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2 Faculty of Informatics, Eötvös Loránd University, Hungary

3 Computer Science Department, Université Libre de Bruxelles, Belgium
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Abstract. Following Ibukiyama, Katsura and Oort, all principally po-
larized superspecial abelian surfaces over Fp can be represented by a
certain type of 2× 2 matrix g, having entries in the quaternion algebra
Bp,∞. We present a heuristic polynomial-time algorithm which, upon in-
put of two such matrices g1, g2, finds a “connecting matrix” representing
a polarized isogeny of smooth degree between the corresponding surfaces.
Our algorithm should be thought of as a two-dimensional analog of the
KLPT algorithm from 2014 due to Kohel, Lauter, Petit and Tignol for
finding a connecting ideal of smooth norm between two given maximal
orders in Bp,∞.
The KLPT algorithm has proven to be a versatile tool in isogeny-based
cryptography, and our analog has similar applications; we discuss two
of them in detail. First, we show that it yields a polynomial-time solu-
tion to a two-dimensional analog of the so-called constructive Deuring
correspondence: given a matrix g representing a superspecial principally
polarized abelian surface, realize the latter as the Jacobian of a genus-2
curve (or, exceptionally, as the product of two elliptic curves if it con-
cerns a product polarization). Second, we show that, modulo a plausible
assumption, Charles–Goren–Lauter style hash functions from superspe-
cial principally polarized abelian surfaces require a trusted set-up. Con-
cretely, if the matrix g associated with the starting surface is known
then collisions can be produced in polynomial time. We deem it plausi-
ble that all currently known methods for generating a starting surface
indeed reveal the corresponding matrix. As an auxiliary tool, we present
an explicit table for converting (2, 2)-isogenies into the corresponding
connecting matrix, a step for which a previous method by Chu required
super-polynomial (but sub-exponential) time.

1 Introduction

In isogeny-based cryptography, the core problem is that of finding an explicit
isogeny between two isogenous elliptic curves over a finite field. Here, “explicit”
often implicates that the degree of the isogeny is powersmooth, or a power of
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some small prescribed prime number ℓ. For reasons of both security and effi-
ciency, almost all cryptographic constructions restrict their focus to supersin-
gular elliptic curves. Famously, Deuring [23] proved that such curves are (es-
sentially) in one-to-one correspondence with maximal orders in the quaternion
algebra Bp,∞ ramified at p and ∞; here p denotes the field characteristic. Un-
der this correspondence, isogenies correspond to ideals, and the isogeny-finding
problem translates into finding a connecting ideal between two given maximal
orders O0,O1 ⊂ Bp,∞, where one then aims for integral ideals I whose norm
n(I) is powersmooth or a power of ℓ. Interestingly, this quaternion version of the
isogeny-finding problem can be dealt with efficiently: in 2014, Kohel, Lauter,
Petit, and Tignol [38] proposed a polynomial-time algorithm, now commonly
known as the KLPT algorithm, for solving exactly this problem.

This result has had an amplitude of consequences, both constructive and de-
structive. For example, it breaks the second pre-image resistance of the Charles–
Goren–Lauter (CGL) hash function [26] when using an untrusted set-up. A more
recent cryptanalytic example is the break of pSIDH [15].† More fundamentally,
it has led to a key insight in isogeny-based cryptography. Namely, on one hand,
given a maximal order in Bp,∞, one can use the KLPT algorithm to compute a
corresponding supersingular elliptic curve E/Fp in polynomial time: this is called
the constructive Deuring correspondence and it is practical for cryptographically
sized values of p [27]. On the other hand, the converse problem, namely com-
puting the endomorphism ring of a given supersingular elliptic curve, is believed
to be very hard. By now, we understand, in a heuristic-free way,‡ that this
is in fact the central hard problem in (supersingular) isogeny-based cryptogra-
phy [53]. That is, the Deuring correspondence is a one-way function, and it allows
for trapdoors, e.g., in the form of secret isogenies to an easy base curve. This
has sparked many important constructions, where we highlight the Galbraith–
Petit–Silva (GPS) signature scheme [29] and SQIsign [21].

Recently, the field of isogeny-based cryptography was shaken up by the use
of higher-dimensional principally polarized abelian varieties. Earlier works such
as [10, 16, 28, 50] studied these objects in their own right, but the real catalysts
were the attacks on SIDH [9, 41, 46] which revealed a very powerful interplay
between higher dimension and dimension one, i.e., the world of elliptic curves.
Constructive applications followed soon, especially because the machinery allows
for efficient representations of isogenies of arbitrary degree [47]. This has culmi-
nated in various new schemes, including SQIsign variants [3, 20, 25, 43] improving
over their ancestor in terms of speed, compactness, and security foundations.

In view of these current trends, a higher-dimensional analog of the KLPT
algorithm is an important lacking tool. The direct provocation for this research
is the PhD thesis by Chu [16], who mentions this as a missing ingredient in a
GPS-style signature scheme from superspecial principally polarized abelian sur-
faces. Here, the Deuring correspondence is to be replaced with a correspondence

†The attack from [15] does not invoke the KLPT algorithm directly; rather, it uses
and adapts several of its subroutines.

‡Modulo a reliance on the generalized Riemann hypothesis.
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due to Ibukiyama, Katsura and Oort [34] describing principal polarizations and
polarized isogenies in terms of 2× 2 matrices with entries in Bp,∞. This missing
analog of KLPT is exactly the central result of our paper.

Main contributions:

– KLPT 2. We provide the desired two-dimensional analog of the KLPT al-
gorithm: upon input of two matrices g1, g2 representing two principally po-
larized superspecial abelian surfaces, it finds in heuristic polynomial time a
“connecting matrix”, representing a polarized isogeny of reduced degree N .
We provide versions both for N = ℓe (where ℓ is a small prescribed prime
number) and for N powersmooth. In both cases, the value of N achieved is
in O(p25+ε). The main techniques are the following. First we observe that
if the matrices are in a very special form, then finding a connecting matrix
is easy (Lemma 3.2). This turns the problem into a transformation prob-
lem: instead of connecting two matrices, try to transform one matrix into a
standard form. An important challenge is to realize an output upper bound
that only depends on p and not on the sizes of the matrices gi. This is han-
dled using certain size reductions and solving certain Diophantine equations.
One noteworthy ingredient is an algorithm that given a, c ∈ O (where O is
a maximal order in Bp,∞) that have coprime norm, finds b, d ∈ O such that
the reduced norm of the matrix

(
a b
c d

)
is a power of ℓ (or powersmooth)

in O(p3+ε). Very surprisingly, this problem is essentially equivalent to 1-
dimensional KLPT (Section 3.2). We deem it very likely that the exponent
25+ ε can be improved, but leave such sharpenings for future work (and we
note that future improvements on one-dimensional KLPT also improve our
results).

– Constructive Ibukiyama–Katsura–Oort (IKO) correspondence. In Section 4.1,
we describe an efficient algorithm for matrix-to-isogeny conversion for pow-
ersmooth degrees (thereby ticking off an unsurprising but missing ingredient
in Chu’s aforementioned signature scheme). Combined with our KLPT2 al-
gorithm, this yields a heuristic polynomial-time method for an analog of the
constructive Deuring correspondence, described in Section 5.1: given a ma-
trix g representing a principally polarized superspecial abelian surface, we
explicitly realize this surface as either the Jacobian of a genus-2 curve, or as
a product of elliptic curves if it concerns a product polarization.

– Polynomial-time isogeny-to-matrix conversion for chains of (2, 2)-isogenies.
In order to transfer more advanced applications of KLPT to dimension
two, one also needs an efficient solution to the converse problem: given a
principally polarized superspecial abelian surface A1 with known matrix
g1, along with a polarized isogeny φ : A1 → A2, find a matrix g2 corre-
sponding to A2 along with a connecting matrix corresponding to φ. In the
special case of (2, 2)-isogenies, Appendix A provides an explicit look-up ta-
ble from which the connecting matrix can simply be read off (and then g2
follows right away). By mimicking a method due to Eisenträger, Hallgren,
Lauter, Morrison and Petit [26, Algorithm 9], in Section 14 we lift this to
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a polynomial-time solution for arbitrary chains of (2, 2)-isogenies, through
a repeated application of KLPT2. In doing so, we by-pass the need for in-
voking Chu’s super-polynomial (but sub-exponential) time algorithm for the
principal ideal problem (PIP) in quaternionic matrix rings [16, Chapter 2].

– Attacks on CGL style hash functions. Section 5.4 describes our main ap-
plication: an attack on CGL-type hash functions in dimension two, which
were explicitly proposed in [10, 28, 39, 50], in the case of an untrusted set-
up. This is very similar to the KLPT-based attacks [26] on the original CGL
hash function. Concretely, if the starting surface comes with a known matrix
g (which seems a fair assumption to make in all untrusted instantiations)
then we can use the KLPT2 algorithm to find collisions. Very similarly, this
also breaks a verifiable delay function based on genus-2 curves [14], again if
no trusted set-up is used.

We conclude this introduction by noting that our KLPT2 algorithm can be seen
as a constructive proof (modulo heuristic assumptions) of the dimension-two
case of Jordan and Zaytman’s recent result that the graph of (ℓ, . . . , ℓ)-isogenies
between superspecial principally polarized abelian varieties is connected [36].

Outline

We provide some background on the KLPT algorithm, principal polarizations,
the Ibukiyama–Katsura–Oort correspondence, and quaternionic matrices in Sec-
tion 2. We describe our generalization of KLPT to dimension two in Section 3 and
discuss basic matrix-to-isogeny and isogeny-to-matrix conversions in Section 4.
We describe our applications of KLPT2 in Section 5. In Section 6 we discuss
some natural directions for further research. Finally, Appendix A contains our
look-up table for converting (2, 2)-isogenies to matrices.
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2 Preliminaries

2.1 Deuring correspondence and the KLPT algorithm

For general background on quaternion algebras, the reader is referred to [51], for
now let us briefly recall that a (rational) quaternion algebra B is a central simple
algebra of dimension 4 over Q. An order in B is a subring O ⊂ B containing 1
which has rank 4 as a Z-module. An order is called maximal if it is maximal with
respect to inclusion. The isomorphism class of a quaternion algebra is determined
by its local behaviour: for which completions Qv do we have that B ⊗Q Qv is
a division algebra? Such places v are called ramified.† In this paper we will be
concerned with Bp,∞, the unique quaternion algebra up to isomorphism which
is ramified at∞ and at a fixed prime number p (typically of cryptographic size).
The reason is that the endomorphism ring of every supersingular elliptic curve
over Fp is isomorphic to a maximal order O ⊂ Bp,∞. Under this isomorphism,
the degree of an endomorphism corresponds to the (reduced) norm n(u) of the
corresponding quaternion u.

Example 2.1. If p ≡ 3 mod 4 then one can realize the quaternion algebra Bp,∞
as Q⟨1, i, j, k⟩ with i2 = −1, j2 = −p and k = ij = −ji. The elliptic curve
E0 : y2 = x3 + x with j(E0) = 1728 is supersingular. Here End(E0) ∼= O0 with

O0 =

〈
1, i,

i+ j

2
,
1 + k

2

〉
.

One isomorphism τ : O0

∼=→ End(E0) arises by letting τ(i) : (x, y) 7→ (−x,
√
−1y)

and τ(j) : (x, y) 7→ (xp, yp). As mentioned: n(u) = deg(τ(u)) for all u ∈ O0.

The Deuring correspondence [23] asserts that this turns into a categorical
equivalence between supersingular elliptic curves defined over Fp (up to Galois
conjugation) and maximal orders in Bp,∞ (up to isomorphism or, equivalently, up
to conjugation). On the elliptic curve side, the non-zero morphisms are isogenies
φ : E0 → E1. On the quaternion side, such an isogeny φ corresponds to a rank-
4 sub-Z-module I ⊂ Bp,∞ which is a left, resp. right, ideal of a maximal order
O0
∼= End(E0), resp.O1

∼= End(E1). This ideal is then referred to as a connecting
ideal of O0 and O1. Note that endomorphism rings can be embedded into Bp,∞
in many ways: any embedding can be post-composed with conjugation. This
warrants the notion of equivalent ideals: a left ideal J ⊂ O0 will be a right ideal
of an order O′

1
∼= O1 if and only if there exists β ∈ Bp,∞ \ {0} such that J = Iβ.

On the geometry side, this corresponds to different isogenies E0 → E1 connecting
the same curves. The left ideals I, J ⊂ O0 are then said to be equivalent.

There is an explicit geometric view on Deuring’s construction of the ideal I: it
can be seen as the subset of End(E0) that is obtained by post-composing φ with
all elements of Hom(E1, E0). Thus I encodes the set of all isogenies E1 → E0,
and the norm of every element of I is divisible by the degree of φ. More precisely,
it can be shown that deg(φ) equals n(I) = gcd{n(u) |u ∈ I}, the norm of I.

†In the non-ramified cases we have B ⊗Q Qv
∼= M2(Qv).
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The Deuring correspondence implies that there is a natural quaternion analog
of the ℓ-isogeny pathfinding problem. Indeed, upon input of two maximal orders
O0,O1 ⊂ Bp,∞ connected by an ideal I, it amounts to finding an equivalent left
ideal J ⊂ O0 of norm ℓe for some e ≥ 1. An alternative viewpoint taking the
geometric interpretation into account is as follows: when given one connecting
ideal I, it is enough to find σ ∈ I such that n(σ) = n(I)ℓe. This is exactly
the problem that is addressed by the KLPT algorithm [38].† It is then easy
to check that J = Iβ with β = σ̄/ n(I) is an equivalent ideal with norm ℓe.
Geometrically, under the above identification of I with Hom(E1, E0)φ, we can
write σ = τφ for a degree-ℓe isogeny τ : E1 → E0, and then J corresponds to
Hom(E1, E0)φσ̂/deg(φ) = Hom(E1, E0)φφ̂τ̂/ deg(φ) = Hom(E1, E0)τ̂ .

Remark 2.2. This is an important view on KLPT as we will need it in exactly
the version where it finds an element of prescribed norm in a certain ideal.

The way KLPT proceeds is as follows. Using a simple trick one can assume
knowledge of a left ideal I ⊂ O0 of prime norm N , so we would like to find
an element σ ∈ I of norm Nℓe. First one finds γ ∈ O0 whose norm is Nℓe0 .
Now the ideal J = O0N + O0γ is going to have norm N . Locally, i.e., modulo
N , I and J reduce to proper left ideals of the matrix ring M2(Z/NZ) and such
ideals only differ by right-multiplication by an invertible element δ. Such a δ can
be computed locally and lifted to O0 (using an explicit isomorphism between
O0/NO0 and M2(Z/NZ)) which implies that γδ ∈ I. Now the key is that δ is
determined modulo N only, so what is left to do is choose an appropriate lifting
such that n(δ) = ℓe1 . This step is called strong approximation and in [38] it is
carried out for special extremal orders O0, i.e., maximal orders containing an
imaginary quadratic order with small discriminant (it can be modified to work
for arbitrary orders, see [21, Section 5] and [15, Section 5]). Now it is clear that
γδ will fit our criteria with e = e0+e1. The KLPT algorithm can guarantee that
ℓe ∈ O(p3+ε).‡

2.2 Principally polarized abelian varieties

For detailed background, we refer to [6, 16, 34, 42]. An abelian variety over an
algebraically closed field is a projective algebraic variety which is also an alge-
braic group. The notion generalizes that of an elliptic curve, which is an abelian
variety of dimension one. However, for most uses (including in cryptography),
the more relevant generalization is that of an abelian variety equipped with a
principal polarization. Unfortunately, this notion does not admit a down-to-earth
definition. Luckily, the exact construction is not really important for this paper,
which is mostly algebraic in nature. Therefore, the reader who is unfamiliar with
the notation and terminology below can just think of a polarization as a certain

†In other applications of KLPT one searches for connecting ideals having pow-
ersmooth norm, but the approach is entirely the same.

