
Split Prover Zero-Knowledge SNARKs

Sanjam Garg∗ Aarushi Goel† Dimitris Kolonelos‡ Sina Shiehian§ Rohit Sinha¶

Abstract

We initiate the study of split prover zkSNARKs, which allow Alice to offload part of the zkSNARK
computation to her assistant, Bob. In scenarios like online transactions (e.g., zCash), a significant por-
tion of the witness (e.g., membership proofs of input coins) is often available to the prover (Alice) before
the transaction begins. This setup offers an opportunity to Alice to initiate the proof computation early,
even before the entire witness is available. The remaining computation can then be delegated to Bob,
who can complete it once the final witness (e.g., the transaction amount) is known.

To prevent Bob from generating proofs independently (e.g., initiating unauthorized transactions),
it is essential that the data provided to him for the second phase of computation does not reveal the
witness used in the first phase. Additionally, the verifier of the zkSNARK should be unable to determine
whether the proof was generated solely by Alice or through this two-step process. To achieve this
efficiently, we require this two-phase proof generation to only use cryptography in a black-boxmanner.

We propose a split prover zkSNARK based on the Groth16 zkSNARKs [Groth, EUROCRYPT 2016],
meeting all these requirements. Our solution is also asymptotically tight, meaning it achieves the opti-
mal second phase proof generation time for Groth16. Importantly, our split prover zkSNARK preserves
the verification algorithm of the original Groth16 zkSNARK, enabling seamless integration into existing
deployments of Groth16.

∗UC Berkeley sanjamg@berkeley.edu
†Purdue University aarushi.goel794@gmail.com
‡UC Berkeley dimitris.kolonelos@berkeley.edu
§Snap Inc. shiayan@umich.edu
¶Swirlds Labs sinharo@gmail.com

1

mailto:sanjamg@berkeley.edu
mailto:aarushi.goel794@gmail.com
mailto:dimitris.kolonelos@berkeley.edu
mailto:shiayan@umich.edu
mailto:sinharo@gmail.com

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Application to Delegatable Payments and Beyond . 4
1.3 Additional Discussion . 6

2 Preliminaries 7
2.1 Bilinear Groups . 7
2.2 Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge 7
2.3 The Groth16 zkSNARK . 8

3 Defining Split Prover zkSNARKs 10

4 Split Prover for Groth16 11
4.1 Overview of the Protocol . 11
4.2 The protocol . 18
4.3 Efficiency . 20

5 Lower Bound on the second Prover Time in Groth16 21

2

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) [Mic94, BCC+17] are
cryptographic tools that allow a prover to generate a compact certificate validating the correctness of a
potentially complex computation. These certificates are efficient to verify and protect any secrets used by
the prover during the computation. zkSNARKs have found utility in various modern cryptographic appli-
cations. Investigating the feasibility of zkSNARKs in different models, under diverse security assumptions,
and realizing them efficiently has been an active area of research in recent years.

In this work, we explore a new prover model for generating zkSNARKs. Consider a scenario where Alice
wants to perform an online transaction (e.g., in zCash [BSCG+14]). She knows part of the witness (e.g., her
private key, membership proof of input coins, upper bound on the transaction amount) needed to generate
a zkSNARK for the transaction, but the exact transaction amount is not yet known. Additionally, Alice
might be unavailable when the transaction amount becomes known. We ask whether Alice can initiate
the zkSNARK computation using the available information and delegate the remaining computation to her
assistant, Bob, who can complete it once the transaction amount is determined.

A similar application involves anonymous credentials. For instance, Alice needs electronic authoriza-
tion for international travel and must prove, using a zkSNARK, that she holds a valid US passport. Can
she start the zkSNARK computation using her passport and delegate the remaining computation to Bob,
who can finalize it once the travel dates are confirmed?

In these applications, it is crucial to ensure that Bob cannot independently generate unauthorized
proofs. The data sent to Bob for the second phase of proof computation must not disclose any part of
the witness used in the first phase. Moreover, for seamless integration into existing systems, the verifier
receiving the final zkSNARK should not be able to tell whether the proof was generated solely by Alice or
through a delegated two-step process. Finally, for efficiency, we require the final proof to be succinct and
the two-phase proof generation to only use cryptographic operations in a black-box manner.1

In other words, we aim to determine the following:

Is it possible to generate zkSNARKs in two-phases using cryptography in a black-box way, while ensuring
that the output of the first phase preserves privacy?

1.1 Our Contributions

In this work, we answer the above question in the affirmative and present the following contributions.

Defining Split Prover zkSNARKs. We introduce the notion of split prover zkSNARKs which enable
proof generation to be divided into two phases. Simply put, this means that the secret witnessw associated
with the statement being proven, can be divided into two segments – one for each phase. By utilizing the
first segment to commence proof generation, the remaining zkSNARK computation can be delegated to an
external entity, who only needs the second segment of the witness to finalize the proof.

A key requirement here is that even with this two-phase prover setup, the zkSNARK verifier algorithm
should remain unchanged. We further require that the state that is generated in the first phase (and given
as input to the external entity for delegation of the second phase) should reveal no information beyond
the output of the relation circuit when partially evaluated using the first segment of the witness.

1We defer the reader to Section 1.3, for discussion on the disadvantages of a non-black box approach.

3

Split Prover zkSNARK Based on Groth16. Next, we present a split prover zkSNARK based on the
widely used Groth16 zkSNARK [Gro16] (henceforth referred to as Groth16). More concretely, let C to be
any circuit defining an NP relationR and let C1 and C2 be the subcircuits of C corresponding to the two
segments of the witness. Then, for a witness w = (wI, wII) and statement x = (xI, xII) split into two
segments, we can write C = CII(xII, wII, CI(xI, wI)). We obtain the following result:

Informal Theorem 1. Groth16 admits a split prover, where,

• the first phase of proof generation runs in time O(|CI| · |C| log |C|),2

• the second phase of proof generation runs in time O(Min{|CII|2, |C| log |C|}),2 and

• the verifier algorithm is identical3 to the Groth16 proof system.

In the above theorem, if |CII| ∈ o(
√
|C|), then the second phase of proof generation runs in time

O(|CII|2). Else, if |CII| ∈ Ω(
√
|C|), then the second phase of proof generation runs in timeO(|C| log |C|).

Lower Bound for Split Prover Groth16. Since group operations are the main bottleneck in the gener-
ation of Groth16 SNARKs, we characterize the number of group operations that must be performed during
the second phase of proof generation in any split prover variant of Groth16.

Informal Theorem 2. In any split prover variant for Groth16, the second phase of proof generation must
involve Ω(Min{|CII|2, |C|}) group operations.

This shows that the number of group operations performed in the second phase of proof generation
in our protocol from Informal Theorem 1 is asymptotically tight.

1.2 Application to Delegatable Payments and Beyond

As discussed earlier, our work is motivated by applications of zkSNARKs, where the witness can be par-
titioned into two segments – one accessible to the prover apriori, and the other disclosed later when the
prover may be unavailable. This situation presents an opportunity for the prover to initiate the zkSNARK
computation using available information and delegate the remaining tasks to an external entity. Now,
we delve into how this witness division applies specifically to Zerocash [BSCG+14] proofs for anonymous
payments, enabling a prover to leverage our split prover zkSNARK to delegate a portion of the computation
to an external entity.

Consider a simplified version of the zCash4 [HBHW22] JoinSplit transaction. A JoinSplit transaction
lets a payer consume two coins and create two new coins – typically, one output coin is issued to the payee,
while the other output coin has the left-over change and is issued back to the payer. In Zerocash, a coin is
spent (or nullified) by revealing its serial number, while a new coin is created by publishing a (randomized)
commitment to a data structure containing the coin’s value and the owner’s public key. The payment is
settled on-chain by submitting a transaction containing (sn1, sn2, cm1

′, cm2
′, π); here, sn1 and sn2 denote

2This includes both group and field operations. The total number of group operations performed by the prover in the first
phase are O(|CI| · |C|) and in the second phase are O(Min{|CII|2, |C|})

3In Groth16, the common reference string (CRS) can be split into two parts – one for the prover and one for the verifier. While
the verifier’s part remains unchanged, our split prover adaptation of Groth16 requires the inclusion of some extra terms in the
prover’s section of the CRS.

4zCash [HBHW22] is a cryptocurrency that deploys the academic work Zerocash [BSCG+14]. Although, prior versions of
zCash were instantiating the zkSNARK component with Groth16 its current implementation has switched to a different SNARK
[Zca]. Our work is still compatible with the cryptographic framework of Zerocash for anonymous transactions.

