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Abstract. Oblivious Transfer (OT) is a fundamental cryptographic primitive introduced nearly four
decades ago. OT allows a receiver to select and learn t out of n private messages held by a sender.
It ensures that the sender does not learn which specific messages the receiver has chosen, while the
receiver gains no information about the remaining n − t messages. In this work, we introduce the
notion of functional OT (FOT), for the first time. FOT adds a layer of security to the conventional
OT by ensuring that the receiver only learns a function of the selected messages, rather than the t
individual messages themselves. We propose several protocols that realize this concept. In particular,
we propose concrete instantiations of FOT when the function to be executed on the selected message
is mean, mode, addition, or multiplication. The schemes are efficient and unconditionally secure. We
also propose a non-trivial protocol that supports arbitrary functions on the selected messages mainly
using fully homomorphic encryption (FHE) and oblivious linear function evaluation, where the number
of FHE invocations is constant O(1) with respect to n. Our asymptotic and concrete cost analyses
demonstrate the efficiency of our unconditionally secure FOT protocols. FOT can enhance the security
of privacy-preserving machine learning, particularly in (i) K-Nearest Neighbors schemes and (ii) client
selection in Federated Learning (FL).

1 Introduction

Oblivious Transfer (OT) [19, 44, 57] is a vital cryptographic primitive that allows a receiver to select and
learn t out of n messages held by a sender, where t ≥ 1 and n > t. In this setting, the sender must remain
oblivious to which specific messages the receiver has chosen, while the receiver must gain no information
about the remaining n − t messages. OT has applications in various domains, including secure multi-party
computation [7, 27,60], FL [46,58,59], private banking [17], and zero-knowledge proof systems [26].

In this work, we introduce the notion of functional oblivious transfer (FOT). Conceptually, FOT enhances
the security of conventional OT by enabling the receiver to learn only a certain function of the messages they
select, rather than learning each selected message, while the sender remains as oblivious as in traditional
OT, as shown in Figure 1. We formally define FOT and present several instantiations of it. Specifically,
we first introduce a functional OT protocol, ΓFOT2

, which relies on fully homomorphic encryption (FHE)
and oblivious linear function evaluation (OLE). This protocol supports arbitrary functions on the selected
messages. While, in theory, secure computation can be achieved entirely using FHE or functional encryption
[12], the primary challenge lies in designing protocols that minimize reliance on these primitives due to their
high computational overhead. Addressing this challenge, ΓFOT2

ensures that the number of FHE invocations
remains constant with respect to the total number of messages, n (and it is linear with t). It is well-suited
for scenarios where n− t is very large.

Moreover, we present efficient and scalable functional OT protocols (e.g., ΓFOT3
–Mean and ΓFOT3

–Mode)
which do not use any public key-based primitives. They are unconditionally secure and, as a result, are
inherently post-quantum secure, provided the parties communicate over an unconditionally secure channel.
These protocols mainly use a new combination of several techniques, including permutation maps, one-time
pads, and padding. They also rely on a third party assumed to be susceptible to corruption by a semi-honest
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adversary. These protocols securely support various fundamental functions, namely, mode, mean, addition,
and multiplication on the selected messages. We have implemented these efficient protocols and made their
source code publicly available [2, 3]. Our cost evaluation indicates that they scale well for large values of
t and n. For instance, ΓFOT3

–Mean terminates in 1.4 seconds while ΓFOT3
–Mode completes in 3.2 seconds,

when t = 65,536 and n = 1,048,576. We also demonstrate how these protocols can be extended to enable
a receiver to securely compute a function on selected messages from a distributed database maintained by
multiple senders.
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Fig. 1: Showing the difference between conventional OT and functional OT. Here,
→
e contains t elements.

FOT can be applied in at least two key scenarios: (i) in combination with scalable privacy-preserving
K-NN search schemes [13, 50] to enable a receiver to efficiently but securely obtain only the prediction in
K-NN algorithms, and (ii) in the client selection for FL [33,53,62] to allow a server to identify suitable clients
without learning details of the clients’ datasets or device characteristics while keeping its selection criteria
hidden and imposing low overheads.

Summary of Contributions. The key contributions of this work are as follows:

– Formalization of functional oblivious transfer.
– Generic FHE-based FOT protocol.
– Efficient unconditionally secure constructions.
– Implementation and open-source release.
– Theoretical and concrete cost evaluation.
– Application of FOT to efficient privacy-preserving machine learning.

1.1 Structure of the Paper

The paper is structured as follows. Section 2 outlines key preliminaries, including notations and crypto-
graphic foundations. Section 3 presents a formal definition of FOT. Section 4 presents a construction of FOT
using FHE and oblivious linear function evaluation and proves the security of this construction. Section 5
introduces several FOT protocols that rely on only symmetric-key cryptography and proves the security of
these protocols. Section 6 evaluates the overhead of these protocols. Section 7 discusses various applications
of the proposed protocols. Section 8 reviews existing OT schemes. Finally, Section 9 concludes the paper by
summarizing key contributions and suggesting directions for future work.

2 Preliminaries

2.1 Simulation-Based Security

In this paper, we use the simulation-based paradigm of secure multi-party computation [24] to define and
prove the proposed protocol. Since we focus on the passive (semi-honest) adversarial model, we will restate
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the security definition within this context, after outlining the threat model. In this paper, by X c≡ Y we
mean that the two distributions X and Y are computationally indistinguishable.

Two-Party Computation. A two-party protocol Γ is captured by specifying a random process that
maps a pair of inputs to a pair of outputs. Such a process is referred to as a functionality denoted by
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f := (f1, f2). For every input pair (x, y), the output pair is
a random variable (f1(x, y), f2(x, y)), such that the party with input x wishes to obtain f1(x, y) while the
party with input y wishes to receive f2(x, y).

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. In the simulation-based model, it is required
that a party’s “view” in a protocol’s execution can be simulated given only its input and output. This implies
that the parties learn nothing from the protocol’s execution. Formally, in the two-party case, party i’s view
on input pair (x, y) is denoted by ViewΓ

i (x, y) and equals (w, ri,mi
1, ...,m

i
t), where w ∈ {x, y} is the input

of the ith party, ri is the outcome of this party’s internal random coin tosses, and mi
j represents the jth

message this party receives. The output of the ith party during the execution of Γ on (x, y) is denoted by
OutputΓi (x, y) and can be generated from its own view of the execution.

Definition 1. Let f be the deterministic functionality defined above. Protocol Γ securely computes f in the
presence of a passive probabilistic polynomial-time (PPT) adversary A, if for every A in the real model, there
exist PPT algorithms (SimΓ

1 ,Sim
Γ

2 ) such that:

{SimΓ

1 (x, f1(x, y))}x,y

c≡ {ViewΓ

1,A(x, y)}x,y

{SimΓ

2 (y, f2(x, y))}x,y

c≡ {ViewΓ

2,A(x, y)}x,y

2.2 Notations and Assumptions

We denote an empty string by ϵ, a sender by S, a receiver by R, a third-party helper by H, and an adversary
by A. We use x ← v to denote the assignment of the value v to the variable x. We use

→
x ← v to indicate

appending the value v to the vector
→
x. We assume parties interact with each other through a secure channel;

in particular, through an unconditionally secure communication channel [49] when they use the protocols
presented in Section 5. By AI we mean the adversary that corrupts party I. Also, U denotes a universe of
messages m0, . . . ,ml. We define σ as the maximum bit size of messages in U , i.e., σ = Max(|m1|, . . . , |ml|).
For encryption (or encoding) we use a one-time pad defined over a finite field Fp, where λ = log2(p) is
a sufficiently large security parameter. Shortly, we will explain how we should set its size. We define an
algorithm Find(

→
v , j) → indx, that takes as input a vector

→
v and a value j. If value j is in

→
v , it returns the

index of j in
→
v ; otherwise, it returns ϵ. By X ≡ Y we mean X and Y are unconditionally indistinguishable.

For a bit string b, by b[i] we mean the i-th binary value of b, for i ≥ 0.

Mode. The mode function Mode is a statistical function that returns the value(s) in a vector with the
highest frequency of occurrence. Since Mode relies on a frequency function, we initially define the frequency
function and then define Mode.

Definition 2 (Frequency). Let
→
s = [s0, . . . , sn−1] be a vector over some domain U . The frequency function,

for
→
s and an element ŝ ∈ S, is defined as:

Frequency(
→
s, ŝ) =

∣∣∣{i ∈ [0, n− 1] | si = ŝ}
∣∣∣

Definition 3 (Mode). Let
→
s = [s0, . . . , sn−1] be a vector over domain U . Let Frequency be the frequency

function formalized in Definition 2. The mode of
→
s is the set of elements in

→
s with the highest frequency.

Formally:
Mode(

→
s) = {ŝ ∈ →

s | Frequency(→s, ŝ) = max
sj∈

→
s

Frequency(
→
s, sj)}.
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In this work, for the sake of simplicity, we assume Mode returns only a single value. In the concrete
instantiation of Mode, we will use a padding technique to allow a party who decrypts a ciphertext to find
out whether a correct key is used.

Padding Technique. The padding technique uses the idea of concatenating the binary representation of a
message mi with a string of γ zeros. We can define the padding function as:

Pad(mi, γ, p)→ m′
i = mi · 2γ mod p

Given a padded value m′
i (after decryption), one can check whether the lower γ bits of m′

i are all zeros
using the following check.

CheckPad(m
′
i, γ) =

{
True, if m′

i mod 2γ = 0

False, otherwise.

This check will allow a party to verify whether a correct key was used to decrypt a message. We can
remove the pad from m′

i, by using the following function:

Unpad(m′
i, γ, p)→ mi = m′

i · (2γ)−1 mod p

To ensure the finite field Fp can contain padded values, we set λ > σ + γ, when the padding is used. For
instance, when σ = 128, it would suffice to set λ = 256. In this case, the probability of error (i.e., using a
wrong key without being able to detect it) is 2−128, which is negligible regarding λ.

Generic Subroutines for Secure Function Evaluation. For the sake of generality, we define three
generic algorithms (Encode, Evaluate, Decode) that will be used in the OT to help (securely) evaluate various
functions on the response of senders. We will provide concrete instantiations of them in various cases, e.g.,
ΓFOT3

–Mean and ΓFOT3
–Mode.

– Encode(
→
m,

→
pp,

→
sk) →

→
h: a probabilistic algorithm. It takes as input a vector of plaintext messages

→
m, a

vector of public parameters
→
pp that includes a description desF of a function F to be evaluated on

→
m,

and a vector of secret keys
→
sk. It encodes elements of

→
m and returns the result

→
h.

– Evaluate(
→
h,

→
pp)→ θ: a deterministic algorithm. It takes a vector of encoded messages

→
h and a vector of

public parameters
→
pp. It returns an encoded evaluated value θ.

– Decode(θ,
→
pp,

→
sk) → θ′: a deterministic algorithm. It takes as input the encoded evaluated message θ,

public parameters
→
pp, and the secret keys

→
sk. It returns a decoded evaluated message θ′.

2.3 Fully Homomorphic Encryption

A homomorphic encryption scheme is a (public-key) encryption scheme that allows arbitrary functions to be
evaluated on a set of ciphertext [22]. It consists of four algorithms:

– HE.KeyGeneration(1λ)→ (skHE, pkHE). A probabilistic algorithm that takes a security parameter as input.
It returns a pair of private key skHE and public key pkHE.

– HE.Encrypt(pkHE,m)→ h. A probabilistic algorithm that takes pkHE and a plaintext message m from the
scheme’s plaintext universe U . It returns a ciphertext h.

– HE.Decrypt(skHE, h) → m. A deterministic algorithm that takes skHE and a ciphertext h. It returns a
plaintext m.

– HE.Evaluate(F, pkHE, h0, . . . , hn−1) → h′. It takes a function F representation defined over U , the public
key pkHE, and n ciphertexts h0, . . . , hn−1. It outputs a ciphertext h′.
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We require that FHE satisfies IND-CPA security, see Appendix A for a formal definition. We define the
computation complexity of HE.Evaluate(F, pkHE, h0, . . . , hn−1) as Comp(F, n). In this work, we require a sender
S to obliviously select t out of n messages that involve homomorphic addition and multiplication. To provide

sufficient detail, we will use
H

+ and
H

× to denote homomorphic addition and multiplication respectively. In this
work, we use FHE that works over integers for non-binary message spaces [41]. Specifically, we are interested
in FHE whose message space is defined over a large prime number q, where q ≫ p. In this case, for every
element r in Fp, there exists its multiplicative inverse r−1 in Fq, i.e., r · r−1 mod q = 1.

2.4 Oblivious Linear Function Evaluation

Oblivious linear function evaluation (OLE) is a two-party protocol that involves a sender and receiver [23].
In OLE, the sender has two inputs a, b ∈ Fp and the receiver has a single input, c ∈ Fp. The protocol allows
the receiver to learn only s = a · c + b ∈ Fp, while the sender learns nothing. Figure 2 presents the OLE’s
ideal functionality, FOLE.

1. Upon receiving a message (inputS, (a, b)) from the sender
with a, b ∈ Fp, check that there is no stored tuple; if it fails,
ignore that message. Store a and b and then transmit a mes-
sage (input) to A.

2. Upon receiving a message (inputR, c) from the receiver where
c ∈ Fp, check that there is no stored tuple; if the check fails,
then ignore the message. Store c and then transmit a message
(input) to A.

3. Upon receiving a message (deliver, S) from A, check whether
(a, b) and c have been stored; if the check fails, ignore that
message. Otherwise, send (delivered) to the sender.

4. Upon receiving a message (deliver,R) from A, check whether
(a, b) and c have been stored; if the check fails, ignore that
message. Set s = a · c+ b and send (output, s) to the receiver.

Fig. 2: Ideal functionality FOLE for OLE.

2.5 Trusted Execution Environments

Trusted Execution Environment (T EE), also known as a secure enclave, constitutes a secure processing
environment comprising processing, memory, and storage hardware units [42, 61]. An ideal T EE guarantees
the preservation of data integrity and confidentiality. Side-channel attacks on different deployments of T EEs
have been demonstrated in the literature [52]. These attacks pose a threat as they could enable attackers to
extract secrets from T EEs. In Section 5, we use T EE to construct efficient post-quantum three-party FOT
schemes. Our security and trust assumptions regarding T EEs are conservative. Specifically, our solutions
avoid disclosing any plaintext messages or private keys to T EE . Hence, a weak T EE that might be corrupted
by a semi-honest adversary would be sufficient for our schemes. We assume that the T EE is unconditionally
secure. We formally show that T EE at the most only learns the size of the encrypted computation result. In
our work, T EE can be substituted with any semi-honest server that does not collude with other entities.
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3 Security Model

Functional Oblivious Transfer (FOT) involves a sender S and a receiver R. The sender has a vector of n
messages

→
m = [m0, . . . ,mn−1] and the receiver has a vector of t indices

→
e = [b, . . . , z], where 1 ≤ t ≤ n and

∀e ∈ →
e : 0 ≤ e ≤ n − 1. Informally, the functionality GF that FOT computes, for a function F, takes the

parties’ input and returns (i) nothing to S and (ii) y = F(mb, . . . ,mz) to R. Below, we formally state it, by
initially defining F followed by the definition of GF.

Definition 4 (Functionality F). A functionality F is defined over the plaintext space U as a function
F : U × . . .× U︸ ︷︷ ︸

t times

→ {0, 1}∗, where F is defined as a deterministic Turing Machine.

Definition 5 (Functionality GF). The functionality GF, which FOT for a function F will compute, is
defined as:

GF :
(
[m0, . . . ,mn−1], [b, . . . , z]

)
→ y

that takes as input a vector of messages
→
m = [m0, . . . ,mn−1] and a vector of indices

→
e = [b, . . . , z], belonging

to an index space I, and returns y = F(mb, . . . ,mz), where mb, . . . ,mz are some elements of
→
m indexed by

→
e .

Informally, the security of FOT requires that S gains no knowledge about R’s private input or the output
y. Similarly, R learns nothing beyond the output y, including any information about S’s input. A formal
definition is provided below.