‡The original bound from KLPT is in the order of p3.5, but an improvement due to
Petit and Smith [45], reported in [13, Algorithm 13], reduces this to p3+ε as stated.
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kind of isogeny (i.e. a finite surjective homomorphism) between A and a com-
panion abelian variety Â called its dual.† We include a formal definition, e.g., to
allow the reader to verify the proof of Theorem 2.7 further down:

Definition 2.3. A polarization on a g-dimensional abelian variety A is an
isogeny of the form

λ : A→ Â = Pic0(A)
P 7→ [t−P (D)−D]

with D an ample divisor on A, where t−P denotes point-wise translation by −P .
It can be shown that deg(λ) = (Dg/g!)2 with Dg the self-intersection number of
D. If this degree is equal to one then the polarization is called principal. Write
PPol(A) for the set of principal polarizations on A.

The reason why the notion of a principally polarized abelian variety still
generalizes that of an elliptic curve is that, in the latter case, there is a unique
principal polarization, called the canonical polarization. It is given by the negated
Abel–Jacobi map: P 7→ [(∞) − (P )]. The uniqueness typically no longer holds
in higher dimension. This is notoriously true for superspecial abelian varieties,
which are our main objects of interest. A g-dimensional superspecial abelian
variety is a variety which –– as an unpolarized variety –– is isomorphic to a
product of g supersingular elliptic curves. It can be shown that, for a fixed
characteristic p, all such products are pairwise isomorphic as soon as g ≥ 2
[48, Theorem 3.5]. However, this unique isomorphism class carries Θ(pg(g+1)/2)
inequivalent principal polarizations (in the sense of Definition 2.6 below).

Definition 2.4. A (polarized) isogeny between two principally polarized abelian
varieties (A, λA) and (B, λB) is an isogeny φ : A → B that respects the polar-
izations, i.e., there exists a positive integer N for which the following diagram
commutes

A B

Â B̂

[N ]λA

φ

λB

φ̂

Here, φ̂ is the dual isogeny, defined by taking inverse image divisors under φ.
One has deg(φ) = Ng, and we call N = degrd(φ) the reduced degree of φ. If
N = 1 then φ is called a (polarized) isomorphism; we write (A, λA) ∼= (B, λB).

Remark 2.5. Given a principally polarized abelian variety (A, λA), an abelian
variety B and an isogeny φ : A→ B, in general there does not exist a principal
polarization λB : B → B̂ such that φ is polarized. If it does exist, then λB is
unique and called the induced principal polarization. Assuming that deg(φ) =
Ng for some integer N coprime with the field characteristic, a necessary and
sufficient condition for existence [42, Proposition 13.8 and Remark 13.9] is that

†Not all isogenies A → Â are polarizations: a certain positivity condition should be
satisfied. E.g., if λ is a polarization, then −λ is not. See [17, pp. 6–7] for a discussion.
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ker(φ) is a maximal isotropic subgroup of A[N ], where isotropic means that
eN,λA

(P,Q) = 1 for all P,Q ∈ A[N ], with eN,λA
: A[N ]×A[N ]→ µN the N -Weil

pairing with respect to the principal polarization λA. In this case degrd(φ) = N .

For any isogeny φ : A→ B and any choice of principal polarizations λA, λB ,
it is natural to consider the adjoint isogeny

φ̃ = λ−1
A φ̂λB : B → A

with respect to λA, λB . If φ is polarized, then so is φ̃ and we have φ̃φ =
[degrd(φ)] and φφ̃ = [degrd(φ)]. In the context of elliptic curves, the adjoint
isogeny can be identified with the dual isogeny φ̂ : B̂ → Â via the canonical po-
larization, with which any isogeny is compatible. This is not the case in higher
dimensions. This forces us to make a clear distinction between the dual isogeny,
which is independent from any polarization, and the adjoint isogeny, which de-
pends on a choice of principal polarizations and which exhibits the common
properties we are familiar with from the elliptic curve case.

If λ is a principal polarization on an abelian variety A, then the adjoint
operator Rosλ : α 7→ α̃ = λ−1α̂λ, defines an involution of End(A) called the
Rosati involution (with respect to λ).

Definition 2.6. Two principal polarizations λ1 and λ2 on an abelian variety
A are said to be equivalent if (A, λ1) ∼= (A, λ2), i.e., there exists an automor-
phism α of A such that α̂λ1α = λ2. We write PPol0(A) for the set of principal
polarizations on A up to equivalence.

Turning our focus to dimension g = 2, we recall that principally polarized
abelian surfaces can be classified as follows: they are isomorphic to either

– a product E1 × E2 of two elliptic curves, equipped with the product polar-
ization, coming from D = (E1 × {∞}) + ({∞} × E2), or

– the Jacobian Jac(C) of a genus-2 curve, equipped with the canonical polar-
ization, coming from D = (u(C)) with u : C ↪→ Pic0(C) ∼= Jac(C) : P 7→
[(P )− (∞)] the Abel–Jacobi map (where ∞ ∈ C denotes any base point).

With respect to product polarizations, the adjoint admits a very explicit de-
scription which follows, e.g., along the lines of [5, Proposition 4.10]. Consider
four elliptic curves E1, E2, E3, E4 and assume we have an isogeny φ : E1×E2 →
E3 × E4, not necessarily polarized. We can write this isogeny in matrix form:

φ :

(
P
Q

)
7→

(
α13 α23

α14 α24

)(
P
Q

)
where each αij : Ei → Ej is a homomorphism (an isogeny or the zero map)
of elliptic curves. With respect to the product polarizations on E1 × E2 and
E3 × E4, we have

φ̃ :

(
P
Q

)
7→

(
α̂13 α̂14

α̂23 α̂24

)(
P
Q

)
,
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x
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E1

x

y
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C

Fig. 1. A product of two elliptic curves on the left, and a genus-2 curve embedded in
its Jacobian on the right.

so in this case the map φ 7→ φ̃ can be thought of as a conjugate-transpose. The
isogeny φ is polarized if and only if(

α̂13 α̂14

α̂23 α̂24

)(
α13 α23

α14 α24

)
=

(
[N ] 0
0 [N ]

)
for some positive integer N . This integer necessarily equals degrd(φ), so that
deg(φ) = N2. In general, by [37, Corollary 64] and [30, Proposition 3.9], we have

deg(φ) = (degα13 + degα14)(degα23 + degα24)− deg(α̂23α13 + α̂24α14). (1)

2.3 Ibukiyama–Katsura–Oort correspondence

In the remainder of the paper, we fix a prime p /∈ {2, 3} and a supersingular
elliptic curve E0/Fp. Let Bp,∞ be the unique quaternion algebra (up to iso-
morphism) ramified exactly at p and infinity. Then, as mentioned, End(E0) is
isomorphic through the Deuring correspondence to a maximal order O0 of Bp,∞.
Define A0 = E0×E0 and consider the product polarization λ0. By our previous
discussion, the endomorphism ring of A0 is isomorphic to M2(O0) and under
this isomorphism the Rosati involution (i.e., the adjoint operator) with respect
to λ0 corresponds to the conjugate-transpose.

Recall that, considered without their polarizations, all superspecial abelian
surfaces in characteristic p are isomorphic. Consequently, every principally po-
larized superspecial abelian surface (A, λA) is isomorphic to (A0, λ) for some
principal polarization λ on A0. Explicitly, if φ : A0 → A is an (unpolarized) iso-
morphism, then we can take λ = φ̂λAφ. The following method due to Ibukiyama,
Katsura and Oort can be used to represent a principal polarization λ on A0 as
a matrix with coefficients in O0. One considers the map

µ : PPol(A0)→ End(A0)
λ 7→ λ−1

0 λ,

noting that the image λ−1
0 λ can be identified with an element of M2(O0).
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Theorem 2.7. The map µ is injective and its image, once transferred to the
quaternion world through the Deuring correspondence, corresponds to

Mat(A0) :=

{(
s r
r̄ t

)
, s, t ∈ Z>0, r ∈ O0, st− rr̄ = 1

}
⊂ GL2(O0),

i.e., µ determines a bijection between PPol(A0) and Mat(A0).

Proof. This is [34, Corollary 2.9] specialized to principal polarizations (i.e., to
ample divisors with self-intersection 2). ⊓⊔

Remark 2.8. An alternative way of specifying a principal polarization λ on A0 is
through the Rosati involution it induces on M2(O0). This datum is very explicitly
encoded in the matrix g = µ(λ):

Rosλ(α) = λ−1α̂λ = (λ−1
0 λ)−1(λ−1

0 α̂λ0)(λ
−1
0 λ) = g−1 Rosλ0

(α)g = g−1α∗g,

where we recall that the Rosati involution with respect to the product polar-
ization λ0 indeed amounts to the conjugate-transpose −∗.† Conversely, given
black-box access to Rosλ, one can reconstruct the matrix g via linear system
solving, by considering gRosλ(bi) = b∗i g for a Z-basis b1, . . . , b16 of M2(O0).

In a natural way, the matrix representation extends to polarized isogenies.
Let λ1, λ2 ∈ PPol(A0) be represented by matrices g1, g2 ∈ Mat(A0) and let
φ : (A0, λ1) → (A0, λ2) be a polarized isogeny of reduced degree N . Being an
endomorphism of A0, we can identify φ with a matrix γ ∈ M2(O0), and the
property φ̂λ2φ = Nλ1 readily translates into

(λ−1
0 φ̂λ0)λ

−1
0 λ2φ = Nλ−1

0 λ1.

Using λ−1
0 λi = gi and identifying φ with γ, this can be rewritten as

γ∗g2γ = Ng1, (2)

which is the chief equation of this entire paper. Conversely, whenever a matrix
γ ∈ M2(O0) satisfies (2), it determines a polarized isogeny φ : (A0, λ1) →
(A0, λ2) of reduced degree N . In Section 4 we will discuss methods for converting
polarized isogenies into matrices and vice versa.

We conclude with two remarks:

1. The equivalence relation for principal polarizations from Definition 2.6 nat-
urally translates to the language of matrices as well: given g1, g2 ∈ Mat(A0)
encoding principal polarizations λ1, λ2 on A0, we have

λ1 ∼ λ2 ⇐⇒ ∃u ∈ GL2(O0), u∗g1u = g2.

In this case, we say that the matrices are congruent ; this terminology is taken
from [32]. We then define Mat0(A0) as the set Mat(A0) considered modulo
congruence. Figure 2 summarizes the bijections that allow us to manipulate
(isomorphism classes of) principally polarized superspecial abelian surfaces
using only matrices with entries in O0.

†More generally, the adjoint of α with respect to g1 = µ(λ1), g2 = µ(λ2) is g
−1
1 α∗g2.
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

Superspecial
principally polarized

abelian surfaces
(A, λA)

up to polarized
isomorphism


←→


Principal

polarizations
λ ∈ PPol(A0)

up to equivalence

 µ←→

{
Matrices

g ∈ Mat(A0)
up to congruence

}

Fig. 2. Classification of principally polarized superspecial abelian surfaces

2. Every supersingular elliptic curve in characteristic p admits a model over
Fp2 , therefore the same is true for A0 and the product polarization λ0. When
working with a model such that #A0(Fp2) = (p± 1)4, as will be the case in
practice, we know that all endomorphisms of A0 are defined over Fp2 as well.
Consequently, every principal polarization λ = λ0(λ

−1
0 λ) is defined over Fp2 .

If (A, λA) is a superspecial principally polarized abelian surface defined over
Fp2 such that #A(Fp2) = (p ± 1)4, then it is Fp2-isomorphic to (A0, λ) for
some principal polarization λ on A0. See [6] for an extended discussion.

2.4 Quaternionic matrices and determinants

When trying to define the determinant of a matrix

u =

(
a b
c d

)
∈ M2(Bp,∞),

care is needed in view of the non-commutativity. Note that there is no ambi-
guity in the Hermitian case (i.e., for matrices that are invariant under taking
the conjugate-transpose), which are always defined over a quadratic, hence com-
mutative, subfield of Bp,∞. In particular, it makes sense to consider det(uu∗)
instead. Alternatively, one can consider the reduced norm N (u), defined as
det(ι(u⊗ 1)), where

ι : M2(Bp,∞)⊗Q C→ M4(C)

is any isomorphism of C-algebras. As the following lemma shows, this leads to
the same result.

Lemma 2.9. det(uu∗) = det(u∗u) = n(a) n(d) + n(b) n(c)− tr(ābd̄c) = N (u).

Proof. The first two equalities follow by explicit calculation. For the third equal-
ity we use that N (u) = n(∆(u)) by [24, Theorem 1, p. 146], where

∆(u) =

{
−bc if a = 0,
ad− aca−1b if a ̸= 0

is the so-called Dieudonné determinant [24, Example 1, p. 133]. The statement
follows by explicit calculation. (See [2, Example 2.5] for a related discussion.) ⊓⊔
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One notable consequence of the above lemma is that the map u 7→ det(uu∗) is
multiplicative; indeed this property is immediate for N (−). Another interesting
corollary, for which we could not find an explicit reference, is the following:

Corollary 2.10. Let E/Fp be a supersingular elliptic curve and let End(E) ∼=
O ⊂ Bp,∞. Let u ∈ End(E2), which via this isomorphism can be identified with
an element of M2(O). Then deg u = N (u).

Proof. This follows from (1) and an explicit calculation, using the identity

(n(a) + n(c))(n(b) + n(d))− n(āb+ c̄d) = n(a) n(d) + n(c) n(b)− tr(ābd̄c),

which in turn relies on the identity n(x+ y) = n(x) + n(y) + tr(xȳ). ⊓⊔
The multiplicativity also applies to the usual determinant when applied to

Hermitian matrices. Up to sign, this is easy to see using that N (g) = det(g)2 for
any Hermitian matrix g. But the signs match as well:

Lemma 2.11. Let u, g, h ∈ M2(Bp,∞) where g, h are assumed Hermitian. Then

– det(gh) = det(g) det(h),
– det(u∗gu) = N (u) det(g).