4

serial numbers for spent coins, while commitments cm1
′ and cm2

′ denote the new output coins. Finally, a
zero-knowledge proof π attests to the transaction’s validity, and it has the following basic form (using the
notation and naming in [BSCG+14]):

• public variables: root, sn1, sn2, cm1
′, cm2

′

• secret witness:

cm1, v1, r1, s1, ρ1, apk1, ask1, h11, . . ., h311
cm2, v2, r2, s2, ρ2, apk2, ask2, h12, . . ., h312
v1

′, r1′, s1′, ρ′1, apk1′

v2
′, r2′, s2′, ρ′2, apk2′

• relation: conjunction of the following five predicates:

– membership proof that the spent coins were created previously on ledger:
MerkleVerify(root, cm1, h11, . . ., h311) ∧MerkleVerify(root, cm2, h12, . . ., h312)

– well-formedness of the data structures encoding the spent coins:
cm1 = Com(v1,Com(apk1, ρ1; s1); r1) ∧ cm2 = Com(v2,Com(apk2, ρ2; s2); r2)

– ownership of spent coins (via knowledge of openings to commitments):
sn1 = PRF(ρ1; ask1) ∧ apk1 = PRF(0; ask1) ∧
sn2 = PRF(ρ2; ask2) ∧ apk2 = PRF(0; ask2)

– well-formedness of the data structures encoding the new output coins:
cm1

′ = Com(v1
′,Com(apk1

′, ρ′1; s1
′); r1

′) ∧
cm2

′ = Com(v2
′,Com(apk2

′, ρ′2; s2
′); r2

′)

– conservation of value: v1 + v2 = v1
′ + v2

′

For simplicity, we hide details such as range checks, viewership keys, etc. Above, we use blue to indicate
values available and constraints that can be evaluated by the prover (i.e., delegator) before the transaction
amount is known. We let the payer’s device choose two of her coins to join for the transaction before she
engages in a payment; in practice, this could be the two coins whose cumulative value is the largest, or at
least exceeds some expected payment amount. Therefore, the delegator is able to evaluate the arithmetic
circuit wires corresponding to the twoMerkle verifications; the delegator can also perform the computation
necesssary for proving well-formedness and ownership of those spent coins. The commitments to the
new coins are determined in later, as are the constraints enforcing the value conservation. As a result, the
computation needed for enforcing these constraints and for proving well-formedness of the data structures
encoding the new output coins can be delegated to someone else.

Other Applications. In addition to anonymous transaction, we observe this witness split in other
classes of applications. In anonymous credentials, the user can prove validity of an issued credential on his
own, before delegating the commputation necessary for proving additional properties about the credential
to an external entity – we find [RPX+22] to be a system which can use the split prover Groth16 construc-
tion in this paper. Additionally, applications that need validity proofs for ciphertexts (e.g. [GAZ+22]),
encrypted under a hybrid encryption scheme, can also benefit from our split prover zkSNARK, since the
component of the circuit encoding the key encapsulation mechanism can be evaluated long before the
message to be encrypted is determined.

5

1.3 Additional Discussion

Comparison with Recursive SNARKs. An astute reader might wonder how our notion of split prover
zkSNARKs relates to the well-studied notion of incrementally verifiable computation (IVC) [Val08] and,
whether recursive zkSNARKs [KST22, BCTV14, BCCT13] – which are used to construct IVCs – could also
be utilized to design split prover zkSNARKs. We note that while the IVCs and split prover zkSNARKs bear
some similarities, these are distinct notions.

Compared to our split prover zkSNARKs, IVCs have two advantages. First, IVCs allow the proof to be
computed in any number of phases (potentially even greater than two). Second, in each phase of IVC, the
prover’s runtime is proportional to the portion of the computation being proven in that phase, whereas
in our construction of split prover zkSNARK, the second phase of proof generation scales with the entire
computation.5

However, these advantages come at the cost of providing only a theoretically questionable heuris-
tic soundness guarantee, due to the use of idealized oracles such as the random oracle or the generic
group model in a non-black-box manner. Such non-black-box use of the random oracle, in general, has
recently been shown to be insecure [BCG24]. In contrast, our split prover zkSNARK inherits the same
soundness guarantees that Groth16 provides, which can be established in well studied idealized mod-
els [Sho97, FKL18]. In contrast, our construction is black-box in the use of cryptography. Another advan-
tage of our split prover zkSNARK is that the verifier algorithm does not depend on how the computation
is split into the two phases. In comparison, in IVCs, verification depends on the specific splitting of the
computation. Therefore, it is unclear how to use recursive proofs to design a zkSNARK that meets all the
requirements of a split prover zkSNARK.

Comparison with other zkSNARK Delegation Frameworks. An orthogonal problem to ours in-
volves delegating zkSNARK computation to third-party cloud servers to ease the burden of proof com-
putation on provers. This topic has been explored in several prior works [BCG+20b, WZC+18, GGJ+23,
CLMZ23, GGW23, LZW+24]. Unlike our model, in these works, the delegator possesses the entire wit-
ness at the time of delegating the computation. While some of these works [BCG+20b, WZC+18] do not
focus on privacy-preserving delegation, others either [GGJ+23, CLMZ23, LZW+24] use MPC for privacy-
preserving distributed delegation to multiple servers or rely [GGW23] on the heavy-hammer of fully-
homomorphic encryptio (FHE) to ensure privacy.

Barriers for zkSNARKs in the Random Oracle Model. Given our construction for Groth16, a nat-
ural question arises as to whether we can extend our techniques to construct split prover versions of
other zkSNARKs, namely those in the random oracle model [BCG+17, BCG+18, XZZ+19, Set20, BCG20a,
Lee21, KMP20, BCL22, CHM+20, GWC19, ZLW+21, COS20]. These zkSNARKs are popular because they
have a universal setup and some of them (e.g. [GWC19]) also provide support for flexible gates. Most of
these zkSNARKs are obtained by transforming an interactive public-coin protocol into its non-interactive
counter-part using the Fiat-Shamir [FS87] transform. Unfortunately, this incorporation of the Fiat-Shamir
transform in these zkSNARKs appears to present an obstacle for us, when it comes to applying our tech-
niques.

Roughly speaking, the main problem is that when the delegator computes a part of the proof apriori,
it is unclear how the verifier’s challenge messages can be derived. In particular, when applying the Fiat-
Shamir transform, the verifier’s challenges are derived by querying the random oracle at inputs that depend

5Unless the the second segment of the witness is small, |CII| = o(
√

|C|), as indicated in Informal Theorem 1.

6

on the “entire computation” and not just a part of the witness. As such it is unclear what parts of the proof
can be pre-computed, without knowledge of these challenge messages. We leave the exploration of new
techniques to design split provers for such zkSNARKs as exciting future work.

2 Preliminaries

Notation. Throughout this work, we use λ ∈ N to denote the security parameter and we assume that
each algorithm implicitly takes the security parameter as input. poly(λ) and negl(λ)will be used to denote
polynomial and negligible functions respectively. We use “PPT” to refer to Probabilistic Polynomial-time
Algorithms, and unless otherwise stated all the algorithms of our schemes are such. For any positive
integer n ∈ Z [n] denotes the set of integers {1, . . . , n} and, more generally, for any A,B ∈ Z, A ≤ B,
[A,B] denotes the set {A, . . . , B}. x ←$ X is used to imply that x is being uniformly sampled from a
finite set X .

We write vectors with bold small letters, e.g. v and with bold capital letters matrices, e.g. A. We treat
vectors as columnmatrices, e.g. v =

(
v1 v2 . . . vn

)⊤. We also sometimeswrite conciselyv = (vi)i∈[n]
for vectors or A = (ai,j)i∈[n],j∈[m] for matrices.

By
⌊
f(X)
g(X)

⌋
we denote the quotient polynomial of the division f(X)/g(X). We denote the i-th co-

efficient of a polynomial f(X) as f̃i, e.g. κ5(X) = κ̃5,0 + κ̃5,1X + . . . + κ̃5,nX
n. By f(X) we de-

note a vector of polynomials, f(X) = (f1(X), f2(X), . . . , fn(X))⊤. f̃i denotes the vector of the cor-
responding i-th coefficients, i.e. f̃i = (f̃1,i, f̃2,i, . . . , f̃n,i)

⊤. Similarly with F (X) a matrix of polyno-
mials. Li(X) =

∏
j∈[n],j ̸=i

X−ωj

ωi−ωj will be the lagrange polynomial over a group {ω, ω2, . . . , ωn} and
V (x) =

∏ℓ
i=1(x− ωi) the vanishing polynomial.

2.1 Bilinear Groups

A bilinear group generator BG takes as input a security parameter 1λ and outputs a description bg :=
(p,G1,G2,GT , g1, g2, e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p,
and e : G1 × G2 → GT is a non-degenerate bilinear map. We require that the group operations in
G1, G2, GT and the bilinear map e are computable in deterministic polynomial time in λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the implicit representation of
group elements: for a matrix M over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where
exponentiation is carried out component-wise.

