
Side-Channel and Fault Injection Attacks on
VOLEitH Signature Schemes:

A Case Study of Masked FAEST

Sönke Jendral and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{jendral,dubrova}@kth.se

Abstract. Ongoing efforts to transition to post-quantum secure public-
key cryptosystems have created the need for algorithms with a variety of
performance characteristics and security assumptions. Among the can-
didates in NIST’s post-quantum standardisation process for additional
digital signatures is FAEST, a Vector Oblivious Linear Evaluation in-the-
Head (VOLEitH)-based scheme, whose security relies on the one-wayness
of the Advanced Encryption Standard (AES). The VOLEitH paradigm
enables competitive performance and signature sizes under conservative
security assumptions. However, since it was introduced recently, in 2023,
its resistance to physical attacks has not yet been analysed. In this
paper, we present the first security analysis of VOLEitH-based signa-
ture schemes in the context of side-channel and fault injection attacks.
We demonstrate four practical attacks on a masked implementation of
FAEST in ARM Cortex-M4 capable of recovering the full secret key with
high probability (greater than 0.87) from a single signature. These at-
tacks exploit vulnerabilities of components specific to VOLEitH schemes
and FAEST, such as the all-but-one vector commitments, VOLE gener-
ation, and AES proof generation. Finally, we propose countermeasures
to mitigate these attacks and enhance the physical security of VOLEitH-
based signature schemes.

Keywords: Side-channel analysis · Fault injection · FAEST · Vector
Oblivious Linear Evaluation in-the-Head (VOLEitH) · Post-quantum
digital signature · Key recovery attack

1 Introduction

In 2024, the National Institute of Standards and Technology (NIST) published
the first set of standards from its main competition for post-quantum crypto-
graphic (PQC) algorithms for key-encapsulation mechanism ML-KEM [30] and
digital signature schemes ML-DSA [29] and SLH-DSA [32]. In an effort to enable
the use of PQC algorithms in a greater variety of use cases, NIST launched a
second competition, focusing on additional digital signature schemes based on
different underlying problems and with different performance characteristics [28].

Among the submissions selected by NIST [31] for the second round in this
competition is FAEST, a digital signature scheme based on the Vector Oblivious

2 S. Jendral and E. Dubrova

Evaluation in-the-Head (VOLEitH) paradigm introduced by Baum et al. [8] in
2023. FAEST is designed to be existentially unforgeable under chosen message
attacks (EUF-CMA) in the (quantum) random oracle model [9]. EUF-CMA
security means that an adversary with access to the public key and a signing
oracle cannot generate a valid signature for a new message.

The idea behind VOLEitH signature schemes is to use two-party VOLE cor-
relations to facilitate a zero-knowledge proof of knowledge (ZKPoK) of the com-
putation of a one-way function (OWF). The benefit of this approach is that,
assuming the correctness of the ZKPoK, the security of the signature scheme re-
lies primarily on the one-wayness of the OWF. In the case of FAEST, the OWF is
the Advanced Encryption Standard (AES) and the ZKPoK proves knowledge of
the AES state for each encryption round under a public plaintext and secret key,
thus providing strong security guarantees based only on symmetric primitives,
while offering competitive signing and verification performance and signature
sizes.

However, the VOLEitH paradigm was introduced recently and FAEST is the
only submission in the NIST competition for additional digital signatures mak-
ing use of this paradigm. Thus, FAEST has not received as much attention as
other submissions based on more mature approaches, including with respect to
the resistance to physical attacks, such a side-channel analysis and fault injec-
tion. Previous attacks on PQC algorithms [3,13,25,5,6,26] have shown that even
if algorithms are theoretically secure, their implementations might be vulnera-
ble to physical attacks. To allow developers to design and implement effective
countermeasures to such attacks, it is therefore important to identify the types
of physical attacks that can be conducted on FAEST.

Contributions: In this paper, we present the first physical security analysis of
VOLEitH-based signature schemes. The main contributions are:

i) We provide a high-level evaluation of the susceptibility of VOLEitH-based
signature schemes to side-channel and fault injection attacks, including the
analysis of the underlying VOLE correlations and all-but-one vector com-
mitments that establish these correlations.

ii) We present two single-trace deep learning-assisted power-based side-channel
attacks and two single-execution first-order voltage fault injection attacks
on the masked implementation of FAEST by Degn, Eilath and Nielsen [14].

iii) We validate the feasibility of the attacks on an ARM Cortex-M4 processor
and empirically evaluate their success rate.

iv) We propose countermeasures to mitigate these attacks.

The presented physical security analysis helps identify key vulnerable com-
ponents in VOLEitH-based signature schemes. Our experimental results show
that, for side-channel attacks, such vulnerable components are operations in-
volving witness bits and VOLE tags, while for fault injection attacks, they are
operations related to the computation of VOLE and vector commitments. These
results are expected to offer guidance to implementers of VOLEitH-based signa-

2. PREVIOUS WORK 3

ture schemes and designers of countermeasures, helping them focus their efforts
in the right direction.

It is also worth noting that, as the FAEST implementation [14] is still under
active development, not all its components are protected by masking yet. To en-
sure the long-term relevance of the presented analysis, our side-channel attacks
target components already protected by masking.

Organisation of the paper: The rest of this paper is organised as follows. Sec-
tion 2 describes previous work. Section 3 provides background information on
the VOLEitH paradigm and the FAEST algorithm. Section 4 outlines the exper-
imental setup. Section 5 discusses the susceptibility of VOLEitH-based signature
algorithms to physical attacks. Sections 6 and 7 present the side-channel attacks.
Sections 8 and 9 present the fault injection attacks. Section 10 summarises the
experimental results. Section 11 discusses potential countermeasures against the
attacks. Section 12 concludes the paper.

2 Previous work

To the best of our knowledge, the presented work is the first to evaluate the re-
sistance of FAEST (and the underlying VOLEitH paradigm) to physical attacks,
such as side-channel analysis and fault injection. Previous work has focused on
the related Multiparty Computation in the Head (MPCitH) approach [22], which
differs from VOLEitH (and FAEST) in a number of aspects. This section pro-
vides an overview of previous attacks and highlights the differences to the attacks
presented in this paper.

Godard et al. [20] describe a single-trace side-channel attack on the refer-
ence implementation of the Syndrome Decoding in the Head (SDitH) signature
scheme [1]. Specifically, they target the Galois field multiplications during the
evaluation of the shares of a secret polynomial S for each of the parties and
apply a templated soft-analytical side-channel attack. They practically evaluate
their attack on a STM32F407 (ARM Cortex-M4), and show that a number of
coefficients of S can be recovered and used to recover the secret key with an
enumeration complexity of 70–702 for all security levels from a single trace. As
a countermeasure, they propose the use of shuffling.

It is unclear how their attack would translate to FAEST, as the finite field
multiplications in FAEST are mainly performed in the larger finite field F2128 ,
rather than F28 as in SDitH, and thus use a different multiplication algorithm.
Note that, while Feneuil and Rivain [17] suggest that the VOLEitH paradigm
can be seen as a special case of a variant of the Threshold Computation in-the-
Head (TCitH) paradigm with GGM trees, the variant of SDitH that Godard et
al. consider uses a different variant of TCitH that does not have such a relation
to VOLEitH. The attack they present focuses on the underlying OWF, rather
than the broader paradigm.

Gellersen et al. [19] describe two differential power-based side-channel at-
tacks on Picnic [12]. Both attacks involve the LowMC block cipher [2], which is

4 S. Jendral and E. Dubrova

used as the OWF in Picnic. The first attack exploits the secret sharing prior to
the multiparty LowMC computation, which leaks the Hamming weight of the
unopened key shares. The second attack targets the computation of the S-boxes,
which similarly reveals information about the unopened share. They practically
evaluate their attacks on a NXP MK66FN2M0VMD18 (ARM Cortex-M4) and
demonstrate that it is possible to recover the full secret key from fewer than 1000
traces, obtainable from fewer than 30 signatures. Seker et al. [36] propose a mod-
ified variant of Picnic that uses several masking gadgets to prevent these types
of attacks. As FAEST is not based on multiparty computation, and uses AES
instead of LowMC as the underlying OWF primitive, neither the attacks [19,36]
nor the countermeasures are directly applicable.

Aranha et al. [4] also describe two side-channel attacks against Picnic. The
first attack applies a similar idea to the previous attacks to the Picnic variant
with preprocessing (Picnic3). They observe that information from an offline pre-
processing step can be combined with side-channel information about a masked
witness wire value to recover a secret key bit. They experimentally validate this
attack on a STM32F407G-DISC1 (ARM Cortex-M4) and show that leakage be-
comes clear after 2,725 traces (and thus signatures). The second attack is an
extension of the previous attacks [19,36] to Picnic3. They also propose a mask-
ing scheme that can prevent their attacks. Again, the attacks and countermea-
sures are not directly applicable to FAEST, due to differences in the underlying
paradigms. However, the masked implementation of SHAKE which they present
is also used in the masked implementation of FAEST [14] targeted in this paper,
though none of our attacks focus on this component.

3 Background

3.1 Notation

In this paper, we follow the notation of [9]. Intervals are denoted as [a..b] =
{a, . . . , b− 1, b} and [a..b) = {a, . . . , b− 1}, vectors in bold font x and matrices
in capitals X. Indexing is denoted as x[i] for the i-th element of a vector, X|i
for the i-th row of a matrix, while a ∥ b denotes the concatenation of a and b,
and x[a..b] the elements at indices a through b of a vector or list. Additionally,
we use the notation xJjK to refer to the j-th bit of a field element x.

3.2 VOLEitH signature schemes

The VOLEitH paradigm for constructing secure digital signature schemes from
VOLE-based ZKPoKs was first introduced by Baum et al. [8]. This section pro-
vides an overview of the main components of the paradigm, primarily based on
the FAEST specification [9].

Fundamentally, the VOLEitH approach involves a number of VOLE correla-
tions

qi = ∆ · ui − vi with i ∈ [0..l) (1)

3. BACKGROUND 5

over a finite field F2k , where qi ∈ F2k is a public VOLE key, ui ∈ F2 is a secret
random bit, ∆ ∈ F2k is the public global key, and vi ∈ F2k is a secret VOLE tag.

These correlations are computed using all-but-one vector commitments based
on a construction by Goldreich, Goldwasser, and Micali [21], which is referred
to as a GGM tree. In the construction, a length-doubling pseudorandom gener-
ator (PRG) is used to compute a tree with pseudorandom seeds (sdi)i∈[0..N) as
leaves, such that all-but-one of these seeds can be efficiently revealed (i.e. with
logarithmic communication cost, by revealing full subtrees instead of individual
leaves) through opening the vector commitment. From the seeds, a set of random
bit strings (ri)i∈[0..N) are derived, again using a PRG. This allows computing a

vector u ∈ Fl
2 of random bits and a vector v ∈ Fl

2k of VOLE tags as

u =

N−1∑
i=0∈F

2k

ri, v =

N−1∑
i=0∈F

2k

i · ri

and, by revealing seeds sdi for all i ̸= ∆ for random global key ∆ ∈ F2k , allows
computing a vector q ∈ Fl

2k of VOLE keys as

q =

N−1∑
i=0∈F

2k

(∆− i) · ri

= ∆ ·
N−1∑

i=0∈F
2k

ri −
N−1∑

i=0∈F
2k

i · ri

= ∆ · u− v

for the final correlation.
A useful property of the VOLE correlations is that they are linearly homo-

morphic, thus one can perform arithmetic with them. For example, given two
VOLE correlations (∆, q0), (u0, v0) and (∆, q1), (u1, v1) for a global key ∆, their
sum can be represented by the VOLE correlation (∆, q0 + q1), (u0 +u1, v0 + v1).
This approach can also be extended to constant values and other linear opera-
tions, see [9].

