing schemes are linear. However, most access
structures require linear schemes with exponential share size [5,11,58]. This mo-
tivates the study of other families of schemes that can overcome this limitation.
To address this goal, Paskin-Cherniavsky and Radune [57] defined secret sharing
schemes with polynomial sharing; in such schemes, the secret is an element of a
finite field and the shares are obtained by applying polynomials to the secret and
some random field elements. These schemes were further studied in [15,12]. Poly-
nomial secret sharing schemes generalize linear secret sharing schemes, adding
more expressivity and giving room for more efficient schemes. Our goal in this
work is to better understand polynomial secret sharing schemes and their re-
lationship with the algebraic dependency of the sharing polynomials (trying to
generalize similar concepts for linear secret sharing schemes).

1.1 Our Goals

In a linear secret sharing scheme, each party is associated with a set of vectors,
i.e., the i-th party is associated with some vectors vi,1 . . . , vi,ki ∈ Fm+1 for some
finite field F and m > 0. To share a secret s ∈ F, the dealer picks uniformly
random elements r1, . . . , rm ∈ F and sends vi,j · (s, r1, . . . , rm) for 1 ≤ j ≤ ki to
the i-th party. Namely, each share contains ki elements, and each element is a
linear combination of the secret s and the random elements r1, . . . , rm.

In a secret sharing scheme with polynomial sharing, or polynomial secret shar-
ing scheme, the secret is an element of a finite field F, and the shares are obtained
by applying polynomials to the secret and some random field elements. That is,
the i-th party is associated with some polynomials Pi,1, . . . , Pi,ki

∈ F[x0, . . . , xm]
for some m, ki > 0, and the shares of a secret s ∈ F are generated by picking
uniformly distributed randomness r1, . . . , rm ∈ F and sending Pi,j(s, r1, . . . , rm)
for 1 ≤ j ≤ ki to the i-th party.

Linear schemes are perfect, and their access structure is determined by the
vectors of the scheme: A subset of parties A is authorized if the vector e =
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(1, 0, . . . , 0) is dependent on A’s vectors. Hence, the search for a linear scheme
for a given access structure can be translated into a linear algebra problem.
These properties do not hold in the case of schemes with polynomial sharing. In
general, they are not necessarily perfect, i.e., there might be sets of parties that
can determine partial information on the secret. Given an access structure, we
would like to know how to construct efficient polynomial schemes realizing it.

The first objective of this work is to provide a criterion to determine the
access structure of perfect polynomial schemes. For that, we focus on the class
of ideal schemes with polynomial sharing to take advantage of results on matroid
theory and algebra.

In an ideal secret sharing scheme, the size of each share is equal to the size
of the secret, and this is the best possible situation for a perfect scheme [46].
In this case, we say that its access structure is called ideal as well. Brickell
and Davenport [22] proved that ideal access structures are determined by ma-
troids. A matroid is a combinatorial structure generalizing linear spaces and
cycles in undirected graphs. Namely, Brickell and Davenport proved that the
minimal authorized subsets correspond to the circuits of a matroid containing
the point {0}. In this case, we say that the access structure is a port of that
matroid. Conversely, not all matroids determine ideal access structures [60]. The
characterization of matroids that determine access structures with ideal schemes
is an open problem. This connection between secret sharing schemes and ma-
troids has been crucial in the search of positive and negative results about the
existence of efficient secret sharing schemes, e.g., in lower bounds on the share
size for general access structures [11,52], characterization of ideal multipartite
and ideal weighted threshold access structures [17,35,37], and separation results
for different secret sharing techniques [10,14,9]. For example, it is known that an
access structure has an ideal linear secret sharing scheme if and only if the access
structure is a port of a representable matroid [21]. We aim to extend this tight
connection to the families of ideal polynomial schemes and matroids determined
by polynomials.

The second objective of this work is to study the security of schemes with
polynomial sharing. As mentioned above, polynomial secret sharing schemes are
not perfect, in general. Some subsets of parties may have partial information
about the secret (i.e., they are neither authorized nor forbidden), as shown in
the following example.

Example 1.1. Consider the scheme with three parties in a finite field Fp with
p > 2 where the share of the first party is P1(s, r) = r, the share of the second
party is P2(s, r) = s2 + r, and the share of the third party is P3(s, r) = s + r2.
It does not have perfect correctness since the first and second party cannot fully
recover the secret, i.e., they can determine s2, so they have two options for the
secret. Moreover, the third party has partial information about the secret: that
is, there are p+1

2 possible values of the secret. However, note that the same
polynomials over binary fields lead to a perfect secret sharing scheme, more
concretely, the 2-threshold secret sharing scheme. △
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We analyze the properties of these schemes and provide methods to transform
them into schemes with strong security guarantees. We prove that the algebraic
dependence of the polynomials is important in achieving the above goals. We say
that a set of polynomials {P1, . . . , Pk} with Pi ∈ F[x0, . . . , xm] is algebraically
dependent over F if there exists a non-zero polynomial Q ∈ F[y1, . . . , yk] sat-
isfying that Q(P1, . . . , Pk) = 0. This polynomial Q is called the annihilator
of P1, . . . , Pk. We say that a polynomial P0 depends on a set of polynomials
{P1, . . . , Pk} if there exists an annihilator of {P0, . . . , Pk} that depends on the
first coordinate.

Example 1.2. Consider the polynomials P0(x1, x2) = x1, P1(x1, x2) = x2
1 + x2,

P2(x1, x2) = x1 + x2
2, and P3(x1, x2) = x1x2 over F4[x1, x2]. Observe that

P0, P1, P2 are algebraically dependent over F4 because Q(y1, y2, y3) = y41 + y1 +
y22 + y3 is the annihilator of P0, P1, P2 since

Q(P0, P1, P2) = x4
1 + x1 + (x2

1 + x2)
2 + x1 + x2

2 = 0.

The polynomials P0, P1, and P3 are also algebraically dependent since the poly-
nomial R(y1, y2, y3) = y31 + y1y2 + y4 is an annihilator for P0, P1 and P3 as

R(P0, P1, P3) = x3
1 + x1(x

2
1 + x2) + x1x2 = 0.

Consequently, P0 is dependent on {P1, P2} and on {P1, P3}. Analogously, it can
be proved that P0 is dependent on {P2, P3}. △

1.2 Our Results

Our work unveils algebraic properties of polynomial secret sharing schemes that
are important for the characterization of their access structure and for the con-
struction of schemes with strong security guarantees. In a scheme with polyno-
mial sharing, we can define an access structure Γ by the algebraic dependence
of the polynomials as follows: A subset is in Γ if the secret, i.e., the polynomial
P0(s, r1, . . . , rm) = s depends algebraically on the polynomials of these parties.

Example 1.3. Consider the polynomials P0, P1, P2, P3 of the Example 1.2 over
F4[x1, x2]. The access structure defined by the algebraic dependence of the poly-
nomials P1, P2, P3 with respect to P0(x1, x2) = x1 is a 2-out-of-3 threshold access
structure since the polynomial P0 depends algebraically on every subset of two
polynomials in {P1, P2, P3}. △

We present our results below. First, we present a generalization of a result
of ideal linear secret sharing schemes to the ideal polynomial case. Namely, we
show that the access structure of ideal polynomial schemes is Γ under certain
restrictions on the degree of the polynomials. Later, we give constructions of
schemes with statistical security for the access structures defined by the algebraic
dependence of some polynomials.
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Characterization of the Access Structure of Ideal Polynomial Secret
Sharing Schemes. Recall that ports of linearly representable matroids admit
ideal secret sharing schemes, and the access structure of an ideal linear scheme is
the port of the associated linear matroid [22,21]. This connection cannot be di-
rectly generalized to polynomial schemes, as there are ideal polynomial schemes
whose access structures do not coincide with the access structure determined by
the algebraic dependence of the sharing polynomials [53,18] (see Example 1.10
and Example 4.8). The main contribution of this work is that we circumvent
these negative results. We show that if the field is large enough, then the access
structure of an ideal polynomial scheme is determined by the algebraic depen-
dence of the polynomials.

We prove two incomparable results in our work. Our first theorem considers
schemes with polynomial sharing (as discussed above) and polynomial recon-
struction, i.e., for every authorized set A holding shares (shi)i∈A for the secret
s, there is a polynomial QA such that QA((shi)i∈A) = s.

Theorem 1.4. Let Σ be an ideal polynomial secret sharing scheme over a field
Fq. Let d1 and d2 be the degrees of the sharing and reconstruction polynomials,
respectively. If q > max{dn+1

1 , d1d2}, then the access structure of Σ is determined
by the algebraic dependence of the sharing polynomials.

In the above theorem, there are no restrictions on the characteristic of the
field (e.g., it applies to F2ℓ for large enough ℓ). In this result, a restriction on the
degree of the polynomials is needed. Even though the access structure of a poly-
nomial scheme is perfect, there are cases where the access structure determined
by the algebraic dependence and the polynomial mappings are different. This
is discussed in Section 4, where we show that there exist schemes with q = dn1
where the statement does not hold. See also Example 1.10.

In the case that the field is prime, we are able to guarantee that the access
structure is the one determined by the algebraic dependence of the sharing poly-
nomials without any restriction on the degree of the reconstruction polynomials.

Theorem 1.5. Let Σ be an ideal perfect secret sharing scheme with polynomial
sharing in a field of prime order p. If the sharing polynomials are of degree at
most d and p = Ω(nd8n), then the access structure of Σ is determined by the
algebraic dependence of the sharing polynomials.

We can restate the previous theorem in terms of the algebraic matroid defined
by the sharing polynomials and the polynomial P0(s, r1, . . . , rm) = s, namely,
a set A is dependent if and only if the polynomials {Pi}i∈A are algebraically
dependent. This result generalizes the connection between ideal linear schemes
and representable matroids to the algebraic context.

Corollary 1.6. Let Σ be an ideal secret sharing scheme satisfying the conditions
of Theorem 1.4 or Theorem 1.5, then the access structure of Σ is a port of the
algebraic matroid represented algebraically by the sharing polynomials.
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We next study multi-linear schemes, which generalize the linear ones by con-
sidering secrets that are vectors of elements in a finite field. We show that every
multi-linear scheme can be described as a polynomial scheme whose sharing poly-
nomials are q-polynomials. These are polynomials over Fqr where the monomials
are powers of a single variable, and the exponent is a power of q. For example,
P1(x0, x1, x2) = x0 + x1 − xq

2 and the rest of polynomials in Example 4.8 are
q-polynomials.

Constructing Statistical Secret Sharing Schemes from Polynomials.
We next discuss the converse direction, considering the general case where each
party may have more than one polynomial. We define the access structure Γ as
the family of subsets A satisfying that P0 is dependent on ∪i∈A{Pi,1, . . . , Pi,ki

}.
Then the question is: Can Γ be realized by a secret sharing scheme with small
shares?

We give positive answers to this question in a weaker security setting, present-
ing two constructions of schemes with statistical security. A statistical scheme
with security parameter ℓ satisfies the following: Authorized subsets may fail
to reconstruct the secret with negligible probability of error in ℓ, and unautho-
rized subsets may obtain some amount of information about the secret that is
negligible in ℓ.

Theorem 1.7 (Informal). Let n, d, t be positive integers and let p be a prime.
Assume that each party 1 ≤ i ≤ n has ki polynomials of degree at most d over
Fp, and let k =

∑n
i=1 ki. Let Γ be the access structure on {1, . . . , n} determined

by these polynomials as above.
If t >

∑
i∈A ki for every A /∈ Γ and p > dΩ(t2), then there exists a statistical

scheme Σ realizing Γ with total share size kℓ log p and secret size Θ(ℓ log p),
where ℓ is the security parameter.

The previous result applies to polynomial schemes, where the sharing poly-
nomials are defined over a field Fp for a prime p. Notice that the resulting share
size is polynomial in the number of parties only when k is polynomial and d is
small. As discussed in Section 5, these schemes are built in two stages. We first
consider the scheme in which the shares are computed by evaluating the shar-
ing polynomials directly. This scheme provides very weak privacy. In the second
stage, we apply a black-box transformation that guarantees statistical security.

In our last result, we are able to overcome the limitation that the polynomials
are defined over a prime field. For that, we explore a different construction that
does not have any restriction on the finite field. In this case, we cannot bound
the share size of the resulting scheme; however, we can bound the information
ratio.

Theorem 1.8 (Informal). Let n, k be positive integers and let F be a field.
Assume that each party 1 ≤ i ≤ n has polynomials over F, and there are k poly-
nomials in total. Let Γ be the access structure determined by these polynomials
as above. Then there exists a statistical scheme realizing Γ with total information
ratio that tends to k when the security parameter increases.
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To prove this result, we first consider the case in which each party has only
one polynomial. For this case, we show that this scheme exists by applying a
result of matroid theory. Namely, we prove the following result and then extend
it to the general case.

Theorem 1.9. Let Γ be a port of an algebraic matroid over a finite field. The
access structure Γ admits a statistical secret sharing schemes with information
ratio tending to 1 when the security parameter increases.

As a consequence of this result, we observe that the optimal information
ratio of statistical schemes is not preserved by duality. The dual of an access
structure Γ on a set E is Γ ∗ = {A ⊆ E : E \ A /∈ Γ}. The question if the
optimal information ratio for perfect schemes is preserved by duality is still
open.

1.3 Our Techniques

We divide this section in three parts. First, we explain the techniques used in
Theorem 1.4 and Theorem 1.5 for the characterization of the access structure of
ideal polynomial schemes. Then, we present the techniques used in Theorem 1.7
and Theorem 1.8 to construct statistical schemes.

Characterization of the Access Structure of Ideal Polynomial Secret
Sharing Schemes. In Theorem 1.4, we prove that under some conditions, the
access structure of an ideal polynomial scheme with polynomial sharing and
polynomial reconstruction is indeed the one defined by the algebraic depen-
dence of the polynomials. To prove this theorem, we consider an ideal polyno-
mial secret sharing scheme over Fq realizing an n-party access structure Γ . Let
P0(s, r1, . . . , rm) = s and let Pi be the polynomial that computes the share of
the i-th party for 1 ≤ i ≤ n. We want to prove that a set of parties A can
reconstruct the secret if and only if the polynomial P0 algebraically depends on
the polynomials {Pi}i∈A.

First, assume that a set of parties A can reconstruct the secret. Since the
there is polynomial reconstruction, there exists a polynomial QA(y1, . . . , y|A|)
such that QA({Pi(s, r1, . . . , rm)}i∈A) = s for every s, r1, . . . , rm ∈ Fq.

Notice that over finite fields, this does not imply that QA({Pi}i∈A) = P0, as
there are non-zero polynomials that evaluate to zero on all the points (e.g., the
polynomial xq−x over the field Fq). Let R be the polynomial R(s, r1, . . . , rm) =
QA({Pi(s, r1, . . . , rm)}i∈A)− P0(s, r1, . . . , rm).

By the conditions of Theorem 1.4, the degree of the sharing polynomials is at
most d1 and the degree of the reconstruction polynomial is at most d2; hence the
degree of R(s, r1, . . . , rm) is at most d1 · d2 < q. By the Schwartz–Zippel lemma
(also called DeMillo–Lipton–Schwartz–Zippel lemma), any polynomial that is
not identically zero and has degree less than q has at least one root. Thus,
R(s, r1, . . . , rm) is identically zero, i.e., P0 algebraically depends on {Pi}i∈A.
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Second, assume that P0 depends algebraically on {Pi}i∈A; without loss of
generality, assume that A is a minimal set satisfying this property (in particu-
lar, {Pi}i∈A are independent). In other words, there exists a non-zero polynomial
F (y0, y1, . . . , y|A|) such that F (s, {Pi}i∈A) = 0; i.e., F is an annihilator polyno-
mial. By Beecken, Mittman, and Saxena [7], there exists such an annihilator
polynomial of degree at most dn1 . We show that this implies that there is a se-
cret s and shares (shi)i∈A that have positive probability for the secret s and
have probability 0 for the secret 0. Therefore, the parties in A have some partial
information on the secret. Since each set of parties is either forbidden (i.e., has
no information on the secret) or authorized (i.e., can reconstruct the secret), the
set A must be authorized and the theorem follows.

In Theorem 1.5, we prove a similar result but without requiring polynomial
reconstruction. However, the result requires that the scheme is defined over a
large prime field. This is because we use results of Dvir, Gabizon, and Wigder-
son [32] about rank extractors for polynomial sources. Namely, we use the prop-
erty that, for large enough prime fields, the output of algebraically independent
polynomials is close to having the min-entropy of uniformly distributed random
variables. This allows to connect the information theoretic property of the ideal
scheme to an algebraic relation between the sharing polynomials.

