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Abstract. Rivest, Shamir, and Adleman published the RSA cryptosys-
tem in 1978, which has been widely used over the last four decades.
The security of RSA is based on the difficulty of factoring large integers
N = pq, where p and q are prime numbers. The public exponent e and
the private exponent d are related by the equation ed−k(p−1)(q−1) = 1.
Recently, Cotan and Teşeleanu (NordSec 2023) introduced a variant of
RSA, where the public exponent e and the private exponent d satisfy the
equation ed− k(pn − 1)(qn − 1) = 1 for some positive integer n. In this
paper, we study the general equation eu − (pn − 1)(qn − 1)v = w with
positive integers u and v, and w ∈ Z. We show that, given the public pa-
rameters N and e, one can recover u and v and factor the modulus N in
polynomial time by combining continued fractions with Coppersmith’s
algorithm which relies on lattice reduction techniques, under specific con-
ditions on u, v, and w. Furthermore, we show that if the private exponent
d in an RSA-like cryptosystem is either small or too large, then N can
be factored in polynomial time. This attack applies to the standard RSA
cryptosystem.

Keywords: RSA · Continued fractions · Crypanalysis · Coppersmith’s
method · Generalized Wiener attack

1 Introduction

The RSA cryptosystem [RSA78], published in 1978 by Ron Rivest, Adi Shamir,
and Leonard Adleman, is a widely used cryptographic primitive over the past four
decades that enables secure data transmission over insecure channels. Its security
relies on the computational difficulty of factoring an integer N = pq which is a
product of two large prime numbers, a problem believed to be intractable for
classical computers when N is big. The public key pk = (N, e) and the private
key sk = (N, d) are related by the equation ed − k(p − 1)(q − 1) = 1 for some
positive integer k. To obtain a safe private key, the public exponent e, the private
exponent d and the parameter k should be chosen carefully. It is well known
that if these parameters are too small, then RSA cryptosystem is vulnerable. For
instance, Håstad [Hås86] has showed that when the same message m is encrypted
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with multiple public keys (e,N1), (e,N2), . . . , (e,Ns) sharing a same small public
exponent e (e.g. e = 3) and broadcast to multiple recipients, then m can be
recovered in polynomial time given only the public information. Wiener [Wie90]
show in 1990 that if the private exponent d < 1

3N
1
4 , then the modulus N can be

factored in polynomial time by using continued fractions[Moo64] by exploiting
the equation

ed− k(p− 1)(q − 1) = 1 (1)

This bound was later improved by Boneh and Durfee [BD99] who have proved
that the primes p and q can be recovered in polynomial time if d < N0.292.
Their attack is based on Coppersmith’s method [May03,HG97] which is based
on lattice reduction techniques, especially the LLL algorithm [LLL82]. Recently,
Cotan and Teşeleanu [CT23] (NordSec 2023) have proposed a variant of RSA
cryptosystem where the public exponent e and the private exponent d are related
by the equation

ex− (pn − 1)(qn − 1)y = 1 (2)

where n is a positive intger. Notice that the RSA equation is a spacial case
of this generalized equation (n = 1).

In this paper, we are mainly interested to the crypanalysis of this Cotan and
Teşeleanu cryptosystem. More specifically, we study the generalized equation

eu− (pn − 1)(qn − 1)v = w (3)

where u and v are positive integers and w ∈ Z. The key ingredients of our attack
is combining continued fractions and Coppersmith’s method to successfully re-
cover u, v, and the factors p and q in polynomial time under specific conditions
on u, v and w.

1.1 Related works

We summarize the generalized Wiener attack on some RSA-like cryptosystems
combining the continued fractions and Coppersmith’s method.

Blömer and May attack [BM04]. In 2004, Blömer and May proposed, to
our knowledge, the first generalized Wiener attack combining continued fractions
and Coppersmith’s method. They proved that, for an RSA modulus N = pq, if
the pubblic exponent e satisfies the equation

ex+ y = (p− 1)(q − 1)k (4)

with 0 < x <
1

3

√
(p− 1)(q − 1)

e

N3/4

p− q
and |y| < p− q

(p− 1)(q − 1) ·N3/4
· ex.

Then one can factor N in polynomial time in log(N).
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Nitaj attack [Nit08]. In 2008, Nitaj [Nit08] proposed another generalized
attack on RSA cryptosystem. He showed that if the public exponent e is related
to the equation

eX − (p− u)(q − v)Y = 1 (5)

with integers X,Y, u, v such that

1 ≤ X < Y < 2−1/4N1/4, |u| < N1/4, v =

[
− qu

p− u

]
with the extra condition on p−u and (q−v) yields the factorization ofN = pq.

