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Abstract. Secure two-party comparison, known as Yao's millionaires'
problem, has been a fundamental challenge in privacy-preserving compu-
tation. It enables two parties to compare their inputs without revealing
the exact values of those inputs or relying on any trusted third party.
One elegant approach to secure computation is based on homomorphic
encryption. Recently, building on this approach, Carlton et al. (CT-RSA
2018) and Bourse et al. (CT-RSA 2020) presented novel solutions for
the problem of secure integer comparison. These protocols have demon-
strated signi�cantly improved performance compared to the well-known
and frequently used DGK protocol (ACISP 2007 and Int. J. Appl. Cryp-
togr. 1(4),323�324, 2009). In this paper, we introduce a class of higher
residuosity attacks, which can be regarded as an extension of the clas-
sical quadratic residuosity attack on the decisional Di�e-Hellman prob-
lem. We demonstrate that the small RSA subgroup decision problems,
upon which both the CEK and BST protocols are based, are not di�cult
to solve when the prime base p0 is small (e.g., p0 < 100). Under these
conditions, the protocols achieve optimal overall performance. Further-
more, we o�er recommendations for precluding such attacks, including
one approach that does not adversely a�ect performance. We hope that
these attacks can be applied to analyze other number-theoretic hardness
assumptions.

Keywords: Secure two-party comparison · Small RSA subgroup deci-
sion problem · Higher residuosity attacks.

1 Introduction

Secure two-party comparison, known as Yao's millionaires' problem [33], has
been a fundamental challenge in privacy-preserving computation. The traditional



solution to this problem is based on Yao's Garbled Circuit [33]. In Yao's protocol,
two parties use their bitwise representations of private inputs to securely evaluate
a comparison function, which is represented as a Boolean circuit, in the presence
of semi-honest adversaries. However, the memory, energy, and communication
costs associated with garbled circuit evaluation protocols are substantial.

Another signi�cant approach to secure computation is based on homomorphic
encryption. This method is typically less computationally e�cient than proto-
cols utilizing garbled circuits; however, it is more straightforward to implement
and incurs a lower overall communication cost. Fischlin [13] �rst constructed a
secure comparison of two numbers using a Boolean circuit based on the XOR-
homomorphic Goldwasser-Micali cryptosystem [15]. Other notable examples of
secure Boolean evaluation of bitwise encryption of integers include the schemes
developed by Blake and Kolesnikov [2], Garay et al. [14] and Lin and Tzeng
[25]. Later, Damgård, Geisler, and Krøigaard (DGK) enhanced this approach in
[11,12]. Drawing inspiration from the strong RSA subgroup assumption (related
to high residuosity assumptions) proposed by Groth in [16] as well as the DGK
comparison protocol in [11,12], Carlton et al. [8] employed an RSA quintuple (see
De�nition 1) as a public key in their encryption scheme. Notably, they discov-
ered that the encryption possesses a threshold (scalar) homomorphic property.
Leveraging this property, they constructed a protocol (termed the CEK proto-
col) that e�ciently compares two encrypted integers through the (nearly) direct
application of the homomorphism on a single encrypted value. Following a sim-
ilar approach, Bourse et al. [4] improved the CEK protocol (termed the BST
protocol) by avoiding one round induced by the plaintext equality test. Both the
CEK and BST protocols have been proven to be secure under the small RSA
subgroup decision problems. Performance results indicate that they are several
times faster than the DGK protocol.

However, we will demonstrate that the small RSA subgroup decision prob-
lems are not di�cult to solve when the public prime base p0 is small (e.g.,
p0 < 100), in which case both the CEK and BST protocols achieve optimal over-
all performance. The small RSA subgroup decision problems involve an RSA
quintuple that contains an RSA modulus N = pq such that p = 2pd0pspt +1 and
q = 2pd0qsqt + 1 where ps, qs, pt, qt are pairwise distinct primes, d is an integer
greater than 1. Our attacks on them mainly utilize the leakage of an element
of order p0 in Z∗

N , in which case a partial decomposition of N in the algebraic
integer ring Z[ζp0

] can be easily computed. Consequently, higher residuosity at-
tacks that leverage power residue symbols naturally arise from this leakage, even
though the classical quadratic residuosity attack4 does not work. Since both pro-
tocols reveal an RSA quintuple as part of the public key, we can similarly present
practical higher residuosity attacks against them (see Section 5). Furthermore,
we provide recommendations for precluding such attacks, including one approach
that does not adversely a�ect their performance.

4 Because of this attack the decisional Di�e-Hellman problem in the group Z∗
p is not

hard.
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The rest of this paper is organized as follows. Section 2 introduces the back-
ground knowledge on small RSA subgroup decision problems. In Section 3, we
provide a detailed quartic residuosity attack on these problems with p0 = 2.
Section 4 presents a higher residuosity attack on these problems when p0 is an
odd prime. In Section 5, we discuss practical higher residuosity attacks on the
CEK and BST protocols and o�er recommendations for precluding such attacks.
Finally, conclusions are drawn in Section 6.

2 Preliminaries

2.1 Notations

For the sake of clarity, Table 1 summarizes the frequently used notations in this
paper.