It is worth noticing that, for fields of large enough characteristic, the algebraic
rank of a set of polynomials can be efficiently computed by means of the Jacobian
rank of the polynomials [7], which is computed from their partial derivations.
Under the conditions of Theorem 1.4 and Theorem 1.5, the characteristic is large
enough, and this property holds. This simplifies the search of authorized subsets
given a set of polynomials.

The relations we establish in Theorem 1.4 and Theorem 1.5 between ideal
polynomial schemes and the algebraic dependence of the sharing polynomials
can be rephrased using matroids defined by polynomials, which is a special class
of connection between ideal polynomial schemes and algebraic matroids. This
extends the known connection of these two objects in the linear case.

In fact, using this connection we observe that the bound on the degree of
the sharing and reconstruction polynomials in Theorem 1.4 is supported by
the fact that there exist multi-linear matroids that are not algebraically repre-
sentable [18]. If we consider the scheme determined by one of these multi-linear
matroidsM, we get an ideal multi-linear scheme Σ whose access structure is a
port of M. Multi-linear schemes are actually schemes with polynomial sharing
(see Remark 3.2). Therefore, the access structure of this polynomial scheme is
not a port of an algebraic matroid. In particular, the matroid determined by the
algebraic dependence on these polynomials is notM.

Moreover, there are cases where the matroid is algebraic but the algebraic
representation does not define the proper access structure of the scheme. Next,
we see an example of a polynomial scheme, where the restriction on the degree
is not satisfied and the access structure of the scheme is not the one determined
by the algebraic dependence of the polynomials.
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Example 1.10. Consider the polynomial scheme with two parties defined by the
following polynomials over F4: P0(x0, x1, x2) = x0, P1(x0, x1, x2) = x1+x2

2, and
P2(x0, x1, x2) = x0 + x2

1 + x2. Each party does not have any information about
the secret, and the two parties together can reconstruct the secret using the
polynomial Q(y1, y2) = y21 + y2. Notice that for every (s, r1, r2) ∈ F3

4,

Q(P1(s, r1, r2), P2(s, r1, r2)) = (r1 + r22)
2 + s+ r21 + r2 = s+ r2 + r42,

and it is equal to r0 because r2 + r42 = 0 for every r2 ∈ F4. Hence, it is an ideal
secret sharing scheme.

Nevertheless, if we analyze the access structure determined by the algebraic
dependence of the polynomials, we get that the set of the two parties is unautho-
rized since the polynomial P0 does not depend algebraically on the polynomials
P1 and P2. To prove it we can apply the Jacobian criteria (see Example 4.8 and
Section 5.2). Then, the access structure of the scheme and the one defined by
the algebraic dependence do not coincide. In fact, the algebraic matroid defined
by P0, P1, and P2 is the uniform matroid with rank 3. △

In Example 4.8 we generalize the previous one by giving a scheme on n
parties with sharing polynomials over Fqn of degree d1 = q and reconstruction
polynomials of degree qn−1, that does not realize the access structure determined
by the algebraic dependence. This justifies the bound on the degree of the sharing
and reconstruction polynomials of Theorem 1.4.

Statistical Secret Sharing Schemes from Polynomial Schemes. As dis-
cussed above, in the second part of this work we are interested in constructing
schemes with small shares for the access structure determined by the algebraic
dependence of polynomials. Recall that this access structure Γ is defined as the
family of subsets A satisfying that P0 is dependent on ∪i∈A{Pi,1, . . . , Pi,ki

}. For
that, we use different techniques that combine some classic results about poly-
nomials over finite fields and more modern results about algebraic matroids.

First, we consider the straightforward option of evaluating the polynomials.
That is, we consider the scheme where the i-th party receives Pi,1(s, r1, . . . , rm),
. . . , Pi,ki

(s, r1, . . . , rm) as shares for the secret s. Under the hypothesis of The-
orem 1.7, we observe that the subsets in Γ can nearly determine the secret,
in average; namely, we show that the entropy of the secret given the shares of
subsets in Γ is very low. Conversely, the subsets not in Γ have almost no infor-
mation about the secret, in average. The schemes, like the ones we get, where
authorized subsets always have more information about the secret than those
that are not authorized are called partial secret sharing schemes.

The information ratio of the resulting schemes is close to a constant, which
is determined by the distribution of the outputs of the polynomial mappings.
This constant depends on the number of possible outputs of the mappings; we
bound this number by using Wooley’s Theorem [63] and the Schwartz-Zippel
Lemma [30].

We transform the partial secret sharing scheme into a scheme with statistical
security by using a black-box transformation of Jafari and Khazaei [43] that is
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based on wiretap channels techniques. In the resulting statistical scheme, the
size of the shares and the secret increases linearly with the security parameter,
while the information ratio of each party i remains bounded and close to ki (the
number of polynomials given to i-th party).

As a consequence of this result, we show that algebraic matroids represented
with low degree polynomials over large enough prime fields admit statistical
schemes with information ratio bounded by a constant. Again, since the results
are for large prime fields, we can use the Jacobian criteria to compute the rank
of the polynomials, and determine if a subset of parties is authorized or not by
computing the rank of a matrix.

Partial secret sharing schemes do not provide the security required for many
cryptographic applications, so we transform them into schemes with statistical
security. However, we have found partial schemes with good properties. Namely,
we have found ramp schemes whose trade-off between share size and the gap is
almost optimal (see Example 5.13).

Statistical Secret Sharing Schemes from Algebraic Varieties. In The-
orem 1.8, we show that we can improve Theorem 1.7 constructing statistical
schemes for Γ with information ratio close to one even if the field is not prime.
However, in this scheme we cannot provide bounds on the share size.

For this result, we introduce a new family of secret sharing schemes whose
shares are determined by points on an algebraic variety. The study of these
schemes is motivated by recent results of Matúš [54]. Next, we present these
schemes as a generalization of the ideal linear schemes. In an ideal linear scheme,
the i-th party is associated with a vector vi ∈ Fm. The shares of the i-th party
are vi · x for some x ∈ Fm. If we consider the matrix whose columns are the
vectors vi, we get the generator matrix of a linear code C whose codewords are
(v0 ·x, . . . , vn ·x), the shares of the scheme. Analogously, we can define the family
of vectors of shares of the scheme by means of the dual code C⊥. By definition
of C⊥, a vector y = (y0 . . . , yn) ∈ Fn+1 is a vector of shares of the scheme if
and only if λ · y = 0 for every λ ∈ C⊥. To share a secret s, it is enough to pick
uniformly at random one vector of this family with y0 = s.

Our construction generalizes the previous one as follows. Recall that an
annihilator of polynomials P1, . . . , Pk ∈ F[x0, . . . , xm] is a polynomial Q ∈
F[y1, . . . , yk] that satisfies Q(P1, . . . , Pk) = 0. Given a set of polynomials P0, . . . ,
Pn, we consider the family of their annihilators I, which plays the role of the
dual code in the scheme presented above.

Then, we consider the family of points in Fn+1 that are zeroes of all poly-
nomials in I. That is, we consider the points (y0, . . . , yn) ∈ Fn+1 such that
Q(y0, . . . , yn) = 0 for every Q ∈ I. In the context of algebraic geometry, this
family of points is called the algebraic variety determined by I and is denoted
by V (I). In our scheme, we pick a point in the algebraic variety uniformly at
random. The resulting scheme is not a scheme with polynomial sharing, in gen-
eral. In particular, it differs from the scheme whose sharing polynomials are
P0, . . . , Pn. In terms of algebraic geometry, this difference is natural because the
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number of points in V (I) may be higher than the number of possible outputs of
the polynomials in I.

In [54], Matúš defined sequences of algebraic varieties defined over extensions
of F. That is, the families of points in extensions K of F that are zeroes of all
polynomials in I. Matús studied the random variables that are obtained by
taking uniform distributions over these varieties, showing information-theory
properties of algebraic matroids (see Section 6 for more details). The proof of
these results uses the Lang-Weil bound [49] to bound the number of points in
each of these algebraic varieties.

We adapt these results to show that, taking a large enough extension of the
field, these random variables define partial secret sharing schemes for the access
structure Γ determined by P0, . . . , Pn. Then, we extend this result to the case
where each party has more than one polynomial.

Once we have these partial secret sharing schemes, we can use the black-box
transformation mentioned above to convert them into statistical ones. Moreover,
we use another construction to obtain schemes with a smaller information ra-
tio. Jafari and Khazaei [43] showed that, given a sequence of partial schemes
whose privacy and correctness are perfect in the limit and their information ra-
tio converges to a constant, it is possible to create a statistical secret sharing
scheme whose information ratio tends to that constant by increasing the security
parameter.

As a side result, we observe that the optimal information ratio of statistical
schemes is not preserved by duality (Theorem 7.1). This is done by applying
the construction of statistical schemes for access structures defined by the alge-
braic dependence of polynomials (Proposition 5.2) and some previous results on
duality properties of matroids [28,45].

1.4 Related Work

Ideal secret sharing schemes and matroids. Brickell and Davenport [22] proved
that the access structure of an ideal secret sharing scheme determines a matroid,
and that the access structure is indeed a port of this matroid. Conversely, only
ports of certain matroids admit ideal schemes, and these matroids are called
entropic [53,62]. Matroids that admit linear or multi-linear representations are
entropic. Matúš showed that there exist algebraic matroids that are not en-
tropic [53], and Ben-Efraim showed that there exist entropic matroids that are
not algebraic [18], and the characterization of entropic matroids is still an open
problem.

The connection between ideal schemes and matroids provides mathemat-
ical tools for the construction of ideal schemes and, among particular fam-
ilies of access structures, to characterize the ones that admit ideal schemes
(e.g. [10,17,36,37]). Farràs proved that almost all matroid ports require linear
schemes with share size exponential in the number of parties [33]. However,
the best lower bounds on the information ratio for general schemes realizing
matroid ports are just constant [6,42]. Mart́ı-Farré and Padró showed that for
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access structures that are not matroid ports, the information ratio of any secret
sharing scheme is at least 3/2 [52].

Polynomial secret sharing schemes. Liu, Vaikuntanathan, and Wee [51] con-
structed two-server Conditional Disclosure of Secrets (CDS) protocols, where
the sharing and reconstruction functions are quadratic polynomials. CDS proto-
cols are basically equivalent to secret sharing schemes for the so-called forbidden
access structures. Paskin-Cherniavsky and Radune [57] defined polynomial secret
sharing schemes, studied the randomness complexity of these schemes, and gave
an exponential upper bound on the randomness complexity. Beimel, Othman,
and Peter [15] studied the family of schemes and conditional disclosure of secrets
protocols with low degree polynomial reconstruction, finding lower bounds on
the share size. They also show that, under plausible assumptions, secret sharing
schemes with polynomial sharing are more efficient than secret sharing schemes
with polynomial reconstruction. They provided constructions of secret sharing
schemes with quadratic sharing and reconstruction, i.e., by polynomials of de-
gree two, whose share size improve the best upper bound on the share size for
linear schemes. This line of work was continued in [12], providing secret sharing
schemes with polynomial reconstruction of degree d for general access structures,
with share size decreasing with d.

Polynomial sources and rank extractors. Dvir, Gabizon, and Wigderson intro-
duced polynomial sources [32], a class of distributions obtained by evaluating
some low-degree polynomials on a uniform input. With polynomial sources, they
constructed deterministic randomness extractors, generalizing previous extrac-
tors from affine sources. They proved that algebraic independence is related to
the min-entropy of the polynomial sources. For that, they used a relation be-
tween the rank of the polynomials and the rank of the corresponding Jacobian
matrix and Wooley’s theorem to get a lower bound on the entropy of a polyno-
mial source. Later, Dvir [31] extended this work by considering sources that are
distributed uniformly on an algebraic variety. In a different context, Matúš also
studied the entropy of these random variables [54]. Beecken, Mittman, and Sex-
ena [7] gave a bound on the degree of the annihilator polynomial of some set of
dependent polynomials, improving previous bounds in [32,47]. The well-known
Schwartz-Zippel lemma bounds the number of zeroes of a polynomial in terms of
its degree. This lemma was proved in [30] but it also appeared in [66] and [59].
We use results in [7,32,54] to approximate the entropy of polynomial sharings,
and our generalization from linear to polynomial schemes is analogous to their
generalization from affine to polynomial sources.

1.5 Discussion

Upper and lower bounds for polynomial schemes. For the class of linear secret
sharing schemes, the best upper bound on the share size is 20.7563n [1,2,3,4,50],
and the best lower bound is 20.5n [5]. For schemes with polynomial reconstruc-
tion, there are upper and lower bounds on the share size that depend on the



Polynomial Secret Sharing Schemes and Algebraic Matroids 15

degree of polynomials [12,16]. The best upper bound for secret sharing schemes
with quadratic sharing is 20.705n [16] and it is not known how to improve the
share size taking higher degree polynomials. The best lower bound we have is
Ω(n/ log n) [27], which holds for arbitrary secret sharing schemes. The fact that
the randomness of polynomials can be arbitrarily large hinders the use of count-
ing arguments to prove lower bounds on the share size.

Schemes from Algebraic Varieties. When proving Theorem 1.8, we worked with
a class of secret sharing schemes that was not explicitly considered before, the
ones whose shares are the points of an algebraic variety. These schemes generalize
the linear ones, because the shares of linear schemes are points in an algebraic
variety determined by polynomials of degree one. We have seen that, increasing
the degree of these polynomials, we get more expressivity, being able to get
statistical schemes with information ratio close to one for access structures that
do not admit ideal linear schemes. Also, these schemes may be attractive for
applications where non-linearity is a requirement, e.g., for robust secret sharing
schemes and algebraic manipulation detection codes [26], which are used to check
the integrity of the shares.

Construction of statistical schemes. The statistical secret sharing schemes in
Theorem 1.7 and Theorem 1.8 are built with a generic transformation from par-
tial secret sharing schemes to statistical schemes [43]. These statistical schemes
could be improved by using specific properties of the polynomials. In the case of
Theorem 1.8, we do not have bounds on the size of the share and the secret. Im-
proving the Lang-Weil bound on the number of points of algebraic varieties [49]
could provide better bounds on the size of the share and the secret.

Duality. Given a linear scheme for an access structure, it is possible to build a
linear scheme with the same share size for the dual access structure [41,38,34].
It is not known if this property can be extended to secret sharing schemes with
polynomial sharing or reconstruction, or to secret sharing schemes in general. It
is not known if the class of algebraic matroids and the class of entropic matroids
are closed by duality. The optimal information ratio of statistical secret sharing
schemes is not closed by duality, in general (see Theorem 7.1). However, it is still
not known if the optimal information ratio of perfect secret sharing schemes is
closed by duality.

1.6 Organization

In Section 2, we present preliminaries on secret sharing schemes, matroids, and
polynomials over finite fields. In Section 3, we prove the first results of this work,
Theorems 1.4 and 1.5. In Section 4 we introduce the family of q-polynomials.
Then, in Section 5, we prove Theorem 1.7. Finally, in Section 6, we prove Theo-
rem 1.8 and Theorem 1.9. Supplementary material, including background defi-
nitions, proofs, technical details, and observations, is presented in the appendix.
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2 Preliminaries

We present the preliminaries of this work in three subsections. The first one is
dedicated to secret sharing schemes, the second one is dedicated to matroids,
and the third one is dedicated to polynomials.

We denote the power set of a set E by 2E . The statistical distance between
random variables X and Y is defined as SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y =

x]|, and the Shannon entropy of a random variable X is defined as H(X) =∑
x Pr[X = x] log 1/Pr[X = x], where the sum is taken over the support of X.

2.1 Secret Sharing Schemes

In this work, we need to deal with secret sharing schemes with different secu-
rity notions. In this section, we present the definition of perfect secret sharing
schemes (from [8]). Afterwards, we present the class of polynomial secret sharing
schemes. Later in this work, in Section 5.1, we define another definition of secu-
rity for the schemes, the statistically security (from [13]). Other notions needed
for intermediate results, are provided in the Appendix A.1.

Definition 2.1. For a set of n parties, a family Γ of subsets of {1, . . . , n} is
called monotone if A ∈ Γ and A ⊆ B implies B ∈ Γ . An access structure is
a monotone collection of subsets of {1, . . . , n}. Sets in Γ are called authorized
and sets not in Γ are called forbidden.

Definition 2.2 (Secret Sharing Scheme). Let K be a finite set of secrets,
|K| ≥ 2. A secret sharing scheme is a pair Σ = ⟨Π,µ⟩, where µ is a probability
distribution over some finite set R, and Π is a mapping from K × R to a set
of n-tuples K0 ×K1 × . . . ×Kn, where Ki is called the share-domain of player
i. A dealer distributes a secret s ∈ K by first computing a vector of shares
Π(s, r) = (sh1, . . . , shn), and then giving shi to the party i. We say that the
scheme Σ = ⟨Π,µ⟩ is a secret sharing scheme realizing an access structure Γ if
the following two requirements hold:

Correctness: For any authorized set A ∈ Γ , there exists a reconstruction func-
tion ReconA such that for every secret s ∈ K,

Pr[ReconA(ΠA(s, r)) = s] = 1,

where ΠA(s, r) is the restriction of Π(s, r) to its A-entries.
Perfect privacy: For any forbidden set B /∈ Γ , for every two secrets a, b ∈ S,

and for every possible vector of shares ⟨shj⟩j∈B,

Pr[ΠB(a, r) = ⟨shj⟩j∈B ] = Pr[ΠB(b, r) = ⟨shj⟩j∈B ].