2.2 Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge

Here we recall the definition of zkSNARKs.

Definition 1 (zkSNARKs). A SNARK for a family of relationsRλ consists of three algorithms (Setup,P,V):

Setup(R)→ (srs): On input a relationR ∈ Rλ the setup algorithm outputs a structured reference string srs.

P(srs, x, w)→ π: On input the structured reference string srs, a statement x and a witness w the prover
algorithm outputs a proof π.

V(srs, x, π)→ 0/1: On input the structured reference string srs, a statement x and a proof π the verifier
algorithm outputs either 1 for accept or 0 for reject.

7

It is further required that the following properties hold.

Correctness. For each λ ∈ N, each relationR ∈ Rλ, and every statement-witness pair (x,w) ∈ R:

Pr

[
V(srs, x, π) = 1 :

srs← Setup(R)
π ← P(srs, x, w)

]
= 1

Knowledge Soundness. For every PPT adversarial prover P ∗, there exists a PPT extractor EP ∗ such that for
every security parameter λ ∈ N, every auxiliary input aux ∈ {0, 1}poly(λ), and every relationR ∈ Rλ:

Pr

 V(srs, x, π) = 1
∧(x,w) /∈ R :

srs← Setup(R)
(x, π)∗ ← P∗(srs, aux)
w ← EP ∗(srs, aux)

 = negl(λ)

Succinctness. There exists a universal polynomial p(·) such that, for every security parameter λ ∈ N, every
relationR ∈ Rλ, and every statement-witness pair (x,w):

• An honestly generated proof π has size p(λ+ log |w|).
• The verifier algorithm V(srs, x, π) runs in time p(λ+ |x|+ log |w|).

(Perfect) Zero-Knowledge. For every security parameter λ ∈ N and every relation (R, auxR)← Rλ, there
exists a simulator S such that, for every statement-witness pair (x,w) ∈ R and for every computationally
unbounded adversary A:

Pr

[
A(R, auxR, srs, π) = 1 :

srs← Setup(R)
π ← P(srs, x, w)

]
=Pr

[
A(R, auxR, srs, π) = 1 : (srs, π)← S(x,R)

]
If the Zero-Knowledge property is not satisfied we call the proof system a SNARK (without zk).

2.3 The Groth16 zkSNARK

We recall the Groth16 proof system [Gro16].

2.3.1 Rank-1 constraint satisfiability (R1CS).

Groth16 works for relations encoded with the rank-1 constraint satisfiability (R1CS). Assume that we have
n constraints andm variables. The constraint system consists of:

a1,1 a2,1 . . . am,1

a1,2 a2,2 . . . am,2

...
...

. . .
...

a1,n a2,n . . . am,n

z1
z2
...

zm

 ◦

b1,1 b2,1 . . . bm,1

b1,2 b2,2 . . . bm,2

...
...

. . .
...

b1,n b2,n . . . bm,n

z1
z2
...

zm

 =

c1,1 c2,1 . . . cm,1

c1,2 c2,2 . . . cm,2

...
...

. . .
...

c1,n c2,n . . . cm,n

z1
z2
...

zm

where the matrices A,B,C are fixed and z is what we call the ‘extended witness’, consisting of the
witness and the statement. Informally speaking, a translation to arithmetic circuits would be that the n
constraints are the multiplication gates, them variables the wires and z the actual values of the wires.. Of
course, R1CS generalizes arithmetic circuits and shall not necessarily be regarded as a translation of such.

Formally an R1CS relation is of the form:

R =
{
(x;w) : Az ◦Bz = Cz ∧ z = (x∥w)

}
where the relation is characterized by the matricesA,B,C ∈ Zn×m

p and z ∈ Zm
p .

8

2.3.2 The Groth16 SNARK

For the proof system first each column ofA,B,C is interpolated into polynomials as:

ai(X) =

n∑
j=1

ai,jLj(X), bi(X) =

n∑
j=1

bi,jLj(X), ci(X) =

n∑
j=1

ci,jLj(X),

for each i ∈ [m], where Lj(x) the corresponding Lagrange polynomial. Then the prover should convince
the verifier that (

m∑
i=1

ziai(X)

)
·

(
m∑
i=1

zibi(X)

)
−

m∑
i=1

zici(X) = q(X)V (X)

where V (X) =
∏n

i=1(X −ωi) is the vanishing polynomial. This polynomial relation is essentially equiv-
alent to the R1CS satisfiability (we refer to [GGPR13, PHGR13, Gro16] for more details).

The actual Groth16 SNARK is described below. Without loss of generality we assume that x =
(z1, . . . , zℓ) corresponds to the public statement.

Setup(R)→ srs: Samples uniformly τ, α, β, γ, δ ←$ Zp and outputs:6

srs =

{{
[α]1, [β]2, [γ]2, [δ]1, [δ]2,

{ [
τ i
]
1
,
[
τ i
]
2

}n−1

i=0
,

{[
V (τ)τ i

δ

]
1

}n−2

i=0

,

{
[ai(τ)]1, [bi(τ)]1, [bi(τ)]2

}m

i=1
,

{[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

}ℓ

i=1

,{[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

}m

i=ℓ+1

}

P(srs,x,w, π)→ π: Sets z = (x∥w). Computes the quotient polynomial q(X) =⌊
(
∑m

i=1 ziai(X))·(
∑m

i=1 zibi(X))−
∑m

i=1 zici(X)

V (X)

⌋
. Then samples r, s ←$ Zp and computes the group

elements:

π1 =[α]1 +

m∑
i=1

zi[ai(τ)]1 + r[δ]1

π2 =[β]2 +

m∑
i=1

zi[bi(τ)]2 + s[δ]2

π3 =

m∑
i=ℓ+1

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+ s

m∑
i=1

zi[ai(τ)]1 + r

m∑
i=1

zi[bi(τ)]1

+

n−2∑
i=0

q̃i

[
V (τ)τ i

δ

]
1

+ s[α]1 + r[β]1 + rs[δ]1

Outputs π = (π1, π2, π3)

6As noted in [Gro16], ai, bi, ci are public polynomials and thus {[ai(τ)]1, [bi(τ)]1, [bi(τ)]2}mi=1 can be publicly computed
given {[τ i]1, [τ

i]2}n−1
i=0 without needing the trapdoor. Nevertheless, they are included in the srs for efficiency purposes.

9

V(srs,x, π)→ 0/1: Outputs 1 iff:

e(π1, π2) = e ([α]1, [β]2) · e

(
ℓ∑

i=1

zi

[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

, [γ]2

)
· e(π3, [δ]2)

The proof system has knowledge soundness in the generic group model [Sho97, Mau05] and perfect
zero-knowledge.

The prover’s complexity is dominated by 7 Fast Fourier Transforms (FFTs) for polynomials of degree n
over Zp, a Multi-Scalar Multiplication (MSM) of sizem in G1, a Multi-Scalar Multiplication (MSM) of size
m inG2 and another Multi-Scalar Multiplication (MSM) of size 3m− ℓ+n inG1, overallO(n log n+m).
Notably, in practice the dominant cost comes from the group operations (the MSMs) even when n log n >
m.

3 Defining Split Prover zkSNARKs

Here we formally define the notion of Split Prover zkSNARKs. The idea is that in an already well-defined
SNARK one can replace the prover P with two phase provers PI, PII. For this we further allow for a new
setup to possibly run, to generate a split common reference string. The verifier V should, nevertheless,
remain the same.

Apart from the functionality, for the primitive to be meaningful we also define a zero-knowledge prop-
erty for the outcome of the first-phase prover that is passed to the second-phase prover. We formalize this
in the Split Zero-Knowledge property.

Definition 2. Let Π = (Setup,P,V) be (zk)SNARK, we say that Π admits a split prover if there exist
algorithms Πsplit = (Setupsplit,PI,PII) such that for any relationR ∈ Rλ:

• Setupsplit(R,XII,WII)→ s̃rs: On input a relationR and sets of indicesXII andWII specifying the portions
of the statement and the witness of the second phase respectively, the split prover setup outputs a split
prover structured reference string s̃rs.

• PI(s̃rs, xI, wI)→ aux: is a PPT algorithm that on input the split prover structure reference string s̃rs, the
part of the statement that is available in the first phase xI and the part of the witness that is available in
the first phase wI outputs an auxiliary information for the prover of the second phase, aux.

• PII(s̃rs, xII, wII, aux)→ π: is a PPT algorithm that on input the split prover structure reference string s̃rs,
the part of the statement that is available in the second phase xII, the part of the witness that is available
in the second phase wII and the auxiliary information from PI, aux, outputs the proof π.

