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Abstract

We consider the problem of constructing efficient pseudorandom functions with Beyond-Birthday-
Bound (BBB) security from blockciphers. More specifically, we are interested in variable-output-length
pseudorandom functions (PRF) whose domain is twice that of the underlying blockcipher. We present
two such constructions, Pencil and ♯Pencil, which provide weak PRF and full PRF security, respectively,
where both achieve full n-bit security. While several recent works have focused on constructing BBB
PRFs from blockciphers, much less attention has been given to weak PRF constructions which can
potentially be constructed more efficiently and still serve as a useful primitive. Another understudied
problem in this domain, is that of extending the domain of a BBB PRF, which turns out to be rather
challenging. Besides being of theoretical interest in itself, this is also a very practical problem. Often,
the input to the BBB PRF is a nonce, but random nonces are much easier to handle in practice as they
do not require maintaining state—which can be very cumbersome in distributed systems and encrypted
cloud storage. Accordingly, in order to maintain a BBB security bound, one requires random nonces
of size between 1.5n and 2n bits long and corresponding BBB (weak) PRF constructions that admit
matching input sizes. NIST has recently announced a pre-draft call for comments to standardise AEAD
schemes that can encrypt larger amounts of data and admit larger nonces. The call lists two approaches.
The first is to define an analogue of GCM using a 256-bit blockcipher, and the second is based on a
recent proposal by Gueron, to extend GCM with a key derivation function (KDF) called DNDK to
increase its security. In essence, DNDK is a BBB-secure expanding weak pseudorandom function with a
domain size of 192 bits that is realised from AES. Our work makes relevant contributions to this domain
in two important ways. Firstly, an immediate consequence of our work is that one can construct a
GCM analogue with BBB security from ♯Pencil, without resorting to a 256-bit blockcipher. Our second
contribution is that ♯Pencil can be used as a KDF in combination with GCM in an analogous manner
to DNDK-GCM. However, ♯Pencil being a full PRF as opposed to DNDK which is only a weak PRF,
allows one to prove the KDF-GCM composition secure as an AEAD scheme. Finally, when contrasting
Pencil and DNDK as weak PRFs with comparable parameters, our construction requires only half the
blockcipher calls.
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1 Introduction

Pseudorandom functions (PRFs) have a rich history dating back to the seminal work of Goldreich, Gold-
wasser, and Micali in 1984 [GGM84]. They are a fundamental concept in cryptography spanning applica-
tions in all of its subfields and even permeating to other areas of computer science such as complexity theory,
learning theory, and probabilistic data structures [BR17]. In the field of symmetric cryptography, they are
arguably the most versatile cryptographic primitive. Yet, somewhat ironically, we are unable to construct
them directly via the well-established iterative symmetric design techniques that have stood the test of
time. We are very good at building pseudorandom permutations (PRPs) from scratch, like AES [AES01],
but not pseudorandom functions. This is mainly due to the fact that pseudorandom permutations compose
to give stronger pseudorandom permutations, whereas the converse is true for pseudorandom functions.
Consequently, while symmetric constructions such as counter mode and Wegman-Carter MACs typically
employ a blockcipher, they would benefit from better security if they were to be instantiated with a
non-invertible pseudorandom function instead. This was already observed in 1998 by Bellare, Krovetz,
and Rogaway in their paper titled “Luby-Rackoff Backwards” initiating the study of how to construct
pseudorandom functions from pseudorandom permutations [BKR98].

In today’s applications, the amount of data has grown so much that the birthday-bound security guar-
anteed by traditional schemes, like AES-GCM, no longer suffices. As a result, the Luby-Rackoff backwards
problem has received renewed attention with several works revisiting the security of the sum of permuta-
tions [DHT17, GBJ+23], the truncated permutation construction [CLL19, GM22], the Encrypted Davies-
Meyer (EDM) construction and its dual (EDMD) [CS16, MN17], and the newly introduced summation-
truncation hybrid [GM20]. These PRF constructions vary in their output sizes, but their input size
is always roughly equal to the block size of the underlying pseudorandom permutation. The summation-
truncation hybrid yields the largest output size for the cost of evaluating two pseudorandom permutations,
but the XORP construction can yield ℓ-block outputs at the cost of ℓ+1 pseudorandom permutation eval-
uations [Iwa06]. In addition, in 2016, XORP and its extension CENC have been shown to achieve optimal
beyond-birthday-bound security [IMV16] making them the most favourable constructions for many prac-
tical applications.

