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Abstract. Cryptographic group actions provide simple post-quantum
generalizations to many cryptographic protocols based on the discrete
logarithm problem (DLP). However, many advanced group action-based
protocols do not solely rely on the core group action problem (the so-
called vectorization problem), but also on variants of this problem, to
either improve efficiency or enable new functionalities. In particular, the
security of the CSI-SharK threshold signature protocol relies on the Vec-
torization Problem with Shifted Inputs where (in DLP formalism) the
adversary not only receives g and gx, but also gx

c

for multiple known
values of c. A natural open question is then whether the extra data pro-
vided to the adversary in this variant allows for more efficient attacks.

In this paper, we revisit the concrete quantum security of this prob-
lem. We start from a quantum multiple hidden shift algorithm of Childs
and van Dam, which to the best of our knowledge was never applied in
cryptography before. We specify algorithms for its subroutines and we
provide concrete complexity estimates for both these subroutines and
the overall algorithm.

We then apply our analysis to the CSI-SharK protocol. In prior analyses
based on Kuperberg’s algorithms, group action evaluations contributed
to a significant part of the overall T-gate cost. For CSI-Shark suggested
parameters, our new approach requires significantly fewer calls to the
group action evaluation subroutine, leading to significant T-gate com-
plexity improvements overall. We also show that the quantum security
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of the protocol decreases when the number of public keys increases, and
quantify this degradation.

Beyond its direct application to the CSI-SharK protocol, our work more
generally questions the quantum security of vectorization problem vari-
ants, and it introduces the Childs-van Dam algorithm as a new quantum
cryptanalysis tool.

1 Introduction

The shift towards post-quantum cryptography is extremely important due to
the looming quantum threat. This motivates the development of new forms of
cryptography based on alternative “hard problems” with the potential to resist
quantum computers. Following a massive investigation effort from the cryptogra-
phy community, we now have good candidates for basic protocols such as signa-
tures and key encapsulation mechanisms. However, realizing advanced protocols
based on many of the new problems remains a daunting task.

Cryptographic group actions [5] provide a natural generalization to the clas-
sical discrete logarithm problem (DLP), namely the vectorization problem, which
in turns leads to relatively easy adaptations of many DLP-based protocols.

The most promising post-quantum group action instantiations currently come
from isogenies. In particular, CSIDH [24] is a key exchange scheme that replaces
classical DLP in the Diffie-Hellman protocol with an isogeny group action. It
has led to several other protocols that aim to address different cryptographic
needs including signatures [12], ring signatures [40], threshold signatures [7,34],
identification protocols [8], and many more. Isogeny-based protocols also benefit
from relatively small key sizes, as well as theoretical and practical know-how
originating from related elliptic curve cryptography.

If isogeny-based protocols are to be deployed as post-quantum replacements
of current DLP-based protocols, they must of course withstand quantum crypt-
analysis, and we must understand their exact quantum security. The main quan-
tum attacks on CSIDH and variants so far are Kuperberg’s algorithms and vari-
ants [11, 21, 45, 46, 53]. In particular, the latest concrete estimates for CSIDH
parameters were provided by Peikert at EUROCRYPT 2021 [53].

While our understanding of the quantum security of the vectorization prob-
lem for CSIDH has greatly improved recently, several advanced protocols based
on CSIDH do not only rely on the vectorization problem for their security, but
also on some variants of this problem. Indeed, these variants can provide proto-
cols with crucial additional functionality and enhanced efficiency. We note that
this approach is reminiscent of a prior similar trend with DLP-based protocols
(35 “DLP variants” are listed in [9]). However, as was the case with some DLP
variants, one may wonder whether all vectorization problem variants used in
CSIDH-based cryptographic protocols are equally hard [43].

In this paper, we focus on the Vectorization Problem with Shifted Inputs
which underlies the security of CSI-SharK and BCP protocols [7, 8]. In DLP
formalism, this variant provides an adversary not only with two group elements
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g and gx, but also with several other pairs (c, gx
c

). An algorithm to solve this
problem for c in an interval [0,M ] would also solve the l-Diffie-Hellman inversion
problem and the l-Strong Diffie-Hellman problem, which underlie the security
of various DLP-based protocols [15–18, 30]. If the interval is punctured once,
then it solves the n-Diffie-Hellman Exponent problem, used in protocols such
as [19,35,44]. The group action version of this problem is also considered in [32],
where it is proven secure in the general group action model.

So far, the only cryptanalytic work leveraging the extra information pro-
vided in the Vectorization Problem with Shifted Inputs is the classical attack
of Kim [42], which adapts Cheon’s algorithm [25] to the isogeny group action
setting. This attack affects instances where a shift gx

c

is published such that c
divides the order of the class group, and such instances are specifically avoided in
the CSI-SharK and BCP key generation algorithms. Apart from this restriction,
the security analysis and parameter selection in [7,8] are solely based on CSIDH.
In particular, they ignore additional information provided in the Vectorization
Problem with Shifted Inputs, and the protocols’ quantum security is assumed
to be equivalent to CSIDH quantum security.

Contributions. In this work, we apply a quantum multiple hidden shift algorithm
of Childs and van Dam (CvD) [27] to the Vectorization Problem with Shifted
Inputs. We carefully select subroutines to be used in the algorithm, and dis-
cuss different trade-offs between them. Among these subroutines is a knapsack
problem, which we reduce to a Closest Vector Problem (CVP) instance in the
ℓ∞ norm. The literature on CVP algorithms for the ℓ∞ norm is much sparser
than for the Euclidean norm. We consider two approaches to solve this problem,
respectively based on enumeration and sieving. We propose concrete algorithms
taking inspiration from existing ones, but with crucial optimizations taking into
account the application context. We also provide concrete (not asymptotic) com-
plexity estimates for all of these subroutines, filling a gap in the literature.

Our results can be applied to any group action but we particularly focus
on the isogeny-based group action for exposition since it is currently the most
widely studied example of a post-quantum group action in cryptography.

As an example, we apply our analysis to the CSI-SharK and BCP protocols [7,
8]. For CSIDH-512 parameters and the suggested 212 public keys, we estimate
that the CSI-SharK and BCP protocols can be broken using between 245 to 257

T-gates, depending on whether the [11] or [21] cost model is used to model the
group action evaluation5. This significantly improves over Peikert’s 254 to 271

state-of-the-art estimates for the single public key instance. More generally, we
quantify how the quantum security of Vectorization Problem with Shifted Inputs
degrades when the number of public keys increases, via concrete estimates for
both CSIDH-512 and CSIDH-1024 parameters (see Tables 3 and 4). We note
that the best T-gate complexities are obtained with the sieving approach. On

5 Note that [11] only targets T-gate counts whereas [21] (in its latest eprint version)
also attempts to limit the number of qubits.
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the other hand, the enumeration approach requires lower memory, which may
result in a more practical algorithm for some quantum computer architectures.

While the complexity improvements we obtain are interesting on their own,
our concrete analysis of Childs-van Dam’s algorithm could also find further ap-
plications in cryptography, including of course in isogeny-based cryptography.
We conclude the paper with potential improvements and extensions of this anal-
ysis. Various hard problems similar to Vectorization Problem with Shifted Inputs
have appeared in the literature; as evidenced by our work (and previous work
on DLP variants), their actual hardness may not follow from the hardness of
CSIDH. We encourage the community to study their concrete quantum security
beyond a mere application of Kuperberg’s algorithms and variants.

Outline. In Section 2, we recall details of CSIDH and its state-of-the-art quan-
tum cryptanalysis, as well as the CSI-SharK signature scheme and its hardness
assumption. We describe the quantum algorithm by Childs and van Dam in
Section 3. In Section 4, we show how a knapsack problem appearing in the
Childs-van Dam algorithm can be formulated as a closest vector problem in the
ℓ∞ norm. We solve this problem using enumeration in Section 5 and sieving in
Section 6. We give concrete complexity estimates for running the attack on CSI-
SharK parameters and investigate how the attack improves for a larger number
of shifts in Section 7. We conclude the paper and discuss several avenues of
future work in Section 8.

2 CSI-SharK protocol

In this section, we recall the CSIDH group action, known quantum cryptanalysis
approaches against it and the CSI-SharK protocol.

2.1 CSIDH group action

We briefly outline some key concepts about CSIDH and its underlying group
action. For a more in-depth exposition of these topics see either CSIDH [24] or
the textbook from Cox [28, Sect. 7].

Consider the set of supersingular elliptic curves defined over Fp whose Fp-
rational endomorphism ring is a particular order O in the quadratic imaginary
field K = Q(

√
∆), where ∆ is the discriminant of the Frobenius characteristic

polynomial. We will denote this set of elliptic curves by Eℓℓp(O). Then the ideal
class group of O is the quotient of invertible fractional ideals, I(O), and principal
fractional ideals, P (O), which we denote by cl(O) = I(O)/P (O). Let [a] ∈ cl(O)
be an ideal class. Then a acts on any elliptic curve E ∈ Eℓℓp(O) via an isogeny

φa : E → E/a,

where ker(φa) = ∩α∈a ker(α). This gives rise to the following free and transitive
group action

cl(O)× Eℓℓp(O) → Eℓℓp(O),
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[a] ⋆ E 7→ E/a.

For brevity, we drop the ⋆ going forward and simply denote the group action
as [a]E.

Equipped with this isogeny group action, the CSIDH protocol naturally fol-
lows the structure of a Diffie-Hellman key exchange [24].

A key algorithmic task to enable this scheme is of course the computation of
the group action. Note that any ideal class [a] ∈ cl(O) has a representative that
can be written as the product of smaller prime ideals. Without this decomposi-
tion into smaller ideals, the group action computation was otherwise infeasible
to compute (at the time CSIDH was invented6). Furthermore, random sampling
(which is necessary for safe key generation) requires either costly rejection sam-
pling or an expensive computation in order to determine the structure of the
class group. For the CSIDH-512 parameter set, this class group computation
was done by the authors of CSI-FiSh [12].

As will be discussed later on, the exact cost of running a group action evalu-
ation, especially on a quantum computer, may differ due to different space/time
trade-offs.