We further consider the following properties:

Split Correctness. We say that Π with Πsplit has (perfect) split correctness if,

Pr

 V(srs,x, π) = V(s̃rs,x, π′)

∣∣∣∣∣∣∣∣∣∣
x := (xI∥xII); w := (wI∥wII)

srs← Setup(R); π ← P(srs, x, w);
s̃rs← Setupsplit(R,XII,WII);

aux← PI(s̃rs, xI, wI);
π′ ← PII(s̃rs, xII, wII, aux)

 = 1,

10

for every set of possible indices XII andWII, every statement x, and every witness w.
Split Zero-Knowledge. We now define the notion of split zero-knowledge. Formally, fix a relation R
decided by a circuit C . Let XII and WII be sets of indices specifying the parts of the statement and the
witness of phase II. Let CI be the (maximal) subcircuit of C where all wires can be determined by the
parts of the statement and the witness of phase I. We say Πsplit is perfect split zero-knowledge forR with
respect to XII andWII, if there exists a simulator S such that for every security parameter λ ∈ N, every
statement-witness pair (x = (xI, xII), w = (wI, wII)) ∈ R, and for every computationally unbounded
adversary A:

Pr

[
A(aux, s̃rs) = 1

∣∣∣∣ s̃rs← Setupsplit(R,XII,WII);
aux← PI(s̃rs, xI, wI)

]
=Pr

[
A(aux, s̃rs) = 1

∣∣ (s̃rs, aux)← S(R, x,XII,WII, CI(xI, wI))
]

To give an intuition of why CI(xI, wI) cannot be avoided to be leaked, we elaborate on how an arith-
metic circuit could be split into two parts. Assume that we have available some inputs of the circuit. We
execute the circuit and obtain all the wires that can be possibly obtained, forming the first-phase extended
witness zI. Then at the second phase thePII gets the rest of the input of the circuit. In order to even execute
the circuit and compute the rest of the wires, forming the second-phase extended witness zII they need the
‘output’ wires of the first phase, that we call CI(xI, wI).

Remark 1. s̃rs in fact consists of s̃rsI that is inputed to the first-phase prover PI and s̃rsII taken as input by
the second-phase prover PII. In order to avoid overwhelming the notation we write both as s̃rs.

Remark 2. We highlight that Split Zero-Knowledge does not imply ’conventional’ Zero-Knowledge. Intu-
itively, Split Zero-Knoweledge is for aux, the information passed from PI to PII and ’conventional’ Zero-
Knowledge is for the final proof π. The final proof of a Split Prover (zk)SNARK may or may not satisfy
’conventional’ zero-knowledge, following the initial (zk)SNARK and is orthogonal to our Split Prover defini-
tion.

4 Split Prover for Groth16

Fix a relation R decided by a circuit C . Let XII and WII be sets of indices specifying the parts of the
statement and the witness of the second prover, PII. Let CI be the (maximal) subcircuit of C where all
wires can be determined by the parts of the statement and the witness of the first prover, PI. We can write
C = CII(xII, wII, CI(xI, wI)) for some circuitCII. In this section we show that Groth16, as it is, admits a split
prover which in addition to satisfying the split correctness notion it also satisfies split zero-knowledge.

For the rest of this section, instead of considering circuits we focus on R1CS instances. In this repre-
sentation, the first and second components of the circuits correspond to the parts of the extended witness
that can be computed from the phase I and phase II witnesses correspondingly and also the parts of the
matrices A, B and C that depend on the two parts of the circuit. Furthermore, when the sets of indices
are implicit in the context we do not include them as an input to the algorithms.

4.1 Overview of the Protocol

W.l.o.g. let zI = (z1, . . . , zm1) be the part of the extended witness that is known to the prover during
the first phase, i.e., zI contains the known part of the statement and the witness.7 We assume that the

7In terms of arithmetic circuit, this can be thought of as all the wires that can be computed without the unknown part.

11

first ℓ1 positions of the extended witness contain the part of the statement that is known in the phase I,
xI = (x1, . . . , xℓ1), i.e. zi = xi for each i ∈ {1, . . . , ℓ1}. Similarly zII = (zm1+1, . . . , zm) is the extended
witness that cannot be initially computed and the positions m1 + 1, . . . ,m1 + ℓ2 contain xII. We use
m2 := m−m1 to denote the size of zII. Precisely, we write:

z = (zI, zII) = (

zI︷ ︸︸ ︷
x1, . . . , xℓ1︸ ︷︷ ︸

xI

, zℓ1+1, . . . , zm1 ,

zII︷ ︸︸ ︷
xm1+1, . . . , xm1+ℓ2︸ ︷︷ ︸

xII

, zm1+ℓ2+1, . . . , zm)

and we define the corresponding sets of indices:

ZI = [1,m1], XI = [1, ℓ1], WI = [ℓ1 + 1,m1]
ZII = [m1 + 1,m], XII = [m1 + 1,m1 + ℓ2], WII = [m1 + ℓ2 + 1,m]

Intuitively the first row is the set of indices of the phase I and the second row the set of indices of the phase
II.

4.1.1 Split-R1CS.

Assume a rank-1-constraint-satisfiability systemAz ◦Bz = Cz. The R1CS can be written accordingly: A11 0
0 A22

A31 A32

(zI

zII

)
◦

 B11 0
0 B22

B31 B32

(zI

zII

)
=

 C11 0
0 C22

C31 C32

(zI

zII

)

whereA11 ∈ Zn1×m1
p are the constraints on zI but not on zII, converselyA22 ∈ Zn2×m2

p are the constraints
on zII but not on zI and A31 ∈ Zn3×m1

p , A32 ∈ Zn3×m2
p involve both. Similarly, for B11 ∈ Zn′

1×m1
p ,

B22 ∈ Zn′
2×m2

p , B31 ∈ Zn′
3×m1

p , B32 ∈ Zn′
3×m2

p and C11 ∈ Zn′′
1×m1

p , C22 ∈ Zn′′
2×m2

p , C31 ∈ Zn′′
3×m1

p ,
C32 ∈ Zn′′

3×m2
p . We note that ni, n

′
i, n

′′
i may not necessarily be the same.

We can re-write the above system as:
AI︷ ︸︸ ︷ A11

0
A31

 zI +

AII︷ ︸︸ ︷ 0
A22

A32

 zII

 ◦

BI︷ ︸︸ ︷ B11

0
B31

 zI +

BII︷ ︸︸ ︷ 0
B22

B32

 zII

 =

=

CI︷ ︸︸ ︷ C11

0
C31

 zI +

CII︷ ︸︸ ︷ 0
C22

C32

 zII

or equivalently (

CI · zI
)
+
(
CII · zII

)
=
(
AI · zI

)
◦
(
BI · zI

)
+
(
AI · zI

)
◦
(
BII · zII

)
+
(
AII · zII

)
◦
(
BII · zI

)
+
(
AII · zII

)
◦
(
BII · zII

)
We refer to this form as the ‘Split-R1CS’.

12

4.1.2 Split Proof Computation.

To begin with, from the available statement xI and witness wI the first prover can compute their extended
witness zI by computing all the wires of the circuit that are possible with xI and wI. Then the second
prover having xII and wII can compute their extended witness, i.e. the rest of the wires of the circuit,
given CI(xI, wI) which corresponds to the output wires of the subcircuit that was computed by PI (see the
discussion at the beginning of the section). Therefore, the first part of the auxiliary information that needs
to be passed from PI to PII is aux0 = CI(xI, wI).

As discussed in Section 2.3, a Groth16 proof consists of three group elements π1, π2, π3.
The first group element of the proof, π1, can be written as:

π1 = [α]1 +

aux1︷ ︸︸ ︷∑
i∈ZI

zi[ai(τ)]1+
∑
i∈ZII

zi[ai(τ)]1 + r[δ]1.

Therefore the value aux1 :=
∑

i∈ZI
zi[ai(τ)]1 can be fully computed in the phase I, as it depends only on

zI. Given this, the final π1 can be computed in phase II as π1 = aux1 + [α]1 +
∑

i∈ZII
zi[ai(τ)]1 + r[δ]1,

once zII becomes available.
The same argument holds for π2:

π2 = [β]2 +

aux2︷ ︸︸ ︷∑
i∈ZI

zi[bi(τ)]2+
∑
i∈ZII

zi[bi(τ)]2 + s[δ]2.

where aux2 :=
∑

i∈ZI
zi[bi(τ)]2

For the third group element π3 in the proof, we have:

π3 =

aux3︷ ︸︸ ︷∑
i∈WI

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+
∑
i∈WII

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+ s

aux1︷ ︸︸ ︷∑

i∈ZI

zi[ai(τ)]1+
∑
i∈ZII

zi[ai(τ)]1

+ r

aux4︷ ︸︸ ︷∑

i∈ZI

zi[bi(τ)]1+
∑
i∈ZII

zi[bi(τ)]1

+

n−2∑
i=0

q̃i

[
V (τ)τ i

δ

]
1

+ s[α]1 + r[β]1 + rs[δ]1.

