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Abstract. CKKS is a homomorphic encryption (HE) scheme that sup-
ports arithmetic over complex numbers in an approximate manner. De-
spite its utility in PPML protocols, formally defining the security of
CKKS-based protocols is challenging due to its approximate nature. To
be precise, in a sender-receiver model, where the receiver holds input
ciphertexts and the sender evaluates its private circuit, it is difficult to
define sender’s privacy in terms of indistinguishability, whereas receiver’s
privacy is easily achieved through the semantic security of CKKS.
In this paper, we present a new definition for CKKS-based protocols,
called Differentially Private Homomorphic Evaluation (DPHE) proto-
cols, along with a general method to achieve this. In our definition, we
relax the sender’s privacy condition from indistinguishability to differen-
tial privacy notion. We focus on the fact that most security concern for
PPML protocols is differential privacy on evaluation results, rather than
the simulatability of the evaluation. We prove that if the ideal function-
ality satisfies differential privacy and a protocol satisfies DPHE, then the
output of the protocol also satisfies differential privacy.
Next, we provide a general compiler that transforms a plain CKKS-based
protocol into a DPHE one. We achieve this by mixing the Laplace mech-
anism and zero-knowledge argument of knowledge (ZKAoK) for CKKS.
This approach allows us to achieve sender’s privacy with a moderate
noise, whereas the previous indistinguishability-based approach requires
exponentially large overhead.
Finally, we provide a concrete instantiation of ZKAoK for CKKS in the
form of PIOP. To prove the well-formedness of CKKS ciphertexts and
public keys, we devise new proof techniques that use homomorphic evalu-
ation during verification. We also provide an implementation to demon-
strate the practicality of our ZKAoK for CKKS by compiling PIOPs
using the HSS polynomial commitment scheme (Crypto’24).

Keywords: Homomorphic Encryption, Zero-knowledge Proof, Differen-
tial Privacy, CKKS

1 Introduction

Homomorphic encryption (HE) is an encryption scheme that enables compu-
tation on encrypted data without requiring decryption. Since Gentry’s seminal



work [47], numerous HE schemes have been proposed, with the current best-
performing schemes [14,15,30,32,41] being based on the hardness of the Learning
with Errors (LWE) problem [72] or its ring variant (RLWE) [67]. In (R)LWE-
based HE schemes, plaintexts are encrypted with small noises, and decryption
yields both the plaintext and the noise. These HE schemes can be categorized
based on the supported homomorphic operations: BGV [15] and BFV [14, 41]
support modular arithmetic over integers, TFHE [32] supports Boolean opera-
tions, and CKKS [30] supports approximate arithmetic over complex numbers.

One direct application of homomorphic encryption (HE) is a secure evalua-
tion protocol in the sender-receiver model. In this protocol, the sender possesses
a circuit, while the receiver holds an input for that circuit. The objective of the
protocol is to deliver the evaluation result to the receiver without revealing the
input to the sender. Assuming semi-honest security, HE offers a straightforward
two-round solution, which we refer to as a homomorphic evaluation protocol. In
the first round, the receiver encrypts its input using a homomorphic encryption
scheme and sends it along with a public key. The sender then evaluates the circuit
on the encrypted data using homomorphic operations and sends the resulting ci-
phertext back to the receiver. Finally, the receiver decrypts the output ciphertext
to obtain the evaluation result. This construction is not only round-optimal but
also communication-efficient, particularly when the size of the sender’s circuit
significantly exceeds the size of the receiver’s input.

When the sender’s circuit is private, the sender additionally runs a random-
ization process to ensure that an output ciphertext can be simulated using only
the protocol output and the receiver’s input. For exact HE schemes, including
BGV, BFV, and TFHE, this randomization process is typically achieved through
the noise flooding method [3,35], where the sender erases any remaining circuit
information in the output ciphertext’s noise by adding exponentially large noise.
This approach works for exact HE schemes because the plaintext and noise in a
ciphertext are strictly distinguished.

However, for the CKKS scheme, the noise flooding method does not work
well because plaintext and noise are fused1, making it impossible for even the
secret key owner to discriminate between them without knowing the full trace
of homomorphic operations performed on the ciphertext. As a result, adding
exponentially large noise typically spoils the plaintext, which compromises the
correctness and usefulness of the protocol. To the best of our knowledge, there
is no general randomization method for CKKS ciphertexts that is comparable
to the noise flooding method.

When extending a homomorphic evaluation protocol to cover a malicious
receiver, the sender must validate the well-formedness of the receiver’s ciphertext
and public key. This is crucial because the randomization process, such as noise
flooding, guarantees the sender’s privacy only when the receiver’s ciphertext and
public key are correctly generated. This validation can be performed using a zero-
knowledge argument of knowledge (ZKAoK) on the receiver’s ciphertext and
public key. There exists a general compiler [3] that transforms a semi-honestly

1 Here, we do not consider discrete variants of CKKS, such as [6]
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secure BGV or BFV based homomorphic evaluation protocol into a maliciously
secure one, assuming the ideal functionality of ZKAoK for BGV or BFV. In this
context, the construction of efficient ZKAoK for the BGV and BFV schemes has
been continuously studied in the literature [3, 13,22,52].

However, for CKKS, no tailored ZKAoK exists, and existing ZKAoKs for
HE do not extend well to cover CKKS. This is due to challenges in proving
the validity of the plaintext and the sparsity of the secret key when designing a
ZKAoK for CKKS. More specifically, the validity of CKKS plaintext is typically
represented in relations over complex numbers, whereas existing ZKAoKs usually
prove relations over a prime field. For the CKKS secret key, proving its sparsity is
crucial not only for the precision of homomorphic operations but also for efficient
CKKS bootstrapping [28], but previous constructions of ZKAoKs for HE either
do not consider this or fail to prove it efficiently.

1.1 Our Contribution

In this paper, we address the forementioned issues arises from CKKS based
homomrphic evaluation protocols.

DPHE Protocol. To begin with, we introduce a new tailored definition that
captures the context of CKKS-based protocols. Previously, the security of HE-
based protocols was analyzed within the framework of secure multiparty compu-
tation (MPC), where an efficient simulator for protocol execution is constructed
to achieve computational indistinguishability. This stems from a modular design
approach for privacy-preserving protocols, in which the evaluation process is
protected via MPC, while privacy leakage from the evaluation result is typically
mitigated using differential privacy (DP) [38]. While this approach extends well
to exact HE schemes, it is challenging to achieve in CKKS.

However, we focus on the fact that final privacy leakage is analyzed using
differential privacy in most applications of CKKS, such as secure inference, se-
cure training, and secure aggregation. Based on this observation, we define a
new security notion, which we call differentially private homomorphic evalua-
tion (DPHE) protocols, inspired by the definition of differential privacy.

We specifically focus on defining the sender’s privacy within the framework
of differential privacy and formalize it as the existence of an efficient simulator
whose max divergence from the real protocol execution is bounded, analogous
to the definition of DP. The key implication of our definition is that if the ideal
functionality is a DP mechanism and a protocol satisfies our sender’s privacy
definition, then the output of the real execution remains a DP mechanism. This
precisely captures the expected privacy guarantees of privacy-preserving pro-
tocols. Furthermore, we show that our definition is compatible with the key
properties of the universal composability framework [18], such as the hybrid
execution model.

DPHE Compiler. To design DPHE protocols, we also develop an efficient
compiler that transforms a plain CKKS-based homomorphic evaluation proto-
col into a DPHE protocol. Our compiler is inspired by [3], which constructs
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an efficient compiler that transforms a BGV-based semi-honest protocol into a
maliciously secure one using the noise flooding method in the hybrid execution
model for the ideal functionality of ZKAoK for BGV. We adapt this approach
to our DPHE definition and prove that it is possible to compile a plain CKKS
protocol into a DPHE protocol, using the Laplace mechanism in the hybrid exe-
cution model for the ideal functionality of ZKAoK for CKKS. We note that the
Laplace mechanism also introduces additional noise for randomization, but it
allows for moderate noise, whereas the noise flooding requires an exponentially
large amount. Thus, it enables achieving the sender’s privacy without signifi-
cantly compromising the usefulness of the protocol.

ZKAoK for CKKS. Although we have designed an efficient DPHE compiler,
there is still a lack of efficient ZKAoK for CKKS, as mentioned earlier. To ad-
dress this, we design a ZKAoK for CKKS using a polynomial interactive oracle
proof (PIOP), an interactive proof system that can later be compiled into a
succinct non-interactive argument of knowledge (SNARK) with a polynomial
commitment scheme [17, 31] and the Fiat-Shamir heuristic [43]. Our ZKAoK is
adapted from [52], which constructs a ZKAoK for the BFV scheme using PIOPs.
However, to prove CKKS-specific relations, such as sparsity of the secret key and
the validity of plaintexts, we develop new methods tailored to these challenges.

To prove the sparsity of the secret key, we design a new PIOP that checks the
L2-norm bound of a witness vector. We then show the sparsity by showing that
the L2-norm of the secret key is much smaller than the polynomial degree. For
the validity of plaintexts, solving the problem using only PIOPs is challenging.
To resolve this, we incorporate a homomorphic operation called the coeff-to-slot
operation. First, the prover generates a ciphertext in an intermediate form, which
allows them to prove the validity of the plaintext via PIOP. The verifier then
verifies the proof and applies the coeff-to-slot operation to obtain ciphertexts
with valid plaintexts. Based on these solutions, we construct the first efficient
ZKAoK for CKKS.

Implementation. To demonstrate the practicality of our ZKAoK for CKKS, we
present a proof-of-concept implementation. We compile our PIOP using the HSS
polynomial commitment scheme (PCS) [53], which is based on lattice cryptogra-
phy, supports HE-friendly prime fields, and provides fast proving performance.
Benchmark results show that proving the validity of a ciphertext and public key
with a total size of 41.1MB results in a proof size of 17.9MB, with the prover’s
time taking 324 seconds and the verifier’s time taking 51 seconds. Specifically,
we achieve a proof size that is about two times smaller than the combined size
of the ciphertext and public key, thanks to the sublinear complexity of the HSS
scheme. We also note that the proof size can be further reduced by compiling
our PIOP with other PCS. However, since DPHE protocols require the proofs to
be sent along with the ciphertext and public keys, the efficiency gain in commu-
nication costs would be moderate. Therefore, we prioritize fast proof generation
in our implementation.
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1.2 Related Work

DP-MPC. Similar to our definition of differentially private homomorphic evalu-
ation, the concept of a differentially private multiparty computation (DP-MPC)
protocol is discussed in [7]. It also defines the security of DP-MPC protocols
through the existence of an efficient simulator whose max divergence is bounded
with respect to the adversary’s view in the semi-honest setting. However, its
main focus is on how an existing secure MPC protocol can be transformed into
a DP-MPC one when the ideal functionality of the protocol is replaced with a
DP mechanism in the semi-honest setting, which aligns with the conventional
approach of integrating DP techniques into MPC protocols.

In contrast, our definition considers malicious receiver cases within the UC
framework, and our DPHE compiler builds upon a CKKS homomorphic evalua-
tion protocol, which is not a secure MPC protocol by definition. Thus, we view
our contribution as a generalization of the results presented in [7].

Approximate MPC. Besides conventional secure multiparty computation, whose
objective is to exactly evaluate a target function f , there is a generalization called
approximate MPC protocols [42], which considers scenarios where the protocol
evaluates an approximation f̂ instead of f . Its main focus is the scenario where
evaluating f̂ is more efficient within a secure MPC protocol and how to define
security in such cases so that evaluating f̂ does not reveal additional information
about the inputs compared to evaluating f . In other words, it considers the in-
formational difference between evaluating f and f̂ using an MPC protocol that
always produces an exact computation result, either f(x) or f̂(x), respectively.

However, in the case of CKKS evaluation protocols, the context is different
since even an honest receiver cannot obtain the exact evaluation result for the
target function f . Thus, we note that its definition is not directly applicable to
our case.

ZKAoK for HE. As mentioned earlier, several works in the literature have
constructed ZKAoKs for HE, especially for BGV and BFV. Boschini et al. [13]
construct a proof system for BGV ciphertexts based on Aurora [9]. Bell et al. [8]
also construct a proof system for BGV ciphertexts based on the inner product
argument of Bulletproofs [16]. Chatel et al. [22] construct a ZKAoK for BFV
ciphertexts and public keys, based on the LANES [4,40,66] framework, a lattice-
based zero-knowledge proof system. The most relevant to our work is [52], which
constructs a PIOP-based ZKAoK for BFV ciphertexts and public keys. However,
to our knowledge, there has been no prior work addressing the issues that arise
with ZKAoKs for CKKS.

Vector Range Proof. In proving the sparsity of the secret key and the validity
of ciphertexts, we frequently utilize range proofs for vectors that check the L2 or
L∞-norm of witness vectors. Efficient range proofs for vectors have been studied
in various works [33,34,48], differing primarily in the proof systems they employ.
The most relevant work to ours is [46], which constructs an efficient L∞-norm
range proof by extending univariate PIOPs to bivariate PIOPs. However, its
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optimization is particularly effective for the KZG [55] polynomial commitment
scheme, so we did not include it in our implementation. Additionally, to our
knowledge, no univariate PIOP construction has addressed the L2-norm range
proof, which we have developed in this paper.

IND-CPA-D. Recently, a new security notion for CKKS, called IND-CPA-
D, has been proposed [62]. Concrete attacks [23, 27, 49] are continuously being
raised, and preventive measures [63] are being extensively studied. In short, the
definition of IND-CPA-D primarily focuses on the case where decryption results
of CKKS are shared with an evaluator, which may leak partial information about
the secret key.

In our case, we restrict our protocol to a sender-receiver model, ensuring
that the sender does not receive any evaluation results, similar to other oblivious
evaluation protocols [71]. Therefore, we do not consider IND-CPA-D security in
our protocol, leaving it as an orthogonal research direction.

Verifiable HE. Another research direction in homomorphic evaluation proto-
cols focuses on addressing the malicious behavior of the sender, often referred
to as verifiable HE. One frequently used approach is the incorporation of suc-
cinct non-interactive arguments (SNARG) to validate the sender’s computa-
tion [11, 44, 45, 64]. We believe that this approach can be naturally extended to
our case, although in this paper, we focus on the semi-honest sender scenario.

2 Background

2.1 Notation

For a positive integer q, we use Z∩ (−q/2, q/2] as a representative set of Zq, and
denote by [a]q the reduction of a modulo q. Vectors over Z or Zq are denoted
with regular lowercase letters and arrows, such as v⃗, and matrices over Z or Zq
are represented by regular uppercase letters. We regard all vectors as column
vectors, and we use the symbol ∥ for the concatenation of two vectors.