Definition 6 (Security of FOT). Let GF be the functional OT’s functionality defined above. We assert
that protocol Γ securely realizes GF in the presence of passive adversaries if for every probabilistic polynomial
time (PPT) adversary A in the real model, there is a PPT simulator Sim in the ideal model, where:

{
SimΓ

S,aux

(→
m, ϵ

)}
→
m,

→
e

c≡
{
ViewΓ

S,A(aux)

(→
m,

→
e
)}

→
m,

→
e

{
SimΓ

R,aux

(
→
e,GF(

→
m,

→
e)
)}

→
m,

→
e

c≡
{
ViewΓ

R,A(aux)

(→
m,

→
e
)}

→
m,

→
e

where aux is an auxiliary (public) input known to the adversary prior to the protocol execution.

4 Two-Party FOT Protocols

In this section, we present two variants of two-party generic FOT protocols. The first variant is simpler
but less efficient while the second variant is more involved but more efficient. In both variants, we will use
standard oblivious filtering previously used to achieve communication efficiency [17, 18]. We will use this
technique to allow a sender S to obliviously filter out n− t messages and then evaluate a certain function on
the remaining t messages. Before presenting the FOT protocols, we briefly discuss this technique. To retrieve
a single record mv securely from S that holds messages [m0, . . . ,mn−1]

T where T denotes transpose, without
revealing to S which one is fetched, R can take the following steps:

1. set
→
b = [b0, . . . , bn−1], where every element of

→
b is set to zero except for v-th element bv which is set to 1.

2. encrypt each element of
→
b using a (fully) homomorphic encryption scheme. Let

→
b′ contain the encrypted

elements.

3. send
→
b′ to S which homomorphically computes the dot product of

→
b′ and

→
m. S sends to R the result res.

4. decrypt res to discover mv.
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4.1 Basic Approach with O(t · n) + Comp(F, t) FHE Calls

The first variant of FOT mainly uses FHE and the filtering technique. Recall that in the context of FOT,
the receiver R has a vector

→
e of t indices. For each element ej in

→
e , R generates a vector bj of n bits where

all bits are set to 0 except the ej-th bit that is set to 1. It encrypts each bit of the vector using a FHE and
sends these t encrypted vectors to S. Next, S homomorphically computes the dot product of each encrypted
vector and its message vector. The result is t encrypted values that R is interested. Given these t encrypted
values, S homomorphically evaluates F on them and sends the encrypted result to R, which decrypts and
finds the result. The computation cost of R is O(t ·n), while the computation cost of S is O(t ·n)+Comp(F, t)
mainly involving FHE. Shortly, in Section 4.2, we present the second variant of this protocol that reduces
the number of FHE invocations. Since the second variant overlaps with the first one, we will present the
second variant in detail, in the next section. For readers interested in the first variant, we provide its details
in Figure 8 of Appendix B.

4.2 Enhanced Approach with O(t) + Comp(F, t) FHE Calls

The second variant, denoted as ΓFOT2
, involves a much fewer number of FHE invocations. To be precise,

the number of times FHE will be called is O(t) + Comp(F, t), which is linear with the number of indices
that R is interested and the complexity of F, but it is constant with respect to n. Our primary observation
is that oblivious filtering (used in the first variant) that involves the dot product of two vectors: (1) is the
only procedure in the protocol that requires 2 · n (and t) invocations of FHE, and (2) involves only modular
addition and multiplication. We could achieve efficiency if we replace FHE with a more efficient method to
compute the dot product. To achieve the above objective, we replace FHE with a careful combination of
several tools and techniques, including OLE, one-time pad, and zero-sum values. We provide an overview of

ΓFOT2
. Since there are t indices, for each t, R constructs a vector

→
bj as before and securely computes its dot

product with
→
m that S holds. The dot product of

→
bj and

→
m will be computed through two main phases:

– In the first phase, S and R obliviously multiply their vectors
→
bj and

→
m component-wise, by invoking n

instances of OLE. This allows S to learn each output of OLE which is a masked version of the product
bj,i ·mi, for every i, where 0 ≤ i ≤ n− 1. Note that S cannot learn whether bj,i = 0 due to the way the
output is encoded.

– In the second phase, S sums the outputs of OLE. This results in the dot product of
→
bj and

→
m that is still

masked by a blinding factor, say gj.

To let S unmask every j-th masked dot product securely so that later it can perform oblivious computation
on all t dot products, R sends to S the multiplicative inverse of each gj that is encrypted using FHE, i.e.,
R sends HE.Encrypt(pkHE, (gj)

−1) to S. Now, S can homomorphically multiply each j-th dot product with
HE.Encrypt(pkHE, (gj)

−1) to obtain an encrypted unmasked dot product which is exactly one of the messages in
→
m that R is interested. Give all t encrypted unmasked dot products, S can invoke HE.Evaluate to obliviously
run function F on the ciphertexts. It sends the result to R which decrypts it to obtain F(mb, . . . ,mz). As it
is evident, during the oblivious filtering (imposing computation complexity of O(t · n)) FHE is not involved
anymore. Instead, it is involved during removing t blinding factors g0, . . . , gt−1 and the oblivious evaluation
of F on t selected messages; however, these operations’ cost is (independent of n and) linear with t and the
complexity of F. Thus, the novelty of ΓFOT2

’s design lies in its ability to support arbitrary functions with
minimal cost, achieved through careful integration of standard tools and techniques. These include oblivious
filtering [17,18], OLE, FHE, (zero-sum) one-time pads, and oblivious one-time pad removal.

Detailed Description of ΓFOT2
. Below, we explain the protocol ΓFOT2

in detail. In this protocol, the

sender S has a vector of n plaintext messages
→
m = [m0, . . . ,mn−1] while the receiver R has a vector of t

indices
→
e = [b, . . . , z].

7



1. Setup: Setup(1λ)→ (skHE, pkHE)
This phase involves R.
(a) calls HE.KeyGeneration(1λ)→ (skHE, pkHE).
(b) publishes pkHE.

2. Query Generation: GenQuery(pkHE, n,
→
e)→ qry := (qry1, qry2)

This phase involves S and R. They take the following steps. ∀ej ∈
→
e :

(a) R selects a uniformly random value gj

$← {0, 1}λ and encrypts its multiplicative inverse over the
message space of FHE as: HE.Encrypt(pkHE, (gj)

−1), where (gj)
−1 ∈ Fq.

(b) R generates a vector of n uniformly random values [rj,0, . . . , rj,n−1], such that their sum is zero, as
follows:
i. selects n− 1 random values rj,0, . . . , rj,n−2

$← {0, 1}λ.
ii. sets rn−1 = −

n−2∑
l=1

rl mod p.

(c) R constructs
→
bj = [bj,0, . . . , bj,n−1], by setting every element bj,i to 0 except for the ej-th element, set

to 1.
(d) R and S for every i (where 0 ≤ i ≤ n− 1) run an instance of OLE. The input of R is gj · bj,i and rj,i.

The input of S is mi. The same instance of OLE returns:

b′j,i = gj · bj,i ·mj + rj,i mod p

to S. Let
→
b′j = [b′j,0, . . . , b

′
j,n−1]. Vector

→
b′ = [

→
b′0, . . . ,

→
b′t−1] is the first part of R’s query, qry1, which is

already given to S.
Subsequently, R sets the second part of its query, denoted by qry2, to

[
HE.Encrypt(pkHE, (g0)

−1), . . . ,

HE.Encrypt(pkHE, (gt−1)
−1)

]
and sends qry2 to S.

3. Response Generation: GenRes(
→
m, pkHE, qry)→ res

This phase involves S.
(a) obliviously identifies t messages that R is interested, using each

→
b′j, as follows. ∀j, 0 ≤ j ≤ t− 1 :

aj =

n−1∑

i=0

b′j,i mod p = gj ·
n−1∑

i=0

bj,i ·mj mod p

(b) obliviously removes each blinding factor gj from each aj using qry2: ∀j, 0 ≤ j ≤ t− 1 :

ej = HE.Encrypt(pkHE, (gj)
−1)

H

× aj

= HE.Encrypt(pkHE,

n−1∑

i=0

bj,i ·mj)

(c) obliviously evaluates the function F on the t ciphertexts generated in the previous step.

HE.Evaluate(F, pkHE, e0, . . . , et−1)→ θ

(d) sets resR = θ and sends resR to R.
4. Message Extraction. Retreive(resR, skHE)→ y
• R decrypts resR as HE.Decrypt(skHE, resR)→ y.

Theorem 1. Let GF be the functionality formalized in Definition 5. If FHE is IND-CPA, the protocol ΓFOT2

securely computes GF, w.r.t. Definition 6, in the FOLE-hybrid model.

4.3 Security Proof of ΓFOT2

In this section, we prove the security of ΓFOT2
, i.e., Theorem 1.

Proof. We prove the theorem in the case where each party is corrupt. The proof consists of a series of hybrid
experiments, gradually transitioning from the real execution to the ideal execution.
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Corrupt R. Initially, we consider the case where the receiver R is corrupt. We will involve a simulator
Sim

ΓFOT2
R (which receives R’s input →

e and output y) to eventually generate a view in an ideal execution, i.e.,

Sim
ΓFOT2
R (

→
e, y)→ View

ΓFOT2
SimR .

• Hybrid 0 (ViewHybrid 0

A ): Real execution. The view of the adversary in the real execution of ΓFOT2
is:

ViewHybrid 0

A = {rR,View
OLE

R , resR}
where rR is the random coin sampled uniformly at random by R, ViewOLE

R refers to the receiver’s real-
model view during the execution of OLE, and resR is the response computed by S using HE.Evaluate.

• Hybrid 1 (ViewHybrid 1

A ): Replace rR with r′R. In this hybrid, Sim
ΓFOT2
R replaces the coin rR with a freshly

generated random coin r′R. The adversary’s view becomes:

ViewHybrid 1

A = {r′R,ViewOLE

R , resR}
Since rR and r′R are both uniformly random, the distributions of ViewHybrid 0

A and ViewHybrid 1

A are identical:

ViewHybrid 0

A ≡ ViewHybrid 1

A

• Hybrid 2 (ViewHybrid 2

A ): Replace ViewOLE

R with SimViewOLE

R . In this hybrid, Sim
ΓFOT2
R replaces ViewOLE

R with

a simulated view SimViewOLE

R generated as follows. Sim
ΓFOT2
R constructs an empty set SimViewOLE

R . Then,
it takes the following steps for every ej in

→
e .

1. using r′R, picks a uniformly random value ĝj

$← {0, 1}λ.
2. generates a vector

→
oj = [oj,0, . . . , oj,n−1], by setting each element oj,i to 0 except the ej-th element set

to 1.
3. using r′R, constructs a vector of n uniformly random values [r̂j,0, . . . , r̂j,n−1], such that their sum is

zero. To compute the vector’s elements, it takes the following steps.
(a) selects n− 1 uniformly random values, r̂j,0, . . . , r̂j,n−2

$← {0, 1}λ.
(b) sets r̂n−1 = −

n−2∑
l=1

r̂l mod p.

4. for every i (where 0 ≤ i ≤ n− 1) invokes OLE’s ideal functionality FOLE, where its inputs are ĝj · oj,i

and r̂j,i. Let SimViewOLE

R,i be the corresponding simulated view of the simulator (and accordingly R)
when interacting with FOLE.

5. appends SimViewOLE

R,i to SimViewOLE

R .
The adversary’s view becomes:

ViewHybrid 2

A = {r′R,SimViewOLE

R , resR}
Since we are in the FOLE-hybrid model, the distributions of ViewOLE

R and SimViewOLE

R are identical; thus, it
holds that:

ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3 (ViewHybrid 3

A ): Replace resR with res′R. In this hybrid, Sim
ΓFOT2
R replaces resR with a simulated

response res′R, generated by encrypting the plaintext output y of R as: HE.Encrypt(pkHE, y)→ res′R. The
adversary’s view becomes:

ViewHybrid 3

A = {r′R,SimViewOLE

R , res′R}
Since FHE is IND-CPA, ciphertexts resR and res′R are computationally indistinguishable. Moreover,
both ciphertexts result in y after they are decrypted; specifically, HE.Decrypt(skHE, resR) → y and
HE.Decrypt(skHE, res

′
R)→ y. Hence, it holds that:

ViewHybrid 2

A
c≡ ViewHybrid 3

A

Conclusion. At the final step (Hybrid 3), the simulator has constructed the full ideal view:

View
ΓFOT2
SimR = {r′R,SimViewOLE

R , res′R}
By the transitivity of indistinguishability across the hybrids, we conclude:

ViewHybrid 0

A
c≡ ViewHybrid 3

A ⇒ View
ΓFOT2
R,A

c≡ View
ΓFOT2
SimR

where View
ΓFOT2
R,A and View

ΓFOT2
SimR are the real and ideal model views respectively.
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Corrupt S. In this case, we will involve a simulator Sim
ΓFOT2
S (which receives S’s input

→
m) to eventually

generate a view in an ideal execution, i.e., Sim
ΓFOT2
S (

→
m)→ View

ΓFOT2
SimS .

• Hybrid 0 (ViewHybrid 0

A ): Real execution. The view of the adversary in the real execution of ΓFOT2
is:

ViewHybrid 0

A = {rS ,View
OLE

S , qry1, qry2}
where rS is the coin sampled uniformly at random by S, ViewOLE

S is the sender’s real-model view during

the execution of OLE, and qry1 contains the outputs of OLE, i.e., qry1 =
→
b′ = [

→
b′0, . . . ,

→
b′t−1] and

→
b′j =

[b′j,0, . . . , b
′
j,n−1]. Moreover, it holds that qry2 =

[
HE.Encrypt(pkHE, (g0)

−1), . . . ,HE.Encrypt(pkHE, (gt−1)
−1)

]
.

• Hybrid 1 (ViewHybrid 1

A ): Replace rS with r′S . In this hybrid, Sim
ΓFOT2
S replaces the coin rS with a freshly

random coin r′S . Consequently, the adversary’s view becomes:

ViewHybrid 1

A = {r′S ,ViewOLE

S , qry1, qry2}
Since rR and r′R are both uniformly random, the distributions of ViewHybrid 0

A and ViewHybrid 1

A are identical:

ViewHybrid 0

A ≡ ViewHybrid 1

A

• Hybrid 2 (ViewHybrid 2

A ): Replace ViewOLE

S with SimViewOLE

S . In this hybrid, Sim
ΓFOT2
S replaces ViewOLE

S with a

simulated view SimViewOLE

S generated as follows. Sim
ΓFOT2
S constructs an empty vector SimViewOLE

S . Then,
it takes the following steps for every j, where 0 ≤ j ≤ t− 1.
1. For every i (where 0 ≤ i ≤ n − 1) invokes OLE’s ideal functionality FOLE, where its input is mi. Let

SimViewOLE

S,i be the related simulated view of the simulator (and accordingly S) when interacting with
FOLE.