2.2 Quantum cryptanalysis of CSIDH

The hidden shift problem. The works of Childs, Jao, and Soukharev [26] and
Biasse, Jao, and Sankar [13] showed how to frame the hard problem underlying
CSIDH as a hidden shift problem. Recall that given two curves E,E′ ∈ Eℓℓp(O)
we would like to find an ideal class group [a] ∈ cl(O) such that E′ = [a]E. Then
we can define two functions f0, f1 as f0 : [b] 7→ [b]E and f1 : [b] 7→ [b]([a]E).
Notice that f0 is injective and f1(b) = f0(ba), i.e. the functions f0 and f1 are
equal up to a shift a. This means we can apply quantum hidden shift algorithms,
like that of Kuperberg [45], to recover the secret a in subexponential time.

Kuperberg’s algorithm uses a complexity of 2O(
√
logN) and works in any

finite abelian group. An algorithm from Regev [54] gives a space improvement
at the cost of a slower run time, but restricts to the Z2n case. Later, Kuperberg
released a second algorithm in [46] that also benefited from a space improvement
but this time in the general setting, called the collimation sieve. Peikert [53] built
an attack on the CSIDH-512 parameter set using such a collimation sieve. He
estimates that his attack requires between 238 and 247 T-gates, and an additional
214−219 calls to the group action oracle. Note that to run any of these algorithms,
it is necessary to have access to such a quantum oracle that can compute the
group action. The exact cost of such an oracle is non-trivial to compute.

Quantum costs of computing the group action. Both the work of Bernstein,
Lange, Martindale, and Panny [11], and that of Bonnetain and Schrottenlo-
her [21] give estimates on the cost of evaluating a class group action for the
CSIDH-512 parameter set on a quantum computer. The former work optimizes

6 Clapoti(s), the recent work of Page and Robert [51], may mean that such costly
computations can be avoided, though its direct impact has not been shown yet.
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for the number of T-gates, while the latter considers how to balance with the
number of qubits being used. Since there is some debate about the cost of quan-
tum resources, this in part explains why there are different estimates for a (quan-
tum) attack on CSIDH, making it difficult to estimate the security of its param-
eter sets.

The work of [11] focuses on giving in-depth analyses of the isogeny-related
computations such as finding a point of fixed degree on an elliptic curve and
computing ℓ-isogenous curves, using classical circuits. They choose to minimize
the number of non-linear bit operations (thus minimizing the Toffoli and T-
gates) at the cost of more qubits. Following the Bennett conversion [10], we
can estimate that their algorithm for computing one iteration of the CSIDH-512
group action [11, Alg. 7.1] would require up to 232.8 Toffoli gates, 235.6 T-gates,
and 232.8 ancilla qubits.

The analysis from [21, Table 3] focuses on reducing the number of qubits
necessary in their algorithm. They concluded that one group action call would
require 249.6 Toffoli gates, 252.4 T-gates, and less than 215.3 ancilla qubits.

2.3 CSI-SharK

CSI-SharK [7] is a threshold signature scheme that was adapted from CSI-
FiSh [12]. Here, we first briefly recall the CSI-FiSh sigma protocol, and then
explain how it was used to construct CSI-SharK.

CSI-FiSh sigma protocol. In this work Beullens, Kleinjung, and Vercauteren [12]
build upon the ideas from Stolbunov to obtain a signature scheme using the
CSIDH isogeny group action. The scheme starts from a standard proof of knowl-
edge where you begin by fixing the starting curve to E0 : y2 = x3 + x. Then
the prover samples their secret, a ∈ cl(O), and computes their public key
EA = [a]E0. To prove knowledge of their secret key to a verifier, they first
send a commitment E1 = [b]E0. The verifier replies with a challenge c ∈ {0, 1}.
If c = 0 then the prover sends r = [b], and the verifier checks that E1 = [r]E0.
Otherwise when c = 1, the prover sends r = [ba−1], and the verifier checks that
E1 = [r]EA. The isogeny diagram for this scheme is outlined in Fig. 1.

E0 EA

E1

a

b
ba−1

Fig. 1. The isogeny diagram related to the CSI-FiSh sigma protocol.
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CSI-SharK. CSI-SharK expands the public key to allow for use in threshold
signatures, and was based on the protocol from Baghery, Cozzo, and Pedersen
(BCP) [8]. Their idea was to choose one secret exponent, but use it to generate
several different public keys. First, fix a generator of the class group (or of a
sufficiently large subgroup thereof), say g. Let N denote the size of the group
generated by g. Then CSI-SharK uses public keys of the form(

E0, E1 = [gc1·z]E0, . . . , EM = [gcM ·z]E0, {ci}Mi=1

)
.

Note that the {ci}Mi=1 ⊂ ZN are known, and z ∈ ZN is the secret key. The set
{ci}Mi=1 must have the special property of being a (super)exceptional set. That is,
their pairwise differences (and sums) must be invertible moduloN . This property
is essential for proving soundness. In particular, since c0 is always chosen to be 0,
this means that no ci divides N . This avoids an attacker using something like
Cheon’s algorithm [25]. In this algorithm, Cheon uses an improved baby-step
giant-step approach to recover the secret.

Therefore, the choice of {ci}Mi=0 is extremely important. In BCP, the ci are
chosen to be necessarily smaller than the smallest prime factor of N . If M is
larger than the smallest factor, then they restrict to a subgroup ZN ′ , where
N ′|N whose smallest prime factor is larger than M . The most natural choice,
as proposed by the authors in BCP [8, Footnote 1], is the consecutive list of
integers {0, . . . ,M}. In Table 1 of the same work, they list parameter sets for
M ∈ {21, 22, 25, 28, 210, 212, 215, 218}. CSI-SharK [7, Table 2] suggests taking
M ∈ {24, 28, 212}.

Both CSI-SharK and BCP rely on the hardness of the following problem.

Problem 2.1 ((c0, . . . cM )-Vectorization Problem with Shifted Inputs). Given an
element E ∈ Eℓℓp(O), and the pairs (ci, [g

ciz]E)Mi=0, where g is fixed and CM =
{c0 = 0, c1 = 1, c2, . . . , cM} is an exceptional set, find z ∈ ZN .

Whenever the starting curve E0 has j-invariant 1728, we can compute the
curve Et

i = [g−ciz]E0 from Ei = [gciz]E0 using the quadratic twist. Though this
starting curve is not explicitly stated in [7], several of their optimisations take
advantage of this easy twisting operation. As such, we may assume this starting
curve implicitly. Note this gives us information about 2M − 1 curves, instead of
the M curves in the public key. For example, one of the proposed parameter sets
in CSI-SharK set M = 212, and the {ci}Mi=0 are consecutive integers starting at
0. Including the twists, it means we have access to the following 213 − 1 curves

{[gcz]E0 : c ∈ [−212, 212]}.
Problem 2.1 was also considered in [32], where the authors standardize some

notions and problems related to group actions and provide reductions between
some of them. Currently, the state-of-the-art security analysis on Problem 2.1 is
to use Kuperberg’s algorithm on one single instance. The best known classical
attack, described in CSIDH, is a meet-in-the-middle key search, also run on
one single instance. These approaches fail to make use of any of the additional
information provided.
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3 Childs-van Dam algorithm

In this section we recall the Childs-van Dam algorithm [27], which will be the
main quantum tool of our attack.

3.1 Algorithm

The algorithm from Childs and van Dam [27] aims at solving an instance of the
generalized hidden shift problem.

Definition 3.1 (Generalized Hidden Shift). For integers M,N, and finite
set S, let f : [−M, . . . ,M ] × ZN → S be a function that satisfies the following
two criteria:

(a) for fixed b, f(b, x) : ZN → S is injective;
(b) f(b, x) = f(b+ 1, x+ z) for some fixed z ∈ ZN and b = 1, . . . ,M − 2.

The generalized hidden shift problem asks to recover z given oracle access to f .

In particular, (a) and (b) of Definition 3.1 imply that f(b, x) = f(0, x− bz).
Note that we took [−M, . . . ,M ] × ZN as the domain of f , whereas related

literature defines the problem often on the domain [0, . . . ,M ′] × ZN for some
M ′. However, these are clearly equivalent problems after relabeling the interval.

Note that when M = 2, Definition 3.1 is the standard hidden shift problem,
and when M = N it is the hidden subgroup problem which tries to detect
ker(f) = ⟨(1, z)⟩ in Z2

N .
Retrieving z from a CSI-Shark instance can be seen as solving a generalized

hidden shift problem for the function f sending (b, x) ∈ {−M, . . . ,M} × ZN to
f(b, x) = [gx]E−b. Indeed we have

f(b, x) = [gx]E−b = [gx][g(−b)z]E0 = [gx−bz]E0 = f(0, x− bz)

hence f(b, x) = f(b+ 1, x+ z) as required.
We outline the approach by Childs and van Dam in Algorithm 1, and provide

further explanation in what follows.

Notation. For the rest of this section, we call Of an operator such that

Of (|b⟩ |x⟩ |0⟩) = |b⟩ |x⟩ |f(b, x)⟩. We note k :=
⌈

log(N)
log(2M+1)

⌉
. For any α ∈ ZN

and any y ∈ Zk
N , we define the set

Sy
α := {i ∈ {−M, . . .M}k : ⟨i,y⟩ = α (mod N)},

where ⟨·, ·⟩ is the standard dot product. That is, Sy
α contains all solutions i ∈

{−M, . . . ,M}k to the knapsack problem ⟨i · y⟩ = α (mod N). We write OC

for an operator such that OC (|0, ..., 0⟩ |α⟩ |y⟩) = |Cy(α)1, . . . , Cy(α)k⟩ |α⟩ |y⟩,
where (Cy(α)1, . . . , Cy(α)k) is in Sy

α with (high) probability PC
succ. We will

build the operator OC as a reversible circuit C that returns a single tuple
(Cy(α)1, . . . , Cy(α)k) from α and y.
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Algorithm 1 Quantum algorithm of Childs and van Dam [27]

Input: N,M and superposition oracle access to f
Output: the hidden period z

1: Start with k =
⌈

log(N)
log(2M+1)

⌉
groups of three registers of the form |0, 0, 0⟩ where the

three registers will respectively contain elements in {−M, . . . ,M}, ZN and S.
2: for each group of registers :
3: Apply the Quantum Fourrier Transform (QFT) over ZM on the first register
4: Apply the QFT over ZN on the second register

▷ The state is 1√
N(2M+1)

∑
i∈{−M,...,M}

∑
x∈ZN

|i, x, 0⟩.
5: Apply the oracle Of on the registers

▷ The state is 1√
N(2M+1)

∑
i∈{−M,...,M}

∑
x∈ZN

|i, x, f(i, x)⟩.