We define the the share size of party j as log |Kj |, the share size of the scheme
as max1≤j≤n{log |Kj |}, and the information ratio of the scheme as

σ(Σ) =
max1≤i≤n log |Ki|

log |K0|
.
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Definition 2.3 (Ideal Secret Sharing Schemes and Ideal Access Struc-
tures). We say that a secret sharing scheme Σ is ideal if σ(Σ) = 1, i.e., the
size of the domain of shares of each party is the size of the domain of secrets.
We say that an access structure is ideal if there is an ideal secret sharing scheme
realizing it (with some finite domain of secrets).

Next we define the family of schemes that are the subject of the study of this
work, polynomial secret sharing schemes.

Definition 2.4 (Polynomial Secret Sharing Schemes). Let F be a finite
field. A secret sharing scheme with polynomial sharing Σ = ⟨Π,µ⟩ is a secret
sharing scheme where S = F is the domain of secrets, R = Fm is the randomness
space for some m > 0, and µ is the uniform distribution. The i-th party’s share is

Π(s, r)i = ((Pi,1(s, r), . . . , Pi,ki(s, r))

for some ki > 0, where each Pi,j(s, r) is a multivariate polynomial over F. We say
that a scheme has polynomial reconstruction if for every authorized set A, the
reconstruction function ReconA is a polynomial that outputs s when evaluating
on the shares Pi,j(s, r) of i ∈ A.

Other definitions of polynomial schemes [12] consider a set of secrets in S ⊆
Fk for some k ≥ 1. In this work, we decided to set S = F because our work is
focused on schemes with this property.

If S = F and the sharing polynomials are of degree 1 (or, equivalently, the
reconstruction polynomials are of degree 1), then the scheme is linear. If S = Fk

and the sharing polynomials are of degree 1, then the scheme is k-linear. We use
the term multi-linear to refer to k-linear schemes, in general.

2.2 Matroids

In this section, we present the basic definition of matroids and the family of
algebraic matroids, which is the one we are focused on. For an introduction to
matroid theory, see [56]. We present the relation between matroids and ideal
secret sharing schemes.

Definition 2.5 (Matroid). Given a finite set E and a function r : 2E → Z,
the pair (E, r) is called a matroid if the following properties are satisfied for all
X,Y ⊆ E.

1. r(X) ≤ |X|.
2. r(X) ≤ r(Y ) if X ⊆ Y .

3. r(X ∩ Y ) + r(X ∪ Y ) ≤ r(X) + r(Y ).

The set E and the function r are, respectively, the ground set and the rank
function of the matroid.
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LetM = (E, r) be a matroid. The independent sets ofM are the sets X ⊆ E
with r(X) = |X|. Every subset of an independent set is independent and the
maximal independent sets are called bases. We say that a non-independent set
is dependent, and then, every set that contains a dependent set is also depen-
dent. We call circuits ofM the minimal dependent sets. All bases have the same
number of elements, which equals r(E), the rank of the matroid. In addition to
the definition given in Definition 2.5, there are other equivalent sets of axioms
characterizing matroids, which are stated in terms of the properties of the inde-
pendent sets, the circuits, the bases, or the hyperplanes. See [56]. A matroid is
connected if and only if for every two elements in E there is a circuit containing
them.

Definition 2.6 (Ports of matroids). LetM = (E, r) be a matroid and a ∈ E.
The port ofM at the point a ∈ E is a collection of subsets of E \ {a} defined as

Γ = {A ⊆ E \ {a} : r(A ∪ {a}) = r(A)},

i.e., A ∈ Γ if and only if adding a to A does not increase its rank.

A port of a connected matroid Γ determines the matroid M, i.e., if Γ is a
port of a connected matroid at some point a, then there is a unique matroid
satisfying this property. It is a consequence of [56, Prop. 4.1.2 and Th. 4.3.3].

Algebraic Dependency and Algebraic Matroids. We next briefly recall
the notion of algebraic dependency. Let F be a field and K be a transcendental
extension field of F. An element a ∈ K is algebraically dependent on a set
{a1, . . . , ak} ⊆ K if and only if there exists a polynomial F ∈ F(y0, y1, . . . , yk)
(i.e., with coefficients in F) such that F (a, a1, . . . , ak) = 0 and F contains at least
one monomial with a non-zero coefficient and with a degree of y0 greater than
0. F is the annihilating polynomial of a, a1, . . . , ak. A set A in K is algebraically
dependent over F if and only if there exists a ∈ A such that a is algebraically
dependent on A\{a}. Conversely, a set B in K is algebraically independent over
F if it is not dependent. The transcendence degree or algebraic rank of a set A
in K, denoted trdegF(A), is the maximal size of a subset B ⊆ A such that B is
algebraically independent over F. For every finite set E ⊆ K, the pair (E, trdegF)
is a matroid.

Definition 2.7 (Algebraic Matroids). A matroid M = (E, r) is algebraic
over a field F if there are elements (ai)i∈E in a field extension K of F such
that r(A) = trdegF(A) for every set A ⊆ E. The elements (ai)i∈E are called an
algebraic representation ofM.

See, e.g., [56] for more background on algebraic matroids. We will mainly con-
sider the case where K = F(x1, . . . , xm), i.e., the field of rational functions (of
m-variate polynomials) and we will consider representations withm-variant poly-
nomials.
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Remark 2.8. Recall that we mentioned that the authorized sets of the access
structure Γ defined by a set of polynomials P0, . . . , Pn are the subsets A ⊆
{1, . . . , n} such that the polynomial P0 is algebraically dependent on the set of
polynomials {Pi}i∈A. Notice that, for the authorized sets A in Γ , the algebraic
rank of {Pi}i∈A is the same as the algebraic rank of {Pi}i∈A∪{0}. Conversely, if
the algebraic rank of {Pi}i∈A is not increased when adding P0, then the polyno-
mial P0 is algebraically dependent on {Pi}i∈A. Therefore, Γ is indeed the port of
the algebraic matroid represented by the polynomials P0, . . . , Pn at the point 0.

Example 2.9. LetM = ({1, 2, 3}, r) be the 2-uniform matroid with 3 elements,
i.e., the matroid in which all sets of size at most 2 are independent. The elements
x2
1, x

2
2, x1 +x2 ∈ F2(x1, . . . , xm) are an algebraic representation ofM in F2, i.e.,

every two polynomials are independent and the three polynomials are dependent
– for F (y1, y2, y3) = y1 + y2 + y23 we obtain F (x2

1, x
2
2, x1 + x2) = x2

1 + x2
2 +

(x1 + x2)
2 = 0 (in F2). Indeed, the access structure defined by the polynomials

x2
1, x

2
2, x1 + x2 at any point is the 2-threshold access structure. △

Ideal Secret Sharing Schemes and Matroids. Brickell and Davenport [22]
showed that every ideal access structures is a port of a matroid. Formally, given
an ideal secret sharing schemeΣ with domain of secrets S, we define n+1 random
variables S0, . . . , Sn, obtained by sampling a uniformly distributed secret s in S,
choosing r ∈ R, and computing the shares (sh1, . . . , shn)← Π(s, r); S0 is s and
Si is shi for 1 ≤ i ≤ n.

Theorem 2.10 ([22]). Given an ideal secret sharing scheme Σ realizing an
access structure Γ , define

r(A) = H(SA)/H(S) = H(SA)/ log |S|

for every A ⊆ {0, . . . , n}. Then, M = ({0, . . . , n}, r) is a matroid and Γ is the
port of this matroidM at the point 0.

Conversely, not all ports of matroids admit ideal secret sharing schemes. This
property is only satisfied by those that are entropic [53].

2.3 Polynomials over Finite Fields

We review some basic notions in relation to polynomials over finite fields. For a
finite field F and a polynomial P ∈ F[x0, . . . , xm], we denote by deg(P ) the total
degree of P . We write P = 0 if P is the zero polynomial. Note that there are
polynomials over finite fields that are P ̸= 0 even though P (x) = 0 for all x ∈ F.
For example, if F is a finite field of order prime p and P (x) = xp − x.

Here we present a result which we will use afterwards that bounds the number
of roots of a polynomial.

Lemma 2.11 (Schwartz-Zippel, [66,59]). Let F be a field and let f ∈
F[x1, . . . , xt] be a non zero polynomial with degree d. Then, for any finite subset
S ⊂ F we have

|{c ∈ St|, : f(c) = 0}| ≤ d · |S|t−1.
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A bound of the degree of the annihilating polynomial of a algebraically de-
pendent set of polynomials over finite fields is given in [7].

Theorem 2.12 ([44, Theorem 4.1.5] and [7, Corollary 5]). Let P1, . . . , Pn ∈
F[x0, . . . , xm] be polynomials of degree at most d ≥ 1 and let k = trdegF(P1, . . . , Pn).
If m > k, then there exists an annihilating polynomial h of P1, . . . , Pn with
deg(h) ≤ dk.

Recall that the min-entropy of a random variable X is defined as Hmin(X) =
log 1/pmax, where pmax = maxx∈supp(X) Pr[X = x]. The following result is a
generalization of [32, Theorem 7.8]. See Remark 2.14 for more details.

Theorem 2.13 ([32, Theorem 7.8]). Let k,m, and d be integers and 0 <

δ < 1 be a real number. Let p be a prime such that p > max{(2d) k
δ , 2

10
δ , (2(2k +

1)d2k)
2
δ }. Let P1, . . . , Pn be m-variate polynomials over Fp of degree at most d

and let k = trdegFp
(P1, . . . , Pn). Define the random variable X obtained by sam-

pling x1, . . . , xm with uniform distribution from Fm
p and outputting P1(x1, . . . , xm),

. . . , Pn(x1, . . . , xm). Then:

1. X has min entropy ≤ (k + δ) · log(p).
2. X is ε-close to having min entropy at least (k − δ) · log(p) where ε = 2dk

p .

Remark 2.14. The original theorem in [32] uses n polynomials on n variables
and we prove the generalization to an arbitrary number of variables m.

Suppose first that m < n, then take n−m additional independent variables
and define the polynomials P ′

1, . . . , P
′
n, where P ′

i (x1, . . . , xn) = P (x1, . . . , xm).
Since trdegFp

(P1, . . . , Pn) = trdegFp
(P ′

1, . . . , P
′
n), the theorem for m < n follows

from the theorem for m = n.
Now, suppose that m > n, and define Pi(x1, . . . , xm) = P1(x1, . . . , xm)

for n + 1 ≤ i ≤ m, i.e., taking m − n copies of the first polynomial, and
let Y be the random variable obtained by sampling x1, . . . , xm with uniform
distribution from Fm

p and outputting P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm). Ob-
serve that trdegFp

(P1, . . . , Pn) = trdegFp
(P1, . . . , Pm), Furthermore, for every

(a1, . . . , an) ∈ Fn we have

Pr[X = (a1, . . . , an)] = Pr[Y = (a1, . . . , an, a1, . . . , a1)]

and for all (a1, . . . , an, an+1, . . . , am) such that ai ̸= a1 for some n+ 1 ≤ i ≤ n,
Pr[Y = (a1, . . . , am)] = 0. Hence, the result for m > n follows from the original
theorem.

3 Ideal Polynomial Secret Sharing Schemes Determine
Algebraic Matroids

Let Γ be an access structure over the set of parties {1, . . . , n}. Given an ideal
secret sharing scheme realizing Γ with polynomial sharing, whose shares are
determined by some polynomials P1, . . . , Pn, we can always consider the algebraic
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matroid, whose ground set is {0, 1, . . . , n} and the algebraic representation is
P0(s, r) = s and P1, . . . , Pn. In this case, the rank of the matroid is determined
by the algebraic dependence of the polynomials. As Γ is ideal, it is a port of
some matroid. A natural question to ask is if this matroid is the above algebraic
matroid.

Question 3.1. Let Γ be an access structure that has a polynomial ideal secret
sharing scheme. Is Γ the port of the algebraic matroid whose algebraic repre-
sentation is the set of sharing polynomials?

Remark 3.2. In answering the above question, we need to be careful. Recall that
every function f : Fk

q → Fq can be represented as a multivariate polynomial
(whose degree in each variable is at most q−1). Based on the results of [22] (see
Theorem 2.10), every ideal secret sharing scheme realizing an access structure
Γ whose domain of secrets is S can be obtained as follows: Let Γ be the port of
the matroidM and B ∪{0} ⊆ {0, . . . , n} be a basis ofM. By [22], the shares of
B are uniformly distributed in SB (independently of the secret) and the share
of each i ∈ {1, . . . , n} \B is determined by the secret and the shares of B; that
is, there is a function f : S × (×j∈BSj) → Si that computes the share of the
i-th party. Thus, in every ideal secret sharing scheme whose size of the domain
of secrets (and the size of the domain of shares of each party) is a prime power
q, the shares can be computed by polynomials over Fq.

As proved by Ben-Efraim [18], there is an ideal access structure whose as-
sociated matroidM is not algebraic. The ideal scheme for this access structure
is multi-linear, and the sharings can be computed by multivariate polynomials
P1, . . . , Pn over some finite field F. Thus, the algebraic matroid with representa-
tion P0(s, r) = s, P1, . . . , Pn is notM.

We show that, under some restrictions, the answer to Question 3.1 is positive.
We prove two incomparable results. In Theorem 3.3, we show that when the
ideal secret sharing scheme has polynomial reconstruction (in addition to the
polynomial sharing), the cardinality of the field is big enough, and the degree
of the polynomials is small enough, then Γ is indeed a port of this matroid. In
Theorem 3.5, we prove a similar result without requiring that the reconstruction
is polynomial; however, in this case, we require that the cardinality of the field
is prime (i.e., this result does not work for fields whose cardinality is a prime
power pk for k > 1). Corollary 1.6 is a direct consequence of Theorem 3.3 and
Theorem 3.5.

3.1 Ideal Schemes with Polynomial Sharing and Polynomial
Reconstruction

We next prove that the access structure of an ideal scheme with polynomial shar-
ing and polynomial reconstruction is a port of an algebraic matroid, assuming
that the field is big enough and the polynomials are of low degree.
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Theorem 3.3 (Theorem 1.4 Restated). Let Σ be an ideal polynomial se-
cret sharing scheme realizing an n-party access structure Γ . Suppose that the
domain of secrets in Σ is Fq for some prime power q and the sharing and re-
construction are polynomials over Fq of degree at most d1 and d2, respectively.
If q > max{dn+1

1 , d1d2}, then Γ is a port of the algebraic matroid defined by the
sharing polynomials of Σ.

For the proof of this theorem, we need a technical lemma about matroid theory.

Lemma 3.4. LetM = (E, r) be a matroid, 0 ∈ E and A ⊆ E\{0} be a set such
that r(A) = r(A ∪ {0}). Then there is a circuit C ⊆ A ∪ {0} such that 0 ∈ C.

Proof. Let B ⊆ A be a maximal independent set that is contained in A, that is,
an independent set B ⊆ A such that r(A) = r(B). By the monotonicity of the
rank and the properties of A and B,

r(A ∪ {0}) = r(A) = r(B) ≤ r(B ∪ {0}) ≤ r(A ∪ {0}).

Thus, r(B) = r(B ∪ {0}) and B is an independent set such that B ∪ {0} is
dependent. Thus, there is circuit C ⊆ B∪{0}; since B is independent 0 ∈ C. ⊓⊔

Proof of Theorem 3.3. Let P1, . . . , Pn ∈ F[s, r1 . . . , rm] be the polynomials that
determine the shares in Σ and P0(s, r1, . . . , rm) = s. Consider the matroidM =
(E, r), with E = {0, . . . , n} and algebraic representation {P0, . . . , Pn}, i.e., for
every subset A ⊆ E, r(A) = trdegFq

((Pi)i∈A). We prove that Γ is the port of
the algebraic matroidM at 0, i.e.,

A is a minimal authorized set in Γ iff A ∪ {0} is a circuit inM. (1)

To prove (1), we will prove two claims:

1. If A is a minimal authorized set of Γ , then 0 depends on the set A inM.
2. If A ∪ {0} is a circuit inM, then A is authorized in Γ .

In the end of the proof, we show that Items 1 and 2 imply (1).

