
Faster FHEW Bootstrapping with Adaptive Key
Update

Qi Zhang1,2[0000−0003−2904−451X], Mingqiang Wang1[0000−0001−9221−4230], and
Xiaopeng Cheng1[0009−0001−1842−8983]

1 School of Mathematics, Shandong University, Jinan 250100, China
zhang_qi@mail.sdu.edu.cn, wangmingqiang@sdu.edu.cn⋆,

chengxiaopeng@mail.sdu.edu.cn
2 Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan

250100, China

Abstract. Lee et al. proposed a new bootstrapping algorithm based on
homomorphic automorphism, which merges the empty sets of ciphertexts
by adjusting the window size. This algorithm supports arbitrary secret
key distributions with no additional runtime costs while using small eval-
uation keys. However, our implementation reveals that once the window
size exceeds a certain threshold, the time required for bootstrapping re-
mains relatively constant. This observation prompts the question of how
to further reduce the running time. To address this challenge, we intro-
duce a new trick called Adaptive Key Update (AKU). With AKU and
automorphism techniques, we propose a new bootstrapping algorithm
for Gaussian secret keys that requires only n external products and no
switching for blind rotation. Building on this, we employ window size
optimization and key switching techniques to further improve the algo-
rithm. The improved algorithm provides a useful trade-off between key
storage and computational efficiency, depending on the choice of the win-
dow size. Compared to the current fastest FHEW bootstrapping method
for Gaussian secret keys (the LLWW+ method proposed by Li et al.),
our AKU-based algorithm reduces the number of key switching by 76%
and decreases the running time of bootstrapping by 20.7%. At this time,
the practical runtime for bootstrapping is approximately equal to that
of performing only n external products.

Keywords: Automorphism · Key Switching · Blind Rotation · Boot-
strapping · Fully Homomorphic Encryption (FHE).

1 Introduction

Homomorphic encryption (HE) allows computations to be performed on en-
crypted data without revealing the underlying plaintext, ensuring data confiden-
tiality throughout the process. This unique capability makes HE an attractive
tool for a wide range of privacy-preserving applications, allowing data to be pro-
cessed without ever exposing sensitive information. Most HE schemes rely on the
⋆ Corresponding author.

2 Q.Zhang et al.

difficulty of computational problems such as Learning With Errors (LWE) [27] or
Ring Learning With Errors (RLWE) [24], where ciphertexts contain small noise
to guarantee security. However, as computations on ciphertexts accumulate, the
noise also increases, which can increase the probability of decryption failure, and
limit the number of operations that can be performed on the encrypted data.
Since Craig Gentry’s pioneering introduction of the first fully homomorphic en-
cryption (FHE) scheme [17], HE has seen significant advancements. These ad-
vancements include the development of several novel schemes that significantly
improve Gentry’s original construction [8, 15, 11, 14, 12]. Additionally, HE has
found practical applications in various domains, such as private information
retrieval [4], private set intersection [10], privacy-preserving genome-wide asso-
ciation studies [5], and logistic regression learning [19, 31]. A major community
initiative has also been established to standardize homomorphic encryption [2].

Most existing FHE constructions adhere to the paradigm initially proposed
by Gentry [17], which consists of two main components: 1) the construction of
a somewhat homomorphic encryption (SHE) scheme, typically supporting only
a limited number of homomorphic operations due to the accumulation of noise
during computation; and 2) the design of a bootstrapping algorithm that homo-
morphically evaluates the decryption function, thereby refreshing the ciphertext
and mitigating the noise buildup. Early research efforts [24, 9, 28, 29, 7, 8, 15, 18]
primarily focused on developing SHE schemes capable of evaluating their own
(augmented) decryption circuits. These schemes were later transformed into FHE
schemes through Gentry’s bootstrapping theorem [17], which remains founda-
tional in the field. However, since bootstrapping is a critical and computationally
intensive process in nearly all FHE constructions, it has become a significant
bottleneck in achieving practical performance for real-world applications. As a
result, the development of efficient bootstrapping techniques has become one
of the central challenges in FHE research, with ongoing efforts to optimize this
procedure being essential for enhancing the overall efficiency and scalability of
FHE systems.

The FHEW FHE scheme [14, 3] and its TFHE variant [13] are among the
most well-known methods for performing bit-level homomorphic computations
on encrypted data. These schemes enable efficient processing of encrypted binary
data and have been the foundation for subsequent innovations in homomorphic
encryption. Three classic approaches have been developed for FHEW-like boot-
strapping: 1) AP bootstrapping method: Originally proposed by Alperin-Sheriff
and Peikert [3], this method was efficiently instantiated in the ring setting by the
FHEW cryptosystem [14]. It is particularly effective for LWE secret keys that
follow Gaussian or uniform distributions, but it requires relatively large eval-
uation keys. 2) GINX bootstrapping method: Introduced by Gama et al. [16],
the GINX method has been further optimized for ternary secret keys, reducing
the computational overhead by approximately half. We refer to this optimized
version as GINX* [6, 20]. The GINX method, especially its TFHE variant, excels
in scenarios with binary LWE secret keys. 3) LMKC+ bootstrapping method:
Proposed by Lee et al. [22], LMKC+ method leverages the homomorphic au-

Faster FHEW Bootstrapping with Adaptive Key Update 3

tomorphism technique and introduced a window size optimization strategy to
effectively merge ciphertexts. This method supports arbitrary secret key distri-
butions without additional runtime costs, while using small evaluation keys.

Recently, Wang et al. [30] and Li et al. [23] proposed the WWLL+ and
LLWW+ methods, respectively, both of which build upon the LMKC+ method [22].
The WWLL+ method further reduces the number of homomorphic automor-
phisms by employing a naive sparse approach. While this approach is effective
in minimizing the number of homomorphic automorphisms, it can lead to a rapid
increase in noise, potentially degrading the performance of homomorphic com-
putations. On the other hand, the LLWW+ method achieves similar reductions
in the number of homomorphic automorphisms by merging symmetric sets, and
mitigating some of the noise issues associated with the naive sparse approach.
However, one notable limitation of LLWW+ is that the size of the blind rotation
keys is approximately twice that of the original LMKC+ method.

Efficiency aside, the use of secret keys with large entries remains interesting
for both theoretical and practical reasons. Theoretically, lattice cryptography
supports Gaussian-distributed secret keys with a standard deviation of O(

√
n),

where n is the dimension of the secret vector and serves as a security parame-
ter [24, 27]. Research [25] shows that LWE with binary secrets can be as hard
as standard LWE with uniform or Gaussian secrets, but at the cost of increas-
ing the secret dimension by a factor of O(log q) and the error magnitude by
a factor of O(

√
n). For practical reasons, such as limiting error growth during

homomorphic computation and efficiently implementing GINX bootstrapping,
these theoretical results supporting binary secrets are often overlooked. Instead,
practical parameters are set based on the best-known attacks to balance security
and efficiency. For Gaussian secret keys, almost all bootstrapping algorithms can
achieve the same level of security with a smaller value of n. In this paper, we
adopt a similar approach when comparing our work to previous schemes.

Although both the WWLL+ and LLWW+ methods reduce the number of
homomorphic automorphisms compared to the LMKC+ method, it is observed
that, when the window size is small, the number of homomorphic automorphisms
in both the LMKC+ and LLWW+ methods decreases significantly as the win-
dow size increases. However, once the window size exceeds a certain threshold
(approximately 10), the number of homomorphic automorphisms required for
bootstrapping stabilizes and shows little change. This observation raises an im-
portant question: Is it possible to achieve bootstrapping for keys with a Gaussian
distribution that provides faster performance and lower noise both theoretically
and practically, or even matches the theoretical complexity of binary GINX?

1.1 Our Results

We have answered the above questions in the affirmative, and have the following
three main contributions to the algorithmic-level and implementation-level of
bootstrapping schemes.

• Algorithmic-Level Contributions

4 Q.Zhang et al.

We introduce a new trick, called Adaptive Key Update (AKU), to reduce
the number of key switching during blind rotation. With AKU and auto-
morphism techniques, we design a new bootstrapping procedure that sup-
ports the use of arbitrary secret key distributions without any performance
penalty (similar to AP/LMKC+ bootstrapping) while requiring only n ex-
ternal products and no switching for blind rotation. One consideration is
that the key size can be relatively large.
We combine AKU, automorphism, window size and key switching techniques
to propose an improved bootstrapping algorithm. This algorithm provides
a useful trade-off between the storage requirements for evaluation keys and
computational efficiency based on the choice of the window size. By sig-
nificantly reducing the number of key switching during blind rotation, our
method also reduces running time compared to LLWW+ method. This
method can be naturally extended to bootstrapping algorithms based on
NTRU.