Table 1. Frequently Used Notations

Z,Q the integers, the rational numbers
N+ the set of positive integers
C the complex numbers
K a number �eld
OK the ring of integers in a number �eld K
a, b, . . . the ideals in OK

Zn = {0, 1, . . . , n− 1} integers mod n
Z∗
n = {b ∈ Zn | gcd(b,N) = 1} multiplicative group mod n

Fp = Z/pZ the �eld of p elements for a prime p
R× the unit group of the multiplicative monoid of a ring R

ζn a primitive nth root of unity, i.e., ζn = e2πi/n

i the imaginary unit, i.e., i = ζ4
a | b a divides b
⟨X⟩ the group generated by a set X
(a, b, . . .) the ideal generated by a, b, . . .
gcd(a, b) the greatest commom divisor of a, b
a ≡ b (mod D) the relation a− b ∈ D, where elements a, b ∈ OK

φ(n) the number of elements in Z∗
n

log the binary logarithm
|A| the number of elements of a set A
N (α) the norm of α ∈ Z[ζn] given by N (α) =

∏
k∈Z∗

n
σk(α) where σk : ζn 7→ ζkn

N (a) = |OK/a|(·
·

)
the Jacobi symbol

QRn = {x2 : x ∈ Z∗
n} the set of quadratic residues in the group Z∗

n

PPT probabilistic polynomial time
O the big-oh notation
D a distinguisher, possibly a probabilistic one
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2.2 Small RSA Subgroup Decision Problems

In this section, we will �rst brie�y review the small RSA subgroup decision
problems as de�ned in [8, De�nition 2] and in [4, De�nition 2], respectively, and
then we will discuss the close relationship between them. The following de�nition
is drawn from [8, De�nition 1] and [4, Section 3.1].

De�nition 1. An RSA quintuple is a quintuple (N, p0, d, g, u) where:

1. u is an integer such that the Discrete Logarithm Problem is computationally
infeasible in a subgroup of Z∗

N whose order is a prime of bit-length u;
2. p0 is a prime of bit-length less than u;
3. d is an integer greater than 1;
4. N = pq is a composite integer with computationally infeasible factorization,

where the primes p and q are constructed as:

p = 2pd0pspt + 1 and q = 2pd0qsqt + 1,

satisfying the following conditions:
� ps and qs are primes of bit-length u;
� pt and qt are primes with bit-length di�erent from u;
� ps, qs, pt, qt are pairwise distinct;

5. g is an element in Z∗
N which has order pd0 modulo p and modulo q.

Remark 1. We slightly modify the condition 5 for security purposes. The original
de�nition only requires g to be of order pd0 in Z∗

N , whereas this might lead to the
leakage of the factorization of N since both g and its order are public: consider
the case where g has order pd0 in Z∗

p but has order pd
′

0 for some integer d′ < d in

Z∗
q , then g would have the correct order pd0 in Z∗

N , thus gcd(g
pd−1
0 − 1, N) would

immediately give a factor of N .

The BST and CEK protocols have been proven secure, relying on the hard-

ness of the Small RSA Subgroup Decision Problem SRSDP and S̃RSDP, respec-
tively. These two problems are de�ned as follows.

De�nition 2 (Small RSA Subgroup Decision Problem [4] (SRSDP)).
Given an RSA quintuple (N, p0, d, g, u), distinguish the two uniform distributions

over QRN and over {xpd
0ptqt | x ∈ QRN}, respectively.

De�nition 3 (Small RSA Subgroup Decision Problem [8] ( ˜SRSDP)).
Given an RSA quintuple (N, p0, d, g, u), distinguish the two uniform distributions
over QRN and over {x ∈ QRN | x has order psqs in Z∗

N}, respectively.

De�nition 4 (Advantage for Solving the SRSDP). Given an instance I=
{(N, p0, d, g, u), x} of SRSDP, where x is sampled according to one of the two
distributions stated in De�nition 2, the advantage of a distinguisher D for solving
the SRSDP (being able to correctly guess the target) is de�ned as

AdvSRSDPD,I = Pr[D(I) outputs �yes� | x is of the form ypd0ptqt

with y ∈ QRN
]− 1

2

+ Pr[D(I) outputs �no� | x ∈ QRN ]− 1

2
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Remark 2. According to the probabilistic de�nition of AdvSRSDPD,I , a perfect dis-
tinguisher would not have an advantage of 1.

The advantage for solving the S̃RSDP can be de�ned analogously. Theorem

1 is crucial to reveal the close relationship between the SRSDP and the S̃RSDP.

Theorem 1. Given an RSA quintuple (N, p0, d, g, u) and x ∈ QRN , if x has

order psqs in Z∗
N , then x can be written in the form yp

d
0ptqt for some y ∈ QRN .

Proof. Suppose that x has order psqs in Z∗
N . Then x must have order ps in Z∗

p

and order qs in Z∗
q . Let gp and gq be primitive roots modulo p and q, respectively.

Then x can be written as x ≡ g
2pd

0pta
p (mod p) and x ≡ g

2pd
0qtb

q (mod q) with
ps ∤ a and qs ∤ b. Let y ∈ QRN be such that y ≡ g2ℓp (mod p) and y ≡ g2ℓ

′

q

(mod q) where qtℓ ≡ a (mod ps) and ptℓ
′ ≡ b (mod qs). Thus, x can be written

as x = yp
d
0ptqt in Z∗

N . □

Remark 3. It follows quite easily that a counterexample to the reverse direction
is y = 1. Let

H = {x ∈ QRN | x has order psqs in Z∗
N},

G = {x ∈ QRN | x is of the form yp
d
0ptqt with y ∈ QRN}.

By the proof of Theorem 1 we can see that

|H| = (ps − 1)(qs − 1) and |G| = psqs.

Remark 4. Let ||n|| denote the bit-length of the integer n. Since the SRSDP
problem operates on the group G whose order is psqs and u = ||ps|| = ||qs||, u
should de�ne a length for which computing the discrete logarithm in a group
of prime u-bit order is infeasible. Therefore, working at the 128-bit security
level requires ||N || = 3072, u = 256; The 192-bit security level requires ||N || =
7680, u = 384 and the 256-bit security level requires ||N || = 15360, u = 512.

Theorem 2 below shows that if there exists a PPT distinguisher being able

to solve the SRSDP with light advantage then one can solve the S̃RSDP in
polynomial time with non-negligible advantage. Therefore, we next focus mainly
on investigating the hardness of the SRSDP. We remark that all of the attacks
described in the following sections have advantages of at least 1/2.