Proof. Using N (gh) = N (g)N (h), we know that either det(gh) = det(g) det(h)
for all Hermitian g, h, or det(gh) = −det(g) det(h) for all Hermitian g, h (this
can be seen, for instance, by working with indeterminate entries). But then we
must be in the first case, since it applies whenever g, h ∈ M2(Q). The second
claim follows along similar lines. ⊓⊔

We end this section by showing that the “adjugate”† with respect to N (−)
of an invertible matrix with entries in some subring O ⊂ Bp,∞ again has entries
in O.
Lemma 2.12. If u ∈ M2(O) is invertible in M2(Bp,∞) then u−1N (u) ∈ M2(O).
Proof. Let g ∈ M2(Bp,∞) be a Hermitian matrix, i.e., symmetric with respect
to conjugate transpose. Then

g =

(
s r
r̄ t

)
where s, t ∈ Q. If det(g) = st− n(r) ̸= 0 then it is easy to see that g is invertible
with inverse

1

st− n(r)

(
t −r
−r̄ s

)
In particular, if g ∈ M2(O) then also g−1 det(g) ∈ M2(O). Applying this to
g = uu∗ yields u∗−1u−1N (u) ∈ M2(O). Multiplying on the left with u∗, we get
the desired result. ⊓⊔

†We intentially avoid the word “adjoint”, because the matrix u−1 N (u) should not
be confused with the adjoint ũ of u in the sense of Section 2.2. Firstly, the latter notion
only makes sense when u describes a polarized isogeny with respect to certain principal
polarizations. Secondly, in case it does make sense, we have ũu = uũ = degrd(u)I2,
whereas u−1 N (u)u = uu−1 N (u) = deg(u)I2 = degrd(u)2I2 in view of Corollary 2.10.
Recall that ũ = g−1

1 u∗g2 when working with respect to principal polarizations associ-
ated with g1, g2 ∈ Mat(A0).
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3 Pathfinding in dimension 2

The goal of this section (and the main goal of the paper) is the description of an
algorithm which solves the algebraic pathfinding problem in dimension 2. That
is, upon input of g1, g2 ∈ Mat(A0), the goal is to find a matrix γ ∈ M2(O0) and
a smooth integer N such that (2) holds. More precisely, we fix any small prime
number ℓ and present the following solution, where N is a power of ℓ.

Theorem 3.1 (KLPT2). There exists a (heuristic) polynomial-time algorithm
which upon input g1, g2 ∈ Mat(A0) and a prime number ℓ ̸= p returns γ ∈
M2(O0) such that

γ∗g2γ = ℓeg1

where ℓe ∈ O(p25+ε).

A proof-of-concept implementation of the algorithm can be found in:

https://github.com/KLPT2/KLPT2

Further down, in Theorem 3.14, we will present a variant for powersmooth N ,
which is often better-suited for (theoretical) applications.

Just as in the original KLPT algorithm, our algorithm relies on O0 being
a special extremal order, i.e., we want it to contain a quadratic order whose
discriminant has a very small absolute value [38, §2.3]. In fact, for simplicity,
we just restrict to p ≡ 3 mod 4 and use the base curve E0 : y2 = x3 + x and
maximal order O0 from Example 2.1. Note that the Gaussian integers Z[i] are
contained in O0, so this order is of the desired kind.

3.1 Finding connecting matrices

Our proof strategy for Theorem 3.1 is based on the following lemma.

Lemma 3.2. Let h1, h2 ∈ M2(O0) be Hermitian matrices with equal upper-left
entries and equal determinants, i.e., we have

h1 =

(
D r1
r̄1 t1

)
, h2 =

(
D r2
r̄2 t2

)
for D, t1, t2 ∈ Z, r1, r2 ∈ O0 such that Dt1 − n(r1) = Dt2 − n(r2). Then for

τ =

(
D r1 − r2
0 D

)
we have τ∗h2τ = h1.

Proof. One calculates that(
D 0

r̄1 − r̄2 D

)(
D r2
r̄2 t2

)(
D r1 − r2
0 D

)
=

(
D3 D2r1
D2r̄1 D(n(r1)− n(r2) +Dt2)

)
,

so the only thing left to show is that D(n(r1)− n(r2) +Dt2) = D2t1. But this is
true exactly because of the condition Dt1 − n(r1) = Dt2 − n(r2). ⊓⊔

https://github.com/KLPT2/KLPT2
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Note that in the above lemma we do not impose det(h1) = det(h2) = 1, so this
is not always a special case of (2). We only want the two determinants to be
equal, for reasons that will become apparent soon.

When given g1, g2, our goal is to transform them in a fashion such that
Lemma 3.2 becomes applicable. This is aided by the following lemma:

Lemma 3.3. Assume that δ∗g2δ = Nu∗g1u with N ∈ Z, u, δ ∈ M2(O0). Then
there exists γ ∈ M2(O0) such that γ∗g2γ = N N (u)2g1.

Proof. One can choose γ = δu−1N (u). The equality γ∗g2γ = N N (u)2g1 is
clearly satisfied and Lemma 2.12 implies that γ ∈ M2(O0). ⊓⊔

This naturally leads to the following plan for solving the problem γ∗g2γ = ℓeg1.
Namely, given g ∈ Mat(A0) we want to find u ∈ M2(O0) with the following
properties:

– N (u) = ℓe1 where e1 does not depend on g (but u does).
– The top left entry of u∗gu is ℓe2 , where e2 does not depend on g.

How does this solve our initial problem? First we transform g1 and g2 with an
appropriate u1 and u2 in the above fashion. Then we invoke Lemma 3.2 as by
design the two sides have the same top left entry and the same determinant, by
Lemma 2.11. This yields a matrix τ ∈ M2(O0) such that

τ∗u∗2g2u2τ = ℓ2e2u∗1g1u1. (3)

We can then apply Lemma 3.3 with δ = u2τ to return

γ = u2τu
−1
1 N (u1), (4)

which has reduced degree ℓ2(e1+e2).

Remark 3.4. Although our approach is purely algebraic, it is instructive to un-
derstand what happens on the geometry side. For i = 1, 2, let λi be the principal
polarization on A0 associated with gi under the IKO correspondence. In general,
the Hermitian matrix u∗i giui does not correspond to a principal polarization on
A0 (as its determinant is N (ui) = ℓe1), yet it still corresponds to a polarization
λ′i, which is the pull-back of λi under the endomorphism ui. This leads to the
outer squares in the following diagram:

A0 A0 A0 A0

Â0 Â0 Â0 Â0

D2λ1

u1

D2λ′
1

τ

λ′
2

u2

λ2

û1 τ̂ û2

(5)

The polarizations of the left square were scaled by D2 = ℓ2e2 in order to be
compatible with the middle square, which refers to our application of Lemma 3.2:
the matrices gi are crafted such that D2λ′1 is the pull-back of λ′2 along the easy
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endomorphism τ , depicted in blue. Finally, Lemma 3.3 explains how to “flip”
the left square. Indeed, we can naturally extend it to

A0 A0 A0

Â0 Â0 Â0

D2λ1

u1

D2λ′
1

u−1
1 N (u1)

D2 N (u1)
2λ1

û1 û−1
1 N (u1)

Thus, by substituting the (flipped version of the) block on the right for the left
square in (5), we obtain a diagram as in Definition 2.4, showing that λ2 pulls
back to D2N (u1)

2λ1 under γ = u2τu
−1
1 N (u1). That is, γ is a polarized isogeny

of reduced degree D2N (u1)
2, as wanted.

So now our focus is on a single

g =

(
s r
r̄ t

)
∈ Mat(A0),

where along the way we will explicitly bound ℓe1 , ℓe2 by appropriate constants.
First let us calculate what the top left entry of u∗gu is.

Lemma 3.5. Let u =
(
a b
c d

)
. Then the top left corner of u∗gu is given by

s′ := s · n(a) + t · n(c) + tr(c̄r̄a)

and the bottom right corner is given by

t′ := s · n(b) + t · n(d) + tr(b̄r̄d).

Proof. This follows from a simple calculation. ⊓⊔

Note in particular that the top left corner s′ only depends on a and c (likewise,
the bottom right corner t′ only depends on b and d). This motivates the following
rough strategy:

1. Find a, c ∈ O0 such that s′ is a fixed power of ℓ.
2. Given a, c, find values for b, d ∈ O0 such that the reduced norm N (u) is

another fixed power of ℓ.

We first concentrate on Step 2, then come back to Step 1 in Section 3.4.

3.2 Controlling the reduced norm

Let us be given non-zero a, c ∈ O0, where we assume that n(a) and n(c) are
coprime; this will indeed be ensured. The goal of this section is to find x, y ∈ O0

such that

N
(
a x
c y

)
= n(a) n(y) + n(c) n(x)− tr(āxȳc) = ℓe0
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for some fixed power ℓe0 (we will eventually have e1 = 2e0). We will not be solving
this Diophantine equation directly. Instead, we will show that it amounts to a
pathfinding problem in dimension 1 and invoke the standard KLPT algorithm.

We view O2
0 as a free right O0-module of rank 2, together with a quadratic

module structure given by Q((x, y)) = n(a) n(y) + n(c) n(x) − tr(āxȳc). Since
N is a norm, it is clear that Q is either positive or semi-positive definite, and
we will informally refer to it as a norm on O2

0 (in fact, it is a semi-norm).
The first observation is that Q is identically zero on the free rank-1 submodule
(a, c)O0. Actually, a simple calculation shows that every element of (a, c)O0 is
orthogonal to every element inO2

0. The following lemma reveals a complementary
submodule.

Lemma 3.6. Let M1 = (a, c)O0. Furthermore, let α, β be integers such that
α n(a)+β n(c) = 1. Let M2 = (β n(c)a,−α n(a)c)Bp,∞ ∩O2

0. Then M2 is a right
O0-module and M1 ⊕M2 = O2

0.

Proof. M2 is a right O0-module as it is the intersection of two right O0-modules.
Any element u ∈ M2 can be written as (β n(c)a,−α n(a)c)z where z ∈ Bp,∞. It
is easy to check that

Q(u) = n(ac) n(z), (6)

so that only the 0 vector has 0 norm, hence its intersection with M1 is trivial.
Now we show why M1 + M2 = O2

0. It is enough to show that M1 + M2

contains (1, 0) and (0, 1). One has that

(a, c)αā+ (β n(c)a,−α n(a)c)
1

n(a)
ā = (1, 0)

because α n(a) + β n(c) = 1. It is easy to see that the second term is indeed in
M2. Our claim follows from similarly noting that

(a, c)βc̄− (β n(c)a,−α n(a)c)
1

n(c)
c̄ = (0, 1). ⊓⊔

We are now ready to prove the main result of this subsection:

Proposition 3.7. The module M2 is n(c)-homothetic to the right O0-ideal I =
n(c)O0 + ac̄O0. More precisely, the map

τ :M2 → I

(β n(c),−αcā)o1 + (βac̄,−α n(a))o2 7→ n(c)o1 + ac̄o2, o1, o2 ∈ O0

is a well-defined isomorphism of right O0-modules such that n(τ(m)) = n(c)Q(m)
for all m ∈M2.

Proof. First note that (β n(c),−αcā) ∈M2 because

(β n(c),−αcā) = (β n(c)a,−α n(a)c)a−1.
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Likewise, we find that (βac̄,−α n(a)) ∈M2. Next, observe that

Q((β n(c),−αcā)o1 + (βac̄,−α n(a))o2)

can be rewritten as

Q
(
(β n(c)a,−α n(a)c)(a−1o1 + c−1o2)

)
= n(ac) n(a−1o1 + c−1o2)

=
n(a n(c))

n(c)
n(a−1o1 + c−1o2)

= (1/ n(c)) n(a n(c)a−1o1 + a n(c)c−1o2)

= (1/ n(c)) n(n(c)o1 + ac̄o2),

where we have used (6) in the first step. This almost proves the proposition.
Namely, it shows that τ defines an n(c)-homothetic isomorphism between the
module M ′

2 ⊂ M2 generated by (β n(c),−αcā), (βac̄,−α n(a)) and I. Note that
it is a priori unclear that τ is a well-defined map, let alone an isomorphism,
because the decomposition with respect to these generators may not be unique.
However, this again follows from the homothetic property: the element (0, 0),
however decomposed, must map to an element of norm 0, hence it must map to
0. A similar argument also proves injectivity, while surjectivity comes for free.

So it remains to argue that M ′
2 = M2. Assume M ′

2 ⊊ M2 and note that, by
allowing for o1, o2 ∈ Bp,∞, we can extend the domain of τ to M2, still ending up
with a well-defined injective morphism. The image τ(M2) is a fractional right
O0-ideal strictly containing I. Since n(I) = gcd(n(c)2, n(ac̄)) = n(c), this means
that τ(M2) must contain an element whose norm is not an integer multiple of
n(c). But this means that M2 contains an element at which Q takes a value
outside the integers: a contradiction. ⊓⊔

Why is Proposition 3.7 important? The KLPT algorithm can find an element
ω ∈ I such that n(ω) = n(c)ℓe0 where ℓe0 ∈ O(p3+ε). This element can be written
as n(c)o1 + ac̄o2 (in polynomial time) because n(c) and ac̄ are generators of I
as a right O0-module. Proposition 3.7 implies that the norm with respect to Q
of the vector (β n(c),−αcā)o1 + (βac̄,−α n(a))o2 is exactly ℓe0 , and this is what
we wanted to achieve. Turning back to the language of matrices:(

a β n(c)o1 + βac̄o2
c −αcāo1 − α n(a)o2

)
is a way of completing the first column

(
a c

)T
to a 2 × 2 matrix with reduced

norm ℓe0 .

Remark 3.8. This can be simplified: from the proof of Lemma 3.6 it follows that
the above matrix can be rewritten as(

a o1
c −o2

)
·
(
1 −αāo1 + βc̄o2
0 1

)
.

Since the second factor is an element of GL2(O0), it is equally fine to work with
the matrix on the left: its reduced norm is also equal to ℓe0 .
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Remark 3.9. Under the Deuring correspondence, the right ideal I corresponds
to an incoming isogeny ψ : E → E0. The dual of this isogeny is the degree-n(c)
factor of cā emanating from E0, which can also be described as a push-forward:

E0 E0

E0 E

c

a

[a]∗c= ψ̂
cā

In other words: ψ = ̂[a]∗c.
3.3 Reduction of the matrix g

Thanks to the previous subsection, our task has been (essentially) reduced to
finding a, c ∈ O0 in such a way that the top-left entry

s′ = K((a, c)) := s · n(a) + t · n(c) + tr(c̄r̄a) (7)

of u∗gu is some fixed power of ℓ, only depending on p. Moreover, we want to
make sure that n(a) and n(c) are non-zero and coprime. Again, we see that K is
a quadratic form on O2

0, but now we will just view the latter as a free Z-module
of rank 8, and analyze it as such:

Proposition 3.10. The quadratic form K is positive definite and has determi-
nant (p/4)4.