Let N be a power of two. We denote by R = Z[X]/(XN + 1) the ring of
integers of the 2N -th cyclotomic field, and by Rq = R/qR the residue ring of R
modulo q. For polynomials, we use bold lowercase letters to denote them e.g., fff .
For a vector v⃗ = (v0, . . . , vn−1) ∈ Zn, the Lp and L∞ norms are defined as
follows for p ≥ 1.

∥v⃗∥p := p

√√√√n−1∑
i=0

|vi|p and ∥v⃗∥∞ := max
0≤i<n

|vi|

The Hadamard product is denoted by ⊙. For a polynomial fff or a vector of
polynomials f⃗ff , ∥fff∥p and

∥∥∥f⃗ff∥∥∥
p

are calculated by regarding them as coefficient

vectors. For a matrix A ∈ Rn×n, we denote the matrix norm of A by ∥A∥2 :=

max0̸=x⃗∈Rn
∥Ax⃗∥2

∥x⃗∥2
.
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2.2 Probability Distributions

We denote sampling x from the distribution D by x← D. For distributions D1

and D2 over a countable set S (e.g. Zn), the statistical distance of D1 and D2 is
defined as 1

2 ·
∑
x∈S |D1(x)−D2(x)| ∈ [0, 1]. We denote the uniform distribution

over S by U(S) when S is finite.
For σ > 0, we define the Gaussian function ρσ : R → (0, 1] as ρσ(x) :=

exp(−π · (x/σ)2). The discrete Gaussian distribution DG(σ) with parameter σ is
defined as a distribution over Z, whose probability mass function is ρσ(x)/ρσ(Z),
where ρσ(Z) :=

∑
x∈Z ρσ(x) < ∞. For a polynomial fff of degree d, we denote

by fff ← DG(σ)d if each of its coefficients is sampled from DG(σ). For b > 0, the
Laplace distribution Lap(b) with parameter b is defined as a distribution over R,
whose probability density function is 1

2b exp(−|x|/b).

2.3 The RLWE Problem

First, we review the definition of the RLWE problem [67]. The computational
hardness of the RLWE problem is a key component for achieving IND-CPA
security in many lattice-based HE schemes [14,15,41], including CKKS [30].

Definition 1 (RLWE [67]). Let χs, χe be distributions over R. Then, the
goal of the Ring-LWE (MLWE) problem is to distinguish (aaa,uuu) from (aaa,aaasss+ eee)
for aaa ← U(Rq), eee ← χe, and sss ← χs. We say that a PPT algorithm D has an
advantage ε in solving RLWEq,χs,χe if the following holds.∣∣∣Pr[D(aaa,uuu) = 1]− Pr[D(aaa,aaasss+ eee) = 1]

∣∣∣ ≥ ε
When χs, χe are discrete Gaussian distributions, we denote them simply by their
width parameters.

Next, we review the Hint-RLWE problem [56], a variant of the RLWE prob-
lem. The Hint-RLWE problem is frequently used in lattice-based zero-knowledge
proof systems [53,56] or signature schemes [36,39] to achieve simulatability with-
out the rejection sampling method [65]. Under a suitable parameter setting, it
can be reduced from the RLWE problem, as shown in [56].

Definition 2 (Hint-RLWE [56]). Let cccs, ccce be elements in R, and let χs, χe,
χf , χg be distributions over R. Then, the goal of the Hint-RLWE problem is
to distinguish (aaa, uuu, cccssss + fff, ccceeee + ggg) from (aaa, aaasss + eee, cccssss + fff, ccceeee + ggg) for
aaa← U(Rq), eee← χe, fff ← χf , ggg ← χg and sss← χs. We say that a PPT algorithm
D has an advantage ε in solving HintRLWEcccs,ccce,χf ,χgq,χs,χe if the following holds.∣∣∣Pr[D(aaa, uuu, cccssss+ fff, ccceeee+ ggg) = 1]− Pr[D(aaa, aaasss+ eee, cccssss+ fff, ccceeee+ ggg) = 1]

∣∣∣ ≥ ε
Definition 3 (Smoothing parameter [68]). For an n-dimensional lattice Λ
and ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{⃗0}) ≤
ε.
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Theorem 1 (Theorem 1 in [56]). Let σe, σs > 0, and σe, σf , σ > 0 be real
numbers, which satisfy the following.

1

σ2
= 2

(
1

σ2
s

+
∥cccs∥21
σ2
f

)
= 2

(
1

σ2
e

+
∥ccce∥21
σ2
g

)

If σ ≥
√
2 · η(1/2λ)(ZN ), then there exists an efficient reduction from RLWEq,σ,σ

to HintRLWEcccs,ccce,σf ,σgq,σs,σe that reduces the advantage by at most negl(λ).

2.4 Differential Privacy

Below, we review the definition of differential privacy (DP) [38] and its ex-
tension to computationally bounded adversaries, known as computational dif-
ferential privacy (CDP) [70]. Differential privacy is a well-established notion for
privacy-preserving statistical analyses. However, when combining DP techniques
with cryptographic protocols, a computational indistinguishability extension of
the DP notion is necessary for analyzing security, as the original definition is
information-theoretic. In this context, CDP is frequently utilized in secure ag-
gregation protocols [12,75].

Definition 4 (Differential Privacy [38]). A randomized algorithm f : X →
Y provides ϵ-differential privacy (DP) if for all adjacent inputs x, x′ ∈ X , and
all subsets S ⊆ Y, the following holds.

Pr[f(x) ∈ S] ≤ eϵ · Pr[f(x′) ∈ S].

Definition 5 (Computational Differential Privacy [70]). A randomized
algorithm f : X → Y provides ε-computational differential privacy (CDP) if for
all adjacent inputs x, x′ ∈ X , the following holds for all PPT algorithms D.

Pr[D(f(x)) = 1] ≤ eε · Pr[D(f(x′)) = 1] + negl(λ)

2.5 The CKKS Scheme

We review the CKKS scheme [30], especially for its residue number system
(RNS)-variant [29].

Basic Operations. The CKKS scheme is an encryption scheme whose plaintext
space is R, and ciphertext space is R2

QL
. Basic operations, such as setup, key

generation, encryption, and decryption algorithms, are defined as follows.

– Setup(1λ, N) → pp: Given a security parameter λ and a ring dimension N ,
choose an RNS modulus chain q0, q1, . . . , qL, a secret key distribution χs, an
error distribution χe, and a scaling factor ∆ ∈ Z. Output a public parameter
pp = (N,∆,QL =

∏L
i=0 qi, χs, χe).
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– KeyGen(pp) → (sk, pk): Given a public parameter pp and a set of auto-
morphisms, generate a secret key sk and a public key pk as follows, where
pk = (ek, rlk, rtk, cjk), and g⃗ = (QL/q0, . . . , QL/qL−1) ∈ ZL.

Secret key. Sample sss← χs, and set sk = sss ∈ R.

Encryption key. Sample uuuek ← U(RQL), eeeek ← χe, and set ek = (−uuueksss +
eeeek, uuuek) ∈ R2

QL
.

Relinearization key. Sample u⃗uurlk ← U(RLQL), e⃗eerlk ← χLe , and set rlk =

(−sss · uuurlk + sss2 · g⃗ + e⃗eerlk, u⃗uurlk) ∈ R2L
QL

.

Rotation key. Sample u⃗uurtk ← U(RLQL), e⃗eertk ← χLe , and set rtk = (−sss · uuurtk +
φ(sss) · g⃗ + e⃗eertk, u⃗uurtk) ∈ R2L

QL
, where φ : X 7→ X5 is an automorphism over R.

Conjugation key. Sample u⃗uucjk ← U(RLQL), e⃗eecjk ← χLe , and set cjk = (−sss ·
uuucjk + ψ(sss) · g⃗ + e⃗eecjk, u⃗uucjk) ∈ R2L

QL
, where ψ : X 7→ X−1 is an automorphism

over R.

– Encsk(mmm) → ct: Given a secret key sk = sss and a plaintext mmm ∈ R, output a
ciphertext ct = (−aaa · sss+mmm+ eee,aaa) ∈ R2

QL
, where aaa← U(RQL), and eee← χe.

– Decsk(ct)→mmm: Given a secret key sk = sss and a ciphertext ct = (ccc0, ccc1) ∈ R2
Qℓ

,
output a plaintext mmm = ccc0 + ccc1sss (mod Q0).

We note that the CKKS scheme achieves IND-CPA security under the com-
putational hardness of RLWEQL,χs,χe , assuming circular security [69]. In practice,
we usually use a sparse ternary distribution HWT(h) for a secret key distribution
χs, where each coefficient is in {−1, 0, 1} and the Hamming weight is bounded
by h, since it provides smaller noise growth after each homomorphic operation
and efficient bootstrapping performance [28]. For an error distribution χe, we
typically use a discrete Gaussian distribution.

Homomorphic Operations. The CKKS scheme supports homomorphic ad-
dition, multiplication, automorphism, and rounding operations over R in an
approximate manner. For automorphism operations, there are two types: ro-
tation and conjugation, which evaluate the automorphisms φ : X 7→ X5 and
ψ : X 7→ X−1, respectively. In the CKKS scheme, one can emulate arithmetic
over R[X]/(XN+1) in fixed-point arithmetic over R = Z[X]/(XN+1) thanks to
the homomorphic rounding operations, which is a distinctive feature compared
to other HE schemes [14,15,32,41].

Definition 6 (External Product). Let Qℓ =
∏ℓ
i=0 qi for 0 ≤ ℓ < L. An

external product is a binary operation � : RQℓ ×RLQL → RQℓ , defined as follows
for aaa ∈ RQℓ and u⃗uu = (uuu0, . . . ,uuuL−1) ∈ RLQL .

aaa� u⃗uu =

⌊
1

qL

( ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi · uuui

)⌉
(mod Qℓ)

By an abuse of notation, we write aaa�(u⃗uu0, u⃗uu1) = (aaa�u⃗uu0, aaa�u⃗uu1) for u⃗uu0, u⃗uu1 ∈ RLQL .
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– Add(ct, ct′) → ctadd: Given ciphertexts ct, ct′ ∈ R2
Qℓ

, output a ciphertext
ctadd = ct+ ct′ ∈ R2

Qℓ
.

– Mulrlk(ct, ct
′)→ ctmul: Given ciphertexts ct = (ccc0, ccc1), ct

′ = (ccc′0, ccc
′
1) ∈ R2

Qℓ
for

ℓ < L, let ddd0 = ccc0ccc
′
0, ddd1 = ccc0ccc

′
1 + ccc′0ccc1, and ddd2 = ccc1ccc

′
1. Output a ciphertext

ctmul = (ddd0, ddd1) + ddd2 � rlk ∈ R2
Qℓ

– Rotrtk(ct) → ct′: Given ciphertexts ct = (ccc0, ccc1) ∈ R2
Qℓ

for ℓ < L, output a
ciphertext ct′ = (φ(ccc0), 0) + φ(ccc1) � rtk ∈ R2

Qℓ
.

– Conjcjk(ct) → ct′: Given ciphertexts ct = (ccc0, ccc1) ∈ R2
Qℓ

for ℓ < L, output a
ciphertext ct′ = (ψ(ccc0), 0) + ψ(ccc1) � cjk ∈ R2

Qℓ
.

– Round(ct) → ct′: Given a ciphertext ct = (ccc0, ccc1) ∈ R2
Qℓ

for ℓ ≥ 1, output a
ciphertext ct′ = (⌊ccc0/qℓ⌉ , ⌊ccc1/qℓ⌉) ∈ R2

Qℓ−1
.

Since homomorphic operations in CKKS work in an approximate manner,
small errors are introduced after each homomorphic operation. To quantify these
errors, we use the following notation.

Definition 7 (Ciphertext Error). For a CKKS ciphertext ct ∈ R2
Qℓ

, a plain-
text mmm ∈ R, and a secret key sk, the ciphertext error of (ct,mmm, sk) is defined as
follows.

Errsk(ct,mmm) = ∥Decsk(ct)−mmm∥∞
In Appendix A, we provide a detailed analysis of error growth for each homo-

morphic operation. These analyses imply that, given the upper bounds for the
Hamming weight of the secret key sk, the errors used in generating the public
keys pk, and the errors and plaintexts of the input ciphertexts, we can estimate
an error bound for the final output ciphertext when homomorphically evaluating
a complicated circuit in CKKS, as described below.

Theorem 2 (Error Bound Estimation). Let C : Rk → R be a k-ary ad-
missible circuit for the CKKS scheme, i.e., a circuit that can be evaluated using
addition, multiplication, automorphism, and rounding operations over R. Let
ct0, . . . , ctk−1 and mmm0, . . . ,mmmk−1 be such that Errsk(cti,mmmi) ≤ Be, and ∥mmmi∥∞ ≤
Bm. Furthermore, let ∥⃗eeerlk∥∞ ≤ Brlk, ∥⃗eeertk∥∞ ≤ Brtk, ∥⃗eeecjk∥∞ ≤ Bcjk, and
∥sss∥∞ ≤ h for a public key pk = (ek, rlk, rtk, cjk) and a secret key sk = sss. Then,
there exists an algorithm Estim such that the following holds.

Err
(
Evalpk(C; ct0, · · · , ctk−1), C(mmm0, . . . ,mmmk−1)

)
≤ Estim(C;h,Brlk, Brtk, Bcjk, Be, Bm)

Proof. We defer the proof to Appendix A.

Packing Method. The CKKS scheme supports the message space CN/2 through
an isomorphism ι : R[X]/(XN + 1) → CN/2, called the canonical embedding.
Combined with fixed-point emulation of R[X]/(XN+1) in R, the CKKS scheme
supports SIMD operations in the message space CN/2 in an approximate man-
ner. The following algorithms describe how to convert a message in CN/2 to a
plaintext in R and vice versa.

10



– Pack(m⃗) → mmm: Given a message vector m⃗ ∈ CN/2, output a plaintext mmm =⌊
∆ · ι−1(m⃗)

⌉
∈ R

– Unpack(mmm) → m⃗: Given a plaintext mmm ∈ R, output a message vector m⃗ =
1
∆ · ι(mmm) ∈ CN/2

2.6 Interactive Argument of Knowledge

We define an interactive argument of knowledge with the honest verifier zero-
knowledge (HVZK) property as follows.

Definition 8 (Interactive Argument of Knowledge). Let Π = (Setup, P, V)
be an interactive protocol between a prover P and a verifier V. Π is called an
argument of knowledge for a relation R if it satisfies the following properties.

Completeness. For all PPT adversary A, the following holds.