While the problem of building BBB-secure PRFs from PRPs with longer outputs has been addressed
satisfactorily, the problem of building BBB-secure PRFs with larger domains has not. The latter, besides
being in itself a fundamental problem of theoretical interest, is also highly relevant to cryptographic
practice. In fact, the restricted input size of most of the existing BBB PRF constructions, including
XORP and CENC, is a significant limitation for a number of practical applications. In particular, when
the input to the PRF is a randomly sampled value, even if the PRF is BBB-secure the overall security of
the scheme will still incur a birthday-bound term due to the possibility of collisions in the input. However,
many practical applications require cryptographic schemes that can admit a randomly-generated nonce,
as maintaining state is costly, cumbersome, or even unsafe in settings such as distributed systems and
encrypted cloud storage [BGK99, GL17, KCC+23, Gue24a]. Accordingly, nonces must be larger than the
block size for a BBB-secure stateless scheme.

The practical need for BBB PRFs with larger domains was already pointed out by Bellare, Goldreich,
and Krawczyk, who in 1999 showed that for a random function f : {0, 1}n → {0, 1}n the construction
f(r1)⊕ · · ·⊕ f(rt) is pseudorandom, up to a security bound of O(t!) · q2/2nt for q < 2n/O(t), when r1, . . . ,
rt are random but distinct values. Note that this result is far from trivial and the restriction on the inputs
being random is necessary for the construction to be pseudorandom. Twenty-five years later, this remains
the best BBB-secure construction for extending the domain of a PRF over random inputs and is in fact used
in the Double Nonce Derive Key (DNDK) construction recently proposed by Gueron [Gue24b, Gue24a].
DNDK is a key derivation function specifically designed to be used in combination with GCM to address
two of its limitations by deriving a fresh encryption key for every message. Namely, DNDK-GCM aims
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Pencil[U, E]K(R, hout)
1 : X̃← U ·R
2 : (X̃0, . . . , X̃ℓ)← X̃⊺

3 : for j = 0 to ℓ do
4 : Xj ← X̃j∥⟨hout⟩λ
5 : Yj ← EK(Xj)
6 : if j ≥ 1 then
7 : Zj ← Y0 ⊕ Yj

8 : Z← (Z1, . . . , Zℓ)⊺

9 : return Z

Sharpen[E]K̃(N)
1 : (K1, K2, K3)← K̃

2 : (N1, N2)← N⊺

3 : J ← EK1 (N2)
4 : W1 ← N1 ⊕ J

5 : W2 ← N1 ⊕ 2 · J
6 : R1 ← msbn−λ(EK2 (W1))
7 : R2 ← msbn−λ(EK3 (W2))
8 : R ← (R1, R2)⊺

9 : return R

♯Pencil[U, E]K̃(N, hout)
1 : (K1, K2, K3, K4)← K̃

2 : R ← Sharpen[E](K1,K2,K3)(N)
3 : return Pencil[U, E]K4 (R, hout)

Figure 1: Algorithms for Pencil[U, E], Sharpen[E], and ♯Pencil[U, E].

to attain better quantitative security than GCM and admits a 192-bit random nonce1 which allows it to
encrypt a higher amount of data in a stateless setting, and it additionally derives a secondary tag for
key-commitment security. In essence, DNDK is itself an expanding weak PRF consisting of two instances
of the XORP [Iwa06] construction evaluated over independently sampled random inputs and combined in
an XOR fashion using the result of Bellare, Goldreich, and Krawczyk [BGK99]. Combining the results
of Iwata, Mennink, and Vizar [IMV16] and Bellare, Goldreich, and Krawczyk [BGK99] it follows that
DNDK achieves O(q/2n) security as a weak PRF. In terms of efficiency, DNDK requires 2(ℓ+1) AES calls
to produce ℓ blocks of output, where the AES calls are parallelisable. DNDK-GCM is reportedly being
used at Meta, is included in their high-performance cryptographic library Haberdashery, and is currently
being proposed for standardisation as an RFC [Gue24a]. Moreover, besides its effort to standardise an
Accordion mode, NIST has separately announced a pre-draft call for comments where it recognizes the
need to standardize efficient AEAD schemes which can support larger nonces and the ability to encrypt
larger amounts of data under the same key [Nat25]. The NIST call lists two possible approaches to address
this, the first is to define an analogue of GCM using a 256-bit blockcipher, and the second is to augment
GCM with a key derivation function as done in DNDK-GCM.