6: Measure the last register and get c = f(0, x0) for an unknown x0

▷ The state is 1√
2M+1

∑
i∈{−M,...,M} |i, x0 + iz⟩

7: Apply the QFT over ZN on the second register

▷ The state is 1√
N(2M+1)

∑
i∈{−M,...,M}

∑
y∈ZN

ωy(x0+iz) |i, y⟩ where ω = e
−2iπ
N .

8: Measure the last register and get y (uniformly)
▷ The state is 1√

M

∑
i∈{−M,...,M} ω

yiz |i⟩.
9: end for

▷ The global state is
⊗

j∈{1,...,k}

(
1√

2M+1

∑
i∈{−M,...,M} ω

yjiz |i⟩
)
=

1√
2M+1k

∑
i1,...,ik∈{−M,...,M} ω

z(
∑k

j=1 ijyj) |i1, ..., ij⟩.
10: Compute α =

∑k
j=1 ijyj mod N in a new register

▷ The global state is 1√
2M+1k

∑
i1,...,ik∈{−M,...,M} ω

zα |i1, ..., ij , α⟩.
11: Apply O−1

C , the reverse of the operator OC

▷ The global state is “close”(detailed in the analysis) to
1√
N

k

∑
α∈ZN

ωzα |0, ..., 0⟩ |α⟩.
12: Apply the inverse of the QFT over ZN to the last register

▷ The global state is “close” to |0, ..., 0⟩ |z⟩.
13: Return the state and verify that it is |0, ..., 0⟩ |z⟩ by checking the equality f(0, 0) =

f(1, z) and retry if it is not.

Analysis of Algorithm 1. From Steps 2 to 9, we build k groups of registers with
similar patterns to Kuperberg’s algorithm. We start by building (through Steps 3
to 5) the uniform superposition of inputs and the associated output

1√
N(2M + 1)

∑
i∈{−M,...,M}

∑
x∈ZN

|i, x, f(i, x)⟩ .

We then measure the output c = f(0, x0) and by the periodic property of f , we
get

1√
2M + 1

∑
i∈{−M,...,M}

|i, x0 + iz⟩ .



10 P. Frixons, V. Gilchrist, P. Kutas, S.P. Merz and C. Petit

We apply a QFT on the second register and measure it to have

1√
2M + 1

∑
i∈{−M,...,M}

ωyiz |i⟩ , where ω = e
−2iπ
N .

Considering the k different registers together, the state can be written as

⊗
j∈{1,...,k}

 1√
2M + 1

∑
i∈{−M,...,M}

ωyjiz |i⟩

 =
1

(
√
2M + 1)k

∑
i1,...,ik∈{−M,...,M}

ωz(
∑k

j=1 ijyj) |i1, ..., ij⟩

We compute α =
∑k

j=1 ijyj mod N in a new register and the global state be-
comes

1
√
2M + 1

k

∑
i1,...,ik∈{−M,...,M}

ωzα |i1, ..., ij , α⟩ .

If we could erase i1, ..., ik in the first k registers, we would get the state
1√
N

k

∑
α∈ZN

ωzα |α⟩ = QFT (|z⟩), and recover the hidden shift z exactly. To

approximate this result, we “uncompute” the registers i1, ..., ik, i.e., we reverse
the operations of an operator that does

|0, . . . , 0⟩ |α⟩ 7→

 1√
|Sy

α |

∑
(i1,...,ik)∈Sy

α

|i1, . . . , ik⟩

 |α⟩ ,

where we recall that

Sy
α = {i1, . . . , ik ∈ {−M, . . . ,M}|

k∑
j=1

ijyj = α mod N}. (1)

This is approximated by applying O−1
C , the inverse operator of OC .

The probability of success of the algorithm (the probability of getting |0, . . . , 0⟩ |z⟩
at the end of the procedure) is given by the dot product of the output of the
procedure and |0, . . . , 0⟩ |z⟩, namely:

Pr(success)

=

∣∣∣∣∣∣
〈
(Id⊗QFT−1) ◦O−1

C

 1
√
M

k

∑
i1,...,ik∈{−M,...,M}

ωzα |i1, ..., ij , α⟩

∣∣∣∣∣∣|0, . . . , 0⟩ |z⟩
〉∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
〈

1
√
2M + 1

k

∑
i1,...,ik∈{−M,...,M}

ωzα |i1, ..., ij , α⟩

∣∣∣∣∣∣OC ◦ (Id⊗QFT ) (|0, . . . , 0⟩ |z⟩)

〉∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
〈

1
√
2M + 1

k

∑
i1,...,ik∈{−M,...,M}

ωzα |i1, ..., ij , α⟩

∣∣∣∣∣∣ 1√
N

∑
α∈ZN

|Cy(α)1, ..., Cy(α)k⟩ |α⟩

〉∣∣∣∣∣∣
2
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=

∣∣∣∣∣∣∣∣∣∣∣
1√

N(2M + 1)k

∑
α∈ZN

〈 ∑
i1,...,ik∈Sα

|i1, ..., ik⟩

∣∣∣∣∣∣|Cy(α)1, ..., Cy(α)k⟩

〉
︸ ︷︷ ︸

1 if (Cy(α)1,...,Cy(α)k)∈Sy
α

∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣ N√
N(2M + 1)k

Pr
α∈ZN

[Cy(α)j ∈ Sy
α]

∣∣∣∣∣
2

Pr(success) =
N

(2M + 1)k
(PC

succ)
2 (2)

3.2 Step 11: a knapsack problem

It remains to describe how to perform Step 11 of the algorithm, namely how to
implement the operator OC . Clearly, this amounts to solving (for a superposition
of α values) the knapsack problem given by Equation (1).

Childs and van Dam use an integer programming algorithm due to Lenstra [37]
to solve this problem. The algorithm seeks to determine whether there exists a
solution, but can be adapted to return all possible solutions. This algorithm, as
applied to the hidden shift application, runs in time 2O(k3). The authors men-
tion that a result from Kannan [39] can be used for an improvement on this
subroutine that runs in time 2O(k log k).

These asymptotic estimations for solving the integer programming problem
at hand (implementing OC) are useful for studying the asymptotic behavior of
the Childs-van Dam algorithm, but they provide little insight on the actual cost
of an attack against a concrete system such as CSI-SharK. For this reason we
will reframe the knapsack problem as lattice problems in Sections 5 and 6, and
evaluate explicit costs for running the overall attack.

3.3 Complexity analysis

Our complexity analysis of the Childs-van Dam (CvD) algorithm will depend on
three subroutines : the quantum subroutine that performs the (isogeny) group
action in superposition, Quantum Fourier Transforms, and solving the knapsack
problem from Step 11.

Group action cost. Recall from Section 2.2 that there is some debate about the
actual quantum cost of evaluating the isogeny group action, depending on which
cost metric is being optimized: T-gate count or qubit count. Thus we recall the
complexities here, but we will keep this portion of the complexity analysis mod-
ular so that it is easy to modify according to which estimate is being considered.
In [11], Bernstein, Lange, Martindale, and Panny give an analysis on the quan-
tum security of CSIDH. In doing so, they improve upon isogeny computation
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algorithms with the goal of minimizing the T-gate cost of the group action. The
estimate from [11, Alg. 7.1] for the CSIDH-512 group action is 240 non-linear bit
operations, giving at least 240 quantum operations, and 229 ancilla qubits. Simi-
larly, Bonnetain and Schrottenloher also give a security analysis of CSIDH in [21]
but place more emphasis on balancing the amount of quantum memory and the
number of qubits necessary, together with the T-gate count. They present several
trade-offs between three quantum abelian hidden shifts algorithms, and focus on
tweaking these quantum algorithms to gain improvements (as opposed to tweak-
ing the isogeny algorithms as in [11]). In [21, Table 3] they concluded that one
group action call for CSIDH-512 would require 252.4 quantum operations and
less than 215.3 ancilla qubits.

Quantum Fourier Transforms. In [3], Ahokas, Cleve, and Hales give a new up-
per bound on the number of quantum gates necessary to compute a Quantum
Fourier Transform modulo 2n. They improved upon the previous upper bound
of O(n log n), to O(n(log log n)2 log log log n). This cost, however, is negligible in
Childs-van Dam’s algorithm, so we use the “naive” estimate of n(n+1)/2 gates.

QRAM costs. Quantum random-access memory (QRAM) is a circuit that allows
a quantum algorithm to access some classical data stored in memory. QRAM is
necessary in many important quantum algorithms and will be pertinent to our
analysis later on. Since QRAM sometimes constitutes the bottleneck of some
algorithms, there have been different proposals for how to model such a circuit.
In [49], Di Matteo, Gheorghiu, and Mosca model (among others) a type of circuit
known as the bucket brigade circuit. They give a rough cost estimate for storing
classical memory with n-bit addresses by multiplying (# logical qubits) × (T -
depth). In total the bucket brigade circuit run in parallel had a cost of O(n ·2n).

Quantum complexity analysis of Childs-van Dam’s algorithm. Recall from Algo-

rithm 1 that k :=
⌈

log(N)
log(2M+1)

⌉
. The algorithm uses 3 QFTs in Steps 3, 4, 7 per

loop. This loop also includes one call to the group action oracle in Step 5. Step
10 consists of some computations which we claim are negligible compared to the
rest of the computations. Finally, Step 11 describes a knapsack problem and in
Step 12 we have one final (inverse) QFT to do. Thus, the algorithm requires a
total quantum operation count of

(3k + 1) QFTs + k group action evaluations + knapsack problem.

Note that k is relatively small in our application (for CSI-SharK parameters,
we will have k = 20). Thus, this algorithm differs from prior cryptanalysis in that
the number of group action evaluations is small. For example, the algorithm from
Peikert’s quantum analysis of CSIDH [53, Fig. 2] for the same parameter sizes
requires between 214 to 220 group action evaluations, depending on the length
of the phase vector. Recall that the group action evaluation is very expensive,
so this reduction in the number of evaluations can have a significant impact on
the overall cost.
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In what follows, we evaluate the cost of solving the knapsack problem, before
concluding the paper with concrete complexity estimates for the attack.