Another Nitaj attack [Nit14]. In 1991, Koyama, Maurer, Okamoto and
Vanstone [KMOV92] introduced a new public key cryptosystem on elliptic curves
over the ring Z/NZ, with N = pq, called KMOV, where e and d are related to
the equation ed− (p+1)(q+1)k = 1. Nitaj have proposed a generalized Wiener
attack on their scheme. He have showed that if the public exponent e satisfies
an equation

ex− (p+ 1)(q + 1)y = z (6)

where x and y are positive integers with gcd(x, y) = 1 and

|z| < (p− q)N1/4y

3(p+ q)
and xy <

√
2N

12

Then one can recover p and q in polynomial time.

Bunder et al. attack [BNST17]. In 2002, Elkamchouchi, Elshenawy and
Shaban [EES02] adapted RSA to the Gaussian domain by using a modulus of
the form N = PQ where P and Q are two Gaussian primes. their exponents e
and d are related to the equation ed − (p2 − 1)(q2 − 1)k = 1. In 2017, Bunder
et al. [BNST17] proposed an attack that factors the modulus N = pq in their
schemes by using the generalized equation

ex− (p2 − 1)(q2 − 1)y = z (7)

by combining the continued fraction algorithm and Coppersmith’s method.

1.2 Our contributions

In this paper, we study a generalized Wiener attack for RSA-like cryptosystems
whose their public exponent e and the private exponent d satisfy the generalized
equation

eu− (p4 − 1)(q4 − 1)v = w (8)

We get the following result:
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– Combining continued fractions and Coppersmith’s method, we show that
one can recover u, v and the primes p and q in polynomial time in log(N) if
uv < (2N4 − 49N2 + 2)/(4N + 170N2) and |w| < vN .

– We have also proposed a generic attack for some RSA-like cryptosystems
when e is related to the equation

ex− yψ(p, q) = z with |z| < B2, B2 ≥ 1 (9)

We show that if there is an algorithm A that is able to factor N in polyno-
mial time given N and a public exponent 0 < e < ψ(p, q) such that there
exist positive integers x and y with xy < B1 ∈ R+ (resp. x < B1 ∈ R+)
satisfying Equation 9, then using A, one can factor N in polynomial time
given N and a public exponent 0 < e′ < ψ(p, q) such that the corresponding
private exponent d′ = ψ(p, q)− d for some d <

√
B1 (resp. d < B1).

– A consequence of the previous result is that for many RSA-like cryptosys-
tems, including standard RSA and the Cotan-Teşeleanu cryptosystem [CT23],
if the private key d, 0 < d < ψ(p, q) is too large, then one can factor N in
polynomial time. To the best of our knowledge, this result is novel. In gen-
eral, for RSA-like cryptosystems, it is well known that if d is small, i.e.
d < Nδ for some positive real δ, then N can be factored in polynomial
time [MP19,May03,Bon99].

– We give an algorithm that is able to generate weak RSA public key instances
(N, e) in polynomial time such that (N, e) is vulnerable to our attack but
safe for classical Wiener-like attacks. We provide a proof-of-concept imple-
mentation 3 in SageMath [Dev24] for this algorithm and for our generalized
attack.

Organization of this paper. The rest of this paper is organized as follows.
Section 2 is devoted to the preliminaries on continued fractions, Coppersmith’s
method and the Cotan and Teşeleanu cryptosystem [CT23]. In Section 3, we de-
tail our generalized Wiener attack on Cotan and Teşeleanu cryptosystem [CT23].
In Section 4, we show how to recover p and q in polynomial time if the private
exponents d of RSA-like cryptosystems are large. We conclude our work in the
final Section 5

2 Preliminaries

In this section, we recall useful properties on continued fractions expansion and
Legendre’s Theorem. We also summarize the Coppersmith’s method for factor-
ing integers N = pq given an approximation p̂ of p such that |p − p̂| < N1/4.
We terminate by presenting the algorithms of Cotan and Teşeleanu cryptosys-
tem [CT23].
3 https://github.com/mseckept/generalized-wiener-attack
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2.1 Continued Fractions

Definition 1 (continued fraction[HW79,Moo64]). A continued fraction is
an expression of the form:

a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

where a0 is an integer and a1, a2, a3, . . . are positive integers. This representation
is often denoted as [a0; a1, a2, a3, . . . ].

