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Abstract

We present a simple counterexample to all known variants of the private-coin evasive learn-
ing with errors (LWE) assumption. Unlike prior works, our counterexample is direct, it does
not use heavy cryptographic machinery (such as obfuscation or witness encryption), and it ap-
plies to all variants of the assumption. Our counterexample can be seen as a “zeroizing” attack
against evasive LWE, calling into question the soundness of the underlying design philosophy.

1 Introduction

Modern lattice-based cryptography, initiated by the work of Ajtai [Ajt96], relies on average-case
problems that come with a reduction fromwell-studied, and widely believed to be hard, worst-case
problems on integer lattices. In other words, this line of research gives us a number of instances of
lattice-based (average-case) hardness. Themost popular such average-case problems are the Short
Integer Solution (SIS) problem [MR04] and the Learning With Errors (LWE) problem [Reg05], as
well as their ring and module counterparts [PR06, LPR10, LS15].

However, in recent years, cryptographic constructions have emerged, notably in the contexts
of broadcast encryption [BV22] and witness encryption [CVW18], that draw from tools and tech-
niques that were developed in the context of lattice-based cryptography, but for which proving
security from lattice-based hardness assumptions (and indeed, any non-vacuous assumption at
all) is out of the reach of our current understanding. While such constructions may reasonably be
conjectured to be secure, this is an unsatisfying state of affairs as a break of such schemes may not
lead to interesting newmathematical insights. This is in stark contrast to the win-win paradigm of
(lattice-based) cryptography, where any attack directly gives us improved (worst-case) algorithms
for well-studied mathematical problems.

Evasive LWE. To remedy this situation and provide a way to systematically assess the security of
such cryptographic constructions, Wee [Wee22] and Tsabary [Tsa22] introduced the evasive LWE
framework. Concretely, these works used it to argue the security of a new broadcast encryption
and a new witness encryption scheme, respectively.
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Assume in the following that we areworking over the ringZq. Evasive LWE is commonly stated
as follows:1 fix a sampler Samp which outputs (P,S, aux), where P and S are matrices and aux is
a bit-string, referred to as auxiliary information. Further letB be a narrower matrix (than P) chosen
uniformly at random, E,E′ be Gaussian error matrices of suitable size, and U,U′ be uniformly
random matrices of suitable size. We will let the notation B−1(P) denote a short Gaussian pre-
image of P with respect to B. In particular, B−1(P) is a matrix with small entries such that B ·
B−1(P) = P (mod q).

The evasive LWE assumption postulates that if the pre-condition

(B,P,SB+E,SP+E′, aux) ≈c (B,P,U,U′, aux) (1.1)

holds, i.e. the two ensembles are computationally indistinguishable, then also the post-condition

(B,P,SB+E,B−1(P), aux) ≈c (B,P,U,B−1(P), aux) (1.2)

holds.
It is not hard to see that if the pre-condition is false, so is the post-condition; i.e. a distinguisher

for the pre-condition implies a distinguisher for the post-condition. Indeed, to construct a distin-
guisher for the post-condition, observe that usingD := B−1(P), we can expand (SB+E) into

(SB+E) +E′ ·B−1(P) = SP+ (EB−1(P) +E′) ≈s SP+E′,

where E′ is a Gaussian “flooding” noise. Now invoking the distinguisher for the pre-condition
does the job for us.2 This is an instance of the so-called “zeroizing attacks” [CHL+15, MSZ16].

Indeed, zeroizing attacks, namely multiplying SB + E and B−1(P) and trying to distinguish
the product from random, are the only known type of attacks against the post-condition3. This
state of affairs inspired the formulation of the evasive LWE assumption which says that the only
way to distinguish the post-condition is to come up with a distinguisher for the pre-condition.
Specifically, it postulates that for every attack on the post-condition, there is a matching attack
on the pre-condition with polynomially related success probability. Stated differently, the hope is
that if there is an attack against the post-condition which does not translate into an attack against
the pre-condition, it would reveal interesting structural insights which let us go beyond zeroizing
attacks and could potentially even lead to a win-win situation.4

Public-Coin vs. Private-Coin Evasive LWE. Let us now dive into the details of the evasive LWE
assumption a little further. The sampler Samp is a critical aspect of the evasive LWE assumption.
InWee’s formulation [Wee22], the sampler generates the matricesB,P and the auxiliary informa-
tion aux, whereas the secret S is chosen to be independently and uniformly random. Futhermore,
[Wee22] only considers a restricted class of public-coin samplers Samp where aux contains all the
random coins used by Samp. Public-coin evasive LWE has seen a range of applications, including

1We describe the assumption following a variant from the recent work of Brzuska, Ünal and Woo [BUW24].
2We are ignoring some technicalities, e.g. to argue that U ·B−1(P) is indeed statistically close to uniform, invoking

the leftover hash lemma, one needs B to be sufficiently wide. This is indeed the regime that LWE and evasive LWE are
used.

3That is, short of ignoringB−1(P) and distinguishing the rest from randomwhich would be an attack on plain LWE.
4Compare this situation to the recent attacks on the SIDH problem [CD23]; the algorithm underlying the attack led

to the construction of a provably secure signature scheme from isogenies [DLRW24].