• Implementation-Level Verification
We verify our theoretical results of the proposed method through exper-
iments based on the OpenFHE open-source homomorphic encryption li-
brary [1]. Concretely, in the case of a gate bootstrapping operation at a
128-bit security level, our scheme outperforms the current fastest FHEW
bootstrapping algorithm [23] by reducing the number of key-switching op-
erations by 76% (from 301 to 77). This results in a 20.7% reduction in gate
bootstrapping time. At this point, the practical runtime for bootstrapping
is approximately equal to that of performing only n external products(See
Sect. 5 for details.) Since the key size increases by a factor of 2, this trade-
off makes the scheme more suitable for scenarios where there is ample key
storage capacity.

1.2 Techniques

The main operation in FHEW bootstrapping is the evaluation of a so-called
"blind rotation". This operation takes some polynomial f0 as an input and
"rotates" it by some value encrypted within a given LWE ciphertext (a =
(a0, ..., an−1), b) under secret key s = (s0, ..., sn−1) (See Sect. 2 for more de-
tails). Starting with the ciphertext RLWE(f0) of a polynomial f0 under z(X),
previous blind rotation algorithms work as follows: at step i, given a ciphertext
RLWE(fi−1) of a polynomial fi−1(X) = f0·X

∑
j≤i−1 ajsj , homomorphically com-

pute RLWE(fi) of an updated polynomial fi = fi−1 · Xai·si = f0 · X
∑

j≤i ajsj ,
using a publicly known constant ai part of the input LWE ciphertext and an
encryption E(si) of a secret key coordinate si. After repeating this step n times,
we obtain the encryption of RLWE(f0 · X⟨a,s⟩), which is a negacyclic rotation
of f0 by ⟨a, s⟩ positions. There are three classic blind rotation algorithms, and
their main ideas are as follows:

- AP works by including encryptions E(2j · si) for all j ∈ [0, log q − 1] in the
evaluation keys and then using cj as a selector to pick one of them, where cj
ensures that ai =

∑
j cj2

j . This allows using arbitrary keys si with no impact

Faster FHEW Bootstrapping with Adaptive Key Update 5

on the running time, but also requires large evaluation keys due to the need to
store multiple encryptions E(2j · si) for every secret key element si.

- GINX works by assuming si ∈ {0, 1} is a single bit, and using E(si) as
a selector between the original ciphertext RLWE(fi−1) and a modified version
RLWE(fi−1 ·Xai) through a homomorphic "MUX" gate. This approach requires
only a single encryption E(si) for each key element, but it is inherently suited
only for binary secrets. While larger secrets can be handled using various meth-
ods, these solutions inevitably incur additional costs, either in terms of key size
or computational overhead.

- LMKC+ performs blind rotation by homomorphic automorphisms in RQ.
Given RLWE(fi−1(X)), it first applies a homomorphic autormorphsim ψ1/ai

(·)
where ψa(h) := h(Xa), to obtain the ciphertext of fi−1(X

a−1
i). Next, it homo-

morphically multiply the ciphertext by Xsi to get the cipertext of fi−1(X
a−1
i) ·

Xsi . Finally, it again applies the homomorphic automorphism ψai
(·) to obtain

the ciperhtext RLWE(fi−1(X) ·Xaisi).

In this paper, We first propose Adaptive Key Update(AKU) to optimize the
blind rotation algorithm by automorphism technique. For homomorphic auto-
morphism, consider a ciphertext c(X) ∈ RQ that encrypts Xsi under the secret
key z(X), we can easily obtain a new ciphertext c(Xai) that encrypts Xaisi

by applying the automorphism X → Xai to c(X) if ai ∈ Z∗
2N . The challenge,

however, is that c(Xai) is encrypted under a different secret key z(Xai), not the
original secret key z(X). To allow further homomorphic computations, meth-
ods like LMKC+ and LLWW+ require key switching to convert c(Xai) back to
the ciphertext under z(X) that encrypts Xaisi . We observe that the time re-
quired for automorphism is almost negligible compared to the time required for
key switching. Abstractly, AKU involves adaptively "rotating" the secret key in
RLWE ciphertexts during blind rotation, with the number of bits per rotation
determined by a specific value in the given LWE ciphertext. The purpose is to
perform no key switching after applying an automorphism, or perform one key
switching after several automorphisms, so as to reduce the total time required
for blind rotation and improve the efficiency of bootstrapping.

Recall that the goal of blind rotation is to homomorphically compute f0(X) ·
X⟨a,s⟩ = f0(X) · X

∑n−1
i=0 aisi . Suppose each ai ∈ Z∗

2N and a′i · ai ≡ 1 mod 2N .
Starting with the ciphertext RLWE(f0(X

a′
0)) of a polynomial f0(Xa′

0) under
z(Xa′

0), our blind rotation algorithm works as follows: at step i, given a ci-
phertext RLWE(fi−1) of a polynomial fi−1 = f0(X

a′
i) · Xa′

i

∑j=i−2
j=0 ajsj under

secret key z(Xa′
i), homomorphically compute RLWE(fi) of an updated poly-

nomial fi = fi−1 ·Xa′
i·ai−1si−1 . Then we apply the automorphism ψaia′

i+1
(·) to

get an encryption of f0(Xa′
i+1) ·Xa′

i+1

∑j=i−1
j=0 ajsj under secret key z(Xa′

i+1). Re-
peating the above process and completing the loop with respect to i, we can
get f0(Xa′

n) · Xa′
n

∑j=n−1
j=0 ajsj under secret key z(Xa′

n), where a′n = 1. We ob-
tain the fastest bootstrapping theoretically and practically, which has the same
theoretical complexity as binary GINX. It only takes n external products and
no key switching! Two considerations are that the key size can be relatively

6 Q.Zhang et al.

large, and naive sparse approach may lead to a notable increase in noise, similar
to what has been observed in WWLL+ method. Building on this, we employ
window size optimization and key switching techniques to further improve the
algorithm, which performs a key switching only when the secret key of RLWE
ciphertexts rotates at least w bits during blind rotation. Finally, the algorithm
provides a useful trade-off between storage requirements for evaluation keys and
computational complexity, depending on the choice of the window size.

2 Preliminaries

Let N be a power of two. We denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by RQ := R/QR. We use regular let-
ters to represent (modular) integers, such as a ∈ Zq, while bold letters represent
polynomials a ∈ R or vectors a ∈ Zn. For two vectors a and b, we denote
their inner product by ⟨a,b⟩. We write the floor, ceiling and round functions
as ⌊·⌋, ⌈·⌉ and ⌊·⌉, respectively. For q ∈ Z and q > 1, we identify the ring Zq

with the representative interval (−q/2, q/2]. For x ∈ Z, we denote the centered
remainder of x modulo q by [x]q ∈ Zq. These notations are extended to elements
of R by applying them coefficient-wise. For a = a0+a1X+ ...+aN−1X

N−1 ∈ R,
we denote the ℓ∞ norm of a as ∥a∥∞ = max0≤i≤N−1{|ai|}. We use a← S to de-
note uniform sampling from the set S. Sampling according to a distribution χ is
denoted by a← χ. We denote χerr as a subgaussian distribution with parameter
σ.

2.1 Basic Lattice-Based Encryption

For positive integers q and n, the basic LWE encryption of m ∈ Z under the
secret key s← χkey is defined as

LWEq,s(m) = (a, b) = (a,−⟨a, s⟩+m+ e) ∈ Zn+1
q ,

where a ← Zn
q and the error term e ← χerr. In some cases, we may omit the

subscripts q and s when they are understood from the context.
For an integer Q and a power of two N , the basic RLWE encryption of m ∈ R

under the secret key z← χkey is defined as

RLWEQ,z(m) := (a,−a · z+ e+m) ∈ R2
Q,

where a ← RQ, and for each coefficient ei of e is sampled from χerr, with
i ∈ [0, N − 1].