Pr

[
⟨P(pp, x,w), V(pp, x)⟩ = 1∨

(x,w) ̸∈ R

∣∣∣∣∣pp← Setup(1λ)

(x,w)← A(pp)

]
≥ 1− negl(λ)

Soundness. For every PPT adversary A = (A1, A2), the following holds.

Pr

[
⟨A2(pp, st, x), V(pp, x)⟩ = 1∧

x ̸∈ L(R)

∣∣∣∣∣pp← Setup(1λ)

(st, x)← A1(pp)

]
≤ negl(λ)

Knowledge Soundness. For every PPT adversary A = (A1, A2), there exists a
PPT extractor E such that, given oracle access to A, the following holds.

Pr

⟨A2(pp, st, x), V(pp, x)⟩ = 1∧
(x,w) ̸∈ R

∣∣∣∣∣∣∣
pp← Setup(1λ)

(st, x)← A1(pp)

w← E
A(pp, x)

 ≤ negl(λ)

Π is called honest verifier zero-knowledge (HVZK) if the following holds.

Honest Verifier Zero-knowledge. For every PPT adversary A = (A1, A2),
there exists a PPT simulator S such that the following holds, where View outputs
the verifier’s view.

∣∣∣∣∣Pr
A2(ck, view) = 1∧

(x,w) ∈ R

∣∣∣∣∣∣∣
pp← Setup(1λ)

(x,w)← A1(pp)

view← S(pp, x)



− Pr

A2(ck, view) = 1∧
(x,w) ∈ R

∣∣∣∣∣∣∣
pp← Setup(1λ)

(x,w)← A1(pp)

view← View
(
P(pp, x,w), V(pp, x)

)
 ∣∣∣∣∣ ≤ negl(λ)

Additionally, Π is called public coin if all messages from the honest verifier can
be computed as a deterministic function of a random public input.
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Next, we review the definition of a polynomial interactive oracle proof (PIOP)
in [17, 31], which is a special class of interactive arguments of knowledge. In
the following definition, we restrict polynomials to be univariate, but it can be
generalized to the multivariate case, as defined in [24].

Definition 9 (Polynomial Interactive Oracle Proof). Let Π = (Setup, P, V)
be an interactive public coin argument of knowledge for a relation R. Π is called
a polynomial interactive oracle proof (PIOP), which satisfies the followings.

– Every message from the prover is a polynomial oracle (JfffK, d), where fff ∈
Zp[X] of degree ≤ d.

– Every message from the verifier is a random challenge.
– The verifier has oracle access to evaluations of the prover’s polynomials at

arbitrary points.

Π is called a honest verifier zero-knowledge PIOP if it is an HVZK argument of
knowledge, where View outputs the messages from the verifier and the responses
to polynomial evaluation queries.

For PIOPs, proving the soundness property is sufficient to prove their knowl-
edge soundness, as stated below.

Lemma 1 (Lemma 2.3 in [24]). If a PIOP satisfies the soundness property,
then it also satisfies knowledge soundness with an extractor that runs in time
O(|w|).

A PIOP can be compiled into a succinct non-interactive argument of knowl-
edge (SNARK) with the aid of a polynomial commitment scheme [31] and the
Fiat-Shamir heuristic [43]. This framework allows a modular approach in design-
ing proof systems: one first conceptually designs a proof system in PIOP form,
then concretely instantiates it with a polynomial commitment scheme. We leave
the details of PIOP compilation in Appendix B.

3 PIOP Toolbox

In this section, we introduce several PIOPs for handling relations over the vector
space ZNp , where Zp is a prime field. These PIOPs are later used to verify the
well-formedness of CKKS public keys and ciphertexts in our secure homomorphic
evaluation protocol.

Prior works [9, 52] have proposed efficient PIOPs for linear relations, arith-
metic satisfiability, and L∞-norm bounds in ZNp . However, these protocols do not
suffice for proving the sparsity of the secret key, which is essential for the CKKS
scheme. To address this, we design a new PIOP that proves an L2-norm bound
for witnesses in ZNp by generalizing the univariate sumcheck protocol from [9].
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3.1 Polynomial Encoding for Vectors

To commit to a vector in ZNp in univariate PIOPs, we use the following encoding
method, which transforms a vector into a polynomial, allowing the prover to con-
struct a polynomial oracle. For polynomial interpolation, we use a multiplicative
subgroup H = {h0, . . . , hN−1} ⊂ Z×

p of order N .

– Ecd(w⃗) → www: Given a vector w⃗ ∈ ZNp , output the polynomial www ∈ Z<Np [X]
such that www(hi) = wi for 0 ≤ i < N .

– REcd(w⃗) → ŵww: Given a vector w⃗ ∈ ZNp , uniformly sample a polynomial ŵww ∈
Z<2N
p [X] such that ŵww(hi) = wi for 0 ≤ i < N .

– Dcd(www) → w⃗: Given a polynomial www ∈ Zp[X], output a vector w⃗ = (www(h0),
. . . , www(hN−1)).

For w⃗ ∈ ZNp , there exists a unique polynomial www ∈ Z<Np [X] corresponding
to Ecd(w⃗). However, evaluating www at any point reveals information about w⃗,
potentially compromising the zero-knowledge property in PIOPs. In contrast,
for ŵww, multiple valid candidates exist, allowing us to select one randomly. As a
result, for α ̸∈ H, the evaluation ŵww(α) remains independent of w⃗ for up to N − 1
evaluations due to bounded independence. For further details, see [9].

Once we encode vectors into polynomials using the above encoding method,
we can utilize the following properties of polynomial encodings to prove state-
ments about witness vectors.

Lemma 2 (Univariate Sum Check [9]). Let fff ∈ Zp[X], H ⊆ Z×
p be a

multiplicative subgroup of order N , and zzzH =
∏
h∈H(X − h) = (XN − 1). Then,∑

h∈H fff(h) = µ holds if and only if there exist polynomials qqq ∈ Zp[X] and
rrr ∈ Z<N−1

p [X] such that fff = qqq · zzzH + rrr ·X +N−1 · µ (mod p) holds.

Lemma 3 (Univariate Zero Test [9]). Let fff ∈ Zp[X], H ⊆ Z×
p be a mul-

tiplicative subgroup of order N , and zzzH =
∏
h∈H(X − h) = (XN − 1). Then,

fff(h) = 0 for all h ∈ H if and only if there exists a polynomial qqq ∈ Zp[X] such
that fff = qqq · zzzH (mod p) holds.

3.2 PIOPs in [9, 52]

We briefly review the PIOPs for relations over the vector space ZNp from [9,
52]. For simplicity, we outline only their functionality here, while full protocol
descriptions are provided in Appendix C.

PIOP for Linear Relatinos. For witness vectors a⃗i, b⃗i ∈ ZNp satisfying the
linear relations b⃗i = Mia⃗i for public matrices Mi ∈ ZN×N

p , where 0 ≤ i < k,
their validity can be proven using the following PIOP.
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ΠLin(M0, . . . ,Mk−1; Jâaa0K, . . . , Jâaak−1K; Jb̂bb0K, . . . , Jb̂bbk−1K)

Public input: matrices Mi ∈ ZN×N
p for 0 ≤ i < k.

Witness: vectors a⃗i = Dcd(âaai) and b⃗i = Dcd(b̂bbi) for 0 ≤ i < k, where âaai, b̂bbi ∈ Z<2N
p [X].

Statement: b⃗i =Mia⃗i for 0 ≤ i < k.

Fig. 1: Functionality of the PIOP for batched linear relations

PIOP for Arithmetic Constraints. An arithmetic constraint over ZNp , where
addition and multiplication are component-wise, can be represented as a multi-
variate polynomial C⃗ over the product ring ZNp . The satisfiability of C⃗ for witness
vectors in ZNp can be verified using the following PIOP.

ΠAC(⃗C; Jâaa0K, . . . , Jâaak−1K)

Public input: k-ary circuit C⃗ ∈ (ZN
p )[X⃗0, . . . , X⃗k−1] of degree d.

Witness: vectors a⃗i = Dcd(aaai) for 0 ≤ i < k, where âaai ∈ Z<2N
p [X].

Statement: C⃗(⃗a0, . . . , a⃗k−1) = 0.

Fig. 2: Functionality of the PIOP for arithmetic constraints

PIOP for L∞-Norm Constraints. For witness vectors a⃗0, . . . , a⃗k−1 ∈ ZNp , one
can prove their L∞-norm upper bound in a batched manner using the following
PIOP.

ΠL∞(B; Jâaa0K, . . . , Jâaak−1K)

Public input: norm bound B.
Witness: vectors a⃗i = Dcd(âaai), where âaai ∈ Z<2N

p [X] for 0 ≤ i < k.
Statement: ∥a⃗i∥∞ ≤ B for 0 ≤ i < k.

Fig. 3: Functionality of the PIOP for L∞-norm constraints

3.3 Our PIOP for L2-Norm Constraints

We begin by generalizing the univariate sumcheck protocol from [9], which veri-
fies the relation

∑
h∈H aaa(h) = 0 for a committed polynomial aaa. In the context of

polynomial encoding, this condition is equivalent to the inner product relation〈
a⃗, 1⃗

〉
= 0, where a⃗ = Dcd(aaa).

However, to prove upper bounds on the L2-norm, we require a more gen-
eral form of this inner product relation. Specifically, instead of a⃗, we consider
C⃗(⃗a0, . . . , a⃗k−1), where C⃗ is a multivariate polynomial over the product ring ZNp ,
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and a⃗0, . . . , a⃗k−1 ∈ ZNp . Thanks to polynomial encoding, this generalized relation
can still be verified using Lemma 2. Below, we extend the univariate sumcheck
protocol from [9] to prove the inner product relation

〈
C⃗(⃗a0, . . . , a⃗k−1), 1⃗

〉
= 0

for witness vectors a⃗0, . . . , a⃗k−1.

Theorem 3. Let âaai ← REcd(⃗ai) for 0 ≤ i < k, where
〈
C⃗(⃗a0, . . . , a⃗k−1), 1⃗

〉
= 0.

Then, an interactive protocol ΠIP described in Fig. 4 is an HVZK PIOP with a
soundness error of O(dN)

p−N .

ΠIP(⃗C; Jâaa0K, . . . , Jâaak−1K)

Instance: k-ary circuit C⃗ ∈ (ZN
p )[X⃗0, . . . , X⃗k−1] of degree d.

Witness: vectors a⃗i = Dcd(âaai) for 0 ≤ i < k, where âaai ∈ Z<2N
p [X].

Statement:
〈
C⃗(⃗a0, . . . , a⃗k−1), 1⃗

〉
= 0.

1. Both P and V compute CCC ∈ (Zp[X])[XXX0, . . . ,XXXk−1] of degree d, which is obtained
by applying Ecd to each coefficient of C⃗.

2. The prover P samples a random polynomial ggg of degree ≤ d(2N −1)+N −1, com-
putes the summation µ =

∑
h∈H ggg(h), and sends polynomial oracles (JgggK, d(2N −

1) +N − 1) and µ to the verifier V.
3. The verifier V sends a random point β ← U(Zp \H).
4. The prover P computes qqq and rrr, which satisfy the following.

qqq · zzzH + rrr ·X +N−1 · µ = ggg + β · CCC(âaa0, . . . , âaak−1)

Then, P sends polynomial oracles (JqqqK, d(2N − 1) − 1) and (JrrrK, N − 2) to the
verifier V.

5. The verifier V gets evaluations âaai(α), ggg(α), qqq(α), and rrr(α) by accessing polynomial
oracles JâaaiK, JgggK, JqqqK, and JrrrK at a random point α ← U(Zp \ H). Then, V checks
whether the following holds.

qqq(α) · zzzH(α) + rrr(α) · α+N−1 · µ = ggg(α) + β ·
(
CCC(âaa0, . . . , âaak−1)

)
(α)

Fig. 4: PIOP for an inner product relation

Proof. We first note that the statement
〈
C⃗(⃗a0, . . . , a⃗k−1), 1⃗

〉
= 0 is equivalent

to
∑
h∈H

(
CCC(âaa0, . . . , âaak−1)

)
(h) = 0 due to polynomial encoding.

Completeness. If
∑
h∈H

(
CCC(âaa0, . . . , âaak−1)

)
(h) = 0, then by Lemma 2, there exist

polynomials qqq and rrr such that qqq · zzzH + rrr ·X +N−1 · µ = ggg + β · CCC(âaa0, . . . , âaak−1).
Thus, the protocol is perfectly complete for valid witnesses.

Soundness. By Schwart-Zippel lemma, qqq(α) ·zzzH(α)+rrr(α) ·α+N−1 ·µ = ggg(α)+
β ·

(
CCC(âaa0, . . . , âaak−1)

)
(α) holds implies qqq and rrr such that qqq ·zzzH+rrr ·X +N−1 ·µ =

ggg + β · CCC(âaa0, . . . , âaak−1), except with probability at most O(dN)/(p −N). Thus,
soundness holds with a soundness error of at most ≤ O(dN)/(p−N).
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HVZK. It suffices to simulate the values of α, β, µ, âaai(α), {ggg(α)}0≤i<k, qqq(α),
and rrr(α) for 0 ≤ i < k. The simulator operates as follows.

1. Sample a random polynomial ggg′ of degree≤ d(2N−1)+N−1, and decompose
it into qqq · zzzH + rrr ·X +N−1 · µ.

2. Sample random polynomials âaai of degree < 2N for 0 ≤ i < k, and α, β ←
U(Zp \H).

3. Set ggg(α) = qqq(α) · zzzH(α) + rrr(α) · α+N−1 · µ− β ·
(
CCC(âaa0, . . . , âaak−1)

)
(α).

4. Output α, β, µ, {âaai(α)}0≤i<k, ggg(α), qqq(α), and rrr(α).

The distribution of the above simulator is identical to the honest verifier’s view,
because the distributions of qqq, rrr, µ follow the same distribution as in the actual
protocol due to random masking by ggg, {âaai(α)}0≤i<k appear uniformly random
due to bounded independence, and ggg(α) is fully determined by these values. ⊓⊔

Based on our protocol ΠIP for inner product relations, we now present our
PIOP for proving upper bounds on the L2-norm of witness vectors in ZNp . We
start with the observation that ∥a⃗∥22 = ⟨⃗a, a⃗⟩, so it suffices to prove the range of
⟨⃗a, a⃗⟩. However, since arithmetic is performed in Zp, what we can actually prove
is the range of [⟨⃗a, a⃗⟩]p. To address this, we use ΠL∞ , which proves the bound
of ∥a⃗∥∞. Specifically, ∥a⃗∥∞ ≤ B∞ for some B∞ > 0 implies ∥a⃗∥2 ≤ B2

∞N .
Therefore, unless B2

∞N > p, we can ensure that [⟨⃗a, a⃗⟩]p = ⟨⃗a, a⃗⟩. Below, we
describe our PIOP that proves the range of L2-norm modulo p, which can handle
multiple witness vectors in a batched manner.