2. Appends SimViewOLE

S,i to SimViewOLE

S .
As a result, the adversary’s view becomes:

ViewHybrid 2

A = {r′S ,SimViewOLE

S , qry1, qry2}
Since we are operating in the FOLE-hybrid model, the distributions of ViewOLE

S and SimViewOLE

S are identical.
Therefore, we have that:

ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3 (ViewHybrid 3

A ): Replace qry1 with qry′1. In this hybrid, Sim
ΓFOT2
S substitutes OLE’s real-model

output qry1 that S receives with a simulated output qry′1 constructed as follows. It sets qry′1 to t vectors
→
o = [

→
o0, . . . ,

→
o t−1], where each vector

→
o j in

→
o contains n fresh uniformly random values, oj,0, . . . , oj,n−1

$←
{0, 1}λ. Hence, the adversary’s view becomes:

ViewHybrid 3

A = {r′S ,SimViewOLE

S , qry′1, qry2}

In the real model, each element of each vector
→
b′j in qry1 is masked with a fresh one-time pad (of size

λ-bit). Also, when all elements of each vector
→
b′j are summed, the result is a value masked with a fresh

one-time pad. In the ideal model, each element of each vector
→
oj in qry2 is a fresh value (of size λ-bit)

selected uniformly at random. Due to the perfect security of the one-time pad, the masked elements of

each vector
→
b′j and the sum of these elements have identical distributions to random values (of the same

size). Thus, it holds that:
ViewHybrid 2

A ≡ ViewHybrid 3

A

• Hybrid 4 (ViewHybrid 4

A ): Replace qry2 with qry′2. In this hybrid, Sim
ΓFOT2
S replaces qry2 with a simulated

query qry′2 by (1) constructing an empty vector qry′2 and (2) appending to it t values that are picked
uniformly at random from the space of the FHE’s ciphertext. Therefore, the adversary’s view becomes:

ViewHybrid 4

A = {r′S ,SimViewOLE

S , qry′1, qry
′
2}

Due to the IND-CPA of FHE, the t ciphertexts produced by FHE (i.e., the elements of qry2) are com-
putationally indistinguishable from t uniformly random elements (i.e., the elements of qry′2) sampled
independently from the ciphertext space. Therefore, it holds that:

ViewHybrid 3

A
c≡ ViewHybrid 4

A
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Conclusion. At the Hybrid 4, Sim
ΓFOT2
S has fully constructed the ideal view:

View
ΓFOT2
SimS = {r′S ,SimViewOLE

S , qry′1, qry
′
2}

By the transitivity of indistinguishability across the hybrids, we conclude:

ViewHybrid 0

A
c≡ ViewHybrid 4

A ⇒ View
ΓFOT2
S,A

c≡ View
ΓFOT2
SimS

where View
ΓFOT2
S,A and View

ΓFOT2
SimS are the real and ideal model views respectively. ⊓⊔

5 Unconditionally Secure Three-Party FOT

The main objective of this section is to develop efficient and unconditionally secure (hence post-quantum)
concrete FOT schemes, without involving any public-key primitive. To attain our goal, we rely on a new
combination of various techniques, such as permutation maps, one-time-pad, and padding, along with the
assistance of a third-party H in the protocols. The third party’s role is to aid in generating the result.
However, we assume this party might be corrupted by a semi-honest adversary who does not collude with
the protocols’ participants. In practice, this party’s role can be played by a weak (or semi-honest) T EE or
server. As we will discuss, no secret key is stored in the T EE beyond what is used during the manufacturing
of a T EE for remote attestation.

Since H helps S and R perform computation on their encrypted sets, there is a possibility of leakage to
H. Depending on the protocol that realizes F, this leakage could contain different types of information; for
instance, it could contain (i) the number of identical inputs (e.g., identical labels in the context of machine
learning) in S’s input data or (ii) nothing at all. Often such leakage is defined as a leakage function Ω that
takes as input all parties’ (encoded) inputs and returns the amount of leakage. We will use Ω shortly, to
define the security of three-party functional oblivious transfer.

5.1 Security Model

In this section, we present the formal definition of three-party functional OT which is an extension of the
definition for two-party functional OT presented in Section 3. Three-Party Functional Oblivious Transfer
(FOT3) involves a sender S, a receiver R, and a third party H. Each party might be corrupted by a semi-
honest adversary. As in two-party FOT, in FOT3, S has a vector of messages

→
m = [m0, . . . ,mn−1] and R has

a vector of t indices
→
e = [b, . . . , z]. H has no input. The functionality that FOT3 computes for a function F

is also GF, presented in Definition 5. Because H has no input and receives no output, beyond the scheme’s
parameters (t, n) known prior to all parties. Informally, the security of FOT3 states that S learns nothing
about R’s input or the output y, and R learns nothing beyond the output y. H learns nothing beyond the
output of predefined leakage Ω. Formally, H’s view can be simulated given the leakage. Below, we formally
state the security of FOT3.

Definition 7 (Security of FOT3). Let G
F be the functional OT’s functionality formalized in Definition 5.

We assert that a three-party protocol Γ securely realizes GF in the presence of passive adversaries if for every
adversary A in the real model, there is a simulator Sim in the ideal model, where:

{
SimΓ

S,aux

(→
m, ϵ

)}
→
m,

→
e
≡

{
ViewΓ

S,A(aux)

(→
m,

→
e
)}

→
m,

→
e

{
SimΓ

R,aux

(
→
e,GF(

→
m,

→
e)
)}

→
m,

→
e

≡
{
ViewΓ

R,A(aux)

(→
m,

→
e
)}

→
m,

→
e

{
SimΓ

H,Ω,aux(ϵ, ϵ)
}

→
m,

→
e

≡
{
ViewΓ

H,A(aux)

(→
m,

→
e
)}

→
m,

→
e
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The above definition excludes “PPT” adversary and includes “≡” (instead of “
c≡”) because it formu-

lates unconditional security. Next, we define the core security of the abstract algorithm Encode, introduced
in Section 2. We require that Encode satisfies the simulation-based security definition, as outlined in Def-
inition 1. More precisely, the view of an adversary A, who (i) has selected the input plaintext messages
→
m = [m0, . . . ,mn−1] and (ii) receives the output

→
h ← Encode(

→
m,

→
pp,

→
sk), which may reveal certain structural

information about
→
m, is simulated using: (a) A’s input, (b) a leakage function Ψ that defines the structural

information exposed by Encode, and (c) the output of Encode. This is formally stated below.

Definition 8 (Security of Encode). An encoding scheme Encode is secure, if for every adversary A, there is
a simulator Sim such that:

{
SimEncode

Ψ,aux

(→
m,Encode(

→
m,

→
pp,

→
sk)

)}
→
m,

→
pp,

→
sk

≡
{
ViewEncode

A(aux)

(→
m, (

→
pp,

→
sk)

)}
→
m,

→
pp,

→
sk

, where

aux includes
→
pp.

In the above definition,
→
m represents A’s input in the real-model view, whereas (

→
pp,

→
sk) are not part of

its input. In particular, the secret keys in
→
sk are not provided to A.

5.2 An Overview of the Protocol

In this section, we introduce a protocol, denoted as ΓFOT3
, which implements FOT3. We treat ΓFOT3

as a
“skeleton” protocol because it will rely on three abstract algorithms, (Encode,Evaluate, Decode), defined in
Section 2. We assume that Encode is secure. Broadly speaking, Encode is an encryption algorithm, Evaluate
is an algorithm for evaluating ciphertexts, and Decode is a decryption algorithm. Later, we will provide
concrete instantiations of these algorithms for specific functions, such as Mean and Mode.

ΓFOT3
mainly uses random permutation and a tool called a permutation map [5]. A permutation map is a

vector indicating the new position of each element of a vector
→
v of n elements after

→
v is randomly permuted.

In our protocol, the permutation map lets R instruct H on how to select t out of n permuted messages
sent by S, while ensuring that neither H nor S can deduce the original indices of these t messages. At a
high level, ΓFOT3

operates as follows. Initially, R selects n secret keys and sends them to S. Furthermore,

R generates two permutation maps: (1)
→
w for S, which allows S to randomly but deterministically permute

the vector of n messages
→
m = [m0, . . . ,mn−1] that it holds, and (2)

→
c for H, which enables H to obliviously

find t (encrypted) messages out of n messages that have already been permuted by S, without being able to
identify their original indices.

R sends the permutation maps,
→
w and

→
c , to S and H. Next, S encodes the n messages using Encode and

the secret key provided byR. It then permutes the encoded messages using
→
w and sends the result toH. With

the n permuted encoded messages and
→
c , H retrieves the t encoded messages and obliviously evaluates the

function F on them using Evaluate. This results in an encoded evaluated value. Finally, H sends the result to
R, which decodes it using the corresponding secret keys and Decode, yielding the plaintext evaluated value.

5.3 Detailed Description of ΓFOT3

In this section, we provide a detailed description of the protocol ΓFOT3
. We assume that the system’s public

parameters, denoted as
→
pp, are known to all participants. These parameters mainly depend on the type of

function F evaluated on the OT response, as well as the specific encryption and decryption methods (Encode
and Decode) used by ΓFOT3

. For instance, consider the case where: (i) F is defined as Mean, and (ii) Encode

and Decode use a one-time pad. In this scenario,
→
pp consists of: (a) a description of F, (b) a sufficiently large

prime number p, which can be generated by anyone, (c) n, the number of messages to be encoded, and (d)
t, the number of inputs to F, where n ≥ t. Therefore, in this case, generating the parameters in

→
pp does not

require a trusted setup.
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1. Setup: Setup(1λ)→ →
r

It is run by R.
(a) picks n random values (r0, . . . , rn−1)

$← {0, 1}λ. Let →
r be

→
r = [r0, . . . , rn−1]. These elements is used

as a one-time pad by S to encrypt each message that S sends.
(b) sends

→
r to S.

2. Query Generation: GenQuery(1λ,
→
e)→ qry := (qryS , qryH)

It is run by R.
(a) determines to which position, each index in a vector

→
v of size n is moved, if

→
v is randomly permuted

once. To do that, it takes the following steps.
i. initiates a vector

→
v , such that its i-th element is set to i as:

∀i, 0 ≤ i ≤ n− 1 :
→
v [i]← i

ii. randomly permutes
→
v as: π(

→
v)→ →

w.
(b) finds the index of each element of its index vector

→
e in

→
w. To do that, it initiates an empty vector

→
c

of size t and takes the following steps.

∀j, 0 ≤ j ≤ t− 1 : Find(
→
w,

→
e [j])→ cj,

→
c [j]← cj

Recall that
→
e contains the indices of R’s t preferred elements in [1, . . . , n], while

→
c determines the

position of these indices in
→
e after they are permuted based on the permutation map

→
w.

(c) sets qryS ←
→
w and qryH ←

→
c . It sends qryS to S and qryH to H.

3. Response Generation: GenRes(m0, . . . ,mn−1,
→
r , qryS ,

→
pp)→ resH

It is run by S.
(a) encrypts each message in

→
m = [m0, . . . ,mn−1] using the elements of

→
r = [r0, . . . , rn−1] as:

Encode(
→
m,

→
pp,

→
r )→

→
h

(b) permutes vector
→
h according the permutation map

→
w ∈ qryS . To do that, it initiates an empty vector

→
x of size n. It finds the position of each value i in the permuted vector

→
w, let i′ denote that position.

It inserts the i-th element from
→
h into the i′-th position in

→
x. Specifically,

∀i, 0 ≤ i ≤ n− 1 : Find(
→
w, i)→ i′,

→
x[i′]←

→
h[i]

(c) sets resH ←
→
x and sends resH to H.

4. Oblivious Evaluation: OblEvaluate(resH, qryH)→ resR
It is run by H.
(a) uses elements of

→
c ∈ qryH to retrieve R’s preferred encrypted messages in the permuted vector

→
x ∈ resH and append them to an empty vector

→
u. Specifically, it takes the following steps.

∀j, 0 ≤ j ≤ t− 1 :
→
u[j]← →

x
[
→
c [j]

]

(b) obliviously evaluates the function F (specified in
→
pp) on the plaintext encoded in

→
u, by executing:

Evaluate(
→
u,

→
pp)→ θ

(c) sets resR to θ and sends resR to R.
5. Message Extraction: Retrieve(resR,

→
r ,

→
e,

→
pp)→ y

It is run by R.
– retrieves the related secret keys for decoding. To do that, it initiates an empty vector

→
g and appends

to
→
g the secret keys in

→
r whose indices are specified in

→
e :

∀j, 0 ≤ j ≤ t− 1 :
→
g [j]← r→

e [j]

– decodes θ by invoking Decode(θ,
→
pp,

→
g )→ y.

Theorem 2. Let GF denote the functionality defined in Definition 5, and let Encode be an encoding scheme
that is secure according to Definition 8. Then, the protocol ΓFOT3

securely realizes GF according to Definition 7.
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5.4 Security Proof of ΓFOT3

In this section, we prove the security of ΓFOT3
, i.e., Theorem 2.

Proof. We prove Theorem 2 in the case where each party is corrupt. Since the public parameters # »pp are
known to all participants of the protocol in the real model, the simulator will be provided with the # »pp as
well. As before, the proof involves a sequence of hybrid experiments, transitioning from the real execution
to the ideal execution.

Corrupt R. We begin by considering the case where the receiver R is corrupt. We will employ a simulator
Sim

ΓFOT3
R (which receives R’s input

→
e and output y) to generate an ideal execution view incrementally

through a sequence of hybrids, i.e., Sim
ΓFOT3
R (

→
e, y)→ View

ΓFOT3
SimR .

• Hybrid 0 (ViewHybrid 0

A ): Real execution. The adversary’s view in the real execution of ΓFOT3
is:

ViewHybrid 0

A = {rR, resR}
where rR is the random coin sampled uniformly at random by R and resR is the response computed by
the protocol using Evaluate.

• Hybrid 1 (ViewHybrid 1

A ): Replace rR with r′R. In this hybrid, the simulator replaces the random coin rR

with a freshly generated random coin r′R. The adversary’s view becomes:

ViewHybrid 1

A = {r′R, resR}
Since rR and r′R are both uniformly random, the distributions of ViewHybrid 0

A and ViewHybrid 1

A are identical:

ViewHybrid 0

A ≡ ViewHybrid 1

A

• Hybrid 2 (ViewHybrid 2

A ): Replace resR with res′R. In this hybrid, the simulator replaces resR with a
simulated response res′R, generated as follows:
• The simulator computes a random value z, using r′R.
• The simulator uses z to encode the output y via the encoding algorithm: Encode(

→
y,

→
pp, z) → res′R.

Here, res′R is constructed such that it can be decoded to y, satisfying: Decode(res′R,
→
pp, z)→ y.

Since resR in the real protocol and res′R in this hybrid are encoded using fresh randomness and both
yield the same decoded output y, their distributions are identical. Thus, the adversary cannot distinguish
between Hybrid 1 and Hybrid 2:

ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3 (ViewHybrid 3

A ): Ideal model. In this final hybrid, the simulator replaces the real execution entirely
with the ideal execution. The adversary’s view becomes:

ViewHybrid 3

A = {r′R, res′R}.

By the simulator’s construction, the distributions of ViewHybrid 2

A and ViewHybrid 3

A are identical:

ViewHybrid 2

A ≡ ViewHybrid 3

A

Conclusion. In Hybrid 3, the simulator has fully constructed the ideal view:

View
ΓFOT3
SimS = {r′R, res′R}

By the transitivity of indistinguishability across the hybrids, we conclude:

ViewHybrid 0

A ≡ ViewHybrid 3

A ⇒ View
ΓFOT3
R,A ≡ View

ΓFOT3
SimR

where View
ΓFOT3
R and View

ΓFOT3
SimR are the real and ideal model views respectively.
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Corrupt S. We now consider the case where the sender S is corrupt. We will use a simulator Sim
ΓFOT3
S

(which receives S’s input →
m) to generate an ideal execution view, i.e., Sim

ΓFOT3
S (

→
m)→ View

ΓFOT3
SimS .

• Hybrid 0 (ViewHybrid 0

A ): Real execution. The adversary’s view in the real execution of ΓFOT3
is:

ViewHybrid 0

A = {rS ,
→
r ,

→
w}

where rS is the random coin used by S, →
r is the vector of random values exchanged during the protocol,

and
→
w is a permutation map received from R.

• Hybrid 1 (ViewHybrid 1

A ): Replace rS with r′S . In this hybrid, the simulator replaces the random coin rS

with a freshly generated random coin r′S . The adversary’s view becomes:

ViewHybrid 1

A = {r′S ,
→
r ,

→
w}

Since rS and r′S are both uniformly random, the distributions of ViewHybrid 0

A and ViewHybrid 1

A are identical:

ViewHybrid 0

A ≡ ViewHybrid 1

A

• Hybrid 2 (ViewHybrid 2

A ): Replace
→
r with

→
z . In this hybrid, the simulator replaces the vector of random

values
→
r with a simulated vector

→
z = [z0, . . . , zn−1], where zi

$← {0, 1}λ. The adversary’s view becomes:

ViewHybrid 2

A = {r′S ,
→
z ,

→
w}

Since
→
r and

→
z are both vectors of independently sampled uniform random values, the distributions of

ViewHybrid 1

A and ViewHybrid 2

A are identical:

ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3 (ViewHybrid 3

A ): Replace
→
w with

→
w′. In this final hybrid, the simulator replaces the permutation

map
→
w with simulated map

→
w′, where

→
w′ is generated by applying a random permutation π to [0, n− 1].