As in the case of LWE, we will often omit the subscripts Q and z when they
are clear from the context. Gadget decomposition plays a crucial role in main-
taining error control within Fully Homomorphic Encryption (FHE) schemes.
There are two distinct types of gadget decomposition, which differ in the choice
of the gadget vectors.

Faster FHEW Bootstrapping with Adaptive Key Update 7

Canonical Gadget Decomposition: The gadget vector of the canonical gad-
get decomposition is consisted with the power of B, where g = (1, B,B2,
..., Bd−1). Here, d = ⌈logB Q⌉ is referred to as the gadget length, and B is
the gadget base. Using this gadget vector, any ring polynomial t can be decom-
posed into a sequence of polynomials (t0, ..., td−1) such that the absolute values
of the coefficients of each polynomial ti are bounded by B/2. This decomposition
satisfies the equation

∑
i giti = t.

Approximate Gadget Decomposition: Approximate gadget decomposition
generalizes the canonical gadget decomposition. When Bd < Q, the decomposi-
tion of a ring element is no longer exact. In this case, the decomposition error
is defined as εgadget(t) =

∑
i giti − t, with ϵ denoting its infinite norm, i.e.,

ϵ = ∥
∑

i giti − t∥∞. In the approximate decomposition, the gadget vector is
typically chosen as g = (⌈Q/Bd⌉, ⌈Q/Bd⌉B, ..., ⌈Q/Bd⌉Bd−1). Each ring poly-
nomial t is then decomposed into a set of polynomials (t0, ..., td−1) where the
absolute values of the coefficients of each ti are still bounded by B/2, and the
decomposition error ϵ satisfies ϵ ≤ 1

2⌈Q/B
d⌉.

We adapt the definitions of RLWE′ and RGSW from [26]. Given a gadget
vector g, we define RLWE′

z(m) and RGSWz(m) as follows

RLWE′
z(m) :=

(
RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdg−1 ·m)

)
∈ R2d

Q ,

RGSWz(m) :=
(
RLWE′

z(z ·m),RLWE′
z(m)

)
∈ R2×2d

Q .

Gadget Product: The scalar multiplication between an element in RQ and
RLWE′ ciphertext

⊙ : RQ × RLWE′ → RLWE

is defined as

t⊙ RLWE′
z(m) = ⟨(t0, · · · , tdg−1),

(
RLWEz(g0 ·m), · · · ,RLWEz(gdg−1 ·m)

)
⟩

=

dg−1∑
i=0

ti · RLWEz(gi ·m)

= RLWEz(t ·m) ∈ R2
Q.

Let ei be the error in RLWEz(gi ·m). Then, the error after multiplication is
given by

∑dg−1
i=0 ti · ei + ϵgadget(t), where the total error remains small if both ti

and ei are small.

Lemma 1 (Kim et al. [21]). Let B and d denote the base and the length of
the gadget decomposition, respectively, then the error variance of the result of
the gadget product is bounded by

σ2
⊙,input ≤ dN

B2

12
σ2
input +

N

3
∥m∥22ϵ2,

where σ2
input is the error variance of the input RLWE′ ciphertext.

8 Q.Zhang et al.

Lemma 1 is derived from [21] proposition 1 using the fact that ϵ ≤ 1
2⌈

q
Bℓ ⌉. When

applying canonical gadget decomposition, the error term N
3 ∥m∥

2
2ϵ

2 is absent.

External Product: The multiplication between RLWE and RGSW ciphertexts

⊛ : RLWE× RGSW→ RLWE

is defined as

RLWEz(m1)⊛ RGSWz(m2) = (a,b)⊛
(
RLWE′

z(z ·m2),RLWE′
z(m2)

)
= a⊙ RLWE′

z(z ·m2) + b⊙ RLWE′
z(m2)

= RLWEz(m1 ·m2 + e1 ·m2) ∈ R2
Q.

This result represents an encryption of the product m1 ·m2 with an additional
error term e1 · m2 under the RLWE scheme. To ensure that RLWEz(m1) ⊛
RGSWz(m2) ≈ RLWEz(m1 ·m2), it is crucial to keep the error term e1 ·m2

small. This can be achieved by using monomials m2 = ±Xv as messages.

Key Switching in RLWE: Given an key switching key SWK = RLWE′
z2
(z1),

then the key switching algorithm KSz1→z2 : RLWEz1(m) → RLWEz2(m) is
defined by

KSz1→z2,(RLWEz1(m),SWK) = a⊙ RLWE′
z2
(z1) + (0,b)

= RLWEz2(a · z1 + b)

= RLWEz2(m),

where (a,b) = RLWEz1(m).

Homomorphic Automorphism: For t ∈ Z∗
2N , an automorphism ψt: R → R

is defined as a(X) → a(Xt), where R is the ring of polynomials. The associ-
ated automorphism key is given by ATKt = RLWE′

z(z(X
t)), the homomorphic

automorphism HomAutot : RLWEz(m)→ RLWEz(m(Xt)) is defined by

HomAutot(RLWEz(m),ATKt) = a(Xt)⊙ RLWE′
z(z(X

t)) + (0,b(Xt))

= RLWEz

(
a(Xt) · z(Xt) + b(Xt)

)
= RLWEz

(
m(Xt)

)
,

where (a,b) = RLWEz(m).

2.2 FHEW-Like Bootstrapping

We briefly explain FHEW-like bootstrapping for NAND gates [14, 26]. FHEW
like NAND gate bootstrapping starts with two LWEq,s ciphertexts with a small
modulus q and adds them together. After performing blind rotation and extrac-
tion procedures, we obtain an LWE encryption of the NAND gate operation on
the plaintexts, now with a higher ciphertext modulus Q. As described in [26], the
core bootstrapping procedure based on an accumulator is first followed by mod-
ulus switching, which changes the parameters from (Q,N) to (Qks, N). Then,

Faster FHEW Bootstrapping with Adaptive Key Update 9

key switching is performed, changing the parameters from (Qks, N) to (Qks, n).
Finally, another modulus switching step reduces the parameters from (Qks, n)
to (q, n). The full bootstrapping procedure is illustrated in Fig.1. We focus on
the blind rotation part and refer to [26] for further details on the other steps of
the FHEW-like bootstrapping process.

Fig. 1. NAND gate bootstrapping procedure of FHEW scheme

The core of bootstrapping algorithm can be divided into two steps:

Blind Rotation. For q|2N , let Y = X
2N
q . Blind rotation is an algorithm which

takes as input a ring element f(Y) ∈ RQ, an LWEq,s ciphertext (a, b) ∈ Zn+1
q ,

and blind rotation keys BRKz,s corresponding to secrets z and s and outputs an
RLWE ciphertext:

RLWEz

(
f(Y) · Y b+⟨a,s⟩

)
∈ R2

Q.

Three different blind rotation algorithms are introduced in [13, 14, 22]. These
methods are referred to as "AP blind rotation", "GINX blind rotation", and
"LMKC+ blind rotation", respectively. All of these algorithms make use of the
properties of RGSW ciphertexts as described earlier.

- AP Blind Rotation. In AP blind rotation [14, 3], the blind rotation keys
are generated for each element si ∈ Zq of the secret s as follows:

BSK = {BSKi,j,v = RGSWz(Y
vBj

rsi)}i,j,v

for i ∈ [0, n − 1], j ∈ [0, logBr
(q) − 1], and v ∈ ZBr . In the algorithm, the

accumulator acc is initialized to the trivial encryption

acc = RLWEQ,z(f(Y) · Y b) = (0, f(Y) · Y b).

Next, for each i ∈ [0, n − 1], the value ai is decomposed in base Br as ai =∑logBr
(q)−1

j=0 ai,jB
j
r . The accumulator acc is then updated sequentially for each

ai,j as
acc← acc⊛ RGSWz(Y

ai,jB
j
rsi).

The full procedure of AP blind rotation is described in Algorithm 1.
AP blind rotation supports all types of secret key distributions and offers a

useful trade-off between the storage requirements for evaluation keys and com-
putational complexity, depending on the choice of the base Br ≥ 2. A larger

10 Q.Zhang et al.

Algorithm 1 Blind Rotation: AP [14, 3]
Input: (a, b), acc, {BSKi,j,v}i∈[0,n−1],j∈[0,logBr

(q)−1],v∈ZBr

Output: c
1: for (i = 0; i < n; i = i+ 1) do
2: for (j = 0; j < logBr

(q); j = j + 1) do
3: ai,j =

⌊
ai/B

j
r

⌋
(mod Br)

4: acc← acc⊛ BKSi,j,ai,j

5: return c = acc

Br allows for faster computations but increases the storage requirements for the
evaluation keys. Conversely, a smaller Br reduces the storage overhead but leads
to longer computational times.