2



optimal broadcast encryption [Wee22], multi-authority ABE [WWW22], and unbounded-depth
ABE [HLL23]. However, public-coin evasive LWE only let us get a little beyond LWE-land; in par-
ticular, it was completely unclear whether simple, natural, and apparently secure constructions of
witness encryption (such as [CVW18]) can be proven secure.

Motivated by this state of affairs, Vaikuntanathan, Wee and Wichs [VWW22] introduced a
private-coin variant of evasive LWE, where the random coins used by Samp are not included in
aux and are hence kept hidden in both the pre- and the post-conditions. This variant has proven
to be extremely fruitful in constructing several highly sought-after cryptographic primitives such
as witness encryption and null-IO [Tsa22, VWW22], adaptively sound SNARGs for UP [MPV24,
JKLM25], non-adaptive SNARG for NP [JKLM25], and many more. A recent work [BDJ+24] re-
alizes a novel notion of pseudorandom obfuscation from private-coin evasive LWE and additional
standard assumptions. They further show that one can construct IO itself assuming evasive LWE
and bilinear maps. Additionally, [BDJ+24] shows how to construct succinct witness encryption,
an object that has so far been out of reach from even IO, assuming evasive LWE. Finally, Agrawal,
Kumari and Yamada [AKY24] construct the related notion of compact pseudorandom functional
encryption from private-coin evasive LWE.

At a technical level, all the above-mentioned works (both in the public- and the private-coin
setting) use evasive LWE to compress noise: In the evasive LWE pre-condition, the Gaussian error
E′ is used to noise-flood some residual, low-norm, term which usually depends on a secret. Then,
by appealing to the evasive LWE assumption, one hopes that the expanded error ED in the post-
condition (where D := B−1(P)) has the same effect, i.e. it pseudo-drowns the problematic secret-
dependent residual term.

One might wonder if the low-rankness of ED leads to an attack right away. This is not the
case: ED is not given to the distingisher by itself; it comes with the “LWE term” SP which hides
the low-rank structure in the expanded error. Indeed, this gets to the heart of why LWE does not
suffer from a trivial rank attack. Nevertheless, looking ahead, we will attack precisely this pseudo-
drowning intuition, and will crucially use the fact that ED is low-rank over the integers and not just
mod q.

Prior Attacks on Evasive LWE, Take 1. It was already established in [VWW22] that private-coin
evasive LWE, in its full generality, is false. The core of the issue is that the auxiliary information aux
can encrypt information about S or the matrixB, and this information might be inaccessible in the
pre-condition but accessible in the post-condition. Specifically, the Gaussian pre-image B−1(P)
can serve as a witness or a decryption hint to decrypt this information. In [VWW22], a contrived
example of such an auxiliary information was provided under heuristic obfuscation assumptions.
This counterexample has since been simplified and refined to rely on null-IO in [BUW24] or even
witness encryption in [BDJ+24].

Prior Attacks on Evasive LWE, Take 2. While it seemed reasonable to conjecture that we can
avoid these types of obfuscation-based attacks by restricting ourselves to “natural” distributions of
P,S and aux, the recent work of Brzuska, Ünal and Woo [BUW24] demonstrated simple algebraic
attacks against variants of private-coin evasive LWE, as summarized in Fig. 1. In particular, they
give counterexamples in the following settings:

• The matrixB is hidden, butP is only partially available to the distinguisher, in both the pre-
and post-conditions. This regime is captured by the blue cross in Fig. 1.
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Figure 1: The above figure is adapted from [BUW24, Figure 1(b)] (BUW). BUW partition the
private-coin evasive LWE based on whether B is public or hidden (in both the pre- and post-
conditions); and whether P is public, hidden or “partially” hidden (in both the pre- and post-
conditions). BUW then give simple counterexampleswhich rule out the different private-coin vari-
ants. Each counterexample is denoted by a cross of different color. Finally, the proposed classes of
private-coin evasive LWE that survive their attack are indicated by the green outline. For simplic-
ity of exposition, we do not mention an additional attack of BUW that allows the Samp algorithm
takes B as input, although we note that our attack subsumes that setting as well.

• The matrix B is available, but P is either partially or fully hidden from the distinguisher, in
both the pre- and post-conditions. This regime is captured by the yellow cross in Fig. 1.

To summarize, their work leaves two variants of private-coin evasive LWE that we do not yet
have counterexamples for. We state them here informally.