Proving Item 1. Let A be a minimal authorized set in Γ ; thus, there exists some
polynomial QA ∈ F[y1, . . . , y|A|] of degree at most d2 that reconstructs the secret
from the shares of the parties in A, i.e., for every secret s ∈ Fq and randomness
r1, . . . , rm ∈ Fq,

QA((Pi(s, r1, . . . , rm))i∈A) = s = P0(s, r1, . . . , rm).

Consider the polynomial

R(s, r1, . . . , rm) = QA(s, r1, . . . , rm)− P0(s, r1, . . . , rm).

Observe that R(s, r1, . . . , rm) = 0 for every assignment s, r1, . . . , rm. By the
hypothesis of the theorem, the degree of the polynomial R(s, r1, . . . , rm) is at
most d1 · d2 < q. By the Schwartz–Zippel Lemma, R is identically zero, i.e.,
the polynomial P0 is algebraically dependent on {Pi}i∈A and r(A ∪ {0}) =
trdegFq

((Pi)i∈A ∪ {P0}) = trdegFq
((Pi)i∈A) = r(A).
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Proving Item 2. Let A ∪ {0} be a circuit ofM. We prove that A is authorized
in Γ . By the perfect privacy of Σ, it suffices to prove that the parties in A
get some information on the secret; in particular, we will prove that there exist
some shares (shi)i∈A such that have positive probability for a secret s and are
not possible for the secret 0.

Since P0, {Pi}i∈A are algebraically dependent, by Theorem 2.12, there exists

an annihilating polynomial F ∈ F[y0, y1, . . . , y|A|] with deg(F ) ≤ d
|A|
1 , that is,

F (P0, {Pi}i∈A) = 0. (2)

Now, consider the polynomial G with variables s, r1, . . . , rm defined as

G(s, r1, . . . , rm) = F (0, (Pi(s, r1, . . . , rm))i∈A). (3)

Since {Pi}i∈A are algebraically independent, the polynomial is not identically
zero, i.e., G(s, r1, . . . , rm) ̸= 0. The degree of G is bounded by the product of
degrees

deg(G) ≤ deg(F ) ·max{deg(Pi)} ≤ (d1)
|A| · d1 = d

|A|+1
1 ≤ dn+1

1 < q.

Since the degree of G is less than q, by Lemma 2.11, there exist some s, r1, . . . , rm
for which G(s, r1, . . . , rm) ̸= 0. Consider the share shi = Pi(s, r) for every i ∈ A.
By (2), for any randomness r′1, . . . , r

′
m,

F (0, (Pi(0, r
′
1, . . . , r

′
m))i∈A) = 0 and F (0, (shi)i∈A) = G(s, (shi)i∈A) ̸= 0.

Thus, for any randomness r′ = r′1, . . . , r
′
m ∈ Fq,

(Pi(0, r
′))i∈A ̸= (shi)i∈A.

So the shares (shi)i∈A are impossible given the secret 0 and are possible given
the secret s, implying that A is not forbidden, i.e., A is authorized.

We next explain why Items 1 and 2 imply (1). By Item 1, for every minimal
authorized set A in Γ , the element 0 depends on the set A, i.e., r(A) = r(A∪{0}).
By simple properties of matroids (see Lemma 3.4), there is a circuit C ⊆ A∪{0}
such that 0 ∈ C; let B = C \ {0}. Thus, by Item 2, B is an authorized set. Since
B ⊆ A and A is a minimal authorized set, A = B and A ∪ {0} is a circuit.

By Item 2, for every circuit A∪{0}, the set A is an authorized set. If A is not
a minimal authorized set, then there is a set A′ ⊊ A such that A′ is authorized
then. By Item 1, A′ ∪ {0} ⊊ A ∪ {0} is dependent, contradicting the fact that
A ∪ {0} is a circuit.

We have proved that A ∪ {0} is a circuit of the algebraic matroidM if and
only if A is a minimal authorized set of Γ , i.e., Γ is the port of the algebraic
matroid. ⊓⊔

3.2 Ideal Schemes with Polynomial Sharing and Arbitrary
Reconstruction

We next prove that the access structure of an ideal scheme with polynomial
sharing and arbitrary reconstruction over a prime field is the port of an algebraic
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matroid, assuming that the field is big enough and the sharing polynomials have
low degree. The theorem is proved by using Theorem 2.13.

Theorem 3.5 (Theorem 1.5 Restated). Let Σ be an ideal polynomial secret
sharing scheme realizing an n-party access structure Γ . Suppose that the domain
of secrets in Σ is Fp for some prime p and the sharing is by polynomials over
Fp of degree at most d. If p > max{16(2n+ 1)4d8n, 220}, then Γ is a port of the
algebraic matroid defined by the sharing polynomials of Σ.

Proof. Let P1, . . . , Pn ∈ F[s, r1 . . . , rm] be the polynomials of degree at most
d that determine the shares in Σ and P0(s, r1, . . . , rm) = s. Now we consider
the matroid M = (E, r), with E = {0, . . . , n} and the algebraic representation
{P0, . . . , Pn}, i.e., for every subset A ⊆ E,

r(A) = trdegFq
((Pi)i∈A).

Furthermore, consider the matroid MΣ = (E, rΣ) defined in Theorem 2.10,
where rΣ(A) = H(SA)/H(S) = H(SA)/ log p. We will prove that these matroids
are equal, i.e., r(A) = rΣ(A) for every A ⊆ {0, . . . , n}.

Fix a set A and let k = r(A) = trdegFq
((Pi)i∈A) and δ = 1/2. Note that the

random variable SA is obtained by sampling s, r1, . . . , rm with uniform distribu-
tion and computing the shares as (Pi(s, r1, . . . , rm)i∈A), i.e., as in Theorem 2.13.
Furthermore,

p > max{16(2n+ 1)4d8n, 220} ≥ max{(2d)k, 220, (2(2k + 1)d2k)4}.

Thus, SA satisfies the hypothesis of Theorem 2.13 with δ = 1/2.
By Theorem 2.13, the random variable SA has min-entropy at most (k +

1/2) log p and is ε-close to a random variable Y having min-entropy at least
(k − 1/2) log p, with ε = 2dk/p. Furthermore, by Theorem 2.10, the random
variable SA is uniformly distributed over a domain of size prΣ(A). On one hand,
H(SA) = Hmin(SA) and

rΣ(A) =
H(SA)

log(p)
=

Hmin(SA)

log(p)
≤ k + 0.5.

Since r(A) = k and rΣ are integers, we have that rΣ(A) ≤ r(A). For the other
direction, assume towards contradiction that rΣ(A) < r(A); as both ranks are
integers, rΣ(A) ≤ r(A) − 1. Thus, SA is uniformly distributed over a domain
of size at most pr(A)−1. Let px = Pr[SA = x] and p′x = Pr[Y = x]. By our
assumptions, px ≥ p−(r(A)−1) > p−(r(A)−1/2) ≥ p′x. Thus,

2SD(SA, Y ) =
∑
|px−p′x| ≥

∑
px−

∑ 1

pr(A)−1/2
≥ 1− pr(A)−1

pr(A)−1/2
= 1−p−1/2.

Thus, since SD(SA, Y ) ≤ 2dk/p ≤ 1/2,

p−1/2 ≥ 1− 4dk

p
≥ 1

2
,

contradicting the fact that p > 220. Thus, from the above arguments rΣ(A) =
r(A) for every A and the theorem follows. ⊓⊔
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4 Secret Sharing Schemes with q-Polynomial Sharing

In this section we study a particular family of schemes with polynomial sharing.
These are the schemes where the shares are given by the so-called q-polynomials.
Next, we define this family of polynomials, and we show interesting properties
of the associated schemes. Namely, we provide a connection between this family
of polynomial schemes and multi-linear schemes, and we provide examples that
illustrate the need for restrictions on the degree of polynomials in Theorem 3.3.

Definition 4.1. Let q be a prime power and consider the finite field Fqr for

some r > 0. A polynomial of the form P (x) =
∑r−1

i=0 aix
qi where ai ∈ Fqr is a

q-polynomial.

Equipped with the operations of addition and composition of polynomials in
Fqr [x] modulo xqr−x, the set of q-polynomials forms a Fq-algebra that is isomor-
phic to the algebra of r × r matrices over Fq (see [24]). These polynomials were
firstly studied by Ore in [55] where they were given a structure of a skew field,
i.e., a non commutative ring with field of fractions. Later, Carlitz [24] described
an isomorphism between the Fq-linearized polynomial mappings over Fqr and
the group of r× r matrices over Fqr . However, the mentioned papers only study
univariate linearized polynomials, while our sharing polynomials are polynomials
over more than one variable. We next see the construction of this isomorphism
over multivariate linearized polynomials, detailed in Proposition 4.2.

First, notice that the field Fqr can be seen as a vector space over Fq. Let α be
a primitive element of Fqr , then α0, . . . , αr−1 constitutes a basis of Fr

q over Fq.
The q-polynomials in one variable are Fq-linear functions from Fqr to Fqr . Then,
when using the transformation of Fqr to Fr

q, every q-polynomial P is a Fq-linear
map from Fr

q to Fr
q with an associated r × r matrix MP over Fq. Indeed, the

isomorphism in [24] is based on this correspondence, and this implies that every
Fq-linear map from Fr

q to Fr
q can be written as a q-polynomial over Fqr .

Berson observed in [19] that every multivariate Fq-linear polynomial over
Fqr is linear in every coordinate. With this observation we can extend the pre-
vious isomorphism to the algebra of q-polynomials in m variables. For every
q-polynomial on m variables we obtain a Fq-linear map from Frm

q to Fr
q, i.e.,

a rm × r matrix over Fq. Since the isomorphism is maintained, for every Fq-
linear map from Frm

q to Fr
q there is a corresponding q-polynomial over Fqr in m

variables.
Next result summarizes the previous construction and a more detailed proof

of it is in Appendix B.1.

Proposition 4.2. Let q be a prime power and Fqr a finite field. The algebra of
q-polynomials on m variables over Fqr is isomorphic with the algebra of Fq-linear
maps from Frm

q to Fr
q.

With the use of the relation between q-polynomials and Fq-linear maps, we
obtain a correspondence between multi-linear secret sharing schemes and poly-
nomial schemes with q-polynomial sharing.
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Theorem 4.3. Ideal secret sharing schemes over Fqr with q-polynomial sharing
are in correspondence with ideal r-linear secret sharing schemes.

The properties that characterize ideal multi-linear secret sharing schemes can
be translated to the q-polynomials that define the correspondence above. Then
we obtain the following result.

Corollary 4.4. A set of q-polynomials defines an ideal secret sharing scheme
if and only if every sharing polynomial is a permutation polynomial in every
variable of the support.

4.1 Examples of q-Polynomial Schemes

In our work, we have seen several examples of ideal q-polynomial secret sharing
schemes (Example 1.1, Example 1.10) and in Example 4.6 we see the construction
of the matrix that represents a multi-linear scheme deduced from an ideal q-
polynomial scheme.

However, schemes with q-polynomial sharing are not perfect, in general.
In Example 4.7 we can observe the existence of a q-polynomial scheme that
is not perfect and it deduces a non-ideal multi-linear scheme.

Remark 4.5. As we observed in Remark 3.2, every ideal secret sharing scheme
whose domain of secrets is a finite field Fqr has sharing functions that can be
computed by polynomials. In general, the degree of these polynomials is at most
qr − 1. But in the case of ideal r-linear secret sharing, schemes over Fq, we can
bound the degree of the sharing polynomials by qr−1.

Next we give an example of a scheme with q-polynomial sharing that does
not realize the access structure determined by the algebraic dependence of the
sharing polynomials but is a multi-linear scheme for another access structure.
This example evidences the importance of the restriction on the degree of the
sharing polynomials with respect to the size of the field.

Example 4.6. We consider the scheme of the Example 1.10 with sharing polyno-
mials over F4 P0(x, y, z) = x, P1(x, y, z) = y + z2, P2(x, y, z) = x+ y2 + z. The
scheme with secret P0 and shares P1, P2 is 2-polynomial over F4 and it deter-
mines a 2-linear scheme over F2. Let α be a generator of F4 over F2 satisfying
α2 + α + 1 = 0. We consider the basis {1, α} of F4 as a F2-vector space. Then,
the 2-linear representation of the scheme is defined by the F2-linear maps with
matrices:

MP0
=


1 0
0 1
0 0
0 0
0 0
0 0

 MP1
=


0 0
0 0
1 0
0 1
1 0
1 1

 MP2
=


1 0
0 1
1 0
1 1
1 0
0 1

.

We can observe that the matrix MP0
|MP1

|MP2
defines an ideal 2-linear scheme,

therefore, the polynomial scheme with secret P0 and two parties with sharing
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P1 and P2 is ideal. We can check that it is a multi-linear scheme for the port of
the uniform matroid U2

3 .
Nevertheless, notice that the algebraic matroid defined by the polynomials is

the uniform matroid U3
3 since the algebraic rank of P0, P1 and P2 is 3 and that

they define an independent set of the matroid. Therefore, the polynomial scheme
does not realize the access structure determined by the port of the algebraic
matroid. △

Example 4.7. Consider now the scheme over F4 with secret P0 and shares P1

and P2 where:

P0(x, y) = x, P1(x, y) = x2 + x+ y, P2(x, y) = y.

This doesn’t satisfy correctness since the parties P1 and P2 cannot fully recover
the secret since they recover x2 + x that is not invertible over F4. In terms of
the multi-linear scheme, we can observe that the linear mappings defined by the
polynomials are:

MP0
=


1 0
0 1
0 0
0 0

 MP1
=


0 0
1 0
1 0
0 1

 MP2
=


0 0
0 0
1 0
0 1

.

Note that MP1
does not define an ideal multi-linear scheme since the submatrix

of the first 2 rows is not 0 or full rank. Therefore, neither the polynomial scheme
nor the multi-linear scheme is ideal. △

In previous examples (see Example 1.10) we saw that the access structure
of a polynomial scheme may not be determined by the algebraic dependence of
the sharing polynomials. This justifies the need for restrictions on the degree of
polynomials in Theorem 3.3. We next see an example of an ideal q-polynomial
scheme that shows the need for the bound on the degree of the sharing and
reconstruction polynomials of Theorem 3.3 for an arbitrary number of parties.

Example 4.8. Let q be a prime power and n be the number of parties and q a
prime power, we define a q-polynomial scheme over Fqn with secret P0 = x0 and
shares

P1 = x0 + x1 − xq
2,

Pi = xi − xq
i+1 for 1 < i < n, and

Pn = xn − xq
1.

To prove that the scheme with these sharing is ideal we can construct the corre-
spondent multi-linear representation and observe that it gives a representation
for an ideal scheme.

Now, we show that the access structure does not correspond to the one
determined by the algebraic dependence of Pi on P0. Observe that the set of
all parties is authorized since there is a reconstruction function

Q(y1, . . . yn) = y1 + yq2 + yq
2

3 + . . .+ yq
n−2

n−1 + yq
n−1

n
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satisfying that for all x0, . . . , xn ∈ Fqn ,

Q(P1(x0, . . . , xn), . . . , Pn(x0, . . . , xn)) = x0

since x1 − xqn

1 = 0 for all x1 ∈ Fqn . But the set of polynomials P0, . . . , Pn is
algebraically independent, since the Jacobian matrix J(x0,...,xn)(P0, . . . , Pn) has
rank n+ 1:

J(x0,...,xn)(P0, . . . , Pn) =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...
...
...
. . .

...
0 0 0 . . . 1


Here we use the implication of the Jacobian criterion that is true for arbitrary

characteristic, see [7].
Notice that the maximum degree of the sharing polynomials is d1 = q and

the reconstruction polynomial has degree d2 = qn−1. The subsets with less than
n parties are all unauthorized, then there is only one reconstruction polynomial.

Therefore, we have found a scheme on Fqn such that its access structure is
not the port of the algebraic matroid defined by the sharing polynomials and
the bound is qn = max{qn, q · qn−1}. △

5 Secret Sharing Schemes from Polynomials

In previous sections we observed that, under some conditions, the access struc-
tures of ideal polynomial secret sharing schemes are determined by the algebraic
rank of the sharing polynomials. It is natural to ask if the reciprocal is true,
i.e., if considering a set of polynomials and the access structure Γ determined
by their algebraic dependence, then the scheme defined by the evaluation of
such polynomials has valuable properties. We show that the resulting schemes
are not perfect, in general, but we can transform them into statistical schemes
realizing Γ .

First, in Section 5.1, we present the family of statistical secret sharing schemes.
In Section 5.2, we give some results on polynomials over finite fields that will be
required later. In Section 5.3, we analyze the scheme that is obtained directly
from the sharing polynomials. Analyzing the entropy of the resulting random
variables, we show that this scheme is not perfect; however, when the cardinal-
ity of the field is prime and large enough, subsets in Γ can almost determine
the secret, in average, whether those not in Γ have almost no information about
the secret. After that, following ideas from Jafari and Khazaei [43], we construct
statistical secret sharing schemes with bounded share and secret sizes.