- GINX Blind Rotation. GINX blind rotation [13, 16] is more efficient
than AP when the secret key s is binary or ternary. However, its performance
degrades when using larger secret keys [26]. In the general case, each secret key
element si ∈ Zq, i ∈ [0, N − 1], is expressed as a subset-sum si =

∑|U |−1
j=0 ujsi,j ,

where si,j ∈ {0, 1} and U ⊂ Zq is an appropriately chosen subset of Zq. To
express arbitrary elements of Zq, one can use U = {1, 2, 4, . . . , 2k−1}. For binary
and ternary secrets, U = {1} and U = {1,−1} can be used, respectively [26].
For any fixed set U , the blind rotation keys are generated as

BSK = {BSKi,j = RGSWz(si,j)}i,j ,

where i ∈ [0, n− 1] and j ∈ [0, |U | − 1]. In the algorithm, the accumulator acc is
initiated as

acc = RLWEz(f(Y) · Y b) = (0, f(Y) · Y b),

and is updated as

acc← acc+ (Y aiuj − 1) · (acc⊛ RGSWz(si,j)).

Algorithm 2 Blind Rotation: GINX [13, 16, 26]
Input: (a, b), acc, {BSKi,j}i∈[0,n−1],j∈[0,|U|−1]

Output: c
1: for (i = 0; i < n; i = i+ 1) do
2: for (j = 0; j < |U |; j = j + 1) do
3: acc← acc+ (Y aiuj − 1) · (acc⊛ BSKi,j).
4: return c = acc

If si,j = 0, the second addendum is ignored as it encrypts zero, and the value
in the accumulator acc remains unchanged. If si,j = 1, then acc⊛RGSWz(1) is
equal to acc, and the accumulator acc is updated to Y aiuj · acc. Repeating this
procedure for all j ∈ [0, |U | − 1] results in the final value Y aisi · acc. The full
procedure for GINX blind rotation is described in Algorithm 2.

Faster FHEW Bootstrapping with Adaptive Key Update 11

- LMKC+ Automorphism-Based Blind Rotation. Under the obser-
vation that Z∗

2N
∼= ZN/2 ⊗ Z2, if ai ∈ Z∗

2N for all i ∈ [0, n − 1], then each ai
can be expressed in terms of the generators {g,−1}. In the case of modulus 2N ,
consider the decomposition of the sum

∑
i aisi as follows

∑
i

aisi =
∑
j∈I+

0

sj+· · ·+g

 ∑
j∈I+

N/2−1

sj − g

∑
j∈I−

0

sj + · · ·+ g

 ∑
j∈I−

N/2−1

sj



 mod 2N,

where I+ℓ = {i : ai = gℓ} and I−ℓ = {i : ai = −gℓ}, for ℓ ∈ [0, N/2 − 1]. The

Algorithm 3 Blind Rotation: LMKC+ [22] for q = N

Input: (a, b), acc, {BSKi}i∈[0,n−1], BRKsum, {ATKgu}u∈[1,w], ATK−g

Output: c
1: a← 2a+ 1 mod 2N
2: v ← 0
3: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

4: for j ∈ I−ℓ do
5: acc = acc⊛ BSKj

6: v ← v + 1
7: if (I−ℓ−1 ̸= ∅ or v = w or ℓ = 1) then
8: acc = HomAutogv (acc,ATKgv)
9: v ← 0

10: for j ∈ I−0 do
11: acc = acc⊛ BSKj

12: acc = HomAuto−g (acc,ATK−g) ;
13: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

14: for j ∈ I+ℓ do
15: acc = acc⊛ BSKj

16: v ← v + 1
17: if (I+ℓ−1 ̸= ∅ or v = w or ℓ = 1) then
18: acc = HomAutogv (acc,ATKgv)
19: v ← 0
20: for j ∈ I+0 do
21: acc = acc⊛ BSKj

22: acc = acc⊛ BRKsum

23: return c = acc

blind rotation keys are generated as

BSK = {BSKi = RGSWz(X
si)}i,

where i ∈ [0, n− 1], and homomorphic automorphism keys are generated as
{ATKgu = RLWE′

z(z(X
gu

))}u∈[1,w], ATK−g = RLWE′
z(z(X

−g)). In the algo-
rithm, the accumulator acc is initiated as

acc = RLWEz(f(Y) · Y b) = (0, f(X−g) ·X−gb).

12 Q.Zhang et al.

The blind rotation algorithm proceeds by first multiplying (via the external
product) the accumulator by BSKj for all j ∈ I−N/2−1, then applying HomeAutog
and repeating the process for each index set I. However, after multiplying with
I−0 , the algorithm applies HomAuto−g instead. The final results is RLWEz(f(Y)·
Y b+

∑
i aisi). By utilizing w + 1 pre-stored automorphism keys, the number of

automorphisms is reduced from n to w−1
w κ + N

w κ ≈ N(1− e−n/N). Since the
round-to-odd operation may lead to a significant increase in noise, we focus on
the Algorithm 6 in LMKC+ [22], which introduces an additional key BRKsum =
RGSWz(X

−
∑

i si). The full procedure for LMKC+ blind rotation is described
in Algorithm 3.

Additionally, LLWW+ method further reduces the number of automorphisms
by merging the symmetric sets. For a detailed description of the specific algo-
rithm, refer to Appendix A.

Sample Extraction. The algorithm SampleExtract takes as input an RLWE
ciphertext c = (a,b) ∈ RLWEQ,z(m), and outputs an LWEQ,z(m0), where m0

denotes the constant term of m.

3 New Blind Rotation Algorithms

3.1 Description

In this paper, we first define a set S = {k · 2θ + 1 ∈ Z2N |k = 0, ..., 2N/2θ − 1}
for θ ≥ 1. It is known that the elements of S form a multiplicative group. Next,
consider an LWE ciphertext (a, b) ∈ Sn+1. Define the set A = {w0, w1, ..., wL},
where wi represents the distinct elements of the vector a, ordered such that
w0 < w1 < ... < wL. We define wL+1 = 1, Il = {i : ai = wl} and w′

lwl ≡ 1
mod 2N for l ∈ [0, L].

The blind rotation keys are generated as

BSK = {BSKi,t = RGSWz(X
si·t)}i,t,

where i ∈ [0, n − 1], t ∈ S. The accumulator acc is initialized to the trivial
ciphertext

acc = RLWE
z(Xw′

1)
(f(Xw′

1) ·Xbw′
1) = (0, f(Xw′

1) ·Xbw′
1).

By the above definition, we have the decomposition

∑
i

aisi = w0

∑
j∈I0

sj

+ w1

∑
j∈I1

sj

+ ...+ wL

∑
j∈IL

sj

 mod 2N.

For w0, j ∈ I0, we apply the automorphism X → Xw′
1 to BSKj,w0

, the corre-
sponding ciphertext is given by

Faster FHEW Bootstrapping with Adaptive Key Update 13

Algorithm 4 Blind Rotation for ai = k · 2θ + 1(BR2)

Input: (a, b), acc, {BSKi,t}i∈[0,n−1],t∈S

Output: c
1: for (l = 0; l ≤ L; l = l + 1) do
2: for j ∈ Il do
3: BSK′

j = ψw′
l+1

(BSKj,wl)

4: acc← acc⊛ BSK′
j .

5: if l < L then
6: acc = ψwl+1w

′
l+2

(acc)
7: return c = acc

BSK′
j = RGSW

z(Xw′
1)
(Xw0w

′
1sj).

The accumulator acc is updated sequentially as

acc← acc⊛ BSK′
j ,

for all j ∈ I0. This process results in the ciphertext

acc = RLWE
z(Xw′

1)

(
f(Xw′

1) ·Xbw′
1+w0w

′
1(

∑
j∈I0

sj)
)
.

Finally, we apply the automorphism X → Xw1w
′
2 to acc, yielding the updated

ciphertext

acc = RLWE
z(Xw′

2)

(
f(Xw′

2) ·Xbw′
2+w0w

′
2(

∑
j∈I0

sj)
)
.