Private-coin “binding” evasive LWE. This corresponds to the bottom-left corner of the grid in
Fig. 1 (and is identical to the version described in the beginning of the paper, equations (1.1)
and (1.2)). In this variant, both B and P are available in the clear in both the pre- and post-
conditions. The assumption then states that for any sampler Samp which takes a security
parameter λ as input, and outputs (P,S, aux):

if (B,P,SB+E,SP+E′, aux) ≈c (B,P,C,C′, aux),

then (B,P,SB+E,B−1(P), aux) ≈c (B,P,C,B−1(P), aux)

Private-coin hiding evasive LWE. This corresponds to the top-right corner of the grid in Fig. 1. In
this variant, both B and P are hidden in both the pre- and post-conditions. The assumption
then states that for any sampler Samp which takes a security parameter λ as input, and out-
puts (P,S, aux), if (P, aux) ≈c (P+R, aux) (where R is sampled from some bounded norm
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distribution, e.g. uniform over an interval), we have that:

if (SB+E,SP+E′, aux) ≈c (C,C′, aux),

then (SB+E,B−1(P), aux) ≈c (C,B−1(P), aux)

Note that neither version is stronger than the other; hiding both P, for example, hurts the distin-
guisher in the pre-condition just as well as it hurts the distinguisher in the post-condition. The hid-
ing version suffices to prove the security of several protocols, e.g. witness encryption [VWW22],
SNARGs for UP [MPV24], and SNARG for NP [JKLM25]; and the binding version suffices for
constructions of pseudorandom obfuscation [BDJ+24].

While the obfuscation-based counterexamples still apply to these variants, it seemed reason-
able to assume security with essentially any “natural distribution” of aux that is not specifically
constructed to contain a counterexample program.

Implications to Constructions. None of the known attacks, including ours, break the construc-
tions ofwitness encryption andnull-IO [VWW22, Tsa22], adaptively soundSNARGs forUP [MPV24,
JKLM25], or non-adaptive SNARG for NP [JKLM25]. We will update this section as more infor-
mation becomes available.

2 Our Results

In this work, we show a simple and general counterexample to evasive LWE that simultaneously
rules out all private-coin variants captured in Fig. 1. We show a counterexample which satisfies
the “strongest” if condition (where B and P are available to the distinguisher) assuming LWE,
and we demonstrate an attack on the “weakest” then condition (where B and P are hidden from
the distinguisher).

In a nutshell, our counterexample demonstrates that the pseudo-drowning heuristic, which is
at the core of all security proofs that rely on evasive LWE, is not sound in the case of private-coin
evasive LWE. This is the case even for very simple and benign-looking distributions of the auxiliary
information aux, and for uniformly random P and B, and a Gaussian S.

2.1 Our Counterexample

We now describe our counterexample. Let q be an odd prime which is superpolynomial in the
security parameter λ; we let Zq := {0, 1, . . . , q − 1}. We define the following sampler Samp:

• Sample a matrix P← Zn×k
q .

• Sample a matrix S ← Dℓ×n
Z,σ , where DZ,σ is the discrete Gaussian over Z with standard devi-

ation σ.

• Sample an ℓ × k matrix T ∈ Zℓ×k
q such that all the entries are uniformly random numbers

from [0, 1, . . . , ⌊q/2⌋].

• Let aux = SP− 2T mod q, and output P,S, aux.
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Pre-condition: We argue that the pre-condition holds in the strongest setting where B and P are
available to the distinguisher. We sketch the argument here via the following hybrid distri-
butions:

(B,P,SB+E,SP+E′′, aux = SP− 2T)

≈s (B,P,SB+E,SP+ 2Ẽ+E′′, aux = SP+ 2Ẽ− 2T) (2.1)
≈c (B,P,C,V +E′′, aux = V − 2T). (2.2)

where U and V are random matrices over Zq. Here, (2.1) follows via a noise flooding argu-
ment by picking |E′′|∞ ≫ |Ẽ|∞, and (2.2) follows from the fact that LWE with even error is
as hard as LWEwhich in turn follows from the fact that 2 is invertible mod q (since q is odd).5
At this point, it suffices to show that

(V +E′′,V − 2T) ≈c (C
′,V − 2T)

for a uniformly random matrix C′. Essentially, we use the fact that the difference between
the two quantities, given by 2T+E′′, is statistically close to uniform over Zq. Intuitively, the
error term E′′ “smudges” 2T to hide the fact that the term is even. Then, by a tail bound,
we can show that |2T + E′′| < q with high probability by choosing the norm of E′′ to be
superpolynomially smaller than q. Therefore, we have that 2T + E′′ is statistically close to
uniformly random over Zq. We refer the reader to Lemma 5.2 for a detailed analysis.
To establish private-coin hiding evasive LWE, we additionally need to show that (P, aux) ≈c

(P + R, aux) for bounded-norm R. We show this via a similar argument as the main pre-
condition. We refer the reader to Lemma 5.3 for a detailed analysis.

Post-condition: Wenowshow that there exists a distinguisherwhichdistinguishes (SB+E,D, aux)
from (C,D, aux), whereC is a uniformly randommatrix andD = B−1(P). The distinguisher
does the following: compute

W = (CD− aux mod q) mod 2

and check if the first row of W is in the span of the rows of D mod 2. If yes, output 1, else
output 0.
When the distinguisher gets SB+E, it computes

(SB+E) ·D− aux = (SB+E) ·D− (SP− 2T) = ED+ 2T (mod q)

SinceD,E are Gaussian with small variance, with high probability,

||ED+ 2T||∞ < q ,

that is ED + 2T (mod q) is the same as ED + 2T as an integer. Hence, reducing modulo 2
we obtainW = ED (mod 2). It is easy to see that the first row ofW is in fact in the row span
ofD (mod 2). Hence, the distinguisher will output 1 with high probability.