5.1 Statistical Secret Sharing Schemes

In the definition of a secret sharing scheme realizing an access structure, the
correctness and privacy are perfect. We can relax these requirements and ask
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that the correctness holds with high probability and that the statistical distance
between ΠB(a, r) and ΠB(b, r) is small. To quantify high probability and small
statistical distance, the scheme gets as a security parameter ℓ (in unary) as an
additional input.

Definition 5.1 (Statistical SSS). Let ℓ be a security parameter. A statis-
tical secret sharing Σ = ⟨Π,µ⟩ is a pair that gets the security parameter as
an additional input, where Π(1ℓ, ·, ·) is a mapping from [K0(ℓ)] × [KR(ℓ)] to
[K1(ℓ)] ×· · · × [Kn(ℓ)] for some functions K0,KR,K1, . . . ,Kn : N → N, and
µ(1ℓ) is a distribution on some finite set. We say that Σ is a statistical secret
sharing scheme for the access structure Γ (or Σ statistically realizes it) if:

Polynomial secret length growth. The secret length grows at most polyno-
mially in ℓ,

logK0(ℓ) = O(ℓc) for some c ∈ N.

Statistical-correctness. There is some ε(ℓ) ∈ ℓ−ω(1) (negligible function in ℓ)
such that for every qualified set A ∈ Γ , there exists a reconstruction function
ReconA such that for every secret s and every randomness r,

Pr[ReconA(Π(1ℓ, s, r)A) = s] ≥ 1− ε(ℓ).

Statistical-privacy. There is some ε(ℓ) ∈ ℓ−ω(1) (negligible function in ℓ), such
that for every unauthorized set B /∈ Γ and for every pair of secrets a, b and
randomness r, the statistical distance

SD(Π(1ℓ, a, r)B , Π(1ℓ, b, r)B) ≤ ε(ℓ).

We define the optimal information ratio of statistical schemes for an access
structure Γ as the infimum of the information ratio of all sequences of statistical
schemes realizing Γ .

The following result guarantees the existence of statistical secret sharing
schemes for an access structure from a family of random variables. This result
is obtained by combining different results from [43]. We use this result as a
black-box transformation for the construction of schemes. In the proof of Propo-
sition 5.2, which can be found in Appendix C, we summarize the main steps of
the construction presented in [43]. In Appendix A.1 and Appendix A.2 we give
more details about this transformation, that uses wiretap channel techniques.

Proposition 5.2 ([43]). Let S0, . . . , Sn be jointly distributed random variables
and let Γ be an access structure on {1, . . . , n}. If

C = min
B/∈Γ

H(S0|SB)−max
A∈Γ

H(S0|SA) > 0,

then there exists a sequence of random variables (T ℓ
0 , . . . , T

ℓ
n)ℓ∈N with |supp(T ℓ

0 )| =
2ℓR, where R = C − Θ(ℓ−1/4), with the following properties: For every s ∈
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supp(T ℓ
0 ) and for every subset A in Γ there exists a reconstruction function

ReconA with

Pr[ReconA(T
ℓ
A) ̸= T ℓ

0 |T ℓ
0 = s] < 2e−

√
ℓ. (4)

And for every s ∈ supp(T ℓ
0 ) and for every subset B not in Γ ,

SD(pT ℓ
B |T ℓ

0=s, pT ℓ
0
) ≤ 3e−

√
ℓ. (5)

Indeed, the schemes Σ with Π defined as the outcome of the random variables
(T ℓ

1 , . . . , T
ℓ
n)ℓ when T ℓ

0 is taken uniformly at random, is a statistical scheme for
Γ with information ratio maxi∈P H(Si)/C and security parameter ℓ. The share
size of i-th share is ℓ log |Si| and secret size ℓR.

5.2 Results on Polynomials over Finite Fields

We see now a criterion that yields a more efficient way to compute the transcen-
dence degree of polynomials by using the partial derivative matrix, or Jacobian.

Definition 5.3. For a set of polynomials P1, . . . , Pn ∈ F[x1, . . . , xm], we define
the Jacobian of P1, . . . , Pn as

Jx(P1, . . . , Pn) := (∂xj
Pi)i,j =

∂x1
P1 . . . ∂xm

P1

...
...

∂x1
Pn . . . ∂xm

Pn


with x = (x1, . . . , xm) and ∂xjPi =

∂Pi

∂xj
. We define the Jacobian rank of P1, . . . , Pn

as the rank of the matrix Jx(P1, . . . , Pn) over F[x1, . . . , xm], and we denote it by
rankJ(P1, . . . , Pn).

Lemma 5.4 (Jacobian criterion, Theorem 6 of [7]). Let P1, . . . , Pn ∈
F[x1, . . . , xm] be polynomials of degree at most d and transcendence degree r. If
ch(F) = 0 or ch(F) > dr, then rankJ(P1, . . . , Pn) = trdegF{P1, . . . , Pn}.

Next we present Theorem 5.5, which is an extended version of Wooley’s
theorem [63]. Theorem 5.5 will give us a connection between the algebraic in-
dependence and the entropy of some random variables. This extension is due to
the fact that in [63] they consider congruences of d polynomials on d variables
modulo prime powers. We restrict to the case of a prime finite field and extend
to a higher number of variables.

Theorem 5.5. Let Fp be a field of prime order p. Let k, m, and d be integers.
Let {P1, . . . , Pk} be some polynomials in Fp[x1, . . . , xm] of degree at most d of
rank k. For a ∈ Fk

p, let

Na = |{c ∈ Fm
p : Pi(c) = ai for every 1 ≤ i ≤ k and Jc(P1, . . . , Pk) has rank k}|

Then for every a ∈ Fk
p, Na ≤ dkqm−k.
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Proof. Wooley [63] proved that it is true for m = k. To prove that the result
holds form > k, we extend the set of polynomials in order to havem polynomials
of rank m. This can be done by adding polynomials of the kind Pi(xi) = xi. Now,
we can guarantee that when J has full rank then the new Jacobian has also full
rank. With this extended set of polynomials, we can apply Wooley’s theorem
and get that for every b ∈ Fm, Nb is at most the degree of the m polynomials,
which is at most dk. Now let a ∈ Fk and, by an abuse of notation, consider Na

as defined in the statement. We have that Na is the sum of all Nb for b ∈ Fm

whose first elements are a. Therefore, Na ≤ dkqm−k. ⊓⊔

5.3 Schemes from Polynomials

This section is dedicated to the proof of Theorem 1.7. This proof is divided into
different intermediate steps. We start with Lemma 5.8, where we give bounds
on the entropy of the jointly distributed random variables defined by the poly-
nomials as SA = {Pi(Um)}i∈A. Next, we are able to give bounds on H(S0|SA)
for every subset of parties A. The difference between the values of H(S0|SA) for
authorized and forbidden subsets is bounded in Proposition 5.9. With that, we
can use the black-box transformation of Proposition 5.2 which uses the wiretap
channel techniques to obtain statistical schemes for Γ .

Theorem 5.6 (Theorem 1.7 Restated). Let n,m, k, t and d be positive in-
tegers and let p be a prime. For every 1 ≤ i ≤ n, let {Pi,j}1≤j≤ki be some polyno-
mials in Fp[x0, . . . , xm] of degree smaller than d, and P0(x0, . . . , xm) = x0. Let
Γ be the n-party access structure determined by the polynomials {Pi,j} and P0.

If t >
∑

i∈A ki for any maximal forbidden subset A not in Γ , and log p > (t2+
3t+2) log d, then there exists a statistical scheme Σ realizing Γ with total share
size kℓ log p and secret size ℓ(C−Θ(ℓ−1/4)), where C = (1− tdt/p) log p−3t2 log d
and ℓ is the security parameter.

Remark 5.7. In the case that Γ is a t-threshold access structure, then the result
can be slightly improved. It is enough to require log p > 6t log d to get statistical
schemes with secret size ℓ(C −Θ(ℓ−1/4)), where C = (1− tdt/p) log p− 5t log d.

Another remark is that in this theorem we only considered the case that
P0(x0, . . . , xm) = x0. If we consider a scheme where the secret is determined by
a polynomial of degree larger than one, it is possible to build a similar scheme
with slightly smaller C.

In the following results, we just consider the case where each party has only
one polynomial. That is, ki = 1 for all 1 ≤ i ≤ n. In the proof of Theorem 5.6, we
show that it is enough to consider this case, and then the result can be extended
to the general case.

Lemma 5.8. Let {P0, . . . , Pn} be some polynomials as in Theorem 5.6. Let
A ⊆ {0, . . . , n} and k = rank({Pi}i∈A). Consider the jointly distributed ran-
dom variables SA = {Pi(Um)}i∈A, where Um is the uniform distribution over
Fm+1
p . Then,
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1. If A is independent, H(SA) ≥ k log p− k log 2d.

2. If A is dependent, then H(SA) ≤ k log p+ (|A| − k)(k log d+ dk

p log p).

Proof. Observe that the rank of sets of an algebraic matroid coincide with the
Jacobian rank of the polynomials in the representation because of the Jacobian
criterion (Lemma 5.4) when the characteristic is p > dr, where r is the rank of
the matroid.

First, we prove the first statement. For that, we apply Theorem 5.5. Let E be
the event such that J , the Jacobian matrix defined in Theorem 5.5, has (matrix)
rank k. By Lemma 2.11, the probability that a minor of J of size k is zero is
at most dk/p. Hence, Pr(E), the probability that J has full rank, is at least
1− dk/p.

Now we compute Pr(SA = a ∧ E) for a ∈ Fk
p. By Theorem 5.5, the set Na

is at most pm−kdk, and so Pr((SA = a) ∧ E) ≤ dk/pk. Hence, we can bound
Pr(SA = a|E) as

Pr(SA = a|E) =
Pr((SA = a) ∧ E)

Pr(E)
≤ dk

pk(1− dk/p)
≤

(
2d

p

)k

.

Therefore,

H(SA) ≥ H(SA|E) =
∑
a∈Fk

p

Pr(SA = a|E) log(1/Pr(SA = a|E))

≥
∑
a∈Fk

p

Pr(SA = a|E)(k log p− k log(2d)) ≥ k log p− k log(2d).

To prove the second statement, we first consider the case that A is a circuit
with rank k. For that, we show the difference between the entropy of SA and
the entropy of every independent subset of A, SA\j , for j ∈ A, is bounded by

k log d+ dk

p log p.

Let Q be the annihilator polynomial of A with degree dQ. By Theorem 2.12,
dQ ≤ dk. This polynomial satisfies that for every x ∈ Fm, Q({Pi(x)}i∈A) = 0.
Fix j ∈ A and let I = A \ j be an independent set of rank k.

For a ∈ Fk−1 such that Pr(SI = a) > 0, if Q(x, a) = 0 for every x ∈ Fp,
then Sj can take all values and j|I is uniformly distributed over Fp, therefore
H(Sj |SI = a) = log q. For a ∈ Fk−1 such that Q(x, a) ̸= 0 for some x, then
there are at most dQ possible values of x such that Pr(Sj = x ∧ SI = a) > 0,
since all values must satisfy that Q(x, a) = 0. Then, H(Sj |SI = a) ≤ log dQ.
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Summing up,

H(SA) = H(SI) +H(Sj |SI)

= H(SI) +
∑

a∈Fk−1

Pr(SI = a)H(Sj |SI = a)

= H(SI) +
∑

a∈Fk−1,Q(·,a)=0

Pr(SI = a)H(Sj |SI = a)

+
∑

a∈Fk−1,Q(·,a)̸=0

Pr(SI = a)H(Sj |SI = a)

≤ H(SI) + Pr(Q(·, a) = 0) log q + Pr(Q(·, a) ̸= 0) log dQ

By Lemma 2.11, the polynomial Q(·, a) is 0 with probability at most
dQ

p . Then,

H(SA)−H(SI) ≤
dQ
p

log p+

(
1− dQ

p

)
log dQ = log dQ +

dQ
p
(log p− log dQ)

≤ k log d+
dk

p
(log p− log dQ) ≤ k log d+

dk

p
log p.

Finally, we prove the second statement for every dependent subset. Let I be the
maximal independent set contained in A. Let j ∈ A \ I and let Bj be the unique
circuit contained in j ∪ I.

By the submodularity of the entropy function, for all j ∈ A \ I,

H(SBj
)−H(SBj\j) ≥ H(SA)−H(SA\j).

Therefore,

H(SA)−H(SI) ≤
∑

j∈A\I

(H(SA)−H(SA\j)) ≤
∑

j∈A\I

(H(SBj
)−H(SBj\j)).

For every j ∈ A \ I, use the bound for the circuit Bj and the independent set
Bj \ j and the bound for H(SI), obtaining

H(SA) ≤ k log p+ (|A| − k)

(
k log d+

dk

p
log p

)
.

⊓⊔

Proposition 5.9. Let SA be the random variables defined by the joint dis-
tribution {Pi(Um)}i∈A where Um is the uniform distribution over Fm+1

p and
{P0, . . . , Pn} are the polynomials of Theorem 5.6. Let Γ be the access structure
corresponding to the polynomials. Then the random variables satisfy that

C = min
B/∈Γ

H(S0|SB)−max
A∈Γ

H(S0|SA) ≥
(
1− tdt

p

)
log p− 5t log d.

Proof. We work with authorized and forbidden subsets of Γ .
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Claim 5.10. If A ∈ Γ , then H(S0|SA) ≤ (dt/p+ 3t log d/ log p)H(S0).

First, consider the case that A is minimal in Γ . In this case, A is independent
and A ∪ {0} is a circuit. Suppose that |A| = k, and so A ∪ {0} has rank k. By
Lemma 5.8,

H(S0|SA) ≤ k log p+ k log d+
dk

p
log p− k log p+ k log 2d

≤ (dk/p+ 3k log d/ log p)H(S0).

If A ∈ Γ but it is not minimal, then there is A′ ⊆ A that is minimal in Γ and
H(S0|SA) ≤ H(S0|SA′). Now, since the size of maximal forbidden subsets is
smaller than t, the size of minimal authorized subsets is at most t.

Claim 5.11. If A /∈ Γ , then

H(S0|SA) ≥ (1− (t− 1)dt−1/p− (t2 + 1) log d/ log p)H(S0).

Let A be a non authorized set of size k < t. The rank of A∪{0} is greater than
the rank of A, which we denote k′. Therefore, A ∪ {0} contains an independent
set I of size k′ + 1. Therefore,

H(S0|SA) = H(SA∪{0})−H(SA) ≥ H(SI)−H(SA)

≥ (k′ + 1) log p− (k′ + 1) log 2d− k′ log p− (k − k′)(k′ log d+
dk

′

p
log p)

≥ log p− (2(k′ + 1) + (k − k′)k′) log d− (k − k′)
dk

′

p
log p

≥ log p− (k2 + 2k + 2) log d− k
dk

p
log p

≥ (1− kdk/p− (k2 + 2k + 2) log d/ log p)H(S0).

The claim is obtained by taking t = k + 1.
Therefore the advantage of the authorized sets over the forbidden ones is

C = min
B/∈Γ

H(S0|SB)−max
A∈Γ

H(S0|SA) ≥
(
1− tdt

p

)
log p− (t2 + 3t+ 1) log d

which is positive for p > dt
2+3t+2. ⊓⊔

Remark 5.12. If Γ is a t-threshold access structure, we can give a more accurate
bound because we know that the maximal forbidden subsets are independent.
Therefore, the advantage is

C ≥
(
1− tdt

p

)
log p− 5t log d,

and we can guarantee that this value is positive for p > d6t.
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Proof of Theorem 5.6. First, we prove this result when every party has only one
polynomial. In this case, we can call the polynomials simply as P0, . . . , Pn. The
result for the case is obtained by combining Proposition 5.9 and Proposition 5.2
as follows.

Consider the jointly distributed random variables SA = {Pi(Um)}i∈A where
Um is the uniform distribution over Fm+1

p . By Proposition 5.9, they have positive
secret capacity C. By Proposition 5.2, there exists a statistical schemeΣ realizing
Γ with shares T ℓ

i and secret space T ℓ
0 of size 2ℓR, with R = C − Θ(ℓ−1/4) and

security parameter ℓ. The size of the secret of the resulting schemes is ℓR and
the share size is ℓ log p.

Now we consider the case where each party may have more than one poly-
nomial. Notice that in this case, we can consider a scheme in an extended set
of parties {1, . . . , k} where each party has one polynomial. Now, the subsets
that are forbidden in Γ are in correspondence with subsets of size less than t
in this new setting. Applying the results we got above, we obtain a statistical
secret sharing scheme with security parameter ℓ realizing Γ with total share size
kℓ log p and same secret size. ⊓⊔

We note that the restriction on the degree of sharing polynomials with respect
to the field size is needed. This is justified by Example 5.15, where we give a
polynomial scheme not satisfying the restrictions and for which an unauthorized
subset has more information about the secret than an authorized subset.