Notice that every real number α can be expressed as a continued fraction;
and α is a rational number if and only if it has a finite continued fraction repre-
sentation i.e

α =
a

b
= [a0; a1, a2, . . . , ak]

Definition 2 (Compution of ai). Let ⌊α⌋ denote the greatest integer less than
or equal to α. Let α0 = α and a0 = ⌊α0⌋. Then the other ai, i ≥ 1 are computed
as follows.

ai+1 = ⌊αi+1⌋ where αi+1 =
1

αi − ai

Notice that this procedure terminates only if ai = αi for some i ≥ 0.

Definition 3 (convergent,[HW79,Moo64]).
The convergents of a continued fraction [a0; a1, a2, . . . ] are the rational num-

bers obtained by truncating the continued fraction at each step. The n-th conver-
gent is given by:

Cn = [a0; a1, a2, . . . , an] =
pn
qn

where pn and qn are the numerator and denominator of the n-th convergent,
respectively. These can be computed recursively using the relations:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2

with initial conditions p−2 = 0, p−1 = 1, q−2 = 1, and q−1 = 0.

We denote the set of the convergents of a rational number r := [a0; a1, a2, . . . , am]
by

Convergents(r) :=
{
(u, v) ∈ N2 :

v

u
= Cn, gcd(u, v) = 1, n = 1, 2, . . . ,m

}
(10)

In the following, we recall the Legendre’s theorem which provides a criterion
for a rational number to be a convergent of a real number’s continued fraction.



6 SECK et al.

Theorem 1 (Legendre). Let α be a real number, and let a
b be a rational num-

ber where a and b are positive integers such that gcd(a, b) = 1. If∣∣∣α− a

b

∣∣∣ < 1

2b2
,

then a
b is a convergent of the continued fraction expansion of α.

It is well known that if α is a rational number, then the sequence of conver-
gents of its continued fraction expansion can be computed in polynomial time
in log(max(a, b)).

2.2 Coppersmith’s method

Coppersmith [Cop96] presented, in 1996, an algorithm to find small integer roots
of univariate modular polynomials. His method is based on lattice reduction
techniques such as the well known LLL algorithm [LLL82]. A lattice is a discrete
additive subgroup of Rn and is generated by a basis of linearly independent
vectors b1,b2, . . . ,bm, forming integer linear combinations:

L =

{
m∑
i=1

aibi | ai ∈ Z

}

The rank of a lattice is the number of basis vectors. If the rank is equal
to the ambient space dimension n, the lattice is full-rank. The determinant (or
covolume) of a lattice is det(L) =

√
det(BTB) where B is the n × m matrix

whose columns are the basis vectors. If the lattice is full-rank (m = n), the
determinant simplifies to det(L) = |det(B)|. In a lattice, short vectors refer to
nonzero lattice points with relatively small Euclidean norm. Finding such vectors
is crucial in many computational problems, including cryptanalysis and integer
factorization. Efficient approximation of short vectors is achieved using lattice
reduction techniques like LLL [LLL82] and BKZ [Sch91], which are widely used
in cryptographic attacks (e.g. Coppersmith-like algorithms [Cop96]) and post-
quantum cryptography.

Theorem 2 (Coppersmith [May03,HG97]). Let N = pq be an RSA modu-
lus, where p and q have the same bit size. Suppose we are given an approximation
of p with additive error at most N1/4. Then N can be factored in time polynomial
in log(N).

For the sake of completeness, we summarize in the following, the Copper-
smith’s algorithm (see [May03] for more details) to find a factor p of N given N
and an approximation p̂ of p.
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Algorithm 1 Coppersmith’s algorithm for finding a factor p of N
Input: N = pq (unknown factorization), an approximation p̂ of p and a lower bound

p > Nβ .
Output: A factor p of N or ⊥
1: Define the polynomial fp(x) = (x− p̂).
2: Choose the smallest integer m such that m ≥ max

{
β2

ϵ
, 7β

}
. ▷ ϵ is a positive

parameter such that |p− p̂| < N
1
2
−ϵ

3: Compute t = ⌊m
(

1
β
− 1

)
⌋.

4: Compute the shift polynomials

gi(x) = N ifm−i
p (x), for i = 0, 1, . . . ,m,

hi(x) = xifm
p (x), for i = 0, 1, . . . , t− 1.

5: Compute the bound X = ⌈Nβ2−ϵ⌉.
6: Construct the lattice basis B, where the basis vectors of B are the coefficient vectors

of gi(xX) and hi(xX).
7: Apply the LLL-algorithm to B. Let v be the shortest vector in the LLL-reduced

bases.
8: Construct f(x) from v.
9: Find the set R of all roots of f(x) over the integers. For every root x0 ∈ R, check

whether gcd(N, fp(x0)) ≥ Nβ . If this condition is not satisfied then remove x0 from
R.