Proof. First we prove that K is positive definite. To see that it is definite, let
(a, c) ∈ O2

0 \ {(0, 0)}. It is easy to check that this can be seen as the first
column of a matrix u with non-zero reduced norm. Assume that u∗gu has the
form

(
0 r′

r̄′ t′

)
, then det(u∗gu) = − n(r′) ≤ 0. But from Lemma 2.11 we find that

det(u∗gu) = N (u) det(g) > 0: a contradiction. This proves that K does not have
a nontrivial zero. Since K is an 8-dimensional integer quadratic form this implies
that K is not indefinite as every indefinite quadratic form in dimension at least 5
is isotropic, as wanted. Furthermore, K cannot be negative definite since s > 0.†

Writing r = r1+r2i+r3j+r4k, an explicit calculation shows that the matrix
of the quadratic form K with respect to the basis (1, 0), (i, 0), . . . , (0, k) of B2

p,∞
is as follows: 

s 0 0 0 r1 −r2 −pr3 −pr4
0 s 0 0 r2 r1 −pr4 pr3
0 0 sp 0 pr3 pr4 pr1 −pr2
0 0 0 sp pr4 −pr3 pr2 pr1
r1 r2 pr3 pr4 t 0 0 0
−r2 r1 pr4 −pr3 0 t 0 0
−pr3 −pr4 pr1 pr2 0 0 tp 0
−pr4 pr3 −pr2 pr1 0 0 0 tp


†Alternatively, the positive-definiteness follows from [34, Proposition 2.8] when ap-

plied to the pull-back polarization of the principal polarization λ corresponding to g
(under the isogeny corresponding to u).
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One can check that the determinant of this matrix is p4(st − n(r))4 = p4. Any
matrix of base change between a Z-basis of O2

0 and the above basis has deter-
minant 1/16, leading to the desired result. ⊓⊔

The goal of this subsection is to describe an intermediate step, where we
wish to find a transformation matrix u making s′ as small as possible. This can
be achieved through lattice reduction: using Proposition 3.10, we see that (7)
expresses s′ as the squared-Euclidean length of a vector in a lattice in R8 having
volume (p/4)2.† Using the usual Minkowski bound we get that there exists one
vector with

s′ < 4

(
(p/4)2

ν8

)1/4

<
3

2

√
p

where ν8 = π4/24 denotes the volume of an 8-dimensional unit ball. In practice
we can find corresponding a, c by using the Hermite–Korkine–Zolotarev lattice
reduction algorithm (HKZ).

Once a, c realizing a small value of s′ are found, we can complement them
with b, d using the KLPT algorithm, as described in the previous subsection.
However, remember that we want n(a) and n(c) to be coprime for this. Further-
more, to simplify the analysis in Theorem 3.12 below, we will want s′ to be a
prime different from 2 and ℓ. This forces us to slightly enlarge the above bound.
Assuming a sufficiently random behavior of the integers K((a, c)), we should be
able to find such an s′ < R as soon as

#
{
(a, c) ∈ O2

0

∣∣ K((a, c)) < R
}
≥ π2

6
· 2ℓ

φ(2ℓ)
· lnR,

where the factors on the right account for the conditions gcd(n(a), n(c)) = 1,
2ℓ ∤ s′, and s′ prime, respectively. Applying the Gaussian heuristic, we can
approximate the left-hand side by ν8R

4/(p/4)2. Thus we see that

R =
√
p(ln p)1/4

should be good enough, where we took some margin, for the simplicity of this
expression, to leave room for retrial, as well as to back-up for potential biases
in the Gaussian heuristic and in the distribution of quaternionic norms, e.g., of
the kind [7, Conjecture 6].

Despite the smallness of s′, the other entries of u∗gu may become quite large.
Thus, we use an extra transformation to keep these values contained. For this
we can use a matrix of the form ( 1 α0 1 ). To enlighten notation, let us explain this
step directly on g, rather than on u∗gu:

( 1 α0 1 )
∗
g ( 1 α0 1 ) =

(
s αs+ r

ᾱs+ r̄ n(α)s+ tr(ᾱr) + t

)
†E.g., this follows via the Cholesky decomposition of the matrix in the proof of

Proposition 3.10.
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The main observation here is twofold. First s does not change. Second r changes
to αs + r, thus we can attain anything in O0 that is congruent to r modulo
s. In particular we can ensure that the coordinates ri, i = 1, . . . , 4 of r with
respect to the basis from Example 2.1 satisfy |ri| ≤ s/2. This implies that
n(r) ≤ s2(p+ 5)/8. Note that ( 1 α0 1 ) ∈ GL2(O0), hence we do not have to worry
about the reduced norm in this step.

Applying this to

u∗gu =

(
s′ r′

r̄′ t′

)
,

first note that
s′t′ − n(r′) = N (u) = ℓe0 ∈ O(p3+ε)

by the KLPT step, where we have used Lemma 2.11. Thus from n(r′) ≤ s′2(p+
5)/8 and s′ ≤ √p(ln p)1/4, one finds that t′ ≤ ℓe0/s′ + s′(p+ 5)/8 ∈ O(p3+ε/s′).

Finally, we will also want that ℓ ∤ t′, or equivalently ℓ ∤ n(r′). This is easy
to achieve by slightly tweaking α if needed. Indeed, one easily checks that, by
relaxing the bounds |ri| ≤ s/2 to |ri| ≤ s, it can be ensured that tr(r′) ̸≡
−1 mod ℓ. Then, if it so happens that ℓ | n(r′), an extra transformation using
( 1 1
0 1 ) will fix this issue.
In summary, by applying a suitable transformation g ← u∗gu, we can reduce

to the case where g has bounded entries satisfying some non-divisibility condi-
tions, at the cost of increasing the determinant from 1 to a power of ℓ. For clarity
we give a definition for this case, while adding in another heuristic assumption,
which should be satisfied with overwhelming probablity:

Definition 3.11. A matrix

g =

(
s r
r̄ t

)
, s, t ∈ Z>0, r ∈ O0, st− rr̄ > 0

is called ℓ-reduced if

– det(g) = st− n(r) = ℓe0 for some e0 ≥ 0,
– s ≤ √p(ln p)1/4 is a prime number not dividing 2ℓt,
– n(r) ≤ s2p is not a multiple of ℓ.

The extra assumption is s ∤ t. Note that the conditions imply s ∤ n(r) and ℓ ∤ t.

3.4 Controlling the top-left entry and finalizing the algorithm

Starting from a reduced matrix g as in Definition 3.11, with determinant ℓe0 ∈
O(p3+ε), we now show how to find a matrix u, of ℓ-power reduced norm, such
that u∗gu has a top left corner equal to ℓe2 for some e2 ≥ 0. As discussed before,
this amounts to solving the Diophantine equation

ℓe2 = s n(a) + t n(c) + tr(c̄r̄a) (8)

in such a way that gcd(n(a), n(c)) = 1, and complementing with appropriate b, d
via the KLPT algorithm.
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Theorem 3.12. Let g ∈ M2(O0) be a reduced matrix as in Definition 3.11.
There exists a (heuristic) polynomial-time algorithm that finds a solution to (8)
with n(a) and n(c) coprime, provided that ℓe2 ∈ Θ(p6.5+ε).

Proof. We make the following restrictions: we take a of the form a1 + a2i ∈ Z[i]
and we take c of the form c1r̄j + c2r̄k ∈ r̄jZ[i]. Since tr(c̄r̄a) is zero for every
such choice of a, c, equation (8) simplifies to ℓe2 = s n(a) + t n(c). We then solve
the quadratic equation

t n(c) = tp n(r)(c21 + c22) ≡ ℓe2 mod s.

Since s is an odd prime and s ∤ t, p, n(r), ℓ, this provides us with an irreducible
conic equation over Fs which always has a solution: this gives us c, with c1, c2 ∈
{0, . . . , s− 1}. Now we have that ℓe2 − t n(c) is divisible by s, so we are left with
the equation

ℓe2 − t n(c)
s

= n(a). (9)

Since a ∈ Z[i] this can be solved using Cornacchia’s algorithm, provided we know
the factorization of ℓe2 − t n(c). Thus we iterate until (9) has a solution and we
can factor ℓe2 − t n(c) efficiently. Here one expects a polylogarithmic number of
iterations. The reason for the size constraints on ℓe2 is that one needs ℓe2− t n(c)
to be positive, as otherwise it cannot be the sum of two squares. From

t n(c) = t · p · n(r) · (c21 + c22) ∈ O
(
p3+ε

s
· p · s2p · 2s2

)
⊂ O(p6.5+ε)

the bound follows. Note that (9) does not guarantee that gcd(n(a), n(c)) = 1,
so a number of retries, each time choosing different representants of c1, c2 mod s
(or choosing a genuinely different solution to the above quadratic equation over
Fs), may be needed. This does not affect the above asymptotic estimate. ⊓⊔

Remark 3.13. In particular, from (9) it is clear that c should be chosen such
that ℓ ∤ n(c), for otherwise ℓ | gcd(n(a), n(c)). This is the reason for the condition
ℓ ∤ n(r) in Definition 3.11. It is interesting to specialize this to our main case of
interest ℓ = 2: both n(r) and c21 + c22 should be odd. Then, assuming e0, e2 ≥ 2,
equation (9) implies that

−t n(c) = −tp n(r)(c21 + c22) ≡ s n(a) mod 4 ⇒ −t2p(c21 + c22) ≡ n(a) mod 4,

showing that n(a) ≡ −1 · 3 · 1 ≡ 1 mod 4. This is a necessary condition for the
Cornacchia-step to succeed.

We are now ready to prove our main result:

Proof of Theorem 3.1: The algorithm to find γ ∈ M2(O0) when given

g1 =

(
s1 r1
r̄1 t1

)
, g2 =

(
s2 r2
r̄2 t2

)
∈ Mat(A0)
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is summarized in Algorithm 1. From the preceding discussions, it should be clear
that all steps are heuristically polynomial-time. As for the output length, note
that the matrices u1, u2 produced in Step 7 have reduced norm ℓe1 with e1 = 2e0,
and for i = 1, 2 the upper-left entry of u∗i giui equals ℓ

e2 . Thus, from (4) we find
that γ has reduced degree

ℓe = ℓ2(e1+e2) = (ℓe0)4 · (ℓe2)2 ∈ O(p12+ε · p13+ε)

in view of the KLPT bound and Theorem 3.12. ⊓⊔

Algorithm 1: KLPT2: An algorithm to solve the quaternion ℓ-isogeny

path problem in dimension 2

Input : g1, g2 ∈ Mat(A0)

Output: γ ∈ M2(O) such that γ∗g2γ = ℓeg1 with ℓe ∈ O(p25+ε)

1 For i=1,2 do

2 Find a, c using lattice reduction such that gcd(n(a), n(c)) = 1, and

si n(a) + ti n(c) + tr(c̄r̄ia) <
√
p(ln p)1/4 is prime (not 2, ℓ).

3 Find b, d using KLPT as described in Section 3.2 such that the

reduced norm of u :=
(
a b
c d

)
is ℓe0 .

4 Find α such that g′ =
(
s′ r′

r̄′ t′

)
:= ( 1 0

ᾱ 1 )u
∗giu( 1 α0 1 ) is reduced.

5 Find a′, c′ using lattice reduction such that gcd(n(a′), n(c′)) = 1 and

s′ n(a′) + t′ n(c′) + tr(c̄′r̄′a′) = ℓe2 using Theorem 3.12.

6 Find b′, d′ using KLPT as described in Section 3.2 such that the

reduced norm of u′ =
(
a′ b′

c′ d′

)
is ℓe0 .

7 Let ui = u( 1 α0 1 )u
′.

8 Compute τ connecting u∗1g1u1 and u∗2g2u2 as in Lemma 3.2.

9 Return γ := u2τu
−1
1 N (u1) as in (4).

The algebraic pathfinding problem was studied here for N = ℓe similarly to
the original KLPT algorithm. However, it is clear that both KLPT and The-
orem 3.12 can be adjusted to any number that is big enough; see also [29].
Now by invoking powersmooth versions of KLPT and Theorem 3.12 we get a
powersmooth degree isogeny, since the product of powersmooth numbers is still
powersmooth. This implies the following version of Theorem 3.1:

Theorem 3.14. There exists a (heuristic) polynomial-time algorithm which upon
input g1, g2 ∈ Mat(A0) and a smoothness bound B returns γ ∈ M2(O0) such that

γ∗g2γ = Ng1

where N ∈ O(p25+ε) is B-powersmooth.



KLPT2: Algebraic pathfinding in dimension two and applications 23

3.5 Finding short isogenies

For certain applications one might be interested in a version of the algebraic
isogeny problem γ∗g2γ = Ng1 where N is as small as possible. For elliptic
curves this can be achieved via lattice reduction, but in higher dimension the
set of polarized isogenies between two principally polarized abelian varieties no
longer forms a lattice. Heuristically, one expects that N ∈ O(p3/4+ε) should be
feasible.† Here we briefly sketch a method which realizes N ∈ O(p3+ε) under the
assumption that one of the surfaces, say the codomain, concerns A0 (equipped
with the product polarization λ0). In this case the matrix g2 is simply the 2× 2
identity matrix I2 ∈ M2(O0). Observe the following:

Lemma 3.15. Consider a matrix

g =

(
s r
r̄ t

)
, s, t ∈ Z>0, r ∈ O0

and assume that s is a prime congruent to 1 mod 4 and that det(g) = st− n(r)
is a square. Then there exists γ ∈ M2(O0) such that γ∗γ = s2g.

Proof. We look first look for an upper-triangular γ0 =
(
a b
0 d

)
∈ M2(Bp,∞) such

that γ∗0γ0 = g. We get the following equations:

n(b) + n(d) = t, āb = r, n(a) = s

We solve n(a) = s using Cornacchia’s algorithm and then choose b = ra/s. Now
what remains is to choose d such that n(b) + n(d) = t. One finds that

n(d) = t− n(b) = t− n(r)

s
=

det(g)

s
=
A2

s

for some A ∈ Z. Thus we can choose d = Aa/s. Now γ := sγ0 ∈ M2(O0) satisfies
γ∗γ = s2g. ⊓⊔

Now we can recycle the work done in the previous sections. As explained in
Section 3.3, using lattice reduction with respect to the quadratic form K((a, c))
we can find u = ( a ·

c · ) such that the top-left corner s of u∗gu is a prime of size
O(p1/2+ε), such that n(a) and n(c) are coprime, and such that s ≡ 1 mod 4 (the
latter congruence was not included in Section 3.3, but since this is a very mild
assumption, it is not expected to cause a noticeable increase in size). Along the
lines of Section 3.2, we can then complete u =

(
a b
c d

)
such that N (u) = det(u∗gu)

is a square, where we claim that this square can be chosen of order O(p1+ε).
Indeed, using lattice reduction in the ideal I from Proposition 3.7 it is expected
that we can find an element ω ∈ I of norm n(c)q where q ∈ O(p1/2+ε) is a prime

†For any prime ℓ there are about ℓ3 emanating polarized (ℓ, ℓ)-isogenies [8, Lemma
2]. This gives about B4+ε emanating isogenies of reduced degree at most B, while the
total number of principally polarized superspecial abelian surfaces is about p3/2880,
see [6]. Thus we can heuristically expect that B ∈ O(p3/4+ε) should suffice.
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congruent to 1 mod 4. Using Cornacchia’s algorithm we can find α ∈ Z[i] ⊂ O0

such that n(α) = q. Then also ωα ∈ I and it has norm n(c)q2. An application
of Proposition 3.7 then yields the claim. Putting this all together, we get the
following result:

Theorem 3.16. Let g ∈ Mat(A0). There exists a (heuristic) polynomial-time
algorithm that finds γ ∈ M2(O0) such that γ∗γ = Ng and N ∈ O(p3+ε).