5.4 Polynomial Ramp Schemes

Despite that this work is focused on schemes with perfect or statistical security,
we observe that we can also get interesting polynomial schemes in the ramp
setting, i.e., schemes with two thresholds t1 and t2 where we can guarantee that
subsets of size at least t2 are authorized, and subsets of size at most t1 are
forbidden. Next, we present a ramp scheme with an almost optimal trade-off
between the share size and the gap t2 − t1.

Example 5.13. Let F be a field of size p prime. The scheme is defined by the
polynomials Pa,b(x, y) = (x−a)(y−b) for a, b ∈ F for the shares and P0(x, y) = x
for the secret. The access structure Γ defined by these polynomials is the 2-
threshold access structure on n = p2 parties and share size log p = 1

2 log n.
Indeed, every pair of polynomials Pa1,b1 , Pa2,b2 is algebraically independent over
F and every triple of polynomials is algebraically dependent.

Nevertheless, the scheme defined by these polynomials does not realize Γ
perfectly. First, notice that there are parties with partial information about the
secret. Let s ∈ F be a secret, the parties with polynomial share Ps,b have share
0 but the parties with polynomial share Ps′,b with s′ ̸= s have probability 1/p
to have share 0;

1 = Pr(Ps,r(s, r) = 0) ̸= Pr(Ps′,r(s, r) = 0).

Then, the parties have probability 1/p to have more information. So the scheme
is not 1-private.
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Moreover, sets with two parties do not satisfy perfect correctness, since, in
general, the reconstruction function is a degree-2 polynomial and there are cases
where the parties do not have any information about the secret. Concretely,
let a1, a2, b1, b2 ∈ F and two parties with Pa1,b1,, Pa2,b2 as polynomial shares.
If b1 = b2 and a1 ̸= a2, if r = b1, the parties have the share 0 for any secret
and they cannot reconstruct it. Moreover, there are subsets with more than two
parties that still do not satisfy correctness for every secret and randomness.
For example, the subset of p parties with polynomial share Pai,bi , where the
bi’s coincide, cannot reconstruct the secret when the randomness r = bi since
all shares will be 0. The first size of subsets with perfect correctness is p + 1,
since all subsets of size p+ 1 will reconstruct the secret with probability 1. Let
s, r ∈ F, since there are p + 1 polynomials, there is at least a pair with same a
but different b and then they can reconstruct a secret. This makes the scheme
to have (p+ 1)-reconstruction.

Schemes with such privacy and reconstruction thresholds require share size
at least log((p2 + 1)/(p + 1)) [25]. In our case, the share size is log p, which is
very close to this bound.

Even tough the scheme does not have good security properties, from the re-
sults in Section 5, in particular Remark 5.12, it is deduced that, in average, every
authorized subset has more information about the secret that any forbidden one.
In partiuclar, let S0 be the random variable associated to the secret, let Si be the
random variable associated to the share of party i, and let Si,j be the random
variable associated to the share of the pair of parties i, j. Then,

min
i

H(S0|Si)−max
i,j

H(S0|Si,j) ≥
(
1− 8

p

)
log p− 10,

which is very close to log p for large enough p. △

Notice that for this access structure, by relaxing the privacy and correct-
ness requirements, we could overcome the share size limitations of perfect secret
sharing schemes. In the case of 2-threshold access structures, Kilian and Nissan
showed that the share size of any perfect scheme sharing for a one-bit secret is
at least log n [48,25]. In our scheme, the number of parties is n = p2, and the
share size is log p = 1

2 log n. Looking precisely at the information each share has
about the secret, we see that for every election of (a, b) ∈ F2, there is a subset of
parties of size p that does not have information about the secret (those parties
(a, b) with b = y).

Next, we provide a construction based on the Shamir scheme that has similar
properties. Compared to the previous one, it reaches 1-privacy, but it requires
public information. The share size of each user is the same, but the amount of
public information is the same as the total share size. This variant reduces the
known bound of the field for the Shamir scheme but loses perfectness.

Example 5.14. A variant of the Shamir scheme for a 2-access structure over a
field of order p =

√
n is by constructing p shares s1, . . . , sp using the Shamir

scheme and then assign the shares randomly to the n parties. This assignment
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is made public. The size of the public information is n log n = 0.5n log n and the
total share size is 0.5n log n. Notice that this scheme is not perfect since, with
probability 1/p, two-party subsets cannot reconstruct the secret. △

5.5 Remark on Theorem 5.6

Our construction of statistic secret sharing schemes from polynomials in Theo-
rem 5.6 has a restriction on the degree of the polynomials and the size of the
field. If t is the size of the maximal forbidden subset of Γ and d is the maximum
degree of the sharing polynomials, then

log p > (t2 + 3t+ 2) log d.

Here we show some examples of schemes which sharing polynomials do not
satisfy this restriction and then they lead to non valid schemes for their access
structures.

Example 5.15. If p = 2q+1 is a safe prime, i.e., q is prime. Then the polynomial
scheme in Fp with P1(s, r) = r, P2(s, r) = sq + r and P2(s, r) = rq + s as
polynomial sharings does not satisfy the hypothesis of Theorem 1.7 since the
degree of the polynomials exceeds the bound needed, log p > 12 log q.

Note that the party P3 has much more information about the secret for
any s, r ∈ Fp since rq = ±1. But the authorized set defined by parties P1, P2

has almost no information about the secret since they can recover sq which
takes only ±1 values. Therefore, there is a forbidden set that has much more
information about the secret than an authorized set. △

6 Secret Sharing Schemes from Algebraic Varieties

In previous constructions of secret sharing schemes for access structures deter-
mined by polynomials, we have considered polynomial sharing by evaluating the
polynomials (as in Theorem 5.6). In this section, we consider the algebraic vari-
ety defined by the ideal of annihilator polynomials and give as shares a uniform
distribution on the points of the variety.

Using a new result in matroid theory by Matúš [54], we construct sequences
of secret sharing schemes with information ratio tending to one from algebraic
matroids. Afterwards, using a transformation by Jafari and Khazaei [43] we
obtain statistical schemes with information ratio tending to one in the security
parameter. Next, we explain the ideas of this construction in more detail, which
follow in three steps, and prove the following theorem. Most of the technical
results and all proofs are in Appendix D.

Theorem 6.1 (Theorem 1.9 Restated). The ports of algebraic matroids
over a finite field admit statistical secret sharing schemes with information ratio
tending to 1.
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Next, we introduce some definitions and results needed for the proof of the
previous theorem. Given a set E, polymatroid is a pair (E, r) with rank function
r : 2E → R satisfying r(∅) = 0 and the conditions 2 and 3 of Definition 2.5.

Theorem 6.2 ([40,39]). Let (Sx)x∈E be some random variables and, for every
X ⊆ E, define SX = (Sx)x∈X . Consider the mapping h : 2E → R defined by
h(∅) = 0 and h(X) = H(SX) if ∅ ̸= X ⊆ E. Then, h is the rank function of a
polymatroid with ground set E.

Polymatroids that can be defined from random variables as in Theorem 6.2
are called entropic. Matúš [54] proved that for every algebraic matroid M =
(E, r) there exists a sequence of entropic polymatroids whose rank function tends
to a multiple of the matroid rank r. It implies that algebraic matroids are almost
entropic. In this construction, the polymatroids are determined by the algebraic
variety defined by the annihilating polynomials of the algebraic representations
of the matroid.

Let M be an algebraic matroid over a finite field G. For a large enough
extension F of G, the variety defined by the annihilating polynomials of the al-
gebraic representation of M is non empty, and we define the random variables
SF that take uniform distribution on the points of this variety. Define the jointly
distributed random variables SF,A that take the projection of SF over the coor-
dinates in A, for every A ⊆ E. Define the polymatroid SF = (E, hF) with rank
function

hF(A) =
H(SF,A)

log |F|
.

The sequence of entropic polymatroids SF is obtained by considering an increas-
ing sequence of algebraic varieties over field extensions of F. Define

σF =
maxi∈P hF(Pi)

hF(P0)
,

where the maximum is taken for i ∈ E \ {0}.
The proof of Lemma 6.3, which is from [54], can be found in Appendix D.1.

Lemma 6.3. Let F be a finite field of size q and SF = (E, hF) be the polymatroid
defined above. Then, for every K ⊆ E,

|hF(K)− r(K)| ≤ n

ln q

for some constant n that depends on the variety determined by the representation
ofM, but it is independent of q.

Lemma 6.4. Let Γ be the access structure determined by the matroid M. The
polymatroid S = (E, hF), where |F| = q, satisfies the following.

– If A ∈ Γ , then hF(0 : A) ≥ 1− n
ln q .

– If B /∈ Γ , then hF(0 : B) ≤ n
ln q .
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Proof. Recall that hF(0 : C) = hF(0)+hF(C)−hF(C ∪{0}) for any C ⊆ E \{0}.
For an authorized subset A ∈ Γ ,

hF(0 : A) = hF(0) + hF(A)− hF(A ∪ {0})

≥ 1− n

ln q
+ r(A)− n

ln q
−
(
r(A ∪ {0}) + n

ln q

)
= 1− n

ln q
.

Let B be a non authorized subset, this is that r(B ∪ {0}) = 1 + r(B).

hF(0 : B) = hF(0) + hF(B)− hF(B ∪ {0})

≤ 1 + r(B)−
(
r(B ∪ {0})− n

ln q

)
=

n

ln q

⊓⊔

Combining this technical lemma with the construction detailed in Appendix D.1,
we deduce the following result.

Proposition 6.5. Let M be an algebraic matroid over a finite field G, and let
Γ be a port ofM. For a sufficiently large extension F of G, the random variables
SF,A satisfy that

C = min
B/∈Γ

H(SF,0|SF,B)−max
A∈Γ

H(SF,0|SF,A) > 0.

Proof. Since 1 ≥ hF(0) ≥ 1− n
ln q , by Lemma 6.4 we can see that the polymatroid

SF = (E, hF) satisfies that

max
A∈Γ

hF(A ∪ {0})− hF(A) = max
A∈Γ

hF(0)− hF(0 : A) ≤ n

ln q
,

min
B/∈Γ

hF(B ∪ {0})− hF(B) = min
B/∈Γ

hF(0)− hF(0 : B) ≥ 1− 2n

ln q
.

Therefore,

C = log |F|
(
min
B/∈Γ

(hF(B ∪ {0})− hF(B))−max
A∈Γ

(hF(A ∪ {0})− hF(A))

)
≥1−O

(
1

ln q

)
.

So if the field F is sufficiently large, C > 0. ⊓⊔

These random variables define a partial secret sharing scheme when F is
large enough. Next, we use a black-box constructions from partial secret sharing
schemes to statistical secret sharing schemes seen in Proposition 5.2 [43].

Proposition 6.6. Let M be an algebraic matroid over a finite field G, and let
Γ be a port of M. For a sufficiently large extension F of G, there is a statis-
tical secret sharing scheme realizing Γ whose information ratio tends to σF by
increasing the security parameter.
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The proof of this proposition is by combining Proposition 5.2 and Proposi-
tion 6.5. Observe that σF tends to 1 when |F| → ∞ because

1−O

(
1

ln q

)
≤ σF ≤ 1 +O

(
1

ln q

)
.

Following the ideas in [43], we find a statistical secret sharing scheme with
information ratio tending to 1 instead of σF. To do that, we use [43, Lemma
6.3], detailed in Appendix D.2, and consider a field F for every security param-
eter ℓ, such that σF tends to 1 when ℓ increases. This completes the proof of
Theorem 6.1.

In Theorem 1.8, we study the case where each party may have more than one
polynomial. We consider the statistical scheme of Theorem 6.1 in an extended set
of parties {1, . . . , k} where each party has one polynomial. We use this scheme
on the set of n parties by giving each party i, the ki shares of the scheme. Then,
it has total information ratio tending to k when the security parameter increases.

7 Optimal Information Ratio of Statistical Secret Sharing
Schemes

A classic and open question about secret sharing schemes is if duality preserves
the optimal information ratio of an access structure or the optimal share size,
even for the ideal case. Nevertheless, when the schemes are linear or multi-linear,
the question is solved by the duality of representable matroids [56] and we have
that the information ratio is preserved. Our work about statistical secret schemes
for access structures determined by algebraic matroids, and the fact that here
exist almost entropic matroids whose dual does not have this property implies
the following result.

Theorem 7.1. The optimal information ratio of statistical schemes for an ac-
cess structure is not preserved by duality.

Proof. Kaced [45] proved that the class of almost entropic matroids is not closed
by duality, and an explicit counterexample was presented by Csirmaz [28].

If a matroidM is almost entropic, there exists a sequence of entropic poly-
matroids that tend to the matroid. If Γ is a port of M at 0, this sequence of
polymatroids satisfies that the entropy of 0 conditioned to an authorized set is
very low and the entropy of 0 conditioned to a forbidden set is almost the en-
tropy of 0. Using the transformation in Proposition 5.2, we can transform these
polymatroids to a family of statistical secret sharing schemes whose information
ratio tends to 1.

Conversely, if we have statistical secret sharing schemes with information
ratio tending to one, they define a sequence of polymatroids that tends to an
entropic matroid. Then, the access structure of the scheme is a port of a matroid
that is almost entropic.
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Therefore, access structures that are ports of M have optimal information
ratio 1, while ports of its dual have optimal information ratio strictly greater
than 1. ⊓⊔

Since it is not true that all the access structures preserve optimal information
ratio for statistical schemes by duality, a natural question is to characterize the
family of matroids for which this property holds. By the results we obtained, for
ports of algebraic matroids, the optimal information ratio for statistical schemes
is 1. However, it is not known if algebraic representation is closed under duality,
in general.
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Detection of algebraic manipulation with applications to robust secret sharing and
fuzzy extractors. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of LNCS,
pages 471–488. Springer, 2008.
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37. Oriol Farràs and Carles Padró. Ideal hierarchical secret sharing schemes. IEEE
Transactions on Information Theory, 58(5):3273–3286, 2012.

38. Serge Fehr. Efficient construction of the dual span program. Manuscript, 1999.
39. Satoru Fujishige. Entropy functions and and polymatroids—combinatorial struc-

tures in information theory. Electron. Comm. Japan, 61:14–18, 1978.
40. Satoru Fujishige. Polymatroidal dependence structure of a set of random variables.

Information and Control, 39:55–72, 1978.
41. Anna Gál. Combinatorial Methods in Boolean Function Complexity. PhD thesis,

U. of Chicago, 1995.
42. Emirhan Gürpinar and Andrei Romashchenko. How to use undiscovered informa-

tion inequalities: Direct applications of the copy lemma. In IEEE International
Symposium on Information Theory, ISIT 2019, Paris, France, July 7-12, 2019,
pages 1377–1381. IEEE, 2019.

43. Amir Jafari and Shahram Khazaei. Partial secret sharing schemes. IEEE Trans-
actions on Information Theory, 69(8):5364–5385, 2023.

44. Johannes Mittmann. Independence in Algebraic Complexity Theory. PhD thesis,
Rheinische Friedrich-Wilhelms-Universität Bonn, December 2013.

45. Tarik Kaced. Information inequalities are not closed under polymatroid duality.
IEEE Transactions on Information Theory, 64(6):4379–4381, 2018.

46. Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. On secret sharing
systems. IEEE Trans. on Information Theory, 29(1):35–41, 1983.

47. Neeraj Kayal. The complexity of the annihilating polynomial. In IEEE Conference
on Computational Complexity, pages 184–193, 2009.

48. Joe Kilian and Noam Nisan. Private communication, 1990.
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54. Frantǐsek Matúš. Algebraic matroids are almost entropic. Proc. Amer. Math. Soc.,
152:1–6, 2024.

55. Oystein Ore. On a special class of polynomials. Transactions of the American
Mathematical Society, 35:559–584, 1933.



44 Amos Beimel, Oriol Farràs, and Adriana Moya
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A Appendix of Section 2

A.1 Partial Secret Sharing Schemes

For the proofs of Theorem 1.7 and Theorem 1.8 we construct schemes with
relaxed security properties, called partial security. The security notion of these
schemes is weaker than the one of perfect and statistical schemes, and only
requires that the mutual information between the secret and a subset of parties
is higher for subsets in the access structures than for subsets that are not [43].
Next, we introduce a more general definition of secret sharing schemes in terms
of random variables that includes the non-perfect ones.

Definition A.1 (IT definition of SSS). Let E be a finite set of parties, let
0 ∈ E be a distinguished party, which is called dealer. A secret sharing scheme
Σ on the set E is a discrete random vector (Si)i∈E such that H(S0) > 0 and
H(S0|SE\{0}) = 0.