Theorem 4. Let âaai ← REcd(⃗ai) , where 0 ≤ [∥a⃗i∥22]p ≤ B for 0 ≤ i < k.
Then, an interactive protocol ΠL2 described in Fig. 5 is an HVZK PIOP with a
soundness error of O(k+N)

p−N .

Proof. We first show that the statement 0 ≤ [∥a⃗i∥22]p ≤ B is equivalent to〈
a⃗i ⊙ a⃗i − b⃗⊙ u⃗i, 1⃗

〉
= 0 ∧ u⃗ ⊙ (u⃗i − c⃗) = 0⃗ for some u⃗i ∈ ZNp for 0 ≤ i <

k. Suppose 0 ≤ [∥a⃗i∥22]p ≤ B holds, which implies ⟨⃗ai, a⃗i⟩ = Ui (mod p) for
some 0 ≤ Ui ≤ B. For such Ui, there exist ui,0, . . . , ui,ℓ−1 ∈ {0, 1} such that
Ui =

∑ℓ−1
j=0 ui,jBj . Then, for u⃗i = (ui,0, . . . , ui,ℓ−1, 0, . . . , 0) ∈ ZNp , it holds that

⟨⃗ai, a⃗i⟩ =
〈
u⃗i, b⃗

〉
(mod p) ∧ u⃗i ⊙ (u⃗i − c⃗) = 0⃗, and note that ⟨⃗ai, a⃗i⟩ =

〈
u⃗i, b⃗

〉
⇐⇒

〈
a⃗i ⊙ a⃗i, 1⃗

〉
=

〈
u⃗i ⊙ b⃗, 1⃗

〉
⇐⇒

〈
a⃗i ⊙ a⃗i − u⃗i ⊙ b⃗, 1⃗

〉
.

Conversely, suppose there exists u⃗i ∈ ZNp such that
〈
a⃗i ⊙ a⃗i − b⃗⊙ u⃗i, 1⃗

〉
= 0

∧ u⃗i ⊙ (u⃗i − c⃗) = 0⃗. Then, u⃗i is of the form (ui,0, . . . , ui,ℓ−1, 0, . . . , 0) ∈ ZNp , and
⟨⃗ai, a⃗i⟩ =

∑ℓ−1
j=0 ui,jBj (mod p). Note that 0 ≤

∑ℓ−1
j=0 ui,jBj ≤ B holds, so we

have 0 ≤ [∥a⃗i∥22]p ≤ B.

Finally, by the Schwartz-Zippel lemma,
∑k−1
i=0 γ

i ·
〈
a⃗i ⊙ a⃗i − b⃗⊙ u⃗i, 1⃗

〉
= 0 ∧∑k−1

i=0 γ
i · u⃗i⊙(u⃗i− c⃗) = 0⃗ implies

〈
a⃗i ⊙ a⃗i − b⃗⊙ u⃗i, 1⃗

〉
= 0 ∧ u⃗i⊙(u⃗i− c⃗) = 0⃗ for
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ΠL2(B; Jâaa0K, · · · , Jâaak−1K)

Public input: norm bound B
Witness: vectors a⃗i = Dcd(aaai), where aaai ∈ Z<2N

p [X] for 0 ≤ i < k
Statement: 0 ≤

[
∥a⃗i∥22

]
p
≤ B for 0 ≤ i < k.

1. The prover P and the verifier V decompose B into B0 = ⌈B
2
⌉, B1 = ⌈B−B0

2
⌉,

B2 = ⌈B−B0−B1
2

⌉, . . . , Bℓ−1 = 1, where ℓ = ⌊logB⌋ + 1, and set b⃗ =
(B0, . . . , Bℓ−1, 0, . . . , 0) and c⃗ = (1, . . . , 1, 0, . . . , 0), where the first ℓ elements are
nonzero.

2. The prover P computes ui,0, . . . , ui,ℓ−1 ∈ {0, 1} such that ⟨⃗ai, a⃗i⟩ =
∑ℓ−1

j=0 ui,j · Bi

(mod p) for 0 ≤ i < k. Then, it samples ûuui ← REcd(ui,0, . . . , ui,ℓ−1, 0, . . . , 0), and
sends the polynomial oracle (JûuuiK, 2N − 1) to the verifier V for 0 ≤ i < k.

3. The verifier sends a random point γ ← U(Zp \H)
4. The prover P and the verifier V invoke the following PIOP.

ΠAC

(
k−1∑
i=0

γi · X⃗i ⊙ (X⃗i − c⃗); {JûuuiK}0≤i<k

)

ΠIP

(
k−1∑
i=0

γi · (X⃗2
i − b⃗⊙ X⃗i+k); {JâaaiK}0≤i<k, {JûuuK}0≤i<k

)

Fig. 5: PIOP for L2-norm constraints

0 ≤ i < k except probability at most k/(p−N). We note that the completeness,
knowledge soundness, and HVZK properties directly follow from Theorems 3
and 14. ⊓⊔

4 Homomorphic Evaluation Protocol via CKKS

In this section, we discuss the security and privacy of homomorphic evaluation
protocols based on the CKKS scheme. We primarily focus on the case of a
semi-honest sender and a possibly malicious receiver, as the only information
the sender receives throughout the protocol is the receiver’s ciphertexts and
public key in the first round, leaving no opportunity to compromise the receiver’s
privacy using only this information.

As mentioned earlier, we introduce a new security definition for CKKS-based
homomorphic evaluation protocols, where the sender’s privacy condition is re-
laxed from computational indistinguishability to differential privacy (DP). We
justify this relaxation by noting that most real-world applications of CKKS are
secure inference or training protocols [10, 54, 57, 61, 73], which can be viewed as
privacy-enhanced versions of the machine learning as a service (MLaaS) model.
However, even in a standard MLaaS scenario, vulnerabilities remain, as a receiver
may attempt to reconstruct the sender’s private data by aggregating multiple
inference results [19, 20, 21, 76]. To mitigate such attacks, DP techniques are
commonly applied [1, 60].
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Reckoning that differential privacy (DP) is the final privacy notion in most
applications, we analyze the effect of our security relaxation and derive the result
that the output of the real execution of the protocol still satisfies DP. This holds
if we model the target ideal functionality as a DP mechanism and the protocol
satisfies the new security definition, making it well-suited for existing MLaaS
scenarios to be naturally extended to homomorphic evaluation protocols, where
the sender ensures their privacy within the framework of a differential privacy.

In the rest of this section, we first introduce our new security definition,
which we call differentially private homomorphic evaluation protocols, along
with its useful properties and implications. Then, we present a general com-
pilation method that achieves sender privacy from plain CKKS homomorphic
evaluation protocols, assuming the ideal functionality of a zero-knowledge ar-
gument of knowledge (ZKAoK) for CKKS ciphertexts and public keys, as well
as the Laplace differential privacy mechanism. Finally, we address how to in-
stantiate ZKAoK for CKKS using polynomial interactive oracle proofs (PIOPs),
introduced in Section 3, in conjunction with CKKS homomorphic evaluation
algorithms.

4.1 Differentially Private Homomorphic Evaluation Protocol

We begin by presenting the basic structure of homomorphic evaluation protocols
for CKKS, which is defined as follows.

Definition 10 (HE-Protocol). Let (P1, P2) be a sender-receiver protocol, and
let f : Θ × X k → Y be a deterministic algorithm, where X ,Y ⊆ R. We say
that (P1, P2) is a homomorphic evaluation protocol for f if it has the following
structure:

Inputs. The receiver P1 has a message x⃗xx ∈ X k as a private input. The sender P2
has a parameter θ ∈ Θ as a private input. A public parameter pp ← Setup(1λ)
is public to both parties.

The protocol.

1. The receiver P1 sends (pk, ct0, . . . , ctk−1) to the sender P2, where pk is a public
key, and {cti}0≤i<k are ciphertext.

2. The receiver P1 and the sender P2 invoke auxiliary subprotocols that are in-
dependent of θ.

3. The sender P2 computes a ciphertext ctout, and sends it to the receiver P1.
4. The receiver P1 outputs yyy = Decsk(ctout) ∈ Y.

In defining the security notion for HE protocols, we aim to extend the concept
of differentially private prediction defined in [37], which precisely captures how
inference results affect the privacy of the sender’s data within the differential
privacy framework. Specifically, it models the sender’s algorithm as an ensemble
parameterized by some θ ∈ Θ, which typically represents the sender’s data used
to construct the algorithm, such as training data. It then discusses how to achieve
differential privacy for the sender’s algorithm with respect to the parameter θ in
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the presence of inference results. Below, we provide its precise definition, with a
slight relaxation for computationally bounded adversaries.

Definition 11 (DP-Prediction [37]). Let M : Θ × X k → Y be a randomized
algorithm. We say that M is an ε-(C)DP prediction algorithm if, for every x⃗xx ∈ X k,
the output M(θ, x⃗xx) is ε-(C)DP with respect to θ>

Based on the definition of DP-prediction, we define our security notion for
HE protocols, where we model the ideal functionality of the protocol as a DP-
prediction.

Definition 12 (DPHE-Protocol). Let f : Θ × X k → Y be a deterministic
algorithm, where X ,Y ⊆ R, let M : Θ × X k → Y be a randomized algorithm,
and let Π = (P1, P2) be a homomorphic evaluation protocol. We say that Π is
an ε-differentially private homomorphic evaluation (DPHE) protocol for f with
(η, δ)-usefulness if the following holds.

Usefulness. For all x⃗xx ∈ X k and θ ∈ Θ, the receiver’s output yyy from the correct
execution of Π with inputs x⃗xx and θ satisfies the following condition.

Pr
[
∥yyy − f(θ, x⃗xx)∥∞ > η

]
≤ δ

Receiver’s privacy. For all sender’s input θ ∈ Θ, the views of the honest sender
P2 for all receiver’s inputs x⃗xx, x⃗xx′ ∈ X k are computationally indistinguishable.
i.e., ViewΠP2(x⃗xx, θ) ≈c View

Π
P2
(x⃗xx′, θ).

Sender’s privacy. For all PPT adversaries A that only manipulate the receiver,
there exists a PPT simulator S such that for all PPT environments Z and PPT
algorithms D, the following holds for all θ ∈ Θ, where Πθ is a restriction of Π
with the sender’s input θ, and FDPHE,θ is the ideal functionality defined in Fig. 6.

Pr
[
D(EXEC[Πθ, A, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[Πθ, A, Z]) = 1

]
+ negl(λ)

FDPHE,θ

Inputs: The receiver P1 sends x⃗xx ∈ X k.
Outputs: The receiver P1 obtains yyy ← M(θ, x⃗xx).

Fig. 6: Ideal functionality for differentially private homomorphic evaluation

Since the ideal functionality in our definition is a randomized algorithm, we
relax the correctness condition to usefulness, describing how far the output may
deviate from the target. For the receiver’s privacy, we use the standard com-
putational indistinguishability definition against a semi-honest sender. However,
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for the sender’s privacy, considering the possibility of a malicious receiver, we
incorporate the universal composability framework [18] alongside the computa-
tional differential privacy (CDP) notion, as much of the HE protocol relies on
the IND-CPA security of the CKKS scheme.

Next, we present the main implication of our DPHE protocol, which states
that if the ideal functionality is a CDP-prediction and a protocol satisfies the
sender’s privacy condition, then the output from the real protocol execution
remains a DP-prediction, as described below.

Theorem 5 (Composition of CDP and DPHE). Let f : Θ × X k → Y be
a deterministic algorithm, and let Π be a ε1-DPHE-protocol for f. Suppose M is
a ε2-CDP prediction with respect to θ. Then, EXEC[Πθ, A, Z] is a (2ε1 + ε2)-CDP
prediction with respect to θ for all PPT environments Z and all PPT adversaries
A that manipulate the receiver.

Proof. Let A be a PPT adversary that manipulate the receiver and S be a PPT
simulator for A. Then, for all PPT environments Z, EXEC[FDPHE,θ, S, Z] is an ε2-
CDP prediction with respect to θ, since in the distribution of EXEC[FDPHE,θ, S, Z],
only the output yyy ← M(θ, x⃗xx) obtained from FDPHE,θ varies with the choice of θ,
and M(θ, x⃗xx) is an ε2-CDP prediction.

Now, let θ, θ′ ∈ Θ be adjacent, then we obtain the followings for all PPT
algorithm D.

Pr
[
D(EXEC[Πθ, A, Z]) = 1

]
≤ eε1 · Pr

[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
+ negl(λ)

≤ eε1+ε2 · Pr
[
D(EXEC[FDPHE,θ′ , S, Z]) = 1

]
+ negl(λ)

≤ e2ε1+ε2 · Pr
[
D(EXEC[Πθ′ , A, Z]) = 1

]
+ negl(λ)

Therefore, EXEC[Πθ, A, Z] is a (2ε1 + ε2)-CDP prediction with respect to θ. ⊓⊔

Based on the above theorem, existing differential privacy mechanisms can be
naturally extended to DPHE protocols, provided we prove the sender’s privacy
condition for the target mechanism. However, since the sender’s privacy is defined
within the UC framework, we need to examine whether the commonly used proof
techniques for computational indistinguishability in the UC framework are well
adapted to our differential privacy setting. First, we show that the completeness
result for the dummy adversary is well suited to our setting, which allows us to
consider only the dummy adversary when proving the security of the protocol in
the UC framework. Next, we prove that our definition also supports subprotocol
composition, enabling us to establish the security of the protocol in the hybrid
execution model. Below, we present the adaptations of these proof techniques
within our security definition.

Theorem 6 (Completeness of the dummy adversary). Let Π be an HE-
protocol such that the sender’s privacy holds for the dummy adversary A∗, whose
only job is to forward messages between an environment and the other protocol
parties, with a parameter ε for all PPT environments. Then, Π satisfies the
sender’s privacy with the parameter ε.
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Proof. Let A be a PPT adversary that manipulates the receiver in Π and Z be a
PPT environment. Then, it holds that EXEC[Πθ, A, Z] ≈c EXEC[Πθ, A∗, A|Z], where
A|Z is an environment that both runs A and Z. By assumption, there exists a
simulator S∗ for the dummy adversary where the following holds for all PPT
algorithms D.