1.1 Contribution

Our work is primarily inspired and motivated by the use case of DNDK as a way to strengthen GCM and
obtain stateless AEAD constructions with BBB security from blockciphers. However, from a more theoret-
ical perspective, it highlights a rather understudied problem: that of constructing (weak) pseudorandom
functions from blockciphers with extended domains and BBB security. We think that this problem is of
independent interest, as it is likely to have application to other symmetric BBB constructions such as
AEAD and Accordion modes. Our effort is directed towards improving over DNDK in two distinct ways.
We first consider the question of efficiency, namely whether it is possible to improve over DNDK in terms
of the number of its constituent blockcipher calls while retaining the same level of security. The second

1Technically GCM admits nonces larger than 96 bits, but they are hashed internally to a 96-bit value thereby resulting in
the same collision probability as a 96-bit nonce.
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issue we address is that DNDK-GCM lacks a security proof2 as a composite AEAD scheme and, in fact,
it seems rather unlikely that such a result is possible. This is due to the fact that DNDK is only secure
as a weak PRF. However, in the AEAD security game, the adversary can make decryption queries for any
nonce of his choice and this nonce is what is input to DNDK. Thus during decryption DNDK can be fed
non-random inputs—which falls outside the weak PRF security model. In addressing these two limitations
of DNDK, we make the following contributions.

A New Domain-Extended BBB Weak PRF. Our first contribution is Pencil (Fig. 1, top left, and
Fig. 5, left), a blockcipher-based variable-output-length weak PRF construction on double-block inputs.
Compared to DNDK, Pencil requires about half the number of blockcipher calls, while retaining the same
optimal (full n-bit) security bound. Pencil is inspired by CENC in that it follows a two-level structure
where the output is evaluated in chunks of w blocks. However, as we discuss in detail later, there are some
important challenges to overcome in order to adapt XORP to take two random nonces instead of one.
Specifically, we compose the general structure of XORP with a matrix over a binary field where the matrix
is required to satisfy a condition we call local non-degeneracy. Note that this matrix results in minimal
overhead as it only adds (ℓ + 1) binary-field multiplications by 2, which can be realised via shift and XOR
operations. Using mirror theory we prove Pencil secure as a weak PRF up to O

(
ℓ2q/2n−λ

)
where ℓ is

the number of n-bit blocks in each chunk and λ is the length of the output handle in bits (so that each
random IV is of length 2n−2λ bits and can be re-used over at most 2λ chunks). While Pencil, like DNDK,
cannot be proven secure when composed with GCM we believe it is of independent interest. For instance,
it readily yields a stateless BBB IND-CPA encryption scheme requiring roughly a single blockipher call per
message block, when employed as a stream cipher. To the best of our knowledge, no other construction
achieves this from a blockcipher.

Domain-Extended BBB Strong PRF. Next we consider the problem of constructing a domain-
extended BBB full-fledged PRF. We accomplish this by augmenting Pencil with a 2n-to-2n preprocessing
stage called Sharpen (Fig. 1, top right, and Fig. 5, right) to yield a strong PRF ♯Pencil (Fig. 1, bottom).
As a domain-extended variable-output-length PRF ♯Pencil requires only three additional independently-
keyed blockcipher calls more than Pencil, and attains a PRF security bound of O

(
ℓ2q/2n−λ + nℓ2q/2n

)
.

We describe Sharpen and prove the PRF security of ♯Pencil in Section 4. Besides being amenable as a
key derivation function in combination with GCM and other AEAD schemes, ♯Pencil has several other
applications which we briefly mention here but do not pursue further in this paper. The first immediate
application is to combine ♯Pencil with an Almost-XOR-Universal hash function to yield a BBB Carter-
Wegman MAC that admits nonces of size 2n, and can thus be operated in a stateless manner without
degrading security. Better still, one can use ♯Pencil as a stream cipher and combine it with an Almost-
XOR-Universal hash function to obtain a blockcipher-based BBB AEAD scheme, analogous to GCM, with
2n-bit nonces. In particular, this presents a third avenue for addressing NIST’s pre-draft call [Nat25];
namely a GCM analogue with BBB security that does not require a 256-bit blockcipher and can be readily
instantiated with a 128-bit blockcipher like AES. Note that while there exist other blockcipher-based BBB
AEAD designs, such as SCM [CLLL21], OCB+ [BBN22], and XOCB [BHI+23], such constructions do not
admit 2n-bit nonces and thus cannot be operated in a stateless fashion without degrading to birthday-
bound security—which is the scenario under consideration by NIST.