To be able to use such VOLE correlations to construct a proof with specific
witness bit values w ∈ Fl

2 instead of the random bits u, the prover can compute
a vector d := w − u, such that

q′ := q+∆ · d = ∆ · (u+ d)− v = ∆ ·w − v (2)

can be used to form valid VOLE correlations for w instead [9].
As a simplification, the FAEST specification [9] and a number of algorithms in

this paper occasionally interpret the vectors of the form Fl
2k given in Eq. 2 instead

as matrices of the form {0, 1}l×k. This yields the notions of a VOLE key matrix
Q and a VOLE tag matrix V, where each row corresponds to a single correlation
of the form in Eq. 1, i.e. where the columns correspond to the bit decomposition
of the field element. Clearly both representations are interchangeable.

6 S. Jendral and E. Dubrova

To simplify the explanations given in later parts of this paper, we use this
matrix representation to introduce the notion of active columns. Specifically,
we say column i of the VOLE tag or key matrix is active if the i-th bit of
the global key ∆, ∆JiK = 1. From Eq. 2, it follows that the structure of the
VOLE correlations is such that the active columns are the only columns where
the VOLE key contains information about the witness bit. This notion is useful
when attempting to recover information about the witness from the VOLE tag
and key matrices.

As a further optimisation, Baum et al. [8] extend a method described for
the SoftSpokenOT protocol of Roy [35] that allows constructing a VOLE for a
larger field from multiple VOLEs over smaller fields. As the precise details of
this construction are not relevant here, we instead refer to [8].

However, in practical terms, this optimisation means that τ individual VOLEs
over smaller fields F2k0 and F2k1 are combined together to form a VOLE over
the larger field F2k . This is only possible if all τ VOLEs correspond to the same
random bits u, so prior to the adjustment for the witness bit values in Eq. 2,
a number of correction values ci = ui − u0 are computed for i ∈ [1..τ) by the
prover (and later applied by the verifier in the same way as before), to ensure
that all VOLE correlations use the same set of random bits (i.e. the random
bits u0 computed for the first VOLE correlation). Additionally, this requires a
consistency check to ensure that the prover does not cheat when computing the
correction values, which we again do not show here and which can instead be
found in the specification [9].

Based on the VOLE correlations, Baum et al. [8] then use the interactive
QuickSilver ZKPoK protocol [40] to prove an arbitrary arithmetic circuit. Con-
cretely, the specification [9] describes the computation of a linear gate a, b, c
as wγ := a · wα + b · wβ + c and vγ := a · vα + b · vβ by the prover and
qγ := a · qα + b · qβ + c · ∆ by the verifier, which does not require any com-
munication. Further, it describes the computation of a multiplication gate a, b, c
as wγ := wα ·wβ and dγ = wγ −ui by the prover (i.e. the prover commits to the
output bit wγ), and qγ := qγ + dγ ·∆ by the verifier (i.e. the verifier verifies the
validity of the output bit). The verifier is then able to check the multiplication
by computing and checking

bγ := qα · qβ − qγ ·∆
= vα · vβ + (wα · vβ + wβ · vα − vγ) ·∆+ (wα · wβ − wγ) ·∆2︸ ︷︷ ︸

Vanishes if prover is honest

!
= a0 + a1 ·∆

(3)

using values a0 := vα · vβ and a1 := wα · vβ + wβ · vα − vγ computed by the
prover. Note that a0 and a1 are not revealed to the verifier directly, but are
instead combined across all multiplication gates and then masked using another
VOLE, as described in [9].

Using this approach, it is possible to prove an arbitrary arithmetic circuit
corresponding to the evaluation of a OWF. A potential problem for using such a

3. BACKGROUND 7

Table 1. Overview of the main parameter sets for FAEST. Values λ = {128, 192, 256}
correspond to security levels 1, 3, and 5, respectively. Each security level features both
a small (s) and fast (f) variant. For details, see [9].

Scheme λ l τ τ0 τ1 k0 k1 pk (bytes) sig (bytes)

FAEST-128s 128 1600 11 7 4 12 11 32 5006
FAEST-128f 128 1600 16 0 16 8 8 32 6336
FAEST-192s 192 3264 16 0 16 12 12 64 12744
FAEST-192f 192 3264 24 0 24 8 8 64 16792
FAEST-256s 256 4000 22 14 8 12 11 64 22100
FAEST-256f 256 4000 32 0 32 8 8 64 28400

construction in the context of a signature scheme is that it provides a designated
verifier proof, i.e. a proof which requires interaction between the prover (signer)
and verifier to establish the VOLE correlations from the all-but-one vector com-
mitments [8]. The central insight by Baum et al. [8] is that it is not necessary
that the prover is unable to learn the global key ∆ that the verifier chooses.
Instead, it is sufficient to ensure that the prover is committed to their proof
prior to learning the value of ∆, as this still prevents the prover from cheating in
the proof. Then, by applying a Fiat-Shamir transform [18], the prover is able to
simulate the protocol in their head and to compute an opening of the all-but-one
vector commitment, such that the protocol can be used non-interactively, as a
signature scheme.

3.3 FAEST algorithm

Based on the VOLEitH paradigm described in the previous section, Baum et
al. [8] construct the FAEST signature scheme which uses AES as the underlying
OWF.

In FAEST, the witness bits that the signer proves knowledge of using the
QuickSilver proof are the secret key and the state of each round of the AES
encryption. More specifically, the so-called extended witness contains the AES
cipher key and, for each round of the key schedule, the bits that form the output
of the SubWord operation, and for each round of the encryption, the bits that
form the output of the ShiftRows operation.

Then, for the key schedule and for the encryption, the algorithm performs
two passes each: a forward pass, which computes the bits (or their corresponding
VOLE tags or keys) that form the input for each S-box, and a backward pass,
which computes the bits (or their corresponding VOLE tags or keys) that form
the output for each S-box, by applying or reversing certain AES steps. For exam-
ple, the backward pass for the encryption takes the bits of the extended witness
(or their corresponding VOLE tags or keys) that correspond to the output of
the ShiftRows operation and applies an inverse ShiftRows operation to derive the
S-box output.

8 S. Jendral and E. Dubrova

Algorithm 1 FAEST.KeyGen() [9]

Output: Public key pk, secret key sk
1: while true do
2: x← {0, 1}β·128 ▷ OWF input
3: k← {0, 1}λ ▷ OWF key
4: y := Fk(x) ▷ OWF output
5: if no SubBytes or SubWords has input byte {00} then
6: return (sk := k, pk := (x,y))

These inputs and outputs are then used to compute or verify multiplicative
constraints, using the approach described in Eq. 3. Specifically, for S-box input a
and output b, the constraint ensures that a ·b = 1, which works because the AES
S-box computes a field inversion, meaning that the output b is the inverse of a.
This has an added benefit of simplifying the multiplicative constraints because
the values wγ and dγ can be omitted, as the result is constant. If during the
verification all multiplicative constraints are correct, the signature is valid.

In the following we provide an overview of the key generation, signing, and
verification algorithms in FAEST. As the signing and verification algorithms each
make use of a larger number of subprocedures, we are not able to show these
algorithms in their entirety. For a full description of all involved algorithms, we
instead refer to the specification [9]. An overview of the main parameters of the
algorithm is shown in Tab. 1. This paper focuses on FAEST-128f, though other
variants can be approached similarly.

Key generation (Alg. 1) The key generation algorithm computes a random
OWF input and OWF key. It then computes the output of the OWF under this
input and key. As it is not possible to prove a multiplication constraint for an
input that is zero using the degree-2 constraints used in FAEST1, the algorithm
ensures that no S-box in the key schedule or encryption has an input byte {00},
otherwise a new input and key is chosen. Once a suitable key and input are
found, the secret key consists of the OWF key (i.e. the cipher key), and the
public key consists of the OWF input and output.

Signing (Alg. 2) The signing algorithm first binds the public key to the mes-
sage by deriving the value to sign, µ. This string is used alongside the secret
key and additional randomness to derive the VOLEs. In addition to the VOLE
random bits u and VOLE tag matrix V, the VOLE commitment also computes
a hash hcom, full decommitments decomi for all τ parallel VOLEs and correction
values ci to fix all VOLE correlations to the same random bits. The first chal-
lenge chall1 and the responses ũ and hV are used to ensure the consistency of

1 Baum et al. [7] later showed that multiplications with zero inputs can be proven using
higher-degree constraints. However, FAEST has not been updated to take advantage
of such constraints.

3. BACKGROUND 9

Algorithm 2 FAEST.Sign(sk,M) [9]

Input: Secret key sk, message M
Output: Signature σ
1: ρ← {0, 1}λ ▷ Deterministic variant: ρ← {0}λ
2: µ := H1(pk ∥M)
3: (r, iv) := H3(sk ∥ µ ∥ ρ)
4: (hcom, (decomi)i∈[0,τ), (ci)i∈[1,τ),u,V) := FAEST.VOLECommit(r, iv)
5: chall1 := H1

2(µ ∥ hcom ∥ c1 ∥ · · · ∥ cτ−1 ∥ iv)
6: ũ := VOLEHash(chall1,u)
7: Ṽ := VOLEHash(chall1,V)
8: hV := H1(Ṽ)
9: w := AES.ExtendWitness(sk, pk)
10: d := w ⊕ u[0..l)

11: chall2 := H2
2(chall1 ∥ ũ ∥ hV ∥ d)

12: u := u[0..l+λ),V := V|[0..l+λ) ▷ Impl. may transpose internal representation of V

13: (ã, b̃) := FAEST.AES.AESProve(w,u,V, pk, chall2)
14: chall3 := H3

2(chall2 ∥ ã ∥ b̃)
15: for i ∈ [0..τ) do
16: si := ChalDec(chall3, i)
17: (pdecomi) := VC.Open(decomi, si)
18: return σ = ((ci)i∈[1..τ), ũ,d, ã, (pdecomi)i∈[0..τ), chall3, iv)

the VOLEs. The algorithm then computes the extended witness w by running
the AES encryption and storing certain bits, and, from it, the masked witness
d, before deriving a second challenge chall2 used to commit to the witness. It
then computes the QuickSilver proof of the encryption and uses it to derive the
final challenge chall3, which reveals the global key. Finally, using the global key,
the vector commitments are opened to partial decommitments that allow recon-
structing all-but-one vectors. The signature consists of the correction values ci,
the VOLE hash ũ, the masked witness bits d, part of the QuickSilver proof ã, the
partial decommitments pdecomi, the third challenge chall3, and an initialisation
vector iv.

Verification (Alg. 3) The verification algorithm extracts the individual com-
ponents of the signature. It then recomputes the signed value µ from the public
key and the message, before reconstructing the VOLEs using the third chal-
lenge, the partial decommitments, and the initialisation vector. This allows the
first challenge chall1 to be recomputed. Next, the VOLE key matrix Q is derived
by applying the correction values ci. To recompute the response hV , the VOLE
key column hashes must be adjusted to the witness bits by adding the VOLE
hash ũ to the active columns. Then, the second challenge chall2 and, from it, the
second part of the QuickSilver proof, b̃, can be recomputed. Finally, the third
challenge chall′3 can be recomputed. If the recomputed value matches the value
in the signature, the signature is valid.