In the previous definition, the random variable S0 corresponds to the secret
value, while the random variables (Si)i∈E\{0} correspond to the shares of the
secret that are distributed among the parties. For a subset A ⊆ E \ {0}, we
define SA as the jointly distributed random variable that takes projection of
(Si)i∈E\{0} over the coordinates in A.

Let Σ = (Si)i∈E be a secret sharing scheme and Γ the access structure
defined by Σ. If A ∈ Γ , then the correctness property of the scheme implies that
the random variable S0 is completely determined by the value of SA and

H(S0|SA) = 0 (or equivalently I(S0 :SA) = H(S0))

which implies that the secret value is determined by the shares of the players in
A. For a set B /∈ Γ , the privacy property of the scheme implies that the random
variables S0 and SB are independent and then,

H(S0|SB) = H(SB) (or I(S0 :SB) = 0)

that is, the shares of the players in B do not provide any information on the
secret in this situation.

Equivalently, the statistical scheme with shares defined by the outcome of
the random variables (S0, . . . , Sn) with security parameter ℓ, satisfies that for
every authorized set A,

Pr[ReconA(SA) ̸= s|S0 = s]

is negligible in ℓ, and for every forbidden set B,

SD(pSB |S0=s, pSB
)

is negligible in ℓ.
From this new definition of secret sharing schemes we are able to talk about

how an access structure can partially realize a secret sharing scheme. The idea
of this weaker notion of security is that the amount of information gained about
the secret by every authorized set is strictly larger than that of any forbidden
one.
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Definition A.2 (Partial SSS). A secret sharing scheme Σ = (Si)i∈E is a
partial scheme for the access structure Γ (or partially realizes Γ ) if

C = min
B/∈Γ

H(S0|SB)−max
A∈Γ

H(S0|SA) > 0.

This parameter C is called secret capacity. We say a scheme is partially correct
if unqualified sets gain no information about the secret, H(S0|SB) = H(S0) for
any B unqualified set in Γ . We say a scheme is partially private if qualified sets
fully recover the secret, H(S0|SA) = 0 for any A qualified set in Γ .

The partial information ratio of the scheme is defined as H(S0)/C times the
standard information ratio of the scheme. And the partial information ratio of
an access structure is the infimum of the partial information ratio of all secret
sharing schemes that partially realize it.

A.2 Wiretap Channel

In this section, we give the definition of a the multi-receiver wiretap channel,
which is a generalization of the wiretap channel introduced by Wyner [64]. We
give the necessary notions and notations to quantify the reliability and the se-
crecy of this kind of wiretap channel model, following the work of Jafari and
Khazaei [43].

Let X be the input alphabet and (Yi)i∈R, (Zi)i∈E output alphabets. Let
P (((Yi)i∈R, (Zj)j∈E)|X ) be a conditional probability distribution of the random
variable ((Yi)i∈R, (Zj)j∈E) when conditioned on X, where X is a X−valued
random variable corresponding to the channel input. Yi and Zj are the random
variables valued in Yi and Zj respectively, and correspond to channel output of
the receivers and the eavesdroppers.

A wiretap channel models communication between a sender, a set of legit-
imate receivers with index set R and a set of eavesdroppers with index set E .
When the sender transmits a message given by the random variable X through
the channel, according to the probability distribution p, each receiver i ∈ R
obtains a message Yi and each eavesdropper j ∈ E gets a message Zj . The goal
of the wiretap channel is to reliably transmit a message to the receivers by us-
ing m independent instances of the channel, while keeping it secret from the
eavesdroppers. This can be obtained by using two algorithms:

1. A publicly-known probabilistic algorithm for encoding Enc : K −→ Xm

2. Deterministic algorithms for decoding, Deci : Ym
i −→ K, one for every re-

ceiver i ∈ R

where K is the set of messages. To transmit a message k in K, the sender
encodes it to obtain a tuple xm = (x1, . . . , xm) ← Enc(k). Each symbol xk

is independently distributed through the channel, let ymi = (y1, . . . , ym) and
zmj = (z1, . . . , zm) be the tuples that the receivers and eavesdroppers i and j
get respectively. Each receiver uses its own decoder Deci to compute a message
k̂i. We denote K the random variable for the message, in K. Let Xm, Y m

i , Zm
j
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be the encoders output, the receiver and eavesdropper input respectively. And
denote K̂i the i-th decoder’s output. The following definition is from [43].

Definition A.3. A rate R ≥ 0 is achievable if for every m there exist an encoder
and decoders such that:

1. K is uniformly distributed on K = {1, . . . , emR}.
2. Reliability. For every receiver i ∈ R, the average decoding error probability

Pr[Deci(Y
m
i ) ̸= K] is negligible in m.

3. Privacy. For every eavesdropper j ∈ E, the average statistical distance
SD(pZm

j K , pZm
j
pK) is negligible in m.

In this case, we say that the set of pairs (Enc,Deci)m is a CK rate-R wiretap
coding family for the probability distribution Σ = (X, (Yi)i∈R, (Zj)j∈E).

The secret capacity of a wiretap channel associated to the distribution Σ =
(X, (Yi)i∈R, (Zj)j∈E) is the maximum of the rates R of any CK rate-R wiretap
coding family for this distribution.

In general, the secret capacity of the wiretap channel is an open problem. How-
ever, it can be proved that if the value

C = min
i∈R

I(X : Yi)−max
j∈E

I(X : Zj) (6)

satisfies C > 0, then it is a lower bound on the secret capacity of a wiretap
channel associated to Σ (see [65], or see [29]).

Note that the conditions of reliability and privacy defined above require that
the error probability is negligible on the average, but if we recall the definition of
statistical security for secret sharing, we need to consider stronger requirements:

2’. Strong reliability. For every receiver i ∈ R and every message k ∈ K, the
decoding error probability Pr[Deci(Y

m
i ) ̸= K|K = k] is negligible in m.

3’. Strong privacy. For every eavesdropper j ∈ E and every message k ∈ K,
the statistical distance SD(pZm

j |K=k, pZm
j
) is negligible in m.

Let R > 0 be a fixed achievable rate with respect to the weak requirements.
It is known that it is also achievable by strong reliability and privacy require-
ments [43]. This is done by reducing the message size by a factor of at most
e−|R|+|E|.

Lemma A.4 ([43]). The rate R = C −Θ( 1
m1/4 ) is achievable with strong reli-

ability and strong privacy requirements with the upper bound 2e−
√
m and 3e−

√
m

for reliability and privacy errors respectively.

B Appendix of Section 4

B.1 Isomorphism between q-Polynomials and Fq-Linear Maps

We prove Proposition 4.2 by extending the isomorphism of [24] to the case of
q-polynomials on m variables. For that, we first prove Claim B.1 and Claim B.2.
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Claim B.1. A q-polynomial over Fqr defines a Fq-linear map over the vector
space Fr

q.

Proof. Observe first that q-polynomial mappings are Fq-linear. That is, a q-
polynomial P satisfies that if a ∈ Fq and α ∈ Fqr , then P (aα) = aP (α) since

aq
k

= a for every k ≥ 0. And that if β ∈ Fq then P (α+ β) = P (α) + P (β) since

Fqr has characteristic q and (α+ β)q
k

= αqk + βqk .
The elements of Fqr can be described as the Fq-vector space of dimension

r generated by the powers of α, where α is a primitive element of Fqr , i.e., a
generator of the multiplicative group. Then, any q-polynomial P ∈ Fq[X] satisfies
that

P (

r∑
i=0

aiα
i) =

r∑
i=0

aiP (αi),

and so it is a Fq-linear map and it is uniquely determined by the action of P
over αi, 1 ≤ i ≤ r − 1.

A multivariate q-polynomial is linear in every variable, therefore it still defines
a Fq-linear map over Fqr . ⊓⊔
Now we see that all linear maps are indeed q-polynomials.

Claim B.2. All Fq-linear maps from (Fr
q)

m to Fr
q are q-polynomials on m vari-

ables over Fqr .

Proof. We first consider the case m = 1. Let P ∈ Fr
q → Fr

q be a Fq-linear map.
Identifying every element of Fr

q with an element of the finite field Fqr , it can be
written as a polynomial in Fqr [X]. Let Xs be a monomial appearing in P . By
linearity we have P (X+Y ) = P (X)+P (Y ) and P (aX) = aP (X) for all a ∈ Fq.
Comparing terms of equal degree yields (X+Y )s = Xs+Y s and (aX)s = aXs.

Let p be the unique prime number such that q is a power of p. If s is not a
power of p, say s = dpe with d > 1 and e ≥ 0, then (X + Y )s = (X + Y )dp

e

=
(Xpe

+ Y pe

)d contains the nonzero term dX(d−1)pe

Y pe

which contradicts the
fact that (X + Y )s = Xs + Y s.

Now, let a be the generator of the multiplicative group F∗
q , then by linearity

of f we have that as = a. So Fq ⊆ Fs and then s is indeed a power of q. Therefore,
a univariate linear map over Fr

q is a q-polynomial over Fqr .
Now consider the general case ofm variables. We will reduce to the univariate

case. Let P ∈ (Fr
q)

m → Fr
q a Fq-linear map. As before, it can be written as a

polynomial in Fqr [X1, . . . , Xm]. Let Xs1
1 · · ·Xsm

s be a monomial appearing in P .
If we evaluate the polynomial in two vectors of variables X = (X1, . . . , Xm) and
Y = (Y1, . . . , Ym) and compare terms of degree s1, . . . , sm we have

(X1 + Y1)
s1 · · · (Xm + Ym)sm = Xs1

1 · · ·Xsm
m + Y s1

1 · · ·Y sm
m .

The left-hand side contains the terms Xa1
1 Y b1

1 · · ·Xam
m Y bm

m with ai + bi = si for
all i. Suppose we have i ̸= j such that both si > 0 and sj > 0. Substituting
Xi = Yj = 0 we get that

X
sj
j Y si

i

∏
k ̸=i,j

(Xk + Yk)
sk = 0
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which is a contradiction. So, there are no terms in P with more than one variable.
Then, we can write P = P1 + . . . + Pm where Pi ∈ Fqr [Xi] which we have seen
before that are q-polynomials. ⊓⊔

Proof of Proposition 4.2. Note that the set of q-polynomials is a non-commutative
ring with the product defined as the composition of polynomials. We denote it

as F(q)
qr [X]. Indeed, if P,Q are q-polynomials, then P ∗ Q(z) := P (Q(z)) is also

a q-polynomial. Consider the morphism of rings F(q)
qr [X] → Fr×r

q consisting of
the transformation of a q-polynomial P to the matrix MP determined by the
linear mapping induced in P in Claim B.1. This is well defined since if P,Q
are q-polynomials, MP+Q = MP + MQ, MP∗Q = MP · MQ and the identity
q-polynomial goes to the identity r × r matrix Idr.

The kernel of this morphism is the set of q-polynomials that is 0 when eval-
uated at every x ∈ Fqr . This is, the ideal generated by Xqr −X. From B.2 we
note that it is a surjective morphism. Therefore,

F(q)
qr [X]/(Xqr −X) ≃ Fr×r

q .

Then, the set of q-polynomials under the operation of composition modulo Xqr−
X constitutes a group isomorphic to the r × r matrices over Fq.

This isomorphism can be extended to q-polynomials on m variables and mr×
r matrices:

F(q)
qr [X1, . . . , Xm]/(Xqr

1 −X1, . . . , X
qr

m −Xm) ≃ Fmr×r
q

deducing Fq-linear maps from Frm
q to Fr

q. ⊓⊔

Now we revisit the proof of Theorem 3.3 but in the case of having q-polynomial
sharing. We improve the bound on the degree of the polynomials.

Corollary B.3. Let Σ be an ideal polynomial secret sharing scheme realizing
an n-party access structure Γ . Suppose that the domain of secrets in Σ is Fqr

for some prime power q and the sharing and reconstruction are q-polynomials
over Fqr of degree at most d1 and d2 respectively. If qr > max{dn1 , d1d2}, then
Γ is a port of the algebraic matroid defined by the sharing polynomials of Σ.

Proof. The difference in this result is the item 2 of the proof, i.e., the case
where A ∪ {0} is a circuit in the matroid M. Let P0 = s and {Pi}i∈A be
the polynomials of the sharing. By Theorem 2.12, there exists an annihilating

polynomial F ∈ F[y0, y1, . . . , y|A|] with deg(F ) ≤ d
|A|
1 , i.e.

F (P0, {Pi}i∈A) = 0.

Moreover, this annihilating polynomial is again a q-polynomial, therefore a linear
polynomial on every variable,

F = FP0
+
∑
i∈A

FPi
.
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Now, consider the polynomial G with variables s, r1, . . . , rm defined as

G(s, r1, . . . , rm) = F (0, (Pi(s, r1, . . . , rm))i∈A) =

=
∑
i∈A

FPi
(s, r1, . . . , rm) = −FP0

(s, r1, . . . , rm).

The degree of G is bounded by the product of degrees

deg(G) ≤ deg(F ) · degP0 ≤ (d1)
|A| ≤ dn1 < qr.

The rest of the proof follows as the original proof of the Theorem 3.3. ⊓⊔

C Appendix of Section 5

C.1 Statistical Schemes from Partial Schemes

In this section, we show the construction of a statistical secret sharing scheme
from a partial secret sharing scheme given in [43].

Let Π = (Si)i∈E be a partial scheme for the access structure Γ with partial
information ratio σ. Then, the secret capacity of the scheme is

C = H(S0)δ = min
A∈Γ

I(S0 : SA)−max
B/∈Γ

I(S0 : SB) > 0.

We define a multi-receiver and multi-eavesdropper wiretap channel where each
qualified set of the access structure Γ can be viewed as a receiver, and each
unqualified set is an eavesdropper. See Appendix A.2 for the definition of a
multi-receiver and multi-eavesdropper wiretap channel.

Let
Σ = (X, (YA)A∈Γ , (ZB)B/∈Γ ) = (SP0

, (SA)A∈Γ , (SB)B/∈Γ )

and consider the associated wiretap channel. Notice that the secret capacity
coincides with the constant C associated to the wiretap channel Σ defined in
(6). By Lemma A.4, the rate R = C −Θ( 1

m1/4 ) is achievable.
The wiretap channel that gives this rate is defined as the sequence of random

variables (Kℓ, X
ℓ, (SA)

ℓ
A∈Γ , (SB)

ℓ
B/∈Γ , (K̂A)

ℓ
A∈Γ )ℓ∈N which idea is to transmit a

message Kℓ of the space {1, . . . , eℓR} to the receivers, which are authorized
subsets of Γ . Notice that for convenience, the base of the logarithms of the
entropy function is changed to e [43]. The variable Xℓ is the output of the
encoding

Enc : {1, . . . , eℓR} → (suppSP0
)ℓ.

Then, ℓ copies of the random variables S0, . . . , Sn are made and every element of
the vector Xℓ is the value of every S0. For each value of S0, the rest of the vari-
ables S1, . . . , Sn are defined, and for each 1 ≤ i ≤ n, the vector Sℓ

i = (Sj
i )1≤j≤ℓ

is defined coordinatewise with the ℓ values of Si. S
ℓ
A and Sℓ

B correspond to the

receivers and eavesdroppers inputs of the wiretap channel. And finally K̂A

ℓ
is

the output of the decoding algorithm of the variable Sℓ
A defined by the maximum

likelihood criterion.
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Proposition C.1. The achievable conditions of the wiretap channel give rise to
the following properties on the random variables. Let R = C−Θ( 1

ℓ1/4
), for every

element k ∈ {1, . . . , eℓR} and A authorized subset in Γ ,

Pr[K̂A

ℓ
̸= Kℓ|Kℓ = k] < 2e−

√
ℓ(Strong reliability)

and for every k ∈ {1, . . . , eℓR} and unauthorized subset B in Γ ,

SD(pSℓ
B |Kℓ=k, pSℓ

B
) ≤ 3e−

√
ℓ (Strong privacy).

The proof of this proposition is deduced from Lemma A.4.
Now, we use the random variables of the wiretap to define a secret shar-

ing scheme that will statistically realize the access structure Γ with security
parameter ℓ. Define the sequence of random variables (T ℓ

0 , . . . T
ℓ
n)ℓ∈N as

T ℓ
0 = Kℓ,

T ℓ
i = Sℓ

i , 1 ≤ i ≤ n.

The T ℓ
0 will be the secret random variable and the T ℓ

i will be the shares. Observe

that for every set A ∈ Γ , there exists the sequence of random variables (K̂A)ℓ∈N
which is the result of the maximum likelihood algorithm of the variables T ℓ

A.
Proposition 5.2 follows from the properties of the variables given in Proposi-
tion C.1.

Let Σ be the statistical scheme with share functions (T ℓ
i )i∈E with security

parameter ℓ. Then, the information ratio σ of Σ is

maxi∈P H(T ℓ
i )

H(T ℓ
0 )

.