4 Solving the knapsack problem

Here we show how the knapsack problem in the Childs-van Dam algorithm can
be formulated as an instance close to a Closest Vector Problem (CVP) in a par-
ticular lattice. The key difference will be that we will require all of the solutions
up to a certain bound. Additionally, this instance of CVP will use the ℓ∞ norm
instead of the usual ℓ2 (Euclidean) norm. We describe how to actually solve the
resulting CVP instance in the subsequent sections.

4.1 CVP formulation

Recall that to complete our attack we must compute the set

Sy
α = {i ∈ Ck : ⟨i,y⟩ = α mod N},

where C = {−M, . . . ,M} is the set of available shifts we have access to, and k
is the dimension we choose such that |Ck| = (2M + 1)k ≈ N . Note that y is
fixed at the beginning of Step 11, but can be re-randomized in our application
by repeating Steps 1-10. Further, α takes all possible values in superposition,
and i are the variables we are solving for.

In [27], the set Sy
α is computed using a classical integer programming algo-

rithm due to Lenstra [37]. This computation can be efficient when C is taken
to be sufficiently large, which is not always the case. Furthermore, the integer
programming computation that was originally proposed is aimed at solving the
worst case instance and does not offer concrete complexity estimates, making it
difficult to measure the overall security of target systems. For these reasons we
proceed with a reduction to an equivalent lattice problem.

In Sy
α , we are considering solutions i ∈ Ck to the equation

⟨i,y⟩ = α mod N. (3)

We can construct a lattice, Ly, from y where the rows in the following matrix
represent the basis vectors of Ly. Without loss of generality, suppose that y1 is
invertible; otherwise, we can use any other yj that was invertible or rerun Steps
1 - 10 in Algorithm 1 until some yj is invertible. We can then divide the rows
through by y1, giving a simplified version of the matrix in the form

y′2 1 0
...

. . .

y′k 1
N 0 · · · 0

 ,
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where y′i = yi/y1 mod N . Thus, vectors in Lywill be such that the first compo-
nent is a linear combination of the yi up to a multiple of N , and the rest of the
components encode information about the linear combination.

Now consider

[
i2 · · · ik λ

]

y′2 1 0
...

. . .

y′k 1
N 0 · · · 0

 =
[
α′ 0 · · · 0

]
+
[
−i1 i2 · · · ik

]
, (4)

where y′i = yi/y1 mod N and α′ = α/y1 mod N . We see that the first compo-
nent in this system will be exactly Eq. (3), and the rest of the components are
trivially of the form it = it, t ∈ [2, k]. This shows that the CVP target vector[
α′ 0 · · · 0

]
is close to the lattice Ly, in the sense that it is a lattice vector plus

some small noise
[
i1 −i2 · · · −ik

]
. Specifically, since Sy

α requires i ∈ Ck, this
imposes the restriction that each component of i be less than M . Recall that
the ℓ∞ norm of a vector x = [x1, . . . xn] is defined as ∥x∥∞ = maxi |xi|. So the
small noise is bounded with ∥i∥∞ < M .

4.2 CVP specificities

Note that the elements {yi} defining the lattice Ly are computed in Step 7 of
Algorithm 1. This involves a QFT and so must be done quantumly. The remain-
ing steps in the algorithm amount to solving a knapsack problem, which we have
now formulated as an (almost) CVP instance, and the final QFT measurement.
It is not exactly a CVP since we will be searching for all of the solutions within
a fixed bound, not just one. For ease of explanation, we will abuse notation and
keep the term CVP. Further, it must be performed in superposition since α is in
superposition; however, some classical preprocessing after the elements {yi} are
measured is also possible. In Sections 5 and 6 we will consider two options for
solving this CVP instance.

As mentioned already, we observe that we can repeat the first 10 steps of
Algorithm 1 until a favourable basis {y1, . . . yk} is found. Note that while α is
in superposition, the choice of basis is fixed. This means that we can continue
our analysis assuming that both the lattice reduction and the CVP instance are
average cases instead of worst cases. We will keep this in mind when choosing
which CVP solver to use, as this could lead to savings in the overall complexity.
The approach from Section 5 will be an example where having a short basis (in
the ℓ∞ norm) will have a big impact on the final concrete complexity of the
overall computation.

4.3 Selecting CVP solvers

Our main task going forward will be to solve an instance of CVP in the ℓ∞
norm. Most of the literature describing algorithms for solving CVP problems
targets the ℓ2 norm, so we will need to tailor our approach to fit our case.
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Furthermore, as discussed in Section 4.2, we will only be concerned with the
average case complexity of the algorithm, not the worst case. We categorize
the current literature into three main approaches that solve CVP problems:
enumeration [38,39], sieving [1, 4], and Voronoi sets [33,50].

Kannan [39] gives an enumeration algorithm for solving integer programming
problems that splits the problem into several smaller ones. The time complexity
of the algorithm is 2O(n logn). It is also deterministic and there is no space com-
plexity. In Section 5 we detail a novel variant of such an enumeration approach
that is tailored to the setting of our problem. It requires little memory and is
easy to implement, but the asymptotic time complexity will be worse than other
approaches, meaning it may not scale so well to larger parameter sets.

Later on, in Section 6 we focus on a sieving approach. In [4], Ajtai, Kumar,
and Sivakumar give a randomized algorithm based on sampling and sieving. The
work of Aggarwal and Mukhopadhyay [1] follows the strategy from [4] at a high
level, but focuses on the special case of using the ℓ∞ norm. This approach offers
a better time complexity than the enumeration approach, but will also require
exponential size quantum memory. Recall from the discussion in Section 3.3 that
QRAM is very costly so this will be a serious caveat of sieving.

We do not provide an approach using Voronoi sets, in part because the sin-
gle exponential time complexity estimates computed in [50] are only for the
Euclidean norm. In [14], the authors show that for non-Euclidean norms, it is
unlikely to find algorithms of single exponential space and time that can solve
CVP. They show that for some other norms the case is similar to the Euclidean
one, and so may have single exponential algorithms. It is not clear how the ℓ∞
norm plays into this, so instead we leave comparing such an approach (and any
others) to future work.

5 Instantiating the attack with enumeration

As described in Section 4.1, the problem which remains to be solved to complete
our attack using the algorithm by Childs and Van Dam can be seen as a CVP
problem in the ℓ∞ norm. More precisely, for any y = (y1, . . . , yk) ∈ Zk

N , solutions
to Eq. (3) correspond to those i with distance at most M to a target vector in
ℓ∞ norm satisfying Eq. (4). In this section, we describe a simple method which
solves this CVP problem using enumeration, then we evaluate the cost of this
approach in the context of our attack using the Childs-van Dam algorithm.

5.1 Solving the ℓ∞ CVP with enumeration

Given a fixed lattice with basis given by the matrix A and a target vector b
defined using α, we want to find all points in the lattice that are at a distance
at most M from b in the ℓ∞ norm.

Let x0 := ⌊A−1b⌉ be the coordinates of the target vector with respect to the
basis of A rounded to the nearest integer, i.e. ∥A−1b− x0∥∞ ≤ 1

2 . Assume now
that x is a vector that is a solution to our CVP problem at hand, i.e. we have
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∥Ax− b∥∞ ≤ M . While x0 will in general not be a solution to the CVP problem
itself, it approximates solutions since

∥x− x0∥∞ ≤ ∥x−A−1b∥∞ + ∥A−1b− x0∥∞
≤ ∥A−1∥∞ · ∥Ax− b∥∞ + ∥A−1b− x0∥∞

≤ ||A−1||∞ ·M +
1

2
.

This observation allows us to find all possible solutions in the lattice spanned
by A by enumerating through all x that lie at distance at most ∥A−1∥∞ ·M + 1

2
from x0. This gives at most 2∥A−1∥∞ ·M + 2 options for each coordinate of x
(from the positive and negative directions and 0), hence a total of (2∥A−1∥∞ ·
M + 2)k choices. For each such x, we can verify whether it is a solution by
checking whether ∥Ax− b∥∞ is at most M . This check costs at most one matrix
vector multiplication and one vector addition.

Algorithm 2 Algorithm using enumeration to solve CVP in ℓ∞
Input: Basis A of full-rank k-dimensional lattice, target vector b.
Output: Lattice vectors with distance at most M from b with respect to ℓ∞ norm.
1: Compute x0 := ⌊A−1b⌉.
2: for each x with ∥x− x0∥∞ ≤ ∥A−1∥∞ ·M + 1

2

3: if ∥Ax− b∥∞ ≤M
4: Ax is a close vector.
5: end if
6: end for
7: Return all close vectors found.

Lemma 5.1. Algorithm 2 finds all vectors at distance at most M with respect
to the ℓ∞ norm in the k-dimensional lattice with basis A after enumerating at
most (2∥A−1∥∞ ·M + 2)k vectors.

Reducing enumeration costs by reducing ∥A−1∥∞. Given that the number of
vectors we have to enumerate depends on ∥A−1∥∞, it makes sense to preprocess
the basis A to lower ∥A−1∥∞, e.g. using LLL to obtain a basis with entries of
roughly the same size, before starting the enumeration.

For a typical reduced basis we can heuristically expect all entries of A to
be roughly of size det(A)1/k = N1/k up to a constant ck which depends on
the dimension of the lattice and will be small for the dimensions considered
in this paper. Similarly, when reducing A−1, we can expect its entries to be
about ck · det(A−1) = ck ·N−1/k. This means the norm ∥A−1∥∞ will be about
ck · k ·N−1/k. For M < N1/k, the cost estimate of Lemma 5.1 can thus be very
roughly upper bounded by (2 · ck · k + 2)k.

Reversely, we can also get a lower bound for the complexity of Algorithm 2.
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Lemma 5.2. To find all lattice vectors of distance at most M with respect to
the ℓ∞ norm in the k-dimensional lattice defined by the matrix A, Algorithm 2
requires to iterate through at least 4k vectors.

Proof. Minimizing A−1 in the ℓ∞ norm is equivalent to minimizing the dual
basis of A with respect to the ℓ1 norm. The ℓ1 norm is at least as large as the
ℓ2 norm, which can be bounded from below by det(A)−1/k using Hadamard’s
inequality. Now the claim follows from Lemma 5.1.