10 S. Jendral and E. Dubrova

Algorithm 3 FAEST.Verify(M, pk, σ) [9]

Input: Message M , public key pk, signature σ
Output: Boolean

1: ((ci)i∈[1..τ), ũ,d, ã, (pdecomi)i∈[0..τ), chall3, iv) = σ
2: µ := H1(pk ∥M)
3: (hcom,Q

′
0, . . . ,Q

′
τ−1) := FAEST.VOLEReconstruct(chall3, (pdecomi)i∈[0..τ), iv)

4: chall1 := H1
2(µ ∥ hcom ∥ c1 ∥ · · · ∥ cτ−1 ∥ iv)

5: Q0 := Q′
0

6: for i ∈ [0..τ) do
7: b := 0 if i < τ0 else 1
8: (δ0, . . . , δkb−1) := ChalDec(chall3, i)
9: D̃i := [δ0 · ũ · · · δkb−1 · ũ]
10: if i > 0 then
11: Qi := Q′

i ⊕ [δ0 · ci · · · δkb−1 · ci]
12: Q := [Q0 · · ·Qτ−1]
13: Q̃ := VOLEHash(chall1,Q)

14: hV := H1(Q̃⊕
[
D̃0 · · · D̃τ−1

]
)

15: chall2 := H2
2(chall1 ∥ ũ ∥ hV ∥ d)

16: b̃ := FAEST.AES.AESVerify(d,Q|[0..l+λ), chall2, chall3, ã, pk)

17: chall′3 := H3
2(chall2 ∥ ã ∥ b̃, λ)

18: return true if chall3 = chall′3 else false

4 Experimental setup

This section describes the equipment and the target implementation of FAEST
used in the experiments.

4.1 Equipment

The target board is a CW308-STM32F4 that contains an ARM Cortex-M4
STM32F415RGT6 processor running at a frequency of 24 MHz. It is mounted on
a CW313 adapter board. Power traces are captured and voltage fault injection
is performed using a ChipWhisperer-Husky.

For triggering, ARM CoreSight DWT watchpoints are used, which avoids
changing the assembly instructions or register allocation of the firmware. In a real
attack, other trigger sources, such as communication with peripheral devices or
the sum of absolute differences between the power consumption and a reference
waveform could be used instead.

4.2 Target implementation

In our experiments, we use the masked FAEST implementation by Degn et
al. [14], specifically commit b2503db, which was the most recent at the time of
the experiments. At the time of writing, two further commits have introduced
changes to the computation of the extended witness (which is not targeted in

5. PHYSICAL ATTACKS ON VOLEITH SIGNATURE SCHEMES 11

this paper), certain field operations, and parts of the vector commitment and
VOLE operations. However, these changes do not address the attacks presented
in this paper and we therefore expect the attacks to translate to the most recent
version (commit 93e746d) directly.

The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -O3.

5 Physical attacks on VOLEitH signature schemes

This section describes the high-level considerations that apply to physical attacks
(both side-channel analysis and fault injection) on VOLEitH-based schemes from
an algorithmic perspective. Specifically, it explains how knowledge or control of
certain internal variables can be utilised to recover the secret key of the signature
algorithm.

Recall that the idea behind VOLEitH signature schemes is to prove the eval-
uation of an OWF for a known output. In the case of FAEST, the secret key
is therefore simply an AES cipher key and the signature generation process is a
ZKPoK of the encryption of a public plaintext under this key. The goal of an
attacker is to recover the input to the OWF by means of a physical attack.

Fundamentally, there are two components of the signature generation that
can be attacked. The first is the computation of the extended witness. In FAEST,
this is the encryption of the public value under the cipher key where specific bits
of the AES state are recorded as the witness for each round. In practice, this is
implemented as a straightforward AES encryption and, as such, known attacks
and countermeasures can be applied in this context, such as [27,34]. Furthermore,
this component appears to be under active development in the implementation
by Degn et al. [14], and future changes may affect in which way physical attacks
can be applied to it, if at all. We therefore do not consider such attack points in
this paper and leave analysis of this component of FAEST for future work.

In other VOLEitH schemes, such as MandaRain and KuMQuat [7], the com-
putation of the extended witness is conceptually similar and involves recording
the state of the Rain block cipher [15] (MandaRain) or a solution to a system of
multivariate quadratic equations (KuMQuat). In all cases, information leakage
about the extended witness may be sufficient to perform secret key recovery.
However, as the extended witness does not change across multiple invocations
of the signing procedure, it is also possible to interpret the computation of the
extended witness as a key expansion or decoding step, as found in other algo-
rithms, such as ML-DSA or MAYO [29,10]. Future algorithms may therefore
choose to only perform this step once, which limits the window of opportunity
for an attacker.

The second component is the ZKPoK of the evaluation of the OWF, particu-
larly the computations involving the VOLE correlations that encode information
about the witness. The idea is to recover a subset {wi | i ∈ S} of the witness
bits and use them to recover the OWF input. The specific witness bits that must
be recovered depend on the approach used to extract the OWF input from the

12 S. Jendral and E. Dubrova

witness. For FAEST, this means using knowledge of parts of the AES state to
recover the cipher key. For example, the first 128 bits of the witness encode the
cipher key directly, thus recovering all of these bits reveals the cipher key with-
out further processing. The next 320 bits of the witness encode the S-box output
of the key schedule. These bits can be combined to recover a full round key and
thus reveal the cipher key with some additional processing. The remaining 1152
bits encode the S-box output of the individual AES encryption rounds and can
also be used to recover the cipher key with additional processing. In all cases,
the number of witness bits required to recover the cipher key for FAEST cannot
be smaller than 128 bits, regardless of the chosen method. For other VOLEitH
schemes, the process is similar.

To illustrate the secret key recovery from the VOLE correlations, let S ⊆ [0..l)
be a subset of indices for which the corresponding witness bits {wi | i ∈ S} should
be recovered and assume that a method for deriving the secret key from the
witness bits is known. The structure given by Eq. 2 now constrains the possible
attacks that result in key recovery. Clearly, revealing witness bits directly (i.e.
via side-channel analysis) is sufficient to perform key recovery, while fixing their
values to known values (via a fault) cannot reveal new information. However, it
is also possible to recover the witness bits indirectly, i.e. through components ui

or vi, and then derive the key. For example, recovering components ui or fixing
their values to known values allows computing wi := di + ui from the public
values di. Similarly, it is also possible to recover or fix components vi to then
compute q′i−vi = ∆·wi and recover wi from the active columns. This means that
all components of the VOLE correlation are relevant in the context of physical
attacks.

In this paper, we present four attacks that target different components of the
VOLE correlations. Tab. 2 provides an overview. The first attack, the byte com-
bine attack in Section 6, is a side-channel attack that directly recovers a subset
of witness bits. The second attack, the VOLE transpose attack in Section 7, is
a side-channel attack that recovers a subset of VOLE tags that can be used to
recover the witness bits. The third attack, the counter increment skipping attack
in Section 8, is a fault injection attack that recovers a subset of random bits or a
subset of VOLE tags by fixing a variable used to derive them. The fourth attack,
the VOLE conversion abort attack in Section 9, is a fault injection attack that
fixes a subset of random bits or a subset of VOLE tags to known values directly.

6 Byte combine attack

The first attack, which we call the byte combine attack, exploits information
leakage in the bf128 byte combine bits procedure. This procedure is called
from the aes enc forward 128 1 round procedure, which is part of the VOLE
protocol proof for the encryption. Recall that the forward pass derives the input
values to the S-boxes for each of the AES rounds and their VOLE tags. In the
initial round, these input values are the XOR of the plaintext and the initial
round key, which is the cipher key. The bf128 byte combine bits procedure is

6. BYTE COMBINE ATTACK 13

Table 2. Overview of presented attacks and their targeted components; SC = side-
channel, FI = fault injection.

Type
VOLE correlation component

wi ui vi

Recover
Byte combine
SC attack

Counter increment
skipping FI attack

VOLE transpose SC
attack, Counter

increment skipping
FI attack

Fix N/Aa VOLE conversion
abort FI attack

VOLE conversion
abort FI attack

a It is not possible to reveal new information about witness bits wi by fixing their
values to known values.

1 bf128_t bf128_mul_bit(bf128_t lhs, uint8_t rhs) {

2 return bf128_and_64(lhs, -((uint64_t)rhs & 1));

3 }

4

5 bf128_t bf128_byte_combine_bits(uint8_t x) {

6 bf128_t out = bf128_from_bit(x & 1);

7 for (unsigned int i = 1; i < 8; ++i) {

8 out = bf128_add(out, bf128_mul_bit(alpha[i - 1], (x >> i) & 1));

9 }

10 return out;

11 }

Listing 1: The C code of the bf128 byte combine bits and bf128 mul bit

procedures. Sections corresponding to the assembly code in Listing 2 are high-
lighted in color.

14 S. Jendral and E. Dubrova

1 bf128_mul_bit:

2 ...

3 ldrb r1, [sp, #20]

4 ldr r4, [sp, #8]

5 sbfx ip, r1, #0, #1

6 and r2, r2, ip

7 str r2, [r0, #0]

8 ldr r2, [sp, #12]

9 and r2, ip, r2

10 ...

11

12 bf128_byte_combine_bits:

13 ...

14 str r0, [sp, #20]

15 and r9, r1, #1

16 mov r8, r6

17 ...

18 loop:

19 subs r1, r4, #1

20 mov r0, r5

21 bl get_alpha

22 asr r3, fp, r4

23 and r3, r3, #1

24 str r3, [sp, #8]

25 ...

26 bl bf128_mul_bit

27 ...

28 bne loop

29 ...

Listing 2: Simplified excerpts of the assembly code of the bf128 mul bit and
bf128 byte combine bits procedures. Sections corresponding to the C code in
Listing 1 are highlighted in color.

6. BYTE COMBINE ATTACK 15

500k 1M 1.5M 2M

−0.2

0

0.2

0 5k 10k 15k 20k

−0.2

0

0.2

0 5k 10k 15k 20k

−0.2

−0.1

0

0.1

0 150 300 450 600 750

0

50

100

150

0 150 300 450 600 750

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Trace point Trace point

First share Second share

Key byte 5 Key byte 5A
D

C
 m

e
a
s
u
r
e
m

e
n
t
 (

A
D

U
)

T
-
t
e
s
t
 s

c
o
r
e

Fig. 1. Trace segmentation process and t-test results for the bf128 byte combine bits

procedure, computed for 1000 traces. Note that bit 0 of each share does not produce
leakage and is therefore not visible in the t-test results.

0

0.005

0.01

0.015

−0.1 0 0.1 0.2

0

0.005

0.01

0.015

−0.1 0 0.1 0.2 −0.1 0 0.1 0.2

Bit = 0

Bit = 1

Bit 0 Bit 1 Bit 7

Bit 0 Bit 1 Bit 7

P
r
o
b
a
b
il
it

y
 m

a
s
s

ADC measurement (ADU)

First share

Second share

Fig. 2. Distributions of power consumption (average over 1000 traces) for bits
0, 1, and 7 at the point of maximum t-test score during the processing by
bf128 byte combine bits. Note that bit 0 does not produce information leakage as
the power consumption is independent of the bit value, while the distributions for bits
1 and 7 are clearly and similarly separated between the bit values.