Theorem 2. Let D be a PPT distinguisher being able to solve the SRSDP with

AdvSRSDPD,I − (ps + qs − 1)

psqs

non-negligible. Then given an RSA quintuple (N, p0, d, g, u), there exists a PPT

distinguisher D ′ being able to solve the S̃RSDP, i.e., distinguish whether a ran-
dom element in QRN has order psqs in Z∗

N with non-negligible advantage.
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Proof. We construct D ′ that takes an RSA quintuple and x ∈ QRN as input,
and whose goal is to determine whether x has order psqs in Z∗

N :

Distinguisher D ′: D ′ is given as input an RSA quintuple (N, p0, d, g, u)
and x ∈ QRN .

1: Construct an instance I = {(N, p0, d, g, u), x} and run D(I) to obtain
an output string w.

2: Output w.

D ′ clearly runs in polynomial time because D does. By Theorem 1 and Re-
mark 3, we see that H ⊂ G and the advantage of D ′ is given by

AdvS̃RSDPD′,I = Pr[D ′(I) outputs �yes� | x ∈ H] + Pr[D ′(I) outputs �no� | x ∈ QRN ]− 1

≥ Pr[D(I) outputs �yes� | x ∈ G]− |G| − |H||G|
+ Pr[D(I) outputs �no� | x ∈ QRN ]− 1

= AdvSRSDPD,I − ps + qs − 1

psqs
,

which is non-negligible under the assumption in the theorem. □

3 A Quartic Residuosity Attack on the SRSDP when

p0 = 2

Carlton et al. [8] suggested to take p0 = 2 in the CEK protocol for e�ciently
computing a discrete logarithm in the cyclic group generated by g. The BST
protocol also achieves the best performance in this case. However, in this sec-
tion, we shall show that the SRSDP with p0 = 2 can be e�ciently solved with
advantage 1/2 by using quartic residuosity.

3.1 The Quartic Jacobi Symbol

We start with the elementary results concerning the ring of Gaussian integers
Z[i]. It is a Euclidean Domain and Z[i]× = ⟨i⟩. For every prime element π =
a+ bi ∈ Z[i], the norm of π is given by N (π) = ππ = a2 + b2; there is a unique
prime p ∈ πZ[i] such that πZ[i] ∩ Z = pZ, and if p ≡ 1 mod 4 then p = ππ. The
residue class ring Z[i]/πZ[i] is a �nite �eld with N (π) elements. In particular,
(Z[i]/πZ[i])× is a cyclic group of order N (π) − 1. An element α ∈ Z[i] is called
primary if α ≡ 1 mod (1 + i)3. If α /∈ (1 + i)Z[i], then there exists a unique
u ∈ Z[i]× such that uα is primary.

Let π ∈ Z[i] \ (1 + i)Z[i] be a prime element. Then there exists a unique
character χπ : (Z[i]/πZ[i])× 7→ C× of order 4 such that

χπ(ξ) + πZ[i] = ξ
N(π)−1

4 for all ξ ∈ (Z[i]/πZ[i])× .
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For α ∈ Z[i], we de�ne the quartic residue symbol of α modulo π by

(α
π

)
4
=

{
0, if π | α;
χπ(α+ πZ[i]) ∈ {±1,±i}, if π ∤ α.

Suppose that β = ϵπ1 · · ·πr ∈ Z[i] \ (1 + i)Z[i], where r ∈ N+, ϵ ∈ Z[i]× and
π1, . . . , πr ∈ Z[i] \ (1 + i)Z[i] are prime elements. For α ∈ Z[i], the quartic Jacobi

symbol
(
α
β

)
4
is de�ned by

(
α

β

)
4

=

r∏
j=1

(
α

πj

)
4

.

Theorem 3 below is known as the general quartic reciprocity law in Z[i]. Equa-
tion (1) was proposed by Gauss and later proved by Jacobi and Eisenstein. This
theorem together with its supplement deals with the beautiful relations that ex-
ist among quartic Jacobi symbols and gives an e�cient method for computation
(see Algorithm 1 and Table 3). We refer the reader to [19, Chapter 9] and [17,
Chapter 7] for more details.

Theorem 3 (Quartic Reciprocity Law [17, Theorem 7.4.7]). Let α, β ∈
Z[i] \ (1 + i)Z[i] be such that gcd(α, β) = 1, α = a + bi and β = c + di, where
a, b, c, d ∈ Z.

1. (Jacobi, Kaplan) If a ≡ c ≡ 1 (mod 4) and b ≡ d ≡ 0 (mod 2), then(
α

β

)
4

=

(
β

α

)
4

(−1)bd/4.

2. (Gauss, Eisenstein) If α and β are both primary, then(
α

β

)
4

=

(
β

α

)
4

(−1)bd/4 =

(
β

α

)
4

(−1)
a−1
2

c−1
2

=

(
β

α

)
4

(−1)
N(α)−1

4
N(β)−1

4 .

(1)

Theorem 4 (Supplement to the Quartic Reciprocity Law [17, Theorem
7.4.8]). Suppose that a, b ∈ Z and β = a+ bi ∈ Z[i]. Then(

−1
β

)
4

= (−1)b/2 if β ≡ 1 (mod 2),

and if β is primary,(
i

β

)
4

= i(1−a)/2 and

(
1 + i

β

)
4

= i(a−b−b2−1)/4.
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3.2 Computing the GCD and the Quartic Jacobi Symbol in Z[i]

Since Z[i] is Euclidean and, by [19, Proposition 1.4.1], it allows a Euclidean
Algorithm for computing gcd(a, b) for every a, b ∈ Z[i], b ̸= 0: by successive
�divisions� (actually in Q(i)) we can write:

a = q0b+ r1 N (r1) ≤
1

2
N (b),

b = q1r1 + r2 N (r2) ≤
1

2
N (r1),

r1 = q2r2 + r3 N (r3) ≤
1

2
N (r2),

...

rn−1 = qnrn + rn+1 N (rn+1) = 0.