We will discuss further approaches to reduce the value ∥A−1∥∞ in the context
of Childs-Van Dam’s algorithm in Section 5.3.

Amplitude amplification. We briefly discuss how to use Grover’s search to accel-
erate the enumeration process of Algorithm 2. Consider amplitude amplification
introduced by Brassard, Hoyer, Mosca and Tapp [23], which extends Grover’s
algorithm [36] to any search space. Algorithm 3 shows how Algorithm 2 can be
modified using this amplitude amplification.

Algorithm 3 Algorithm using enumeration to solve CVP in ℓ∞
Input: Basis A of full-rank k-dimensional lattice, target vector b.
Output: Lattice vector with distance at most M from b with respect to infinity norm.
1: Compute x0 := ⌊A−1b⌉.
2: Grover search on x with ∥x∥∞ ≤ ∥A−1∥∞ ·M + 1

2
with π

4
(2∥A−1∥∞ ·M + 2)k/2

turns using the following oracle:
3: Check if ∥A(x+ x0)− b∥∞ ≤M
4: EndGrover
5: Return all close vectors found.

The classical enumeration cost of (2∥A−1∥∞ · M + 2)k vectors becomes
π
2 (2∥A

−1∥∞ · M + 2)k/2 steps of amplification using [23, Thm. 4]. In each step
of the amplification, we have to generate the superposition of x, which can be
done by generating all of its k components individually using a QFT of size
(2∥A−1∥∞ ·M + 2) and checking if ∥A(x+ x0)− b∥∞ ≤ M . The latter requires
at most k2 multiplications in ZN .

Remark 5.3. Classically the enumeration algorithm returns all close enough vec-
tors. On the other hand, amplitude amplification will only allow to find a single
solution faster. Note that this is sufficient to solve the problem at hand, and also
that we set the dimension of the lattice used such that we only expect a single
solution.

5.2 Applying the enumeration to Childs-Van Dam’s algorithm to
attack CSI-SharK

Next, we use the enumeration approach from Section 5.1 when applying the
Childs-Van Dam algorithm to cryptanalyze CSIDH variants such as CSI-SharK.
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Recall that applying Childs-Van Dam to the setting of CSI-SharK, the quan-
tum computations up to Step 10 provide us with a CVP problem in the infinity
norm. More precisely, the computations up to Step 10 in CvD provide us with a
basis of a lattice, A, and a target vector, b. Hereby, A is provided after measure-
ment and can therefore be processed classically or quantumly, whereas the target
vector b, defined using α, is only available in superposition. For the parameters
provided in CSI-SharK we are left to solve a CVP problem in ℓ∞ norm for the
given lattice and target vector, where solutions are at distance at most M as
was described in Section 4.1. By Lemma 5.1, this can be achieved by iterating
through at most (2∥A−1∥∞ ·M+2)k vectors in the lattice. Given the dependence
of the enumeration’s complexity on ∥A−1∥∞, there are two ways of optimising
this enumeration approach:

1. Preprocess A as previously mentioned (see Section 5.3) to lower ∥A−1∥∞.
2. Repeat the initial quantum computation from Step 1 to Step 10 until the

measured lattice basis A is good, i.e. ∥A−1∥∞ is low.

Both steps together make our strategy. We repeat the initial quantum com-
putation to get new random lattices, and we reduce their bases in order to
minimize ∥A−1∥∞. If the resulting basis is sufficiently good, i.e. ∥A−1∥∞ of the
resulting basis A is smaller than a desired threshold, we move forward and run
the enumeration, otherwise we sample another lattice.

Note that each time we repeat the initial steps of the quantum computation,
we obtain a new random lattice in the set of lattices of the form Eq. (4) with
entries y′i ∈ Z. We summarise the resulting strategy in Algorithm 4.

Define cA := ∥A−1∥∞·N1/k, whereA corresponds to a basis of a k-dimensional
lattice Ly. From Section 5.1, we know that cA ≥ 1 and that we would expect
cA ≤ k for a reduced basis. In Section 5.3, we will give experimental results
on the size of cA for lattices appearing in the setting of CSI-SharK parameters.
Further, we present experiments that show how much we expect cA to decrease
when preprocessing the basis and sampling a new lattice if the resulting basis
is not sufficiently “good”. When fine tuning the attack for CSI-SharK, these
experiments are crucial to determining what values for cA we can expect.

Note that for an appropriately chosen threshold for cA, the preprocessing of
the lattice will provide a basis A satisfying this threshold and Algorithm 2 will
always terminate (see Section 5.3 for reasonable values of cA). For the version of
the enumeration using Grover’s algorithm, note that each execution of the while
loop in Algorithm 4 runs the initial steps of Algorithm 1, until Step 10, which
costs essentially k group action evaluations. Afterwards, the algorithm needs to
enumerate at most (2cA · M

N1/k + 2)k vectors by Lemma 5.1.

5.3 Improving the complexity of the enumeration by minimizing cA

The preceding subsections raised the question of how to preprocess a basis of a
lattice to minimise cA in order to speed up the enumeration and the question of
how cA is distributed when sampling new random lattices of the shape Eq. (4).
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Algorithm 4 Using Enumeration to find all close vectors for Childs-Van Dam
algorithm.

Input: Class number N , M and superposition oracle access to f and threshold t for
∥A−1∥∞.

Output: All vectors of distance at most M from target vector required by Childs-Van
Dam algorithm.

1: Let cA > t.
2: while cA > t
3: Run quantum algorithm up to Step 10 which gives lattice Ly classically and

target vector b in superposition.
4: Preprocess basis of Ly to minimise ∥A−1∥∞ and compute resulting cA.
5: end while
6: Run Algorithm 2 to get all vectors in Ly at ℓ∞ distance at most M from α.
7: Return all close vectors.

Note that after measuring the lattice basis, any preprocessing of the lattice
in Algorithm 4 can be done entirely using classical operations. While this may
or may not be implemented on a quantum computer in the end, in any case we
can implement and test this part of the algorithm on a classical computer. We
implemented one method to preprocess the lattice and will present our experi-
mental results in the following. More precisely, we computed an approximation
of a good basis by reducing the basis of the dual lattice using LLL in the ℓ2 norm
– partially motivated by the fast implementations of LLL available. Then, we
reduced ∥A−1∥∞ of the resulting lattice with respect to the infinity norm using
an algorithm due to Lovasz and Scarf [47]. Note that this final use of the Lovasz-
Scarf algorithm can only improve upon the result after the LLL reduction, and
is expected to give an improvement since in general a small linear combination
of a good ℓ2 basis can also reduce the ℓ1 norm.

Using the class number N ≈ 2256 and the dimension k sufficiently large to
run the attack, i.e. k = 20, we generated random lattices of the form as in Eq. (4)
by sampling y′i ∈ ZN uniformly at random, consistently with the distribution
produced in Step 8 of Algorithm 1. When using the approach outlined above to
preprocess the lattices using LLL and Lovasz-Scarf, we experimentally obtained
cA ≈ 6.3 on average7. By discarding lattices that do not lead to small cA,
and sampling a new lattice, this constant can be improved. Fig. 2 shows an
experiment of the minimum observed value for cA plotted against the number of
randomly chosen lattices, where the basis A is obtained after LLL- and Lovasz-
Scarf-reducing the dual basis. After a few 1000 lattices, the minimal cA observed
reliably reaches ≈ 5.2. See Table 1 for further experimental results regarding
cA for different values of M .

As one might expect, the minimum ℓ∞ norm observed decreases with the
number of lattices tried. With an exhaustive search over (short) linear combi-

7 The code to run the experiments, implemented in Magma [22], is provided at
https://anonymous.4open.science/r/CvD-analysis-A4E7/. Experimental results
for different parameters are shown in Table 1.

https://anonymous.4open.science/r/CvD-analysis-A4E7/
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Fig. 2. Minimal cA observed using LLL- and Lovasz-Scarf reduction vs the number of
random lattices of the form Eq. (4) sampled for k = 20.

nations of lattice vectors we were then able to sometimes further improve this
constant (at an exponential cost). However, we will ignore this potential im-
provement in our analysis.

class number N M mean cA min cA

CSIDH-512 220 4.406 3.615

≈ 2257 216 5.210 4.307

212 6.332 5.187

CSIDH-1024 220 7.833 6.665

≈ 2512 216 9.882 8.506

212 13.553 11.640

Table 1. Experimental results for cA for different values of M over 10.000 randomly
generated lattices in the case of CSIDH-512 as suggested in CSI-SharK. Similarly,
experimentally observed values for cA over 1.000 randomly generated lattices by ap-
proximating the class number of CSIDH-1024 by a 512-bit prime.

5.4 Enumeration cost estimate

Clearly, there is a trade-off between the cost of the enumeration to find close
vectors in the ℓ∞ norm and the number of lattices tried. Algorithm 4 has to
iterate through

≈ (2 · cA · M

N1/k
+ 2)k
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vectors by Lemma 5.1.
Using amplitude amplification as described in Section 5.1, we can reduce

this to π
2 (2cA · M

N1/k + 2)k/2 steps of amplification. Each step of amplification is
dominated by checking if ∥A(x+x0)−b∥∞ ≤ M which requires k2 multiplications
in ZN . The overall quantum complexity of the enumeration for the concrete
parameters at hand thus becomes

k2 · π
2
(2 · cA · M

N1/k
+ 2)k/2

times the cost of performing a multiplication in ZN .

Trading multiplications for additions. Multiplications in ZN , according to the
estimate from Pavlidis and Gizopoulos [52, Table 4], would require a circuit
using 29.6n2 + 29.3n gates (for n = logN) per multiplication. From Draper [31]
the quantum cost of integer addition is around n log n gates. Thus we can try
to change these multiplications to additions to gain some savings. Recall from
Algorithm 3, Step 3, that the computation being repeated is to check if

∥A(x+ x0)− b∥∞ ≤ M.

In each of the iterations, the variables A, x0, b,M are all fixed so the values
of Ax0 − b can be precomputed. Since −M ≤ xj ≤ M , we can write xj =

−M+
∑⌈log2 M⌉+1

k=0 xjk2
k with xjk ∈ {0, 1}. We then have (Ax)i = −M

∑
j Aij+∑

jk Aijxjk2
k where the values −M

∑
j Aij and (Aij2

k mod N) can be precom-

puted. This requires k2 logM additions. In total, in each iteration this replaces
k2 multiplications with k2 logM additions. This leaves the complexity of the
enumeration at

logN · log logN · logM · k2 · π
2
(2 · cA · M

N1/k
+ 2)k/2

quantum T-gates.
We note that memory requirements of the enumeration approach are small,

essentially corresponding to the matrix-vector multiplication circuit.