16 S. Jendral and E. Dubrova

used to lift individual bits of the key and plaintext into the field F128, before
performing the addition (i.e. XOR) to derive the S-box input values.

In the implementation of Degn et al. [14], the bf128 byte combine bits pro-
cedure uses the bf128 mul bit procedure, which is the main source of leakage. In
the masked version, both of these procedures are implemented in hand-written
assembly, though they appear to have been derived from the C code of the refer-
ence implementation with minor modifications. For the sake of readability, this
C code is shown in Listing 1 instead, alongside excerpts of the actual assembly
code in Listing 2.

For each invocation, the input to the bf128 byte combine bits procedure
is a share byte of the first round key (i.e. the cipher key). The procedure first ex-
tracts bit 0 of this value in line 6 of Listing 1, which does not produce exploitable
leakage. Line 15 of Listing 2 shows that the extracted bit is kept in a register,
but not written to memory (including in the parts of the assembly code that are
omitted in Listing 2), which explains the lack of leakage. In the context of the
attack, the least significant bit of each byte of the key thus cannot be recovered
using this method and these bits are instead enumerated (at a complexity of
216).

The remaining 7 bits of each byte are then extracted one-by-one from the
byte in line 8 of Listing 1, and multiplied with constant values αi, using the
bf128 mul bit procedure. In the C code, this multiplication is realised by first
computing a 64-bit mask, whose bits are set if the extracted bit is set or cleared
if the extracted bit is not set, and then performing a bitwise AND of the mask
and the value to multiply. As the Cortex-M4 is a 32-bit processor, the assembly
code in lines 6 and 9 of Listing 2 instead performs two bitwise AND operations
on a 32-bit mask computed in line 5 using a sbfx (signed bit field extract)
instruction. The issue here is obvious: The Hamming weight of the mask value
is 0 when the bit value is 0 and 32 when the bit value is 1. This large difference
in Hamming weight is clearly visible in the power consumption of the device,
as shown in Fig. 2 and in the t-test results in Fig. 1. By observing the power
consumption, it is therefore possible to extract the witness bits (and thus the
cipher key) directly.

This type of leakage was first pointed out by Amiet et al. in their attack
on the key encapsulation mechanism NewHope [3], and it is also found in other
PQC algorithms [37,39,23]. In all cases, the behaviour being realised is a bit-
multiplication with a secret bit, which is then leaked.

A similar attack can be performed on the aes key schedule 128 masked

procedure, which applies the bf128 byte combine bits procedure to derive the
S-box input from the previous round key, thereby revealing the round key. As this
is essentially the same attack with the same underlying leakage, we did not pur-
sue this direction further, though we believe that such an attack would succeed
with a similar probability and that it can be mitigated through countermeasures
in the underlying bf128 byte combine bits procedure.

6. BYTE COMBINE ATTACK 17

Table 3. Neural network architectures used for the byte combine and VOLE transpose
attacks.

Layer type

Output shape
Byte

combine
attack

VOLE
transpose
attack

Batch Normalization 1 340 512
Dense 1 128 128

Batch Normalization 2 128 128
ReLU 128 128
Dense 2 64 64

Batch Normalization 3 64 64
ReLU 64 64
Dense 3 32 32

Batch Normalization 4 32 32
ReLU 32 32
Dense 4 2 2

6.1 Trace preprocessing and neural network training

For the profiling phase, the dataset contains 560, 000 trace segments, obtained by
capturing t = 5000 traces {T1, . . . , Tt} for known secret keys sk1, . . . , skt selected
at random and applying the cut-and-join technique of [33]. For each trace Ti,
two segments TΨ

i , Ψ ∈ {0, 1}, are extracted, containing the processing of the

first and second share. Each segment is then divided into 16 subsegments TΨ,η
i ,

η ∈ [0..16), covering the processing of one byte of the cipher key. This process
is illustrated in Fig. 1 for key byte 5. Finally, each subsegment is divided into
7 further segments TΨ,η,κ

i , κ ∈ [1..8), covering the processing of one bit of the
cipher key (recall that the first bit, bit 0, does not produce leakage), before
concatenating the segments across both shares

T̂ η,κ
i := T 0,η,κ

i ∥ T 1,η,κ
i .

To simplify the notation, in the following, we use T̂ϕ
i to refer to segment T̂ η,κ

i with
ϕ = 8η + κ, i.e. we flatten the byte and bit dimensions into a single dimension.
We also use the set R := {i ∈ [0..128) | 8 ∤ i} of bits that are recoverable using

this method. Each segment T̂ϕ
i is labelled with the value of the bit of the cipher

key being processed, skiJϕK, which is the XOR of the bits being processed in
each share.

The model is a multilayer perceptron (MLP) neural network with the archi-
tecture shown in Tab. 3. The network is of type N : R340 → {0, 1}, where 340 is
the number of samples in each segment. Note that Fig. 1 shows traces captured
with one sample per clock cycle, but in this attack, traces were captured with
four samples per clock cycle, hence the segments are longer than they appear.
The network maps each segment T̂ϕ

i into a score vector Si,ϕ = N (T̂ϕ
i), such that

18 S. Jendral and E. Dubrova

Algorithm 4 RecoverSecretKey(σ, (Si)i∈R)

1: for k ∈ {0, 1}16 do
2: for i ∈ [0..λ) do
3: if i mod 8 ̸= 0 then
4: skJiK← argmaxSi

5: else
6: skJiK← kJi/8K ▷ Enumerate bit
7: yield sk

1 #define ptr_get_bit(v, i) (v[i / 8] >> (i % 8)) & 1

2 #define ptr_set_bit(d, v, i) d[i / 8] |= v << (i % 8)

3

4 bf128_t* get_vole_aes_128_share(vbb_t* vbb, int idx, int share) {

5 memset(vbb->v_buf, 0, 16);

6 uint8_t* src = share ? vbb->v_mask_cache : vbb->vole_cache;

7 uint32_t strd = share ? 1872 : 1872 / 8;

8 // Transpose on the fly into v_buf

9 for (unsigned int col = 0; col != 128; ++col) {

10 ptr_set_bit(vbb->v_buf, ptr_get_bit(src + col * strd, idx), col);

11 }

12 return (bf128_t*)vbb->v_buf;

13 }

Listing 3: Simplified C code of the get vole aes 128 share procedure. The
section corresponding to the assembly code in Listing 4 is highlighted in colour.

Si,ϕ[α] represents the probability that bit skiJϕK of the secret key takes value
α ∈ {0, 1}:

Si,ϕ[α] = Pr[skiJϕK = α].

The model is trained for a maximum of 100 epochs with early stopping at
a patience of 15 using the Nadam optimiser with a learning rate of 0.01 and a
numerical stability constant ϵ = 10−8. The batch size is 1024. Of the data 70%
is used for training and 30% for validation.

6.2 Partial enumeration and secret key recovery method

As the leakage exploited in this attack directly reveals most bits of the secret
key, the secret key recovery is straightforward and only requires enumeration of
the missing bits, which can be done with a complexity of 216. Alg. 4 shows the
main steps.

7 VOLE transpose attack

The second attack, which we call the VOLE transpose attack, exploits leakage
during the transposition of the VOLE tag matrix in the get vole aes 128 share

7. VOLE TRANSPOSE ATTACK 19

0 0.3M 0.6M 0.9M 1.2M 1.5M 1.8M 2.1M 2.4M 2.7M

−0.4

−0.2

0

0.2

0.4

0 25k 50k 75k 100k

−0.4

−0.2

0

0.2

0 20k 40k 60k 80k

0 650 1300 1950 2600 3250

−0.4

−0.2

0

0.2

0 650 1300 1950 2600

−0.4

−0.3

−0.2

−0.1

0 64 128 192

0

5

10

15

20

0 64 128 192

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Trace point Trace point

Round 1 Round 2 Round 3 Round 4

First share Second share

Witness bit 37 Witness bit 37

VOLE tag byte 3 VOLE tag byte 3

A
D

C
 m

e
a
s
u
r
e
m

e
n
t
 (

A
D

U
)

T
-
t
e
s
t
 s

c
o
r
e

Fig. 3. Trace segmentation process and t-test results for the get vole aes 128 share

procedure, computed for 1000 traces. Note the decreasing amount of leakage from bit
0 to bit 7 for each share and the overall lower amount of leakage for the first share, as
indicated by the t-test results.

0

0.02

0.04

0.06

0.08

−0.4 −0.2 0

0

0.02

0.04

0.06

0.08

−0.4 −0.2 0

Bit = 0

Bit = 1

Bit 0 Bit 7

Bit 0 Bit 7

P
r
o
b
a
b
il
it

y
 m

a
s
s

ADC measurement (ADU)

First share

Second share

Fig. 4. Distributions of power consumption (average over 1000 traces) for bits 0 and 7
at the point of maximum t-test score during the processing by get vole aes 128 share.
Note the greater separation of the distributions for bit 0 in both shares. The distribu-
tions for bit 7 of the first share are partially affected by clipping of the ADC occurring
at −0.5 ADU, as a limitation of the capturing equipment.

20 S. Jendral and E. Dubrova

1 loop:

2 ldr r2, [r4, #16]

3 ldr r3, [r4, #40]

4 mla r2, r2, r1, r5

5 lsrs r7, r2, #3

6 lsrs r0, r1, #3

7 ldrb r3, [r3, r7]

8 ldr r7, [r4, #52]

9 and.w r2, r2, #7

10 asrs r3, r2

11 and.w ip, r1, #7

12 ldrb r2, [r7, r0]

13 and.w r3, r3, #1

14 lsl.w r3, r3, ip

15 adds r1, #1

16 orrs r3, r2

17 cmp r1, r6

18 strb r3, [r7, r0]

19 bne.n loop

a) First share

1 loop:

2 ldr r3, [r4, #64]

3 ldr r5, [r4, #52]

4 ldrb r3, [r3, r1]

5 lsrs r0, r2, #3

6 asr.w r3, r3, lr

7 ldrb.w ip, [r5, r0]

8 and.w r8, r2, #7

9 and.w r3, r3, #1

10 lsl.w r3, r3, r8

11 adds r2, #1

12 orr.w r3, r3, ip

13 cmp r2, r6

14 strb r3, [r5, r0]

15 add r1, r7

16 bne.n loop

b) Second share

Listing 4: Simplified excerpt of the assembly code of the
get vole aes 128 share procedure. Sections corresponding to the C code
in Listing 3 are highlighted in colour.

7. VOLE TRANSPOSE ATTACK 21

procedure, called from the aes key schedule backward 128 vbb vk round share

procedure, which is also part of the VOLE protocol proof for the encryption. Re-
call that the backward pass derives the output values of the S-boxes (and their
corresponding VOLE tags) of each round of the AES key schedule.

In the implementation of Degn et al. [14], the get vole aes 128 share pro-
cedure transposes individual entries of the VOLE tag matrix V dynamically,
using the ptr get bit and ptr set bit macros. The code for this procedure is
shown in Listings 3 and 4.