10: If p̂+ x0 divides N ; p := p̂+ x0 else p :=⊥.
11: Return p

2.3 Cotan and Teşeleanu Scheme

In NordSec 2023, Cotan and Teşeleanu [CT23] introduced a new RSA-like cryp-
tosystem using the key equation

ex− k(pn − 1)(qn − 1) = 1 for some positive integer n

Notice that for n = 1, we have the standard RSA [RSA78] equation and for
n = 2, the Elkamchouchi, Elshenawy and Shaban scheme proposed in 2002 [EES02].

In the Cotan and Teşeleanu public key encryption scheme, the computations

are done in the set
Z/NZ[t]
tn − r

instead of Z/NZ.

Let p be a prime number, n a positive integer and r ∈ Z
pZ

such that tn − r

is an irreducible polynomial over
Z
pZ

[t]. Define the set

An(p) =
Z/pZ[t]
tn − r

Notice that An(p) is a finite field of order pn and can be represented as
follows:
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An(p) =

{
a(t) = a0 + a1t+ . . .+ an−1t

n−r : a0, a1, . . . , an−1 ∈ Z
pZ

}
Let a(t) and b(t) be two elements in An(p), then the quotient field induces a

natural product ◦

a(t) ◦ b(t) =

(
n−1∑
i=0

ait
i

)
◦

n−1∑
j=0

bjt
j


=

2n−2∑
i=0

 i∑
j=0

ajbi−j

 ti

=

n−2∑
i=0

 i∑
j=0

ajbi−j + r

i+n∑
j=0

ajbi−j+n

 ti +

b−1∑
j=0

ajbn−1−jt
n−1.

A⋆
n(p) is a cyclic group of order ϕn(p) = pn − 1. Let a(t) ∈ A⋆

n(p) and e an
integer, we define

[a(t)]e = a(t) ◦ a(t) ◦ . . . ◦ a(t) (e times )

The key generation, encryption and decryption algorithms are given as fol-
lows.

Key Generation : Let λ be a security parameter and n ≥ 1 an integer.
• Randomly generate two distinct large prime numbers p, q such that p, q ≥

2λ and compute the modulus N = pq.
• Choose an integer r ∈ Z/NZ such that tn−r is an irreducible polynomial

over
Z
pZ

[t] and
Z
qZ

[t]. Let ϕn = (pn − 1)(qn − 1).

• Select a positive integer e < ϕn such that gcd(e, ϕn) = 1.
• Compute d = e−1 (mod ϕn). The public key is pk = (N, e, n, r) and the

secret key is sk = (N, d, n, r).
Encryption process : To encrypt a message m = (m0,m1, . . . ,mn−1) ∈
(Z/NZ)n with the public key pk = (N, e, n, r),
• Represent the message m as m(t) = m0+m1t+. . .+mn−1t

n−1 ∈ A⋆
n(N).

• The ciphertext is c(t) = [m(t)]e (mod N).
Decryption process : To decrypt a ciphertext c(t) ∈ A⋆

n(N) with the
secret key sk = (N, d, n, r), Compute

m(t) = [c(t)]d (mod N)

Lemma 1. [BNST17] Let N = pq be an RSA modulus with q < p < 2q. The
following holds:

2
√
N < p+ q < 3

√
2

2

√
N < 3

√
N

Wlog, we can assume, in the rest of this paper that p − q > N
1
4 ; otherwise

N can be factored in polynomial time [May03].
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3 Our New Attack

In this section, we present our new attack to factor N by combining two tech-
niques : the continued fractions and Coppersmith’s algorithm. More precisely,
we show how to obtain p and q by solving the general equation

eu− (p4 − 1)(q4 − 1)v = w

3.1 The New Attack

Lemma 2. Let N = pq be a balanced RSA modulus (q < p < 2q). Let u and v
be two coprime positive integers. Let e a public exponent satisfying eu − (p4 −
1)(q4 − 1)v = w such that |w| < vN . Given e,N, u and v, one can find p and q
in polynomial time.

Proof. Suppose that we know e,N, u and v such that eu− (p4− 1)(q4− 1)v = w
with |w| < vN . To show that one can factor N in polynomial time, we will first
find an approximation p̂ of the prime p such that |p− p̂| < N1/4. Afterwards, we
apply the Coppersmith’s algorithm as stated in Theorem 2 to find p; and finally
get q = N/p.

First, let us find an approximation of p+ q and p− q.

i) Approximation of p+q : In the one hand, ϕ4 =
eu

v
−w

v
since eu−ϕ4v = w.