For this, we need to compute the quotient polynomial q(X) :=⌊
(
∑m

i=1 ziai(X))·(
∑m

i=1 zibi(X))−
∑m

i=1 zici(X)

V (X)

⌋
that depends on both zI and zII. To this end, our first

observation is that, following the split R1CS described above, the quotient polynomial can be re-written

13

as:

q(X) =

⌊(∑
i∈ZI

ziai(X)
)
·
(∑

i∈ZI
zibi(X)

)
V (X)

+

+

(∑
i∈ZI

ziai(X)
)
·
(∑

i∈ZII
zibi(X)

)
V (X)

+

+

(∑
i∈ZII

ziai(X)
)
·
(∑

i∈ZI
zibi(X)

)
V (X)

+

+

(∑
i∈ZII

ziai(X)
)
·
(∑

i∈ZII
zibi(X)

)
V (X)

+

−
∑

i∈ZI
zici(X)

V (X)
−
∑

i∈ZII
zici(X)

V (X)

⌋

Our second observation is that the quotient polynomial q is equal to the sum of the six partial quotients
(i.e., we can ignore the partial remainders in the above six terms). We formally present this claim in the
following lemma.

Lemma 1. Let f1(X), . . . , ft(X), g(X) be univariate polynomials in Zp[X] and k1, . . . , kt be field elements

in Zp. Then
⌊∑t

i=1 kifi(X)
g(X)

⌋
=
∑t

i=1 ki

⌊
fi(X)
g(X)

⌋
.

Proof. Let the euclidean division of fi by g be fi(X) = qi(X)g(X) + ri(X), where deg(ri) < deg(g), for
each i ∈ [t]. Similarly f(X) = q(X)g(X) + r(X), where deg(r) < deg(g). Then,

t∑
i=1

kifi(X) =

t∑
i=1

[kiqi(X)g(X) + kiri(X)]

=

[
t∑

i=1

kiqi(X)

]
g(X) +

[
t∑

i=1

kiri(X)

]

where, deg(
∑t

i=1 kiri) < deg(g), since deg(ri) < deg(g) for each i ∈ [t] and ki’s are constants (degree
0). Therefore, q(X) =

∑t
i=1 kiqi(X).

Finally, notice that deg(ci) < deg(V) for each i ∈ [m], hence
⌊∑

i∈ZI
zici(X)

V (X)

⌋
=

⌊∑
i∈ZII

zici(X)

V (X)

⌋
= 0.

14

Therefore, the quotient polynomial is actually a sum of four terms:

q(X) =

⌊(∑
i∈ZI

ziai(X)
)
·
(∑

i∈ZI
zibi(X)

)
V (X)

⌋
+

+

⌊(∑
i∈ZI

ziai(X)
)
·
(∑

i∈ZII
zibi(X)

)
V (X)

⌋
+

+

⌊(∑
i∈ZII

ziai(X)
)
·
(∑

i∈ZI
zibi(X)

)
V (X)

⌋
+

+

⌊(∑
i∈ZII

ziai(X)
)
·
(∑

i∈ZII
zibi(X)

)
V (X)

⌋
:=q1(X) + q2(X) + q3(X) + q4(X)

For notational convenience and to make the dependence on zI and zII clear we re-write the sums in the
above as inner products:

q(X) =

⌊〈
zI,aI(X)

〉
·
〈
zI, bI(X)

〉
V (X)

⌋
+

⌊〈
zI,aI(X)

〉
·
〈
zII, bII(X)

〉
V (X)

⌋
+

+

⌊〈
zII,aII(X)

〉
·
〈
zI, bI(X)

〉
V (X)

⌋
+

⌊〈
zII,aII(X)

〉
·
〈
zII, bII(X)

〉
V (X)

⌋

where a(X) = (aI(X)∥aII(X))⊤ = (a1(X), . . . , am1(X), am1+1(X), . . . , am(X))⊤ and b(X) =
(bI(X)∥bII(X))⊤ = (b1(X), . . . , bm1(X), bm1+1(X), . . . , bm(X))⊤.

Now, notice that since the first term is entirely computable in phase I, the first prover PI computes the
first quotient polynomial q1(X) and sets aux5 =

∑n−2
i=0 q̃1,i

[
V (τ)τ i

δ

]
. The second and third terms depend

on both zI and zII. We re-write these terms as:

q2(X) =

⌊〈
zI,aI(X)

〉
·
〈
zII, bII(X)

〉
V (X)

⌋
=

⌊〈zII, 〈zI,aI(X)
〉
· bII(X)

〉
V (X)

⌋

Lemma 1
=

〈
zII,

µ2(X)︷ ︸︸ ︷⌊〈
zI,aI(X)

〉
· bII(X)

V (X)

⌋〉
:=
〈
zII,µ2(X)

〉

q3(X) =

⌊〈
zII,aII(X)

〉
·
〈
zI, bI(X)

〉
V (X)

⌋
=

⌊〈zII,aII(X) ·
〈
zI, bI(X)

〉〉
V (X)

⌋

Lemma 1
=

〈
zII,

µ3(X)︷ ︸︸ ︷⌊
aII(X) ·

〈
zI, bI(X)

〉
V (X)

⌋〉
:=
〈
zII,µ3(X)

〉
.

15

Now prover I proceeds as follows: Computes the vectors of m2 polynomials µ2(X) =

⌊〈
zI,aI(X)

〉
·bII(X)

V (X)

⌋
and µ3(X) =

⌊
aII(X)·

〈
zI,bI(X)

〉
V (X)

⌋
and sets aux6 =

∑n−2
i=0 µ̃2,i

[
V (τ)τ i

δ

]
1
and aux7 =

∑n−2
i=0 µ̃3,i

[
V (τ)τ i

δ

]
1
,

each consisting of m2 group elements. In the second phase PII computes the multi-exponentiations
⟨zII, aux6⟩ and ⟨zII, aux7⟩ to reconstruct

[
q2(τ)V (τ)

δ

]
1
and

[
q3(τ)V (τ)

δ

]
1
respectively.

The fourth term of q4(X) can be fully computed in the second phase by PII.
In conclusion the final π3 can be computed in the phase II as follows:8

π3 =

aux3 +
∑
i∈WII

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+s

aux1 +
∑
i∈ZII

zi[ai(τ)]1

+ r

aux4 +
∑
i∈ZII

zi[bi(τ)]1

+

(
aux5 + ⟨zII, aux6⟩+ ⟨zII, aux7⟩+

n−2∑
i=0

q̃4,i

[
V (τ)τ i

δ

]
1

)
+ s[α]1 + r[β]1 + rs[δ]1.

4.1.3 Optimizing PII for small witnesses,m2 = o(
√
n log n+m).

PII’s running time, as described above, is dominated by the computation of q4(X) which, being a polyno-
mial division of degree n, requires O(n log n) time.

We observe that if the most significant portion of the witness is in the first phase, i.e. the phase
II extended witness is small, then there is a more efficient mechanism for PII. In concrete, if m2 =
o(
√
n log n+m), then we preprocess the polynomials as follows:

q4(X) =

⌊〈
zII,aII(X)

〉
·
〈
zII, bII(X)

〉
V (X)

⌋
=

⌊
zII · (a⊤

II (X)⊗ bII(X)) · z⊤
II

V (X)

⌋
Lemma 1
= zII ·

⌊
a⊤
II (X)⊗ bII(X)

V (X)

⌋
· z⊤

II .

Let T (X) =
⌊
a⊤
II (X)⊗bII(X)

V (X)

⌋
be a (m2 × m2)-size matrix of polynomials. In the split setup phase we

compute the matrix containing (m2 ×m2) group elementsH =
∑n−2

i=0 T̃i

[
V (τ)τ i

δ

]
1
and publish it in s̃rs.

Thereafter, in the second phase the prover II computes zIIHz⊤
II to reconstruct

[
q4(τ)V (τ)

δ

]
1
.

8Note that a for a concrete improvement on the size of auxwe can merge aux6 and aux7 into aux6+aux7. For more intuitive
presentation of our protocol we stick to separate aux6 and aux7.