For each invocation of the get vole aes 128 share procedure, the 128 bits
that form the share of the VOLE tag are read from the VOLE tag matrix in
non-linear order and written to the output in transposed (i.e. linear) order. For
each share bit of the VOLE tag, the procedure thus reads a byte from the matrix,
extracts the corresponding bit using a bitwise AND operation, and updates a
byte of the output using a bitwise OR operation. These steps are also visible in
the highlighted lines of Listing 4. The information leakage is primarily caused by
the incremental update of the output bytes. Each strb operation either increases
the Hamming weight of the byte by one if the corresponding bit is set or does
not change the Hamming weight of the byte if the corresponding bit is not set.
This slight difference in Hamming weight is visible in the power consumption of
the device, as shown in Fig. 4 and in the t-test results in Fig. 3. Notably, the
difference in power consumption depending on the bit value is largest for the first
bit that is written and decreases for all subsequent bits as the Hamming weight
(and thus the power consumption) depends on all of the previously written bits.
By observing the power consumption, it is possible to extract the shares of the
VOLE tags belonging to the S-box outputs, and, from a combination of both
shares, compute the corresponding witness bits and, finally, the cipher key.

In practice, we observe that the leakage of the first share is slightly weaker
than that of the second share. The assembly code in Listing 4 shows that, while
the realised behaviour is identical between both shares, the individual instruc-
tions are similar, but not identical. Given that it is still possible to recover the
bits from the first share, we did not further investigate this difference.

We further observe that the duration of the loop for the processing of the first
share decreases by one clock cycle from the 74th bit onwards. This is caused by
the memory layout of the STM32F415RGT6, which maps the available 128KB
SRAM into a 112KB SRAM1 and a 16KB SRAM2 chip [38, p. 71, Table 3]. The
vbb->vole cache buffer, from which the VOLE tags for the first share are read,
is allocated across this boundary, causing reads from the 74th bit onwards to
be performed from SRAM2 instead. Our measurements indicate that reads from
SRAM2 take one clock cycle longer than reads from SRAM1, but we hypothesise
that the loop duration decreases, because, when reading from SRAM2 (and only
then), the ldrb instruction in line 7 of the first share of Listing 4 can be pipelined
together with the succeeding ldr instruction in line 8, which always reads from
SRAM2.

In the context of the attack, it is therefore necessary to consider bits 0–72 and
bits 73–127 separately. We further found that bits 0–7 of the first byte, bits 120–

22 S. Jendral and E. Dubrova

127 of the last byte, as well as bits 72–79 of the tenth byte (i.e. the byte where the
loop duration changes) exhibit slightly different leakage characteristics. As the
number of VOLE tag bits is quite large and recovering even just a single of these
bits in an active column is sufficient to recover the corresponding witness bit,
we elected to discard the bytes with different leakage characteristic and instead
focus on two groups of bytes: bytes 1–8 with a longer loop duration for the first
share and bytes 10–14 with a shorter loop duration. Note that the second share
is not affected by the changes in the loop duration.

It is worth noting that the get vole aes 128 share procedure is also used
by the bf128 sum poly vbb share procedure, which is called during the com-
putation of v∗ in the last steps of the AES proof, thereby leaking information
about the last 128 VOLE tags that are used to mask the vectors of multiplicative
constraints a0 and a1. The description of the multiplicative constraints in the
specification [9, Section 2.3.2] states that “[...] revealing a0 and a1 to the verifier
leaks information about the circuit values used to compute them.” However, in
FAEST the multiplication checks are performed using a linear hash function,
instead of using a0 and a1 directly. The signature therefore contains neither a0
nor a1, nor VOLE correlations directly involving either vector. At present, it is
thus unclear how knowledge of v∗ (or the VOLE tags used to compute it) can be
used to recover a0 or a1. It is further also unclear whether knowledge of a0 or a1
is sufficient to reveal the secret key or to reduce the size of the search space to
allow for enumeration. As the underlying leakage for this approach is the same
as in the VOLE transpose attack, we expect countermeasures to be applicable
to both and thus did not pursue this approach further.

7.1 Trace preprocessing and neural network training

The trace preprocessing for this attack is similar to that in the byte combine
attack.

For the profiling phase, the dataset contains two groups with 5, 120, 000
respective 3, 200, 000 trace segments, obtained by capturing t = 5000 traces
{T1, . . . , Tt} for known VOLE tag matrices V1, . . . ,Vt selected at random. For
each trace Ti, four segments T η

i , η ∈ [0..4) are extracted, each containing a single
round of the key schedule. Note that the AES-128 key schedule actually performs
a total of 10 rounds. For the attack, it is only important that four consecutive
rounds are recovered (to give a total of 4 · 32 = 128 bits of information), so an
attacker can theoretically make multiple attempts at recovering the secret key
by recovering different sets of consecutive rounds from a single trace. In prac-
tice, we found it sufficient to recover only the first four rounds. The segments
are then split into segments T η,Ψ

i , Ψ ∈ {0, 1}, containing the processing of the
first and second share within each round. Each segment is then divided into 32
further segments T η,Ψ,κ

i , κ ∈ [0..32), covering the processing of one witness bit.

Finally, each segment is divided into 16 segments T η,Ψ,κ,ν
i , ν ∈ [0..16), covering

the processing of one byte of the VOLE tag.
This process is illustrated in Fig. 3. As the leakage is clearly dependent on the

value of previous bits, individual bits are not extracted into their own segments.

7. VOLE TRANSPOSE ATTACK 23

Instead, segments
T̂ η,κ,ν
i := T η,0,κ,ν

i ∥ T η,1,κ,ν
i

are again concatenated across shares. To simplify the notation, we use T̂ϕ,π
i :=

T̂ η,κ,ν
i with ϕ = 32η + κ and π = ν, i.e. we flatten the round and witness

dimensions into a single dimension. Recall that the rounds of the key schedule
leak the S-box output for the computation of the round keys, which, for the first
four rounds, is stored in bits 128–255 of the extended witness. The corresponding
VOLE tags thus occupy rows 128–255 of the VOLE tag matrix, so in a further
simplification of notation, we consider vectors v̂i of VOLE tags with v̂i[ι] :=
ToField(Vi|128+ι) for ι ∈ [0..256) (i.e. we interpret rows 128–255 as a vector of

field elements). Each segment T̂ϕ,π
i is labelled with the 8 bits of the VOLE tag

being processed, v̂i[ϕ]J8π..8π+7K, which is the XOR of the 8 bits being processed
in each share.

As explained previously, we discard bytes 0, 9, and 15, as they exhibit differ-
ent leakage characteristics. We thus form groups

G0 := {T̂ϕ,π
i | π ∈ [1..8]},

G1 := {T̂ϕ,π
i | π ∈ [10..14]}.

In the following, we will also use the set

R := {8x+ y | x ∈ [0..16), y ∈ [0..8), x /∈ {0, 9, 15}}

of VOLE tag matrix columns that are recoverable using this method.
In total, we train 16 MLP neural networks Ng,n : R512 → {0, 1}, g ∈

{0, 1}, n ∈ [0..8), with the architecture shown in Tab. 3, one for each bit of

a byte in both of the groups. The networks map each segment T̂ϕ,π
i ∈ Gg into a

score vector Si,ϕ,8π+n = Ng,n(T̂
ϕ,π
i), such that Si,ϕ,8π+n[α] represents the prob-

ability that the VOLE tag bit v̂i[ϕ]J8π + nK takes value α ∈ {0, 1}:

Si,ϕ,8π+n[α] = Pr[v̂i[ϕ]J8π + nK = α]. (4)

The models are trained using the same strategy and parameters as in the
byte combine attack.

7.2 Partial enumeration and secret key recovery method

Unlike in the byte combine attack, knowledge of the VOLE tags does not reveal
the secret key directly. In this section, we describe an approach for secret key
recovery that combines information about several VOLE tags and uses the max-
imum predicted class probability to select certain bits for enumeration, thereby
increasing the success probability of the attack.

Alg. 5 shows the steps of the approach. As input, the algorithm receives the
signature σ and a list of predictions (Si,j)i∈[0..λ),j∈R (note that Eq. 4 implicitly
flattens the VOLE tag byte and bit dimensions into a single dimension indexed

24 S. Jendral and E. Dubrova

Algorithm 5 RecoverSecretKey(σ, (Si,j)i∈[0..λ),j∈R)

1: ((ci)i∈[1..τ), (pdecomi)i∈[1..τ), chall3, iv) = σ

2: (Q,∆)← VOLEReconstructAndCorrect(chall3, iv, (pdecomi)i∈[1..τ), (ci)i∈[1..τ), l̂)
3: R∆ ← R ∩ {i ∈ [0..λ) | ∆JiK = 1} ▷ Valid active columns
4: for i ∈ [0..λ) do
5: q[i]← ToField(Q|λ+i)
6: for i ∈ [0..λ) do
7: for j ∈ R∆ do
8: w[j]← q[i]JjK⊕ argmax(Si,j)
9: m0 ←

∑
j∈R∆

(1−w[j]) ·max(Si,j) +w[j] ·min(Si,j)
10: m1 ←

∑
j∈R∆

w[j] ·max(Si,j) + (1−w[j]) ·min(Si,j)
11: b[i]← argmax({m0,m1}) ▷ Witness bit prediction
12: p[i]← max({m0,m1})/(m0 +m1) ▷ Prediction probability
13: e← argsort(p)[0..32) ∩ {i ∈ [0..λ) | p[i] ≤ 0.9}
14: for k ∈ {0, 1}|e| do
15: for i ∈ [0..|e|) do
16: b[e[i]]← kJiK ▷ Enumerate bits
17: k′

4 ← b[0..32), k
′
8 ← b[32..64), k

′
12 ← b[64..96), k

′
16 ← b[96..128)

18: k′
7 ← SubWord−1(RotWord−1(k′

8 ⊕ k′
4 ⊕ Rcon[1]))

19: k′
11 ← SubWord−1(RotWord−1(k′

12 ⊕ k′
8 ⊕ Rcon[2])))

20: k′
15 ← SubWord−1(RotWord−1(k′

16 ⊕ k′
12 ⊕ Rcon[3]))

21: k′
10 ← k′

11 ⊕ k′
7

22: k′
14 ← k′

15 ⊕ k′
11

23: k′
13 ← k′

14 ⊕ k′
10 ▷ Fourth round key fully recovered

24: for i ∈ [2..0] do ▷ Run key schedule in reverse to get original cipher key
25: k′

4i+0 ← k′
4(i+1)+0 ⊕ SubWord(RotWord(k′

4(i+1)+3 ⊕ k′
4(i+1)+2 ⊕ Rcon[i]))

26: k′
4i+1 ← k′

4(i+1)+1 ⊕ k′
4(i+1)+0

27: k′
4i+2 ← k′

4(i+1)+2 ⊕ k′
4(i+1)+1

28: k′
4i+3 ← k′

4(i+1)+3 ⊕ k′
4(i+1)+2

29: yield sk := k′
0 ∥ k′

1 ∥ k′
2 ∥ k′

3

by j and that i now indexes the witness bit, not the trace). From there, the VOLE
key matrix Q is reconstructed, using the VOLEReconstructAndCorrect procedure,
which is equivalent to steps 3 to 12 of Alg. 3.