This process continues in a similar fashion, performing continuous updates on
subsequent values of wl, where l ∈ [0, L]. Throughout the process, the exponent
r in the key z(Xr) of RLWE ciphertext adaptively updates with w′

i. A detailed
description of the full procedure for blind rotation can be found in Algorithm 4.

Algorithm 4 represents the most efficient FHEW bootstrapping scheme both
theoretically and practically, exhibiting the same time complexity as the binary
GINX method. It requires only n external products for its execution. Two con-
siderations to note are that the key size can become relatively large, and the
naive sparse approach may lead to a significant increase in noise, as similarly
observed in the WWLL+ method. To mitigate the key size expansion and pre-
vent the noise growth induced by the naive sparse approach [30], we propose two
optimized algorithms based on the specific decomposition of the sum

∑
i aisi.

Memory Efficient Algorithm. As discussed in LMKC+, consider the decom-
position of the sum

∑
i aisi as follows

∑
i

aisi =
∑

j∈I
+
0

sj + · · · + g

 ∑
j∈I

+
N/2−1

sj − g

 ∑
j∈I

−
0

sj + · · · + g

 ∑
j∈I

−
N/2−1

sj




 mod 2N.

14 Q.Zhang et al.

Recall that the objective of blind rotation is to homomorphically compute

f(Y) · Y b+
∑

i aisi = f(X
2N
q) ·X

2N
q b+

∑
i(

2N
q ai+1)si−

∑
i si .

When 2N
q = 2θ, θ ≥ 1, it follows that each term 2N

q ai+1 is odd. The accumulator
acc is initialized to the trivial ciphertext

acc = RLWEz(f(Y
−g) · Y −bg) = (0, f(Y −g) · Y −bg) = (0, f(X−2θg) ·X−2θg).

The automorphism key are generated as ATK−g, and the key switching keys are
generated as

SWK = {SWKv = RLWE′
z(z(X

gv

))}v,

where v ∈ [1, 2w − 1]. The blind rotation keys are generated as follows

BRKsum = RGSWz(X−
∑

i si), BSK = {BSKi,t = RGSWz(Xgt)(X
si)}i,t,

where i ∈ [0, n− 1], t ∈ [0, w − 1].

Building on the window size optimization method, we introduce a threshold
for performing key switching. Specifically, a key switching operation is triggered
when the accumulator exponent r in the key z(Xr) reaches or exceeds a thresh-
old w. The exponent r is adaptively updated throughout the process. The full
procedure of blind rotation is described in Algorithm 5.
Computation Efficient Algorithm. By merging the symmetric sets, if ai ∈
Z∗
2N for all i ∈ [0, n− 1], we have the following decomposition

∑
i

aisi =
∑

j∈I
+
0

sj−
∑

k∈I
−
0

sj+g

 ∑
j∈I

+
1

sj −
∑

k∈I
−
1

sj + · · · + g

 ∑
j∈I

+
N/2−1

sj −
∑

k∈I
−
N/2−1

sj


 mod 2N.

The key switching keys are generated as

SWK = {SWKv = RLWE′
z(z(X

gu

))}v,

where v ∈ [1, 2w − 1]. The blind rotation keys are generated as

Faster FHEW Bootstrapping with Adaptive Key Update 15

Algorithm 5 Memory Efficient Blind Rotation for 2N
q = 2θ, θ ≥ 1

Input: (a, b), acc, {BSKi,t}i∈[0,n−1],t∈[0,w−1], {SWKv}v∈[1,2w−1], BRKsum

Output: c
1: a← 2θa+ 1 mod 2N
2: v ← 0, r ← 0
3: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

4: for j ∈ I−ℓ do
5: acc = acc⊛ BSKj,r

6: v ← v + 1
7: if (v = w or ℓ = 1) then
8: acc = ψgv (acc), acc = KS

z(Xgr+v
)→z(X)

(acc,SWKr+v), v ← 0, r ← 0

9: else if I−ℓ−1 ̸= ∅ then
10: acc = ψgv (acc), r ← r + v, v ← 0
11: if r ≥ w then
12: acc = KSz(Xgr)→z(X)(acc, SWKr), r ← 0

13: for j ∈ I−0 do
14: acc = acc⊛ BSKj,0

15: acc = HomAuto−g (acc,ATK−g)
16: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

17: for j ∈ I+ℓ do
18: acc = acc⊛ BSKj,r

19: v ← v + 1
20: if (v = w or ℓ = 1) then
21: acc = ψgv (acc), acc = KS

z(Xgr+v
)→z(X)

(acc, SWKr+v), v ← 0, r ← 0

22: else if I+ℓ−1 ̸= ∅ then
23: acc = ψgv (acc), r ← r + v, v ← 0
24: if r ≥ w then
25: acc = KSz(Xgr)→z(X)(acc, SWKr), r ← 0

26: for j ∈ I+0 do
27: acc = acc⊛ BSKj,0

28: acc = acc⊛ BRKsum

29: return c = acc

BRKsum = RGSWz(X−
∑

i si), BSK± = {BSK±
i,t = RGSWz(Xgt)(X

±si)}i,t,

where i ∈ [0, n−1], t ∈ [0, w−1]. The accumulator acc is initialized to the trivial
ciphertext

acc = RLWEz(f(Y
g) · Y bg) = (0, f(Y g) · Y bg) = (0, f(X2θg) ·X2θg).

As with Memory Efficient Algorithm, we introduce the same threshold for per-
forming key switching. The full procedure of blind rotation is described in Al-
gorithm 6.

16 Q.Zhang et al.

Algorithm 6 Computation Efficient Blind Rotation for 2N
q = 2θ, θ ≥ 1

Input: (a, b), acc, {BSK±
i,t}i∈[0,n−1],t∈[0,w−1], BRKsum, {SWKv}v∈[1,2w−1]

Output: c
1: a← 2θa+ 1 mod 2N
2: v ← 0, r ← 0
3: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

4: for j ∈ I+ℓ or k ∈ I−ℓ do
5: if j ∈ I+ℓ then
6: acc = acc⊛ BSK+

j,r

7: if k ∈ I−ℓ then
8: acc = acc⊛ BSK−

k,r

9: v ← v + 1
10: if v = w or ℓ = 1 then
11: acc = ψgv (acc), acc = KS

z(Xgr+v
)→z(X)

(acc, SWKr+v), v ← 0, r ← 0

12: else if I+ℓ−1 ̸= ∅ or I−ℓ−1 ̸= ∅ then
13: acc = ψgv (acc), r ← r + v, v ← 0
14: if r ≥ w then
15: acc = KSz(Xgr)→z(X)(acc, SWKr), r ← 0

16: for j ∈ I+0 or k ∈ I−0 do
17: if j ∈ I+0 then
18: acc = acc⊛ BSK+

j,0

19: if k ∈ I−0 then
20: acc = acc⊛ BSK−

k,0

21: acc = acc⊛ BRKsum

22: return c = acc

3.2 Correctness

In this subsection we prove that Algorithm 4, Algorithm 5 and Algorithm 6 are
correct blind rotation schemes.

Theorem 1. Let S = {k · 2θ + 1 ∈ Z2N |k = 0, ..., 2N/2θ − 1}, where θ ≥ 1. For
the procedure described in Algorithm 4, given an LWE ciphertext (a, b) ∈ Sn+1,
an initial accumulator acc = (0, f(Xw′

1) · Xbw′
1), and the blind rotation keys

BSK = {RGSWz(X
si·t)}i∈[0,n−1],t∈S, the resulting ciphertext c will belong to the

set RLWEz

(
f(X) ·Xb+⟨a,s⟩) .

A proof of this theorem will be given in Appendix B.

Theorem 2. Given Algorithm 5, on input a ciphertext (a, b) ∈ LWEq,s(m), an
accumulator acc = (0, f(Y −g)·Y −bg), keys SWK = {RLWE′

z(z(X
gv

))}v∈[1,2w−1],
BSK = {RGSWz(Xgt)(X

si)}i∈[0,n−1],t∈[0,w−1] and BRKsum = RGSWz(X
−

∑
i si),

outputs a ciphertext c ∈ RLWEz

(
f(Y) · Y b+⟨a,s⟩).

A proof of this theorem will be given in Appendix C.