The adversary’s view becomes:

ViewHybrid 3

A = {r′S ,
→
z ,

→

w′}

Since
→
w and

→
w′ are both random permutations of [0, n − 1], their distributions are identical. Thus, the

distributions of ViewHybrid 2

A and ViewHybrid 3

A are identical:

ViewHybrid 2

A ≡ ViewHybrid 3

A

Conclusion. By the end of Hybrid 3, the simulator has constructed the full ideal view:

View
ΓFOT3
SimS = {r′S ,

→
z ,

→

w′}

Therefore, it holds that:

ViewHybrid 0

A ≡ ViewHybrid 3

A ⇒ View
ΓFOT3
S,A ≡ View

ΓFOT3
SimS

where View
ΓFOT3
S,A and View

ΓFOT3

SimS
are the real and ideal model views respectively, as formalized in Section 5.1.
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Corrupt H. We now consider the case where the third party H is corrupt. We denote FΨ
Encode as an ideal

functionality of Encode. The functionality is parameterized with the leakage function Ψ , it takes a vector of
messages and outputs encoding of the messages according to the leakage function.

We will use a simulator Sim
ΓFOT3
H to generate an ideal execution view using the auxiliary data (public

parameters
→
pp), i.e., Sim

ΓFOT3
H (

→
pp)→ View

ΓFOT3
SimH .

• Hybrid 0 (ViewHybrid 0

A ): Real execution. The adversary’s view in the real execution of ΓFOT3
is:

ViewHybrid 0

A = {rH,
→
c ,ViewEncode

H }
where:
• rH is the random coin generated internally by H.
• →

c is a t-element vector of indices, which is a subset of a randomly permuted vector
→
w.

• ViewEncode

H refers to H’s real-model view during the execution of Encode. Note that, as defined in
Section 2.1, a view like ViewEncode

H also includes the output of Encode that a party may receive (if the
protocol allows to). However, in the real execution of ΓFOT3

, H receives the output of Encode that
has been permuted randomly based on a permutation map. Thus, we allow ViewEncode

H to contain the
permuted output of Encode rather than its direct output.

• Hybrid 1 (ViewHybrid 1

A ): Replace rH with r′H. In this hybrid, the simulator replaces rH with a freshly
generated random coin r′H. The adversary’s view becomes:

ViewHybrid 1

A = {r′H,
→
c ,ViewEncode

H }
Since rH and r′H are both uniformly random, the distributions of ViewHybrid 0

A and ViewHybrid 1

A are identical:

ViewHybrid 0

A ≡ ViewHybrid 1

A

• Hybrid 2 (ViewHybrid 2

A ): Replace
→
c with

→
c′. In this hybrid, the simulator replaces

→
c with a simulated vector

→
c′ = [c′0, . . . , c

′
t−1], where each c′j is selected uniformly at random without replacement from [0, n − 1],

ensuring all elements are unique. The adversary’s view becomes:

ViewHybrid 2

A = {r′H,
→

c′,ViewEncode

H }

We now argue that the distributions of
→
c in Hybrid 1 and

→
c′ in Hybrid 2 are identical. In the real model

(and accordingly Hybrid 1),
→
c is a subset of

→
w, which is a randomly permuted vector of [0, n− 1]. Since

→
w is uniformly permuted, each element of

→
c is chosen uniformly at random from [0, n − 1], and the

probability of any specific value appearing in a given position of
→
c is 1

n .

In Hybrid 2,
→
c′ is generated by selecting t unique elements uniformly at random without replacement

from [0, n− 1]. Despite this difference in construction, the probability of any specific value appearing in

a given position of
→
c′ is also 1

n .

Thus, the distributions of
→
c and

→
c′ are identical, and the adversary cannot distinguish between Hybrid

1 and Hybrid 2:

ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3 (ViewHybrid 3

A ): Replace ViewEncode

H with
→
x′. In this final hybrid, the simulator replaces ViewEncode

H

with
→
x′, the randomly permuted output of FΨ

Encode, generated as follows:

• The simulator selects n messages
→
m̄ = [m̄0, . . . , m̄n−1] uniformly at random from the message domain

U .

• The simulator sends
→
m̄ to FΨ

Encode and receives the output
→
m̄′

• The simulator applies a random permutation to
→
m̄′ to obtain

→
x′.
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The adversary’s view becomes:

ViewHybrid 3

A = {r′H,
→

c′,
→

x′}

Since the permuted output of FΨ
Encode in Hybrid 3 is indistinguishable from ViewEncode

H in the real model
(and accordingly Hybrid 2) due to the FΨ

Encode-hybrid model assumption, we have:

ViewHybrid 2

A ≡ ViewHybrid 3

A

Conclusion. In Hybrid 3, the simulator has fully constructed the ideal view:

View
ΓFOT3
SimH = {r′H,

→

c′,
→

x′}

By the transitivity of indistinguishability across the hybrids, we conclude:

ViewHybrid 0

A ≡ ViewHybrid 3

A ⇒ View
ΓFOT3
H,A ≡ View

ΓFOT3
SimH

where View
ΓFOT3
H,A and View

ΓFOT3
SimH are the real and ideal model views respectively. ⊓⊔

5.5 Subroutines for Mean

Given a vector of plaintext messages m = [m0, . . . ,mn−1] and vectors of secret keys [r1, . . . , rn], the encoding

algorithm EncodeMean(
→
m,

→
pp,

→
sk) mainly involves modular addition of each secret key ri and the related message

mi. It returns n encoded values. This simple encoding (or encryption) method offers several benefits. It
ensures unconditional security while being highly efficient. As we will see shortly, using modular addition
lets us perform oblivious evaluation and ultimately decode the evaluated value to obtain a correct result.
Figure 3a explains how EncodeMean works. Next, we explain how EvaluateMean works.

Recall that a plain Mean(a0, . . . , at−1) with t plaintext inputs is defined as 1
t ·

t−1∑
i=0

ai. Hence, for EvaluateMean,

aiming at simulating Mean’s functionality, to work over Fp and values
→
h = [h0, . . . , ht−1] that are encoded

using the approach explained above, we require EvaluateMean(
→
h,

→
pp) to compute θ = t−1 ·

t−1∑
i=0

hi mod p as the

evaluated encoded value. Figure 3b shows how EvaluateMean works. Given the encoded evaluated value θ, using

the secret keys, one can decode (or decrypt) it by subtracting t−1 ·
t−1∑
i=0

ri from θ. This decoding is possible

and easy due to the way the plaintext messages were encoded and evaluated. Figure 3c presents EvaluateMean.

Theorem 3. Let Encode be the functionality defined in Section 2 and Ψ be a leakage function that always
returns empty, i.e., no leakage. Then, EncodeMean (presented in Figure 3a) securely realizes Encode, w.r.t.
Definition 8.

Note that given that ΓFOT3
and EncodeMean are secure, the hybrid argument ensures that the protocol ΓFOT3

using EncodeMean satisfies the security requirements outlined in Definition 7. Moreover, as EvaluateMean operates
solely on the output of EncodeMean without using any secret keys, its security is guaranteed by the security of
EncodeMean. Specifically, the security of EncodeMean ensures that executing any function or algorithm—including
EvaluateMean—does not reveal any information about the plaintext messages. Furthermore, DecodeMean reveals
no information beyond the output of EvaluateMean, as EvaluateMean is executed honestly on the ciphertexts by
a semi-honest adversary.
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EncodeMean(
→
m,

→
pp,

→
sk)→

→
h

• Input.
→
m = [m0, . . . ,mn−1]: a vector of plaintext messages,

→
pp: public parameter containing (i)

a security parameter λ, (ii) a sufficiently large prime number p, where log2(p) = λ, (iii) t: the

number of inputs to Mean, and (iv) n: the size of
→
m, where n ≥ t, and

→
sk = [r0, . . . , rn−1]: a vector

of secret keys selected uniformly at random, where log2(ri) = λ.

• Output.
→
h = [h0, . . . , hn−1]: a vector of encoded messages.

1. Encodes each element using each ri as a one-time pad:

∀i, 0 ≤ i ≤ n− 1 : hi = mi + ri mod p

2. Returns
→
h = [h0, . . . , hn−1].

(a) Encoding algorithm.

EvaluateMean(
→
h,

→
pp)→ θ

• Input.
→
h = [h0, . . . , ht−1]: a vector of en-

coded messages, and
→
pp: the public pa-

rameters, containing [λ, p, n, t].
• Output. θ: an encoded evaluated value.
1. Computes an encoded output of Mean,

by multiplying the multiplicative inverse

of t by the sum of the elements in
→
h as:

θ = t−1 ·
t−1∑

i=0

hi mod p

= t−1 ·
t−1∑

i=0

mi + ri mod p

2. Returns θ.

(b) Evaluation algorithm.

DecodeMean(θ,
→
pp,

→
sk)→ y

• Input. θ: an encoded evaluated value,
→
pp: the public parameters containing

[λ, p, n, t], and
→
sk = [r0, . . . , rt−1]: the

vector of secret keys.
• Output. y: a decoded evaluated value.
1. Decodes θ in a way that the result is the

evaluated value. Specifically:

y = θ − t−1 ·
t−1∑

i=0

ri mod p

= t−1 ·
t−1∑

i=0

mi mod p

2. Returns y.

(c) Decoding algorithm.

Fig. 3: Encoding, evaluation, and decoding algorithms for secure evaluation of Mean.

5.6 Proof of Theorem 3

Proof. We will show that the adversary’s view in the real model and the ideal model are indistinguishable.
To do so, we use a hybrid argument.

• Hybrid 0: Real model. The first hybrid corresponds to the real model. The adversary’s view during the
execution of EncodeMean includes:

ViewEncodeMean
A = {rA,

→
h}

where rA is the random output of the adversary’s internal coin tosses, and
→
h is the vector of encoded

messages, with each element masked using fresh one-time pads.
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• Hybrid 1: Replace randomness. In the first hybrid, we replace rA with r′A, which is sampled uniformly
at random as in the ideal model. Since rA and r′A are both sampled independently and uniformly from
the same domain, their distributions are identical:

View
EncodeMean

A ≡ ViewHybrid 1

A

• Hybrid 2: Replace encoded messages. In the second hybrid, we replace the vector of encoded messages
→
h with a vector

→
z , where each zi ∈

→
z is sampled uniformly at random from {0, 1}λ.

By the perfect secrecy of the one-time pad, each element of
→
h (masked with a fresh one-time pad)

is indistinguishable from a uniformly random value. Thus, replacing
→
h with

→
z does not change the

adversary’s view:
ViewHybrid 1

A ≡ ViewHybrid 2

A

• Hybrid 3: Ideal model. In the final hybrid, we arrive at the ideal model. Here, the simulator constructs
the adversary’s view as:

View
EncodeMean

SimA
= {r′A,

→
z}

where r′A is a uniformly random coin toss and
→
z is a vector of n uniformly random values. This hybrid

matches the ideal model by definition. Thus:

ViewHybrid 3

A = ViewEncodeMean
SimA

Conclusion. By the transitivity of indistinguishability, we have:

ViewEncodeMean
A ≡ ViewEncodeMean

SimA

Thus, EncodeMean securely realizes Encode, completing the proof. ⊓⊔

5.7 Subroutines for Mode

The design of encoding, evaluation, and decoding algorithms for Mode is more involved than for Mean as in
the former case we need to address two primary challenges, outlined below.

– Encoding private inputs that supports post-quantum secure evaluation. As defined in Section 2, the plain
Mode involves finding the most frequent element among the input set. The main challenge is to develop

an encoding algorithm EncodeMode(
→
m,

→
pp,

→
sk) that encodes each plaintext message in

→
m such that, later on,

the execution ofMode on these encoded messages will result in a correct output while ensuring the privacy
of the plaintext messages and output against quantum adversaries that perform the evaluation. Briefly, to
address these challenges, we require EncodeMode to encrypt the input plaintext messages deterministically

using a one-time pad. Specifically, EncodeMode assigns a secret key from
→
sk to each unique plaintext message

in
→
m. Thus, two identical plaintext messages will have identical ciphertext. This allows one to execute

Mode on these encoded messages without needing to have the knowledge of the plaintext messages. Also,
since one-time pads are unconditionally secure, the plaintext messages remain secure against quantum
adversaries.

– Finding a correct key. The next challenge is to enable DecodeMode(θ,
→
pp,

→
sk) to identify a correct secret

key to decode and retrieve a correct plaintext message. Using an incorrect key to decode a message will
result in output that does not match the original plaintext message. This challenge arises for two main

reasons: (1) by definition of Mode, the algorithm EvaluateMean(
→
h,

→
pp) → θ outputs only a single (or a

small set of) output(s) and (2) the party who executes DecodeMode(θ,
→
pp,

→
sk), which is the receiver in the

context of OT, does not know which key was used to encrypt the output θ. To address this challenge and

help DecodeMode(θ,
→
pp,

→
sk) output a correct plaintext message, we use a padding technique, discussed in

Section 2. This technique adds a pad to each plaintext message, accordingly imposing a certain structure
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to it before the message is encoded. Within the decoding process, every input secret key in
→
sk is used

to decode θ. Then, the result is checked to ensure whether it has the predefined structure. If it still
possesses the structure, then the decoding process stops and that message will be considered as the
decoded message (after the pad is removed).

EncodeMode(
→
m,

→
pp,

→
sk)→

→
h

• Input.
→
m = [m0, . . . ,mn−1]: plaintext messages,

→
pp = [λ, p, γ, n, t]: public parameters, and

→
sk =

[r0, . . . , rn−1]: a vector of secret keys selected
uniformly at random, where log2(ri) = λ.

• Output.
→
h = [h0, . . . , hn−1]: encoded messages.

1. Pads each element with γ zeros:

∀i, 0 ≤ i ≤ n− 1 : Pad(mi, γ)→ m̄i

2. Encodes deterministically each unique m̄i using
a fresh ri, by creating an empty vector

→
v and

taking the following steps. ∀i, 0 ≤ i ≤ n− 1 :
– if ∄ m̄j ∈

→
v , s.t. m̄i = m̄j, then:

(a) hi = m̄i + ri mod p
(b)

→
v ← (m̄i, i)

– else if ∃ m̄j ∈
→
v , s.t. m̄i = m̄j, then:

⋄ hi = m̄i + rj mod p

3. Returns
→
h = [h0, . . . , hn−1].

(a) Encoding algorithm.

EvaluateMode(
→
h,

→
pp)→ θ

• Input.
→
h = [h0, . . . , ht−1]: a vector

of encoded padded messages, and
→
pp = [λ, p, γ, n, t]: public parame-
ters.
• Output. θ: an encoded evaluated
value, i.e., encoded padded mean.

1. Finds the most frequent (encoded
padded) message among the t en-
coded padded messages by calling:

Mode(h0, . . . , ht−1)→ ht

2. Sets θ to ht and returns θ.

(b) Evaluation algorithm.

DecodeMode(θ,
→
pp,

→
sk)→ y

• Input. θ: an encoded evaluated value,
→
pp = [λ, p, γ, n, t], and

→
sk = [r0, . . . , rt−1].

• Output. y: a decoded evaluated value.
1. Retrieves the plaintext. ∀i, 0 ≤ i ≤ t− 1 :

(a) Decrypts the value using each key: d′j = θ − rj mod p.
(b) Checks the plaintext’s correctness: CheckPad(d

′
j, γ)→ res.

– If res = True:
i. removes the pad by calling: Unpad(d′j, γ, p)→ dj.
ii. sets y ← dj.
iii. proceeds to step 2.

– Otherwise (res = False), halts.

2. Returns y.

(c) Decoding algorithm.

Fig. 4: Encoding, Evaluation, and Decoding algorithms for secure evaluation of Mode.
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Figures 4a, 4b, and 4c provide descriptions of EncodeMode, EvaluateMode, and DecodeMode, respectively. The
novelty of ΓFOT3

’s subroutine design for Mode lies in its ability to achieve both efficiency and unconditional
security by effectively integrating ΓFOT3

with one-time pads, the padding technique, and the deterministic
masking method for identical values. Informally, the only information that the output of EncodeMode reveals
is the number of times that some (encrypted) elements are repeated. Below, we formally define it.

Definition 9 (Function Ψ). Let
→
s = [s0, . . . , sn−1] be a vector of n (encrypted) elements. Let Frequency be

the frequency function formalized in Definition 2. The leakage function Ψ is defined as:

Ψ(
→
s)→

{(
si,Frequency(

→
s, si),Position(

→
s, si)

)}
∀si∈Unique(

→
s )

where Position(
→
s, si) returns all indices in

→
s where si occurs and Unique(

→
s) returns a vector of all distinct

elements in
→
s .