Then, using the models’ predictions Si,j , for each witness bit, the predicted
class probabilities for witness bit value 0 and 1 are added up across all VOLE
tag bits in the active columns. This requires adjusting the predicted class prob-
abilities such that they correspond to the resulting witness bit, not the VOLE
tag. For example, a VOLE tag prediction of 1 for a VOLE key of 1 corresponds
to a witness bit prediction of 0, not 1, due to Eq. 2. The final witness bit pre-
diction is then given by whether the total predicted class probability for the
witness bit is larger for bit value 0 or 1. We found that this approach better
accounts for VOLE tag predictions with lower maximum predicted class proba-
bility, which would otherwise be overrepresented in a majority vote on bit values
alone. A normalised probability of the witness bit prediction (i.e. a probability
in (0.5, 1.0] indicating the overall confidence in the witness bit prediction) is also

8. COUNTER INCREMENT SKIPPING ATTACK 25

1 void prg(uint8_t* key, uint8_t* iv, uint8_t* out, size_t outlen) {

2 aes128ctx_publicinputs ctx128;

3 aes128_ecb_keyexp_publicinputs(&ctx128, key);

4 for (; outlen >= 16; outlen -= 16, out += 16) {

5 aes128_ecb_publicinputs(out, iv, 1, &ctx128);

6 aes_increment_iv(iv);

7 }

8 aes128_ctx_release_publicinputs(&ctx128);

9 }

Listing 5: The C code of the prg procedure. The section corresponding to the
assembly code in Listing 6 is highlighted in colour.

1 loop:

2 mov r0, r4

3 mov r3, r5

4 movs r2, #1

5 mov r1, sp

6 bl aes128_ecb_publicinputs

7 adds r4, #16

8 mov r0, sp

9 bl aes_increment_iv

10 cmp r4, r7

11 bne.n loop

12 ...

Listing 6: Simplified excerpt of the assembly code of the prg procedure. The
section corresponding to the C code in Listing 5 is highlighted in colour.

computed. For enumeration, up to 32 bits with lowest normalised probability (up
to a normalised probability of 0.9) are selected and the corresponding witness
bits are enumerated. The value 0.9 was chosen empirically to reduce the average
enumeration cost.

The resulting witness prediction then gives the words that form the S-box
output for round keys 1–4 during the key schedule. From this, all 4 words of
round key 4 are recomputed, which allows applying the key schedule in reverse
to derive the initial round key, which is the cipher key.

8 Counter increment skipping attack

The third attack, which we call the counter increment skipping attack, skips the
incrementation step for the counter in the pseudorandom generator prg used
to derive the per-tree keys from the root key during the opening of the vector
commitment.

26 S. Jendral and E. Dubrova

Recall that, instead of computing a single large VOLEitH instance, FAEST
computes τ = 16 different VOLEitH instances and then combines these to con-
struct the final VOLE correlation. The individual VOLEitH instances each use
vector commitments computed using a GGM tree. To derive the keys that are
used as the roots of the GGM trees, FAEST expands a so-called root key into
several individual keys using a pseudorandom generator, which is AES in CTR
mode. The pseudorandom generation of the expanded keys is therefore performed
by encrypting an incrementing counter under the root key and using each block
of output as a root for a GGM tree.

The idea behind the attack is to skip the incrementation of the counter with
a single fault during the expansion of the keys. This causes the pseudorandom
generator to generate the same output for two blocks, meaning that two neigh-
bouring GGM trees are derived from the same root. As the nodes of the GGM
tree are derived pseudorandomly from the root, the leaves of these two trees, i.e.
the seeds sdi, will be the same. For both trees, the value of the global key ∆ will
now choose all-but-one of these seeds to reveal publicly in the signature. If the
value that is missing in the first tree is revealed in the second tree, it is possible
to recompute the entire GGM tree and thereby break the hiding property of the
VOLE commitment. Knowledge of the full tree is sufficient to derive the values
ui or vi, and, from there, recover the witness bits from the signature. In cases
where the same seed sdi is missing from both trees (i.e. ∆J0..7K = ∆J8..15K), it is
not possible to recover a tree and the attack fails. As the value of ∆ is uniformly
and randomly distributed, the case where the same seed is selected in both trees
occurs with the probability of approximately 2−8 and is therefore not a problem
in practice.

In the implementation of Degn et al. [14], the computation of the GGM trees
is performed twice, once to compute all VOLE tags prior to the VOLE protocol
proof using the partial vole commit column procedure and once to compute
each GGM tree individually during the opening of the vector commitment at
the end of the signature generation using the vector open ondemand procedure.
Fixing the roots of the GGM trees during the computation of the VOLE tags
therefore does not lead to key recovery, because the partial decommitments in
the signature are recomputed from the original root key during the opening of
the vector commitment and are not faulty. We instead target the pseudorandom
generator procedure prg called in the vector open ondemand procedure. By
skipping the branching to the aes increment iv procedure in line 6 of Listing 5
(i.e. by skipping the bl instruction in line 9 of Listing 6), the prg procedure will
generate two identical blocks of output, leading to two identical GGM trees.

8.1 Secret key recovery method

Recovering the seed from a signature with two identical GGM trees is straight-
forward. Alg. 6 shows the steps of the approach. If the same seed is missing in
both trees, the recovery fails. Otherwise, the seeds of the individual trees are
reconstructed, the missing seed in the first tree is taken from the second tree,
and the vector u is recomputed from the now complete set of seeds. Using u and

9. VOLE CONVERSION ABORT ATTACK 27

Algorithm 6 RecoverSecretKey(σ)

1: (d, (pdecomi)i∈[1..τ), chall3, iv)← σ
2: (δ0,0, . . . , δ0,k1−1)← ChalDec(chall3, 0)
3: (δ1,0, . . . , δ1,k1−1)← ChalDec(chall3, 1)
4: ∆0 ← NumRec((δ0,0, . . . , δ0,k1−1))
5: ∆1 ← NumRec((δ1,0, . . . , δ1,k1−1))
6: if ∆0 = ∆1 then return ⊥ ▷ Cannot recover if same seed is missing

7: (s0,j)j∈[0..2k1),j ̸=∆0
← VC.Reconstruct(pdecom0, (δ0,0, . . . , δ0,k1−1), iv)

8: (s1,j)j∈[0..2k1),j ̸=∆1
← VC.Reconstruct(pdecom1, (δ1,0, . . . , δ1,k1−1), iv)

9: for j ∈ [1..2k1) do sdj := s0,j⊕∆0

10: sd0 := s1,∆0 ▷ Use missing seed from second tree
11: u← ConvertToVOLE(sd0, . . . , sd2k1−1, iv, l̂)
12: w← d[0..λ) ⊕ u[0..λ)

13: return sk := w

the vector d from the signature, the witness w is recovered and the secret key
(i.e. the first 128 bits) is extracted.

Note that it is also possible to compute a VOLE tag matrix from the full set
of seeds and to recover w from the VOLE correlations. This approach works in
the same cases, because ∆0 ̸= ∆1 implies that at least one column in the VOLE
tag matrices derived from the first or second tree is active. As it is also possible
to take the missing seed in the second tree from the first tree (as opposed to the
other way around), both VOLE tag matrices can be computed. Thus, a VOLE
tag for an active column is known and can be used to recover w. However, as
there is no benefit to this slightly more complicated approach, we only present
the recovery from u.

9 VOLE conversion abort attack

The fourth attack, which we call the VOLE conversion abort attack, targets the
conversion of the first GGM tree seeds to the vector u0 of random bits and the
VOLE tag matrix V0 during the VOLE commitment.

The idea behind the attack is to abort the conversion of the seeds to the
VOLE so that the output is dependent only on the first seed. In cases where this
seed is revealed in a partial decommitment in the signature (i.e. where ∆J0..7K ̸=
0), u0 andV0 are thereby fixed to known values that can be recomputed to reveal
the secret key. In cases where the first seed is missing (i.e. where ∆J0..7K = 0),
the attack fails, which occurs with approximate probability 2−8 and is therefore
not a problem in practice.

In the implementation by Degn et al. [14], the VOLE conversion and commit-
ment are merged into the partial vole commit column procedure. By aborting
the loop in line 14 of Listing 7 (i.e. by skipping the bhi instruction in line 5 of
Listing 8) during the VOLE commitment to the first GGM tree, the vector u0

of random bits and the VOLE tag matrix V0 depend only on the first seed and
can thus be recomputed. Note that it would also be possible to abort the loop

28 S. Jendral and E. Dubrova

1 void partial_vole_commit_column(uint8_t* rootKey, uint8_t* iv,

2 vole_t* out) {

3 uint8_t* expanded_keys[16*16];

4 prg(rootKey, iv, expanded_keys, 128, 16*16);

5 vec_com_t vec_com;

6 int factor_32 = 234 / 4;

7 for (unsigned int idx = 0; idx < 16; idx++) {

8 vector_commitment(expanded_keys + idx*16, &vec_com);

9 vole_t* cur_vole = out + idx*(sizeof vole_t);

10 uint8_t* u = cur_vole->u;

11 uint8_t* c = cur_vole->c;

12 uint8_t* v = cur_vole->v;

13

14 for (unsigned int i = 0; i < 256; i++) {

15 extract_sd_com(&vec_com, iv, i, sd, com);

16 prg(sd, iv, r, 128, 234);

17

18 // Compute u

19 xor_u32_array(u, r, u, factor_32);

20 xor_u8_array(u + factor_32*4, r + factor_32*4,

21 u + factor_32*4, 234 - factor_32*4);

22

23 // Compute VOLE tags

24 for (unsigned int j = i*8; j < (i+1)*8; j++) {

25 unsigned int t_v = j - i*8;

26 if ((i >> t_v) & 1) {

27 xor_u32_array(v + j, r, v + j, factor_32);

28 xor_u8_array(v + j + factor_32*4, r + factor_32*4,

29 v + j + factor_32*4, 234 - factor_32*4);

30 }

31 }

32 }

33

34 if (idx != 0) {

35 // Compute correction values

36 xor_u8_array(out->u, u, c, 234);

37 }

38 }

39 }

Listing 7: The C code of the partial vole commit column procedure. The
section corresponding to the assembly code in Listing 8 is highlighted in colour.

9. VOLE CONVERSION ABORT ATTACK 29

1 ...

2 ldr r3, [r7, #112]

3 adds r4, #1

4 cmp r3, r4

5 bhi.w loop

6 mov fp, r6

7 ldr r3, [r7, #124]

8 ...

Listing 8: Simplified excerpt of the assembly code of the
partial vole commit column procedure. The section corresponding to the C
code in Listing 7 is highlighted in colour.

Algorithm 7 RecoverSecretKey(σ)

1: (d, (pdecomi)i∈[1..τ), chall3, iv)← σ
2: (δ0,0, . . . , δ0,k1−1)← ChalDec(chall3, 0)
3: ∆0 ← NumRec(k1, (δ0,0, . . . , δ0,k1−1))
4: if ∆0 = 0 then return ⊥ ▷ Cannot recover if first seed is missing

5: (sj)j∈[0..2k1),j ̸=∆0
← VC.Reconstruct(pdecom0, (δ0,0, . . . , δ0,k1−1), iv)

6: u← PRG(s0, iv, l̂)
7: w← d[0..λ) ⊕ u[0..λ)

8: return sk := w

during the VOLE commitment for a different GGM tree k and use either its
VOLE tag matrix Vk or recompute the original vector u0 from the correction
values ck = u0 ⊕ uk and knowledge of uk.

We further found that it is occasionally possible to skip the loop entirely,
thereby causing the value of u0 to be zeroised (the implementation explicitly
zero-initialises this value). However, this fault only succeeds with very low prob-
ability and causes the device to crash if it fails.