Pr
[
D(EXEC[Πθ, A

∗, A|Z]) = 1
]
≤ eε · Pr

[
D(EXEC[FDPHE,θ, S

∗, A|Z]) = 1
]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S

∗, A|Z]) = 1
]
≤ eε · Pr

[
D(EXEC[Πθ, A

∗, A|Z]) = 1
]
+ negl(λ)

Additionally, it holds that EXEC[FDPHE,θ, S
∗, A|Z] ≈c EXEC[FDPHE,θ, S

∗|A, Z], where
S∗|A is a PPT algorithm that runs both S∗ and A. Then, we have the followings
for all PPT algorithms D.

Pr
[
D(EXEC[Πθ, A, Z]) = 1

]
≤ Pr

[
D(EXEC[Πθ, A

∗, A|Z]) = 1
]
+ negl(λ)

≤ eε · Pr
[
D(EXEC[FDPHE,θ, S

∗, A|Z]) = 1
]
+ negl(λ)

≤ eε · Pr
[
D(EXEC[FDPHE,θ, S

∗|A, Z]) = 1
]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S

∗|A, Z]) = 1
]
≤ Pr

[
D(EXEC[FDPHE,θ, S

∗, A|Z]) = 1
]
+ negl(λ)

≤ eε · Pr
[
D(EXEC[Πθ, A

∗, A|Z]) = 1
]
+ negl(λ)

≤ eε · Pr
[
D(EXEC[Πθ, A, Z]) = 1

]
+ negl(λ)

Therefore, Π satisfies sender’s privacy with the parameter ε. ⊓⊔

Theorem 7 (Subprotocol composition). Let Π be an HE-protocol that uses
Π′ as a subprotocol, which securely implements an ideal functionality F′, and let
ΠF′ be the hybrid protocol, which uses the ideal functionality F′ in place of Π′.
If ΠF′ satisfies the sender’s privacy with a parameter ε, then Π also satisfies the
sender’s privacy with the parameter ε.

Proof. Let A be a PPT adversary that manipulates the receiver in Πθ for θ ∈
Θ. Since Π′ securely implements F′, there exists a PPT adversary A′ such that
EXEC[Πθ, A, Z] ≈c EXEC[ΠF′,θ, A

′, Z] for all PPT environments Z by the universal
composition theorem. Also, there exists a simulator S such that the following
holds for all PPT algorithms D since ΠF′ satisfies the sender’s privacy with a
parameter ε.

Pr
[
D(EXEC[ΠF′,θ, A

′, Z]) = 1
]
≤ eε · Pr

[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[ΠF′,θ, A

′, Z]) = 1
]
+ negl(λ)

Therefore, we obtain the following since EXEC[Πθ, A, Z] ≈c EXEC[ΠF′,θ, A′, Z], which
shows that Π also satisfies the sender’s privacy with the parameter ε.

Pr
[
D(EXEC[Πθ, A, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[Πθ, A, Z]) = 1

]
+ negl(λ)

⊓⊔
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4.2 DPHE Compiler from ZKAoK for CKKS

In this subsection, we present a general compilation method to transform a
plain HE protocol into a DPHE protocol. Our approach is inspired by [3], which
provides a general compilation method for the BGV scheme by proving indistin-
guishability with an ideal functionality for zero-knowledge arguments of knowl-
edge (ZKAoK) for BGV and leveraging a noise flooding technique.

We adapt their approach to align with our differential privacy-based sender
privacy framework. Specifically, we first define the ideal functionality of ZKAoK
for CKKS. Then, instead of using noise flooding, we employ the Laplace mecha-
nism, which also introduces additional noise during randomization but allows for
moderate noise levels, whereas noise flooding requires exponentially large noise.

As an additional optimization, we achieve ciphertext rerandomization based
on the Hint-MLWE problem, which removes sender-specific information embed-
ded in the ciphertext. In previous work, this was typically achieved using noise
flooding, which introduced significant parameter overhead. However, our method
avoids this overhead while maintaining security. Below, we describe our compi-
lation method in detail

FZKAoK

Inputs: The receiver P1 sends (xCKKS,wCKKS), where xCKKS = (pk, ct0, . . . , ctk−1),
wCKKS = (sss,eeeek, e⃗eerlk, e⃗eertk, e⃗eecjk, e⃗ee, x⃗xx), ek = (ek0, ek1), rlk = (rlk0, rlk1), rtk = (rtk0, rtk1),
cjk = (cjk0, cjk1), e⃗ee = (eee0, . . . , eeek−1), x⃗xx = (xxx0, . . . ,xxxk−1), and cti = (cti,0, cti,1) for
0 ≤ i < k, and the sender P2 sends xCKKS.

Outputs: The sender P2 obtains 1 if (xCKKS,wCKKS) ∈ RCKKS, where

RCKKS =



(xCKKS,wCKKS)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥sss∥∞ ≤ 1 ∧ ∥sss∥1 ≤ h∧
∥eeeek∥∞ ≤ Bek ∧ ∥⃗eeerlk∥∞ ≤ Brlk ∧ ∥⃗eeertk∥∞ ≤ Brtk∧

∥⃗eeecjk∥∞ ≤ Bcjk ∧ ∥⃗eee∥∞ ≤ Be∧
xxx0, . . . ,xxxk−1 ∈ X∧
ek0 + sss · ek1 = eeeek∧

rlk0 + sss · rlk1 = sss2 · g⃗ + e⃗eertk∧
rtk0 + sss · rtk1 = φ(sss) · g⃗ + e⃗eertk∧
cjk0 + sss · cjk1 = ψ(sss) · g⃗ + e⃗eecjk∧

cti,0 + sss · cti,1 = xxxi + eeei for 0 ≤ i < k


Otherwise, it obatins 0.

Fig. 7: Ideal functionality for zero-knowledge argument of knowledge for CKKS
public keys and ciphertexts

Theorem 8. Let f : Θ × X k → Yk be a deterministic algorithm, where f(θ, ·)
is admissible in CKKS for all θ ∈ Θ. Let ΠCKKS be the HE-protocol described in
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ΠCKKS

Inputs: The receiver P1 has a message x⃗xx ∈ X k as a private input. The sender P2 has
a parameter θ ∈ Θ as a private input. A public parameter pp ← Setup(1λ) is public
to both parties.

The protocol:

1. The receiver P1 generates the followings, and sends (pk, ct0, . . . , ctk−1) to the sender
P2.

(sk, pk)← KeyGen(pp), cti ← Encsk(xxxi)

2. The parties invoke FZKAoK, and the sender P2 aborts if its output is 0.
3. The sender P2 computes the following.

(ccc0, ccc1)←
[
Evalpk(f(θ; ·); pk, ct0, . . . , ctk−1)

]
Q0

τ = max
θ∈Θ

(
Estim

(
f(θ, ·);h,Brlk, Brtk, Bcjk, Be

))
The sender P2 sends an output ciphertext ctout as follows, and send ctout to the
receiver P2.

rrr0 ← DG(σ)N , rrr1 ← DG(BekN · σ)N , rrr2 ← DG(hσ)N , rrr3 ← DG(σ)N , ttt← Lap(Nτ/ε)N

ctout = rrr0 · ek+ (rrr1 + rrr2, rrr3) + q1 · (ccc0 + ⌊ttt⌉ , ccc1) (mod Q1)

4. The receiver obtains an output yyy = Decsk(ctout).

Fig. 8: Protocol for differentially private homomorphic evaluation using CKKS

Fig. 8, and let M(θ, x⃗xx) = f(θ, x⃗xx) + ⌊ttt⌉ for ttt ← Lap(Nτ/ε)N . Then ΠCKKS is an
ε-DPHE-protocol for f in the FZKAoK-hybrid model, which is described in Fig. 7, if
we assume RLWEQ1,σ/2,σ/2 is computationally hard, and σ ≥ 2

√
2 · η(1/2λ)(ZN ).

Proof. Below, we demonstrate the usefulness, receiver’s privacy, and sender’s
privacy of ΠCKKS.

Usefulness. Let x⃗xx ∈ X k be a receiver’s input, θ ∈ Θ be a sender’s input, and
yyy ∈ R be a receiver’s output. Then, the following holds for some eeeEval such that
∥eeeEval∥∞ ≤ τ , and η > τ + 1/2 since ttt← Lap(Nτ/ε)N .

Pr[∥yyy − f(θ, x⃗xx)∥∞ > η] = Pr[∥eeeEval + ⌊ttt⌉∥∞ > η]

≤ Pr[∥⌊ttt⌉∥∞ > η − τ ] ≤ Pr[∥ttt∥∞ > η − τ − 1/2]

≤ 1

2
· exp

(
− ε

Nτ
(η − τ − 1/2)

)

Receiver’s privacy. Let ΠZKAoK be a protocol that securely implements the func-
tionality FZKAoK. Then, there exists a simulator SZKAoK such that SZKAoK(xCKKS) ≈c
VIEWΠZKAoKP2

(xCKKS,wCKKS) for all x⃗xx ∈ X . Now, suppose there exists a PPT algo-
rithm D that distinguishes VIEWΠCKKSP2

(x⃗xx, θ) and VIEWΠCKKSP2
(x⃗xx′, θ) with non-negligible
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probability for some x⃗xx, x⃗xx′ ∈ X . Then, the following holds for VIEWΠCKKSP2
(x⃗xx, θ) and

VIEWΠCKKSP2
(x⃗xx′, θ).

VIEWΠCKKSP2
(x⃗xx, θ) =

(
xCKKS, VIEW

ΠZKAoK
P2

(xCKKS,wCKKS)
)
≈c

(
xCKKS, SZKAoK(xCKKS)

)
VIEWΠCKKSP2

(x⃗xx′, θ) =
(
x′CKKS, VIEW

ΠZKAoK
P2

(x′CKKS,w
′
CKKS)

)
≈c

(
x′CKKS, SZKAoK(x

′
CKKS)

)
Then, D also distinguishes

(
xCKKS, SZKAoK(xCKKS)

)
and

(
x′CKKS, SZKAoK(x

′
CKKS)

)
with

non-negligible probability, which contradicts the IND-CPA security of the CKKS
scheme. Therefore, ΠCKKS achieves the receiver’s privacy in the FZKAoK-hybrid model
since no such algorithm D exists.

Sender’s privacy. By Theorem 6, it suffices to consider only the dummy ad-
versary A∗ for all PPT environments. For a PPT environment Z, We build a
simulator S for the dummy adversary A∗ as follows.

1. When Z sends a message (pk, {ct0, . . . , ctk−1}) that is supposed to be for-
warded by the dummy adversary to the honest sender, the simulator S re-
trieves it.

2. When Z sends a message (xCKKS,wCKKS) that is supposed to be forwarded to
the ideal functionality FZKAoK, the simulator S retrieves it.

3. If (xCKKS,wCKKS) ∈ RCKKS, the simulator S returns 1 to the environment Z,
otherwise it returns 0.

4. The simulator S sends x⃗xx to the functionality FDPHE,θ, and receives an output
yyy′ from the functionality.

5. The simulator S samples aaa′ ← U(RQ1
), and rrr0 ← DG(σ)N , rrr1 ← DG(BekN ·

σ)N , rrr2 ← DG(hσ)N , rrr3 ← DG(σ)N . Then, it returns ct′out to the environment
Z, which is computed as follows.

ct′out =
(
− aaa′ · sss+ (eeeek · rrr′0 + rrr′1) + (rrr′2 − sss · rrr′3) + q1 · yyy′, aaa′

)
∈ R2

Q1

Now, we show that for all PPT algorithms D, the following holds, which implies
the sender’s privacy with the parameter ε.

Pr
[
D(EXEC[ΠCKKS, A

∗, Z]) = 1
]
≤ eε · Pr

[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
+ negl(λ)

Pr
[
D(EXEC[FDPHE,θ, S, Z]) = 1

]
≤ eε · Pr

[
D(EXEC[ΠCKKS, A

∗, Z]) = 1
]
+ negl(λ)

We note that the only difference between EXEC[ΠCKKS, A
∗, Z] and EXEC[FDPHE,θ, S, Z]

is the distribution of ctout and ct′out. Thus, it suffices to prove that for all PPT
algorithms D, the following holds.

Pr
[
D(ctout,wCKKS) = 1

]
≤ eε · Pr

[
D(ct′out,wCKKS) = 1

]
+ negl(λ) (1)

Pr
[
D(ct′out,wCKKS) = 1

]
≤ eε · Pr

[
D(ctout,wCKKS) = 1

]
+ negl(λ) (2)
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For the environment Z, ctout has the following form, where aaa = q1 · ccc1 + (ek0 ·
rrr0 + rrr3).

ctout =
(
− aaa · sss+ (eeeek · rrr0 + rrr1) + (rrr2 − sss · rrr3) + q1 · yyy,aaa

)
∈ R2

Q1

Let ct′′out be a hybrid distribution defined as follows, where aaa′ ← U(RQ1
).

ct′′out =
(
− aaa′ · sss+ (eeeek · rrr0 + rrr1) + (rrr2 − sss · rrr3) + q1 · yyy,aaa′

)
∈ R2

Q1

Then, ctout ≈c ct′′out assuming that HintRLWEeeeek,sss,BekNσ,hσ
Q1,σ,σ

is computationally
hard, which can be reduced from RLWEQ1,σ/2,σ/2 with an advantage of at most
negl(λ) by Theorem 1.

For ct′′out and ct′out, they only differ in the distribution of yyy and yyy′. We note that
yyy = f(θ, x⃗xx) +eeeEval + ⌊ttt⌉ and yyy′ = f(θ, x⃗xx) + ⌊ttt′⌉ hold for some eeeEval, where ttt, ttt′ ←
Lap(Nτ/ε)N and ∥eeeEval∥∞ ≤ τ , which implies ∥eeeEval∥1 ≤ Nτ . Thus,D∞(yyy∥yyy′) ≤
ε holds due to the Laplacian mechanism, which implies D∞(ct′′out∥ct′out) ≤ ε,
where D∞ denotes the max-divergence. Therefore, Eqs. (1) and (2) holds since
ctout ≈c ct′′out. ⊓⊔

Next, we discuss which algorithm f is suitable for DPHE protocols. In the
context of DP-prediction [37], the following condition is typically considered,
which can be viewed as a generalization of the sensitivity notion in DP.

Definition 13 (Uniformly RO-Stable Prediction [37]). An algorithm f :
Θ × XK → Y is called a uniformly stable replace-one prediction with rate ξ if,
for all adjacent θ, θ′ ∈ Θ and any x⃗xx ∈ X k, ∥f(θ, x⃗xx)− f(θ′, x⃗xx)∥∞ ≤ ξ holds.

If an algorithm f satisfies the above definition, we can easily design a DP-
prediction using the Laplace mechanism. Moreover, [37, 74] show that several
classes of training algorithms yield inference algorithms f that are uniformly
RO-stable with respect to the training data. Below, we describe the consequence
of a DPHE protocol when f is uniformly RO-stable.