5Wenote that the use of LWE to establish the pre-condition in our counterexample is expected since the pre-condition
asserts a computational statement.
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On the other hand, when the distinguisher gets a uniformly randommatrixC, we can argue
via leftover-hash lemma that the expression

CD− (SP− 2T) mod q

is in fact statistically close to uniform over Zq. Therefore, taking the result mod 2 will give a
uniformly randommatrix mod 2. The first row of this matrix is not in the span ofD (mod 2)
with high probability sinceD is awidematrix. We refer the reader to Lemma 5.1 for a detailed
analysis.

In a nutshell, even though the distribution in the pre-condition is pseudorandom, the distribu-
tion in the post-condition allows us to mount a “zeroizing” attack, recovering a quantity that does
not wrap around mod q.

2.2 Comparison to Prior Attacks

We first recap the idea of the prior attacks on private-coin evasive LWE.

Obfuscation-based counterexample. VWW [VWW22] noted that the private-coin evasive LWE
assumptionwas alreadyprone to heuristic obfuscation-based counterexamples. Thework of Brzuska,
Ünal and Woo [BUW24] then strengthened this counterexample to only rely on null-IO and LWE.
We briefly describe the counterexample, following [BUW24, Remark 3]. Consider the sampler
Samp that works as follows:

• Sample a wide matrix P in Zn×k
q .

• Sample a random tall matrix S ← Zℓ×n
q and a random error term E′′ (with variance super-

polynomially larger than E′).
• SetW = SP+E′′.
• Construct a circuit CW which on input M1 ∈ Zℓ×m

q and M2 ∈ Zm×k
q outputs 1 if W ≈c

M1 ·M2, and 0 otherwise.
• Output (S, aux = O(CW)), where O is a null-IO scheme.

In the post-condition, the distinguisher can simply run aux on inputs (C,D). IfC = SB+E, then
the program outputs 1. If C is random, it outputs 0 with high probability. In the pre-condition,
one can argue via LWE thatW is indistinguishable from random. For randomW, note that CW is
equal to the zero function if we choose ℓ, k ≫ m. Therefore, one can invoke null-IO to replace the
obfuscation with an all-zeroes function. It is then clear that aux does not help in distinguishing the
pre-condition.

Algebraic attacks of Brzuska-Ünal-Woo. In the algebraic attacks of BUW [BUW24], the coun-
terexamples rely heavily on “planting a short vector”. To illustrate this, we recap one of their
counterexamples in the setting where P is hidden (this corresponds to the yellow cross in Fig. 1).
The sampler Samp on input 1λ does the following:

• Sample P1 along with a short vector u such that P1u = 0.
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• Sample a random matrixR.

• Output
P =

(
P1, P2 =

(
uT

R

))
.

The pre-condition can be established via routine application of LWE. For the post-condition, given

(B,SB+E,B−1(P)),

note that one can compute P2 ← B ·B−1(P) to obtain the vector u. and

(SB+E) ·B−1(P) = (V,W) ≈ (SP1,SP2)

Now, one can test if
V · u ≈ SP2 · u = 0 mod q .

Here, the counterexample relies heavily on planting a short vector u that enables a zeroizing
attack. The vector u lives in the matrix P which is hidden in the precondition, but is revealed in
the post-condition. Our attack does not plant any short vectors, works when P is completely out
in the open, and still manages to find a zeroizing attack.

3 Preliminaries

We write λ ∈ N to denote the security parameter. Given a finite set W , U(W ) denotes the uni-
form distribution over W . We write x ← W for x ← U(W ). Given distributions D1,D2, we write
D1 ≈c D2 to denote computational indistinguishability and D1 ≈s D2 to denote statistical indistin-
guishability. DZ,σ denotes the discrete Gaussian over Z with parameter σ; that is, the distribution
which assigns mass proportional to exp(−πx2/σ2) to each x ∈ Z.

We recall some inequalities that we will rely on in our analysis.

Lemma 3.1. For any σ > 0 and n ∈ N,

Pr
x←DZ,σ

[|x| ≥ σ
√
n] ≤ 2−n .

Lemma 3.2 ([CVW18, Lemma 3.2]). For all y ∈ Z and σ ∈ R, the statistical distance between DZ,σ and
DZ,σ + y is at most y/σ.

3.1 LWE Assumption and Trapdoor Sampling

Definition 3.3 (Learning With Errors (LWE)). Given n,m, q ∈ N and σ > 0 with n,m ∈ poly(λ),
the LWE assumption LWEn,m,q,σ asserts that

(A, sTA+ e) ≈c (A,b),

where s← U(Zn
q ),A← U(Zn×m

q ), e← Dm
Z,σ, and b← U(Zm

q ).

In this work, we also need the following variant of LWE which was proven in [ACPS09].
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Lemma 3.4 (LWE with small secrets, [ACPS09]). Given n,m, q ∈ N and σ > 0 with n,m ∈ poly(λ),
we have

(A, sTA+ e) ≈c (A,b),

where s← Dn
Z,σ,A← U(Zn×m

q ), e← Dm
Z,σ, and b← U(Zm

q ) assuming LWEn,m,q,σ.