9.1 Secret key recovery method

Recovering the secret key from a signature with a partial VOLE is similar to
the recovery in the counter increment skipping attack. Alg. 7 shows the steps
of the approach. If the first seed of the first GGM tree is missing, the recovery
fails. Otherwise, the seeds of the first tree are reconstructed. The vector u can
then be derived from the first seed using the PRG pseudorandom generator, and,
like in the previous attack, can be used to recover the witness w and the secret
key. Note that the implementation by Degn et al. [14] does not reorder the seeds
during the VOLE commitment. The output of the ConvertToVOLE procedure is
independent of the order of the individual seeds if all seeds are provided, thus
the lack of reordering has no effect on the generated signature. However, in the
context of the attack, it is important that all seeds used prior to the VOLE

30 S. Jendral and E. Dubrova

Table 4. Empirical success probabilities and enumeration complexities for 1000 secret
keys selected at random.

Byte
combine
attack

VOLE transpose
attack

Counter
increment
skipping
attack

VOLE
conversion
abort attack

0.997 (216) 0.989 (≤ 232) 0.952 (0) 0.871 (0)

conversion being aborted are known. Thus, if the implementation had reordered
the seeds, aborting the loop after the first iteration would not have resulted in
secret key recovery, because the needed seed (i.e. the seed at index ∆0) would
have been missing from the signature.

As in the counter increment skipping attack, it is also possible to compute
the VOLE tag matrix and recover w from the VOLE correlations. Again, this
approach works in the same cases, because ∆0 ̸= 0 implies that at least one
column in the VOLE tag matrix derived from the first tree is active. Thus,
recomputing the VOLE tag matrix from the first seed gives a VOLE tag in an
active column that can be used to recover w. As before, there is no benefit to this
slightly more complicated approach, which is why we only present the recovery
from u.

10 Experimental results

This section describes the results of the presented side-channel and fault in-
jection attacks. The stated probabilities are empirical probabilities (mean over
1000 secret keys selected at random) for recovering the secret key from a single
execution of the signing procedure. The results are summarised in Tab. 4.

For the byte combine attack, we train a neural network as described in Sec-
tion 6.1. Using this network and the technique described in Section 6.2, we are
able to recover the secret key in 99.7% of 1000 attempts, with an enumeration
of 216 for the bits that cannot be recovered using the attack.

For the VOLE transpose attack, we train 16 neural networks as described in
Section 7.1. Using these networks and the technique described in Section 7.2, we
are able to recover the secret key in 98.9% of 1000 attempts, with an average
enumeration of 25.21 and a maximum enumeration of 232. Without enumeration,
the attack still succeeds with the probability of 91.7%.

For the counter increment skipping attack, we are able to recover the secret
key in 95.2% of 1000 attempts using the technique described in Section 8.1.
Among the unsuccessful attempts, we encounter the scenario where the same
seed is missing from both GGM trees for three signatures.

For the VOLE conversion abort attack, we are able to recover the secret key
in 87.1% of 1000 attempts using the technique described in Section 9.1. Among
the unsuccessful attempts, we encounter the scenario where the first seed is
missing from the first GGM tree for two signatures.

11. COUNTERMEASURES 31

11 Countermeasures

This section discusses potential countermeasures against the presented side-
channel and fault injection attacks.

11.1 Countermeasures common to both side-channel attacks

One approach to protect against the byte combine attack and the VOLE trans-
pose attack is to remove the underlying bitwise leakage by parallelising opera-
tions. In both attacks, the bit-by-bit processing allows secrets to be extracted,
even in the presence of masking. As shown in [16], higher-order masking coun-
termeasures are not effective unless the bitwise leakage is eliminated. This may
be achieved by bitslicing the operations which need to be protected, to ensure
that multiple bits are processed in parallel.

A different approach is to employ shuffling [11] to randomly reorder oper-
ations at runtime. While this approach still allows an attacker to identify the
value of bits being processed, it makes it harder for the attacker to map these
bits into the secrets. It is important to ensure that the shuffling procedure is it-
self resistant to physical attacks, such as [24], and that the number of operations
being shuffled is sufficiently large to not be enumerable.

11.2 Countermeasures against the byte combine attack

In the paper [3] first identifying this type of leakage in NewHope, several coun-
termeasures were proposed. One approach involves minimising the leakage by
reducing the number of bits in the generated mask. This approach is also ap-
plicable to the bf128 byte combine bits procedure, as the left operands of the
bit multiplications are constant generator values αi with known bit-patterns.
Though, as pointed out in [3], even a smaller mask can generate sufficient leak-
age to enable an attack, so this countermeasure alone may not be sufficient in
practice.

The authors of [3] also suggest the use of shuffling, though the approach they
present for NewHope of reordering the multiplications in the loop cannot be
translated to FAEST directly, because the bf128 byte combine bits procedure
processes individual bytes and the seven bit operations that could be reordered
in this way are easily enumerable. Instead, the shuffling should be performed at
a higher level, across both bytes and bits.

Note that the byte combine attack would not be prevented by using the
Even-Mansour (EM) variants of FAEST that instead use AES with a public key
and secret input (see [9]), as the implementation by Degn et al. [14] processes
the input using the same bf128 byte combine bits function as the one used
for the key.

11.3 Countermeasures against the VOLE transpose attack

As mentioned previously, shuffling the order in which bits are read and written
during the transpose prevents the VOLE transpose attack. When implementing

32 S. Jendral and E. Dubrova

such type of shuffling for this procedure, care must be taken to shuffle both the
order of witness bits and the order of VOLE tag matrix columns that are being
processed, as the Hamming weight of a VOLE tag is sufficient for distinguishing
a witness bit, so it is not sufficient to simply reorder the VOLE tag matrix
columns.

We also experimented with using the bit-banding feature available in some
Cortex-M4 processors [38, Section 2.3.3]. This feature maps part of the original
address space into an alias region, such that individual bits in the original ad-
dress space are word-addressable in the alias region. This allows eliminating the
bitwise arithmetic operations used to extract and insert individual bits during
the transpose. However, we found that storing individual bits to memory still
produced sufficiently strong leakage to distinguish individual bit values.

Note that this attack is also not prevented by using the EM variants of
FAEST, because, in the implementation by Degn et al. [14], the combined for-
ward and backward pass for the proof of the encryption also uses the get vole aes 128 share

procedure, which leaks VOLE tags for witness bits of the encryption.

11.4 Countermeasures common to both fault attacks

To protect against both the counter increment skipping attack and the VOLE
conversion abort attack, it is possible to check the validity of the generated signa-
ture. In both cases, the attacks cause the generated signature to be invalid, which
can be detected and used to abort the signing procedure without revealing the
signature, thereby preventing the attacks. Note that, for the counter increment
skipping attack, this is only possible due to how the implementation by Degn
et al. [14] handles the opening of the vector commitments. As described in Sec-
tion 8, in the implementation, the opening procedure recomputes the expanded
keys and GGM trees from a root key. A fault during the opening therefore causes
the partial decommitments to not match the VOLE correlations used to compute
the rest of the signature. In an implementation that only computes the GGM
trees once, the VOLE correlations would match the partial decommitments and
the attack could thus not be detected in this way. The VOLE conversion abort
attack always causes the generated signature to become invalid, even without
repeating computations.

More broadly, both attacks could also be prevented by eliminating the branches
that are targeted by the fault injection. For the counter increment skipping at-
tack, this would involve inlining the aes increment iv procedure into the prg

procedure (or combining it with the encryption). As the aes increment iv pro-
cedure is relatively simple, this approach would be an effective way of preventing
the attack. For the VOLE conversion abort attack, this would require unrolling
the loop that is targeted by the fault injection. Due to the number of iterations
of this loop (256 for FAEST-128f) being quite large, this approach is likely to be
practically infeasible.

12. CONCLUSION 33

11.5 Countermeasures against the counter increment skipping
attack

One approach to prevent the counter increment skipping attack is to check for
identical GGM trees during the signature generation. This can be accomplished,
for example, by explicitly checking the expanded keys ri used to perform the
vector commitments, or by comparing the computed commitments comi during
the VOLE commitment. It is also possible to use the vectors of correction values
ci to detect identical trees. If the first and second tree are identical, the first set
of correction values is all-zero. If two other neighbouring trees are identical, their
correction values are identical. If identical trees are detected, the signing should
be aborted without revealing the signature, thereby preventing the attack.

A different approach is to eliminate the use of multiple GGM trees entirely
by replacing them with a batch all-but-one vector commitment, as proposed
in [7]. Their approach instead uses a single larger tree to derive the seeds used
to compute the VOLE correlations, thereby eliminating the need to expand a
root key into several keys and thus preventing the attack.

11.6 Countermeasures against the VOLE conversion abort attack

As mentioned in Section 9.1, reordering the seeds during the VOLE conversion
in the VOLE commitment to the ordering dictated by the specification [9] ef-
fectively prevents the attack. The reason for this is that the loop abort causes
the faulty VOLE to depend only on the first seed. If this seed is missing from
the signature (i.e. if the missing seed is processed first), it is not possible to
recompute the faulty VOLE and recover the secret key. Note that shuffling the
order in which the VOLEs are processed during the conversion is not enough
to prevent the attack, as all-but-one of the possible seeds are included in the
signature and the value of the faulty VOLE could thus easily be enumerated.

It is also possible to use a similar approach to the detection of identical GGM
trees for the counter increment skipping attack involving the correction values.
In the implementation by Degn et al. [14], the buffer containing the correction
values is explicitly zero-initialised. Thus, when aborting the loop, the correction
values computed in later iterations will instead by zero, which can be detected
directly or through the comparison of neighbouring correction values proposed
in the previous section. If a loop abort is detected in this way, the signing should
be aborted without revealing the signature, thereby preventing the attack.

12 Conclusion

This paper presents the first evaluation of the resistance of VOLEitH-based sig-
nature schemes to side-channel and fault injection attacks. We demonstrated how
knowledge of individual components of the underlying VOLE correlations can be
exploited to recover the secret key. We further presented practical single-trace
deep learning-assisted power-based side channel attacks and single-execution

34 S. Jendral and E. Dubrova

first-order voltage fault injection attacks on a masked implementation of FAEST,
successfully recovering the full secret key with a probability greater than 87%.
We also proposed countermeasures against these attacks.

Our results highlight the importance of protecting operations involving wit-
ness bits and VOLE tags from side-channel attacks, as well as the need to ensure
that operations involving the computation of VOLE and vector commitments
are resilient to fault injection attacks.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation and by the Swedish Civil Contingencies Agency (Grant No. 2020-11632).