6 Instantiating the attack with sieving

In this section, we explore an alternative approach to solve the CVP instance
from Eq. (4) through sieving.

6.1 Sieving approach for CVP problems

Using Kannan’s embedding [39, p. 437], our CVP instance translates to a short-
est vector problem (SVP) in the ℓ∞ norm in the latticeH. Then the SVP instance
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we would like to solve (in the ℓ∞ norm) is

[
i2 · · · ik λ −1

]


y′2 1 0 0
...

. . .
...

y′k 0 1
...

N 0 · · · 0 0
α′ 0 · · · 0 M

 =
[
−i1 i2 · · · ik M

]
, (5)

where the targeted short vector has infinity norm M .
Sieving algorithms proceed in two phases to solve the short vector problem:

1. Sampling, where many elements vi of the lattice are sampled.
2. Sieving, where given a list of lattice elements, another list of elements with

smaller norms is produced. In practice, this is done by identifying pairs of
“close” vectors and keeping their difference (a smaller vector of the lattice).

The sieving is repeated until we get a vector of the desired norm. To fix some
notation, we summarize this general approach in Algorithm 5.

Algorithm 5 General approach of sieving algorithms

Input: A basis B of the lattice L, suitable parameters (R0, s0), ..., (Rsteps, ssteps), a
sampling algorithm SAMPLE that given B produces a random element of the
lattice L of norm less than R0 and a sieving algorithm SIEVE that given a list of
cardinality si with lattice vectors of size Ri produces a list of cardinality si+1 with
lattice vectors of size Ri+1.

Output: An element of L of norm less than Rsteps.
# Sampling part

1: S ← ∅
2: for i from 1 to s0
3: ei ← SAMPLE(B,R0)
4: S ← S ∪ {ei}
5: end for

# Sieving part
6: for i from 1 to steps
7: S ← SIEVE(S,Ri−1, Ri)

▷ SIEVE gets a list of size si−1 and outputs a list of size si.
8: end for
9: Return a non-zero element of S.

To solve the shortest vector problem in the ℓ∞ norm, we will follow the work
of Aggarwal and Mukhopadhyay [1,2]. In Section 6.2 we recall the relevant parts
of their approach. We give complexity estimates for the different steps of sam-
pling and sieving depending on the parameters the sieving is instantiated with,
i.e. the lattice dimension k+1 and the parameters {(Ri, si)} from Algorithm 5.
In Section 6.4, we will describe how these complexity estimates lead to an op-
timization problem. Finally, we approximate the solution to this optimization
problem to obtain an upper bound on the cost of the resulting algorithm.
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6.2 Sieving with Aggarwal-Mukhopadhyay’s algorithm

Sampling. In [2], a randomized version of Babai’s nearest plane algorithm is
used to sample elements of the lattice. We are interested in the case where the
lattice is of the form as in Eq. (5), i.e. the lattice is defined over Z but contains
(NZ)k × {0}. Therefore, we can sample a random element of the lattice of ℓ∞
norm less than N/2 with k+1 multiplications in ZN , as outlined in the following
lemma.

Lemma 6.1. For lattices of the same shape as H, the procedure (Algorithm 6)
of choosing a “small” coefficient for the last row (less than N/2M) and choosing
random coefficients for the other rows using a representation of the output in
[−N/2, N/2] effectively samples a random element of the lattice of norm less
than N/2.

Algorithm 6 Sampling algorithm

Input: A matrixM of the form given 5 defining the lattice L.
Output: An element of L of norm less than N/2.
1: Sample a random xk+1 in [−N/2M,N/2M ] and x1, ..., xk−1 in [−N/2, N/2].

2: Compute xk = −
⌊

α′xk+1+
∑k−1

i=1 y′
i+1xi

N

⌉
.

3: Return [x1, ..., xk+1]M.

Proof. The first choice gives that the last coefficient is a random element in
MZ ∩ [−N/2, N/2]. (The matrix imposes that this coefficient is a multiple of
M .) The second choice and the reduction modulo N ensure the randomness of
the other coefficients while not affecting the last one. ⊓⊔

Sieving. While [2] explores many refinements for the lattice sieving, these re-
finements come at a polynomial cost. While asymptotically the exponential cost
is what matters most, these added costs are not negligible for the “small” pa-
rameters we are interested in. Hence, we only consider the simpler sieving as
described in [2, Sect. 3].

Let ⌊·⌉ denote rounding to the nearest integer. For an element in the lat-
tice x = (x1, . . . , xk+1), we denote component-wise rounding by ⌊2x/Ri⌉ :=
(⌊2x1/Ri⌉ , . . . , ⌊2xk+1/Ri⌉).

Let x and x′ be two elements of the lattice such that ⌊2x/Ri⌉ = ⌊2x′/Ri⌉.
Then x − x′ must be an element of the lattice with norm smaller than Ri.
Therefore, sieving can be done by looking for collisions in the function x 7→
⌊2x/Ri⌉ (see also [2]).

To estimate the cost of finding such collisions we assume that elements of the
lattice behave randomly (as in [2]) and we use the following lemma.
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Heuristic 1 At any stage of the sieving process, the vectors in S ∩B∞(Ri) are
uniformly distributed in B∞(Ri) = {x ∈ Zk+1|∥x∥∞ ≤ Ri}.

Lemma 6.2. For a random function f : {1, . . . , n} → {1, . . . ,m}, the number

of collisions #{{i, j} : i ̸= j, f(i) = f(j)} has expected value n(n−1)
2m and variance

of n(n−1)
2m

(
1− 1

m

)
.

The proof of Lemma A.1 is included in Appendix A.
Assume that the map x 7→ ⌊2x/Ri⌉ behaves like a random function on ele-

ments of norm less than Ri−1 in our k + 1-dimensional lattice, i.e. it maps the

elements uniformly randomly to the possible
(

2Ri−1

Ri

)k+1

buckets. Starting from

a list of 2n random elements of norms less than Ri−1 and applying Lemma A.1,

we then can get a list of at most 22n−1
(

Ri

2Ri−1

)k+1

with standard deviation

2n−
1
2

(
Ri

2Ri−1

)(k+1)/2

elements of norm less than Ri. Note that we ignored the

factor (1 − 1
m ) from the variance given by Lemma A.1 since m is large in our

application.
This formula will allow us to give constraints on the required suitable values

for (Ri, si).

Classical “many collisions finding” algorithm. As part of the sieving pro-
cess, we need an algorithm to compute collisions. Note that there is not just one
collision to find in this context, but many of them, and that this computation
will be performed as part of Step 11 of Algorithm 1, i.e. by a quantum computer
on inputs in superposition. We use an algorithm from [20], which essentially
implements Algorithm 7 reversibly. Note that this algorithm requires a QRAM
containing nearly all elements, but with stricter conditions on the data structure.

Algorithm 7 Classical many collision algorithm

Input: A function f : {1, . . . , 2n} → {1, . . . , 2m}.
Output: 2t collisions.
1: for i from 1 to 2(t+m+1)/2

2: Si = {}
3: end for
4: for i from 1 to 2(t+m+1)/2

5: Sf(i) mod 2(t+m+1)/2 = {(i, f(i))} ∪ Sf(i) mod 2(t+m+1)/2

6: end for ▷ The elements with the same image by f are now next to each other
7: Walk through the different Si and list the pairs of elements with the same output

by f in S′.
8: Return S′
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Lemma 6.3. Let the notation be as in Algorithm 5. Using classical many col-
lisions finding, there exists a quantum procedure for sieving that takes a list of
si−1 elements of norms less than Ri−1, and outputs a list of si elements of norms
less than Ri in time

1

log2(e)
(log2(si) + (k + 1) log2(2Ri−1/Ri) + 1)

√
2si

(
2Ri−1

Ri

)(k+1)/2

whenever si ≤
s2i−1

2

(
Ri

2Ri−1

)k+1

.

Proof. The classical many collisions finding algorithm (Algorithm 7) takes a
function f : {1, . . . , 2n} → {1, . . . , 2m} and returns 2t collisions. This is an
implementation of a hash table. Its complexity is 1

log2(e)
(t + m + 1)2(t+m+1)/2

bit operations.
We now apply this cost evaluation of the many collision finding algorithm

to the function x 7→ ⌊2x/Ri⌉ for sieving (using the notation of Algorithm 5).
Recall, the sieving procedure takes a list of si−1 elements of norm less than Ri−1

and outputs a list of si elements of norm less than Ri. Substituting 2n, 2m and

2t by si−1,
(

2Ri−1

Ri

)k+1

and si, respectively, yields the result of the lemma.

Quantum collision finding We sketch an alternative quantum approach to
running the many collisions finding algorithm in Appendix A. We leave the
concrete analysis of this approach to further work.

6.3 Returning a solution

We recall Equation 5

[
i2 · · · ik λ −1

]


y′2 1 0 0
...

. . .
...

y′k 0 1
...

N 0 · · · 0 0
α′ 0 · · · 0 M

 =
[
−i1 i2 · · · ik M

]
.

At Step 9 in Algorithm 5, we get a list of elements of norm less than M .
The last component of the vector is a multiple of M so it can only be one of
{−M, 0,M}.

A vector of the lattice that is of norm less than M and whose last component
is M is a solution to the problem. If we get a vector of the lattice that is of norm
less than M and whose last component is −M , we can just multiply it by -1 to
get a solution.

Assuming that the lattice elements behave randomly, we expect that a vector
of the list leads to a solution with probability 2/3. So given a list of three solutions
to the SVP problem, the probability that all three have last component 0 is
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(1/3)3 = 1/81. The complement probability, the case where at least one has a
non-zero final component (and is thus usable), is more than 98.7%. By Equation
2, this is large enough to guarantee a large overall success probability.

6.4 Solving the optimization problem

To solve a concrete instance of the SVP using sieving as sketched in Algorithm 5,
Lemma 6.3 provides constraints and guidance to set the values for si and Ri in
the sieving procedure.