In the other hand, ϕ4 = (p+q)4−4N(p+q)2−(N2−1)2. Then p+q satisfies
the following equation:(

(p+ q)2
)2 − 4N(p+ q)2 −

(
(N2 − 1)2 − eu

v
+
w

v

)
= 0

By computing the discriminant, we get

∆ = 16N2 + 4
(
(N2 − 1)2 − eu

v
+
w

v

)
≥ 0

This implies that

(p+ q)2 =

4N + 2

√(
(N2 + 1)2 − eu

v
+
w

v

)
2

Thus

p+ q =

√
2N +

√
(N2 + 1)2 − eu

v
+
w

v

We then approximate p+ q as follows.

p̂+ q =

√
2N +

√
(N2 + 1)2 − eu

v
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Using the fact that
√
a −

√
b <

√
a± b <

√
a +

√
b for positive integers

a > b > 0, then the following holds.

∣∣∣(p+ q)− p̂+ q
∣∣∣ <

√√
|w|
v

= N1/4

ii) Approximation of p− q : We have

ϕ4 = N4 − (p4 + q4) + 1 = (N2 − 1)2 − (p− q)4 − 4N(p− q)2

Then p− q satisfies the following equation.(
(p− q)2

)2
+ 4N(p− q)2 −

(
(N2 − 1)2 − eu

v
+
w

v

)
= 0

The discriminant of the previous equation is

∆′ = 16N2 + 4
(
(N2 − 1)2 − eu

v
+
w

v

)
≥ 0

Thus

p− q =

√
−2N +

√
(N2 + 1)2 − eu

v
+
w

v

And we approximate p− q as follows.

p̂− q =

√
−2N +

√
(N2 + 1)2 − eu

v

Notice that p̂− q is well defined since we have supposed that p− q > N1/4.

One can check that
∣∣∣(p− q)− p̂− q

∣∣∣ <
√√

|w|
v

= N1/4.

Combining the approximation of p+ q and p− q, we have∣∣∣∣p− 1

2

(
p̂+ q + p̂− q

)∣∣∣∣ ≤ 1

2

∣∣∣(p+ q)− p̂+ q
∣∣∣+ 1

2

∣∣∣(p− q)− p̂− q
∣∣∣

<
1

2
N1/4 +

1

2
N1/4 = N1/4

Now applying the Coppersmith’s algorithm for input N and the approxima-
tion p̂ = 1

2

(
p̂+ q + p̂− q

)
, we get p, and then we compute q = N/p. □

Theorem 3. Let N = pq be an RSA modulus where p and q have the same bit
size (q < p < 2q). Let e be a public exponent satisfying

eu− (p4 − 1)(q4 − 1)v = w

with coprime positive integers u and v. If uv < (2N4−49N2+2)/(4N +170N2)
and |w| < vN , then one can find p and q in polynomial time in log(N).
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Proof. Suppose that N = pq and q < p < 2q and the public exponent e satisfies
the general equation eu− (p4 − 1)(q4 − 1)v = w with u, v > 0 and gcd(u, v) = 1.

ϕ4 = (p4 − 1)(q4 − 1)

= N4 − (p4 + q4) + 1

= N4 − (p+ q)4 + 4N(p+ q)2 − 2N2 + 1

= N4 − 2N2 + 1− (p+ q)4 + 4N(p+ q)2

This implies that

eu− ϕ4v = w ⇐⇒ eu−
[
N4 − 2N2 + 1− (p+ q)4 + 4N(p+ q)2

]
v = w

⇐⇒ eu−
(
N4 − 49

2
N2 + 1

)
v −

[
−(p+ q)4 + 4N(p+ q)2 +

45

2
N2

]
v = w

⇐⇒ eu−
(
N4 − 49

2
N2 + 1

)
v = w +

[
−(p+ q)4 + 4N(p+ q)2 +

45

2
N2

]
v.