With the leakage function defined, we now present the security theorem for EncodeMode.

Theorem 4. Let Ψ denote the leakage function formalized in Definition 9. Let Encode represent the func-
tionality defined in Section 2. Then, EncodeMode (presented in Figure 4a) securely realizes Encode, with respect
to Definition 8.

5.8 Proof of Theorem 4

Proof. We prove Theorem 4 by showing that the adversary’s view in the real model and the ideal model are
indistinguishable.

• Hybrid 0: Real model. This hybrid corresponds to the real model. The adversary’s view during the
execution of EncodeMode includes:

ViewEncodeMode
A = {rA,

→
h}

where rA is the random output of the adversary’s internal coin tosses, and
→
h is the vector of encoded

messages, where each element of
→
h is masked using fresh one-time pads.

• Hybrid 1: Replace randomness. In this hybrid, we replace rA with r′A, which is sampled uniformly at
random as in the ideal model. Since rA and r′A are both sampled independently and uniformly from the
same domain, their distributions are identical:

ViewEncodeMode
A ≡ ViewHybrid 1

A

• Hybrid 2: Replace encoded messages with simulated messages. In this hybrid, we replace the vector of

encoded messages
→
h with a simulated vector

→
z . Each zi ∈

→
z is generated based on the leakage function Ψ ,

i.e., Ψ(
→
h)→

{(
hi,Frequency(

→
h, hi),Position(

→
h, hi)

)}
∀hi∈Unique(

→
h )
. Specifically, we initiate an empty vector

→
z of size n. Then, we take the following steps, ∀i, 0 ≤ i ≤ n− 1:

• if
→
z [i] is empty:

1. select a fresh random value zi

$← {0, 1}λ.
2. assign zi to all positions in

→
z determined by Position(

→
h, hi), ensuring that Frequency(

→
z , zi) =

Frequency(
→
h, hi).

• if
→
z [i] is not empty, then take no action.

By the perfect secrecy of the one-time pad, each element of
→
h is indistinguishable from a random value.

Thus, replacing
→
h with

→
z does not change the adversary’s view:

ViewHybrid 1

A ≡ ViewHybrid 2

A
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• Hybrid 3: Ideal model. In the final hybrid, we arrive at the ideal model. Here, the simulator constructs
the adversary’s view as:

View
EncodeMode

SimA
= {r′A,

→
z}

where r′A is a uniformly random coin toss and
→
z is a simulated vector generated using Ψ . This matches

the ideal model by definition:

ViewHybrid 3

A = View
EncodeMode

SimA

Conclusion. By the transitivity of indistinguishability, we have:

ViewEncodeMode
A ≡ View

EncodeMode

SimA

Thus, EncodeMode securely realizes Encode, completing the proof. ⊓⊔

5.9 Subroutines for Additions and Multiplications

Simplified versions of the subroutines for Mean (in Figure 3) support (i) the addition operation, defined

as Add(a0, . . . , at−1) →
t−1∑
i=0

ai or (ii) the multiplication operation, defined as Multiply(a0, . . . , at−1) →
t−1∏
i=0

ai.

Briefly, the simplification involves excluding t−1 from these subroutines. Specifically, for Add the following

amendments are needed: (a) in step 1 of Figure 3b, θ is computed as: θ =
t−1∑
i=0

hi mod p, and (b) in step 1 of

Figure 3c, y is computed as: y = θ −
t−1∑
i=0

ri mod p. For Multiply the following minor adjustments are needed:

(a) in step 1 of Figure 3a, each hi is computed as hi = mi ·ri mod p, (b) in step 1 of Figure 3b, θ is computed

as θ =
t−1∏
i=0

hi mod p, and (c) in step 1 of Figure 3c, y is computed as: y = θ ·
t−1∏
i=0

r−1
i mod p.

5.10 Extension: Converged OT

In this section, we discuss an extension of the protocol ΓFOT3
presented in Section 5.3 to scenarios involving

multiple senders S1, . . . ,Sk, where each sender holds a vector of n messages. In this setting, the receiver R
has a vector of t indices for each sender and ultimately it obtains a function of the messages corresponding
to its selection. We refer to a protocol with these features as Converged OT to highlight its unification of key
aspects, including oblivious transfer, multi-sender support, and the computation of functions over selected
messages. Thus, the functionality GF in Definition 5 will change, now it takes as input a vector of messages
from each sender, and k vectors of indices (

→
e1, . . . ,

→
ek) from R. More specifically, now the functionality is

defined as:

GF :
(

→
m1, . . . ,

→
mk, (

→
e1, . . . ,

→
ek)

)
→ y

where each
→
m1 is defined as

→
ml = [ml,0, . . . ,ml,n−1], and 1 ≤ l ≤ k. At a high level, ΓFOT3

should be
adjusted as follows. The receiver for each sender independently generates a similar pair of queries to the
one it generates in a single sender setting and sends the related query to each sender and H. Each sender
independently generates their response and sends it to H which collects the responses, runs the evaluation
function of them, and sends the result to R. Given H’s response, R decodes it to obtain the evaluated
value. Appendix C presents the Converged OT in detail. In the Converged OT, the senders do not learn
anything about the sender’s indices, even if all senders collude with each other. On the other hand, the
receiver will not learn anything beyond the evaluated value, i.e., the output of the function evaluated on the
selected messages. The subroutines presented in Sections 5.5 and 5.7 remain applicable to the Converged OT
without requiring fundamental modifications, provided the public parameters in

→
pp are adjusted accordingly.

For instance, in Figure 3, t is now defined as |→e1|+ . . .+ |→ek|.

22



6 Evaluation

6.1 Asymptotic Cost Analysis

In this section, we analyze the complexity of the proposed schemes. Table 1 summarizes the result.

Table 1: Asymptotic costs of the proposed three protocols.

Protocol Party Computation Communication Storage R’s Download

ΓFOT2

R O(t · n) O(t · n) O(n) O(1)

S O(t · n) + Comp(F, t) O(t · n) O(n) –

R O(n) O(n) O(n) O(1)

S O(n) O(n) O(n) –ΓFOT3
– Mean

H O(t) O(1) O(n) –

R O(n) O(n) O(n) O(1)

S O(n) O(n) O(n) –ΓFOT3
– Mode

H O(t) O(1) O(n) –

ΓFOT2
. The parties’ computation complexity is as follows. R invokes t instances of FHE in step 2a, performs

n− 1 modular addition in step 2(b)ii, invokes t ·n instances of OLE in step 2d, and invokes a single instance
of FHE in Phase 4. Thus, its total computation complexity is O(t ·n). S invokes t ·n instances of OLE in step
2d, performs n modular addition in step 3a, invokes t instances of FHE in step 3b, and obliviously evaluates
the function F on the t ciphertexts using FHE with the complexity of Comp(F, t), in step 3c. Therefore,
the total computation complexity of S is O(t · n) + Comp(F, t). The parties’ communication complexity is
as follows. R publishes a single public key in step 1b, invokes t · n instances of OLE in step 2d with the
communication complexity of O(t ·n), and also transmits t ciphertexts at the end of Phase 2. Thus, R’s total
communication complexity is O(t · n). On the other hand, S invokes t · n instances of OLE in step 2d with
the communication complexity of O(t · n), and sends the encrypted evaluated value to R in step 3d. Hence,
S’s total communication cost is also O(t ·n). Next, we estimate the parties’ storage costs. The storage space
required by R is O(n), because it needs to generate n random messages in step 2b and use them as input
to OLE in step 2d. The storage space required by S is also O(n) as it maintains a vector of n messages. The
download complexity of R is O(1) because it only downloads an encrypted evaluated value in step 3d.

ΓFOT3
–Mean. We proceed to analyze the parties’ overheads in the case where they participate in ΓFOT3

to
compute Mean. We initially focus of the parties’ computation complexity. R randomly permutes a vector
of n elements with a complexity of O(n) in step 2(a)ii, finds t elements in a vector of n elements with a
complexity of O(n) in step 2b, and performs t + 1 modular addition and one multiplication to decode the
result in step 5. Therefore, R’s total computation complexity is O(n). S performs n modular addition to
encode the massages in step 3a, and permutes a vector of n elements with the complexity of O(n) in step 3b.
Hence, the total computation complexity of S is O(n). Moreover, H evaluates the function on t ciphertexts
that involve t modular addition and a single modular multiplication in step 4b; hence, its complexity is O(t).
Now, we turn our attention to the parties’ communication costs. R sends a vector of n elements to S in steps
1b and 2c and a vector of t messages to H in step 2c; thus, its total communication complexity is O(n).
Also, S’s complexity is O(n) as it only sends a vector of n elements to H in step 3c. The communication
complexity of H is O(1) because it only sends a single value to R in step 4c.
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Next, we estimate the parties’ storage costs. The storage space needed by R is O(n), as it needs to
randomly permute a vector of n messages in step 2a; however, the size of each element of the vector is very
small. The storage space required by S is also O(n), as it needs to store a vector containing n messages. The
storage cost of H is O(n) because it receives n messages from S in step 3c. The download complexity of R is
O(1) as it only downloads an encoded evaluated value in step 4c. The size of the message that R downloads
corresponds to the security parameter λ, e.g., 128-bit.

ΓFOT3
–Mode. Next, we evaluate the parties’ costs in the scenarios where they engage in ΓFOT3

to compute
Mode. R’s complexity is O(n), because it takes the same steps as it takes in ΓFOT3

for computing Mean. The
computation complexity of S is O(n) because it pads n elements and performs at most n modular addition
to encode n messages in step 3a and permutes a vector of n elements with the complexity of O(n) in step 3b.
Also, H’s complexity is O(t) because it searches through the t encrypted elements and finds the one with the
highest frequency in step 4b. The parties’ communication and computation complexities remain the same as
their related complexities when they participate in ΓFOT3

for computing Mean. The download complexity of
R is also O(1) as it only downloads an encoded evaluated value in step 4c, where the size of the downloaded
message is about the same as the security parameter λ, e.g., 256-bit. The size of a message downloaded in
this setting is larger than in the setting used for computing Mode via ΓFOT3

. This increase is due to the use
of padding, which expands the size of each message and, consequently, the size of the finite field.

6.2 Concrete Cost Analysis

We implemented ΓFOT3
–Mean and ΓFOT3

–Mode in C++ and evaluated their concrete runtime. The source
code for the implementation is publicly available [2, 3]. We used a MacBook Pro with an Apple M3 Pro
CPU and 36 GB of RAM for the experiment. No parallelization was applied. The experiment was repeated
an average of 10 times. In ΓFOT3

–Mean, we set the message size σ and the security parameter λ to 128. In
ΓFOT3

–Mode, we set σ and pad size γ to 128, and λ to 257.

Table 2: Runtimes (in ms) of ΓFOT3
-Mean and ΓFOT3

-Mode across different values of n and t.

Protocol t
Number of messages: n

24 28 212 216 220 224

Γ
F
O

T
3
-M

ea
n

2 0.33 0.58 4.35 65.46 1301.15 30966

24 – 0.58 4.37 65.77 1389.56 31148

28 – – 4.43 65.94 1398.13 31144.1

212 – – – 66.14 1408.9 31192.9

216 – – – – 1463.95 31302.6

220 – – – – 32096.6

Γ
F
O

T
3
-M

o
d
e

2 0.35 0.93 9.21 168.27 3125.88 65754.7

24 – 0.93 9.87 167.33 3271.86 66514.9

28 – – 10.24 168.15 3281.13 66877.3

212 – – – 168.56 3211.47 66930.9

216 – – – – 3265.62 67802.4

220 – – – – 68425.8

We analyzed the schemes’ runtime for various values of t (from 2 to about 16 million) and n (from 2 to
268 million). Table 2 shows the results. As the table indicates, the schemes scale well even for large values
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of n and t. For instance, when n = 224 and t = 220, it takes about (i) 32 seconds for ΓFOT3
-Mean and (ii) 68

seconds for ΓFOT3
–Mode to complete. On average, ΓFOT3

–Mode is 2.2 times slower than ΓFOT3
–Mean.

Comparing Scalable OTs. We also compared the runtime of ΓFOT3
–Mean and ΓFOT3

–Mode with the
runtime of the scalable t-out-of-n OTs [5,32], for different numbers of invocations (from 125,000 to 1,250,000)
and values of t (from 2 to 12) when n = 16. Figure 5 summarizes the result for 1,250,000 OT invocations.
For the runtime of [32], we derived the figures from [43]. The message size in the scheme proposed by the
reference [32] is only 4 bits. The OT proposed in [5, 32] has the highest runtime growth as t increases. In
contrast, the OT from [5] remains the most efficient, although neither supports computation on selected
messages. ΓFOT3

–Mean has a runtime closer to the OT in [5], whereas ΓFOT3
–Mode has a higher runtime than

ΓFOT3
–Mean. Table 3 provides further details.
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ΓFOT3
–Mode

Fig. 5: Performance comparison for 1.25× 106 invocations.

7 Applications

In this section, we examine four key applications where functional OT provides enhancements: (1) privacy-
preserving K-Nearest Neighbors (KNN), (2) privacy-preserving client selection in federated learning, (3)
privacy-preserving recommender systems, and (4) secure multi-party dataset aggregation.

7.1 Privacy-Preserving K-Nearest Neighbors

Context. The K-Nearest Neighbors (K-NN) algorithm is a simple yet powerful technique widely used in
supervised machine learning for both classification and regression tasks [20]. At a high level, K-NN works by
comparing a given data point to its closest points (neighbors) in a dataset and using their properties to make
a prediction. Unlike parametric models, K-NN does not assume a specific functional form for the underlying
data distribution. Instead, it relies on a distance-based approach to find similar instances in the dataset.

The dataset D is often defined as a set of labeled data points: D = {(xi, yi) | xi ∈ Rn′
, yi ∈ Y, i =

0, . . . , n− 1}, where n is the total number of data points, xi ∈ Rn′
represents the i-th data point as a feature

vector of dimension n′, yi ∈ Y is the corresponding label for xi. For classification, Y = {0, . . . , C}, where C
is the number of distinct classes, and for regression, Y ⊆ R represents continuous values. In K-NN, a query
xq is an unlabeled data point for which the algorithm predicts a label. At an abstract level, K-NN involves
four phases:

1. Setup: select a positive integer K, according to some rules.
2. Calculate the distance: for a given input data point, K-NN calculates the distance to all the points in

the training set.
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Table 3: Comparing the runtime (in ms) of ΓFOT3
–Mean and ΓFOT3

–Mode with the scalable OTs proposed
in [5, 32], for different values of t and various numbers of OT invocations, when n = 16. For the OT in [32]
the message size is only 4 bits.

Protocol t
Number of invocations

1.25× 105 2.5× 105 5× 105 1.25× 106

[32]

2 4320 8460 17000 43360
4 8640 16920 34000 86720
6 12960 25380 51000 130080
8 17280 33840 68000 173440
10 21600 42300 85000 216800
12 25920 50760 102000 260160

[5]

2 2228.56 4529.27 9290.04 23495.6
4 2346.3 4713.24 9554.61 23963.7
6 2400.08 4897.03 9823.35 24541.6
8 2408.6 4985.46 9934.83 24569
10 2448.86 4993.86 9999.01 25249.2
12 2478.03 5136.36 10323.4 26076.2

ΓFOT3
–Mean

2 2387.55 4903.5 9913.72 25307.6
4 2487.36 5047.76 9956.19 25502.4
6 2490.75 5232.62 10499 26159.8
8 2574.68 5319.06 10905.4 26867.4
10 2689.82 5599.08 11059.2 27671.1
12 2793.81 5626.98 11403.2 28640.9

ΓFOT3
–Mode

2 7262.59 14408.4 28973.9 74395.6
4 7495.64 14991.7 29810.7 76181.5
6 7887.44 15405.6 32639.9 80955.1
8 8375.55 16059.4 34414.1 84351
10 8493.99 17167.5 34796 89130.2
12 8869.04 17914.3 34818.2 91053.1

3. Select the K nearest neighbors, closest to the data point.
4. Make a prediction: (i) for classification, it assigns the class label that appears most frequently among the

K neighbors, and (ii) for regression: it computes the average of the labels related to the K neighbors.