Theorem 3. Given Algorithm 6, on input a ciphertext (a, b) ∈ LWEq,s(m), an
accumulator acc = (0, f(Y g) · Y bg), keys SWK = {RLWE′

z (z(Xgv

))}v∈[1,2w−1],

Faster FHEW Bootstrapping with Adaptive Key Update 17

BSK± = {RGSWz(Xgt)(X
±si)}i∈[0,n−1],t∈[0,w−1] and BRKsum = RGSWz(X

−
∑

i si),
outputs a ciphertext c ∈ RLWEz(f(Y)· Y b+⟨a,s⟩) .

The proof of this theorem follows in a similar manner in Theorem 2.

4 Analysis and Comparisons

To compare the computational complexity and bootstrapping key size of several
blind rotation schemes, we use the following parameters:

• q, LWE modulus;
• n, lattice parameter for the LWE scheme;
• Q, RLWE/RGSW modulus used in the core bootstrapping procedure

based on an accumulator;
• N, ring dimension for RLWE/RGSW;
• Bep, gadget base for ⊛, which breaks integers mod Q into dep digits;
• Bks, gadget base, which breaks integers mod Qks into dks digits;
• Br, gadget base in AP, which breaks integers mod q into dr digits;
• w, window size of automorphisms;
• σ2, error variance of a fresh RLWE ciphertext.

The comparison of computational complexity, key size, and error is summa-
rized in Table 1. For the purpose of evaluating the performance of the blind
rotation algorithms, we quantify their time complexity based on the number of
R ⊙ RLWE′ products executed. A single RLWE ⊛ RGSW operation requires
two ⊙ multiplications, whereas key switching only involves one ⊙ multiplica-
tion. Consequently, both the ⊛ product and key switching can be effectively
expressed in terms of the ⊙ operation. The ⊙ operation itself serves as a funda-
mental abstraction in FHEW, as well as in its torus variant TFHE [13]. In prior
studies of FHEW-like homomorphic encryption schemes, an alternative complex-
ity measure often used is the number of NTT/FFT operations performed by the
algorithm. Since each ⊙ operation requires (d+1) NTT operations (with d being
the dimension of a gadget vector), it is straightforward to convert the count of
⊙ products to the number of required NTT operations.

In a similar fashion, we assess the memory consumption of the various blind
rotation algorithms by evaluating the total number of RLWE′ ciphertexts. The
blind rotation keys in all algorithms consist of a series of RGSW and RLWE′

ciphertexts, with each RGSW ciphertext encompassing two RLWE′ ciphertexts.
To estimate the variance σ2

acc introduced by the blind rotation procedure,
we follow an approach described in [26, 14]. The overall error for algorithms
utilizing blind rotation, such as FHEW/TFHE bootstrapping [26, 14, 13] can be
conveniently estimated using this variance. According to Lemma 1, the error
variance induced by a single ⊙ operation under canonical gadget decomposition
is expressed as σ2

⊙ = depN
B2

ep

12 σ
2. For approximate gadget decomposition, the

error variance introduced by the ⊙ and ⊛ operations are, respectively, given as
σ′2
⊙ = depN

B2
ep

12 σ
2 + 1

3ϵ
2
ep and σ′2

⊛ = depN
B2

ep

6 σ2 + Nσ2+1
3 ϵ2ep for Gaussian secrets.

18 Q.Zhang et al.

In AP, the operation ⊛ is executed by encrypting the monomial with RGSW,
which results in an additive error characterized by a variance of 2·σ2

⊙. In LMKC+
and LLWW+ methods, the homomorphic automorphism operation due to key
switching introduces an additive error with variance σ2

⊙. Thus the variance σ2
acc

can be estimated as σ2
⊙ multiplied by the number of ⊙ operations. In GINX,

due to the preprocessing of RGSW ciphertexts before ⊛ multiplications, each ⊛
introduces an additive error with variance 4 · σ2

⊙.

Table 1. Complexity, key size, and error variance of each blind rotation technique.
Key size (# keys) is the number of RLWE′ ciphertexts, and computational complexity
(# mult) is the number of RQ ⊙ RLWE′. κ ≈ N(1− e−n/N).

Method # keys # mult σ2
acc

AP 2dr(Br − 1)n 2dr
(
1− 1

Br

)
n 2dr

(
1− 1

Br

)
nσ2

⊙

GINX* 4n 2n 8nσ2
⊙

LMKC+ 2n+ w + 3 2n+ w−1
w
κ+ N

w
+ 2 (n+ 1)σ′

⊛ + (w−1
w
κ+ N

w
)σ′2

⊙
LLWW+ 4n+ w + 2 2n+ w−1

w
κ+ N

2w
+ 2 (n+ 1)σ′2

⊛ + (w−1
w
κ+ N

2w
)σ′2

⊙
Algorithm 5 2nw + 2w + 1 2n+ N

w
+ 2 (n+ 1)σ′2

⊛ + N
w
σ′2
⊙

Algorithm 6 4nw + 2w + 1 2n+ N
2w

+ 2 (n+ 1)σ′2
⊛ + N

2w
σ′2
⊙

As shown in Table 1, the total key size required by our algorithm for blind
rotation and key switching is approximately w times larger than the original size
prior to the improvement. However, the value of w required to achieve the opti-
mal runtime for each algorithm may vary. Furthermore, the LWE key switching
operation introduces an additional overhead. On the whole, the overall increase
in bootstrapping key size remains modest.

Regarding time complexity, we observe that the theoretical complexity of
blind rotation in Algorithm 5 and Algorithm 6 is higher than that of GINX*.
However, this theoretical analysis should not be taken to mean that the al-
gorithm with the smaller complexity expression will necessarily exhibit better
runtime performance in practice. This discrepancy arises because different sets
of parameters are used to achieve the same security level. For instance, while
ternary GINX* exhibits the smallest theoretical expressions for computational
complexity in this analysis, our proposed blind rotation algorithm outperforms
GINX* in practice for two main reasons. First, our algorithm experiences less
noise growth compared to GINX*, allowing it to operate with a smaller param-
eter set. Second, by leveraging Gaussian secrets, our algorithm can achieve the
same level of security with a smaller value of n, without incurring any perfor-
mance penalties.

5 Implementation

In this section, we present the implementation results of our new blind rota-
tion algorithms. In our implementation, we optimize performance by selecting

Faster FHEW Bootstrapping with Adaptive Key Update 19

the appropriate window size to reduce the number of key switching operations.
We compare our approach with the AP, GINX, LMKC+, and LLWW+ blind
rotation techniques.

5.1 Parameter Sets

Similar to [12, 14, 26], the parameters are set to ensure a decryption failure upper
bound of less than 2−32 while achieving the highest possible efficiency under each
respective algorithm to ensure a fair comparison. Table 2 presents optimized
parameter sets from the OpenFHE library for FHEW schemes. Based on these
criteria, we propose the following 128-bit secure parameter sets: STD_128 for
AP/GINX with ternary secrets, STD128_LMKC+ for LMKC+/Algorithm 5
with Gaussian secrets, and 128_OURS for Algorithm 6 with Gaussian secrets.

Table 2. Optimized paramater sets for FHEW schems [22]

.

Parameter set key n q N Q Qks Bep Bks Br w

STD_128 ternary 503 1024 1024 227 214 512 32 32 ×
STD128_LMKC+ σ = 3.19 447 1024 1024 228 214 1024 32 × 10
128_OURS σ = 3.19 447 1024 1024 228 214 1024 32 × 5

Theoretical estimates. We use the approach from [14] to write the error of a
refreshed ciphertext as a Gaussian of standard deviation

β =

√
q2

Qks2

(
Q2

ks

Q2
σ2
acc + σ2

ms1 + σ2
ks

)
+ σ2

ms2 ,

where σ2
ms1, σ

2
ks, and σ2

ms2 denote the error variances introduced by modulus
switching from Q to Qks, key switching from z to s, and modulus switching
from Qks to q, respectively. We have

σ2
ms1 =

∥z∥2 + 1

12
, σ2

ks = σ2 Ndks, σ
2
ms2 =

∥s∥2 + 1

12
.

We assume ∥z∥ ≤
√
2N/3 and ∥s∥ ≤

√
2n/3 for ternary secrets [14], and ∥z∥ =√

Nσ2 and ∥s∥ =
√
nσ2 for Gaussian secrets. The ciphertext LWEq,s(q/4 ·m)

exhibits the largest noise, characterized by a standard deviation of
√
2β. De-

cryption fails when the noise in LWEq,s(q/4 ·m) exceeds q/8. As a result, the
decryption failure probability per NAND operation is given by 1-erf(q/82β).