16

The the final π3 can be alternatively computed by PII as:

π3 =

aux3 +
∑
i∈WII

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+s

aux1 +
∑
i∈ZII

zi[ai(τ)]1

+ r

aux4 +
∑
i∈ZII

zi[bi(τ)]1

+

(
aux5 + ⟨zII, aux6⟩+ ⟨zII, aux7⟩+ zIIHz⊤

II

)
+ s[α]1 + r[β]1 + rs[δ]1,

taking time O(m2
2), which is less than O(n log n).

4.1.4 Split Zero-Knowledge.

Until now we have seen how to obtain a split prover for Groth16 that satisfies correctness, ignoring the
split zero-knowledge property. In order to add split zero-knowledge to the above we proceed as follows:
Assume that we want to build a split prover for the R1CS relation

R =
{
(x;w) : Az ◦Bz = Cz ∧ z = (x∥w)

}
,

then, we show a construction with split zero-knowledge for the relation
R′ =

{
(x; (w, r)) : A′z ◦B′z = C ′z ∧ z = (x∥w∥r)

}
,

whereR′ defined as follows:
∀x,w, r : (x; (w, r)) ∈ R′ ⇐⇒ (x;w) ∈ R.

Therefore, the two relations are functionally equivalent as for any x,w, r can be seen as a dummy witness
that is present solely to achieve the zero-knowledge property.

The idea is to carefully add some extra constraints in the R1CS and wires in the extended witness.
Then the extra wires are going to be sampled uniformly at random from PI in order to ‘mask’ the aux-
iliary information. Similar approaches for achieving zero-knowledge can be found in the literature (e.g.
[AHIV17]).

In more detail, the new R1CS matrices will be:
A′︷ ︸︸ ︷

A11 0 0 0 0 0

0 A22

...
...

...
...

A31 A32 0 0 0 0

0 . . . 0 0 . . . 0 1 0 0 0
0 . . . 0 0 . . . 0 0 0 0 0
0 . . . 0 0 . . . 0 0 0 1 0

zI

zII

r1
r2
r3
r4

◦

B′︷ ︸︸ ︷

B11 0 0 0 0 0

0 B22

...
...

...
...

B31 B32 0 0 0 0

0 . . . 0 0 . . . 0 0 0 0 0
0 . . . 0 0 . . . 0 0 1 0 0
0 . . . 0 0 . . . 0 0 0 1 0

zI

zII

r1
r2
r3
r4

=

C′︷ ︸︸ ︷

C11 0 0 0 0 0

0 C22

...
...

...
...

C31 C32 0 0 0 0

0 . . . 0 0 . . . 0 0 0 0 0
0 . . . 0 0 . . . 0 0 0 0 0
0 . . . 0 0 . . . 0 0 0 0 1

zI

zII

r1
r2
r3
r4

17

Equivalently for the corresponding polynomials we get:

• a′
I(X) =

(
a1(X), . . . , am1(X), Ln+1(X), 0, Ln+3(X), 0

)⊤, a′
II(X) = aII

• b′I(X) =
(
b1(X), . . . , bm1(X), 0, Ln+2(X), Ln+3(X), 0

)⊤, b′II(X) = bII

In the modfied R1CS n′ = n+ 3 andm′ = m+ 4.
We note that this approach is not compatible with an already existing Groth16 srs for R and one

should run a new setup, Setup(R′) for R′, where R′ is characterized by the above R1CS. The latter is in
fact happening in Setupsplit.

4.2 The protocol

Here we describe our protocol formally. We recall the notation:

• ai(X), bi(X), c(X) are (publicly) known polynomial that interpolate the i-th column of the A,B,C
R1CS matrices respectively.

• a(X) := (aI(X)∥aII(X))⊤ = (a1(X), . . . , am1(X), am1+1(X), . . . , am(X))⊤

• b(X) := (bI(X)∥bII(X))⊤ = (b1(X), . . . , bm1(X), bm1+1(X), . . . , bm(X))⊤

• a′
I(X) =

(
a1(X), . . . , am1(X), Ln+1(X), 0, Ln+3(X), 0

)⊤, a′
II(X) = aII

• b′I(X) =
(
b1(X), . . . , bm1(X), 0, Ln+2(X), Ln+3(X), 0

)⊤, b′II(X) = bII

• n′ = n+ 3 and m′ = m+ 4.

Setupsplit(R,XII,WII)→ srs: First it runs Groth16’s setup for the relationR′. That is, samples uniformly
τ, α, β, γ, δ ←$ Zp and outputs:

s̃rs =

{{
[α]1, [β]2, [γ]2, [δ]1, [δ]2,

{ [
τ i
]
1
,
[
τ i
]
2

}n′−1

i=0
,

{[
V (τ)τ i

δ

]
1

}n′−2

i=0

,

{
[ai(τ)]1, [bi(τ)]1, [bi(τ)]2

}m′

i=1
,

{[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

}
i∈XI∪XII

,{[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

}
i∈WI∪WII

}

Then ifm2 = o(
√
n log n+m): First computes the matrix of polynomials:

T (X) =

⌊
a⊤
II (X)⊗ bII(X)

V (X)

⌋
:=
(
ti,j(X)

)
i,j∈ZII

and using the
{[

V (τ)τ i

δ

]
1

}n−2

i=0
of the srs outputs the corresponding matrix of group elements:

H =

(
n−2∑
k=0

t̃i,j,k

[
V (τ)τ i

δ

]
1

)
i,j∈ZII

and appends it to the structured reference string, i.e. s̃rs← s̃rs ∪H .

18

PI(s̃rs,xI,wI)→ aux: The prover I samples r1, r2, r3 ←$ Zp, sets r4 = r23 and computes:

0. aux0 = CI(xI, wI),
1. aux1 =

∑
i∈ZI

zi[ai(τ)]1 + r1[am+1(τ)]1 + r3[am+3(τ)]1,
2. aux2 =

∑
i∈ZI

zi[bi(τ)]2 + r2[bm+2(τ)]2 + r3[bm+3(τ)]1,
3.

aux3 =
∑
i∈WI

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+ r1

[
βam+1(τ)

δ

]
1

+ r3

[
βam+3(τ)

δ

]
1

+ r2

[
αbm+2(τ)

δ

]
1

+ r3

[
αbm+3(τ)

δ

]
1

+ r4

[
cm+3(τ)

δ

]
1

,

4. aux4 =
∑

i∈ZI
zi[bi(τ)]1 + r2[bm+2(τ)]1 + r3[bm+3(τ)]1,

5. aux5 =
∑n−2

i=0 q̃1,i

[
V (τ)τ i

δ

]
1
where q1(X) =

⌊
⟨zI,a′

I(X)⟩·⟨zI,b′I(X)⟩
V (X)

⌋
,

6. aux6 =
∑n−2

i=0 µ̃2,i

[
V (τ)τ i

δ

]
1
where µ2(X) =

⌊
⟨zI,a′

I(X)⟩bII(X)
V (X)

⌋
,

7. aux7 =
∑n−2

i=0 µ̃3,i

[
V (τ)τ i

δ

]
1
where µ3(X) =

⌊
⟨zI,b′I(X)⟩aII(X)

V (X)

⌋
and outputs aux := {aux1, aux2, aux3, aux4, aux5, aux6, aux7}

PII(s̃rs,xII, wII, aux)→ π: The prover II first computes zII given xII, wII and aux0. Then uniformly sam-
ples r, s←$ Zp and computes:

1. π1 = [α]1 + aux1 +
∑

i∈ZII
zi[ai(τ)]1 + r[δ]1,

2. π2 = [β]2 + aux2 +
∑

i∈ZII
zi[bi(τ)]2 + s[δ]2,

3.

π3 =

aux3 +
∑
i∈WII

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+s

aux1 +
∑
i∈ZII

zi[ai(τ)]1

+ r

aux4 +
∑
i∈ZII

zi[bi(τ)]1

+

(
aux5 + ⟨zII, aux6⟩+ ⟨zII, aux7⟩+K

)
+ s[α]1 + r[β]1 + rs[δ]1,

whereK = zIIHz⊤
II ifm2 = o(

√
n log n+m) otherwiseK =

∑n−2
i=0 q̃4,i

[
V (τ)τ i

δ

]
1
.

Finally, outputs π := {π1, π2, π3}

Theorem 1. The above scheme has perfect split correctness and perfect split zero-knowledge.

Proof. Split Correctness follows by construction. To avoid repetition we point to Section 4.1 where we
extensively unveiled the protocol details.