State-of-the-Art. There have been works on Privacy-Preserving K-NN Search (PPK-NNS) [10,13,50,63].
A PPK-NNS is a protocol that enables the identification of the K data points closest to a given query within
a dataset, while ensuring the privacy of both the data and the query. It ensures that the dataset holder
(a.k.a the sender) will not learn anything about the query while the query sender (a.k.a. the receiver) will
not learn anything beyond the K associate data, e.g., labels. PPK-NNS has various applications in scenarios
where sensitive data is involved, including targeted advertising, biometric data, DNA data analysis, and face
recognition; see [13, 50] for a comprehensive list of applications. Some of the PPK-NNSs are highly scalable
and efficient [13, 50]. Nevertheless, they are somehow limited in functionality. For instance, in the context
of machine learning, in particular, the K-NN algorithm, PPK-NNSs do not provide the final prediction
produced by a conventional K-NN algorithm. In these schemes, the receiver must take an additional step, to
perform a local computation on these K labels to derive the final prediction. In these PPK-NNSs, the set of
K labels is revealed to the receiver, rather than the ultimate output of K-NN, the predicted value.
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Our Solution: Privacy-Preserving K-NN Based on PPK-NNS and Functional OT. Companies
like Apple are offering privacy-preserving AI where clients’ queries can remain oblivious to the server, at
inference time [6]. Our functional OT protocols can help achieve this goal. Specifically, our protocols can
complement these PPK-NNSs by further minimizing this information disclosed to the receiver. Consider
a scenario where each data point in the sender’s dataset is assigned a public index (in addition to its
original label). The dataset is sorted according to these indices, ranging from 0 to n − 1. At the end of
PPK-NNS [10,13,63], the receiver obtains the indices of the top K nearest data points. To compute the final
prediction, the receiver and the sender invoke our functional OT protocol. The receiver’s input consists of
the K indices, while the sender’s input comprises n labels. The functional OT protocol returns a function of
the labels corresponding to these indices to the receiver. As a result, the receiver will not learn the K labels
(except for the K public indices). Simultaneously, the sender learns nothing about the receiver’s query and
the output of the function. Figure 6 depicts this process that combines PPK-NNS and the functional OT.
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Fig. 6: The Parties’ interaction in the proposed privacy-preserving K-NN protocol, minimizing information
leakage to the receiver via PPK-NNS and functional OT. In this figure, b, . . . , z ∈ [0, n− 1].

7.2 Privacy-Preserving Client Selection in Federated Learning

Context. Client selection is a critical component in enhancing the performance of Federated Learning
(FL) [35] by determining the optimal subset of clients participating in each training round [21,34,37,45,55].
The heterogeneity among clients—including variations in local data distributions, computational resources,
and network latency—introduces challenges to effective selection. Robust client selection mechanisms are
vital for ensuring model accuracy, accelerating convergence, and maintaining overall system efficiency. Client
selection can be guided by various criteria, as highlighted in [21,34,37,45,55]. These criteria include:

• Computation capability : The processing power available on the client device.

• Communication capability : The bandwidth and network stability required for effective participation. This
also includes the overall availability of a device at a specific time within a defined time window.

• Battery level : The availability of sufficient battery power to complete the required tasks.

• Device workload : The presence of resource-intensive applications running in the background.

• Heterogeneous data distributions: Variability in the data characteristics across clients.

• Data utility : The value of a client’s data, assessed by factors such as the number of data samples or the
cumulative loss associated with their data.

• Data relevance: A relevance score that measures how well a client’s data aligns with the objectives of
the task.

• Device location: The geographical location of the client device, which may impact its relevance to the
task, fairness, availability, or compliance with specific requirements.

27



State-of-the-Art. A few studies have explored enabling servers to select clients in a privacy-preserving
manner [33, 53, 62], focusing on a limited set of characteristics, such as the size of the clients’ label sets and
the relevance of their data samples. Among these approaches, [33, 62] require each client to disclose certain
characteristics of their dataset (e.g., relevant samples) in plaintext to the server. These methods also utilize
a private set intersection (PSI) scheme to enable the server to identify matching metadata (e.g., labels) and
accept a client if the cardinality of the intersection exceeds a predefined threshold. However, PSI inherently
reveals individual elements common to both parties’ sets, resulting in information leakage that functional OT
seeks to prevent. Moreover, these schemes inadvertently expose non-trivial information about each client’s
dataset, such as its statistical homogeneity.

A mechanism proposed in [53] facilitates client selection in FL by involving a third party to assist the
server and clients in identifying irrelevant data (or clients). This scheme assumes the third party possesses a
small set of benchmark data. Initially, the third party trains a benchmark model using only the benchmark
data. The trained model is then sent to each client who collaborates with the server to compute a set of
parameters enabling the client to identify their relevant data. This approach is efficient and avoids the use of
cryptographic tools. However, it relies on several assumptions: only the server is untrusted while the clients
are honest, benchmark data is readily available, and the scheme focuses solely on a single aspect—data
relevance.

Our Solution: Privacy-Preserving Client Selection Based on Functional OT. The functional OT
protocols we proposed can enhance privacy in the client selection process in the FL setting. We will elaborate
on that with a concrete example. For the sake of simplicity, let us assume the existence of a public checklist, as
shown in Table 4. Each client computes and populates the output in the last column of each row. Depending
on the criterion, this output may be computed independently by the client or collaboratively with the server
in a secure manner, ensuring that only the client learns the result. From the client’s perspective, these outputs
are considered private.

Index Criterion Specific Check Output (1/0)

0 Computation Capability–CPU The device has at least 4 CPU cores o0 ∈ {1, 0}
1 Computation Capability–RAM The available RAM is greater than 4 GB o1 ∈ {1, 0}
2 Communication Capability–Bandwidth The network bandwidth is greater than 5 Mbps o2 ∈ {1, 0}
3 Communication Capability–Availability The device will be online from 1–5 AM on 5th June 2025 o3 ∈ {1, 0}
4 Battery Level The device will have a battery level above 50% o4 ∈ {1, 0}
5 Device Workload The CPU usage will be below 50% (excluding FL workload) o5 ∈ {1, 0}
6 Statistical Homogeneity The device’s data statistical homogeneity exceeds threshold t o6 ∈ {1, 0}
7 Data Utility The device has more than 1,000 data samples available o7 ∈ {1, 0}
8 Data Relevance The data relevance score is above threshold t′ o8 ∈ {1, 0}
9 Device Location The device will be in the USA o9 ∈ {1, 0}

Table 4: An example of a public checklist for selecting a client in federated learning.

In this case, in the context of functional OT, the server is the receiver with a vector of indices
→
e = [b, . . . , z]

(where each element of
→
e is in the range [0, n − 1]) and the client is the sender with binary messages

[o0, . . . , on−1], where each oj is the output of the check for the j-th criterion, e.g., o0 = 0, if “the device has
at least 4 CPU cores”. Let the functionality GF (w.r.t. Definition 5) that the functional OT computes be
defined as:

GF :
(

→
m = [o0, . . . , on−1],

→
e = [b, . . . , z]

)
→ y =

∑

∀ej∈
→
e

oej
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The server wants to check if the client meets a set of requirements considered vital. Accordingly, the
server sets the elements of

→
e to the indices of the criteria that it should be met by the client and accepts

the client if functional OT’s output y is at least a predefined threshold w, where w ≤ |→e |. Figure 7 depicts
this process. In this setting, due to the security of functional OT, the server only learns whether the client
meets certain criteria without being able to learn if the client meets each individual criterion. On the other
hand, the client cannot figure out which criteria the server is interested in.

<latexit sha1_base64="u2LjTmZytXG+p4xCq+vvpJcus6s="></latexit>

Sender

(1)

<latexit sha1_base64="sTTi1ubcwVUn8hD9b6eCgM3whM4=">AAACE3icdZDLSgMxGIUz9VbrrerSTbAUXJVMS2+7oiDurNAbtEPJpGkbmsmMSaZQhj6GuNXncCdufQAfwzcw01bQogcCH+f8P+E/bsCZ0gh9WImNza3tneRuam//4PAofXzSUn4oCW0Sn/uy42JFORO0qZnmtBNIij2X07Y7uYrz9pRKxXzR0LOAOh4eCTZkBGtjOdehIDFgDm8b/XQG5YrIrpYKEOWQUaFsIF9E1UoB2gsHoQxYqd5Pf/YGPgk9KjThWKmujQLtRFhqRjidp7JrsS/ZlBIn4lwQNU/1QkUDTCZ4RLsGBfaocqLFTXOYNc4ADn1pntBw4f7ciLCn1MxzzaSH9VitZ7H5V9YN9bDiREwEoaaCLD8ahhxqH8YFwQGTlGg+M4CJZOYUSMZYYqJNjSnT0XcR8H9o5XN2KVe6y2dql6u2kuAMnIMLYIMyqIEbUAdNQMA9eARP4Nl6sF6sV+ttOZqwVjun4Jes9y+w5p8m</latexit>

Functional OT

<latexit sha1_base64="1BmA1KmRDZXQfjmnv7cYEd05cco=">AAACEnicbVDLSsNAFJ34rPFVdelmsC24KkkX1WVREJcV7AOaUCbTSTt0MhNmJoUS8hfiVr/Dnbj1B/wM/8BpmoW2HrhwOOdeLucEMaNKO86XtbG5tb2zW9qz9w8Oj47LJ6ddJRKJSQcLJmQ/QIowyklHU81IP5YERQEjvWB6u/B7MyIVFfxRz2PiR2jMaUgx0kbyql6E9ESF6V1WHZYrTt3JAdeJW5AKKNAelr+9kcBJRLjGDCk1cJ1Y+ymSmmJGMru2YgtJZwT7KWMcq8z2EkVihKdoTAaGchQR5ad5pAzWjDKCoZBmuIa5+vsiRZFS8ygwm3mCVW8h/ucNEh1e+ynlcaIJx8tHYcKgFnDRDxxRSbBmc0MQltREgXiCJMLatGibjtzVRtZJt1F3m/XmQ6PSuinaKoFzcAEugQuuQAvcgzboAAxi8AxewKv1ZL1Z79bHcnXDKm7OwB9Ynz9spp5u</latexit>

F

<latexit sha1_base64="Tvj3qmkXpDE+LZsoct2h2Yl9i8M=">AAACC3icbZDNTsJAFIWn+If1D3XpZiKQuJG0LNAl0Y1LTCySQEOmwy1MmE6bmSkJaXgE41afw51x60P4GL6BA3Sh4Ekm+XLOvZncEyScKe04X1ZhY3Nre6e4a+/tHxwelY5P2ipOJQWPxjyWnYAo4EyAp5nm0EkkkCjg8BiMb+f54wSkYrF40NME/IgMBQsZJdpYXkVcupV+qezUnIXwOrg5lFGuVr/03RvENI1AaMqJUl3XSbSfEakZ5TCzqytxLNkEqJ9xLqia2b1UQULomAyha1CQCJSfLW6Z4apxBjiMpXlC44X7eyMjkVLTKDCTEdEjtZrNzf+ybqrDaz9jIkk1CLr8KEw51jGeF4MHTALVfGqAUMnMKZiOiCRUm/ps05G72sg6tOs1t1Fr3NfLzZu8rSI6Q+foArnoCjXRHWohD1HE0DN6Qa/Wk/VmvVsfy9GCle+coj+yPn8A5aqa1w==</latexit>

n� 1

<latexit sha1_base64="IzFyLzqxGj4j9IkxcQQ6K2N3DAQ=">AAACCXicbZDNTgIxFIU7/iL+oS7dNAKJKzLDAl0S3bjEKD8JTEin3IGGTjtpOyRkwhMYt/oc7oxbn8LH8A0sMAsFT9Lkyzn3prkniDnTxnW/nI3Nre2d3dxefv/g8Oi4cHLa0jJRFJpUcqk6AdHAmYCmYYZDJ1ZAooBDOxjfzvP2BJRmUjyaaQx+RIaChYwSY62HklvqF4puxV0Ir4OXQRFlavQL372BpEkEwlBOtO56bmz8lCjDKIdZvrwSS8UmQP2Uc0H1LN9LNMSEjskQuhYFiUD76eKSGS5bZ4BDqewTBi/c3xspibSeRoGdjIgZ6dVsbv6XdRMTXvspE3FiQNDlR2HCsZF4XgseMAXU8KkFQhWzp2A6IopQY8vL24681UbWoVWteLVK7b5arN9kbeXQObpAl8hDV6iO7lADNRFFQ/SMXtCr8+S8Oe/Ox3J0w8l2ztAfOZ8/mkqaJw==</latexit>

0
<latexit sha1_base64="t95HL7AmwEH1WtAAmpt62sky3VY=">AAACB3icbZDNSgMxFIUz/tbxr+rSTbAUXJWZLqrLohuXLdgfaIeSSe+0oZlkSDKFMvQBxK0+hztx62P4GL6BaTsLbT0Q+DjnXsI9YcKZNp735Wxt7+zu7RcO3MOj45PT4tl5W8tUUWhRyaXqhkQDZwJahhkO3UQBiUMOnXByv8g7U1CaSfFoZgkEMRkJFjFKjLWaZFAseRVvKbwJfg4llKsxKH73h5KmMQhDOdG653uJCTKiDKMc5m55LZaKTYEGGeeC6rnbTzUkhE7ICHoWBYlBB9nyjjkuW2eII6nsEwYv3d8bGYm1nsWhnYyJGev1bGH+l/VSE90GGRNJakDQ1UdRyrGReFEKHjIF1PCZBUIVs6dgOiaKUGOrc21H/nojm9CuVvxapdaslup3eVsFdImu0DXy0Q2qowfUQC1EEaBn9IJenSfnzXl3PlajW06+c4H+yPn8ASolmfw=</latexit>a

<latexit sha1_base64="ZtvxJYBTdmrNhaNVY3j3J/WdYM0=">AAACB3icbZDNTgIxFIU7+If4h7p000hIXJEZFuiS6MYlJPKTwIR0yh1o6LSTtkOCEx7AuNXncGfc+hg+hm9ggVkoeJImX865N809QcyZNq775eS2tnd29/L7hYPDo+OT4ulZW8tEUWhRyaXqBkQDZwJahhkO3VgBiQIOnWByt8g7U1CaSfFgZjH4ERkJFjJKjLWaj4Niya24S+FN8DIooUyNQfG7P5Q0iUAYyonWPc+NjZ8SZRjlMC+U12Kp2BSon3IuqJ4X+omGmNAJGUHPoiARaD9d3jHHZesMcSiVfcLgpft7IyWR1rMosJMRMWO9ni3M/7JeYsIbP2UiTgwIuvooTDg2Ei9KwUOmgBo+s0CoYvYUTMdEEWpsdQXbkbfeyCa0qxWvVqk1q6X6bdZWHl2gS3SFPHSN6ugeNVALUQToGb2gV+fJeXPenY/VaM7Jds7RHzmfP1MQmhU=</latexit>z

<latexit sha1_base64="flaDEu5n1bJpT4+baKK3y7JG/b4=">AAACC3icbZDNSsNAFIUn9a/Gv6pLN8FScFWSLqrLohvdVTBtoQ1lMrlph05mwsykWEIfQdzqc7gTtz6Ej+EbOP1ZaOuBgY9z7mW4J0wZVdp1v6zCxubW9k5x197bPzg8Kh2ftJTIJAGfCCZkJ8QKGOXga6oZdFIJOAkZtMPRzSxvj0EqKviDnqQQJHjAaUwJ1sby73gEj/1S2a26cznr4C2hjJZq9kvfvUiQLAGuCcNKdT031UGOpaaEwdSurMRC0jGQIGeMEzW1e5mCFJMRHkDXIMcJqCCf3zJ1KsaJnFhI87h25u7vjRwnSk2S0EwmWA/VajYz/8u6mY6vgpzyNNPAyeKjOGOOFs6sGCeiEohmEwOYSGpOccgQS0y0qc82HXmrjaxDq1b16tX6fa3cuF62VURn6BxdIA9doga6RU3kI4IoekYv6NV6st6sd+tjMVqwljun6I+szx9cKpu7</latexit>