Then after a �nite number of steps there must exist n such that rn+1 = 0
and hence rn = gcd(a, b). This is because 0 = N (rn+1) < 1 ≤ N (rn) ≤
1/2N (rn−1) ≤ . . . ≤ 1/2nN (b) and N (b) is �nite. As n ≤ ⌈logN (b)⌉, it fol-

lows that gcd(a, b) can be computed in time O
(
(logN (ab))

3
)
by means of the

Euclidean Algorithm in Z[i]. In [10], Dåmgard et al. presented more e�cient al-
gorithms for computing the GCD and cubic (resp. quartic) residuosity in the ring

of Eisenstein (resp. Gaussian) integers, which only take time O
(
(logN (ab))

2
)

and can be seen as generalisations of the binary integer GCD and derived Jacobi
symbol algorithms.

Knowing Theorem 3 and Theorem 4, it is easy to obtain Algorithm 1 for
computing the quartic Jacobi symbol. Note that β is primary in each iteration.
The algorithm terminates since N (β) is strictly decreasing in each iteration of
the while loop. Upon termination, it is clear that β = 1, and thus c is the desired
result since it is deduced from Theorem 3 and Theorem 4. Using the complexity
analysis of the GCD algorithm, it can likewise be shown that Algorithm 1 also

takesO
(
(logN (αβ))

3
)
time to compute

(
α
β

)
4
. By virtue of a connection between

the quartic residue symbol and the Hilbert symbol, Weilert [31] described a fast
algorithm for the computation of the quartic residue symbol, whose running time
is O

(
n(log n)2 log log n

)
for Gaussian integers bounded by 2n in the norm.

3.3 Attacking the SRSDP via the Quartic Jacobi Symbol

With the preparation for the quartic Jacobi symbol in Z[i], attacks on the SRSDP
with p0 = 2 are possible. Given an RSA quintuple (N, p0 := 2, d, g, u) and a

sample x ∈ QRN , D �rst computes h = gp
d
0/4 mod N , whose order is 4 in both

Z∗
p and Z∗

q . Then it computes ρ = gcd(N,h − i) by the Euclidean Algorithm

in Z[i]. Let p = ππ, q = λλ for some prime elements π, λ ∈ Z[i]. We see that
h2 ≡ −1 mod N and ππ | (h + i)(h − i), λλ | (h + i)(h − i). Since π, π, λ, λ are
prime elements and p = ππ ∤ h + i, it follows that one of π or π (resp. one of λ
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Algorithm 1: Compute the quartic Jacobi symbol in Z[i]
Input: α ∈ Z[i], β ∈ Z[i] \ (1 + i)Z[i]
Output: c =

(
α
β

)
4

1 c = 1

2 Let primary γ be de�ned by β = ij1γ.
3 β ← γ
4 while β ̸= 1 do
5 Let α = µβ + ν with N (ν) = 0 or N (ν) ≤ 1

2
N (β).

6 α← ν
7 if α == 0 then // gcd(α, β) ̸= 1
8 return 0
9 end

/* remove factors of 1 + i in α and apply Theorem 4 */

10 Let β = a+ bi and let primary δ = e+ f i be de�ned by α = ij1(1 + i)j2δ.

11 c← c× i(a−1)j1/2 × i(a−b−b2−1)j2/4.
12 α← δ

/* apply Theorem 3 */

13 if a ≡ 3 mod 4 and e ≡ 3 mod 4 then
14 c← −c
15 end

16 Interchange α, β.
17 end

18 return c

or λ) must divide h− i. By renaming π and λ if needed, we may write ρ = πλ.

Finally, D computes c =
(
x
ρ

)
4
by Algorithm 1, it outputs �yes� if c = 1 and �no�

otherwise. Note that if x is of the form yp
d
0ptqt with y ∈ QRN then we must have

c =

(
y2dptqt

ρ

)
4

=
(
y
ρ

)2dptqt

4
= 1 (since d > 1 and gcd(y, ρ) = gcd(y,N) = 1).

This gives us with an e�cient distinguisher D :

Distinguisher D : D is given as input an RSA quintuple (N, p0 :=2, d, g, u)
and a sample x ∈ QRN .

1: Compute h = gp
d
0/4 mod N .

2: Compute ρ = gcd(N,h− i) by the Euclidean Algorithm in Z[i].
3: Compute c =

(
x
ρ

)
4
by Algorithm 1.

4: if c == 1 then
5: Output �yes�.
6: else
7: Output �no�.
8: end if

9



According to the complexity analysis in Section 3.2, the overall time complexity
of D will then be

O

(
log

(
pd0
4

)
· (logN)2

)
+O

(
(logN (N(h− i)))3

)
+O

(
(logN (xρ))3

)
= O

(
(logN)3

)
bit operations, so that D runs in polynomial time. To show that D can solve
the SRSDP with non-negligible advantage, we need the following two lemmas.
To state them, we de�ne the function Iϵ (ϵ ∈ Z[i]×) by Iϵ[ϵ] = 1 and Iϵ[δ] = 0 for
all δ ∈ Z[i]× \ {ϵ}.

Lemma 1. Let p ≡ 1 mod 4 be a prime and let p = ππ for some prime element
π ∈ Z[i]. Then for ϵ ∈ {±1} we have∑

0≤r≤p−1

(rp)=1

Iϵ
[(r

π

)
4

]
=

p− 1

4
,

and for δ ∈ {±i} we have ∑
0≤r≤p−1

(rp)=−1

Iδ
[(r

π

)
4

]
=

p− 1

4
.