Given a matrix A ∈ Zn×m
q for m ≥ 2n log q, a vector y ∈ Zn

q , and σ > 0, we use A−1(y, σ) to
denote the distribution of a vector d sampled fromDm

Z,σ conditioned onAd = y (mod q). (Vectors
satisfying the condition exist except with probability negl(µ).) We extend this notation to matrices
Y ∈ Zn×k

q in the natural way (i.e., columnwise). We sometimes suppress σ when it is clear from
context.

3.2 Min-Entropy and Leftover Hash Lemma

The min-entropy of a discrete variable X is defined as H∞(X) = − log(maxx Pr[X = x]). We will
also use the notion of conditional min-entropy of a random variable X conditioned on a variable Y
is defined as follows:

H̃∞(X|Z) = − logEz[max
x

Pr[X = x|Z = z]] = − logEz

[
2−H∞(X|Z=z)

]
.

Lemma 3.5 (Chain rule, [DORS03]). Let X,Y, Z be random variables. Then,

H̃∞(X|Y,Z) ≤ H̃∞(X,Y |Z)− |Y |

where |Y | is the bit length of the value of Y .

Definition 3.6 (Extractor). A function Ext : {0, 1}d × X → {0, 1}ℓ is a strong seeded average-case
(k, ε)-extractor, if it holds for all random variablesX with support X and Z defined on some finite
support that if H̃∞(X|Z) ≥ k, then it holds that the statistical distance between the following
distributions is at most ε:

{seed,Ext(seed, X), Z} ≈s {seed, U, Z}

where seed← {0, 1}d and U ← {0, 1}ℓ.

Recall that a hash function family H of functions h : X → Y is a universal hash family if for all
x ̸= x′ ∈ X , it holds that:

Pr
h←H

[h(x) = h(x′)] ≤ 1

|Y|
.

Lemma 3.7 (Leftover hash-lemma, [DORS03]). LetX be a random-variable supported on a finite set X
and let Z be a (possibly correlated) random variable supported on a finite set Z such that H̃∞(X|Z) ≥ k.
Let H be a universal hash family with functions h : X → {0, 1}ℓ, where ℓ ≥ k − 2 log

(
1
ε

)
. Then H is a

seeded strong average-case (k, ε)-extractor.

4 Private-Coin Evasive LWE Variants

In this section, we recap two variants of private-coin evasive LWE from [BUW24].
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Definition 4.1 (Private-Coin Binding Evasive LWE, [BUW24, Definition 8]). Let m,n, k, ℓ > 0 be
integers and let q be a modulus. Let τ, σ, σ′ > 0. Let Samp be an algorithm which takes 1λ, and
outputs a matrix P ∈ Zn×k

q , a matrix S ∈ Zℓ×n
q and auxiliary information aux. Let

B← Zn×m
q

D← B−1(P, τ)

(S, aux)← Samp(1λ,P)

E← Dℓ×m
Z,σ ,E′ ← Dℓ×k

Z,σ′

C← Zℓ×m
q ,C′ ← Zℓ×k

q

For PPT distinguishers A′ and A define the following functions:
AdvPreA′ (λ) = |Pr[A′(B,P,SB+E,SP+E′, aux) = 1]− Pr[A′(B,P,C,C′, aux) = 1]|
AdvPostA (λ) = |Pr[A′(B,P,SB+E,D, aux) = 1]− Pr[A′(B,P,C,D, aux) = 1]|

We say that the binding evasive LWE assumption evLWE(q,m, n, k, ℓ,Samp, τ, σ, σ′) holds, if
there exists polynomialQ such that degλ(Q) ≤ c ·degλ(|Samp|) (for some universal constant c > 0),
such that for every PPT distinguisher A there exists a PPT distinguisher A′ such that

AdvPreA′ (λ) ≥ AdvPostA (λ)/Q(λ)− negl(λ)

and time(A′) ≤ time(A) ·Q(λ).
Definition 4.2 (Private-Coin Hiding Evasive LWE, [BUW24, Definition 9]). Let m,n, k, ℓ > 0 be
integers and let q be a modulus. Let τ, σ, σ′ > 0. Let Samp be an algorithm which takes 1λ, and
outputs a matrix P ∈ Zn×k

q , a matrix S ∈ Zℓ×n
q and auxiliary information aux. Let

B← Zn×m
q

D← B−1(P, τ)

(S, aux)← Samp(1λ,P)

E← Dℓ×m
Z,σ ,E′ ← Dℓ×k

Z,σ′

C← Zℓ×m
q ,C′ ← Zℓ×k

q

R← U([κ])n×k

For PPT distinguishers A′ and A define the following functions:
AdvPre1A′ (λ) = |Pr[A′(SB+E,SP+E′, aux) = 1]− Pr[A′(C,C′, aux) = 1]|
AdvPre2A′ (λ) = |Pr[A′(P, aux) = 1]− Pr[A′(P+R, aux) = 1]|
AdvPostA (λ) = |Pr[A′(SB+E,D, aux) = 1]− Pr[A′(C,D, aux) = 1]|