Index
<latexit sha1_base64="wh8WI4h/GVa/fQs4UyHZG1M14f4=">AAACD3icbZDNTgIxFIU7+IfjH+rSTSMhcUVmWKBLIhuXmMiPgQnplAs0dNpJ2yEhEx7CuNXncGfc+gg+hm9ggVkoeJImJ+fcm5t+YcyZNp735eS2tnd29/L77sHh0fFJ4fSspWWiKDSp5FJ1QqKBMwFNwwyHTqyARCGHdjipL/r2FJRmUjyYWQxBREaCDRklxkaPdcUMKOv6haJX9pbCm8bPTBFlavQL372BpEkEwlBOtO76XmyClCjDKIe5W1qrpWJToEHKuaB67vYSDTGhEzKCrrWCRKCDdPmfOS7ZZICHUtknDF6mvzdSEmk9i0I7GREz1uvdIvyv6yZmeBOkTMSJAUFXh4YJx0biBRw8YAqo4TNrCLVoGMV0TBShFpJ2LSN/ncimaVXKfrVcva8Ua7cZrTy6QJfoCvnoGtXQHWqgJqIoQs/oBb06T86b8+58rEZzTrZzjv7I+fwByZSdmg==</latexit>
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0
<latexit sha1_base64="t95HL7AmwEH1WtAAmpt62sky3VY=">AAACB3icbZDNSgMxFIUz/tbxr+rSTbAUXJWZLqrLohuXLdgfaIeSSe+0oZlkSDKFMvQBxK0+hztx62P4GL6BaTsLbT0Q+DjnXsI9YcKZNp735Wxt7+zu7RcO3MOj45PT4tl5W8tUUWhRyaXqhkQDZwJahhkO3UQBiUMOnXByv8g7U1CaSfFoZgkEMRkJFjFKjLWaZFAseRVvKbwJfg4llKsxKH73h5KmMQhDOdG653uJCTKiDKMc5m55LZaKTYEGGeeC6rnbTzUkhE7ICHoWBYlBB9nyjjkuW2eII6nsEwYv3d8bGYm1nsWhnYyJGev1bGH+l/VSE90GGRNJakDQ1UdRyrGReFEKHjIF1PCZBUIVs6dgOiaKUGOrc21H/nojm9CuVvxapdaslup3eVsFdImu0DXy0Q2qowfUQC1EEaBn9IJenSfnzXl3PlajW06+c4H+yPn8ASolmfw=</latexit>a
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<latexit sha1_base64="flaDEu5n1bJpT4+baKK3y7JG/b4=">AAACC3icbZDNSsNAFIUn9a/Gv6pLN8FScFWSLqrLohvdVTBtoQ1lMrlph05mwsykWEIfQdzqc7gTtz6Ej+EbOP1ZaOuBgY9z7mW4J0wZVdp1v6zCxubW9k5x197bPzg8Kh2ftJTIJAGfCCZkJ8QKGOXga6oZdFIJOAkZtMPRzSxvj0EqKviDnqQQJHjAaUwJ1sby73gEj/1S2a26cznr4C2hjJZq9kvfvUiQLAGuCcNKdT031UGOpaaEwdSurMRC0jGQIGeMEzW1e5mCFJMRHkDXIMcJqCCf3zJ1KsaJnFhI87h25u7vjRwnSk2S0EwmWA/VajYz/8u6mY6vgpzyNNPAyeKjOGOOFs6sGCeiEohmEwOYSGpOccgQS0y0qc82HXmrjaxDq1b16tX6fa3cuF62VURn6BxdIA9doga6RU3kI4IoekYv6NV6st6sd+tjMVqwljun6I+szx9cKpu7</latexit>
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<latexit sha1_base64="wh8WI4h/GVa/fQs4UyHZG1M14f4=">AAACD3icbZDNTgIxFIU7+IfjH+rSTSMhcUVmWKBLIhuXmMiPgQnplAs0dNpJ2yEhEx7CuNXncGfc+gg+hm9ggVkoeJImJ+fcm5t+YcyZNp735eS2tnd29/L77sHh0fFJ4fSspWWiKDSp5FJ1QqKBMwFNwwyHTqyARCGHdjipL/r2FJRmUjyYWQxBREaCDRklxkaPdcUMKOv6haJX9pbCm8bPTBFlavQL372BpEkEwlBOtO76XmyClCjDKIe5W1qrpWJToEHKuaB67vYSDTGhEzKCrrWCRKCDdPmfOS7ZZICHUtknDF6mvzdSEmk9i0I7GREz1uvdIvyv6yZmeBOkTMSJAUFXh4YJx0biBRw8YAqo4TNrCLVoGMV0TBShFpJ2LSN/ncimaVXKfrVcva8Ua7cZrTy6QJfoCvnoGtXQHWqgJqIoQs/oBb06T86b8+58rEZzTrZzjv7I+fwByZSdmg==</latexit>
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<latexit sha1_base64="UCxaRmS/V8Kupr1HWi9RpU9W1GY=">AAACDHicbVDLTgIxFO3gC8cX6tJNIyFxRWZYoEuiG3diIo8EJqRTLlDptJO2Q0Im/IJxq9/hzrj1H/wM/8ACs1DwJDc5Oefe3JwTxpxp43lfTm5jc2t7J7/r7u0fHB4Vjk+aWiaKQoNKLlU7JBo4E9AwzHBoxwpIFHJoheObud+agNJMigczjSGIyFCwAaPEWKl5l5g4Mb1C0St7C+B14mekiDLUe4Xvbl/SJAJhKCdad3wvNkFKlGGUw8wtrdhSsQnQIOVcUD1zu4mGmNAxGULHUkEi0EG6CDPDJav08UAqO8Lghfr7IiWR1tMotJsRMSO96s3F/7xOYgZXQcqEDQyCLh8NEo6NxPNmcJ8poIZPLSFUMRsF0xFRhBrbn2s78lcbWSfNStmvlqv3lWLtOmsrj87QObpAPrpENXSL6qiBKHpEz+gFvTpPzpvz7nwsV3NOdnOK/sD5/AF+JJxe</latexit>
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<latexit sha1_base64="MUZ98K6YdcFOmykxvcIhx2W6T8Y=">AAACInicbZDPSgMxEMaz/q31X9WbXoJtwVPZ7UE9Fr14rGBboV1KNp1qMJssyaxQloIPI171ObyJJ8GX8A1M2z1odSDh4/tmGOYXJVJY9P0Pb2FxaXlltbBWXN/Y3Nou7ey2rU4NhxbXUpvriFmQQkELBUq4TgywOJLQie7OJ3nnHowVWl3hKIEwZjdKDAVn6Kx+ab+i+1nPciMSzH8cSaD+uNIvlf2aPy36VwS5KJO8mv3SV2+geRqDQi6Ztd3ATzDMmEHBJYyL1blYG3EPPMykVNyOi73UQsL4HbuBrpOKxWDDbHrimFadM6BDbdxTSKfuz4mMxdaO4sh1xgxv7Xw2Mf/LuikOT8NMqCRFUHy2aJhKippOeNGBMMBRjpxgjo87hfJbZhhHR7XoGAXzRP6Kdr0WHNeOL+vlxllOq0AOyCE5IgE5IQ1yQZqkRTh5IE/kmbx4j96r9+a9z1oXvHxmj/wq7/MbqzOk2w==</latexit>o0

<latexit sha1_base64="00MXSyBGtEq9sica++bMWflPnDw=">AAACJHicbZDPSgMxEMaz/q31X9WjHoK14MWy20P1WPTisYJVoV1KNp3WYDZZktlCWXrxYcSrPoc38eDFd/ANTOsetDqQ8PF9MwzzixIpLPr+uzc3v7C4tFxYKa6urW9slra2r6xODYcW11Kbm4hZkEJBCwVKuEkMsDiScB3dnU3y6yEYK7S6xFECYcwGSvQFZ+isbmnvQHezjuVGJJj/OJJA1VEwPuiWyn7Vnxb9K4JclElezW7ps9PTPI1BIZfM2nbgJxhmzKDgEsbFykysjRgCDzMpFbfjYie1kDB+xwbQdlKxGGyYTY8c04pzerSvjXsK6dT9OZGx2NpRHLnOmOGtnc0m5n9ZO8X+SZgJlaQIin8v6qeSoqYTYrQnDHCUIyeYI+ROofyWGcbRcS06RsEskb/iqlYN6tX6Ra3cOM1pFcgu2SeHJCDHpEHOSZO0CCf35JE8kWfvwXvxXr2379Y5L5/ZIb/K+/gCChiliw==</latexit>on�1
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<latexit sha1_base64="rRK1dajqhDIh576gyY16mPMzipA=">AAACDHicbVDLTgIxFO3gC/GFunTTSEhckRkW6JLIxiUm8khgQjrlDlQ67aTtkJAJv2Dc6ne4M279Bz/DP7DALBQ8yU1OzrknN/cEMWfauO6Xk9va3tndy+8XDg6Pjk+Kp2dtLRNFoUUll6obEA2cCWgZZjh0YwUkCjh0gklj4XemoDST4sHMYvAjMhIsZJQYK7UbnIEwg2LJrbhL4E3iZaSEMjQHxe/+UNIkslnKidY9z42NnxJlGOUwL5TXbKnYFKifci6onhf6iYaY0AkZQc9SQSLQfrp8Zo7LVhniUCo7wuCl+juRkkjrWRTYzYiYsV73FuJ/Xi8x4Y2fMhEnBgRdHQoTjo3Ei2bwkCmghs8sIVQx+wqmY6IINba/gu3IW29kk7SrFa9Wqd1XS/XbrK08ukCX6Ap56BrV0R1qohai6BE9oxf06jw5b86787FazTlZ5hz9gfP5AyuwnCw=</latexit>

Client

(1)

<latexit sha1_base64="kfat91PY2Dd2ULWavGIjdzgqwC4="></latexit>

[O0
, . .

. , O
n�1

]

<latexit sha1_base64="O0CPTJRVW/vv3EE8hD3inDAFZkU="></latexit>
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<latexit sha1_base64="lfen7NanPWeAoXnNeAFUdGyrS8M=">AAACDHicbZDNTgIxFIU7+IfjH+rSTSMhcUVmWKBLohuXGOUngQnplAtUOu2k7ZCQCa9g3OpzuDNufQcfwzewwCwUPEmTL+fcm+aeMOZMG8/7cnIbm1vbO/ldd2//4PCocHzS1DJRFBpUcqnaIdHAmYCGYYZDO1ZAopBDKxzfzPPWBJRmUjyYaQxBRIaCDRglxlrNe1A27RWKXtlbCK+Dn0ERZar3Ct/dvqRJBMJQTrTu+F5sgpQowyiHmVtaiaViE6BByrmgeuZ2Ew0xoWMyhI5FQSLQQbo4ZoZL1unjgVT2CYMX7u+NlERaT6PQTkbEjPRqNjf/yzqJGVwFKRNxYkDQ5UeDhGMj8bwZ3GcKqOFTC4QqZk/BdEQUocb259qO/NVG1qFZKfvVcvWuUqxdZ23l0Rk6RxfIR5eohm5RHTUQRY/oGb2gV+fJeXPenY/laM7Jdk7RHzmfP1NgnEQ=</latexit>

Server

<latexit sha1_base64="u64yvPuX5c68+wFt+irrZY4P0U8="></latexit>

[b, . . . , z]
<latexit sha1_base64="9fNt7cg1wORmq0ZwfC4574iQn5U=">AAACEHicbVDLTsJAFJ3iC/GFunTTCCSuSMsC3ZgQ3bjERB4RGjIdbmHCdKaZmZKQpj9h3Op3uDNu/QM/wz9wgC4UPMlNTs65Nyf3+BGjSjvOl5Xb2Nza3snvFvb2Dw6PiscnbSViSaBFBBOy62MFjHJoaaoZdCMJOPQZdPzJ7dzvTEEqKviDnkXghXjEaUAJ1kZ6LPenQBJIr8uDYsmpOgvY68TNSAllaA6K3/2hIHEIXBOGleq5TqS9BEtNCYO0UFmxhaQmy0sY40SlhX6sIMJkgkfQM5TjEJSXLB5K7YpRhnYgpBmu7YX6+yLBoVKz0DebIdZjterNxf+8XqyDKy+hPIo1cLIMCmJma2HP27GHVALRbGYIJpKaV2wyxhITbTosmI7c1UbWSbtWdevV+n2t1LjJ2sqjM3SOLpCLLlED3aEmaiGCOHpGL+jVerLerHfrY7mas7KbU/QH1ucPnRCdcQ==</latexit>

~e =

<latexit sha1_base64="9fNt7cg1wORmq0ZwfC4574iQn5U=">AAACEHicbVDLTsJAFJ3iC/GFunTTCCSuSMsC3ZgQ3bjERB4RGjIdbmHCdKaZmZKQpj9h3Op3uDNu/QM/wz9wgC4UPMlNTs65Nyf3+BGjSjvOl5Xb2Nza3snvFvb2Dw6PiscnbSViSaBFBBOy62MFjHJoaaoZdCMJOPQZdPzJ7dzvTEEqKviDnkXghXjEaUAJ1kZ6LPenQBJIr8uDYsmpOgvY68TNSAllaA6K3/2hIHEIXBOGleq5TqS9BEtNCYO0UFmxhaQmy0sY40SlhX6sIMJkgkfQM5TjEJSXLB5K7YpRhnYgpBmu7YX6+yLBoVKz0DebIdZjterNxf+8XqyDKy+hPIo1cLIMCmJma2HP27GHVALRbGYIJpKaV2wyxhITbTosmI7c1UbWSbtWdevV+n2t1LjJ2sqjM3SOLpCLLlED3aEmaiGCOHpGL+jVerLerHfrY7mas7KbU/QH1ucPnRCdcQ==</latexit>

~e =

(2)

<latexit sha1_base64="O30yAra0b5yGnqBswBbkP9CfckM="></latexit>

y = O
b + . . . + O

z

<latexit sha1_base64="8il/kfl4r5RrAluqx3s82iyNYvU="></latexit>

Public checklist

<latexit sha1_base64="BeBLET0QB+wYuaEGYQaffW74zQo=">AAACb3icbZFNixNBEIY749c6fkU9eBCkMRtQFsLMHlYvwqIXb0YwuwvJEHpqKkmTnu6hu3pldpif6A/wZyxeFexk56DZLejm5X2rKHgqr5R0lCQ/e9Gt23fu3tu7Hz94+Ojxk/7TZyfOeAs4AaOMPcuFQyU1TkiSwrPKoihzhaf5+tMmPz1H66TR36iuMCvFUsuFBEHBmveXY58rCRxWCOvNPv5d0oqDd2RKeYEFN54qT3E83K8/fJk3MwdWVtT9VCvkeXswU4Uhd8Bvbrho9+f9QTJKtsWvi7QTA9bVeN6/nBUGfImaQAnnpmlSUdYISxIUtvFwJzZWniNkjVIaXBvPvMNKwFoscRqkFiW6rNnyavkwOAVfGBueJr51/51oROlcXeahsxS0crvZxrwpm3pavM8aqQMw1HC1aOEVJ8M38HkhLQKpOggR+NAWvLACKJwoDozSXSLXxcnhKD0aHX09HBx/7GjtsZfsNXvDUvaOHbPPbMwmDNgP9ov9Zn96l9GL6FXEr1qjXjfznP1X0du/spfBHg==</latexit>

Public checklist with customized output
<latexit sha1_base64="BeBLET0QB+wYuaEGYQaffW74zQo=">AAACb3icbZFNixNBEIY749c6fkU9eBCkMRtQFsLMHlYvwqIXb0YwuwvJEHpqKkmTnu6hu3pldpif6A/wZyxeFexk56DZLejm5X2rKHgqr5R0lCQ/e9Gt23fu3tu7Hz94+Ojxk/7TZyfOeAs4AaOMPcuFQyU1TkiSwrPKoihzhaf5+tMmPz1H66TR36iuMCvFUsuFBEHBmveXY58rCRxWCOvNPv5d0oqDd2RKeYEFN54qT3E83K8/fJk3MwdWVtT9VCvkeXswU4Uhd8Bvbrho9+f9QTJKtsWvi7QTA9bVeN6/nBUGfImaQAnnpmlSUdYISxIUtvFwJzZWniNkjVIaXBvPvMNKwFoscRqkFiW6rNnyavkwOAVfGBueJr51/51oROlcXeahsxS0crvZxrwpm3pavM8aqQMw1HC1aOEVJ8M38HkhLQKpOggR+NAWvLACKJwoDozSXSLXxcnhKD0aHX09HBx/7GjtsZfsNXvDUvaOHbPPbMwmDNgP9ov9Zn96l9GL6FXEr1qjXjfznP1X0du/spfBHg==</latexit>

Public checklist with customized output

Fig. 7: Depicting privacy-preserving client selection process, using functional OT, a public checklist, and the
client’s checklist with related output. Here, b, . . . , z ∈ [0, n− 1].