Proof. We calculate∑
0≤r≤p−1

(rp)=1

Iϵ
[(r

π

)
4

]
=

ϵ

4

∑
1≤r≤p−1

[(
r

p

)
+ 1

] [(r
π

)
4
+ ϵ

]

=
ϵ

4

 ∑
1≤r≤p−1

(r
π

)3
4
+

∑
1≤r≤p−1

ϵ


=

ϵ

4

∑
1≤r≤p−1

(r
π

)
4
+

p− 1

4

=
p− 1

4

where the last three lines follow from the three facts:

� If χ is a non-trivial multiplicative character, then
∑

t∈Fp
χ(t) = 0.

� If α ∈ Z[i], β ∈ Z[i]× and gcd(2α, β) = 1, then gcd(α, β) = 1 and
(
α
β

)
4
=(

α
β

)3
4
=

(
α
β

)
4
.

� If a ∈ Z, β ∈ Z[i]× and gcd(2a, β)=1, then
(
a
β

)2
4
=
(

a
N (β)

)
.

The second formula can be proved similarly. □
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Lemma 2. Let p ≡ q ≡ 1 mod 4 be two distinct primes and let p = ππ, q = λλ
for some prime elements π, λ ∈ Z[i]. Set N = pq and γ = πλ. Then∑

k∈QRN

I1
[(

k

γ

)
4

]
=

∑
k∈QRN

I−1

[(
k

γ

)
4

]
=

(p− 1)(q − 1)

8
. (2)

Proof. We calculate∑
k∈QRN

I1
[(

k

γ

)
4

]
=

∑
1≤k≤N

(kp)=(
k
q)=1

I1
[(

k

γ

)
4

]

=
∑

0≤r≤p−1, 0≤s≤q−1
k≡r mod p, k≡s mod q

(kp)=(
k
q)=1

I1
[(

k

πλ

)
4

]

=
∑

0≤r≤p−1, 0≤s≤q−1

(rp)=(
s
q)=1

I1
[(r

π

)
4

(s
λ

)
4

]
.

Since
(r
p

)
=

(s
q

)
= 1 if and only if both

( r

π

)
4

and
( s

λ

)
4

are equal to ±1, it
follows by Lemma 1 that∑

0≤r≤p−1, 0≤s≤q−1

(rp)=(
s
q)=1

I1
[(r

π

)
4

(s
λ

)
4

]
=

∑
0≤r≤p−1

(rp)=1

I1
[(r

π

)
4

]
×

∑
0≤s≤q−1

(sq)=1

I1
[(s

λ

)
4

]

+
∑

0≤r≤p−1

(rp)=1

I−1

[(r
π

)
4

]
×

∑
0≤s≤q−1

(sq)=1

I−1

[(s
λ

)
4

]

=
(p− 1)(q − 1)

8
.

The second formula can be proved in a similar way. □

Theorem 5. Given an instance I = {(N, p0 := 2, d, g, u), x} of SRSDP, the
advantage of the above distinguisher D for solving the SRSDP satis�es

AdvSRSDPD,I =
1

2
.

Proof. By De�nition 4 and the method explained above, we have

AdvSRSDPD,I = Pr[D(I) outputs �yes� | x is of the form ypd0ptqt

with y ∈ QRN
]− 1

2

+ Pr[D(I) outputs �no� | x ∈ QRN ]− 1

2
= Pr[D(I) outputs �no� | x ∈ QRN ].

11



Note that ρ = πλ can be computed by D where N = pq and p = ππ, q = λλ,
then Lemma 2 implies that

Pr[D(I) outputs �no� | x ∈ QRN ] =

(p− 1)(q − 1)

8
(p− 1)(q − 1)

4

=
1

2
. (3)

This concludes the proof of the theorem. □

3.4 Examples

To better understand how D shown in Section 3.3 works, we give a toy example
as follows.

Example 1. Assume that the parameters of the SRSDP are set as in Table 2.
Note that here g is of order pd0 = 8 in both Z∗

p and Z∗
q , and x is a sample from

the uniform distributions over QRN .

Table 2. Parameters of the SRSDP in Example 1

Parameter Value Parameter Value

p0 2 d 3
ps 5 p 3761 = (56 + 25i)(56− 25i)
pt 47 q 2129 = (40 + 23i)(40− 23i)
qs 7 N 8007169
qt 19 g 18315
u 3 x 200003 ≡ 5551832 (mod N)

D �rst calculates
gp

d
0/4 ≡ 7145296 (mod N)

and

gcd(N, 7145296− i) = 2815− 288i.

(indeed, 2815− 288i = (40− 23i)(56 + 25i)). Next, D calculates
(

200003
2815−288i

)
4
as

in Table 3 and obtains(
200003

2815− 288i

)
4

= i×−i×−1× 1 = −1.

without knowing the factorization of N or 2815− 288i.
Finally, D correctly outputs �no� because the above quartic Jacobi symbol

is not equal to 1, which means that x = 200003 is not a quartic residue and x

cannot therefore be written as yp
d
0ptqt for any y ∈ QRN . Further, its order in

Z∗
N is

50008 = 23 × 7× 19× 47

12



Table 3. Procedures for calculating
(

200003
2815−288i

)
4

Make the modulus of a quartic residue symbol pri-
mary

Calculate the remainder of a primary when divided
by an element in Z[i]

Remove factors of 1 + i and apply the general quartic reciprocity law (Theorem 3)
and its supplement (Theorem 4)(

200003

2815 − 288i

)
4

=

(
200003

−2815 + 288i

)
4

200003 = (−2815 + 288i)(−70 − 7i)

+ (937 + 455i)

(
200003

−2815 + 288i

)
4

=

(
937 + 455i

−2815 + 288i

)
4

=

(
(1 + i)(696 − 241i)

−2815 + 288i

)
4

= 1 ×
(

696 − 241i

−2815 + 288i

)
4

=

(
−i

−2815 + 288i

)
4

(
241 + 696i

−2815 + 288i

)
4

= 1 ×
(

241 + 696i

−2815 + 288i

)
4

=

(
−2815 + 288i

241 + 696i

)
4

(
−2815 + 288i

241 + 696i

)
4

=

(
−2815 + 288i

241 + 696i

)
4

−2815 + 288i = (241 + 696i)(−1 + 4i)