To simplify notation, we define ni := log2(si) andmi := (k+1) log2(2Ri−1/Ri)
for this subsection. Further, we recall that steps denotes the number of iterations
of the sieving step, which is also a parameter to optimize.

As described before, we have to consider the following optimization problem:

Problem 6.4. Given variables n0, . . . , nsteps and m1, . . . ,msteps we have the fol-
lowing constraints:

2n0 ≤ Nk+1

M2 ,

ni ≥ 1,

ni+1 ≤ 2ni −mi+1 − 1,∑steps
i=1 (mi − (k + 1)) = (k + 1) log2(N/M).

The complexity of the algorithm is then given by the function

(k + 1)CN2n0 +

steps∑
i=1

2(ni +mi + 1)

log2(e)
2(ni+mi+1)/2

T-gates, where CN is the cost of a multiplication in ZN . We now show how to
minimize this cost.

Since Nk is significantly larger than M , the first condition is satisfied for
every possible parameter set relevant to us. The other conditions are linear,
so the solution set can be treated as a polyhedron. For simplicity we will also
replaceni+1 ≤ 2ni −mi+1 − 1 with ni+1 = 2ni −mi+1 − 1. The cost function to
be optimized, however, is not linear. Furthermore, the value steps is not fixed.
In order to find good enough solutions we do the following. We fix steps to
an appropriate value and then treat this as a linear program. The objective
function to be optimized is a bit trickier as the coefficient of n0 is much larger in
our applications as the other variables. Hence we choose the objective function
as Cn · n0 +

∑n
i=1 ni (note that the ni already define the mi). This alone would

yield horrible results as optimal solutions are not balanced and one large ni is
enough to make the complexity explode. By imposing an upper bound on all ni

depending on the dimension k, we can prevent this. Once a solution is computed,
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we plug it into the function (k+1)CN2n0 +
∑steps

i=1
2(ni+mi+1)

log2(e)
2(ni+mi+1)/2 to get

the complexity of sieving.
What we observe experimentally is that there seems to be an optimal choice

for the upper bound on the ni and the value steps. It makes sense to take steps
small, albeit large enough that a solution exists.

We choose steps = 600 and the upper bound on the ni to be k + 3. We do
not prove that this is an optimal choice (though experimentally we found this
to be the case) as we only care about the resulting complexity. The following is
a table which lists the number of operations and QRAM necessary for various k
values after computing solutions to the optimization problem8.

k 13 16 20 24 29 31 40

complexity 233.0 235.0 238.9 243.2 248.4 250.5 259.8

Table 2. We list the resulting complexity in number of T-gates and QRAM for running
the sieving approach to solving the knapsack problem for various k values.

7 Quantum security of the Vectorization with Shifted
Inputs

We now apply our analysis to assess the security of the Vectorization Problem
with Shifted Inputs, in particular for CSIDH parameters as suggested in the
CSI-SharK and BCP protocols.

Recall that the concrete complexity of Childs-van Dam’s algorithm is

(3k + 1) QFTs + k group action evaluations + knapsack problem.

Currently the cost of one group action evaluation is estimated to be between
240 [11] and 252.4 [21] T-gates. We denote this cost by G. The cost of a QFT is
estimated to be around n(n+ 1)/2, where n = logN .

For the enumeration approach, we estimated that the total cost of solving
the knapsack problem is

Lenum(cA) := n · log n · logM · k2 · π
2
(2 · cA · M

N1/k
+ 2)k/2

quantum T-gates, where suitable values for cA are listed in Table 1. If we choose
to resample the lattice around 210 times, we could use the smaller cA values
from Table 1 at the cost of more group action calls and QFTs. Without this

8 The optimization was run with the Magma computer algebra system [22] and the
code is provided at https://anonymous.4open.science/r/CvD-analysis-A4E7/.

https://anonymous.4open.science/r/CvD-analysis-A4E7/
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resampling, we must use the average cA values listed in the same table. As a
first approximation 9, the total cost of running Childs-van Dam’s algorithm will
then be bounded by the minimum between

(3 · 210 · k + 1)
n(n+ 1)

2
+ 210k ·G+ Lenum(min cA)

and

(3k + 1)
n(n+ 1)

2
+ k ·G+ Lenum(mean cA)

T-gates, where G is the cost of group action evaluation.
For the sieving approach, the complexity of solving the knapsack problem,

Lsieving, was computed experimentally in Table 2. The final complexity will thus
be

(3k + 1)
n(n+ 1)

2
+ k ·G+ Lsieving

T-gates.
In Table 3, we list the concrete total quantum security complexities of the

Childs-van Dam algorithm depending on the choice of CVP solver, and on the
choice of cost model for the oracle query. Note that M = 212 was suggested as
a valid parameter in CSI-SharK, and M = 212, 215, 218 were suggested in BCP.
This means that we improve upon the state-of-the-art complexity estimate for
both CSI-SharK and BCP. Overall, we were able to decrease the number of
oracle calls required (compared to running Kuperberg on a single shift) to solve
the Vectorization Problem with Shifted Inputs.

Childs-van Dam vs Kuperberg As the parameters k and M in Childs-van
Dam’s algorithm are related by k := logN/(log(M) + 1), a larger M value
leads to a smaller k value, i.e. a smaller-dimensional lattice and an easier CVP
instance. For the enumeration approach, on top of a smaller dimension, we also
(experimentally) get a smaller minimum value of the constant cA.

When very few shifts are available, Peikert’s version of Kuperberg still per-
forms better than our version of the Childs-van Dam algorithm, due to the var-
ious overheads in the latter. As the number of available shifts increases, Childs-
van Dam becomes the most efficient algorithm. From Table 3 the cross-over point
is below 28, so as mentioned above the parameters suggested by CSI-SharK are
affected.

We note that the sieving approach consistently performs better than the
enumeration approach in T-gate complexity. On the other hand, we recall that
the enumeration approach can be performed with low memory complexity, hence
it could also be deemed more practical depending on the quantum cost metric
adopted. In both cases, group action evaluation queries eventually become the
dominating costs. At that point, increasing M further only marginally decreases
the T-gate complexity.

9 A slightly better bound can in theory be obtained by considering more options for
the number of resampling and the resulting cA values, but for the parameters we
considered this only made very small difference.
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group action
cost estimate

Peikert Alg. [53] M
Alg. 1 +
sieving

Alg. 1 +
enumeration

28 248.4 273.9

240 [11] 254 to 259 212 244.3 254.3

216 244.0 252.7

220 243.7 247.3

28 257.3 273.9

252.4 [21] 266.4 to 271.4 212 256.7 256.7

216 256.4 256.4

220 256.1 256.1

Table 3. Using the class group from the CSIDH-512 parameter set, we list the com-
plexity in number of T-gates of the Childs-van Dam algorithm when given access to
shifts of the form gc·z for c ∈ [−M,M ]. We compare against the algorithm from Peikert,
based on Kuperberg’s algorithm (which uses between 214 and 219 oracle calls depend-
ing on the length of the phase vector). Note that for M = 28, we ran a partial search
for the constant cA, and estimate min cA ≈ 7.7 and mean cA ≈ 9.2.

group action
cost estimate

Peikert Alg. [53] M
Alg. 1 +
sieving

Alg. 1 +
enumeration

257.6 [21] 278.4 to 285.5 212 262.9 2105.8

216 262.6 285.6

220 262.2 272.2

Table 4. Using the group action estimates from Bonnetain and Schrottenloher for
the CSIDH-1024 parameters, we compare the CvD algorithm variants to Peikert’s
algorithm (based off of Kuperberg) in number of T-gates.
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CSIDH-1024 parameters Bonnetain and Schrottenloher [21, Table 3], as well
as Peikert [53, Figure 1] also give complexity estimates for the CSIDH-1024
parameter set. Using these analyses, we compare how our version of Childs-van
Dam’s algorithm compares to Peikert’s algorithm in Table 4 with access to M
shifts.

8 Conclusion and Perspectives

In this work, we revisited the concrete quantum security of the Vectorization
Problem with Shifted Inputs, a variant of the vectorization problem used in
isogeny-based cryptography. The best quantum cryptanalysis attacks on the Vec-
torization Problem with Shifted Inputs consisted in attacking the Vectorization
Problem itself, and parameter selection in [7, 8] suggests that the two problems
are considered equivalently hard to solve in practice.

In contrast, our work suggests that the two problems are in fact not equivalent
with respect to quantum computers. By specifying and analyzing a quantum al-
gorithm of Childs and van Dam, we leverage the additional information provided
in the Vectorization Problem with Shifted Inputs, and we obtain new quantum
attacks with lower T-gate complexities. A core subtask in Childs-van Dam’s al-
gorithm consists in solving a knapsack problem. We considered two approaches
to solve it based on enumeration and sieving strategies. Our analysis suggests
that the sieving approach has better T-gate complexity for relevant parameters,
while the enumeration stands out for its low memory requirements.

Potential improvements In this work we did not consider using Voronoi sets
to solve the instance of CVP due to the high memory requirements, however, this
approach may offer benefits of its own. When working with ℓp norms for p ̸= 2,
the Voronoi set can be superexponential [14], but it is not clear if this is the case
in the instance of CSI-SharK. A second area that may benefit from independent
study is the parameter selection for the sieving approach in Section 6.4. Here,
the parameters {ni,mi} had to be selected in such a way that optimized the
final complexity of the algorithm. More sophisticated optimization algorithms
could lead to improved results.

Countermeasures A potential countermeasure for CSI-SharK may be to choose
the shifts such that they are not consecutive integers. Doing so may not be triv-
ial, however, as variants of this attack would still apply in some instances. Using
a punctured list of consecutive integers (i.e. simply skipping a few values) does
not completely avoid the attack, but only decreases the probability of success
depending on how many holes there are. If the set of integers is uniformly spaced,
for example, they are of the form {2, 4, 6, . . .}, then we can replace f(b, x) from
Section 3 by g(b, x) = f(2b, x) and the period becomes (1, 2z) instead of (1, z).
Note that increasing the size of the integers appearing in the (super)exceptional
sets would in turn allow to decrease k. Otherwise, the rest of the attack follows
just the same.