7.3 Privacy-Preserving Recommender Systems

Context. Recommender systems are widely implemented in various digital platforms to provide personalized
suggestions based on user interactions and historical data [47]. Despite their effectiveness, these systems often
require access to detailed user information, raising significant privacy concerns, particularly in contexts where
sensitive user behavior and preferences are involved [51].

State-of-the-Art. Current privacy-preserving recommender systems rely on techniques such as differential
privacy or homomorphic encryption. While effective, these methods either degrade recommendation accuracy
or involve significant computational overhead [36].

Our Solution: Privacy-Preserving Recommendations Using Functional OT. Our efficient func-
tional OTs (presented in Section 5) can improve privacy-preserving recommendations by allowing:

• User-side privacy: Users provide indices corresponding to their preferred categories without exposing
their exact choices.

• Server-side privacy: The server computes personalized recommendations without revealing the entire
dataset to the user.

Concretely, a functional OT instance is executed where the user inputs a set of indices representing their
interests. The server holds a database of potential recommendations. The functional OT protocol returns only
a function of the selected recommendations (e.g., top-rated items for the user’s interests) without leaking
additional dataset details. This approach ensures that the server remains unaware of the user’s precise
preferences. The user gains access only to a personalized subset of recommendations, preserving dataset
privacy. By leveraging functional OT, recommender systems can achieve strong privacy guarantees while
maintaining high recommendation accuracy, making them viable for real-world deployment.
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7.4 Secure Multi-Party Dataset Aggregation

Context. In many multi-party computation scenarios, each participant may possess multiple datasets and
need to compute an aggregate function over a subset of these datasets without revealing their individual
inputs or which subset was used. Such scenarios frequently arise in applications like collaborative health-
care research, joint financial analysis, shared IoT data analytics, and FL, where clients often hold multiple
datasets. In these settings, secure aggregation is critical for preserving privacy and confidentiality without
exposing sensitive data or selection patterns.

State-of-the-Art. Secure multi-party computation (MPC) and homomorphic encryption (HE) are the
prevailing methods for secure data aggregation [1,8,11]. While these methods ensure security and verifiability,
they suffer from significant computational and communication overheads due to the reliance on public key-
based operations. Additionally, existing solutions typically assume that each client has only a single dataset,
thereby failing to address the practical scenario where clients possess multiple datasets, and only a subset of
these datasets may be used in each aggregation round.

Our Solution: Secure Data Aggregation Using Functional OT. Our FOT protocols, proposed in
Section 5, offer efficient, symmetric-key-based solutions for secure data aggregation. These protocols allow
parties to compute aggregate statistics (e.g., sum, mean, mode, or product) on a selected subset of datasets
without disclosing individual data points or which datasets were selected. Unlike traditional MPC and HE
methods, these FOT protocols achieve this with significantly lower computational overhead due to their
reliance on symmetric-key primitives. Moreover, they retain the core OT properties: the sender remains
oblivious to the receiver’s selection, and the receiver only learns the computed aggregate without individual
dataset details. These protocols can be used for scenarios where clients have multiple datasets, ensuring that
the clients cannot determine which subset was used for aggregation. In federated learning settings involving
multiple rounds of secure aggregation, they can be combined with other techniques to prevent clients from
inferring the subset selection from model updates shared by the server.

8 Related Work

The notion of 1-out-of-n OT was introduced by Rabin [44]. To generalize the notion of 1-out-of-2 OT, t-
out-of-n OTs were proposed. They are suitable for scenarios where n > 2 and t ≥ 1. Naor and Pinkas [38]
proposed two variants of OT. They use a pseudorandom function and any standard 1-out-of-2 OT. Tzeng [54]
proposed a 1-out-of-n OT, based on the Decisional Diffie-Hellman (DDH) assumption and involves public
key operations. Another t-out-of-n OT was proposed in [31], which relies on the Discrete logarithm problem
(DLP), involves modular exponentiation linear with n. Wei et al . [56] proposed server-aided t-out-of-n OT,
based on the DDH assumption, which involves modular exponentiation with computational complexity that
scales linearly with t and n.

The efficient OT extensions [7, 28, 29, 40] have initially been designed for the 1-out-of-2 OT setting;
however, they can be invoked multiple times to meet the requirements of t-out-of-n OTs. To date, the fastest
1-out-of-n semi-honest and malicious secure OTs are the OT extensions proposed in [32] and [43] respectively,
with a caveat. They have been designed to work efficiently when the input secret messages are very short,
log(n). There have been efforts to design unconditionally secure OTs. Some schemes use multiple senders that
maintain an identical copy of the database [9, 39]. Other ones use a specific network structure, i.e., a noisy
channel, to achieve unconditionally secure OT [15, 16, 30]. There is a scheme that achieves unconditionally
secure OT using a fully trusted initializer [48]. There are also unconditionally secure OTs that aim to avoid
using a noisy channel or trusted party [4, 5]. However, all the above schemes provide the receiver with each
individual message that it selected.
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9 Conclusion and Future Work

In this work, we introduced the concept of Functional Oblivious Transfer (FOT), a variant of Oblivious
Transfer (OT) designed for scenarios where the receiver must compute a function on selected messages. FOT
enhances the security of conventional OT by ensuring that the receiver learns only the function’s output,
while the sender remains oblivious to both the receiver’s selection and the computed result. We presented
several instantiations of FOT, including unconditionally secure protocols to compute Mean and Mode. We
formally proved their security within the simulation-based paradigm. Our implementations and concrete cost
analysis demonstrated that these schemes are efficient and scalable. We have shown that our schemes can
enhance privacy-preserving machine learning, particularly K-NN algorithms, and secure client selection in
federated learning to ensure data privacy while enabling efficient computation.

It would be interesting to explore how the concept of FOT can be extended to other privacy-preserving
information retrieval schemes, such as private information retrieval [14] and oblivious RAM [25]. By incorpo-
rating FOT, these schemes can be enhanced to ensure that the receiver learns only a function of the queried
messages while the sender remains oblivious to the receiver’s query and the function’s output.

Acknowledgments

We appreciate Lorenzo Martinico’s general feedback.

References

1. Abadi, A.: Tempora-fusion: Time-lock puzzle with efficient verifiable homomorphic linear combination. IACR
Cryptol. ePrint Arch. (2024)

2. Abadi, A.: Source code of functional oblivious transfer computing mean (2025), https://github.com/AydinAbadi/
FOT/blob/main/main--mean.cpp

3. Abadi, A.: Source code of functional oblivious transfer computing mode (2025), https://github.com/AydinAbadi/
FOT/blob/main/main--mode.cpp

4. Abadi, A., Desmedt, Y.: Supersonic OT: fast unconditionally secure oblivious transfer. IACR Cryptol. ePrint
Arch. (2024)

5. Abadi, A., Desmedt, Y.: Scalable post-quantum oblivious transfers for resource-constrained receivers. Cryptology
ePrint Archive (2025), https://eprint.iacr.org/2025/036

6. Apple Inc.: Private cloud compute: A new frontier for ai privacy in the cloud (2024), https://security.apple.com/
blog/private-cloud-compute/

7. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster
secure computation. In: CCS’13 (2013)

8. Bell, J., Gascón, A., Lepoint, T., Li, B., Meiklejohn, S., Raykova, M., Yun, C.: ACORN: input validation for
secure aggregation. In: USENIX (2023)

9. Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: On unconditionally secure distributed oblivious transfer. J.
Cryptol. (2007)

10. Boldyreva, A., Tang, T.: Privacy-preserving approximate k-nearest-neighbors search that hides access, query and
volume patterns. Proc. Priv. Enhancing Technol. (2021)

11. Bonawitz, K.A., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth,
K.: Practical secure aggregation for privacy-preserving machine learning. In: CCS (2017)

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: TCC (2011)
13. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I.P., Riazi, M.S.: SANNS: scaling up secure

approximate k-nearest neighbors search. In: USENIX. USENIX Association (2020)
14. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of the ACM (JACM)

(1998)
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A IND-CPA for Asymmetric Key Encryption Schemes

Let E = (KeyGeneration,Encrypt,Decrypt) be a public-key encryption scheme with the following components:

• Key generation: KeyGeneration(1λ)→ (pk, sk), where λ is the security parameter, pk is the public key,
and sk is the secret key.

• Encryption: Encrypt(pk,m) → c, where m ∈ M is a message from the message space and c is a
ciphertext.

• Decryption: Decrypt(sk, c)→ m or ⊥ if decryption fails.

The IND-CPA (Indistinguishability under Chosen Plaintext Attack) security of an encryption scheme E
is defined via the following game between a challenger and an adversary A:

IND-CPA Game

1. Setup: The challenger runs KeyGeneration(1λ) to obtain a key pair (pk, sk). It gives the public key pk
to the adversary A.

2. Query Phase: The adversary A may adaptively query the encryption oracle Encrypt(pk, ·) on any
message m ∈M of its choice and receive the corresponding ciphertext c = Encrypt(pk,m).

3. Challenge Phase: The adversary A submits two messages m0,m1 ∈ M of equal length (|m0| = |m1|)
to the challenger. The challenger selects a uniform random bit b ∈ {0, 1} and computes the challenge
ciphertext c∗ = Encrypt(pk,mb). The challenger sends c∗ to A.

4. Guess: The adversary A outputs a guess b′ ∈ {0, 1}.

Winning Condition

The adversary A wins the game if b′ = b. The advantage of the adversary A in the IND-CPA game is defined
as:

AdvIND-CPA

E,A =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
An encryption scheme E is IND-CPA secure if, for every probabilistic polynomial-time (PPT) adversary

A, the advantage AdvIND-CPA

E,A is negligible in the security parameter λ: AdvIND-CPA

E,A ≤ negl(λ).
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B Two-Party FOT Using Only FHE

Figure 8 presents the detailed protocol that we described in Section 4.1.

• Input.
→
m = [m0, . . . ,mn−1]: sender S’s input that includes n plaintext messages and

→
e = [b, . . . , z]:

receiver R’s input that contains a vector of t indices.
• Output. y: the result of evaluating F over [mb, . . . ,mz].
1. Setup: Setup(1λ)→ (skHE, pkHE)

This phase involves R.
(a) calls HE.KeyGeneration(1λ)→ (skHE, pkHE).
(b) publishes pkHE.

2. Query Generation: GenQuery(pkHE, n,
→
e)→ qry

This phase involves R. It takes the following steps. ∀ej ∈
→
e :

(a) constructs a vector
→
bj = [bj,0, . . . , bj,n−1], as follows:

i. sets every element bj,i to 0 except for ej-th element which is set to 1.

ii. encrypts each element of
→
bj using FHE, ∀i, 0 ≤ i ≤ n− 1 : b′j,i = HE.Encrypt(pkHE, bj,i). Let

→
b′j be the vector of the encrypted elements.

(b) sets query qry to [
→
b′0, . . . ,

→
b′t−1] and sends qry to S.

3. Response Generation: GenRes(
→
m, pkHE, qry)→ res

This phase involves S.
(a) obliviously identifies the t messages that R is interested, using each vector

→
b′j, as follows. ∀j, 0 ≤

j ≤ t− 1 :

ej = (m0

H

× b′j,0)
H

+ . . .
H

+ (mn−1

H

× b′j,n−1)

(b) obliviously evaluate the function F on the t ciphertexts generated in the previous step.

HE.Evaluate(F, pkHE, e0, . . . , et−1)→ θ

(c) sets res = θ and sends θ to R.
4. Message Extraction. Retreive(res, skHE)→ y

• R decrypts the response as HE.Decrypt(skHE, res)→ y.

Fig. 8: Two-Party FOT Involving O(t · n) FHE.

C Converged OT: Multi-Sender Functional Oblivious Transfer

In this section, we present the Converged OT, a multi-sender extension of the protocol presented in Sec-
tion 5.3. In this protocol, there are a receiver R, a third party H, and k senders S1, . . . ,Sk.

1. Setup: Setup(1λ)→ →
r = [

→
r1, . . . ,

→
rk]

It is run by R. For each sender Sl (where 1 ≤ l ≤ k), it takes the following steps.

(a) selects n random values (rl,0, . . . , rl,n−1)
$← {0, 1}λ. Let vector

→
rl be defined as

→
rl = [rl,0, . . . , rl,n−1].

These elements will be used as a one-time pad by S to encrypt each message that S sends.
(b) sends

→
rl to Sl.
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2. Query Generation: GenQuery(1λ,
→
e 1, . . . ,

→
ek)→ qry := (qryS1

, . . . , qrySk
, qryH1

, . . . , qryHk
)

It is run by R. For each Sl, it takes the following steps.

(a) determines to which position, each index in a vector
→
vl of size n is moved, if

→
vl is independently and

randomly permuted once. To do that, it takes the following steps.

i. initiates a vector
→
vl, such that its i-th element is set to i:

∀i, 0 ≤ i ≤ n− 1 :
→
vl[i]← i

ii. randomly permutes
→
vl:

π(
→
vl)→

→
wl

(b) finds the index of each element of its index vector
→
el in

→
wl. To do that, it initiates an empty vector

→
cl of size t and takes the following steps.

∀j, 0 ≤ j ≤ t− 1 : Find(
→
wl,

→
el[j])→ cl,j,

→
cl[j]← cl,j

(c) sets qrySl
← →

wl and qryHl
← →

cl. It sends qrySl
to Sl and qryHl

to H.
3. Response Generation: GenRes(ml,0, . . . ,ml,n−1,

→
rl, qrySl

,
→
pp)→ resHl

It is run by each Sl.

(a) encrypts each message in
→
ml = [ml,0, . . . ,ml,n−1] using the elements of

→
rl = [rl,0, . . . , rl,n−1] as:

Encode(
→
ml,

→
pp,

→
rl)→

→
hl

(b) permutes vector
→
hl according the permutation map

→
wl ∈ qrySl

. To do that, it initiates an empty

vector
→
xl of size n. It finds the position of each value i in the permuted vector

→
wl, let i

′ denote that
position.

It inserts i-th element from
→
hl into i′-th position in

→
xl. More specifically,

∀i, 0 ≤ i ≤ n− 1 : Find(
→
wl, i)→ i′,

→
xl[i

′]←
→
hl[i]

(c) sets resHl
← →

xl and sends resHl
to H.

4. Oblivious Evaluation: OblEvaluate(resH1
, . . . , resHk

, qryH1
, . . . , qryHk

)→ resR

It is run by H.
(a) uses elements of

→
cl ∈ qryHl

to retrieve R’s preferred encrypted messages in the permuted vector
→
xl ∈ resHl

and appends them to an empty vector
→
u. Specifically, it takes the following steps.

∀l, j, 1 ≤ l ≤ k, 0 ≤ j ≤ t− 1 :
→
u ← →

xl

[
→
cl[j]

]

(b) obliviously evaluates the function F (specified in
→
pp) on the plaintext encoded in

→
u, by executing:

Evaluate(
→
u,

→
pp)→ θ

(c) sets resR to θ and sends resR to R.
5. Message Extraction: Retrieve(resR,

→
r ,

→
e 1, . . . ,

→
ek,

→
pp)→ y

It is run by R.
• retrieves the related secret keys for decoding. To do that, it initiates an empty vector

→
g and appends

to
→
g the secret keys in

→
rl whose indices are specified in

→
el:

∀l, j, 1 ≤ l ≤ k, 0 ≤ j ≤ t− 1 :
→
g ← r→

el [j]

• decodes θ by invoking Decode(θ,
→
pp,

→
g )→ y.
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