References

1. Aguilar Melchor, C., Feneuil, T., Gama, N., Gueron, S., Howe, J., Joseph, D.,
Joux, A., Persichetti, E., H. Randrianarisoa, T., Rivain, M., Yue, D.: The syndrome
decoding in the head (SD-in-the-Head) signature scheme (May 2023), https://sdit
h.org/docs/sdith-package-v1.zip

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 9056, pp. 430–454. Springer
(2015). https://doi.org/10.1007/978-3-662-46800-5 17

3. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating NewHope with
a single trace. In: Ding, J., Tillich, J. (eds.) Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12100, pp. 189–205. Springer
(2020). https://doi.org/10.1007/978-3-030-44223-1 11

4. Aranha, D.F., Berndt, S., Eisenbarth, T., Seker, O., Takahashi, A.,
Wilke, L., Zaverucha, G.: Side-channel protections for Picnic signatures.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 239–282 (2021).
https://doi.org/10.46586/TCHES.V2021.I4.239-282

5. Aulbach, T., Campos, F., Krämer, J., Samardjiska, S., Stöttinger, M.: Separat-
ing oil and vinegar with a single trace side-channel assisted Kipnis-Shamir attack
on UOV. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(3), 221–245 (2023).
https://doi.org/10.46586/TCHES.V2023.I3.221-245

6. Aulbach, T., Marzougui, S., Seifert, J., Ulitzsch, V.Q.: MAYo or MAY-not: Explor-
ing implementation security of the post-quantum signature scheme MAYO against
physical attacks. In: Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2024, Halifax, NS, Canada, September 4, 2024. pp. 28–33. IEEE (2024).
https://doi.org/10.1109/FDTC64268.2024.00012

7. Baum, C., Beullens, W., Mukherjee, S., Orsini, E., Ramacher, S., Rechberger,
C., Roy, L., Scholl, P.: One tree to rule them all: Optimizing GGM trees and
OWFs for post-quantum signatures. In: Chung, K., Sasaki, Y. (eds.) Advances

https://sdith.org/docs/sdith-package-v1.zip
https://sdith.org/docs/sdith-package-v1.zip
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-030-44223-1_11
https://doi.org/10.46586/TCHES.V2021.I4.239-282
https://doi.org/10.46586/TCHES.V2023.I3.221-245
https://doi.org/10.1109/FDTC64268.2024.00012

12. CONCLUSION 35

in Cryptology - ASIACRYPT 2024 - 30th International Conference on the Theory
and Application of Cryptology and Information Security, Kolkata, India, December
9-13, 2024, Proceedings, Part I. Lecture Notes in Computer Science, vol. 15484,
pp. 463–493. Springer (2024). https://doi.org/10.1007/978-981-96-0875-1 15

8. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L.,
Scholl, P.: Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-Head. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryp-
tology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part
V. Lecture Notes in Computer Science, vol. 14085, pp. 581–615. Springer (2023).
https://doi.org/10.1007/978-3-031-38554-4 19

9. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Majenz, C., Mukherjee,
S., Orsini, E., Ramacher, S., Rechberger, C., Roy, L., Scholl, P.: FAEST: Algorithm
Specifications (July 2023), https://faest.info/faest-spec-v1.1.pdf

10. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO (June
2023), https://pqmayo.org/assets/specs/mayo.pdf

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Computer
Science, vol. 1666, pp. 398–412. Springer (1999). https://doi.org/10.1007/3-540-
48405-1 26

12. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D.
(eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. pp. 1825–1842. ACM (2017). https://doi.org/10.1145/3133956.3133997

13. Chen, Z., Karabulut, E., Aysu, A., Ma, Y., Jing, J.: An efficient non-
profiled side-channel attack on the CRYSTALS-Dilithium post-quantum sig-
nature. In: 39th IEEE International Conference on Computer Design, ICCD
2021, Storrs, CT, USA, October 24-27, 2021. pp. 583–590. IEEE (2021).
https://doi.org/10.1109/ICCD53106.2021.00094

14. Degn, J.T., Eilath, J., Nielsen, K.: pqm4-faest, https://github.com/johandegn/p
qm4-faest

15. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.:
Shorter signatures based on tailor-made minimalist symmetric-key crypto. In:
Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022. pp. 843–857. ACM (2022).
https://doi.org/10.1145/3548606.3559353

16. Dubrova, E., Ngo, K., Gärtner, J., Wang, R.: Breaking a fifth-order masked im-
plementation of CRYSTALS-Kyber by copy-paste. In: Fukumitsu, M., Hasegawa,
S. (eds.) Proceedings of the 10th ACM Asia Public-Key Cryptography Workshop,
APKC 2023, Melbourne, VIC, Australia, July 10-14, 2023. pp. 10–20. ACM (2023).
https://doi.org/10.1145/3591866.3593072

17. Feneuil, T., Rivain, M.: Threshold computation in the head: Improved framework
for post-quantum signatures and zero-knowledge arguments. IACR Cryptol. ePrint
Arch. p. 1573 (2023), https://eprint.iacr.org/2023/1573

https://doi.org/10.1007/978-981-96-0875-1_15
https://doi.org/10.1007/978-3-031-38554-4_19
https://faest.info/faest-spec-v1.1.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1109/ICCD53106.2021.00094
https://github.com/johandegn/pqm4-faest
https://github.com/johandegn/pqm4-faest
https://doi.org/10.1145/3548606.3559353
https://doi.org/10.1145/3591866.3593072
https://eprint.iacr.org/2023/1573

36 S. Jendral and E. Dubrova

18. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194. Springer (1986). https://doi.org/10.1007/3-
540-47721-7 12

19. Gellersen, T., Seker, O., Eisenbarth, T.: Differential power analysis of the Picnic
signature scheme. In: Cheon, J.H., Tillich, J. (eds.) Post-Quantum Cryptography -
12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20-22,
2021, Proceedings. Lecture Notes in Computer Science, vol. 12841, pp. 177–194.
Springer (2021). https://doi.org/10.1007/978-3-030-81293-5 10

20. Godard, J., Aragon, N., Gaborit, P., Loiseau, A., Maillard, J.: Single trace side-
channel attack on the MPC-in-the-Head framework. IACR Cryptol. ePrint Arch.
p. 1882 (2024), https://eprint.iacr.org/2024/1882

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th Annual Symposium on Foundations of Computer Sci-
ence, West Palm Beach, Florida, USA, 24-26 October 1984. pp. 464–479. IEEE
Computer Society (1984). https://doi.org/10.1109/SFCS.1984.715949

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009).
https://doi.org/10.1137/080725398

23. Jendral, S., Dubrova, E.: Single-trace side-channel attacks on MAYO exploiting
leaky modular multiplication. IACR Cryptol. ePrint Arch. p. 1850 (2024), https:
//eprint.iacr.org/2024/1850

24. Jendral, S., Ngo, K., Wang, R., Dubrova, E.: Breaking SCA-Protected CRYSTALS-
Kyber with a single trace. In: IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2024, Tysons Corner, VA, USA, May 6-9, 2024.
pp. 70–73. IEEE (2024). https://doi.org/10.1109/HOST55342.2024.10545390

25. Karabulut, E., Aysu, A.: FALCON down: Breaking FALCON post-quantum signa-
ture scheme through side-channel attacks. In: 58th ACM/IEEE Design Automation
Conference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021. pp. 691–696.
IEEE (2021). https://doi.org/10.1109/DAC18074.2021.9586131

26. Krahmer, E., Pessl, P., Land, G., Güneysu, T.: Correction fault attacks on random-
ized CRYSTALS-Dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2024(3),
174–199 (2024). https://doi.org/10.46586/TCHES.V2024.I3.174-199

27. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

28. National Institute of Standards and Technology: NIST announces additional digital
signature candidates for the PQC standardization process (June 2023), https:
//csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

29. National Institute of Standards and Technology: Module-Lattice-Based Dig-
ital Signature Standard. Tech. Rep. NIST FIPS 204, National Insti-
tute of Standards and Technology, Gaithersburg, MD (August 2024).
https://doi.org/10.6028/NIST.FIPS.204

30. National Institute of Standards and Technology: Module-Lattice-Based Key
Encapsulation Mechanism Standard. Tech. Rep. NIST FIPS 203, National
Institute of Standards and Technology, Gaithersburg, MD (August 2024).
https://doi.org/10.6028/NIST.FIPS.203

31. National Institute of Standards and Technology: NIST announces 14 candidates
to advance to the second round of the additional digital signatures for the post-
quantum cryptography standardization process (October 2024), https://csrc.nist.
gov/news/2024/pqc-digital-signature-second-round-announcement

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-81293-5_10
https://eprint.iacr.org/2024/1882
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1137/080725398
https://eprint.iacr.org/2024/1850
https://eprint.iacr.org/2024/1850
https://doi.org/10.1109/HOST55342.2024.10545390
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.46586/TCHES.V2024.I3.174-199
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement
https://csrc.nist.gov/news/2024/pqc-digital-signature-second-round-announcement

12. CONCLUSION 37

32. National Institute of Standards and Technology: Stateless Hash-Based Dig-
ital Signature Standard. Tech. Rep. NIST FIPS 205, National Insti-
tute of Standards and Technology, Gaithersburg, MD (August 2024).
https://doi.org/10.6028/NIST.FIPS.205

33. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure
Saber KEM by power analysis. In: Chang, C., Rührmair, U., Katzenbeisser, S.,
Mukhopadhyay, D. (eds.) ASHES@CCS 2021: Proceedings of the 5th Workshop on
Attacks and Solutions in Hardware Security, Virtual Event, Republic of Korea, 19
November 2021. pp. 51–61. ACM (2021). https://doi.org/10.1145/3474376.3487277

34. Patranabis, S., Mukhopadhyay, D.: Fault Tolerant Architectures for Cryptog-
raphy and Hardware Security. Computer Architecture and Design Method-
ologies, Springer Singapore Pte. Limited, Singapore, 1st edn. (2018).
https://doi.org/0.1007/978-981-10-1387-4

35. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in
the Minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryp-
tology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13507, pp. 657–687. Springer (2022).
https://doi.org/10.1007/978-3-031-15802-5 23

36. Seker, O., Berndt, S., Wilke, L., Eisenbarth, T.: SNI-in-the-head: Protecting MPC-
in-the-head protocols against side-channel analysis. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020. pp. 1033–
1049. ACM (2020). https://doi.org/10.1145/3372297.3417889

37. Sim, B., Kwon, J., Lee, J., Kim, I., Lee, T., Han, J., Yoon, H.J., Cho, J., Han, D.:
Single-trace attacks on message encoding in lattice-based KEMs. IEEE Access 8,
183175–183191 (2020). https://doi.org/10.1109/ACCESS.2020.3029521

38. STMicroelectronics: (June 2024), https://www.st.com/resource/en/reference m
anual/rm0090-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-adv
anced-armbased-32bit-mcus-stmicroelectronics.pdf

39. Wang, R., Dubrova, E.: A shared key recovery attack on a masked implementation
of CRYSTALS-Kyber’s encapsulation algorithm. In: Mosbah, M., Sèdes, F., Tawbi,
N., Ahmed, T., Boulahia-Cuppens, N., Garćıa-Alfaro, J. (eds.) Foundations and
Practice of Security - 16th International Symposium, FPS 2023, Bordeaux, France,
December 11-13, 2023, Revised Selected Papers, Part I. Lecture Notes in Computer
Science, vol. 14551, pp. 424–439. Springer (2023). https://doi.org/10.1007/978-3-
031-57537-2 26

40. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any field. In: Kim, Y., Kim, J.,
Vigna, G., Shi, E. (eds.) CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021. pp. 2986–3001. ACM (2021). https://doi.org/10.1145/3460120.3484556

https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.1145/3474376.3487277
https://doi.org/0.1007/978-981-10-1387-4
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1145/3372297.3417889
https://doi.org/10.1109/ACCESS.2020.3029521
https://www.st.com/resource/en/reference_manual/rm0090-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0090-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0090-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://doi.org/10.1007/978-3-031-57537-2_26
https://doi.org/10.1007/978-3-031-57537-2_26
https://doi.org/10.1145/3460120.3484556

	 Side-Channel and Fault Injection Attacks on VOLEitH Signature Schemes:A Case Study of Masked FAEST