19

We now show that our construction achieves perfect split zero knowledge. The simulator S
works as follows: It samples x̂, ŷ, ω̂ ←$ Zp and sets ˆaux1 = [x̂]1, ˆaux2 = [ŷ]2, ˆaux3 =[
βx̂−

∑
i∈XI

ziβai(τ)+αŷ−
∑

i∈XI
ziαbi(τ)

δ + ω̂

]
1

, ˆaux4 = [ŷ]1, ˆaux5 =
[
x̂ŷ
δ

]
1
, ˆaux6 =

[
x̂bII(τ)

δ

]
1
, and ˆaux7 =[

ŷaII(τ)
δ

]
1
. Recall that S samples itself the s̃rs so has access to the trapdoors α, β, δ, τ . Finally aux0 is

trivially simulated, since CI(xI, wI) is part of its input.
Regarding correctness of the simulation, the distribution of the simulated ˆaux is identical to the one

generated by the protocol. aux1, ˆaux1, aux2, ˆaux2, aux3, ˆaux3 are all uniformly distributed, since the groups
G1,G2 are cyclic and r1, r2, r3, x̂, ŷ, ω̂ are uniformly random (r4 is implicitly r23). The rest of the auxiliary
values are uniquely determined based on the s̃rs and aux1, aux2 in the real world. In the simulated world
also, they are chosen accordingly using the s̃rs trapdoors and ˆaux1, ˆaux2. Hence, these are also identically
distributed.

4.3 Efficiency

Here we provide a concrete analysis of the efficiency of our scheme, namely the computational and com-
munication complexities.

4.3.1 Computational Complexity of the algorithms

First, we define metrics for the two operations that are dominant, Fast Fourier Transforms (FFTs) and
Multi-Scalar-Multiplications (MSMs).9 MSMi(n) and FFT(n) denote an MSM in Gi and FFT of n ele-
ments respectively. For ease of presentation, in MSM and FFT we ignore the additive constants that
have insignificant contribution, for example for

∑m
i=1 di[xi]1 + e[y] we would write MSM(m) instead of

MSM(m+ 1).
Our first prover, PI requires O(1)FFT(n), O(m2)FFT(n) and O(m2)FFT(n) to compute the corre-

sponding quotient polynomials q1(X), µ2(X), µ3(X) and then (2m2 + 1)MSM(n) to compute aux5,
aux6, aux7 respectively. Additionally, 2MSM1(m1) + MSM1(m1 − ℓ1) + MSM2(m1) to compute
aux1, aux2, aux3, aux4. Then our second prover is performing as follows: If m2 = o(

√
n log n+m) then

(m2+1)MSM1(m2)+MSM1(5m2−ℓ2)+MSM2(m2) to compute π1, π2 and π3, the dominant cost being
the computation of zIIHz⊤

II , otherwise 5FFT(n)+MSM1(5m2−ℓ2)+MSM2(m2) to compute π1, π2 and
π3, the dominant cost being the FFTs to compute polynomial division for q4(X).

4.3.2 Communication Complexity in group elements.

The sizes of the elements of our protocol in group elements precisely are: the size of the auxiliary infor-
mation (ignoring aux0 = CI(xI, wI)) passed to the second prover |aux| = (2m2 +4) |G1|+1 |G2|. For srs
and π, they are, again, the same as in Groth16: |srs| = (2n+3m+1) |G1|+(n+m+3) |G2| = O(n+m)
and |π| = 2 |G1|+ 1 |G2| = O(1).

Remark 3. In fact, we can consider an optimization where the second prover time and H-size are both
O(rank(AII)× rank(BII)) instead ofO(m2

2), where rank denotes the column rank. For simplicity we describe
our protocols assuming thatAII andBII are both full rank.

9MSMs are also referred to as multi-exponentiations.

20

5 Lower Bound on the second Prover Time in Groth16

In this section, we sketch a lower bound on the best achievable phase II prover time in any split prover
scheme for the Groth16 [Gro16] proof system, thereby demonstrating that our constructions from Section 4
is asymptotically tight. Let rank(M) denote the column rank of matrixM . At a high-level, we show that
PII in any split prover variant of Groth16 must receive Ω (Min {n− 1, (rank(AII)× rank(BII))}) group
elements as auxiliary information from the split structured reference string and the first prover. This also
implicitly puts a bound on the smallest possible runtime for PII in Groth16. In particular, it shows that the
second prover must perform Ω (Min {n− 1, (rank(AII)× rank(BII))}) group operations. Before proving
our main impossibility result, we find it useful to prove the following helper lemma.

Lemma 2. Let m1,m2, ℓ1, ℓ2, n ∈ N and let (AI∥AII,BI∥BII,CI∥CII) be any split RICS instance (as de-
scribed in Section 4.1) for these parameters. For any phase I extended witness zI and any k-sized set of phase
II witnesses {zII,i}i∈[k], let {π1,i, π2,i, π3,i}i∈[k] be the honestly computed Groth16 proofs for {zI∥zII,i}i∈[k].
If k ≥ m2

2 + 3m2 + 4, and vectors {[zII,i, (z⊤II,i ⊗ zII,i)]}i∈[k] are linearly independent, then there exists a
polynomial time algorithmM such that with high probability

M
(
{zII,i, π1,i, π2,i, π3,i}i∈[k]

)
→

n−2∑
i=0

T̃i

[
V (τ)τ i

δ

]
1

,

where T (X) is the vector of m2
2 polynomials computed as

⌊
a⊤
II (X)⊗bII(X)

V (X)

⌋
.

Proof. Recall that the third group element π3 in Groth16 is of the form

π3 =

var1︷ ︸︸ ︷∑
i∈WI

zi

[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+
∑
i∈WII

zi

var2,i︷ ︸︸ ︷[
βai(τ) + αbi(τ) + ci(τ)

δ

]
1

+ s

var3︷ ︸︸ ︷∑

i∈ZI

zi[ai(τ)]1 +
∑
i∈ZII

zi

var4,i︷ ︸︸ ︷
[ai(τ)]1

+ r

var5︷ ︸︸ ︷∑

i∈ZI

zi[bi(τ)]1 +
∑
i∈ZII

zi

var6,i︷ ︸︸ ︷
[bi(τ)]1

+

n−2∑
i=0

q̃i[
V (τ)τ i

δ
]1 + s

var7︷︸︸︷
[α]1 + r

var8︷︸︸︷
[β]1 + rs

var9︷︸︸︷
[δ]1 .

Here the group elements colored in blue remain constant across all π3,j . Furthermore,∑n−2
i=0 q̃i

[
V (τ)τ i

δ

]
1
=
∑

u∈[4]
∑n−2

i=0 q̃u,i

[
V (τ)τ i

δ

]
1
, where

1. q̃1,i’s are the coefficients in the quotient polynomial
⌊(∑

i∈ZI
ziai(X)

)
·
(∑

i∈ZI
zibi(X)

)
V (X)

⌋
. Therefore,

var10 =
∑n−2

i=0 q̃1,i

[
V (τ)τ i

δ

]
1
also remains constant across all π3,j .

2. q̃2,i’s are the coefficients in the quotient polynomial
⌊(∑

i∈ZI
ziai(X)

)
·
(∑

i∈ZII
zibi(X)

)
V (X)

⌋
=

21

〈
zII,

µ2(X)︷ ︸︸ ︷⌊〈
zI,aI(X)

〉
· bII(X)

V (X)

⌋〉
. The followingm2 group elements also remain constant across all π3,j ’s:

var11 =
∑n−2

i=0 µ̃2,i[
V (τ)τ i

δ]1.

3. q̃3,i’s are the coefficients in the quotient polynomial
⌊(∑

i∈ZII
ziai(X)

)
·
(∑

i∈ZI
zibi(X)

)
V (X)

⌋
=

〈
zII,

µ3(X)︷ ︸︸ ︷⌊
aII(X) ·

〈
zI, bI(X)

〉
V (X)

⌋〉
. The followingm2 group elements also remain constant across all π3,j ’s:

var12 =
∑n−2

i=0 µ̃3,i[
V (τ)τ i

δ]1.

4. q̃4,i’s are the coefficients in the quotient polynomial
⌊(∑

i∈ZII
ziai(X)

)
·
(∑

i∈ZII
zibi(X)

)
V (X)

⌋
=

〈 T (X)︷ ︸︸ ︷⌊
a⊤
II (X)⊗ bII(X)

V (X)

⌋
, z⊤

II ⊗ zII

〉
. The following m2

2 group elements also remain constant across all

π3,j ’s: var13 =
∑n−2

i=0 T̃i[
V (τ)τ i

δ]1

In other words, for each j ∈ [k], we can re-write π3,j as

π3,j =var1 + ⟨zII,j , var2⟩+ sj (var3 + ⟨zII,j , var4⟩+ var7)

+rj (var5 + ⟨zII,j , var6⟩+ var8) + rjsjvar9 + var10 + ⟨zII,j , var11⟩
+⟨zII,j , var12⟩+ ⟨z⊤

II,j ⊗ zII,j , var13⟩

After rearranging we get,

π3,j =var1 + var10

+sj(var3 + var7)

+rj(var5 + var8)

+rjsjvar9

+⟨zII,j , var2 + var11 + var12⟩
+⟨sjzII,j , var4⟩
+⟨rjzII,j , var6⟩
+⟨z⊤

II,j ⊗ zII,j , var13⟩

As a result, {zII,j , π3,j}j∈[k] can be used to obtain a system of k linear equations inm2
2+3m2+4 unknown

group elements. If k ≥ m2
2 + 3m2 + 4, then this system of equations can be solved in polynomial time,

to learn all the unknown group elements. This includes var13 which is the m2
2-length vector of group

elements
∑n−2

i=0 T̃i[
V (τ)τ i

δ]1. This completes the proof of this lemma.