Composition with CAU/GCM. We conclude by showing that ♯Pencil can be combined with the
CAU AEAD scheme (a generalisation of GCM [BT16]) to yield a composite AEAD scheme Pencil-DK-CAU

2Confirmed via private communication with Shay Gueron.
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analogous to DNDK-GCM. In contrast to DNDK-GCM, which lacks a security proof as an AEAD scheme,
we show that Pencil-DK-CAU is provably secure as an AEAD scheme with a significantly better security
bound than plain CAU/GCM. To prove its security we make use of the multi-user security analysis of
CAU/GCM by Hoang, Tessaro, and Thiruvengadam [HTT18]. In Pencil-DK-CAU, the key derivation adds
only 7 additional blockcipher calls per encryption while attaining a similar bound to that claimed by
Gueron for DNDK-GCM [Gue24a]. In contrast to DNDK-GCM which fixes the GCM nonce to a constant
and only derives a new GCM key per encryption, we derive a random nonce-key pair for each message.
However, DNDK-GCM also claims to provide key-committing security, albeit without a mathematical
proof, whereas we make no such security claim for Pencil-DK-CAU. We leave the problem of extending
Pencil-DK-CAU to be key-committing (if at all possible) as an open problem for future work.

2 Preliminaries

For m ≤ n, we will write [m..n] to denote the range {m, . . . , n}. We will use the Pochhammer falling
factorial power notation

(n)m := n(n− 1) · . . . · (n−m + 1).

Sn will denote the symmetric group over n elements. For a finite set S we’ll write R ←$ S to denote R
being uniformly sampled from S.

For an x ≤ 2d, ⟨x⟩d will denote the d-bit encoding of x. x∥y will denote the concatenation of two
bit-strings x and y. |x|b will denote the length of x in bits, |x|B will denote the length of x in bytes, and
|x|n will denote its length in n-bit blocks. lsbd(x) and msbd(x) will respectively denote the right-most and
left-most d-bit substring of x.

Bold face capital letters will usually denote vectors or matrices over GF(2d) for some bit-length d.
Unless there is scope for confusion, we’ll not make a distinction between a field element x ∈ GF(2d) and its
d-bit encoding ⟨x⟩d ∈ {0, 1}d, and we’ll treat these two sets interchangeably. Vectors will conventionally
be treated as column vectors, with V⊺ denoting the dual row vector obtained by transposing a column
vector V.

Markov’s Inequality. For a non-negative random variable X and some a > 0, Markov’s Inequality
states that

Pr[X ≥ a] ≤ E(X)
a

.

2.1 Distinguishing Advantage

For any game G defined with respect to some primitive F and any adversary A we denote the adver-
sary’s corresponding advantage by AdvG

F (A). We use AG ⇒ b′ to denote the event where the adversary
interacts with game G and returns the bit b′ upon terminating the game. When considering the distin-
guishing advantage between two primitives F and F ∗ with respect to a security game G, we denote this
by AdvG

F,F ∗(A). When the security game is simply the adversary’s ability to distinguish between access
to two oracles O0 and O1, we use AOb ⇒ b′ to denote the event that the adversary outputs bit b′ after
interacting with oracle Ob and define the adversary’s advantage as follows:

AdvO1,O0(A) :=
∣∣∣Pr[AO1 ⇒ 1]− Pr[AO0 ⇒ 1]

∣∣∣. (1)

Typically, O0 represents an ideal primitive, while O1 represents either an actual construction or a mode
of operation.

6



Game WPRFAF
K ←$ K
b←$ {0, 1}
In← [ ], Out← [ , ]
b′ ← AEval(·,·)

return b = b′

Eval(hin, hout)
if hin ̸∈ In

In[hin]←$ X
if (In[hin], hout) ̸∈ Out

if b = 0 then
Out[In[hin], hout]←$ Y

else
Out[In[hin], hout]← FK(In[hin], hout)

return (In[hin], Out[In[hin], hout])

Figure 2: The game used to define wPRF security.

2.2 Weak Pseudorandom Functions

A function family is a set of functions defined over a given domain and range. In practice, it is typically
realised as an efficient algorithm F with an associated key space K such that sampling a random key K
from K is equivalent to sampling a random function F(K, ·) from the function family. Accordingly, we will
use F to denote both the function family and the algorithm for evaluating the function family.

A weak pseudorandom function is a function family that, when evaluated over randomly-sampled
inputs, is computationally indistinguishable from a random function over the same domain and range.
This is formally defined through the WPRF game described in Figure 2. Our game may appear more
elaborate than the standard weak PRF definition but this is simply because we endow the function family
with a slightly more elaborate syntax. We are mainly interested in function families with large expansion.
However, the output for a given input does not need to be evaluated all at once, but can instead be
generated on demand. For this reason, we define F to take three strings as input: a key K ∈ K, an input
X ∈ X , and an output handle hout ∈ HO specifying which portion of the output is to be returned. In the
WPRF game, the adversary interacts with an evaluation oracle Eval that it can query on an input handle
hin and an output handle hout. The input handle allows the adversary to repeat queries on the same input
(with a different output handle) without giving it the ability to choose the input. In each evaluation query
the input value X is returned to the adversary. The corresponding weak PRF advantage is defined below.