Proof. By Lemma 3.3 we can take N = s2N (u)2 ∈ O(p1+ε · p2+ε). ⊓⊔

4 Translating between matrices and isogenies

The main applications of the standard KLPT algorithm go hand in hand with
efficient methods for converting left (non-zero) ideals of O0 into isogenies em-
anating from E0 and vice versa. Likewise, in order to put KLPT2 to practical
use, we need methods for translating appropriately chosen 2 × 2 matrices with
entries in O0 to polarized isogenies emerging from A0 and conversely.

The analogy with the elliptic curve case becomes more apparent when noting
that M2(O0) is a principal ideal ring. Consequently, we have a natural identi-
fication of left ideals I ⊂ M2(O0) with their generating matrices γ ∈ M2(O0),
up to left-multiplication with elements of GL2(O0). On a high level, the known
approaches for translating between ideals and isogenies in dimension one carry
over to dimension two. But in the case of isogeny-to-ideal conversion there is
an important caveat: the ideal returned by the standard isogeny-to-ideal ap-
proaches is described in terms of multiple generators, and extracting a single
generating matrix from this description is not a trivial task. Indeed, a large part
of Chu’s thesis [16, Chapter 2] is devoted to the design of a sub-exponential time
algorithm for solving this instance of the principal ideal problem (PIP).

In this section, we describe some first routines for converting matrices to
isogenies and vice versa; our main result is presented in Section 4.3, where we
show how to by-pass the PIP for chains of (2, 2)-isogenies, which for applications
is the main case of interest. Then, in Section 5, we will enhance these basic
routines through the use of KLPT2.

4.1 Matrices to polarized isogenies from A0

This is stated in [16, Section A.2] as a “required routine”, but no details are
given, even though the method is not too surprising. The input is a matrix γ ∈
M2(O0) of reduced norm N2, where N = N1N2 · · ·Nr is assumed powersmooth,
i.e., the factors Ni are pairwise coprime and bounded by B for some constant
B = poly(log p). In view of Remark 2.5, we also assume that the kernel of γ,
when identified with an endomorphism of A0, is a maximal isotropic subgroup
of A0[N ] with respect to the N -Weil pairing for the product polarization λ0. (If
γ fails to meet this condition, then our method will detect this along the way.)
The desired output is a chain of polarized isogenies

A0
φ1−→ A1

φ2−→ A2
φ3−→ . . .

φr−→ Ar (10)
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of respective reduced degrees Ni, such that ker(γ) = ker(φr ◦· · ·◦φ2 ◦φ1), where
each Ai is either a product E1 × E2 of two elliptic curves equipped with the
product polarization, or the Jacobian Jac(C) of a curve of genus 2 equipped
with the canonical polarization.

The method starts off by computing a set of generators

Si = {(Uij , Vij)}j , Uij , Vij ∈ E0

of (ker γ)[Ni] for each i = 1, . . . , r.† This can be done by first picking a basis
Pi, Qi ∈ E0[Ni]. Such points can be found over a field extension of degree at
most B2. Then

(Pi, 0), (0, Pi), (Qi, 0), (0, Qi) (11)

is a basis of A0[Ni], and the requested generators can be found by expressing that
x(Pi, 0)+y(0, Pi)+z(Qi, 0)+w(0, Qi) = (xPi+zQi, yPi+wQi) is annihilated by
γ and solving a system of four homogeneous linear equations in the unknowns
x, y, z, w ∈ Z/NiZ. Explicitly writing down these equations involves discrete
logarithm computations in groups of size Ni, so it is actually simpler to evaluate
the adjoint isogeny‡

γ̃ = Nγ−1 ∈ M2(O0)

in the four points (11): their images generate (ker γ)[Ni].

Remark 4.1. As a sanity check, one can verify that these generators span a group
with N2

i elements and that

eNi(Uij1 , Uij2) · eNi(Vij1 , Vij2) = 1

for each pair (Uij1 , Vij1), (Uij2 , Vij2) ∈ Si; this checks that the group is maximal
isotropic with respect to the Ni-Weil pairing for the product polarization on A0.

After gathering this data for i = 1, . . . , r, we first compute a polarized isogeny

φ1 : A0 → A1

with kernel (ker γ)[N1]. For this step, various methods are available. E.g., if
N1 = 2e for some small exponent e, then this can be done through an e-fold
application of the classical formulae due to Richelot [49]; the occasional gluing
and splitting steps can be handled using [33]. For the general case, we refer to [18].
Even though the elements of (ker γ)[Ni] may live over an extension field only,
the isogeny φ1 itself is Fp2-rational. We then push the generators of (ker γ)[Ni]
for i = 2, . . . , r through this isogeny and repeat, starting from A1. Eventually
we arrive at Ar in polynomial time, as wanted. The method is summarized in
Algorithm 2.

†If Ni is prime then it is possible to use 2 generators, but in general one may need
3 generators (or even 4 generators in case γ factors through scalar multiplication).

‡Note: Nγ−1 ∈ M2(O0) relies on γ being polarized and is a stronger statement than
Lemma 2.12 (which says that N2γ−1 ∈ M2(O0)).
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Algorithm 2: MatrixToIsogeny: powersmooth degree

Input : γ ∈ M2(O0) with degrd(γ) = N1 · · ·Nr powersmooth

Output: polarized isogenies φr ◦ · · · ◦ φ1 : A0 → Ar with degrdφi = Ni

1 γ̃ ← Nγ−1, φ0 = id.

2 For i = 1, . . . , r do

3 Pi, Qi ← basis of E0[Ni].

4 Si ← γ̃ ({(Pi, 0), (0, Pi), (Qi, 0), (0, Qi)}).
5 // Generators of (ker γ)[Ni].

6 For i = 1, . . . , r do

7 Si ← (φi−1 ◦ · · · ◦ φ0)(Si).

8 φi ← isogeny Ai−1 → Ai with kernel ⟨Si⟩.
9 Return φr ◦ · · · ◦ φ1 : A0 → Ar.

4.2 Polarized isogenies from A0 to matrices

Conversely, given a chain of polarized isogenies emanating from A0 as in (10),
where the degrees Ni = degφi are pairwise coprime and bounded by B, here the
goal is to produce a matrix γ ∈ M2(O0) such that ker(γ) = ker(φr · · ·φ2 ◦ φ1).
Such a matrix is uniquely determined up to left-multiplication with an element
of GL2(O0) and will automatically satisfy

γ∗grγ = N · I2

with N = N1N2 · · ·Nr, for some representant gr ∈ Mat(A0) of the class in
Mat0(A0) corresponding to the principally polarized abelian surface Ar. Note
that gr can then be computed as Nγ∗−1γ−1 = N(γγ∗)−1.

At a high level, this conversion can be done as in Algorithm 3, which is just a
slight variation on Chu’s method from [16, Algorithm A.2.2]. Concerning Step 3,
recall that Ni ≤ B implies that the elements of Gi are defined over an extension
field of degree O(B2). In Step 6, it is possible to narrow the search space by
taking into account the Weil pairing. This is done in [16, Algorithm A.2.2], but
here we content ourselves with a naive search, since the pith of the method
lies in Step 8 anyway; this is the aforementioned instance of the principal ideal
problem, for which we rely on Chu’s sub-exponential time subroutine, described
in [16, Chapter 2].

4.3 Isogeny-to-matrix conversion for chains of (2, 2)-isogenies

We now discuss the main result of Section 4, namely an extremely efficient
method for isogeny-to-matrix conversion for (2, 2)-isogenies. This is simply based
on an explicit list of matrices in M2(O0) whose kernels cover every possible
subgroup of A0[2] that is isomorphic to (Z/2Z)2. The number of such subgroups
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Algorithm 3: IsogenyToMatrix: powersmooth degree

Input : chain φr ◦ · · · ◦ φ1 : A0 → Ar of polarized isogenies

with Ni := degrd(φi) ≤ B pairwise coprime

Output: γ ∈ M2(O0) such that ker(γ) = ker(φr ◦ · · · ◦ φ1),

gr ∈ Mat(A0) corresponding to Ar

1 γ ← I2.
2 For i = 1, . . . , r do

3 Gi ← (φ̃i−1 ◦ · · · ◦ φ̃2 ◦ φ̃1)(kerφi) ⊂ A0[Ni].

4 // Pulling back the kernel of φi to A0.

5 Ki ← γ(Gi). // Pushing the kernel forward under γ.

6 Find matrix Γi ∈ M2(O0) such that ker(Γi) ∩A0[Ni] = Ki.

7 // Exhaustive search over M2(O0)/M2(O0)Ni.

8 γi ← generator of left ideal M2(O0)Γi +M2(O0)Ni. // PIP.

9 γ ← γiγ

10 Return γ, N1 · · ·Nr(γγ∗)−1.

is given by the Gaussian binomial coefficient[
4
2

]
2

= 35.

The list can be found in Appendix A and was produced through a combination
of naive search and symbolic verification (observe that, except for the matrices
corresponding to the trivial groups E0[2] × {∞} and {∞} × E0[2], all matrix
entries only take coordinates−1, 0, 1 with respect to the basis from Example 2.1).

While this may seem very specific, an iterated application allows for isogeny-
to-matrix conversion in one of the main cases of interest, namely where the input
isogeny φ : A0 → A is a (2e, 2e)-isogeny for some e ≥ 1, i.e., with kernel

K ∼=
Z
2eZ
× Z

2eZ
,

and we moreover assume that K is generated by points defined over Fp2 (or a
small-degree extension thereof). The method is totally straightforward and can
be found in Algorithm 4. In contrast with the previous section, we do not assume
that 2e is polynomially bounded, i.e., we drop the powersmoothness assumption.†

†Of course, there is still an implicit bound coming from the rationality assumption,
i.e., of the kind 2e | p + 1. In Section 5.2 we will use the KLPT2 algorithm to get rid
of this assumption.
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Algorithm 4: IsogenyToMatrix22

Input : subgroup K ∼= (Z/2eZ)2 of A0 generated by points over Fp2
Output: γ ∈ M2(O0) such that ker(γ) = K

1 γ ← I2, K1 ← K.

2 For i = 1, . . . , e do

3 Gi ← 2e−iKi.

4 γi ← matrix with kernel Gi. // Look up in Appendix A.

5 γ ← γiγ, Ki+1 ← γi(Ki).

6 Return γ.

The method works equally well for more general polarized isogenies φ : A0 →
A of reduced degree 2e, say with kernel

K ∼=
Z
2eZ
× Z

2e−fZ
× Z

2fZ

for some f ∈ {1 . . . , ⌊e/2⌋}, as long as this kernel is generated by rational points.
The main caveat lies in Step 3, where one should be more careful: indeed, in this
case 2e−1K ̸∼= Z/2Z × Z/2Z. A clean workaround, which serves as a warm-up
for Section 5.4, is to define the subgroup

K ′ = ⟨2e−fP,R⟩ ∼=
Z

2fZ
× Z

2fZ

with P ∈ K any point of order 2e and R ∈ K any point of order 2f that is
not halvable in K. Since e2f ,λ0

(2e−fP,R) = e2e,λ0(P,R) = 1, this concerns a
maximal isotropic subgroup of A0[2

f ]. We can now run Algorithm 4 on input
K ′, returning a matrix γ′, and then rerun the algorithm on input

γ′(K ′) ∼= K/K ′ ∼=
Z

2e−fZ
× Z

2e−fZ
,

after initializing γ ← γ′ rather than γ ← I2 in Step 1.

Remark 4.2. We did not generate similar lists for (ℓ, ℓ)-isogenies with ℓ > 2, but
the simple shape of the matrices in Appendix A makes it reasonable to assume
that this should be doable for the first few primes. Observe that the search can be
sped up (and the lists can be shortened) by considering kernels up to base change
by matrices from GL2(O0); for ℓ = 2 there was no need for implementing this. In
the worst case, such lists can be generated using Chu’s algorithm from [16]. By
doing this for all ℓ up to the powersmoothness bound B, this approach shifts the
sub-exponential portion of the isogeny-to-matrix conversion algorithm (Steps 6–
8 in Algorithm 3) to a one-time precomputation step.
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5 Applications of KLPT2

We are ready to discuss a number of applications of the KLPT2 algorithm.

5.1 Constructive IKO correspondence

For elliptic curves, the constructive Deuring correspondence asks to solve the
following problem: upon input of a maximal order O ⊂ Bp,∞, return a super-
singular elliptic curve E/Fp2 such that End(E) ∼= O. The KLPT algorithm can
be turned into a heuristic polynomial-time algorithm for solving this problem.
At a high level, the method works as follows. One starts from an elliptic curve
E0/Fp2 having a known, special extremal endomorphism ring End(E0) ∼= O0.
Using the KLPT algorithm, one computes a left ideal I ⊂ O0 of powersmooth
norm N connecting O0 and O. This ideal can then be converted into an isogeny
emerging from E0 using Algorithm 2. The codomain of this isogeny is a valid
output for the constructive Deuring correspondence.

For unpolarized superspecial abelian surfaces, the direct analog of the con-
structive Deuring correspondence is void: all such surfaces are pairwise isomor-
phic and therefore share the same endomorphism ring, namely M2(O0). However,
in the principally polarized case, the endomorphism ring comes equipped with
an extra datum: the Rosati involution, which as explained in Remark 2.8 is
completely encoded in the matrix g ∈ Mat(A0) corresponding to λ. Therefore, a
more meaningful counterpart of the constructive Deuring correspondence reads:

Theorem 5.1 (constructive IKO correspondence). There exists a (heuris-
tic) polynomial-time algorithm which upon input g ∈ Mat(A0), either finds two
elliptic curves E1, E2 or finds a genus-2 curve C such that for

(A, λ) = (E1 × E2, product polarization), resp.
(A, λ) = (Jac(C), canonical polarization),

we have (A, λ) ∼= (A0, µ
−1(g)), with µ the map from Theorem 2.7.

Proof. Using our pathfinding algorithm from Theorem 3.14 we can find γ ∈
M2(O0) such that

γ∗gγ = NI2,

with N powersmooth. To produce the desired output, one then simply converts γ
into a polarized isogeny emanating from A0 using Algorithm 2. If the codomain
of this polarized isogeny is a product E1 × E2, we output E1, E2; when landing
on a Jacobian Jac(C), output C. ⊓⊔

5.2 Relaxing powersmoothness assumptions when translating
between matrices and isogenies

(i) Matrices to isogenies from A0 in arbitrary degree. Let us be given
a matrix γ ∈ M2(O0) as in Section 4.1, but we drop the assumption that N is
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powersmooth. We claim that, using KLPT2, we can nevertheless convert γ into
a polarized isogeny φ emanating from A0. This mimicks well-known techniques
from the elliptic curve case [26, 53]. First, recall that a matrix g ∈ Mat(A0)
representing the codomain can be computed as

g = N(γγ∗)−1.