Theorem 9. Let f : Θ×X k → Y be a uniformly RO-stable prediction with rate
ξ. Then, EXEC[ΠCKKS,θ, A, Z] is a (2 + ξ/τ)ε-CDP prediction with respect to θ for
all PPT environments Z and all PPT adversaries A that manipulate the receiver.

Proof. If f is uniformly stable with rate ξ, then M is a (ξ/τ)ε-CDP prediction
due to the Laplace mechanism. Therefore, by Theorem 5, EXEC[ΠCKKS,θ, A, Z] is a
(2 + ξ/τ)ε-CDP prediction with respect to θ. ⊓⊔

4.3 Construction of ZKAoK for CKKS via PIOP

We present how to construct a ZKAoK for the relation RCKKS using PIOPs. When
building a PIOP for HE, we first need to address two key problems: ciphertext
modulus and the representation of polynomials. This is because the PIOPs pre-
sented in Section 3 can only handle vectors over a prime field, whereas the
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ciphertext modulus in HE is typically a composite of distinct primes, and the
validity of ciphertexts is represented using polynomial arithmetic.

In [52], the first issue is addressed using the modulus switching technique.
This solution first generates ciphertexts and public keys in a prime modulus
p > QL, generates a proof modulo p, and then switches back to modulus QL by
rescaling after the verification is complete. For the second issue, the following
two vector representations are used.

– Coeff(aaa) → a⃗: Given a polynomial aaa =
∑N−1
i=0 aiX

i, outputs a vector a⃗ =
(a0, . . . , aN−1).

– NTT(aaa) → a⃗: Given a polynomial aaa =
∑N−1
i=0 aiX

i, outputs a vector a⃗ =(
aaa(ξ), aaa(ξ3), . . . , aaa(ξ2N−1)

)
, where ξ is a 2N -th root of unity in Zp.

If we assume p = 1 (mod 2N), then Rp ∼= ZNp via the isomorphism NTT, thus
we can prove polynomial arithmetic over component-wise arithmetic over ZNp .
Additionally, there exist matrices T, Pφ, Pψ ∈ ZN×N

p , which satisfy NTT(aaa) =
T ·Coeff(aaa), NTT(φ(aaa)) = Pφ ·NTT(aaa), NTT(ψ(aaa)) = Pψ ·NTT(aaa) for aaa ∈ Rp. Based
on these solutions, [52] successfully constructs PIOPs for the BFV scheme.

However, these solutions do not address CKKS-specific issues: proof for the
sparsity of the secret key and validity of plaintext. For the sparsity condition, we
prove this by incorporating our newly designed PIOP ΠL2 for L2-norm bound.
We note that under the condition ∥s⃗∥∞ ≤ 1, [∥s⃗∥22]p ≤ h implies ∥s⃗∥1 = h, thus
executing ΠL2 in conjunction with ΠL∞ allows us to prove the Hamming weight
bound of the secret key.

To prove the validity of plaintext, using PIOP alone is hard to provide a
solution, as we need to prove relations over CN/2. Here, we focus on the most
frequently used setting where we assume input plaintexts x⃗xx = (xxx0, . . . ,xxxk−1)
satisfies ∥Unpack(xxxi)∥∞ ≤ 1 for 0 ≤ i < k. To prove this condition, we incorpo-
rate a homomorphic operation called the coeff-to-slot operation, which is a main
building block for CKKS bootstrapping [28]. Its basic functionality is as follows.

– CtoS(ct) → ct′, ct′′: Given a CKKS ciphertext ct ∈ R2
Qℓ

, whose plaintext is
Decsk(ct) = mmm =

∑N−1
i=0 miX

i, it outputs two ciphertexts ct′, ct′′ ∈ R2
Qℓ−ℓCtoS

,
whose plaintexts are mmm′,mmm′′ ∈ R, where ι(mmm′) = (m0, . . . ,mN/2−1), and
ι(mmm′′) = (mN/2, . . . ,mN−1).

We do not specify the level consumption ℓCtoS and error bound for the coeff-to-
slot operation here, as it depends on which algorithm is used for implementa-
tion [5,25,50,51]. Based on the coeff-to-slot transformation, we modify the cipher-
text generation process as follows. Given input messages m⃗0, . . . , m⃗k−1 ∈ RN/2,
which are intended to be transformed into plaintexts via Pack, we instead gen-
erate plaintexts mmmi, where Coeff(mmmi) = ⌊∆ · (m⃗2i∥m⃗2i+1)⌉ for 0 ≤ i < k/2,
and subsequently generate based on them. During the ZKAoK, we prove that
∥mmmi∥∞ ≤ ∆ using ΠL∞ . Finally, performing CtoS on the verified ciphertexts
results in CKKS ciphertexts whose plaintexts satisfy the previously described
condition. Below, we present our ZKAoK for CKKS in detail.
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ΠCT&PK

Instance: pk′, ct′0, . . . , ct′k/2−1

Witness: sss,eee′ek ∈ RP , e⃗ee′rlk, e⃗ee
′
rtk, e⃗ee

′
cjk ∈ RL

P , e⃗ee′, m⃗mm′ ∈ Rk/2
P

1. The prover P samples the followings.

ŝss← REcd(Coeff(sss)), ŝss← REcd(NTT(sss))

ŝssrtk ← REcd(NTT(φ(sss))), ŝsscjk ← REcd(NTT(ψ(sss)))

êeeek ← REcd(Coeff(eee′ek)), êeeek ← REcd(NTT(eee′ek))

êeerlk,j ← REcd(Coeff(eee′rlk,j)), êeerlk,j ← REcd(NTT(eee′rlk,j)) for 0 ≤ j < L

êeertk,j ← REcd(Coeff(eee′rtk,j)), êeertk,j ← REcd(NTT(eee′rtk,j)) for 0 ≤ j < L

êeecjk,j ← REcd(Coeff(eee′cjk,j)), êeecjk,j ← REcd(NTT(eee′cjk,j)) for 0 ≤ j < L

êeei ← REcd(Coeff(eee′i)), êeei ← REcd(NTT(eee′i)) for 0 ≤ i < k/2

m̂mmi ← REcd(Coeff(mmm′
i)), m̂mmi ← REcd(NTT(mmm′

i)) for 0 ≤ i < k/2

Then, the prover sends polynomial oracles JŝssK, JŝssK, JêeeekK, JêeeekK,
{
Jêeerlk,jK, Jêeerlk,jK,

Jêeertk,jK, Jêeertk,jK, Jêeecjk,jK, Jêeecjk,jK
}
0≤j<L

,
{
JêeeiK, JêeeiK, Jm̂mmiK, Jm̂mmiK

}
0≤i<k/2

of degree
≤ 2N − 1 to the verifier V.

2. The verifier sends a random point δ ← U(Zp \H).

3. The prover P and the verifier V invoke the following PIOPs.

ΠL∞ (1; JŝssK), ΠL2 (h; JŝssK), ΠLin(Pφ, Pψ; JŝssK, JŝssK; JŝssrtkK, JŝsscjkK) (3)

ΠL∞ (⌊p/QL ·∆⌉ ; {Jm̂mmiK}0≤i<k/2) (4)

ΠL∞ (B
′
; JêeeekK, {Jêeerlk,jK, Jêeertk,jK, Jêeecjk,jK}0≤j<L, {JêeeiK}0≤i<k/2) (5)

ΠLin

(
T ; JŝssK, JêeeekK, {Jêeerlk,jK, Jêeertk,jK, Jêeecjk,jK}0≤j<L, {JêeeiK, Jm̂mmiK}0≤i<k/2 ; (6)

JŝssK, JêeeekK, {Jêeerlk,jK, Jêeertk,jK, Jêeecjk,jK}0≤j<L, {JêeeiK, Jm̂mmiK}0≤i<k/2

)
ΠAC(NTT(ek

′
0) + NTT(ek′1) ⊙ X⃗0 − X⃗1; JŝssK, JêeeekK) (7)

ΠAC

(L−1∑
j=0

δ
j ·

(
NTT(rlk′0,j) + NTT(rlk′1,j) ⊙ X⃗0 − ⌊p/qi⌉ · X⃗2

0 − X⃗j+1

)
; (8)

JŝssK, {Jêeerlk,jK}0≤j<L

)

ΠAC

(L−1∑
j=0

δ
j ·

(
NTT(rtk′0,j) + NTT(rtk′1,j) ⊙ X⃗0 − ⌊p/qi⌉ · X⃗1 − X⃗j+2

)
; (9)

JŝssK, JŝssrtkK, {Jêeertk,jK}0≤j<L

)

ΠAC

(L−1∑
j=0

δ
j ·

(
NTT(cjk′0,j) + NTT(cjk′1,j) ⊙ X⃗0 − ⌊p/qi⌉ · X⃗1 − X⃗j+2

)
; (10)

JŝssK, JŝsscjkK, {Jêeecjk,jK}0≤j<L

)
ΠAC

( k/2−1∑
i=0

δ
i ·

(
NTT(ct′0,i) + NTT(ct′1,i) ⊙ X⃗0 − X⃗2i+1 − X⃗2i+2

)
; (11)

JŝssK, {JêeeiK, Jm̂mmiK}0≤i<k/2

)

Fig. 9: PIOP for CKKS ciphertexts and public key
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Theorem 10. An interactive protocol ΠCT&PK described in Fig. 9 is an HVZK
PIOP for a relation R′

CKK defined below with a soundness error of O(k+L+N)
p−N ,

where T , Pφ, and Pψ are matrices in ZN×N
p corresponding to NTT, φ, and ψ,

respectively, for the vector representation of coefficients.

R′
CKKS =



(x′CKKS,w
′
CKKS)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥sss∥∞ ≤ 1 ∧ ∥sss∥1 ≤ h∧∥∥eee′ek∥∥∞,∥∥⃗eee′rlk∥∥∞, ∥∥⃗eee′rtk∥∥∞, ∥∥⃗eee′cjk∥∥∞, ∥∥⃗eee′∥∥∞ ≤ B′∧∥∥mmm′
0

∥∥
∞, . . . ,

∥∥mmm′
k/2−1

∥∥
∞ ≤ ⌊p/QL ·∆⌉∧

ek′0 + sss · ek′1 = eee′ek∧

rlk′0 + sss · rlk′1 = sss2 · ⌊p/QL · g⃗⌉+ e⃗ee′rtk∧
rtk′0 + sss · rtk′1 = φ(sss) · ⌊p/QL · g⃗⌉+ e⃗ee′rtk∧
cjk′0 + sss · cjk′1 = ψ(sss) · ⌊p/QL · g⃗⌉+ e⃗eecjk∧
ct′i,0 + sss · ct′i,1 =mmm′

i + eee′i for 0 ≤ i < k/2


Proof. Since Rp ∼= ZNp via an isomorphism NTT, we can prove the well-formedness
of public keys and ciphertexts in the NTT representation, and norm constraints
for the witness in the coefficient representation. Thus, the conditions for R′

CKKS

are directly translated from Eq. (4) to Eq. (11), except for the conditions for the
secret key sss, where we need to prove ∥sss∥∞ ≤ 1 ∧ ∥sss∥1 ≤ h.

To be precise, in Eq. (3), we prove that ∥sss∥∞ ≤ 1 ∧ [∥sss∥22]p ≤ h. However,
this statement is equivalent to ∥sss∥∞ ≤ 1 ∧ ∥sss∥1 ≤ h since [∥sss∥22]p = ∥sss∥1 under
the condition ∥sss∥∞ ≤ 1. Therefore, ΠCT&PK proves the conditions in R′

CKKS. We
note that the completeness, knowledge soundness, and zero-knowledge properties
directly follow from Theorems 4 and 13 to 15. ⊓⊔

Theorem 11. Let (pk′, ct′0, . . . , ct
′
k−1) ∈ L(R′

CKKS), and let pk =
⌊
QL
p · pk

′
⌉
,

and (ct2i, ct2i+1) ← CtoSpk
( ⌊

QL
p · ct

′
i

⌉ )
for 0 ≤ i < k/2. Then, it holds that

(pk, ct0, . . . , ctk−1) ∈ L(RCKKS) for Bek = B′ + h+1
2 , Brlk = B′ + h2+h+1

2 , Brtk =

B′ + 2h+1
2 , Bcjk = B′ + 2h+1

2 , Be = Estim(CtoS;h,Brlk, Brtk, Bcjk, B
′ + h+3

2 , ∆),
and X = {xxx ∈ R | ∥Unpack(xxx)∥∞ ≤ 1}.

Proof. See Appendix D. ⊓⊔

5 Evaluation

In this section, we provide concrete parameters and benchmark results. To com-
pile our PIOPs into SNARKs, we use the HSS scheme [53] as the underlying
polynomial commitment scheme (PCS), as it supports large, NTT-friendly prime
fields with fast proof generation speeds. Moreover, it offers a transparent setup
with plausibly post-quantum security based on lattice cryptography. Our source
code is available at https://github.com/SNUCP/ckks-piop.
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5.1 Parameter Setting

For the CKKS scheme parameters, we set N = 214 and logQL = 404, with
L + 1 = 9 distinct primes, where q0, . . . , qL−1 are 43 bits each, and qL is 60
bits in size. For the secret key and error distributions, we use a sparse ternary
distribution with Hamming weight 256 and a uniform ternary distribution, re-
spectively. Overall, the parameters we selected satisfy 128 bits of security, which
was verified using the lattice estimator [2].

For the HSS scheme parameters, we select values that minimize the proof
size. As the base modulus p, we choose an NTT-friendly prime of similar size to
q. In the HSS scheme, the modulus p takes the form of br + 1. To ensure p is
NTT-friendly, it suffices to set b as an even number and r ≥ logN . Thus, we set
b = 10792 and r = 32, so that p ≈ q. For other parameters of the HSS scheme, we
use ⌈log q⌉ = 100, n = 213, d = 211, µ = 1, and ν = 2. For a detailed explanation
of these parameters, we refer to the parameter setting section in [53].

5.2 Benchmark Results

We implement ΠCT&PK and present the benchmark results. Our implementation
is written in Rust, building on the implementation of the HSS scheme available
at https://github.com/SNUCP/celpc. All experiments were conducted on a
machine equipped with an Intel(R) Xeon(R) Platinum 8268 CPU running at
2.90GHz, using a single thread. We measure performance by varying the number
of ciphertexts k = 2, 4, 8 and scaling factor log∆ = 16, 32. The results are
summarized in Table 1.

k log∆ PK Size CT Size Proof Size Prover Time Verifier Time

2 16

39.5 MB

1.57 MB 17.9 MB 324.35s 50.88s

4 16 3.14 MB 18.9 MB 365.46s 56.08s

8 16 6.28 MB 21.0 MB 442.86s 67.13s

2 32 1.57 MB 18.7 MB 356.90s 54.65s

4 32 3.14 MB 20.4 MB 425.26s 64.33s

8 32 6.28 MB 24.0 MB 561.28s 83.63s
Table 1: Proof sizes and benchmark results of ΠCT&PK.