Definition 1 (wPRFAdvantage). Let F : K×X ×HO → Y be a function family. Then for any adversary
A its wPRF advantage is defined as:

AdvwPRF
F (A) :=

∣∣∣Pr[AWPRF ⇒ 1 | b = 1]− Pr[AWPRF ⇒ 1 | b = 0]
∣∣∣ .

2.3 Authenticated Encryption with Associated Data (AEAD)

AEAD syntax. A nonce-based AEAD scheme Π = (Π.Enc, Π.Dec) consists of the following pair of
algorithms:

• A deterministic encryption algorithm Π.Enc : K × N × AD ×M → C takes as input a secret key
K ∈ K, a nonce N ∈ N , associated data AD ∈ AD, and a message M ∈M and returns a ciphertext
C ∈ C. We require Π.Enc to have constant expansion, i.e. for any (K, N, AD, M ) ∈ (K,N ,AD,M),
the expansion τ = |Π.Enc(K, N, AD, M )|b − |M |b is constant.
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Game AEADAΠ
K ←$ K
b←$ {0, 1}

b′ ← AEnc(·,·,·),Dec(·,·,·)

return b = b′

Enc(N, AD, M )
if b = 0

C ← Π.Enc(K, N, AD, M)
else

C ←$ {0, 1}|M|b+τ

return C

Dec(N, AD, C )
if b = 0

M ← Π.Dec(K, N, AD, C)
else

M ← ⊥
return M

Figure 3: The game used to define AEAD security.

• A deterministic decryption algorithm Π.Dec : K ×N ×AD × C →M∪ {⊥} takes as input a secret
key K ∈ K, a nonce N ∈ N , associated data AD ∈ AD, and a ciphertext C ∈ C and returns either
a message M ∈M or the symbol ⊥ to indicate an invalid ciphertext.

We refer to the associated sets K, N , AD,M, and C as the key space, the nonce space, the associated-
data space, the message or plaintext space and the ciphertext space, respectively. Every nonce-based AEAD
should satisfy correctness and tidiness. Correctness requires that for all (K, N, AD, M ) ∈ (K,N ,AD,M),
it must hold that if C ← Π.Enc(K, N, AD, M ) then M ← Π.Dec(K, N, AD, C ), and tidiness requires that
for all (K, N, AD, C ) ∈ (K,N ,AD, C), if ⊥ ≠ M ← Π.Dec(K, N, AD, C ) then C ← Π.Enc(K, N, AD, M ).

AEAD security. AEAD security is defined via the game described in Fig. 3. The adversary A is given
access to an encryption oracle Enc(N, AD, M ) and a decryption oracle Dec(N, AD, C ). Such an adversary
is considered valid if it never makes a decryption query Dec(N, AD, C ) with C being the output of a
previous encryption query Enc(N, AD, M ). Moreover an adversary is said to be nonce-respecting if it
never repeats a nonce N across encryption queries. The AEAD advantage of an adversary is defined below.

Definition 2 (AEAD advantage). Let Π = (Π.Enc, Π.Dec) be a nonce-based AEAD scheme with expan-
sion τ , defined over (K,N ,AD,M, C). For any valid nonce-respecting adversary A, we define its AEAD
advantage with respect to Π to be:

AdvAEAD
Π (A) :=

∣∣∣Pr[AAEAD ⇒ 1 | b = 1]− Pr[AAEAD ⇒ 1 | b = 0]
∣∣∣ .

where AEAD is the game defined in Fig. 3.

Multi-User AEAD security (mu-AEAD). Multi-user AEAD security is an extension of AEAD security
where the adversary can interact with multiple independently keyed instances of an AEAD scheme, where,
depending on the value of the bit b, either all oracles follow the scheme or they all behave in an ideal
way. The corresponding security game is described in Fig. 4 and the corresponding advantage is defined
analogously to Def. 2.

Almost XOR Universal (AXU) Hash. Consider a keyed hash function H : {0, 1}n × {0, 1}∗ → {0,
1}n for some positive integer n. Then H is said to be c-almost-XOR-universal if for all bit string pairs
(X1, X2), such that X1 ̸= X2, and all Y ∈ {0, 1}n it holds that:

PrHK←${0,1}n [HHK(X1)⊕HHK(X2) = Y ] ≤ c ·max(|X1|n, |X2|n)
2n

.
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Game
mu-AEADAΠ
K1, . . . , Ku ←$ K
b←$ {0, 1}

b′ ← AEnc(·,·,·),Dec(·,·,·)

return b = b′

Enc(i, N, AD, M )
if b = 0

C ← Π.Enc(Ki, N, AD, M)
else

C ←$ {0, 1}|M|b+τ

return C

Dec(i, N, AD, C )
if b = 0

M ← Π.Dec(Ki, N, AD, C)
else

M ← ⊥
return M

Figure 4: The game used to define mu-AEAD security.