Then, using Theorem 3.14, we can find a matrix γ′ and a powersmooth integer
N ′ such that

γ′∗gγ′ = N ′ · I2,

and we know that γ, γ′ correspond to polarized isogenies φ,φ′ with the same
codomain:

A0 A

φ

φ′

where degrd(φ) = N and degrd(φ′) = N ′. We can compute φ′ as a composition
of small-degree isogenies using Algorithm 2, which also reveals A. We haveN ′φ =
φ′φ̃′φ where we note that

φ̃′φ = λ−1
0 φ̂′λφ = λ−1

0 φ̂′λ0 λ
−1
0 λφ ∈ End(A0)

can be identified with γ′∗gγ ∈ M2(O0). Thus we can evaluate

φ(P ) =
1

N ′φ
′(γ′∗gγP )

on any input point P whose order is coprime with N ′. This is enough for con-
sidering φ as being known, e.g., in view of [46, 47].

Remark 5.2 (matrices to isogenies from A0 in smooth degree). If N is smooth
(but not powersmooth, so that Algorithm 2 may not be applicable) then the
above “evaluation representation” of φ may not be the preferred format. Rather,
one may want an explicit decomposition φ = φr ◦ · · · ◦φ1 into isogenies of small
degree. A polynomial-time conversion between these formats is possible through
a repeated use (of the two-dimensional analogue) of [47, Corollary 6.8], but this
is not practical. Unfortunately, more direct methods such as [53, Algorithm 4]
come with PIP-style challenges. However, in our main case of interest N = 2e

these issues can be by-passed using our list of matrices from Appendix A, leading
to the method described in Algorithm 5.

(ii) Isogenies from A0 to matrices in smooth degree. The KLPT2 algo-
rithm can also be used to convert polarized isogenies from A0 into matrices when
the degree is smooth, rather than powersmooth. For this we recycle a trick due
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Algorithm 5: MatrixToIsogeny22

Input : γ ∈ M2(O0) with degrd(γ) = 2e

Output: polarized isogenies φe ◦ · · · ◦ φ1 : A0 → Ae with degrdφi = 2

1 For i = 1, . . . , e− 1 do

2 Gi ← (ker γ)[2].

3 γi ← matrix with kernel Gi. // Look up in Appendix A.

4 γ ← γγ−1
i .

5 γe ← γ, γ ← I2.
6 // Input γ decomposed as γe · · · γ1; then reinitialize γ.

7 For i = 1, . . . , e do

8 γ ← γiγ.

9 gi ← 2i(γγ∗)−1. // Codomain matrix of φi.

10 Find γ′ ∈ M2(O0) and odd powersmooth N ′ such that

γ′∗giγ
′ = N ′ · I2. // Mild strengthening of Theorem 3.14.

11 Using Algorithm 2, convert γ′ to polarized isogeny φ′ : A0 → Ai.

12 Gi ← ker(γ̃γ′)[2]. // Note γ̃ = 2iγ−1.

13 φi ← adjoint of isogeny Ai → Ai−1 with kernel φ′(Gi).

14 Return φe ◦ · · · ◦ φ1 : A0 → Ae.

to Eisenträger, Hallgren, Lauter, Morrison and Petit [26, Algorithm 9]; see also
Wesolowski [53, Algorithm 3]. The method is detailed in Algorithm 6, where we
note that Steps 3–9 are trivial at iteration i = 1. The overall runtime remains
sub-exponential, in view of Chu’s subroutine for the principal ideal problem
(PIP) invoked in Step 12.

However, thanks to our explicit list of matrices from Appendix A, for chains
of (2, 2)-isogenies this can be done in polynomial time, even when the kernel is
not generated by rational points, as was assumed in Section 4.3. This is done by
factoring N = 2e = N1N2 · · ·Nr into smaller powers and running a slightly mod-
ified version of Algorithm 6, where each iteration of Steps 10–12 is replaced with
a short series of look-ups, of the kind described in the for-loop in Algorithm 4.

Remark 5.3. As a continuation of Remark 4.2, let us note that for N = ℓe with
ℓ > 2 the sub-exponential part of Algorithm 6 can again be handled using a
one-time precomputation.

5.3 Translating between matrices and isogenies from other starting
surfaces

(i) Matrices to polarized isogenies. Next, let us be given a matrix g1 ∈
Mat(A0) and a matrix γ ∈ M2(O0) of reduced norm N2 (for arbitrary N), with
the promise that γ defines a polarized isogeny emanating from (A0, λ1), where
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Algorithm 6: IsogenyToMatrix: smooth degree

Input : chain φr ◦ · · · ◦ φ1 : A0 → Ar of polarized isogenies

with Ni := degrd(φi) ≤ B
Output: γ ∈ M2(O0) such that ker(γ) = ker(φr ◦ · · · ◦ φ1),

gr ∈ Mat(A0) corresponding to Ar

1 γ ← I2.
2 For i = 1, . . . , r do

3 gi ← N1 · · ·Ni−1(γγ
∗)−1. // Codomain matrix of φi−1.

4 Find γ′ ∈ M2(O0) and powersmooth N ′ with gcd(N,Ni) = 1 and

γ′∗giγ
′ = N ′ · I2. // Mild strengthening of Theorem 3.14.

5 Using Algorithm 2, convert γ′ to polarized isogeny φ′ : A0 → Ai−1.

6 // Domain of φi.

7 Gi ← φ̃′(kerφi) ⊂ A0[Ni].

8 // Pulling back the kernel of φi to A0.

9 Ki ← γ′(Gi). // Pushing the kernel forward under γ′.

10 Find matrix Γi ∈ M2(O0) such that ker(Γi) ∩A0[Ni] = Ki.

11 // Exhaustive search over M2(O0)/M2(O0)Ni.

12 γi ← generator of left ideal M2(O0)Γi +M2(O0)Ni. // PIP.

13 γ ← γiγ

14 Return γ, N1 · · ·Nr(γγ∗)−1.

λ1 = µ−1(g1) is the principal polarization corresponding to g1. Our goal is to
tackle the following enhanced version of the constructive IKO correspondence:
return the top row in a commutative diagram of the form

Jac(C1) or
E11 × E12

Jac(C2) or
E21 × E22

(A0, λ1) (A0, λ2)

∼=

φ

∼=
γ

That is, for i = 1, 2 one should return the underlying genus-2 curve Ci or elliptic
curves Ei1, Ei2, along with an efficient representation of φ. This can be done as
follows. If N is powersmooth, then using a mild strengthening of Theorem 3.14
we can compute a matrix κ ∈ M2(O0) and a powersmooth integer K such that
gcd(K,N) = 1 and κ∗g1κ = K · I2. This implies that

(γκ)∗g2(γκ) = NK · I2
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with g2 = µ(λ2) = Nγ∗−1g1γ
−1. We can then run Algorithm 2 on input γκ, first

processing the factors of K, to end up with an isogeny that naturally factors as

(A0, λ0) −→
Jac(C1) or
E11 × E12

φ−→ Jac(C2) or
E21 × E22

:

hence the desired output. If N is not powersmooth then we first apply Theo-
rem 3.14 to replace γ with a matrix γ′ of powersmooth reduced norm N ′2 (i.e.,
satisfying γ′∗g2γ

′ = N ′ · g1) and proceed as in Section 5.2.

(ii) Polarized isogenies to matrices. We can easily extend the foregoing
methods for isogeny-to-matrix conversion from (A0, λ0) to any principally po-
larized starting surface (A, λ), say given as a Jacobian Jac(C) or a product of
elliptic curves E1×E2, as soon as a corresponding matrix g ∈ Mat(A0) is known.
As explained in Section 4.2, the output of isogeny-to-matrix conversion is deter-
mined up to left-multiplication with an element of GL2(O0) only. Here, there is
an extra ambiguity: taking a different representant of g in Mat0(A0) amounts to
right-multiplication with an element of GL2(O0). Apart from this subtlety, the
problem easily reduces to the case (A, λ) = (A0, λ0) and therefore the runtimes
are alike:

– sub-exponential time if the degree is smooth, but

– polynomial time if this degree is a power of 2.

Indeed, by means of Theorem 3.1 we can find a matrix γ′ with reduced degree
2e connecting I2 and g. Using Algorithm 5 this matrix can be converted into a
polarized isogeny φ′ : (A0, λ0)→ (A, λ), represented as a chain of (2, 2)-isogenies.
Now if φ is a polarized isogeny emanating from (A, λ), then φ ◦φ′ is a polarized
isogeny emanating from (A, λ0), and if γ is a matrix corresponding to φ ◦ φ′,
then γγ′−1 is a matrix corresponding to φ.

5.4 Attacks on CGL hash functions

We now arrive at our main cryptographic application: finding collisions for two-
dimensional variants of the Charles–Goren–Lauter (CGL) hash function [12], in
the case of an untrusted set-up.

CGL hash functions in dimension two. In 2018, Takashima [50] proposed
the first such variant, using random non-backtracking walks in the (2, 2)-isogeny
graph of superspecial principally polarized abelian surfaces. It was observed by
Flynn and Ti [28] that such hash functions admit trivial collisions, coming from
the fact that every (4, 2, 2)-isogeny admits three different decompositions into
two (2, 2)-isogenies. Therefore, starting with [10], all subsequent proposals re-
strict to “good” chains of (2, 2)-isogenies, i.e., composing to a (2e, 2e)-isogeny
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for some e ≥ 1. This means that the kernel of every outgoing (2, 2)-isogeny triv-
ially intersects the kernel of the dual of the previous, incoming (2, 2)-isogeny.†

Let us briefly detail how CGL hash functions in dimension two are currently
constructed, generalizing from (2, 2)-isogenies to (ℓ, ℓ)-isogenies for any small
prime ℓ. During set-up, an initial node in the graph is chosen, corresponding
to some superspecial principally polarized abelian surface A1, as well as ℓ

3 “al-
lowed” outgoing edges, corresponding to a subset of the set of (ℓ2 + 1)(ℓ + 1)
outgoing polarized (ℓ, ℓ)-isogenies from this initial node. At each node, the outgo-
ing edges are sorted in some deterministic way; e.g. by comparing the invariants
of all the neighbor nodes. The input message mess is mapped deterministically
to (m1,m2, . . . ,mk) ∈ {0, 1, . . . , ℓ3 − 1}∗, with some padding if necessary. To
hash, one of the ℓ3 allowed edges is chosen according to the value of m1, and we
compute the corresponding neighbor node, yielding a new principally polarized
abelian surface A2. Using the value m2, we choose one of the ℓ3 outgoing edges
corresponding to an (ℓ, ℓ)-isogeny whose kernel trivially intersects the kernel of
the dual of the previous (ℓ, ℓ)-isogeny. This results in a node corresponding to a
surface A3 and we repeat this process until we have landed on a node correspond-
ing to a surface Ak+1. We deterministically map suitable invariants of Ak+1 to
{0, 1}n, where n ≈ 3 log p, and use this as the output of our hash function.

KLPT2 produces “bad” chains. In dimension one, the KLPT algorithm can
be used to compute second pre-images for the CGL hash function as soon as the
endomorphism ring of the starting curve is known [26]. In dimension two, a very
similar reasoning applies as soon as a matrix g1 ∈ Mat(A0) corresponding to
the initial node is known. But the conclusion is more subtle because, with over-
whelming probability, our KLPT2 algorithm does not return (ℓe, ℓe)-isogenies,
in view of Corollary 5.5 below:

Lemma 5.4. Let a, c ∈ O0 be non-zero elements such that gcd(n(a), n(c)) = 1
and assume that ℓ ∤ n(a), n(c). Let b, d ∈ O0 be such that

N (u) = ℓe0 , u =

(
a b
c d

)
,

computed by finding an element of norm n(c)ℓe0 in n(c)O0+ac̄O0 via the KLPT
algorithm, as explained in Section 3.2. Assume that the degree-ℓe0 component of
this element is cyclic (this is generically expected). Then ker(u) ∼= Z/ℓe0Z.

Proof. As before, choose integers α, β such that 1 = α n(a) + β n(c). Express-
ing that a point tuple (P, P ′) ∈ A0[ℓ

e0 ] = E0[ℓ
e0 ]2 is contained in ker(u) and

multiplying on the left with the row matrix
(
αā βc̄

)
, we find

P = −(αāb+ βc̄d)P ′ (12)

†Rather than merely not coinciding with it: this is how “non-backtracking” was
understood in Takashima’s proposal [50].
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as a necessary condition. Next, multiplying with
(
1 0

)
and substituting P yields:

(−a(αāb+ βc̄d) + b)P ′ = 0 ⇒ (n(c)b− ac̄d)P ′ = 0, (13)

where we have assumed gcd(β, ℓ) = 1; if gcd(β, ℓ) > 1 then gcd(α, ℓ) = 1 and
we can proceed similarly, instead multiplying with

(
0 1

)
. Since n(n(c)b−ac̄d) =

n(c)N (u) = ℓe0 n(c) and ℓ ∤ n(c), we find from (12) and (13) that ker(u) is
isomorphic to the kernel of the returning degree-ℓe0 component of the endomor-
phism n(c)b− ac̄d. By Remark 3.8, this is precisely the isogeny that is produced
by our run of KLPT, which we assumed to be cyclic. ⊓⊔

Corollary 5.5. Under the assumption from Lemma 5.4 that the KLPT algo-
rithm produces cyclic isogenies, to describe the kernel of the matrix γ ∈ M2(O0)
returned by Algorithm 1, one needs at least 3 generators.

Proof. From (4) we know that γ = u2τu
−1
1 N (u1), where we recall from Algo-

rithm 1 that u1 = u( 1 α0 1 )u
′ for matrices u, u′ of reduced norm ℓe0 . The matrix u

is computed as in the proof of Theorem 3.12. From (9) it follows that u satisfies
the assumptions from Lemma 5.4, therefore its kernel is cyclic of size ℓe0 . But γ
factors through u−1N (u) = ℓe0u−1, and the kernel of this factor is isomorphic
to (Z/ℓe0Z)3 because u and ℓe0u−1 compose to multiplication-by-ℓe0 . ⊓⊔

Collision finding. While this complicates the construction of second pre-
images, it still lends itself to finding collisions, as we now discuss in detail. The
first step is to run the KLPT2 algorithm on input g1, g1, resulting in a matrix
γ ∈ M2(O0) defining a polarized endomorphism

(A0, λ1) −→ (A0, λ1), A1
∼= (A0, λ1), g1 = µ(λ1)

of reduced degree ℓe, where we recall from (4) that e = 2e1 +2e2 with e1 = 2e0.
As we have just explained, we need at least 3 generators to describe the kernel
of γ, but we can be more precise. Namely, in “typical” situations, we expect the
following properties to hold; the notation below again follows the pseudo-code
from Algorithm 1.

– In the proof of Corollary 5.5, also the reduction matrix u′ meets the as-
sumptions from Lemma 5.4, i.e., ℓ ∤ n(a′), n(c′). As a consequence we have
ker(u′) ∼= Z/ℓe0Z.