We note that our proof size is smaller than the total size of the CKKS
ciphertext and public keys, as the HSS scheme results in a proof size proportional
to the square root of the witness size. The performance change is relatively
moderate with respect to the number of ciphertexts, as a large portion of the
proof generation process is dedicated to handling public keys, whose size is much
larger than the ciphertexts size.
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Since our ZKAoK is the first efficient construction for the CKKS scheme,
we omit performance comparisons with other works. However, we note that
the proof generation speed is comparable to other ZKAoKs for HE [22, 52] and
PIOP-based vector range proofs [46]. This demonstrates the practicality of our
construction, as proofs are generated by the receiver, which typically has lower
computing power than the sender in homomorphic evaluation protocols. We
also note that our PIOP construction is modular, allowing it to be compiled
into different polynomial commitment schemes depending on the scenario. For
instance, if the goal is to minimize the proof size further, compiling with the
KZG [55] polynomial commitment scheme would yield proof sizes at the kilobyte
level, at the cost of a trusted setup and longer proof generation times.

6 Conclusion

In this work, we analyze the security of a CKKS-based homomorphic evalua-
tion protocol in a server-client setting. To address challenges in security analysis
using indistinguishability-based notions, we introduce the concept of a differ-
entially private homomorphic evaluation protocol, whose security is analyzed
within the framework of differential privacy. To handle malicious client scenar-
ios, we propose a general compilation method based on ZKAoK and present a
concrete instantiation using PIOP. Finally, to demonstrate the practicality of
our approach, we implement PIOP for CKKS by compiling it with the HSS
polynomial commitment scheme [53].

We expect that our approach can be extended to multi-party variants of
CKKS [26, 58, 59], where public keys are generated in a distributed manner
under the common reference string model, inputs from multiple parties are
shared as CKKS ciphertexts, and homomorphic computations can be performed
on ciphertexts from different parties. In multi-party CKKS-based protocols,
achieving indistinguishability-based security is challenging for similar reasons
as in CKKS-based homomorphic evaluation protocols. Adopting our differential
privacy-based analysis could lead to more practical parameter settings and a
more robust security analysis in both the semi-honest and malicious settings.
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A CKKS Error Analysis

This section provides an error analysis for each homomorphic operation. In the
analysis below, we assume that our chosen set of prime modulus QL = q1 . . . qL
satisfies the condition qL > qiLN for all qi (1 ≤ i < L). It is important to note
that selecting qL in this manner is a common practice in practical parameter set-
tings, as it helps reduce noise introduction during homomorphic computations.
Additionally, for simplicity, we will use the same notation as in the algorithm
description within the proof.

Lemma 4 (External Product). Suppose that u⃗uu0+ u⃗uu1sss = µµµ · g⃗+ e⃗ee (mod QL)
for some vectors u⃗uu0 = (uuu0,0, . . . ,uuu0,L), u⃗uu1 = (uuu1,0, . . . ,uuu1,L) ∈ RLQL and ring
element µµµ ∈ RQL−1

. Then, the following equation holds for any aaa ∈ RQℓ and
e⃗ee = (eee0, . . . , eeeL) ∈ RLQL where 0 ≤ ℓ < L.

Errsk (aaa� (u⃗uu0, u⃗uu1),µµµ · aaa) ≤
∥⃗eee∥∞ + h+ 1

2
.

Proof. By definition, we have

Decsk(aaa� (u⃗uu0, u⃗uu1)) = aaa� u⃗uu0 + (aaa� u⃗uu1) · sss

=
1

qL

ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi(uuu0,i + uuu1,i · sss)− rrr0 − rrr1 · sss (mod Qℓ)

where

rrri =
1

qL

ℓ−1∑
j=0

[
(QL−1/qj)

−1 · aaa
]
qj
uuui,j −

⌊
1

qL

ℓ−1∑
j=0

[
(QL−1/qj)

−1 · aaa
]
qj
uuui,j

⌉

for i = 0, 1.
Note that uuu0,i +uuu1,i · sss = µµµ ·QL/qi + eeei (mod Qℓ · qL) since Qℓ · qL | QL, we

have the following by definition.

ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi(uuu0,i + uuu1,i · sss)

=

ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi(µµµ ·QL/qi + eeei)

= qL ·µµµ · aaa+
ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi · eeei (mod Qℓ · qL)

Note that the final equality comes from the Chinese Remainder Theorem. (Con-
sider modulo qi for i = 0, . . . , ℓ and L.) Therefore, we can conclude the following
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inequality:

Errsk(aaa� (u⃗uu0, u⃗uu1),µµµ · aaa)

=

∥∥∥∥∥ 1

qL

ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi(uuu0,i + uuu1,i · sss)− rrr0 − rrr1 · sss− µµµ · aaa (mod Qℓ)

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1

qL

ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi · eeei − rrr0 − rrr1 · sss

∥∥∥∥∥
∞

≤ 1

qL

∥∥∥∥∥
ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi · eeei

∥∥∥∥∥
∞

+ ∥rrr0 + rrr1 · sss∥∞

where the second equality is derived from the smallness of the term which does
not incur the wraparound. Now, since

∥∥∥[(QL−1/qi)
−1 · aaa]qi

∥∥∥
∞
≤ qi

2 < qL
2LN by

the assumption, the first term is bounded by

1

qL

∥∥∥∥∥
ℓ−1∑
i=0

[(QL−1/qi)
−1 · aaa]qi · eeei

∥∥∥∥∥
∞

<
1

qL
· ℓ · qL

2LN
·N ∥⃗eee∥∞ ≤

∥⃗eee∥∞
2

.

On the other hand, since ∥rrri∥∞ ≤ 1/2, it is easy to show that ∥rrr0 + rrr1 · sss∥∞ ≤
h+1
2 from the fact that sss is a ternary polynomial with Hamming weight at most

h. Hence, we can obtain the desired noise bound (∥⃗eee∥∞ + h+ 1)/2. ⊓⊔

Lemma 5 (Homomorphic Addition). Given CKKS ciphertexts ct, ct′ ∈
R2
Qℓ

for 0 ≤ ℓ < L, let ctadd ← Add(ct, ct′). Then, it satisfies that

Errsk(ctadd,mmm+mmm′) ≤ Errsk(ct,mmm) + Errsk(ct
′,mmm′).

Proof. Note that ctadd = (ccc0 + ccc′0, ccc1 + ccc′1) ∈ RQℓ . By definition, we obtain

Errsk(ctadd,mmm+mmm′) = ∥Decsk(ctadd)−mmm−mmm′∥∞
= ∥[ccc0 + ccc′0 + (ccc1 + ccc′1)sss]Qℓ −mmm−mmm′∥∞
≤ ∥[ccc0 + ccc1sss−mmm]Qℓ∥∞ + ∥[ccc′0 + ccc′1sss−mmm′]Qℓ∥∞
= Errsk(ct,mmm) + Errsk(ct

′,mmm′),

where the inequality is derived from the smallness of the errors and the triangle
inequality. ⊓⊔

Lemma 6 (Homomorphic Multiplication). Given CKKS ciphertexts ct, ct′ ∈
R2
Qℓ

for 0 ≤ ℓ < L, let ctmul ← Mulrlk(ct, ct
′). Then, it satisfies that

Errsk(ctmul,mmmmmm
′) ≤ N∥mmm′∥∞E +N∥mmm∥∞E

′ +NEE′ +
Brlk + h+ 1

2

for E = Errsk(ct,mmm), E′ = Errsk(ct
′,mmm′) and Brlk is the infinity-norm bound of

the relinearization key error.
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Proof. Let us parse ddd2 � rlk = (fff0, fff1) ∈ RQℓ . Then, by Lemma 4, we have∥∥∥[fff0 + fff1sss− ddd2 · sss2
]
Qℓ

∥∥∥
∞

=
∥∥∥[fff0 + fff1sss− ccc1ccc′1 · sss2

]
Qℓ

∥∥∥
∞
≤ Brlk + h+ 1

2
.

Next, let eee and eee′ be the ‘noise’ of the ciphertexts ct and ct′ which encrypt mmm
and m′m′m′, respectively. In other words, Decsk(ct) =mmm+eee and Decsk(ct

′) =m′m′m′+e′e′e′.
Then, we can deduce that

Errsk(ctmul,mm
′mm′mm′)

=
∥∥∥[ccc0ccc′0 + (ccc0ccc

′
1 + ccc′0ccc1)sss+ (fff0 + fff1sss)]Qℓ −mm

′mm′mm′
∥∥∥
∞

≤
∥∥∥[ccc0ccc′0 + (ccc0ccc

′
1 + ccc′0ccc1)sss+ ccc1ccc

′
1sss

2
]
Qℓ
−mm′mm′mm′

∥∥∥
∞

+
∥∥∥[fff0 + fff1sss− ccc1ccc′1 · sss2

]
Qℓ

∥∥∥
∞

≤
∥∥∥[ccc0ccc′0 + (ccc0ccc

′
1 + ccc′0ccc1)sss+ ccc1ccc

′
1sss

2
]
Qℓ
−mm′mm′mm′

∥∥∥
∞

+
Brlk + h+ 1

2

=
∥∥(mmm+ eee)(mmm′ + eee′)−mmmm′m′m′∥∥

∞ +
Brlk + h+ 1

2

≤ N∥mmm∥∞∥eee
′∥∞ +N∥mmm′∥∞∥eee∥∞ +N∥eee∥∞∥eee

′∥∞ +
Brlk + h+ 1

2
.

Since ∥eee∥∞ ≤ Errsk(ct,mmm) and ∥eee′∥∞ ≤ Errsk(ct
′,mmm′) by definition, we proved

our claim. ⊓⊔

Lemma 7 (Homomorphic Rotation). Given CKKS ciphertext ct ∈ R2
Qℓ

for
0 ≤ ℓ < L, let ct′ ← Rotrtk(ct). Then, it satisfies that

Errsk(ct
′, φ(mmm)) ≤ Errsk(ct,mmm) +

Brtk + h+ 1

2

where Brtk is the infinity norm bound of the rotation key error.

Proof. By Lemma 4, we have

Errsk(ct
′, φ(mmm))

=
∥∥∥[φ(ccc0) + φ(ccc1) � rtk]Qℓ − φ(mmm)

∥∥∥
∞

≤
∥∥∥[φ(ccc0) + φ(ccc1) · φ(sss)]Qℓ − φ(mmm)

∥∥∥
∞

+
∥∥∥[φ(ccc1) � rtk− φ(ccc1) · φ(sss)]Qℓ

∥∥∥
∞

≤
∥∥∥[φ(ccc0 + ccc1 · sss−mmm)]Qℓ

∥∥∥
∞

+
Brtk + h+ 1

2
= Errsk(ct,mmm) +

Brtk + h+ 1

2

where the last equality is derived from the fact that the automorphism X 7→ X5

only rearranges the coefficients up to sign. ⊓⊔

Lemma 8 (Homomorphic Conjugation). Given CKKS ciphertext ct ∈ R2
Qℓ

for 0 ≤ ℓ < L, let ct′ ← Conjcjk(ct). Then it satisfies that

Errsk(ct
′, ψ(mmm)) ≤ Errsk(ct,mmm) +

Bcjk + h+ 1

2

where Bcjk is the infinity norm bound of the rotation key.
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Proof. The proof is essentially identical to the proof of Lemma 7. ⊓⊔

Lemma 9 (Rounding Operation). Given CKKS ciphertext ct ∈ R2
Qℓ

for
0 ≤ ℓ < L, let ct′ ← Round(ct). Then, it satisfies that

Errsk(ct
′,mmm/qℓ) ≤

h+ 1

2
.

Proof. Let Decsk(ct) =mmm+ eee for some small noise eee. Then,

[⌊ccc0/qℓ⌉+ ⌊ccc1/qℓ⌉ · sss]Qℓ−1
=

1

qℓ
[ccc0 + ccc1 · sss]Qℓ − rrr0 − rrr1sss

=
1

qℓ
(mmm+ eee)− rrr0 − rrr1sss

where
rrri =

1

qℓ
ccci −

⌊
1

qℓ
ccci

⌉
for i = 0, 1. Analogous to the proof of Lemma 4, we can deduce that ∥rrri∥∞ ≤
1/2. Therefore, from the definition,

Errsk(ct
′,mmm/qℓ) =

∥∥∥[⌊ccc0/qℓ⌉+ ⌊ccc1/qℓ⌉ · sss]Qℓ−1
−mmm/qℓ

∥∥∥
∞

=

∥∥∥∥ 1

qℓ
eee− rrr0 − rrr1sss

∥∥∥∥
∞

≤ 1

qℓ
∥eee∥∞ +

h+ 1

2
=

1

qℓ
Errsk(ct,mmm) +

h+ 1

2

as sss is a ternary vector with Hamming weight h. ⊓⊔

Proof (Proof of Theorem 2.). In Lemmas 5 to 9, we provided specific formu-
las to calculate the error bounds following each homomorphic operation. These
calculations rely on several parameters: the error and message bounds of the
input ciphertext(s) of the operation, the error bounds of the public keys, and
the Hamming weight bound of the secret key. With these parameters, and given
the circuit, one can deduce the error in the output ciphertext by applying these
formulas systematically through the circuit. In other words, there is an algo-
rithm Estim(C;h,Brlk, Brtk, Bcjk, Be, Bm) that calculates the upper limit of the
error bound for the output ciphertext of the specified circuit C. ⊓⊔

B PIOP Compilation

B.1 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) is a class of commitment schemes that
takes polynomials as messages and allows the evaluation of committed polyno-
mials. Below, we define a polynomial commitment scheme for univariate poly-
nomials, adapted from [31].
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Definition 14 (Polynomial Commitment). A polynomial commitment PC
consists of the following PPT algorithms.

– PC.Setup(1λ, D)→ ck: Given a security parameter λ and a global polynomial
degree upper bound D, it generates a commitment key ck.

– PC.Com(ck, d,fff) → (c, δ): Given a polynomial fff ∈ Zp[X] with degree < d, it
generates a commitment c and an opening hint δ.

– PC.Open(ck, c, d,fff, δ)→ b: Given a commitment c, a polynomial fff with degree
< d, and an opening hint δ, it outputs 0 or 1.