Claim C.2. Let σ be the partial information ratio of the scheme Π. Then, the
information ratio of the scheme Σ tends to σ when ℓ increases.

Proof. Let i be a qualified party in the access structure. Then,

lim
ℓ→∞

H(T ℓ
i )

H(T ℓ
0 )

= lim
ℓ→∞

H(Sℓ
i )

H(Kℓ)
= lim

ℓ→∞

H(Sℓ
i )

ℓ(CΠ −Θ(ℓ−1/4)) log e
=

H(Si)

CΠ log e
.

Here we have used the relation limℓ→∞
H(Sℓ

i )
ℓ = H(Si), which is known to hold

for a wiretap channel [43]. For an unqualified party j, the result is similar. Then,

lim
ℓ→∞

maxi∈P H(T ℓ
i )

H(T ℓ
0 )

= max
i∈P

H(Si)

CΠ log e
=

1

δ

maxi∈P H(Si)

H(SP0
)

= σ.

⊓⊔

Summing up, we have found a statistical secret sharing scheme Σ for the access
structure Γ with information ratio tending to σ when the security parameter
increases.
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C.2 Proof of Proposition 5.2

Proof of Proposition 5.2. The proof of this result is based on a construction done
in [43], which starts with statistical secret sharing schemes from a set of ran-
dom variables with positive secret capacity i.e., with C = minB/∈Γ H(S0|SB) −
maxA∈Γ H(S0|SA) > 0. [43, Theorem 6.1] proves that from this set of random
variables with positive secret capacity S0, . . . , Sn, it can be defined a statisti-
cal family of secret sharing schemes (T ℓ

0 , . . . , T
ℓ
n)ℓ with secret space of size 2ℓR,

satisfying Equation (4) and Equation (5). The main tool used to prove this is
the wiretap channel, see [43] and Appendix A.1 for more details. Now, consider
the secret sharing scheme Π with security parameter ℓ that takes as shares the
outcome of the random variables (T ℓ

1 , . . . , T
ℓ
n)ℓ and T ℓ

0 as secret, with uniform
randomness. It satisfies that for every authorized set A in Γ and every r, s,

Pr[ReconA(T
ℓ
A) = T ℓ

0 |T ℓ
0 = s] = Pr[ReconA(Πℓ(s, r)A) = s] > 1− 2e

√
−ℓ.

And for every unauthorized set B of Γ and secret s, SD(pT ℓ
B |T ℓ

0=s, pT ℓ
0
) ≤ 3e−

√
ℓ.

Then, by the triangle inequality, for every pair of secret s, s′,

SD(T ℓ
B |T ℓ

0 = s, T ℓ
B |T ℓ

0 = s′) = SD(Πℓ(s, r)A, Πℓ(s
′, r)A) ≤ 6e−

√
ℓ.

⊓⊔

D Appendix of Section 6

D.1 Algebraic Matroids are Almost Entropic

In this section, we first provide details of the proof of the following result by
Matúš [54]. Then, using a construction in that proof, we are able to prove some
technical results of Section 6.

Theorem D.1 ([54]). Algebraic matroids are almost entropic.

The proof of Theorem D.1 is constructive. Given an algebraic matroidM =
(E, r), and the access structure given by the matroid port Γ , a sequence of ran-
dom variables {Sq}q is constructed such that, for q big enough, the polymatroids
defined by the distributions of those random variables partially realize the access
structure Γ .

First, consider the algebraic representation ofM. That is, n = |E|, G a finite
field, and H a transcendental extension of G that contains the algebraic elements
representingM, (ei)i∈E ⊆ H. Then,

r(A) = degtr/GG((ei)i∈A)

for every A ⊆ E. Now, consider the polynomials with coefficients in G that
vanish after substituting ei, i ∈ E and the ideal generated by these polynomials,
IG. This is a prime ideal since if a product of two polynomials belongs to IG, then
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one of them vanishes after substituting ei, i ∈ E. Consider the affine algebraic
variety VG in Gn defined by the ideal IG. If we replace G by G we still get a
prime ideal IG and the variety VG satisfies that I(VG) = IG and therefore

G[x1, . . . , xn]/IG ≃ G[e1, . . . , en].

The dimension of the variety VG is the transcendence degree of its function field,
which is the field of fractions of G[e1, . . . , en]/IG. Taking transcendence degree
over G, we get

dimVG = degtr/GFrac(G[e1, . . . , en]/IG) = degtr/GG((ei)i∈Q) = r(M).

Let GVG
be the smallest subfield of G containing all the coefficients of the

polynomials that define VG. Then, if F is a finite field extending GVG
, the Lang-

Weil bound [49] estimates the number of points of the variety VG with coordinates
in the field F, say VF. It is approximately |F|dimV , i.e., |F|r(M). This is, there
exists a constant κ > 0 not depending on F such that∣∣∣∣ |VF|

|F|r(M)
− 1

∣∣∣∣ ≤ κ√
|F|

. (7)

Since VG is nonempty, at least the extension of G that contains the coordi-
nates of a point in VG is non empty. Then, for a large enough F, the inequality
implies that VF is nonempty.

From now on, assume VF is non-empty. Define a random variable S associated
to VF taking a uniform distribution on the coordinates of the points in VF and
let PF be the probability measure of S. Then, for every xi, yi ∈ F, 1 ≤ i ≤ n, if
(x1, . . . xn), (y1, . . . , yn) ∈ VF, then

PF(S = (x1, . . . , xn)) = PF(S = (y1, . . . , yn)).

Else if (x1, . . . , xn) ̸∈ VF, then PF(S = (x1, . . . , xn)) = 0. For every I ⊆
{1, . . . , n}, let πI : Fn → FI be the coordinate projection. The marginal prob-
ability measure on FI is denoted by P I

F , and the projections of S are denoted
by SI = πI(S) and are random variables having joint distribution PF. This is, if
x ∈ FI ,

P I
F (S

I = x) = PF(S ∈ π−1
I (x))

Let π−1
I,VF

(xI) be the fibre consisting of the elements in VF that project to xI .
Then, if x ∈ πI(VF),

P I
F (S

I = x) =
|π−1

I,VF
(xI)|
|VF|

.

And if x ̸∈ πI(VF), it holds P I
F (S

I = x) = 0. The entropy of the marginal P I
F

can be written as

H(PA
F ) = −

∑
yA∈πA(VF)

|π−1
A,VF

(yA)|
|VF|

ln
|π−1

A,VF
(yA)|
|VF|

.
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Consider the polymatroidMF = (Q, hF) with

hF(A) = H(SA)/ log(|F|) (8)

for any A ⊆ Q. With the following result we see that the polymatroidMF can
be arbitrarily close toM when the cardinality of F is sufficiently large.

Lemma D.2 (Lemma 6.3 Restated). Let M = (E, r) be an algebraic ma-
troid. Let (E, hF) be the polymatroid defined above for a finite field F of size q.
Then, for every K ⊆ E,

|hF(K)− r(K)| ≤ n

ln q

for some constant n that depends on the variety determined by the representation
ofM, but it is independent of q.

Let q = |F|, then consider the polymatroidMF = (E, h) where

h(A) =
H(PA

F )

ln q
. (9)

for any A ⊆ E.

Lemma D.2 claims that polymatroidsMF have good convergence properties
and the rank function h tends to r when increasing q.

Proof of Lemma D.2. First, we will show that for a circuit C ⊆ E and a j ∈ C,

h(C)− h(C \ j) ≤ jV
ln q

for some constant jV not depending on the field F. Then, we will consider an
arbitrary set K ⊆ E and see that

|h(K)− r(K)| ≤ nV
ln q

.

Let C be a circuit, the elements ei, i ∈ C are dependent while the ei, i ∈ C \j
are independent for all j ∈ C. Therefore, there exists a polynomial PC with
coordinates in C and irreducible, since each subset of C is independent. For a
j ∈ C, this polynomial can be seen as a polynomial in the indeterminate xj with
degree dj,C whose coefficients are polynomials in J = C \ j.

H(PC
F ) = H(P J

F , P
j
F ) = H(P J

F ) +H(P j
F |P

J
F )

H(P j
F |P

J
F ) = −

∑
yC∈πC(VF)

PC
F (SC = yC) ln

PC
F (SC = yC)

P J
F (S

J = πC
J (yC))
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where πC
J : FC → FJ is the coordinate projector and SC is the random variable

associated with the probability distribution PC
F .

H(P j
F |P

J
F ) = −

∑
yC∈πC(VF)

|π−1
C,VF

(yC)|
|VF|

ln

|π−1
C,VF

(yC)|
|VF|

|π−1
J,VF

(πC
J (yC))|

|VF|

= −
∑

yC∈πC(VF)

|π−1
C,VF

(yC)|
|VF|

ln
|π−1

C,VF
(yC)|

|π−1
J,VF

(πC
J (yC))|

= −
∑

yJ∈πJ (VF)

|π−1
J,VF

(yJ)|
|VF|

∑
yj∈F

|π−1
C,VF

(yj , yJ)|
|π−1

J,VF
(yJ)|

ln
|π−1

C,VF
(yj , yJ)|

|π−1
J,VF

(yJ)|

 (10)

For some yJ ∈ πJ(VF), let νj,C be the number of yj ∈ F such that πC
J,VF

(yj , yJ) =
yJ . This is the number of nonzero summands in the brackets of (10) and is at most
the roots of the polynomial PC(yJ)(xj). In the general case, the substitution of yJ
to PC results in a nonzero polynomial in xj of degree dj,C , then 1 ≤ νj,C ≤ dj,C .
Otherwise, when PC(yJ)(xj) = 0, there are at most q possible values of yj , then
νj,C ≤ q.

For each circuit C and j ∈ C, consider the subvariety Wj,C of V of zeros of
the coefficients of PC(xj), which are polynomials with variables in J = C \ j.
The yJ ∈ πJ(VF) such that PC(yJ)(xj) = 0 are the ones in πJ,VF(Wj,C ∩ Fn). It
follows that the sums in the brackets of (10) are dominated by

∑
yJ∈πJ,VF (Wj,C∩Fn)

|π−1
J,VF

(yJ)|
|VF|

ln q +
∑

yJ∈πJ,VF ((V \Wj,C)∩Fn)

|π−1
J,VF

(yJ)|
|VF|

ln dj,C

which is at most
|Wj,C ∩ Fn|
|VF|

ln q + ln dj,C .

Using again the Lang-Weil bound applied to the subvariety Wj,C and V , we get

|Wj,c ∩ Fn|
|VF|

≤ qdimWj,C

qr(M)

cWj,C
+

κWj,C√
q

1− κV√
q

≤ kV
q

where the constant kV does not depend on the field F. Also, take dV bigger than
all ln dj,C and from (10) we get

H(Xj |XJ) ≤ kV
ln q

q
+ dV

so the non-generic part of the sum is smaller than kV and taking jV = kV + dV
we get

H(PC
F ) ≤ H(P J

F ) + jV .
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Taking quotient on ln q,

h(C)− h(J) ≤ jV
ln q

.

For a dependent set K, let J be the maximal independent set contained in
K. Let k ∈ K \ J and γ(k, J) be the unique circuit contained in k ∪ J . By the
submodularity of the entropy,

h(γ(k, J)) + h(J) ≥ h(J ∪ k) + h(γ(k, J) \ k),

and iterating it,

h(K)− h(J) ≤
∑

k∈K\J

[h(J ∪ k)− h(J)] ≤
∑

k∈K\J

[h(γ(k, J)− h(γ(k, J) \ k)].

For every k ∈ K \ J , use the bound in for the circuit γ(k, J) and independent
set γ(k, J) \ k,

h(K)− h(J) ≤ |Q| jV
ln q

then

h(K)− |E| jV
ln q
≤ h(J) ≤ |J | = r(K). (11)

To get the other bound, from the Lang-Weil inequality

h(E) ≥ ln |VF|
ln q

≥ r(M) +
ln(1− κV /

√
q)

ln q

Now use the bound (11) with K = E and I a base (i.e. a maximal independent
subset) and that h(I) ≤ h(J) + h(I \ J),

r(M) +
ln(1− κV /

√
q)

ln q
≤ h(E) ≤ h(I) + |E| jV

ln q
≤ h(J) + |I \ J |+ |E| jV

ln q

since H(P
I\J
F ) ≤ ln q|I\J| = |I \ J | ln q. Using that r(I) = r(M) and that

r(M)− |I \ J | ≤ r(K), we obtain

r(K) +
ln(1− κV /

√
q)

ln q
− |E| jV

ln q
≤ h(J) ≤ h(K). (12)

Combining both bounds, (11) and (12), we get that for every K arbitrary
subset of E, ∣∣h(K)− r(K)

∣∣ ≤ nV
ln q

for some constant nV not depending on q. ⊓⊔

Remark D.3. There are several open questions related to this proof in order to
define better secret sharing schemes from the polymatroids obtained.

First, the size of the field F such that the variety VF is nonempty is unknown,
and this size defines later the first field where the sequence of polymatroids
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is defined. Moreover, the number of points of the variety is estimated by the
Lang-Weil bound, but can be improved with more sophisticated bounds in [23].
This could lead to finding a better approximation of the rank function of the
polymatroids hF, and improvements of this bound would lead to better privacy
and correctness bounds.

A better knowledge of the polynomials that define the algebraic variety could
also give better bounds and improve the convergence of the polymatroids to the
original matroid. For example, a good improvement could be a bound for the
field GVG

where the coefficients live, or the degree of the polynomials that define
the variety.

D.2 Statistical Schemes with Information Ratio Tending to 1

Suppose now that we have a sequence of partial schemes {Πk}k with information
ratios πk and they satisfy limk→∞ πk = 1. The following lemma is the principal
tool to get a statistical scheme with information ratio tending to 1 instead of σ.

Lemma D.4 ([43]). Let {σi}i∈N be a sequence of real numbers with limi→∞ σi =
1 and {ci}i∈N another sequence of real numbers. If a sequence of real numbers
{σi,ℓ} satisfies that limℓ→∞ σi,ℓ = σi and {ℓi,ℓ} satisfies that ℓi,ℓ ≤ ciℓ, then
there exists µ : N→ N such that

lim
ℓ→∞

σµ(ℓ),ℓ = 1, and ℓµ(ℓ),ℓ < ℓ2.

Proof. For every i, since limℓ→∞ σi,ℓ = σi, there exists some Mi for which |σi,ℓ−
σi| ≤ 1/i for every ℓ ≥Mi. We want µ(ℓ) to satisfy ℓ > Mµ(ℓ) and also, we want
ℓ > Cµ(ℓ), so let

di = max{M1, . . . ,Mi, C1, . . . , Ci}+ i.

Observe that di is an increasing sequence of non-negative real numbers and it
goes to infinity as i→∞. Then, define µ(ℓ) as follows:

µ(ℓ) =

{
1 if ℓ < d1,

i if di < ℓ ≤ di+1

Note that ℓ > dµ(ℓ) ≥ Mµ(ℓ), so |σµ(ℓ),ℓ − σµ(ℓ)| ≤ 1/i. Since µ(ℓ) is also a
monotone increasing unbounded sequence, limℓ→∞ σµ(ℓ) = 1. Then, we have
that

lim
ℓ→∞

σµ(ℓ),ℓ = 1.

Also note that since ℓ > dµ(ℓ) ≥ cµ(ℓ), we have that ℓµ(ℓ),ℓ ≤ cµ(ℓ)ℓ < ℓ2. ⊓⊔

Let Σk be the statistical scheme deduced from the partial secret sharing
scheme Πk. Let σk be the information ratio of every scheme, and note from
Claim C.2 that σk tends to πk, the information ratio of the partial scheme. Let
CΠk

be the secret capacity of the partial scheme Πk, we also want that the secret
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length of the final family grows polynomially in ℓ, so let ℓk,ℓ be the secret length
of the scheme Σk, note that it satisfies that

ℓk,ℓ ≤ CΠk
ℓ.

For every ℓ, we want a value µ(ℓ) for which the secret sharing scheme Σµ(ℓ)

will be selected, This value has to satisfy that limℓ→∞ σµ(ℓ) = 1 and ℓµ(ℓ),ℓ =
O (ℓc) for some c > 0. With this value, for each ℓ we will consider the statistical
sharing scheme Σµ(ℓ) with security parameter ℓ.

Note that the statistical correctness and privacy still hold for the scheme
Σµ(ℓ) since the errors of the scheme Σk do not depend on k and then, the errors
of the final scheme Σµ(ℓ) are still negligible in ℓ. Finally, we obtained a statistical
secret sharing scheme, for the access structure Γ with information ratio tending
to 1 with the security parameter and with quadratic secret length grow. This
completes the proof of the Theorem 1.9.
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