5.2 Runtime Results

To ensure a fair comparison of the bootstrapping algorithms, we implemented
all of them using identical libraries and computing environments. The evalu-
ation was conducted on a system with an 11th Gen Intel(R) Core(TM) i5-
1135G7 processor running at 2.40 GHz, under Ubuntu 24.04.1 LTS. The code

20 Q.Zhang et al.

was compiled using Clang 12, with the following CMake flags: NATIVE SIZE =
32,WITH_OPENMP = OFF, WITH_ NATIVEOPT = ON.

Fig. 2. The window size and corresponding number of key switching for different of
bootstrapping algorithms

Fig. 3. The window size and corresponding time for different of bootstrapping algo-
rithms

As shown in the figures, Figure 2 illustrates the relationship between window
size and the number of key switching, while Figure 3 shows the correlation be-
tween window size and bootstrapping time for NAND gate evaluation in FHEW.
For LMKC+ and LLWW+ methods, we observe that the number of key switch-
ing decreases as the window size w increases when w is small. However, once all
empty sets are merged, the window size no longer influences the number of key
switching. In contrast, for Algorithm 5, the number of key switching consistently
decreases with increasing window size w. The bootstrapping time stabilizes once
w exceeds 10, which can be attributed to the fact that, for w ≥ 10, the number
of key switching operations becomes very small, meaning the runtime is pri-

Faster FHEW Bootstrapping with Adaptive Key Update 21

marily determined by the inherent randomness of the algorithm. At this point,
the practical runtime required for bootstrapping is approximately equal to that
for performing only n external products. Specifically, for Algorithm 6, the boot-
strapping time remains relatively constant once the window size exceeds 5.

Table 3. Timing results (average of 400), the number of key switching, bootstrapping
key size, and failure probability for FHEW bootstrapping (NAND gate)

Method Number Time[ms] Key size[MB] Fail.prob
AP [14, 3] × 55.49 1316.12 2−84

GINX* [6, 20] × 36.33 153.41 2−66

LMKC+ [22] 380 39.79 92.1 2−34

LLWW+ [23] 301 38.38 110.41 2−35

Ours(Algorithm 5) 84 31.81 257.27 2−37

Ours(Algorithm 6) 77 30.41 257.07 2−36

We set the window size w = 10 for LMKC+, LLWW+, and Algorithm 5, and
w = 5 for Algorithm 6. It is important to note that the entire bootstrapping key
consists of both the evaluation keys for blind rotation and key switching keys.
The size of the LWE key switching key is given by (n + 1)NBskdks logQks bits.
The resulting values for the number of key switching, bootstrapping time, key
size, and the probability of decryption failure are summarized in Table 3. The
results indicate that Algorithm 6 performs only 77 key switching, representing
a reduction of 80% and 74% compared to LMKC+ and LLWW+, respectively.
Moreover, the running time of bootstrapping is 30.41 ms, which corresponds to
a 20.7% reduction in bootstrapping time compared to LLWW+.

References

1. Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise,
N., Halevi, S., Hunt, H., Kim, A., Lee, Y., et al.: Openfhe: Open-source fully
Homomorphic Encryption Library. In: WAHC 2022 – 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography. pp. 53–63 (2022)

2. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., et al.: Homomorphic Encryption Standard.
Protecting privacy through homomorphic encryption pp. 31–62 (2021)

3. Alperin-Sheriff, J., Peikert, C.: Faster Bootstrapping with Polynomial Error. In:
CRYPTO 2014 - 34th Annual Cryptology Conference. pp. 297–314. Springer (2014)

4. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with Compressed Queries and Amor-
tized Query Processing. In: SP 2018 - 2018 IEEE Symposium on Security and
Privacy. pp. 962–979. IEEE (2018)

5. Blatt, M., Gusev, A., Polyakov, Y., Goldwasser, S.: Secure Large-Scale Genome-
Wide Association Studies Using Homomorphic Encryption. Proceedings of the Na-
tional Academy of Sciences 117(21), 11608–11613 (2020)

22 Q.Zhang et al.

6. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: Faster FHE
Instantiated with NTRU and LWE. In: ASIACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 188–215. Springer Nature (2022)

7. Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In: CRYPTO 2012 - 32nd Annual Cryptology Conference. pp.
868–886. Springer (2012)

8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. ACM Transactions on Computation Theory 6(3),
1–36 (2014)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic Encryption from Ring-LWE
and Security for Key Dependent Messages. In: CRYPTO 2011 - 31st Annual Cryp-
tology Conference. pp. 505–524. Springer (2011)

10. Chen, H., Laine, K., Rindal, P.: Fast Private Set Intersection from Homomorphic
Encryption. In: ACM CCS 2017 - 24th ACM SIGSAC Conference on Computer
and Communications Security. pp. 1243–1255. ACM (2017)

11. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic Encryption for Arithmetic
of Approximate Numbers. In: ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security. pp. 409–
437. Springer (2017)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster Fully Homomor-
phic Encryption: Bootstrapping in Less than 0.1 Seconds. In: ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and
Information Security. pp. 3–33. Springer (2016)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Homo-
morphic Encryption over the Torus. Journal of Cryptology 33(1), 34–91 (2020)

14. Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in Less
than a Second. In: EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 617–640. Springer
(2015)

15. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive p. 144 (2012)

16. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural Lattice Reduction:
Generalized Worst-Case to Average-Case Reductions and Homomorphic Cryp-
tosystems. In: EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 528–558. Springer
(2016)

17. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC 2009 -
41st Annual ACM Symposium on Theory of Computing. pp. 169–178. ACM (2009)

18. Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning with
Errors: Conceptually Simpler, asymptotically-faster, attribute-based. In: CRYPTO
2013 - 33rd Annual Cryptology Conference. pp. 75–92. Springer (2013)

19. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic Regression on Homomorphic
Encrypted Data at Scale. In: AAAI 2019 - The Thirty-Third AAAI Conference on
Artificial Intelligence. pp. 9466–9471. AAAI Press (2019)

20. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: Gen-
eral Bootstrapping Approach for RLWE-Based Homomorphic Encryption. IEEE
Transactions on Computers 73(1), 86–96 (2024)

21. Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: LFHE: Fully Homomorphic
Encryption with Bootstrapping Key Size Less than a Megabyte. Cryptology ePrint
Archive p. 767 (2023)

Faster FHEW Bootstrapping with Adaptive Key Update 23

22. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Efficient
FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold
Homomorphic Encryption. In: EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 227–
256. Springer (2023)

23. Li, Z., Lu, X., Wang, Z., Wang, R., Liu, Y., Zheng, Y., Zhao, L., Wang, K., Hou,
R.: Faster NTRU-based Bootstrapping in Less than 4 Ms. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024(3), 418–451 (2024)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. Journal of the ACM 60(6), 1–35 (2013)

25. Micciancio, D.: On the Hardness of Learning with Errors with Binary Secrets.
Theory of Computing 14(1), 1–17 (2018)

26. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like Cryptosystems. In:
WAHC 2021 - 9th on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. pp. 17–28. Association for Computing Machinery (2021)

27. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. Journal of the ACM 56(6), 1–40 (2009)

28. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: PKC 2010, 13th International Conference
on Practice and Theory in Public Key Cryptography. pp. 420–443. Springer (2010)

29. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology
and Information Security. pp. 377–394. Springer (2010)

30. Wang, R., Wen, Y., Li, Z., Lu, X., Wei, B., Liu, K., Wang, K.: Circuit Bootstrap-
ping: Faster and Smaller. In: EUROCRYPT 2024 - 43rd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 342–372.
Springer (2024)

31. Xiang, B., Zhang, J., Deng, Y., Dai, Y., Feng, D.: Fast Blind Rotation for Boot-
strapping FHEs. In: CRYPTO 2023 - 43rd Annual International Cryptology Con-
ference. pp. 3–36. Springer (2023)