2.4 H-Coefficient Technique

The H-coefficient technique is a proof technique devised by Patarin [Pat09] and popularised by the exposi-
tion due to Chen and Steinberger [CS14]. We outline the main idea below; for a more detailed exposition,
the reader is referred to [CS14,JN22].

A distinguisherA interacts with one of two oracles, possibly providing an interface to multiple functionalities—
O1 in the real world and O0 in the ideal world. A record of its interaction with oracle O is collected in
a transcript Trs (AO). The transcript may optionally include additional information that is revealed to
the adversary at the end of the interactive phase. We assume, without loss of generality, that the ora-
cles sample all their random coins, typically a key or an ideal primitive, before the experiment starts. A
transcript tr is called attainable if A can observe tr with non-zero probability in the ideal world, i.e., if
Pr[Trs (AO0) = tr] > 0. The Fundamental Theorem of the H-coefficient technique states the following:

Theorem 1 (H-Coefficient Technique [Pat09]). Suppose we can partition the set T of all attainable tran-
scripts as T = Tbad ⊔ Tgood, and find ϵ1, ϵ2 ≥ 0 such that

Pr
[
Trs (AO0) ∈ Tbad

]
≤ ϵ1, (2)

and for any tr ∈ Tgood,
Pr
[
Trs (AO1) = tr

]
Pr [Trs (AO0) = tr] ≥ 1− ϵ2. (3)

Then the distinguishing advantage of A obeys the bound

AdvO0,O1(A) ≤ ϵ1 + ϵ2. (4)

2.5 Mirror Theory

The mirror theory of Patarin [Pat06, Pat10b, Pat03] gives a lower bound on the number of solutions to a
systems of bivariate equations. Consider a system of m bivariate equations over GF(2n) on r variables
(Y1, . . . , Yr), that can be written as

Yi ⊕ Yj = Zi,j , (5)

for some i ̸= j. Informally, mirror theory says the following: if Zi,j ̸= 0 in all of the equations and the
graph corresponding to these equations (where the variables are nodes and the equations are edges) does
not have a cycle or a 0-sum path, and provided that the size ξmax of the largest component obeys certain
bounds, the number of solutions to this system of equations where Yi ̸= Yj for all i, j is at least

(2n)r

2nm
. (6)
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The intuition behind this lower bound is that the numerator in the above expression is the total number
of solutions satisfying just the distinctness constraint, and any randomly chosen solution has a probability
of around 1/2nm of satisfying all m bivariate equations.

Mirror theory has a somewhat contentious history. It was originally proposed by Patarin and then
refined in a serious of works [Pat08,Pat10a,CLP15]. After that, several works have used it in their security
analysis to obtain better security bounds [IMV16, MN17, ZHY18, BBN22, BCF+24, CLL24]. At the same
time, consensus was growing among a number of cryptographers that the original proof of mirror theory
contained a number of gaps that could not be readily justified. However, these gaps in the proof do not
seem to have been documented anywhere. Subsequently, Dutta et al. [DNS22] provided a more complete
proof of the bound for ξmax = 2, and Cogliati et al. [CDN+23] followed it up with a proof for a wider range
of ξmax. Following these two works, the technique has gained wider acceptance by the community. In this
work, we use one of the results from [CDN+23], which we formally restate below as Theorem 2.

Formal Description. We represent the variables as a vector Y := (Y1, . . . , Yr)⊺, the differences (after
re-labelling them in some serial order) as a vector Z := (Z1, . . . , Zm)⊺, and the coefficients as a matrix
A whose (i, j)-th entry is denoted by Aij , so that the system of equations in Eqn. (5) can be concisely
described as

Am×r ·Y = Z. (7)

We write Φ := Φ[A, Z] to denote the system of equations described by Eqn (7), parametrised by A and
Z. We call Φ[A, Z] a bivariate mirror system if A has the special form where each row of A has exactly
two 1’s and (r− 2) 0’s. A solution to Φ which satisfies the constraint that Yi ̸= Yj for all i, j ∈ [1..r] with
i ̸= j is called a mirror solution; let Γ(Φ) denote the set of all miror solutions to the system Φ.