Then we divide both side by (N4 − 49
2 N

2 + 1)u and we obtain

2e

2N4 − 49N2 + 2
− v

u
=

w +

[
−(p+ q)4 + 4N(p+ q)2 +

45

2
N2

]
v

(N4 − 49
2 N

2 + 1)u

The absolute value of the left hand side is bounded as follows

∣∣∣∣ 2e

2N4 − 49N2 + 2
− v

u

∣∣∣∣ ≤ |w|+
∣∣∣∣−(p+ q)4 + 4N(p+ q)2 +

45

2
N2

∣∣∣∣ v
(N4 − 49

2 N
2 + 1)u

<
2N + 2

∣∣−(p+ q)4 + 4N(p+ q)2 + 45
2 N

2
∣∣

2N4 − 49N2 + 2
×
( v
u

)
=

2N + 2 |A|
2N4 − 49N2 + 2

×
( v
u

)
withA = −(p+q)4+4N(p+q)2+ 45

2 N
2. Let us now find an upper bound of |A|. By

Lemma 1, we have 2
√
N < p+ q < 3

√
N . This implies that 4N < (p+ q)2 < 9N

and 16N2 < (p+ q)4 < 81N2. Then we have the following bound

16N2 − 36N2 − 45

2
N2 < (p+ q)4 − 4N(p+ q)2 − 45

2
N2 < 81N2 − 16N2 − 45

2
N2

Therefore |A| = |(p+ q)4 − 4N(p+ q)2 − 45
2 N

2| < 85

2
N2.

Then we get∣∣∣∣ 2e

2N4 − 49N2 + 2
− v

u

∣∣∣∣ < 2N + 85N2

2N4 − 49N2 + 2
×
( v
u

)
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Since uv <
2N4 − 49N2 + 2

4N + 170N2
then

2N + 85N2

2N4 − 49N2 + 2
<

1

2uv
.

Thus ∣∣∣∣ 2e

2N4 − 49N2 + 2
− v

u

∣∣∣∣ < 1

2uv
×
( v
u

)
=

1

2u2

Hence, by Lemma 2, the fraction
v

u
appears among the convergents of the

continued fraction expansion of
2e

2N4 − 49N2 + 2
which can be computed in

polynomial time in log(N). Thus once we obtain u and v, one can compute p
and q in polynomial time by Lemma 2.

□

Corollary 1. Let N = pq be an RSA modulus with q < p < 2q. Let e <
(p4 − 1)(q4 − 1) be a public exponent. If the private exponent d satisfies the
following bound

d <
√
(2N4 − 49N2 + 2)/(4N + 170N2)

then one can find p and q in polynomial time in log(N).

Proof. Suppose that q < p < 2q and e < (p4 − 1)(q4 − 1). Suppose that the
private exponent d <

√
(2N4 − 49N2 + 2)/(4N + 170N2). We know that the

private exponent d satisfies the equation

ed− (p4 − 1)(q4 − 1)k = 1

for some positive integer k. Then to show that one can factor N in polynomial
time in log(N), it is enough to show that kd < (2N4−49N2+2)/(4N +170N2)
by Theorem 3. We have

k =
ed− 1

(p4 − 1)(q4 − 1)
<

(
e

(p4 − 1)(q4 − 1)

)
d < d

Therefore kd < d2 < (2N4 − 49N2 + 2)/(4N + 170N2). This ends the proof.
□

We summarize in the following algorithm our attack to factor N .



A New Generalized Attack on RSA-like Cryptosystems 13

Algorithm 2 Our Attack to factor a modulus N
Input: The modulus N and the public exponent e.
Output: The factors (p, q) of N or ⊥.
1: r := (2e)/(2N4 − 49N + 2).
2: convs := Convergents(r) ▷ Defined in Eq. 10
3: For (u, v) in convs do

4: p̂+ q :=

⌊√∣∣∣∣2N +

√∣∣∣(N2 + 1)2 − eu

v

∣∣∣∣∣∣∣
⌋
.

5: p̂− q :=

⌊√∣∣∣∣−2N +

√∣∣∣(N2 + 1)2 − eu

v

∣∣∣∣∣∣∣
⌋
.

6: p̂ :=
⌊

1
2

(
p̂+ q + p̂− q

)⌋
.

7: p := Coppersmith(N, p̂) ▷ See Algo. 2.2
8: If p ̸=⊥ then
9: q := N/p.

10: Return (p, q) and stop the loop.
11: end If
12: end For
13: Return ⊥.

3.2 A Numerical Example

In this section, we give a detailed numerical example to explain the different
steps of our attack as presented in Algorithm 3.1. Let us consider the following
public parameters where N is a 192 bit integer:

N = 3489655588599196597998727781564283681960038261038493763731

e = 1212645714005236502130003207845392219550914289421579542876\
27475888699370664527649587072472350738351373360844010363123\
26965438046568791634948072154739238706319482117101690003224\
8592826620643450055808148570038313973227958484483674761

We get

2N4 − 49N2 + 2 = 29659256592512822498526092857372775263493319435631\
22811342288104889518917644853911666186875836941574\
772595490809626658037224782060803377911228330289331\
027312229395683785037068498150661534674700219693407\
91580329705657998544401042955

The continued fraction expansion of
2e

2N4 − 49N2 + 2
is given as follows.