+ (210 + 20i)

(
−2815 + 288i

241 + 696i

)
4

=

(
210 + 20i

241 + 696i

)
4

=

(1 + i)2(10 − 105i)

241 + 696i


4

= 1 ×
(

10 − 105i

241 + 696i

)
4

=

(
i

241 + 696i

)
4

(
−105 − 10i

241 + 696i

)
4

= 1 ×
(
−105 − 10i

241 + 696i

)
4

=

(
241 + 696i

−105 − 10i

)
4

(
241 + 696i

−105 − 10i

)
4

=

(
241 + 696i

−105 − 10i

)
4

241 + 696i = (−105 − 10i)(−3 − 6i)

+ (−14 + 36i)

(
241 + 696i

−105 − 10i

)
4

=

(
−14 + 36i

−105 − 10i

)
4

=

(1 + i)2(18 + 7i)

−105 − 10i


4

= −1 ×
(

18 + 7i

−105 − 10i

)
4

= −1 ×
(

i

−105 − 10i

)
4

(
7 − 18i

−105 − 10i

)
4

= −i ×
(

7 − 18i

−105 − 10i

)
4

= i ×
(
−105 − 10i

7 − 18i

)
4

(
−105 − 10i

7 − 18i

)
4

=

(
−105 − 10i

7 − 18i

)
4

−105 − 10i = (7 − 18i)(−1 − 5i)

+ (−8 + 7i)

(
−105 − 10i

7 − 18i

)
4

=

(
−8 + 7i

7 − 18i

)
4

=

(1 + i)0(−8 + 7i)

7 − 18i


4

= 1 ×
(
−8 + 7i

7 − 18i

)
4

=

(
−i

7 − 18i

)
4

(
−7 − 8i

7 − 18i

)
4

= −i ×
(
−7 − 8i

7 − 18i

)
4

= −i ×
(

7 − 18i

−7 − 8i

)
4

(
7 − 18i

−7 − 8i

)
4

=

(
7 − 18i

−7 − 8i

)
4

7 − 18i = (−7 − 8i)(1 + 2i)

+ (−2 + 4i)

(
7 − 18i

−7 − 8i

)
4

=

(
−2 + 4i

−7 − 8i

)
4

=

(1 + i)2(2 + i)

−7 − 8i


4

= 1 ×
(

2 + i

−7 − 8i

)
4

=

(
−i

−7 − 8i

)
4

(
−1 + 2i

−7 − 8i

)
4

= 1 ×
(
−1 + 2i

−7 − 8i

)
4

=

(
−7 − 8i

−1 + 2i

)
4

(
−7 − 8i

−1 + 2i

)
4

=

(
−7 − 8i

−1 + 2i

)
4

−7 − 8i = (−1 + 2i)(−2 + 4i)

+ (−1)

(
−7 − 8i

−1 + 2i

)
4

=

(
−1

−1 + 2i

)
4

=

(1 + i)0(−1)

−1 + 2i


4

= 1 ×
(

−1

−1 + 2i

)
4

=

(
−1

−1 + 2i

)
4

(
1

−1 + 2i

)
4

= −1 ×
(

1

−1 + 2i

)
4

= −1 ×
(
−1 + 2i

1

)
4

(
−1 + 2i

1

)
4

=

(
−1 + 2i

1

)
4

−1 + 2i = (1)(−1 + 2i) + (0)
(
−1 + 2i

1

)
4

=

(0

1

)
4

= 1
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not equal to psqs = 5× 7.
The C++ codes for the above attack can be found at https://github.com/

tcet030840zxp/Quartic-Residuosity-Attack-on-the-SRSDP.

4 A Higher Residuosity Attack on the SRSDP

In this section, we describe a higher residuosity attack on the SRSDP when p0 is
an odd prime. The success probability of this attack is very high, but computing
the pth0 power residue symbol for large p0 turns out to be its e�ciency bottleneck
in practical implementations.

4.1 The Power Residue Symbol

Let K be a number �eld. We say a prime ideal p in OK is prime to an integer
ℓ ≥ 1 if p ∤ ℓOK , this is equivalent to the assertion that gcd(N (p), ℓ) = 1, where
N (p) = |OK/p|. Since the multiplicative group of OK/p has N (p)− 1 elements,
we have

αN (p)−1 ≡ 1 (mod p) for α ∈ OK , α /∈ p.

Furthermore, if we have an additional condition that ζℓ ∈ K, then the order of
the group ⟨ζℓ/p⟩ generated in (OK/p)

×
is ℓ, and hence ℓ | N (p) − 1. Now, we

can de�ne the ℓth power residue symbol
(
α
p

)
ℓ
as follows: if α ∈ p, then

(
α
p

)
ℓ
= 0;

otherwise,
(
α
p

)
ℓ
is the unique ℓth root of unity such that(

α

p

)
ℓ

≡ α
N(p)−1

ℓ (mod p).

This de�nition can be naturally extended to the case that a =
∏

i pi is prime to
ℓ, i.e., gcd(N (pi), ℓ) = 1 for each i. For α ∈ OK , de�ne the generalized ℓth power
residue symbol as (α

a

)
ℓ
=

∏
i

(
α

pi

)
ℓ

.