We associate a weighted undirected graph G := G(Φ) with a bivariate mirror system Φ = Φ[Am×r,
Z] as follows: G has r vertices labelled Y1, . . . , Yr, and m edges with weights Z1, . . . , Zm, subject to the
following rule: there is an edge between Yi and Yj with weight Zt if and only if Ati = Atj = 1. We call
Φ[A, Z] redundancy-free if m ≤ r − 1 and A is of full row-rank; in which case it is easy to see that Φ is
redundancy-free if and only if G(Φ) is acyclic. Assuming that Φ[A, Z] is redundancy-free and following
graph theoretic terminology, we call G a forest and each of its connected components a tree. Then a basic
result from graph theory tells us that G has exactly c := r −m trees.

As observed in [CDN+23], we can assume without loss of generality that each tree in G is in fact a
star, meaning that all of its nodes except one are leaf nodes (of degree 1). We call the solitary non-leaf
node the center of the star. The ξ variables involved in a particular star component can be reordered to
begin with the center, so that the corresponding coefficient matrix becomes (1ξ−1, Iξ−1), where 1 denotes
a vector of 1’s, and I denotes the identity matrix. Then Φ can be decomposed into c systems Φ1, . . . , Φc,
where for each p ∈ [1..c], Φp := Φp[Ap := (1ξp−1, Iξp−1), Zp := (Zp

1 , . . . , Zp
ξp

)⊺], with ξp denoting the size of
the p-th component.

With the above setup in mind, we call Φ a consistent mirror system if for each p ∈ [1..c], the p-th
component satisfies the following conditions:

• Zp
i ̸= 0 for each i ∈ [1..ξp];

• Zp
i ̸= Zp

j for each i, j ∈ [1..ξp] with i ̸= j.

Φ being a consistent mirror system is a necessary and sufficient condition to ensure |Γ(Φ)| > 0. We note
that we define consistency only for redundancy-free mirror systems; this does not lead to loss of generality
since for every mirror system Φ we can find a redundancy-free mirror system Φ′ such that Φ and Φ′ have an
identical set of solutions. Moreover, it may be interesting to observe that the characterisation of a system
of equations Φ[A, Z] as a bivariate mirror system or as redundancy-free depends solely on the coefficient
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matrix A, while its consistency depends solely on the difference vector Z. With these definitions laid out,
we are now ready to restate the main mirror theory result [CDN+23, Theorem 1] which we will employ
later in this paper.

Theorem 2 (Mirror Theorem [CDN+23]). Let Φ be a consistent mirror system of m equations in r
variables, and let ξmax denote the size of the largest component in G(Φ). Then, if either m ≤ 2n/2 holds,
or ξmax satisfies the conditions nξ2

max + ξmax ≤ 2n/2 and 12mξmax ≤ 2n, it follows that

|Γ(Φ)| ≥ (2n)r

2nm
. (8)

3 Pencil: An Optimally Secure Weak PRF

3.1 Towards designing a weak PRF

Before describing Pencil, we justify and motivate its design by first considering a natural attempt at
constructing a weak PRF that accepts a 2-block random IV but that unfortunately does not work. We
then explain why this approach fails and propose a fix to circumvent this problem.

First Approach. We wish to design a weak PRF mode F based on a block cipher E of width n bits which
accepts a random nonce of length 2n − 2λ bits, and outputs a keystream of ℓn bits. A natural approach
would be to mimic the CENC construction. That is, split the nonce in half as R1∥R2, and reserve the last
λ bits of each call to EK for domain separation (we assume λ ≪ n). We then take each output block to
be of the form Fi,j(R1, R2) := EK(R1∥⟨i⟩λ)⊕EK(R2∥⟨j⟩λ) for some i, j ∈ [0..2λ − 1]. Let I ⊆ [0..2λ − 1]2
be the index set of size ℓ such that F (R1, R2) is made up of the blocks {Fi,j(R1, R2) | (i, j) ∈ I} in some
order.

Consider the bipartite graph G where the vertex set is {1, 2} × [0..2λ − 1], and the edge set is {{(1, i),
(2, j)} | (i, j) ∈ I}, i.e., there is an edge between (1, i) and (2, j) if one of the output blocks is Fi,j(R1, R2).
However, we cannot allow a cycle in G as it leads to a trivial distinguisher. More specifically, if (i, j), (i,
j′), (i′, j′), (i′, j) ∈ I and i ̸= i, j ̸= j, meaning that (1, i), (2, j), (1, i′), (2, j′) lie on a cycle in G, then a
distinguisher can test for the following condition: Fi,j(R1, R2) ⊕ Fi,j′(R1, R2) ⊕ Fi′,j′(R1, R2) ⊕ Fi′,j(R1,
R2) = 0. This will always hold for F , but will only occur with probability ≈ 1/2n for an ideal random
function. A similar attack works when longer cycles exist in G. Thus, we can get at most 2λ − 1 output
blocks from 2λ calls to EK , and this happens when G is a tree.