2e

2N4 − 49N2 + 2
= [0; 1, 4, 2, 17, 2, 1, 2, 4, 1, 2, 1, 2, 1, 1, 3, 2, 11, 3, 2, 13, 10, \

1, 1, 1, 1, 9, 6, 3, 1, 2, 2, 15, 4, 2, 2, 29, 20, 1, 1, 2, 13, 3, 14, \
1, 2, 2, 1, 1, 7, 1, 4, 1, 2, 44, 3, 1, 8, 5, 1, 232, 1, 3, 1, 6, 2, 1, 5, . . .]
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For the 101st convergent C101 (note that C1 = 1, C2 = 4
5 , and C3 = 9

11 ) of

the continued fraction expansion of
2e

2N4 − 49N2 + 2
, we obtain

u = 109164662112272346444555233788248142952377469519040396359

v = 89265932352933203808239549339516537133049722059157965712

One can check that uv < (2N4 − 49N2 + 2)/(4N + 170N2) ≈ 1.43 × 10113.
We obtain the approximation of p+ q and p− q (see Alg. 3.1) as follows.

p̂+ q = 158666848432062407414462565131

p̂− q = 105908198157490520315381810349

From the approximation of p+ q and p− q, we compute the approximation
of p and obtain

p̂ =
⌊ p̂+ q + p̂− q

2

⌋
= 132287523294776463864922187740

By applying Coppersmith’s algorithm, we find

p = 132287523294776463864922187741

which is a divisor of N . Finally, we compute the other factor as q = N/p =
26379325137285943549540377391.

One can verify that:

w = eu− (p4 − 1)(q4 − 1)v = −1.

The private exponent is

d = 1482962829625641124926304642868638763174665971781561405671144\
0524447594588224269558330934379184707873862977454048132452157\
4290751123131376788278676855736667385482052185665565195204905\
579951749440572733023936391665194050595966093241

which is large but

ϕ4 − d = 109164662112272346444555233788248142952377469519040396359

Notice that the parameter k such that ed− k(p4 − 1)(q4 − 1) = 1 is also too
large.

k = 14829628296256411249263046428686387631746659717815614056711\
44052444759458822426955833093437918470787386297745404813245\
21574290751123131376788278676855736667385482052185665565195\
204905579951749440572733023936391665194050595966093241
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4 A Generalized Wiener Attack for RSA-like
Cryptosystems

In the following Theorem, we prove that if the private exponent of an RSA-like
cryptosystem is too large, then one can factor N in polynomial time given the
public parameters (N, e).

Theorem 4. Let N = pq an RSA modulus. Let ψ : N × N → N. Suppose A is
an algorithm that is able to factor N in polynomial time given N and a public
exponent 0 < e < ψ(p, q) such that there exist positive integers x and y with
xy < B1 ∈ R+ satisfying

ex− yψ(p, q) = z with |z| < B2, B2 ≥ 1

Then, using A, one can factor N in polynomial time given N and a public
exponent 0 < e′ < ψ(p, q) such that the corresponding private exponent d′ =
ψ(p, q)− d for some d <

√
B1.

Proof. Suppose A is able to factor N in polynomial time given N and a public
exponent 0 < e < ψ(p, q) such that there exist positive integers x and y with
xy < B1, ex − yψ(p, q) = z with |z| < B2, B2 ≥ 1. Let e′, 0 < e′ < ψ(p, q)
a public exponent such that (e′)−1 mod ψ(p, q) = d′ = ψ(p, q) − d for some
d <

√
B1. To show that one can factor N in polynomial time, we will show that

there exist positive integers x0 and y0 such that e′x0 − y0ψ(p, q) = −1 with
x0y0 < B1 and afterwards use the algorithm A to factor N . We have (e′)−1

mod ψ(p, q) = ψ(p, q)− d, then there exists a positive integer k such that

e′(ψ(p, q)− d)− kψ(p, q) = 1 ⇐⇒ e′(−d) + (ψ(p, q)− k)ψ(p, q) = 1

⇐⇒ e′d− (ψ(p, q)− k)ψ(p, q) = −1

We have ψ(p, q)− k =
e′d+ 1

ψ(p, q)
> 0. This implies that

(ψ(p, q)− k)− 1

ψ(p, q)
=

e′d

ψ(p, q)
< d since 0 < e′ < ψ(p, q)

Therefore ψ(p, q)−k < d+
1

ψ(p, q)
. Since ψ(p, q)−k ∈ N, then ψ(p, q)−k ≤ d⇒

d(ψ(p, q)− k) < d2 < B1. We have showed that e′d− (ψ(p, q)− k)ψ(p, q) = −1
with d(ψ(p, q)−k) < B1, then using algorithm A, one can factor N in polynomial
time. □

Notice that if the private exponent d′ is big then so is the positive integer k
such that

e′d′ − kψ(p, q) = 1

since ψ(p, q)− k ≤ d.
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Corollary 2. Let N = pq be an RSA modulus with q < p < 2q. Let e <
(p4 − 1)(q4 − 1) be a public exponent. If the private exponent d satisfies the
following bound

d > (p4 − 1)(q4 − 1)−

√
2N4 − 49N2 + 2

4N + 170N2

then one can find p and q in polynomial time in log(N).