We now present a formal proof for our main impossibility result.

22

Theorem 2 (Main Lower-Bound). Letm1,m2, ℓ1, ℓ2, n ∈ N and let (AI∥AII,BI∥BII,CI∥CII) be any split
RICS instance (as described in Section 4.1) for these parameters. There does not exist a split prover (see Defini-
tion 2) for Groth16 [Gro16] in the generic group model, where the phase I prover outputs a group element that
has the same form as π3 in Groth16 and where s̃rsII, aux contain o (Min {n− 1, (rank(AII)× rank(BII))})
group elements.

Proof. Let K be an (n − 1) ×m2
2 sized matrix defined by the evaluation representation of the following

m2
2 quotient polynomials of degree (n− 1) each

T (X) =

⌊
a⊤
II (X)⊗ bII(X)

V (X)

⌋
,

i.e., the columns in K correspond to the evaluations of the polynomials in T (X) on the nth

roots of unity. It is easy to see that the maximum column rank of this matrix is rank(K) =
Min {n− 1, (rank(AII)× rank(BII))}, whereAII andBII are n×m2 sized matrices defined by the vector
of polynomials aII(X) and bII(X) respectively.

Let us now assume for the sake of contradiction that there exists a split prover for Groth16, where s̃rsII,
aux contain o (Min {n− 1, (rank(AII)× rank(BII))}) group elements.

Claim 1. An adversarial PII in this split prover variant for Groth16 can recover the following m2
2 group

elements
n−2∑
i=0

T̃i

[
V (τ)τ i

δ

]
1

.

Proof. The adversary samples k = m2
2 + 3m2 + 4 random phase II extended-witness {zII,j}j∈[k], such

that the vectors {[zII,i, (z⊤
II,i ⊗ zII,i)]}i∈[k] are linearly independent. It then uses the given s̃rsII, aux

on these phase II extended witness to generate a Groth16 proof for each of them, i.e., it computes
{π1,j , π2,j , π3,j}j∈[k]. Observe that each of these Groth16 proofs rely on the same phase I extended-witness
(this follows fromDefinition 2). Given these Groth16 proofs and the corresponding set of phase I extended-
witnesses, the adversary can then use Lemma 2 to recover the desiredm2

2 group elements.

We know that out of the m2
2 group elements

∑n−2
i=0 T̃i

[
V (τ)τ i

δ

]
1
, rank(K) of them are linearly inde-

pendent. However, since the generic group model only allows linear operations of the group elements,
|s̃rsII| + |aux| ∈ o(rank(K)) group elements should not have sufficed to compute all of the m2

2 group
elements

∑n−2
i=0 T̃i

[
V (τ)τ i

δ

]
1
. Hence, our assumption was incorrect and no such split prover for Groth16

exists, where s̃rsII, aux contain o (Min {n− 1, (rank(AII)× rank(BII))}) group elements. This completes
the proof of this theorem.

As discussed in remark 3, the phase II proof generation time in our protocols from Section 4 can
be optimized to have the second prover perform only O (Min {n− 1, (rank(AII)× rank(BII))}) group
operations. Therefore, our lower bound from Theorem 2 helps demonstrate that the number of group
operations performed by the second prover in our protocols is asymptotically tight.

23

Acknowledgements

This work is supported in part by the AFOSR Award FA9550-24-1-0156 and research grants from the Bakar
Fund, J. P. Morgan Faculty Research Award, Supra Inc., Sui Foundation, and the Stellar Development Foun-
dation. Dimitris Kolonelos is also supported in part by a Berkeley Center for Responsible, Decentralized
Intelligence (RDI) Fellowship. Part of this work was done while the second author was a postdoc at NTT
Research.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104.
ACM Press, October / November 2017. 17

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017. 3

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013. 6

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In
Tsuyoshi Takagi and Thomas Peyrin, editors,ASIACRYPT 2017, Part III, volume 10626 of LNCS,
pages 336–365. Springer, Heidelberg, December 2017. 6

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, andMaryMaller. Arya: Nearly
linear-time zero-knowledge proofs for correct program execution. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626.
Springer, Heidelberg, December 2018. 6

[BCG20a] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear
verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 19–46. Springer, Heidelberg, November 2020. 6

[BCG+20b] Sean Bowe, Alessandro Chiesa, MatthewGreen, IanMiers, PratyushMishra, and HowardWu.
ZEXE: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy, pages 947–964. IEEE Computer Society Press, May 2020. 6

[BCG24] Annalisa Barbara, Alessandro Chiesa, and Ziyi Guan. Relativized succinct arguments in the
rom do not exist. Cryptology ePrint Archive, Paper 2024/728, 2024. https://eprint.
iacr.org/2024/728. 6

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge IOPs with linear-time
prover and polylogarithmic-time verifier. In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 275–304. Springer, Heidelberg,
May / June 2022. 6

24

https://eprint.iacr.org/2024/728
https://eprint.iacr.org/2024/728

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014. 6

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014. 3, 4, 5

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. 6

[CLMZ23] Alessandro Chiesa, Ryan Lehmkuhl, PratyushMishra, and Yinuo Zhang. Eos: Efficient private
delegation of zksnark provers. In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023,
pages 6453–6469. USENIX Association, 2023. 6

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transpar-
ent recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.
6

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018. 6

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987. 6

[GAZ+22] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. Zero-knowledge
middleboxes. In USENIX Security Symposium, pages 4255–4272. USENIX Association, 2022. 5

[GGJ+23] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi Sekar. zksaas:
Zero-knowledge snarks as a service. In Joseph A. Calandrino and Carmela Troncoso, editors,
32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023,
pages 4427–4444. USENIX Association, 2023. 6

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, andMariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 9

[GGW23] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements obliviously?
IACR Cryptol. ePrint Arch., page 1609, 2023. 6

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–
326. Springer, Heidelberg, May 2016. 4, 8, 9, 21, 23

25

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953. 6

[HBHW22] Daira Hopwood, Sean Bowe, Taylor Hornby, andNathanWilcox. Zcash protocol specification,
2022. 4

[KMP20] Abhiram Kothapalli, Elisaweta Masserova, and Bryan Parno. A direct construction for asymp-
totically optimal zksnarks. IACR Cryptol. ePrint Arch., page 1318, 2020. 6

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 359–388. Springer, Heidelberg, August
2022. 6

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and poly-
nomial commitments. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 1–34. Springer, Heidelberg, November 2021. 6

[LZW+24] Xuanming Liu, Zhelei Zhou, Yinghao Wang, Bingsheng Zhang, and Xiaohu Yang. Scalable
collaborative zk-snark: Fully distributed proof generation and malicious security. IACR Cryp-
tol. ePrint Arch., page 143, 2024. 6

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of
LNCS, pages 1–12. Springer, Heidelberg, December 2005. 10

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer
Society Press, November 1994. 3

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE
Computer Society Press, May 2013. 9

[RPX+22] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn Song.
Zebra: Snark-based anonymous credentials for practical, private and accountable on-chain
access control. Cryptology ePrint Archive, Paper 2022/1286, 2022. https://eprint.
iacr.org/2022/1286. 5

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 704–737. Springer, Heidelberg, August 2020. 6

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.
6, 10

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, March 2008. 6

26

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK: A
distributed zero knowledge proof system. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 675–692. USENIX Association, August 2018. 6

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
Libra: Succinct zero-knowledge proofs with optimal prover computation. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 733–764. Springer, Heidelberg, August 2019. 6

[Zca] Zcash. The halo2 book. https://zcash.github.io/halo2/index.html. 4

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 159–177. ACM Press,
November 2021. 6

27

https://zcash.github.io/halo2/index.html

	1 Introduction
	1.1 Our Contributions
	1.2 Application to Delegatable Payments and Beyond
	1.3 Additional Discussion

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge
	2.3 The Groth16 zkSNARK

	3 Defining Split Prover zkSNARKs
	4 Split Prover for Groth16
	4.1 Overview of the Protocol
	4.2 The protocol
	4.3 Efficiency

	5 Lower Bound on the second Prover Time in Groth16