– The cyclic kernel of u( 1 α0 1 ) trivially intersects ker(ℓe0u′−1) ∼= (Z/ℓe0Z)3. This
implies that ker(u1) ∼= Z/ℓ2e0Z = Z/ℓe1Z.

– Likewise ker(u2) ∼= Z/ℓe1Z.
– Upon writing

τ =

(
ℓe2 x
0 ℓe2

)
for some x ∈ O0, we have ℓ ∤ n(x), implying that ker(τ) ∼= (Z/ℓ2e2Z)2.
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– Furthermore, ker(τ) trivially intersects the cyclic kernel of u1. This implies
that

ker(τℓe1u−1
1 ) ∼=

Z
ℓe1+2e2Z

× Z
ℓe1+2e2Z

× Z
ℓe1Z

.

– Defining

τ̃ =

(
ℓe2 −x
0 ℓe2

)
so that τ̃ τ = τ τ̃ = ℓ2e2I2,† the cyclic kernel of u2 trivially intersects ker(τ̃) ∼=
(Z/ℓ2e2Z)2, which finally implies

ker(γ) = ker(u2τℓ
e1u−1

1 ) ∼=
Z

ℓ2e1+2e2Z
× Z
ℓe1+2e2Z

× Z
ℓe1Z

. (14)

Recall that this concerns a maximal isotropic subgroup for the ℓe-Weil pairing
with respect to λ1. By “typical”, we mean that we expect (14) to hold with a
constant probability depending only on ℓ (rapidly converging to 1 as ℓ → ∞).
This is motivated by Lemma B.1. In particular, heuristically, we should end up
with the shape (14) after a constant number of reruns. We stress that, while
this shape is convenient for expository purposes, the attack method below can
be adapted to any other isomorphism type.

Then the idea for converting γ into a collision is inspired by the reasoning
in Section 4.3, where it was argued that there exists a subgroup of ker(γ) de-
termining a polarized (ℓe1 , ℓe1)-isogeny γ1 : (A0, λ1) → (A0, λ), through which
γ factors, such that the remaining factor γ2 : (A0, λ) → (A0, λ1) is a polar-
ized (ℓe1+2e2 , ℓe1+2e2)-isogeny. (In fact, in Section 4.3 this was only explained for
ℓ = 2 and the product polarization on A0, but the argument carries over and
will be revisited below, in any case.) Thus we have two “good” paths

(A0, λ1) (A0, λ)

γ̃2

γ1

with the same codomain: this is the algebraic version of the desired collision. If
we effectively succeed in finding γ1, γ2 then these matrices can be converted into
two colliding isogenies emanating from A1, by following the procedure described
in Section 5.3.

In Section 4.3 we had an explicit description of the subgroup ker(γ1), namely

⟨ℓe1+2e2P,R⟩ (15)

where P ∈ ker(γ) is any point of order ℓe = ℓ2e0+2e2 and R is any point of order
ℓe1 that cannot be divided by ℓ inside ker(γ). This explicit description is of lesser

†Hence the adjoint-like notation τ̃ , even though this property is considered regard-
less of any principal polarizations.
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use to us, because the generators in (15) are in general defined over a huge-degree
extension of Fp2 only. Before explaining our workaround, let us note that many
other subgroups of ker(γ) are equally valid choices: the only crucial features are
that the subgroup is isomorphic to (Z/ℓe1Z)2 (so that γ1 is a “good” chain of
isogenies), that it contains a point R that is not divisible by ℓ in ker(γ) (so that
ker(γ)/ ker(γ1) ∼= (Z/ℓe1+2e2Z)2, i.e., also the cofactor γ2 is a “good” chain of
isogenies), and that it concerns a maximal isotropic subgroup with respect to
the ℓe1-Weil pairing for λ1 (so that γ1 is a polarized isogeny).

Lemma 5.6. Consider any subgroup G ∼= (Z/ℓe1Z)3 of A0[ℓ
e1 ] and let K1 ⊂

G[ℓ] be maximal isotropic with respect to the ℓ-Weil pairing eℓ,λ1
. Consider the

following iterative procedure for i ≥ 2: let Ki be any subgroup of G for which

Ki ⊃ Ki−1, Ki
∼=

Z
ℓiZ
× Z
ℓiZ

, eℓi,λ1
|Ki×Ki = 1. (16)

Then, regardless of the choices made, this procedure can be repeated up to i = e1,
and for every i we have that Ki is maximal isotropic with respect eℓi,λ1

.

Proof. First note that the last statement is immediate from the right-most prop-
erty in (16): indeed, any isotropic subgroup for the ℓi-Weil pairing contains at
most ℓ2i elements. Also note that conditions (16) imply ℓKi = Ki−1 for all
i = 2, . . . , e1. Writing Ki−1 = ⟨Pi−1, Qi−1⟩, we necessarily have Ki = ⟨Pi, Qi⟩
for certain points Pi, Qi such that ℓPi = Pi−1, ℓQi = Qi−1. Such points can be
found in G as long as i ≤ e1, so it remains to argue that they can be chosen with
eℓi,λ1

(Pi, Qi) = 1. We know that it concerns some ℓ-th root of unity ζ since

eℓi,λ1
(Pi, Qi)

ℓ = eℓi,λ1
(Pi, ℓQi) = eℓi−1,λ1

(ℓPi, ℓQi) = eℓi−1,λ1
(Pi−1, Qi−1) = 1.

On the other hand, sinceK1 = ⟨ℓi−1Pi, ℓ
i−1Qi⟩ is maximal isotropic with respect

to the ℓ-Weil pairing there must exist an ℓ-torsion point X ∈ G such that
eℓ,λ1(X, ℓ

i−1Pi) or eℓ,λ1(X, ℓ
i−1Qi) is non-trivial, and by scaling X if needed we

can assume that it concerns ζ. Let us assume w.l.o.g. that eℓ,λ1
(X, ℓi−1Pi) = ζ.

Then using Q′
i = Qi +X instead of Qi fixes the issue:

eℓi,λ1
(Pi, Q

′
i) = eℓi,λ1

(Pi, Qi)eℓi,λ1
(Pi, X) = eℓi,λ1

(Pi, Qi)eℓ,λ1
(ℓi−1Pi, X) = 1.⊓⊔

Remark 5.7. Such a subgroup K1 always exists by general facts from symplectic
linear algebra [1, §1.2]. We will apply the lemma to G = (ker γ)[ℓe1 ] where this
existence comes as no surprise: K1 = ℓe1−1K, with K as in (15), is an example.

The lemma implies that γ1 can be built by following a “greedy” approach.
We start with any subgroup K1 ⊂ (ker γ)[ℓ] that

– is maximal isotropic with respect to eℓ,λ1 ,
– contains ℓe1−1R ∈ K1, with R a point that is not divisible by ℓ in ker(γ).

Then the subgroupKe1 produced by Lemma 5.6 will indeed be a suitable instance
of ker(γ1). A point of the form ℓe1−1R can be found by taking any order-ℓ point
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independent of ker(τ) and ker(u1), and taking its image under u1. Once K1 is
fixed, we look for a matrix κ1 ∈ M2(O0) with kernel H1 = K1. We then know
that γ factors through κ1, and continue with the remaining factor γκ−1

1 : we look
for any maximal isotropic subgroup H2

∼= (Z/ℓZ)2, with corresponding matrix
κ2, which forms a “good” extension of κ1. We then continue with γκ−1

1 κ−1
2 , and

so on. In this way we implicitly build a tower of subgroups Ki = (kerκi ◦· · ·◦κ1)
as in Lemma 5.6. More details can be found in Algorithm 7, which runs in sub-
exponential time in view of Steps 5 and 12, but by replacing these steps with
a look-up in Appendix A, the attack becomes polynomial-time for ℓ = 2. We
therefore conclude:

Proposition 5.8. Assuming knowledge of a matrix g1 ∈ Mat(A0) corresponding
to the initial node, the two-dimensional variant of the CGL hash function is not
collision-resistant under plausible heuristic assumptions.

On untrusted set-ups. We deem it likely that all currently known ways for
constructing a superspecial principally polarized abelian surface A1 implicitly
reveal an isogeny to E2

0 . This would be analogous to the current situation for
supersingular elliptic curves [4].

Up to our knowledge, the candidate ways for construction are:

– either letting A1 = E1×E2 for supersingular elliptic curves E1, E2 (equipped
with the product polarization),

– or letting A1 be the mod-p reduction of a suitable principally polarized
abelian surface Ã1/C with complex multiplication (CM) by an order with
small discriminant, using results of the type [31, Theorem 1],

– or obtaining A1 by combining one of the previous constructions with a po-
larized isogeny walk.

In order to make our suspicion precise, we would need results on reductions
of CM curves that are analogous to [11, §5] or [40]. If it is indeed true that
A1 always comes with a path to A0, then using KLPT2 and isogeny-to-matrix
conversion, an attacker can compute a matrix g1 ∈ Mat(A0) corresponding to
A1, allowing for an application of Proposition 5.8. In other words, without a
trusted set-up, CGL-type hash functions from superspecial principally polarized
abelian surfaces can always be broken, at least in sub-exponential time (and in
polynomial time if ℓ = 2).

Example 5.9. In [10, §7] the starting surface is obtained from the Jacobian of C :
y2 = x6 + 1 by means of a (2, 2)-walk of length 10; this Jacobian is superspecial
if and only if p ≡ 5 mod 6. However, there exists a (2, 2)-isogeny

Φ : Jac(C) → E2
1 ,

[(x1, y1) + (x2, y2)− 2∞] 7→
(
(x21, y1) + (x22, y2),

(
1

x21
,
y1
x31

)
+

(
1

x22
,
y2
x32

))
,
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Algorithm 7: CGLCollision

Input : principally polarized superspecial abelian surface A1

g1 ∈ Mat(A0) such that A1
∼= (A0, µ

−1(g1)), small prime ℓ

Output: two “good” chains of (ℓ, ℓ)-isogenies A1 → A

1 Find γ = u2τℓ
e1u−1

1 ∈ M2(O0) such that γ∗g1γ = ℓeg1. // KLPT2.

2 P1 ← generator of ker(u2)[ℓ], P1 ← u1τ̃(P1).

3 R1 ← point of A0[ℓ] \ ⟨ker(τ)[ℓ], ker(u1)[ℓ]⟩, R1 ← u1(R1).

4 H1 ← ⟨P1, R1⟩.
5 γ1 ← matrix with kernel H1.

6 // Via PIP as in Alg. 3 (steps 6-8) or App. A.

7 For i = 2, . . . , e1 do

8 Gi ← ker(γγ−1
1 )[ℓ]. // Note has 3 generators.

9 For Hi ∈ {rank-2 subgroups of Gi} do
10 If Hi ∩ ker γ̃1 = {0} then
11 // Checks if chain is "good". Note γ̃1 = 2i−1γ−1

1 .

12 κ← matrix with kernel Hi.

13 // Via PIP as in Alg. 3 (steps 6-8) or App. A.

14 If 2i(κγ1)
∗−1g1(κγ1)

−1 ∈ Mat(A0) then

15 // Checks if group is maximal isotropic.

16 Break “For Hi”-loop.

17 γ1 ← κγ1.

18 γ2 ← γγ−1
1 .

19 Convert γ1 into chain of (ℓ, ℓ)-isogenies φ1e1 ◦ · · · ◦ φ11 : A1 → A.

20 Convert γ2 into chain of (ℓ, ℓ)-isogenies φ2,e1+2e2 ◦ · · · ◦ φ21 : A1 → A.

21 // Using method from Section 5.2(ii).

22 Return φ1e1 ◦ · · · ◦ φ11, φ2,e1+2e2 ◦ · · · ◦ φ21.

where E1 : y2 = x3+1, which is indeed supersingular if and only if p ≡ 5 mod 6.
Under our assumption p ≡ 3 mod 4, we can then connect E2

1 to E2
0 with a

product isogeny, stemming from a known isogeny from E1 to E0 (e.g., as detailed
in [11, Example 20]). In a very recent paper [44], the authors find collisions for
the hash function from [10] using knowledge of a short isogeny to E2

1 , but our
results show that any known isogeny will do, in fact.

5.5 Attacks on verifiable delay functions.

In [14] the authors propose a 2-dimensional analog of the isogeny-based VDF
from [22]. One of the (multiple) drawbacks of [22] is that it needs a trusted
set-up because the KLPT algorithm provides a solution to the isogeny short-cut
problem if the endomorphism ring of the starting surface is known. The selling
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point of a genus-2 version of essentially the same VDF was that no trusted set-up
would be necessary. Our results invalidate this selling point: a trusted set-up is
necessary in the genus-2 case as well, as otherwise a similar attack applies.

6 Further research directions

We provide several future research directions that could be investigated further.

6.1 Improving the length of the path

At the moment, the bound on the reduced degree N produced by Theorems 3.1
and 3.14 is relatively large. One source for this is that γ is built from two matrices
u1, u2, glued together by means of the matrix τ from Lemma 3.2 whose reduced
norm scales quartically with the common top-left entry ℓe2 of u∗1g1u1 and u

∗
2g2u2.

However, the main room for improvement seems to lie in the fact that each ui
itself is built in two steps:

– first we need to reduce the matrix gi, in the sense of Definition 3.11, in order
to bound the entries in a way that only depends on p,

– this is then used to construct ui via Theorem 3.12, which moreover produces
a rather large value of ℓe2 .

We conjecture that this two-step procedure could be avoided through a better
understanding of the quadratic form K((a, c)) = s · n(a) + t · n(c) + tr(c̄r̄a).
Namely, we proved in Proposition 3.10 that the determinant of K is (p/4)4, thus
in particular independent of s, t, r. Thus it seems plausible that a more direct
method would provide a better output.

6.2 Ensuring that ker(γ) is free of rank 2

Recall that in several applications, notably CGL-style hash functions, one is
mainly interested in polarized isogenies γ for which ker(γ) ∼= (Z/NZ)2. As argued
in Corollary 5.5, the paths returned in Theorems 3.1 and 3.14 are never of
this type. Changing our KLPT2 algorithm such that it always outputs isogenies
whose kernels are free of rank 2 is an interesting future research goal. Positive
results in this direction may also lead to proofs of the connectedness of the (ℓ, ℓ)-
isogeny graph of superspecial principally polarized abelian surfaces by means of
“good” extensions [10, Conjecture 3], an open problem that was not settled by
the recent work by Jordan and Zaytman [36].

6.3 Endomorphism ring representations

Recall that the endomorphism ring computation problem is the central hard
problem in (supersingular) isogeny-based elliptic curve cryptography. As ex-
plained in Section 5.1, the natural analog in dimension 2 is about computing
the matrix g associated with a given principally polarized superspecial abelian
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variety.† However, even in dimension one, two versions of this “endomorphism
ring computation problem” exist: given a supersingular elliptic curve E/Fp2 ,

– find a maximal order O ⊂ Bp,∞ such that End(E) ∼= O,
– find four endomorphisms that generate End(E) as a Z-module and that one

can evaluate efficiently.