Proof. It follows from Theorem 3 and Theorem 4. □

This corollary tell us if the private exponent d is too large, i.e

|ϕ4 − d| <

√
2N4 − 49N2 + 2

4N + 170N2

then we can factor the modulus N in polynomial time. To our knowledge, this
result is completely new. Generally, Wiener-like attacks a dealing with small
private exponent i.e d < Nδ for some positive reel number δ.

Using the result of Bunder et al. [BNST17] (Theorem 3) and Theorem 4, we
get the following result.

Corollary 3. Let N = pq be an RSA modulus with q < p < 2q. Let e <
(p2 − 1)(q2 − 1) be a public exponent. If the private exponent d satisfies the
following bound

d > (p2 − 1)(q2 − 1)−
√

2N − 4
√
2N

3
4

then one can find p and q in polynomial time in log(N).

The following Theorem is a variant of Theorem 4.

Theorem 5. Let N = pq an RSA modulus. Let ψ : N × N → N. Suppose A is
an algorithm that is able to factor N in polynomial time given N and a public
exponent 0 < e < ψ(p, q) such that there exist positive integers x and y with
x < B1 ∈ R+ satisfying

ex− yψ(p, q) = z with |z| < B2, B2 ≥ 1

Then, using A, one can factor N in polynomial time given N and a public
exponent 0 < e′ < ψ(p, q) such that the corresponding private exponent d′ =
ψ(p, q)− d for some d < B1.

Proof. Similarly to the proof of Theorem 4, we have

e′(ψ(p, q)− d)− kψ(p, q) = 1 ⇐⇒ e′d− (ψ(p, q)− k)ψ(p, q) = −1

This shows that if d < B1, one can factor N in polynomial time using the algo-
rithm A. □

Combining the result of Blömer and May [BM04] (Theorem 2) and previous
theorem, we get the following result.
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Corollary 4. Let c ≤ 1 and let (N, e) be an RSA public key tuple with N = pq
and p− q ≥ c

√
N . If the private exponent d verify

d > (p− 1)(q − 1)− 1

3
N

1
4

Then N can be factored in polynomial time.

We summarize in the following figure, the vulnerable areas for the private
exponent d.

Fig. 1. Vulnerable areas for the private exponent d

Notice that in our generalized attack,

ψ(p, q) = (p4 − 1)(q4 − 1) and B1 ≥

√
2N4 − 49N2 + 2

4N + 170N2

From Theorem 4, we build an algorithm that takes as input a security pa-
rameter λ and outputs a weak RSA public key (N, e).

Algorithm 3 GenWeakRSAInstance : An algorithm which generates weak RSA
public key instances.
Input: A security parameter λ.
Output: a weak RSA public key (N, e).
1: Generate randomly a prime p of size λ/2 bits.
2: Generate randomly a prime q of size λ/2 bits with q < p < 2q.
3: Compute N = pq and ψ(p, q) = (p4 − 1)(q4 − 1).

4: Generate randomly an integer d with 0 < d <

√
2N4 − 49N2 + 2

4N + 170N2
such that

gcd(ψ(p, q)− d, ψ(p, q)) = 1

5: Compute e = (ψ(p, q)− d)−1 (mod ψ(p, q)).
6: Return (N, e).
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Notice that this algorithm runs in polynomial time and can be easily adapted
for other RSA-like cryptosystems. The weak instances (N, e) outputted by the
previous Algorithm 4 are

– vulnerable for the generalized Wiener attack presented in Algorithm 3.1;
– safe for classical Wiener-like attacks because the corresponding private ex-

ponents d′ are very large.

We have provided a proof-of-concept implementation 4 in SageMath [Dev24]
of our attack presented in Algorithm 3.1 as well as an implementation of the
previous Algorithm 4 that generates weak instances in polynomial time.

5 Conclusion

In this paper, we have investigated a special case of the general equation w =
eu − (pn − 1)(qn − 1)v = w. We have showed that for n = 4, by combining
the continued fractions techniques and the Coppersmith’s method, one can find
(u, v) and factor the modulus N in polynomial time when uv < (2N4 − 49N2 +
2)/(4N + 170N2) and |w| < vN . We have also demonstrated that a private
exponent which is small or very large can be recovered in polynomial time.
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