We say that the hiding evasive LWE assumption evLWE(q,m, n, k, ℓ,Samp, κ, τ, σ, σ′) holds, if
there exists polynomialQ such that degλ(Q) ≤ c ·degλ(|Samp|) (for some universal constant c > 0),
such that for every PPT distinguisher A there exists a PPT distinguisher A′ such that

AdvPre1A′ (λ) + AdvPre2A′ (λ) ≥ AdvPostA (λ)/Q(λ)− negl(λ)

and time(A′) ≤ time(A) ·Q(λ).
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5 Our Counterexample

Parameters. Letm,n, k, ℓ be polynomial in λ, and we will assume thatm and n are much smaller
than k and ℓ. Additionally, m ≥ 2n log q. Let σ′/σ be superpolynomial. We also choose q to be an
oddprime of size superpolynomial inσ, σ′,m, n, ℓ, k, λ, κ satisfying that q/(κσ) is superpolynomial.

Construction 5.1. We define the following sampler Samp(1λ) for our counterexample as follows:

• Sample a matrix P← Zn×k
q .

• Sample a matrix S← Dℓ×n
Z,σ .

• Sample a ℓ×kmatrixT ∈ Zℓ×k
q such that all the entries are uniformly random numbers from

[0, 1, . . . , ⌊q/2⌋].

• Let aux = SP− 2T, and output S, aux.

Analyzing the post-condition. We show that the post-condition for both assumptions do not
hold with the following attack.

Lemma 5.1. There exists an efficient distinguisher A such that

|Pr[A(SB+E,D, aux) = 1]− Pr[A(C,D, aux) = 1]| = 1− negl(λ),

where D ← Dm×k
Z,τ B ← Zn×m

q ,P = B ·D,E ← Dℓ×m
Z,σ ,C ← Zℓ×m

q , and (S, aux) ← Samp(1λ,P) (as
defined in Construction 5.1).

We give the full proof this theorem in Section 5.1

Analyzing the pre-condition. We then show that with respect to Samp in Construction 5.1, the
pre-conditions for both variants of private-coin evasive LWE (Definitions 4.1 and 4.2) hold. We
show this by establishing Lemmas 5.2 and 5.3 assuming LWE.

Lemma 5.2. Let q be odd. Let σ, σ′ be such that σ/σ′ is superpolynomial and q/σ is superpolynomial.
Assuming that LWEn,k,q,σ holds, the pre-condition of evasive LWE holds, i.e. for all distinguishers A,

|Pr[A(B,P,SB+E,SP+E′, aux) = 1]− Pr[A(B,P,C,C′, aux) = 1]| ≤ negl(λ)

where

D← Dm×k
Z,τ ,B← Zn×m

q ,P = B ·D

(S, aux)← Samp(1λ,P) as in Construction 5.1,
E← Dℓ×m

Z,σ ,E′ ← Dℓ×k
Z,σ′

C← Zℓ×m
q ,C′ ← Zℓ×k

q

The above shows that the pre-condition of private-coin binding evasive LWE (Definition 4.1)
holds. To additionally show that the pre-condition of private-coin hiding evasive LWE (Defini-
tion 4.2) holds, we show the following claim.
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Lemma 5.3. Let q be odd. Let σ, σ′ be such that σ/σ′ is superpolynomial and q/σ is superpolynomial. Let
q/(σκ) be superpolynomial. Assuming that LWEn,k,q,σ, for all distinguishers A,

|Pr[A(P, aux) = 1]− Pr[A(P+R, aux) = 1]| ≤ negl(λ),

where

D← Dm×k
Z,τ ,B← Zn×m

q ,P = B ·D,

(S, aux)← Samp(1λ,P) as in Construction 5.1,
R← U([κ])n×k.

We show the proofs of both of the above claims in Section 5.2. We prove the claims using noise-
flooding and LWE. We also crucially rely on the fact that q is prime, and hence 2 is an invertible
scalar over Zq.

5.1 Attack on Post-Condition

In this section, we give the proof of Lemma 5.1.

Proof. The distinguisher on input C,D, and aux = Q, does the following:

• ComputeW = (CD−Q mod q) mod 2.

• Check if the first row of W is in the span of the columns of D mod 2. If yes, output 1. Else,
output 0.

Real case: If C = SB+E, then

CD−Q mod q

= (SB+E)D− (SP− 2T) mod q

= SP+ED− SP+ 2T mod q

= ED+ 2T mod q.

By a Gaussian tail bound (Lemma 3.1) and union bound, it is easy to see that ||D||∞ ≤ τ
√
t

with probability at least 1 − km · 2−t, and ||E||∞ ≤ σ
√
t with probability at least 1 − mℓ · 2−t.

Therefore, the probability that ||ED||∞ ≤ mστt is at least 1−O(km ·2−t+kℓ ·2−t) = 1−O(kℓ ·2−t)
(recall m ≤ ℓ). Choose t to be superpolynomial in m,n, ℓ, k such that q is still superpolynomial in
t. Moreover, 2||T||∞ ≤ q − α, with probability 1 − O(kℓα/q). By choose q to be superpolynomial
in k, ℓ and α, we get that this probability is 1− negl(λ).