Quantum Security of the Vectorization Problem with Shifted Inputs 31

Related protocols In this work, we focused on the Vectorization Problem with
Shifted Inputs, a variant of vectorisation problem used in the CSI-SharK and
BCP protocols. Many other variants have appeared in the literature, some of
them partly similar to the same problem. We list some of these problems below,
and we encourage the community to extend our results and study their exact
quantum security.

CSI-Otter. In [40], the authors give a (partially) blind signature scheme from
isogenies called CSI-Otter. Though the soundness of the scheme was recently
attacked in a special case [41], the scheme in practice is unaffected. In particular,
its underlying hard problem, ζd-rGAIP [40, Definition 2.9], remains unaffected.
We state it here.

Problem 8.1 (ζd-Ring Group Action Inverse Problem). Let E ∈ Eℓℓp(O).
Given

E ∪ {[gζ
j
d·z]E}j∈[d],

where z ∈ ZN is secret and d|λ(N) (here λ is the Carmichael function), com-
pute z.

This problem is very similar to that of Problem 2.1 except that the shifts are not
uniformly spaced. Can adjustments be made to Algorithm 1 to accommodate
this difference?

k-power DDHA. Another hard problem to consider is the k-power Decisional
Diffie-Hellman Group Action Problem which was first used in an isogeny-based
threshold signature by De Feo and Meyer [34, Problem 1] but was later gener-
alized to any group action in [32, Definition 8]. This problem (when k = 2) was
also used in a quantum money construction from Zhandry [56], who suggests
isogenies may be a good candidate for instantiation. We state the problem in
terms of the isogeny group action.

Problem 8.2 (k-power Decisional Diffie-Hellman Group Action Problem). Let
E ∈ Eℓℓp(O), 1 < k < N an integer, and gz ∈ cl(O). Given (k,E, [gz]E,F ),
where F ∈ Eℓℓp(O), determine whether F = [gk·z]E or whether it was sampled
uniformly randomly from Eℓℓp(O).

At first sight, when F is not random, this problem could be viewed as a hidden
shift problem where we have access to two shifts, namely (E, [gz]E, [gk·z]E). Thus
we could attempt to run the algorithm using (E, [gz]E,F ). If we obtain a viable
candidate for z, then F was in fact of the form F = [gk·z]E, otherwise it was
random. The main issues here are that due to the very small number of shifts, and
the possibility of k being very large, the probability of the algorithm returning
a correct answer when F is not random will not be very high. Nonetheless, this
approach may shed some light on the quantum security of [34], either affirming
its claims or improving the state-of-the-art.
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An OPRF from CSIDH. In [29], Delpech de Saint Guilhem and Pedersen give an
OPRF from CSIDH. In their proof of one-more unpredictability, the adversary
has access to an OPRF oracle that on input m ∈ ZN outputs [gf(m)]E, where
f is a secret polynomial of the form f(x) = a(x+ b)3 + c. The adversary in this
context can make polynomially many queries to the oracle, however, due to the
fact that the polynomial is kept secret, it is not possible to know what the shifts
are.

Other group action based cryptography. None of our work relies on the use of
isogenies, and so applying this attack to other abelian group actions remains an
interesting question.
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A More on Collision Finding

Lemma A.1. For a random function f : {1, . . . , n} → {1, . . . ,m}, the number

of collisions #{{i, j} : i ̸= j, f(i) = f(j)} has expected value n(n−1)
2m and variance

of n(n−1)
2m

(
1− 1

m

)
.

Proof. Let Xi = #{x : f(x) = i}. For any a1, . . . , am ∈ N such that
∑

i ai = n,
we have

Pr
f
(X1 = a1, . . . , Xm = am) =

n!

a1! . . . am!mn

as Prf (X1 = a1, . . . , Xm = am) = (number of choices for X1)×(number of
remaining choices for X2)×. . . (number of remaining choices for Xm) divided by
all choices. This can be written out as(

n
a1

)(
n−a1

a2

)
. . .
(
n−a1−a2−...−am−1

am−1

)
mn

=
n!

a1! . . . am!mn
.

Now let us compute Ef [xi] which is clearly the same for every i as the Xi

are identically distributed. Observe that Ef [
∑m

i=1 Xi] = n by definition. Since
expectation is linear this implies that Ef [Xi] =

n
m .

The following equations follow from the fact that Xi follow a multinomial
distribution of parameters n and (1/m, ..., 1/m).

Ef [Xi] =
n

m
,

Ef [Xi(Xi − 1)] = Ef [XiXj ] =
n(n− 1)

m2
,
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Ef [Xi(Xi − 1)(Xi − 2)] =
n(n− 1)(n− 2)

m3
,

Ef [Xi(Xi − 1)(Xi − 2)(Xi − 3)] = Ef [Xi(Xi − 1)Xj(Xj − 1)]

=
n(n− 1)(n− 2)(n− 3)

m4
.

Observe that

#{(i, j) : i ̸= j, f(i) = f(j) = k} =
Xk(Xk − 1)

2

as Xk elements are mapped to k and then any two of them provide a collision.
This implies that

#{{i, j} : i ̸= j, f(i) = f(j)} =
∑
i

Xi(Xi − 1)

2
.

Since expectation is linear and Ef [Xi(Xi−1)] = n(n−1)
m2 we get that the expecta-

tion of the collisions is 1
2m

n(n−1)
m2 = n(n−1)

2m . The result on variance follows from
the previous equations and V (X) = E[X2]− E[X]2.

Ef [(#collisions)2] = Ef [

(∑
i

Xi(Xi − 1)/2

)2

]

= 1/4
∑
i,j

Ef [Xi(Xi − 1)Xj(Xj − 1)]

= 1/4
∑
i ̸=j

Ef [Xi(Xi − 1)Xj(Xj − 1)] + 1/4
∑
i=j

Ef [Xi(Xi − 1)Xj(Xj − 1)]

=
n(n− 1)(n− 2)(n− 3)m(m− 1)

4m4
+ 1/4

∑
i

Ef [Xi(Xi − 1)Xi(Xi − 1)]

=
n(n− 1)(n− 2)(n− 3)m(m− 1)

4m4
+ 1/4

∑
i

Ef [Xi(Xi − 1)(Xi − 2)(Xi − 3)

+4Xi(Xi − 1)(Xi − 2) + 2Xi(Xi − 1)]

=
n(n− 1)(n− 2)(n− 3)(m− 1)

4m3
+

n(n− 1)(n− 2)(n− 3)

4m3

+
n(n− 1)(n− 2)

m2
+

n(n− 1)

2m

=
n(n− 1)(n− 2)(n+ 1)

4m2
+

n(n− 1)

2m

V (#collisions) =
n(n− 1)(n− 2)(n+ 1)

4m2
+

n(n− 1)

2m
− n(n− 1)n(n− 1)

4m2

=
n(n− 1)

2m

(
1− 1

m

)
⊓⊔
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A.1 Quantum many collision finding algorithm

We analyse the non-asymptotic complexity of the quantum algorithm for
many collisions finding given by Bonnetain, Chailloux, Schrottenloher and Shen
[20]. This algorithm is based on the analysis of quantum walks from Magniez,
Nayak, Roland and Santha [48] and the use of quantum walks for collisions from
Ambainis [6].

Quantum walks The quantum walk algorithm is quantum search analogous to
Grover’s algorithm [36] where the set of the search is a regular graph. For further
use, we note the proportion of desired vertices ϵ and the spectral gap of the graph
δ.

Setup cost S. The cost of producing the uniform superposition of vertices.
Update cost U . The cost of making the uniform superposition of neighbors of

a vertex.
Checking cost C. The cost of checking if a vertex is a desired one.

From [48], for an integer s, the total cost of a quantum walk is less than
(but close to)

S +
π

2
√
ϵ

((
8π√
δ
U +

1

2

(
log

2π√
δ
+ s

)2

+
3

2

(
log

2π√
δ
+ s

))
+ C

)

with success probability more than (1− arcsin
√
ϵ)×

(
1− π

2
√
ϵ2s

)
.

Quantum walks for collisions. From now on, we consider a function f : {0, 1}n →
{0, 1}m on which we want to get collisions. The expected number of collisions is
roughly 22n−m−1.

In [6], quantum walks are used for computing collisions. The idea is to apply
a quantum walk on a Johnson graph. Let n,K ∈ N. The Johnson graph J(2n,K)
is the graph of subsets of size K in {1, . . . , 2n} and two subsets are connected
if and only if their intersection is of size K − 1. The spectral gap of J(2n,K)
is δ = 2n

K(2n−K) The desired vertices are the ones containing a collision, so

ϵ ≃ K2

2m+1 .
The Setup, Update and Checking costs depend on the data structure used

for the subsets. We use the quantum radix tree structure from [55] for practical
estimations. Insertion costs 1440k2+5056k gates, and checking if an element is in
the tree costs 784k2+1612k+1 gates, where k is the height of the tree. Checking
is made with the update by checking whether the new element added to the set
and the one deleted from the set make a collision or not. For s = m − 4t + 21,
the cost is (heavily) dominated by the term

(1440m2 + 5056m)K +
2m/2

√
K

(248336m2 + 744560m)

with success probability more than
(
1− K

√
8

2m/2

)(
1− π2m/2

K
√
22s

)
.
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Reusable quantum walks for collisions. In [20], a new operation Extract is in-
troduced. The observation is that from the result of the quantum walk, one can
extract the collision and the rest can be used as a new setup state for a quantum
walk. For 2t collisions, the total cost is (heavily) dominated by the term

(1440m2 + 5056m)K +
2t+m/2

√
K

(248336m2 + 744560m)

with individual success probability more than
(
1− K

√
8

2m/2

)(
1− π2m/2

K
√
22s

)
. The sec-

ond term is not dominant from s = m− 4t+ 21.
This is optimized for

K =

(
2t+m/2+1/2(15521m+ 46535)

90m+ 316

)2/3

,

giving a total complexity of

3

2
22t/3+m/3

(
248336m2 + 744560m

)2/3 (
1440m2 + 5056m

)1/3
≃ 22t/3+m/3+16.03(m2 + 3.17m)

with the condition thatK2/2 ≤ 2m which can be approximated to t ≤ m/4− 8.18
and an individual success probability higher than 1/2 (each pair of the output
has probability higher than 1/2 to be a valid collision).

One can ensure the returned elements to be different by adding a verification
to the checking cost. This additional cost is negligible.
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