In [52] the first problem is called MaxOrder and the second is called EndRing. As
it turns out, these problems are polynomial-time equivalent.

Computing the matrix g is the natural two-dimensional generalization of the
MaxOrder problem. The natural analogue of the EndRing problem is that one
requires to find 16 endomorphisms of a given principally polarized superspecial
abelian variety A, with the following properties:

– the endomorphisms generate End(A) as a Z-module and can be evaluated
efficiently,

– the Rosati involution can be efficiently evaluated on these endomorphisms.

Here we outline a potential strategy for proving that the two problems are
polynomial-time equivalent. First, if one is given a matrix g, then using our
algebraic pathfinding algorithm with powersmooth degrees, by connecting the
surface to A0 = E2

0 we can get an efficient representation of End(A) via lollipop-
ping.

We sketch a potential proof for the converse direction, leaving a more precise
version for future work. First, we compute an explicit isomorphism between
End0(A) = End(A) ⊗Z Q and M2(Bp,∞) using [35]. A priori, this algorithm
requires factoring, but this can be avoided. The way [35] works is that it computes
a maximal order in End0(A)op ⊗Q M2(Bp,∞), where ·op refers to the opposite
algebra, and then uses lattice reduction to find a zero divisor. Computing a
maximal order usually requires factoring the discriminant of a starting order.
However, starting from maximal orders in End0(A) and M2(Bp,∞), their tensor
product is maximal away from p and∞, so the factoring issue becomes trivial (for
further discussion, see [19, Proposition 4.1] where this is explained for quaternion
orders, but the argument is the same). Furthermore, a zero divisor might not
immediately give an explicit isomorphism, this is only true if it has rank 1 (when
identified with an element of M16(C)). Luckily [35] shows that in low dimensional
cases, one immediately finds a rank 1 element.

Such an explicit isomorphism provides an embedding ι : End(A) ↪→ M2(Bp,∞)
together with an involution σ on ι(End(A)) that comes from the Rosati invo-
lution. Our next goal is to find an explicit conjugation between ι(End(A)) and
M2(O0). This is the main step that needs to be made more explicit, but a poten-
tial idea could be the following. Let B(u, v) := tr(σ(u)v) be a bilinear map that
by the properties of the Rosati involution equips ι(End(A)) with a Euclidean
norm. One can also consider M2(O0) together with the conjugate transpose and

†Recall from Section 5.2 that we can solve this problem in sub-exponential time as
soon as a smooth degree isogeny to A0 is known, and in polynomial time in case this
concerns a chain of (2, 2)-isogenies.
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the associated bilinear form tr(u∗v). Now one can run HKZ and list all the short-
est elements and try to match them up. For

(
a b
c d

)
∈ M2(O0) this norm is just

n(a) + n(b) + n(c) + n(d), so it is easy to see that there are not too many short
elements. If one can match them up, then the explicit conjugation turns into
solving a system of linear equations.

We now have found an explicit isomorphism between ι(End(A)) and M2(O0)
on which we have two involutions: conjugate-transpose and the involution in-
duced by σ. These involutions will be conjugated by a Hermitian matrix (i.e.,
symmetric with respect to conjugate-transpose). This conjugating element is go-
ing to be g, and it can be found via linear algebra, as explained in Remark 2.8.

Remark 6.1. The involution on M2(O0) is not going to be uniquely determined;
consequently the same is true for the matrix g. But this is expected, as we are
looking for an equivalence class in Mat0(A0).

6.4 Generalizing other known applications of KLPT

The most celebrated application of the KLPT algorithm is building signature
schemes. In this paper we have not studied this aspect, even though we were
motivated by several gaps in Chu’s attempt from [16, Appendix A] to build a
GPS-style signature scheme in dimension two. Explicitly, he asked for efficient
routines called PowersmoothMatrix, now resolved by our KLPT2 algorithm, for
MatrixToIsogenyPath, addressed in Sections 4.1 and 14, and for IsogenyPathToMa-
trix. In the latter case, we described a polynomial-time method for chains of
(2, 2)-isogenies in Section 14. But a general polynomial-time solution is lacking:
currently we still need to resort to Chu’s sub-exponential time method for the
PIP in M2(O0). So this is clearly a compelling research question.

An attractive goal is develop a dimension-two variant of SQIsign, for which
more restricted solutions of the isogeny-to-matrix conversion problem, only tar-
geting isogenies of very small degree, could be good enough. One important open
question is whether the paths returned by KLPT2 reveal information about the
endomorphism rings of the domain and the codomain. One interesting aspect,
as opposed to KLPT, is that we find a direct path between two surfaces without
going through one fixed special principally polarized abelian surface. In dimen-
sion one this problem was essentially resolved by the Generalized KLPT algo-
rithm [21, §5]. It would also be interesting to study higher dimensional analogs
of the various HD versions of SQIsign [3, 20, 25, 43]. A potential advantage of
higher-dimensional generalizations of SQIsign is that the complexity of endo-
morphism computation grows with the dimension: this could allow for schemes
working with smaller field sizes (i.e., smaller p).
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A Matrices encoding (2, 2)-isogenies

Consider the elliptic curve E0 : y2 = x3 + x over Fp2 , where p ≡ 3 mod 4. Let
i ∈ Fp2 denote a fixed square root of −1. Recall that we identify End(E0) with
the maximal order

O0 =

〈
1, i,

i+ j

2
,
1 + k

2

〉
⊂ Bp,∞

where, abusing notation, i is identified with the automorphism (x, y) 7→ (−x, iy)
and j is identified with the Frobenius map (x, y) 7→ (xp, yp). For ease of notation,
we will write

ω3 =
i+ j

2
, ω4 =

1 + k

2
.

We also introduce the following notation for the points of order 2:

P0 = (0, 0), Pi = (i, 0), P̄i = (−i, 0).

A calculation reveals the following evaluation tables:

P0 Pi P̄i
i P0 P̄i Pi

ω3 Pi P0 P̄i
ω4 Pi P̄i P0

if p ≡ 3 mod 8,

P0 Pi P̄i
i P0 P̄i Pi

ω3 P̄i P̄i ∞
ω4 P̄i ∞ P̄i

if p ≡ 7 mod 8.

Using this, one can verify for each of the [ 42 ]2 = 35 subgroups K ⊂ A0 = E2
0

with K ∼= (Z/2Z)2 that K can be realized as the kernel of the reduced-norm-4
matrix indicated in the table below:

subgroup K p ≡ 3 mod 8 p ≡ 7 mod 8

E0[2] × {∞}
(
2 0
0 1

) (
2 0
0 1

)
{∞} × E0[2]

(
1 0
0 2

) (
1 0
0 2

)
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{(P0, P0), (Pi, Pi), (P̄i, P̄i), (∞,∞)}
(

1 1
−1 1

) (
1 1
−1 1

)
{(P0, P0), (Pi, P̄i), (P̄i, Pi), (∞,∞)}

(
1 i
−1 i

) (
1 i
−1 i

)
{(P0, P0), (∞, P0), (P0,∞), (∞,∞)}

(
1 + i 0
0 1 + i

) (
1 + i 0
0 1 + i

)
{(Pi, P0), (P̄i, P0), (P0,∞), (∞,∞)}

(
0 1 + i

1 + i i

) (
0 1 + i

1 + i i

)
{(Pi, Pi), (P̄i, P0), (P0, P̄i), (∞,∞)}

(
ω4 i

i+ ω3 1

) (
i i− ω4

−i i+ ω4

)
{(P0, Pi), (Pi, P̄i), (P̄i, P0), (∞,∞)}

(
ω4 −1

i+ ω3 i

) (
i 1 − ω3

−i 1 + ω3

)
{(P0, Pi), (P0, P̄i), (∞, P0), (∞,∞)}

(
i 1 + i

1 + i 0

) (
i 1 + i

1 + i 0

)
{(P0, Pi), (Pi, P0), (P̄i, P̄i), (∞,∞)}

(
ω3 1

1 + ω4 i

) (
1 1 − ω3

−1 1 + ω3

)
{(P0, P̄i), (P̄i, Pi), (Pi, P0), (∞,∞)}

(
1 ω4

−i i+ ω3

) (
1 i− ω4

−1 i+ ω4

)
{(P̄i, P0), (P̄i, P̄i), (∞, Pi), (∞,∞)}

(
1 i− ω4

−1 i+ ω4

) (
1 ω4

−i i+ ω3

)
{(Pi, P0), (Pi, P̄i), (∞, Pi), (∞,∞)}

(
i i− ω4

−i i+ ω4

) (
i ω4

1 i+ ω3

)
{(Pi, P0), (Pi, Pi), (∞, P̄i), (∞,∞)}

(
i 1 − ω3

−i 1 + ω3

) (
1 1 + ω4

−i ω3

)
{(P̄i, P0), (P̄i, Pi), (∞, P̄i), (∞,∞)}

(
1 1 − ω3

−1 1 + ω3

) (
1 ω3

i 1 + ω4

)
{(Pi, Pi), (P0, Pi), (P̄i,∞), (∞,∞)}

(
1 + ω3 i
−1 + ω3 i

) (
1 + ω4 −1
ω3 i

)
{(P0, Pi), (P̄i, Pi), (Pi,∞), (∞,∞)}

(
i+ ω4 i
−i+ ω4 i

) (
ω4 i

i+ ω3 1

)
{(P0, P̄i), (P̄i, P̄i), (Pi,∞), (∞,∞)}

(
i+ ω4 1
−i+ ω4 1

) (
ω4 −1

i+ ω3 i

)
{(P0, P̄i), (Pi, P̄i), (P̄i,∞), (∞,∞)}

(
1 + ω3 1
−1 + ω3 1

) (
ω3 1

1 + ω4 i

)
{(Pi, Pi), (Pi, P̄i), (∞, P0), (∞,∞)}

(
1 ω3 + ω4

−i 1 + i+ ω3 − ω4

) (
1 1 + i+ ω3 − ω4

i ω3 + ω4

)
{(P̄i, P̄i), (P̄i, Pi), (∞, P0), (∞,∞)}

(
1 1 + i+ ω3 − ω4

i ω3 + ω4

) (
1 ω3 + ω4

−i 1 + i+ ω3 − ω4

)
{(P0, P0), (P0, Pi), (∞, P̄i), (∞,∞)}

(
1 i− ω3 + ω4

−i i+ ω3 + ω4

) (
i 1 + ω3 − ω4

−1 1 + ω3 + ω4

)
{(P0, P0), (P0, P̄i), (∞, Pi), (∞,∞)}

(
i 1 + ω3 − ω4

−1 1 + ω3 + ω4

) (
1 i− ω3 + ω4

−i i+ ω3 + ω4

)
{(P̄i, P̄i), (Pi, P̄i), (P0,∞), (∞,∞)}

(
1 + i+ ω3 − ω4 1

ω3 + ω4 i

) (
1 + i+ ω3 − ω4 −i

ω3 + ω4 1

)
{(Pi, Pi), (P̄i, Pi), (P0,∞), (∞,∞)}

(
1 + i+ ω3 − ω4 −i

ω3 + ω4 1

) (
1 + i+ ω3 − ω4 1

ω3 + ω4 i

)
{(P0, P0), (P̄i, P0), (Pi,∞), (∞,∞)}

(
1 + ω3 − ω4 1
1 + ω3 + ω4 i

) (
i+ ω3 − ω4 −i
−i+ ω3 + ω4 1

)
{(P0, P0), (Pi, P0), (P̄i,∞), (∞,∞)}

(
i+ ω3 − ω4 −i
−i+ ω3 + ω4 1

) (
1 + ω3 − ω4 1
1 + ω3 + ω4 i

)
{(Pi, Pi), (Pi,∞), (∞, Pi), (∞,∞)}

(
1 + i+ ω3 i− ω4

i+ ω4 −1 + i+ ω3

) (
i+ ω3 −ω4

ω4 i+ ω3

)
{(Pi, P̄i), (Pi,∞), (∞, P̄i), (∞,∞)}

(
i+ ω4 1 + i+ ω4

1 + i+ ω3 1 + ω3

) (
i+ ω3 ω3

ω4 1 + ω4

)
{(P̄i, P̄i), (P̄i,∞), (∞, P̄i), (∞,∞)}

(
1 + ω3 1 + i− ω4

−1 − i+ ω4 1 + ω3

) (
ω3 −1 − ω4

1 + ω4 ω3

)
{(P̄i, Pi), (P̄i,∞), (∞, Pi), (∞,∞)}

(
1 + i+ ω4 −i− ω4

1 − i+ ω4 i− ω4

) (
1 + ω4 ω4

ω3 i+ ω3

)
{(Pi, P0), (Pi,∞), (∞, P0), (∞,∞)}

(
1 + ω3 + ω4 1 + i+ ω3 − ω4

1 + ω3 − ω4 −ω3 − ω4

) (
i+ ω3 + ω4 ω3 + ω4

i− ω3 + ω4 1 + i− ω3 + ω4

)
{(P̄i, P0), (P̄i,∞), (∞, P0), (∞,∞)}

(
i+ ω3 + ω4 ω3 + ω4

i− ω3 + ω4 1 + i− ω3 + ω4

) (
1 + ω3 + ω4 1 + i+ ω3 − ω4

1 + ω3 − ω4 −ω3 − ω4

)
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{(P0, P̄i), (P0,∞), (∞, P̄i), (∞,∞)}
(
1 + i+ ω3 − ω4 i+ ω3 − ω4

ω3 + ω4 −i+ ω3 + ω4

) (
ω3 + ω4 1 + ω3 + ω4

1 + i+ ω3 − ω4 1 + ω3 − ω4

)
{(P0, Pi), (P0,∞), (∞, Pi), (∞,∞)}

(
ω3 + ω4 1 + ω3 + ω4

1 + i+ ω3 − ω4 1 + ω3 − ω4

) (
1 + i+ ω3 − ω4 i+ ω3 − ω4

ω3 + ω4 −i+ ω3 + ω4

)

B Probability of non-backtracking

Lemma B.1. Inside the vector space F4
ℓ , the probability that two random 2-

dimensional subspaces intersect trivially is ℓ4/(ℓ2+1)(ℓ2+ℓ+1). The probability
that a random 1-dimensional subspace and a random 3-dimensional subspace
intersect trivially is ℓ3/(ℓ3 + ℓ2 + ℓ+ 1).

Proof. We only prove the first formula; the second formula follows similarly. It is
well-known that the number of 2-dimensional subspaces is given by the Gaussian
binomial coefficient [

4
2

]
ℓ

= (ℓ2 + 1)(ℓ2 + ℓ+ 1).

The formula follows because the number of 2-dimensional subspaces trivially
intersecting a given 2-dimensional subspace V ⊂ F4

ℓ equals ℓ4. Indeed, w.l.o.g.
we can assume V = ⟨(1, 0, 0, 0), (0, 1, 0, 0)⟩, and then the trivially intersecting
subspaces are the ones of the form ⟨(a, b, 1, 0), (c, d, 0, 1)⟩ for a, b, c, d ∈ Fℓ. ⊓⊔
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