Therefore, by setting the values of n,m, ℓ, k, t, q appropriately and choosing α = mστt+ 1, we
have that with probability 1−negl(λ),ED+2T (mod q) is equal toED+2T (without themodular
reduction). In particular,

W = (ED+ 2T mod q) mod 2 = ED+ 2T mod 2 = ED mod 2.

Therefore, it is clear that the first row of W is in the span of D (mod 2) and the algorithm will
output 1 with probability at least 1− negl(λ).
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Random case: IfC is uniformly random, we show that with high probability, the algorithm out-
puts 0.

For a matrix M, let Mi denote the ith column, and let M(−i) denote the matrix obtained by
deleting the ith column. We will also denote by b(X) the number of bits in X .

Since a sample from DZ,τ has min-entropy Θ(log τ) bits, we have that H∞(Di) = Θ(m log τ).
Now, note that

H̃∞(Di|B,P,D mod 2)
≤ H̃∞(Di,Pi,Di mod 2|B,P(−i),D(−i) mod 2)− b(Pi)− b(Di mod 2) (5.1)
= H̃∞(Di|B,P(−i),D(−i) mod 2)− n log q −m (5.2)
= H∞(Di)− n log q −m (5.3)
= Θ(m log τ)− n log q −m = Θ(m log τ).

The first inequality (5.1) follows from the chain rule (Lemma 3.5). The second equality (5.2) fol-
lows from the fact that Pi and Di mod 2 are determined given D and B. The third equality (5.3)
follows from the fact thatDi is sampled independently from B and P(−i).

Therefore, applying the left-over hash lemma (Lemma 3.7) repeatedly to each column ofD, we
have that

(uTD mod q,B,P,D mod 2) ≈ε (v
T ,B,P,D mod 2)

where u ← Zm×1
q and v ← Zk×1

q , for some ε ≤ negl(λ). Note that the auxiliary information
Q = SP− 2T can be simulated using only B and P, so this indistinguishability holds even in the
presence of aux. Therefore, in the presence ofB,P,Q, the first row ofCD, and hence the first row
of CD−Q is uniformly random in Z1×k

q . Since q is superpolynomial sized, the first row of

W = CD−Q mod 2

is statistically close to uniformly random. Recall that for a uniformly random vector in Zk
2 , the

probability that it is in the row span of D (mod 2) is at most 1/2k−m ≤ negl(λ) since D (mod 2)
has rank at most m.

Therefore, the algorithm will output 0 with probability 1− negl(λ).

5.2 Analysis of the Pre-condition

In this section, we prove Lemmas 5.2 and 5.3. We will make use of the following three simple facts:

1. Gaussian-flooding: If E follows Dn×m
Z,σ then for any Ẽ with ∥Ẽ∥∞ ≤ t the statistical distance

ofE andE+ Ẽ is at mostmnt/σ, which is negligible if σ/t is superpolynomial (Lemma 3.2).

2. Rectangular Flooding: If x is uniformly random in [0, q), then the statistical distance of x and
x+ t is at most 2t/q.

3. Bit-Decompositions: If q is superpolynomial, then a uniformly random integer x sampled
from [0, q) is statistically close to 2x′ + x′′, where x′ is uniformly random in [0, q/2) and x′′ is
a uniformly random bit.

Proof of Lemma 5.2. We proceed in a few hybrids.
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H1: This is the real distribution (B,P,SB+E,SP+E′, aux = SP− 2T).

H2: In this hybrid, we make an LWE-error 2Ẽ, where Ẽ followsDℓ×k
Z,σ , appear in the third compo-

nent, i.e. the distribution is
(B,P,SB+E,SP+ 2Ẽ+E′,SP− 2T).

Hybrids H1 and H2 are statistically close via Gaussian-flooding as σ′/σ is superpolynomial.

H3: In this hybrid, we make the same LWE-error Ẽ appear in the auxiliary information, i.e. the
distribution is

(B,P,SB+E,SP+ 2Ẽ+E′,SP+ 2Ẽ− 2T).

Hybrids H2 and H3 are statistically close as 2T and 2T− 2Ẽ = 2(T− Ẽ) are statistically close
via rectangular flooding as ∥Ẽ∥ is poly(λ) · σ′ bounded and (q/2)/σ′ is superpolynomial.

H4: In this hybrid the distribution is
(B,P,U,V +E′,V − 2T).

Computational indistinguishability of H3 and H4 follows routinely by a reduction to small-
secret LWE (Lemma 3.4). For this reduction, note that since q is odd, 2 is a unit mod q. Hence
‘scaling’ LWE samples by a factor of 2 is an invertible operation and does not distort uniform
distributions (i.e. multiplying a uniformly randommatrix with 2 preserves uniformity mod-
ulo q).

H5: In this hybrid we choose the fourth component uniformly random (and independent of V,
the distribution hence is

(B,P,U,U′,V − 2T).