– PC.Eval(ck, x, d,fff, δ) → (y, ρ): Given an evaluation point x ∈ Zp and an
opening hint δ, it returns an evaluation result y, and an evaluation proof ρ.

– PC.Check(ck, c, d, x, y, ρ) → b: Given a commitment c, a degree upper bound
d, an evaluation point x, an evaluation result y, and an evaluation proof ρ, it
outputs 0 or 1.

PC is called a polynomial commitment scheme if it satisfies the following proper-
ties.

Correctness. For every polynomial fff ∈ Zp[X] with a degree upper bound d ≤ D
and every point x ∈ Zp, the following holds.

Pr

 PC.Open(ck, c, d,fff, δ) = 1∧
PC.Check(ck, c, d, x,fff(x), ρ) = 1

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, D)

(c, δ)← PC.Com(ck, d,fff)

(y, ρ)← PC.Eval(x, δ)

 ≥ 1− negl(λ)

Extractability. For every PPT adversary A, there exists a PPT extractor E such
that for all randomness r, the following holds.

Pr

PC.Check(ck, c, d, x, y, ρ) = 1∧(
PC.Open(ck, c, d,fff, δ) = 0∨

y ̸= fff(x)
)
∣∣∣∣∣∣∣
ck← PC.Setup(1λ, D)

(c, d, x, y, ρ)← A(ck, r)

(fff, δ)← E(ck, r)

 ≤ negl(λ)

Binding. For every PPT adversary A, the following holds.

Pr

 PC.Open(ck, c, d,fff, δ) = 1∧
PC.Open(ck, c, d,fff ′, δ′) = 1∧

fff ̸= fff ′

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, D)

(c, d,fff,fff ′, δ, δ′)← A(ck)

 ≤ negl(λ)

PC is called hiding if the following property holds.
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Hiding. For every PPT adversary A = (A1, A2), there exists a PPT simulator S
such that the following holds.

∣∣∣∣∣Pr
 A2(ck, c, ρ) = 1∧
PC.Check(ck, c, d, x,fff(x), ρ) = 1

∣∣∣∣∣∣∣
ck← PC.Setup(1λ, D)

(d,fff, x)← A1(ck)

(c, ρ)← S(ck, x,fff(x))



− Pr

 A2(ck, c, ρ) = 1∧
PC.Check(ck, c, d, x,fff(x), ρ) = 1

∣∣∣∣∣∣∣∣∣∣
ck← PC.Setup(1λ, D)

(d,fff, x)← A1(ck)

(c, δ)← PC.Com(ck, d,fff)

(y, ρ)← PC.Eval(x, δ)


∣∣∣∣∣ ≤ negl(λ)

In [31], Chiesa et al. formalize how a PIOP can be compiled into an argument
of knowledge using a PCS. In short, the compilation is done by replacing all the
oracle polynomials in the PIOP with commitments from the PCS, and then
attaching evaluation proofs from the PCS for each polynomial query in the
PIOP. The complexity of the resulting argument of knowledge can be described
as follows.

Theorem 12 (Theorem 8.1 in [31]). Let Π be a PIOP for a relation R and PC

be a polynomial commitment scheme. Then, there exists a public coin argument
of knowledge Π′ for R with the following complexity.

Prover complexity. The sum of the runtime of the PIOP prover, the time to
commit polynomials in PC, and the time to produce evaluation proofs for oracle
queries in PC.

Verifier complexity. The sum of the runtime of the PIOP verifier, the time
to verify evaluation proofs in PC.

Proof size. The sum of the messages from the PIOP verifier, commitments
size in PC, and evaluation proof size in PC. Additionally, if Π is HVZK and PC

is hiding, then Π′ is HVZK.

C Deferred PIOPs

Theorem 13. Let âaai ← REcd(⃗ai) and b̂bbi ← REcd(⃗bi) for 0 ≤ i < k, where
b⃗i = Mia⃗i. Then, an interactive protocol ΠLin described in Fig. 10 is an HVZK
PIOP with a soundness error of O(k+N)

p−N .
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ΠLin(M0, . . . ,Mk−1; Jâaa0K, . . . , Jâaak−1K; Jb̂bb0K, . . . , Jb̂bbk−1K)

Public input: matrices Mi ∈ ZN×N
p for 0 ≤ i < k.

Witness: vectors a⃗i = Dcd(âaai) and b⃗i = Dcd(b̂bbi) for 0 ≤ i < k, where âaai, b̂bbi ∈ Z<2N
p [X].

Statement: b⃗i =Mia⃗i for 0 ≤ i < k.

1. The verifier V sends random point v, γ ← U(Zp \H).
2. The prover P and the verifier V invoke the following PIOP, where v⃗ =

(1, v, . . . , vN−1) and w⃗i =M⊤
i v⃗.

ΠIP

(
k−1∑
i=0

γi · (w⃗i ⊙ X⃗i − v⃗ ⊙ X⃗i+k); Jâaa0K, . . . , Jâaak−1K, Jb̂bb0K, . . . , Jb̂bbk−1K

)

Fig. 10: PIOP for batched linear relations

Proof. We refer to Theorem 6.2 in [9]. ⊓⊔

Theorem 14. Let âaai ← REcd(⃗ai) for 0 ≤ i < k, where C⃗(⃗a0, . . . , a⃗k−1) = 0⃗.
Then, an interactive protocol ΠAC described in Fig. 11 is an HVZK PIOP with a
soundness error of O(dN)

p−N .

ΠAC(⃗C; Jâaa0K, . . . , Jâaak−1K)

Public input: k-ary circuit C⃗ ∈ (ZN
p )[X⃗0, . . . , X⃗k−1] of degree d.

Witness: vectors a⃗i = Dcd(aaai) for 0 ≤ i < k, where âaai ∈ Z<2N
p [X].

Statement: C⃗(⃗a0, . . . , a⃗k−1) = 0.

1. Both P and V compute CCC ∈ (Zp[X])[XXX0, . . . ,XXXk−1] of degree d, which is obtained
by applying Ecd to each coefficient of C⃗.

2. The prover P computes the quotient polynomial qqq = CCC(âaa0, . . . , âaak−1)/zzzH, and sends
a polynomial oracle (JqqqK, d(2N − 1)− 1) to V.

3. The verifier V gets evaluations aaai(α) and qqq(α) by accessing polynomial oracles JâaaiK,
JqqqK at a random point α← U(Zp \H). Then, V checks whether the following holds.

qqq(α) · zzzH(α) =
(
CCC(âaa0, . . . , âaak−1)

)
(α)

Fig. 11: PIOP for arithmetic constraints

Proof. We refer to Theorem 4 in [52]. ⊓⊔

Theorem 15. Let âaa ← REcd(⃗a) , where ∥a⃗∥∞ ≤ B. Then, an interactive pro-
tocol ΠL∞ described in Fig. 12 is an HVZK PIOP with a soundness error of
O(k+ℓ+N)

p−N .

Proof. We refer to Theorem 5 in [52]. ⊓⊔
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ΠL∞(B; Jâaa0K, . . . , Jâaak−1K)

Public input: norm bound B.
Witness: vectors a⃗i = Dcd(âaai), where âaai ∈ Z<2N

p [X] for 0 ≤ i < k.
Statement: ∥a⃗i∥∞ ≤ B for 0 ≤ i < k.

1. The prover P and the verifier V decompose B into B0 = ⌈B
2
⌉, B1 = ⌈B−B0

2
⌉,

B2 = ⌈B−B0−B1
2

⌉, . . . , Bℓ−1 = 1, where ℓ = ⌊logB⌋+ 1.
2. The prover P decompose a⃗i into a⃗i,0, . . . , a⃗i,ℓ−1 ∈ Rp such that a⃗i =

∑ℓ−1
j=0Bi · a⃗i,j

and ∥a⃗i,j∥∞ ≤ 1, and samples polynomial encodings âaai,j ← REcd(⃗ai,j). Then, P
sends polynomial oracles (Jâaai,jK, 2N − 1) to V for 0 ≤ i < k and 0 ≤ j < ℓ.

3. The verifier V sends random points β, γ ← U(Zp \H).
4. The prover P and the verifier V invoke the following PIOPs.

ΠAC

(
k−1∑
i=0

γi ·
(
X⃗i(ℓ+1) −

ℓ−1∑
j=0

Bj · X⃗i(ℓ+1)+j+1 +

ℓ−1∑
j=0

βj+1 · (X⃗3
i(ℓ+1)+j+1 − X⃗i(ℓ+1)+j+1)

)
;

Jaaa0K, Jaaa0,0K, . . . , Jaaa0,ℓ−1K, . . . , Jaaak−1K, Jaaak−1,0K, . . . , Jaaak−1,ℓ−1K

)

Fig. 12: PIOP for L∞-norm constraints

D Deferred Proofs

Proof of Theorem 11

Proof. We show how the norm bound changes for each type of public key and
ciphertext after modulus switching.

For the relinearzation key, it holds that rlk =
(⌊

QL
p · rlk

′
0

⌉
,
⌊
QL
p · rlk

′
1

⌉)
.

Then, we have the followings for rounding errors ε⃗εεrlk,0, ε⃗εεrlk,1, ε⃗εεrlk,2 ∈ R[X]/(XN+
1).

⌊
QL

p
· rlk′0

⌉
+

⌊
QL

p
· rlk′1

⌉
· sss =

(
QL

p
· rlk′0 + ε⃗εεrlk,0

)
+

(
QL

p
· rlk′1 + ε⃗εεrlk,1

)
· sss

=
QL

p
· (sss2 · ⌊p/QL · g⃗⌉+ e⃗ee′rlk) + (⃗εεεrlk,0 + ε⃗εεrlk,1 · sss)

=
QL

p
·
(
sss2 · (p/QL · g⃗ + ε⃗εεrlk,2) + e⃗ee′rlk

)
+ (⃗εεεrlk,0 + ε⃗εεrlk,1 · sss)

= sss2 · g⃗ + QL

p
· e⃗ee′rlk + ε⃗εεrlk,0 + ε⃗εεrlk,1 · sss+ ε⃗εεrlk,1 · sss2 (mod QL)

Then, for e⃗eerlk = QL
p · e⃗ee

′
rlk + ε⃗εεrlk,0 + ε⃗εεrlk,1 · sss + ε⃗εεrlk,1 · sss2, it holds that ∥⃗eeerlk∥∞ ≤

B′ + h2+h+1
2 since QL < p, ∥⃗εεεrlk,0∥∞, ∥⃗εεεrlk,1∥∞, ∥⃗εεεrlk,2∥∞ ≤ 1/2 and ∥sss∥1 ≤ h.
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For the rotation key, it holds that rtk =
(⌊

QL
p · rtk

′
0

⌉
,
⌊
QL
p · rtk

′
1

⌉)
. Then,

we have the followings for rounding errors ε⃗εεrtk,0, ε⃗εεrtk,1, ε⃗εεrtk,2 ∈ R[X]/(XN + 1).⌊
QL

p
· rtk′0

⌉
+

⌊
QL

p
· rtk′1

⌉
· sss =

(
QL

p
· rtk′0 + ε⃗εεrtk,0

)
+

(
QL

p
· rtk′1 + ε⃗εεrtk,1

)
· sss

=
QL

p
· (φ(sss) · ⌊p/QL · g⃗⌉+ e⃗ee′rtk) + (⃗εεεrlk,0 + ε⃗εεrtk,1 · sss)

=
QL

p
·
(
φ(sss) · (p/QL · g⃗ + ε⃗εεrtk,2) + e⃗ee′rtk

)
+ (⃗εεεrtk,0 + ε⃗εεrtk,1 · sss)

= sss2 · g⃗ + QL

p
· e⃗ee′rtk + ε⃗εεrtk,0 + ε⃗εεrtk,1 · sss+ ε⃗εεrtk,1 · φ(sss) (mod QL)

Then, for e⃗eertk = QL
p · e⃗ee

′
rlk + ε⃗εεrtk,0 + ε⃗εεrtk,1 · sss+ ε⃗εεrtk,1 · φs, it holds that ∥⃗eeertk∥∞ ≤

B′ + 2h+1
2 since QL < p, ∥⃗εεεrlk,0∥∞, ∥⃗εεεrlk,1∥∞, ∥⃗εεεrlk,2∥∞ ≤ 1/2, and ∥φ(sss)∥1 =

∥sss∥1 ≤ h. We note that for the conjugation key, the overall process is identical
to the rotation key case since ∥ψ(sss)∥1 = ∥sss∥1 holds, so we omit the details.

For the ciphertexts, we first analyze
⌊
QL
p · ct

′
i

⌉
=

(⌊
QL
p · ct

′
i,0

⌉
,
⌊
QL
p · ct

′
i,1

⌉)
.

Then, we have the following for rounding errors εεεi,0, εεεi,1, εεεi,2 ∈ R[X]/(XN + 1),
where we represent mmm′

i =
p
QL
mmmi + εεεi,2 for ∥mmmi∥∞ ≤ ∆.⌊

QL

p
· ct′i,0

⌉
+

⌊
QL

p
· ct′i,1

⌉
· sss =

(
QL

p
· ct′i,0 + εεεi,0

)
+

(
QL

p
· ct′i,1 + εεεi,1

)
· sss

=
QL

p
· (mmm′

i + eee′i) + (εεεi,0 + εεεi,1 · sss)

=mmmi +
QL

p
· εεεi,2 +

QL

p
· eee′i + (εεεi,0 + εεεi,1 · sss) (mod QL)

Therefore,
⌊
QL
p · ct

′
i

⌉
∈ R2

QL
is a ciphertext, which encrypts mmmi with an error

bound ≤ B′ + h+3
2 . Now, consider (ct2i, ct2i+1) ← CtoSpk

( ⌊
QL
p · ct

′
i

⌉ )
for 0 ≤

i < k/2. Then, it holds the following.

ct2i,0 + ct2i,1 · sss = m̃mm2i + ẽee2i (mod QL)

ct2i+1,0 + ct2i+1,1 · sss = m̃mm2i+1 + ẽee2i+1 (mod QL)

where ι(m̃mm2i) = (mi,0, . . . ,mi,N/2−1) and ι(m̃mm2i+1) = (mi,N/2, . . . ,mi,N−1) for
(mi,0, . . . ,mi,N−1) = Coeff(mmmi), and ∥ẽee2i∥∞, ∥ẽee2i+1∥∞ ≤ Be. Therefore, we
have m̃mm2i, m̃mm2i+1 ∈ X since ∥Unpack(m̃mm2i)∥∞, ∥Unpack(m̃mm2i+1)∥∞ ≤ ∆−1·∥mmm∥∞ =
1, and Unpack(·) = ∆−1 · ι(·).
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