If β ∈ OK and β is prime to ℓ de�ne
(
α
β

)
ℓ
=

(
α
(β)

)
ℓ
. We suggest interested readers

to refer to [19,23,28] for more details about the power residue symbol. In the
rest of this paper, we shall simply consider the case of K = Q(ζℓ) for ℓ > 2. In
this case, it is well known that OK = Z[ζℓ] and that O×

K is a �nitely generated
abelian group of rank r = φ(ℓ)/2− 1; there exists a fundamental system of units
{u1, . . . , ur} of K such that every element x ∈ O×

K can be written in a unique
way as x = ζun1

1 · · ·unr
r where ni ∈ Z and ζ ∈ ⟨±ζℓ⟩ (e.g., ℓ = 5, r = 1, and

u1 = 1 + ζ5).
We now turn to the case ℓ is an odd prime. Let ω = 1 − ζℓ, we have (ℓ) =

(ω)ℓ−1 and (ω) is a prime ideal of degree 1. An element α ∈ Z[ζℓ] is called primary
if α ̸≡ 0 mod ω, α ≡ B mod ω2 and αα ≡ B2 mod ℓ for some B ∈ Z. If Q(ζℓ)
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is regular5, then each α ∈ Z[ζℓ] prime to ℓ can be transformed into a primary
number on multiplication by a suitable unit [18, Theorem 157]. More properties
of primary elements can be found in [7, Lemma 2.6]. Kummer's reciprocity law
is crucial to the computation of power residue symbols, especially when Z[ζℓ] is
norm-Euclidean (e.g., ℓ ≤ 13 [24,22,6]). The complementary laws for ω, ℓ and
units can be found in [7].

Theorem 6 (Kummer's Reciprocity Law [18, Theorem 161]). Let ℓ be
a regular prime number and let α and β be two primary elements in Z[ζℓ]. Then(

α

β

)
ℓ

=

(
β

α

)
ℓ

.

Theorem 6 was established in 1850. It is restricted to so-called �regular� primes,
which include the odd primes p ≤ 13. It is crucial for designing algorithms to
compute residue symbols, akin to the quadratic reciprocity law used for evalu-
ating the Jacobi symbol in Z). For ℓ ≤ 11, these results can be integrated with
Lenstra's norm-Euclidean algorithm [24] (see also [7, Section 7]) to develop an
e�ective algorithm for computing

(
α
β

)
ℓ
in Q(ζℓ). We present a list of references

for the relevant fast algorithms in Table 4.

Table 4. Algorithms for Computing the ℓth Power Residue Symbol

ℓ 3 5 7 11 13

References [32,30,10] Scheidler et al. [30] Caranay et al. [7] Joye et al. [21] Brier et al. [6]

The general case of computing higher power residue symbols was tackled by
de Boer [3] and the resulting algorithms are probabilistic. However, it has not
yet been proven to be a polynomial-time algorithm. De Boer's computational
results [3, Chapter 5] show that for degrees around 100 the computation of one
single power residue symbol might last for several weeks.

4.2 Attacking the SRSDP via the Power Residue Symbol

With the preparation for the power residue symbol, attacks on the SRSDP

are possible when p0 is a small odd prime number. Given an RSA quintuple

(N, p0, d, g, u) and a sample x ∈ QRN , D �rst computes h = gp
d−1
0 mod N ,

whose order is p0 in Z∗
N . Let K = Q(ζp0). Then the prime decomposition of p in

OK can be obtained immediately from [9, Theorem 4.8.13] as follows:

pOK =

p0−1∏
i=1

pi

5 If the class number of Q(ζℓ) is not divisible by ℓ, then Q(ζℓ) is called a regular

cyclotomic �eld and ℓ is called a regular prime number. The �rst few irregular prime

numbers are 37, 59, 67, 101, 103, 149 and 157.
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where pi = pOK + (hi − ζp0
)OK and N (pi) = p. Similarly,

qOK =

p0−1∏
i=1

qi

where qi = qOK + (hi − ζp0
)OK and N (qi) = q. Next, D sets

a = p1q1 = NOK + (h− ζp0
)OK .

Finally, D computes c =
(
x
a

)
p0

using the algorithms introduced earlier, it outputs

�yes� if c = 1 and �no� otherwise. Note that if x is of the form yp
d
0ptqt with

y ∈ QRN then we must have c = 1. This gives us a distinguisher D :

Distinguisher D : D is given as input an RSA quintuple (N, p0(> 2), d, g, u)
and a sample x ∈ QRN .

1: Compute h = gp
d−1
0 mod N .

2: if p0 ≤ 13 then
3: Compute β = gcd(N,h− ζp0

) by Lenstra's norm-Euclidean algorithm
[24] for p0 ≤ 11 and by McKenzie's norm-Euclidean algorithm [26] for
p0 = 13.

4: Compute c =
(
x
β

)
p0

by the algorithms in Table 4.

5: else
6: Set a = NOK + (h− ζp0)OK .
7: Compute c =

(
x
a

)
p0

by de Boer's Algorithm [3].

8: end if
9: if c == 1 then
10: Output �yes�.
11: else
12: Output �no�.
13: end if

Notice that when p0 ≤ 13, D runs in polynomial time and is e�cient. To show
that D can solve the SRSDP with non-negligible advantage, we need the following
lemma.

Lemma 3. With notations as above, let

Sϵ =

{
k ∈ QRN :

(
k

a

)
p0

= ϵ

}
, ϵ ∈ ⟨ζp0

⟩.

Then |Sϵ| = (p−1)(q−1)
4p0

for every ϵ ∈ ⟨ζp0
⟩.

Proof. It is easy to see that
∑

ϵ∈⟨ζp0 ⟩
|Sϵ| = |QRN | = (p−1)(q−1)

4 , so it su�ces

to prove that all of the Sϵ's have identical cardinalities. Let ap (resp. aq) be
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a generator of QRp (resp. QRq). Then the order of a
p−1
p0

p (resp. a
q−1
p0

q ) is p0,
and therefore

(ap

p1

)
p0

= ζip0
for some 0 < i < p0 (resp.