HybridsH4 andH5 are statistically close, as since q is superpolynomial the bit-decomposition
property yields thatV is statistically close to 2W+W′, whereW is component-wise uniform
in [0, q/2) and W′ component-wise uniform in {0, 1}. Hence

(V +E′,V − 2T) ≈s (2W +W′ +E′, 2W +W′ − 2T) (5.4)
≈s (2W +W′ +E′,W′ − 2T) (5.5)
≈s (2W +W′′ +E′,W′ − 2T) (5.6)
≈s (U

′,W′ − 2T) (5.7)
≈s (U

′,W′ + 2R− 2T) (5.8)
≈s (U

′,V − 2T) (5.9)
hereW′′ is component-wise independently uniform in {0, 1} andR is component-wise uni-
formly random in [0, q/2). Note that since σ is superpolynomial, E′ drowns both W′ and
W′′, hence (5.4) and (5.5) are statistically close.

H6: In this hybrid, we replaceV with SP+ 2Ẽ, i.e. the distribution is

(B,P,U,U′,SP+ 2Ẽ− 2T).

Computational indistinguishability follows once more by the LWE assumption.
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H7: In this last hybrid, we drop the LWE error 2Ẽ. This follows from the fact that 2T and 2T−2Ẽ
are statistically close by the rectangular drowning property as (q/2)/σ′ is superpolynomial.

Therefore, the pre-condition is satisfied.

Now, we prove Lemma 5.3 via a similar sequence of hybrids.

Proof of Lemma 5.3. We proceed in a sequence of hybrids.

H1: This is the real distribution (P, aux = SP− 2T).

H2: In this hybrid, sampleP as 2P̃ instead for a uniformly randommatrix P̃, i.e., the distribution
is

(2P̃, 2SP̃− 2T).

Since q is odd, 2 is a unit mod q. Therefore, the distribution is identical to the previous hybrid,
and we have only made a syntactic change.

H3: Sample E← Dℓ×k
Z,σ . Add noise of the form 2E to aux, writing the distribution as

(2P̃, 2SP̃− 2E− 2T).

This is statistically close because T+E and T are statistically close via rectangular flooding
by choosing σ such that 2σ/(q/2) = negl(λ).

H4: Replace 2SP̃− 2Ewith a random matrixV← Zℓ×k
q , therefore changing the distribution to

(2P̃,V − 2T).

This indistinguishability follows from the fact that (P̃,SP̃ − E) ≈ (P̃, 2−1 · V) assuming
small-secret LWE (Lemma 3.4), and the fact that 2 is a unit mod q since q is prime.

H5: Sample R← U([κ])n×k, and add this quantity to 2P̃:

(2P̃+R,V − 2T).

This is statistically indistinguishable from the previous hybrid since 2P̃ is uniformly random.

H6: Sample R = 2R′ + R′′, where R′′ ← {0, 1}n×k, where R′ ← [ρ]n×k, where ρ = ⌊κ−12 ⌋. It is
clear that this is statistically close to the distribution in the previous hybrid. We can write the
resulting distribution as follows:

(2P̃+ 2R′ +R′′,V − 2T).

H7: Sample V = 2S(P̃+R′) + 2E, therefore changing the distribution to

(2P̃+ 2R′ +R′′, 2SP̃+ 2SR′ + 2E− 2T).
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The indistinguishability of these hybrids follows from a few steps:

(2P̃+ 2R′ +R′′,V − 2T)

≈s (2W +R′′,V − 2T) (5.10)
≈c (2W +R′′, 2(SW +E)− 2T) (5.11)
≈s (2(P̃+R′) +R′′, 2S(P̃+R′) + 2E− 2T) (5.12)

where (5.10) and (5.12) follow from the fact that P̃ is uniformly random, and (5.11) follows
from small-secret LWE (Lemma 3.4).

H8: Sample the distribution instead as

(2P̃+ 2R′ +R′′,SP− 2T).

Recall that ||S||∞ ≤ σ
√
βwithprobability at least 1−nℓ2−β (Lemma3.1). Therefore, ||SR′||∞ ≤

nκσ
√
β. Choosing β to be superpolynomial such that q/(nκσ√β) is superpolynomial, it fol-

lows that T is statistically close to T− SR′ −E by rectangular flooding.

H9: Rewriting 2P̃ = P, and R = R′ +R′′, we get the distribution

(P+R,SP− 2T).

This completes the proof.

6 Conclusions

We show a new, simple, attack against all known version of the private-coin evasive LWE assump-
tion. This achieves the same effect as obfuscation-based counterexamples, albeit in a much more
elementary way, using benign-looking distributions of the auxiliary input. Conceptually, our at-
tack challenges the pseudo-drowning heuristic, which is at the core of all security proofs that rely on
evasive LWE.

That said, none of the known attacks, including ours, break the constructions of witness en-
cryption and null-IO [VWW22, Tsa22], adaptively sound SNARGs for UP [MPV24, JKLM25], or
non-adaptive SNARG for NP [JKLM25]. Proving the security of these appealingly simple con-
structions from plausible assumptions remains an open problem.

Where does one go from here vis-a-vis the evasive LWE assumption? The conservative path
would be to stick with the public coin evasive LWE assumption which has no known attack, and try
to expand its (so far limited) reach to more constructions. A different path is to rethink and refine
the rationale for (private-coin) evasive LWE, and come up with a version that enables advanced
applications yet avoids all known attacks including ours.

Acknowledgements. We thank Rachel Lin for discussions that initiated this research.
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