24 Q.Zhang et al.

A LLWW+ Basic Blind Rotation Algorithm

Algorithm 7 Blind Rotation: LLWW+ [23] for 2N
q = 2θ, θ ≥ 1

Input: (a, b), acc = (0, Y gb · f(Y g)), {BSK±
i = RGSWz(X

±si)}i∈[0,n−1], BRKsum =

RGSWz(X
−

∑
i si), {ATKgu = RLWE′

z(z(X
gv))}v∈[1,w]

Output: c
1: a = 2θa+ 1 mod 2N
2: v ← 0
3: for (ℓ = N

2
− 1; ℓ > 0; ℓ = ℓ− 1) do

4: for j ∈ I+ℓ or j ∈ I−ℓ do
5: if j ∈ I+ℓ then
6: acc = acc⊛ BSK+

j

7: if j ∈ I−ℓ then
8: acc = acc⊛ BSK−

j

9: v ← v + 1
10: if (Iℓ−1 ̸= ∅ or v = w or ℓ = 1) then
11: acc = HomAutogv (acc,ATK) ;
12: v ← 0
13: for j ∈ I+0 or j ∈ I−0 do
14: if j ∈ I+0 then
15: acc = acc⊛ BSK+

j

16: if j ∈ I−0 then
17: acc = acc⊛ BSK−

j

18: acc = acc⊛ BRKsum

19: return c = acc

B The correctness of Algorithm 4

Proof. We begin by considering the initial accumulator acc, which can be treated
as a trivial ciphertext under the secret key z(Xw′

1). For l = 0, each j ∈ I0, we
apply the automorphism X → Xw′

1 to the ciphertext BSKj,w0 to obtain

BSK′
j = RGSW

z(Xw′
1)
(Xw0w

′
1sj).

Initially, the accumulator is defined as an acc = (0, f(Xw′
1) · Xbw′

1). The accu-
mulator acc is updated sequentially as

acc← acc⊛ BSK′
j ,

for all j ∈ I0. This process results in the ciphertext

acc = RLWE
z(Xw′

1)

(
f(Xw′

1) ·Xbw′
1+w0w

′
1(

∑
j∈I0

sj)
)
.

Faster FHEW Bootstrapping with Adaptive Key Update 25

Next, we apply the automorphism X → Xw1w
′
2 to acc, yielding the updated

ciphertext

acc = RLWE
z(Xw′

2)

(
f(Xw′

2) ·Xbw′
2+w0w

′
2(

∑
j∈I0

sj)
)
.

For l < L−1, let j ∈ Il. Suppose, after the previous steps, we have the following
expression for the accumulator

acc = RLWE
z(X

w′
l+2)

(
f(Xw′

l+2) ·Xbw′
l+2+w0w

′
l+2(

∑
j∈I0

sj)+...+wlw
′
l+2

(∑
j∈Il

sj
))

.

Then for l+1, we apply the automorphism X → Xw′
l+2 to BSKj,wl+1

, obtaining

BSK′
j = RGSW

z

(
X

w′
l+2

)(Xwl+1w
′
l+2sj).

The accumulator acc is updated sequentially as

acc← acc⊛ BSK′
j ,

for all j ∈ Il. Thus, we obtain the ciphertext

acc = RLWE
z(X

w′
l+2)

(
f(Xw′

l+2) ·Xbw′
l+2+w0w

′
l+2(

∑
j∈I0

sj)+...+wlw
′
l+2

(∑
j∈Il+1

sj
))

.

Next, we apply the automorphism X → Xwl+2w
′
l+3 to acc, yielding:

acc = RLWE
z(X

w′
l+3)

(
f(Xw′

l+3) ·Xbw′
l+3+w0w

′
l+3(

∑
j∈I0

sj)+...+wlw
′
l+3

(∑
j∈Il+1

sj
))

.

Finally, for l = L, after executing the steps in line 4 for the last time, the
resulting ciphertext is

acc = RLWEz

(
f(X) ·Xb+w0(

∑
j∈I0

sj)+...+wL

(∑
j∈IL

sj
))

= RLWEz

(
f(X) ·Xb+⟨a,s⟩

)
.

C The correctness of Algorithm 5

Proof. For the sets I−0 , ..., I
−
N
2 −1

, let v1, . . . , vk be the exponents of the k auto-
morphisms that need to be applied after each non-empty set. We are given that
v1 + v2 + ... + vk = N

2 − 1. We decompose each exponent as vi = v′i + w · v′′i ,
where v′i = vi mod w, and v′′i = ⌊v′i/w⌋. Let Î1, ..., Îk be the non-empty sets. For
writing convenience, the vectors (d1, d2, d3) represent the ciphertext f(Y −gd1

) ·
Y −bgd1 ·Xd2 under the secret key z(Xgd3

). Initially, the accumulator is defined
as acc = (0, f(Y −g)) · Y −bg.

26 Q.Zhang et al.

One of the following two cases will occur: I−N
2

̸= ∅ or I−N
2

= ∅. The proof for

both cases is similar, so, without loss of generality, we can assume that I−N
2

̸= ∅.

Then we have Îk = I−N
2 −1

, and the sum is expressed as

∑
j∈I

−
0

sj+· · ·+g

 ∑
j∈I

−
N/2−1

sj

 = g
v1

 ∑
j∈Î1

sj + g
v2

 ∑
j∈Î2

sj + · · · + g
vk

∑
j Îk

sj




 mod 2N.

For vk, after the first application of the steps in line 5 for all j ∈ I−ℓ , the resulting
ciphertext is 1,

∑
j∈Îk

Xsj , 0

 .

Algorithm 5 then performs the steps in line 8 v′′k times, resulting in1 + wv′′k , g
wv′′

k

∑
j∈Îk

Xsj

 , 0

 .

By performing lines 6 and 10, the accumulator is updated to1 + vk, g
vk

∑
j∈Îk

Xsj

 , v′k

 .

At this point, we don’t perform key switching like LMKC+, and r = v′k. We
have

BSKj = RGSW
z(Xg

v′
k)
(Xsj).

After executing the steps in line 5 for all j ∈ I−ℓ (with the updated value of ℓ),
we obtain the following ciphertext1 + vk,

∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , v′k

 .

As the algorithm progresses, for vk−1, if v′′k−1 ̸= 0, the ciphertext becomes1 + vk + vk−1, g
vk−1

 ∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , v′k−1

 .

Otherwise, the result is1 + vk + vk−1, g
vk−1

 ∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , v′k + v′k−1



Faster FHEW Bootstrapping with Adaptive Key Update 27

or 1 + vk + vk−1, g
vk−1

 ∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , 0

 .

Complete the for loop with respect to i. For vi, suppose that v′′i ̸= 0 (in the event
that this assumption does not hold, we proceed by considering the previous non-
zero v′′i ; if all v′′i = 0, the algorithm is obviously correct). It is straightforward
to observe, for i ≥ 2, we have1 + vk + ...+ vi, g

vi

∑
j∈Îi

Xsj + ...+ gvk−1

 ∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , v′i

 .

Specially, when i = 1, we get the final result1 + vk + ...+ v1, g
v1

∑
j∈Î1

Xsj + ...+ gvk−1

 ∑
j∈Îk−1

Xsj + gvk

∑
j∈Îk

Xsj

 , 0



=

N

2
− 1,

∑
j∈I−0

sj + · · ·+ g

 ∑
j∈I−

N/2−1

sj + g

 ∑
j∈I−

N/2−2

sj


 , 0

 .

(1)
If v′′i−1 ̸= 0, the situation reduces to the previous case with v′′i ̸= 0. When

v′′i−1 = v′′i−2 = ... = v′′i−j′ = 0, v′′i−j′−1 ̸= 0, 1 ≤ j′ ≤ i− 2.

For vi−j′′ , 1 ≤ j′′ ≤ j′, we have1 + vk + ...+ vi−j′′ , g
vi−j′′

 ∑
j∈Îi−j′′

Xsj + ...+ gvk

∑
j∈Îk

Xsj


 , r

 ,

where r is the sequential sum from v′i to v′i−j′′ , following the rule that once the
sum exceeds w, it resets to 0 and continues adding. Then situation reduces to
the previous case with v′′i ̸= 0. When

v′′i−1 = v′′i−2 = ... = v′′1 = 0,

we get the final result (1) when l = 0.
Next, we execute the steps from line 13 to line 15 and repeat the above

process for I+i , where i = 0, ..., N2 −1. The procedure is analogous to that for I−i
with i ∈ [0, N/2− 1], and thus is omitted for brevity.