(aq

q1

)
p0

= ζjp0
for some

0 < j < p0). For every k ∈ Zp0
, we have

(
a
a

)
p0

= ζkp0
if a is chosen so that

a ≡ a
k(i−1 mod p0)
p (mod p) and a ≡ ap0

q (mod q), so if |Sα| < |Sβ | for some
α, β ∈ ⟨ζp0

⟩, then there exists b ∈ QRN such that the coset bSβ ⊂ Sα, a
contradiction. In fact, S1 is a subgroup of Z∗

N and all of the remaining sets Sϵ

(ϵ ∈ ⟨ζp0
⟩ \ {1}) are its cosets. □

Theorem 7. Given an instance I = {(N, p0(> 2), d, g, u), x} of SRSDP, the
advantage of the above distinguisher D for solving the SRSDP satis�es

AdvSRSDPD,I =
p0 − 1

p0
.

Proof. By De�nition 4 and the method explained above, we have

AdvSRSDPD,I = Pr[D(I) outputs �yes� | x is of the form ypd0ptqt

with y ∈ QRN
]− 1

2

+ Pr[D(I) outputs �no� | x ∈ QRN ]− 1

2
= Pr[D(I) outputs �no� | x ∈ QRN ].

Note that a = NOK + (h − ζp0
)OK can be computed by D , then Lemma 3

implies that

Pr[D(I) outputs �no� | x ∈ QRN ] =

(p− 1)(q − 1)(p0 − 1)

4p0
(p− 1)(q − 1)

4

=
p0 − 1

p0
. (4)

This concludes the proof of the theorem. □

5 Higher Residuosity Attacks on the CEK and BST

Protocols

In this section, we present practical higher residuosity attacks on the CEK and
BST protocols. Throughout this section, we assume that the prime base p0 is
small enough so that the pth0 power residue symbol can be e�ciently computed,
e.g., p0 < 100 according to de Boer's computational results [3, Chapter 5].

We �rst show that the encryption scheme Π = (KGen,Enc,Dec) proposed in
[8, Section 4], which is the principal ingredient in both protocols, is not semanti-
cally secure. Except for replacing b with p0, we use the notations as in [8, Section
4]. Consider the following experiment between a challenger C and an adversary
A :

17



1. C runs KGen(τ) to obtain keys PK = (N, p0, d(≥ 3), g, u, h) and SK, where
(N, p0, d, g, u) is an RSA quintuple, h has order ps in Z∗

p and qs in Z∗
q .

2. A is given PK, and outputs a pair of messages m0 = 0, m1 = 1.
3. C chooses a uniform bit b ∈ {0, 1}, and then a challenge ciphertext C ←

Enc(PK,mb) := gp
mb
0 hr mod N is computed and given to A , where r is

chosen uniformly from {1, . . . , 2u − 1}.
4. A computes6

c =



 C

gcd

(
N,gp

d−3
0 −ζ8

)


8

, if p0 = 2; C(
N,gp

d−1
0 −ζp0

)


p0

, otherwise.

It outputs a bit b′ = 1 if c = 1 and b′ = 0 otherwise. If b′ = b we say that A
correctly guesses the encrypted message.

We claim that the advantage of correctly guessing the encrypted message in
the above experiment is 1 when 2p0 ∤ pspt + qsqt. From the proof of Theorem 1,
h is a pth0 power, hence c = 1 if mb = 1; otherwise we have

c =



 g

gcd

(
N,gp

d−3
0 −ζ8

)


8

= ζpspt+qsqt
4 , if p0 = 2; g(

N,gp
d−1
0 −ζp0

)


p0

= ζ
2(pspt+qsqt)
p0 , otherwise.

If 2p0 ∤ pspt + qsqt, then we have c ̸= 1, thus the claim is established.
From the attack above, we can see that the ciphertext may leak information

about whether the corresponding plaintext is 0. Since in the �rst pass of both
the CEK and BST protocols the party P1 (having private input m1) sends the
encryption of integer multiples ofm1 to the party P2, then P2 is able to determine
whether m1 is zero, hence neither of the two protocols protects the privacy of
P1.

Finally, to preclude such attacks, we provide the following suggestions for
improvement:

1. use larger p0, so that it is infeasible to compute the pth0 power residue symbol.
2. choose two distinct large primes ps and qs such that ps | p− 1 and qs | q− 1,

and then choose g to be of order pd0psqs, modify the protocols as in [12].
3. force the RSA quintuple to satisfy 2pd0 | pspt + qsqt and try to prove the

semantic security under some number-theoretic hardness assumptions per-
taining to higher residuosity, the protocols' performance is not impacted in
this way.

6 See [20] for an algorithm to evaluate octic residue symbols. Lenstra's norm-Euclidean
algorithm [24] can be used for GCD computation.
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6 Conclusion

Quadratic and higher residuosity are powerful tools that �nd applications in
various cryptographic constructions. For instance, they are used in encryption
schemes [15,32,30,1], authentication schemes [27,5], and digital signatures [29]. In
this paper, we present higher residuosity attacks against two e�cient two-party
comparison protocols recently proposed by Carlton et al. [8] and Bourse et al.
[4]. For a small public prime base p0, any adversary with access to an element
of order p0 in Z∗

N in the two protocols would be able to employ such attacks,
leading to privacy leakage. All of these attacks are grounded in higher reciprocity
laws. Future work will investigate whether a more e�cient algorithm exists for
computing power residue symbols modulo a two-element representation ideal.
The attacks we propose are currently ine�ective against other famous power-
residuosity-type assumptions, such as the Gap 2k-residuosity assumption, which
underpins the security of the Joye-Libert cryptosystem proposed in [1]. The Gap
2k-residuosity assumption in Z∗

N consists in distinguishing a uniform element of

V0 = {x ∈ JN \ QRN} from a uniform element of V1 = {y2k mod N | y ∈
Z∗
N}, given only N = pq. This ine�ectiveness arises because the attacker cannot

e�ectively �nd an element of order 2k (k ≥ 2) in Z∗
N in advance. We hope that

this paper will serve as a valuable resource for future protocol designers working
with RSA-type problems. Additionally, we believe that the higher residuosity
attacks discussed herein can be employed to analyze other number-theoretic
hardness assumptions.
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