Why this doesn’t work. However, this approach doesn’t work if we want BBB security from the weak
PRF. This is because if at least one vertex (1, i) has two neighbours (2, j) and (2, j′) in G, then we have
two output blocks Z := Fi,j(R1, R2) and Z ′ := Fi,j′(R1, R2). Then Z⊕Z ′ = EK(R2∥⟨j⟩λ)⊕EK(R2∥⟨j′⟩λ)
is a function of R2, and any collision on R2 (which should happen within less than 2n/2 nonces) leads to
a collision in Z ⊕ Z ′, leading to a distinguishing attack.

Using a Linear Transformation. We observe that the above problem is caused by the fact that each
EK call is function of exactly one of R1 and R2, so that a collision in either leads to a collision in the
outputs of all calls involving it. We get around this by generating 2λ independent linear combinations
of R1 and R2, to be used with the 2λ domain separators. The idea is that if two of them are to collide
simultaneously (which is needed for the above attack), it should have about the same probability as a
collision over the whole 2n− 2λ bits.

One option could be to use the following inputs: R1∥⟨0⟩λ, (R1 ⊕ R2)∥⟨1⟩λ, (R1 ⊕ 2 · R2)∥⟨2⟩λ, . . . ,
(R1⊕22λ−1−2·R2)∥⟨2λ−1−1⟩λ for domain separators beginning in 0, and R2∥1∥⟨0⟩λ−1, (2·R1⊕R2)∥1∥⟨1⟩λ−1,
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. . . , (22λ−1−1 ·R1⊕R2)∥1∥⟨2λ−1−1⟩λ−1 for domain separators beginning in 1. This has the advantage that
all the inputs can be computed using around 2λ multiplications by 2, and no other field multiplications
are needed.

Resistance to attack. For the above attack to work, we need to find a pair of nonces R1∥R2 and R′1∥R′2
and indices i and j such that the inputs to i for the two nonces collide with each other, and the inputs to
j collide with each other. If 1 ≤ i, j < 2λ−1, this is equivalent to finding R1∥R2 and R′1∥R′2 such that

R1 ⊕ 2i−1 ·R2 = R′1 ⊕ 2i−1 ·R′2,

R1 ⊕ 2j−1 ·R2 = R′1 ⊕ 2j−1 ·R′2.

Together they imply that (2i−1 ⊕ 2j−1) · (R2 ⊕ R′2) = 0, from which we can see that R2 = R′2 and hence
R1 = R′1. Thus, this needs a collision on the entire (2n − 2λ)-bit nonce. A similar reasoning works if
i, j > 2λ−1.

For i < 2λ−1, j > 2λ−1, we need to find R1∥R2 and R′1∥R′2 such that

R1 ⊕ 2i−1 ·R2 = R′1 ⊕ 2i−1 ·R′2,

2j′ ·R1 ⊕R2 = 2j′ ·R′1 ⊕R′2,

where j′ := j− 2λ−1 (i.e., ⟨j⟩a = 1∥⟨j′⟩λ−1). These two equations together imply that (2i−1+j′ ⊕ 1) · (R2⊕
R′2) = 0, so we again get R2 = R′2 and R1 = R′1.

Finally, when i ∈ {0, 2λ−1} or j ∈ {0, 2λ−1}, we directly have R1 = R′1 or R2 = R′2 as one of the
necessary equations, and whichever we have will imply the other from the other equation. Thus, the
attack is equivalent to finding a collision on 2n− 2λ bits.

Computing PRF outputs. The 2λ outputs of EK for a nonce R1∥R2 can be arranged in a tree to
produce 2λ − 1 output blocks. The specific choice of the tree does not affect security, since all pairwise
sums of the EK outputs can be computed from any tree. For the design we propose, we choose the same
tree as in the multi-block XORP function in CENC, fixing the first call as a ‘root’ and treating the other
calls as ‘leaves’, so that the output of each leaf is XOR-ed to the output of the root to get one block of
final output.

Pencil: An Optimally-Secure Weak PRF. We generalise and adapt the design idea discussed in
Sec. 3.1 above with some changes into a mode we call Pencil. For generating the expanded input vector
from the random IV, Pencil can use any linear transformation U whose transformation matrix has pairwise
independent rows; we dub such transformations locally non-degenerate.

We first observe that when using linearly independent combinations of R1 and R2 as input vectors,
the domain separator is no longer necessary, and can be done away with. This has two implications: first,
the number of blocks ℓ in the output is no longer tied to λ, and we can set it from other considerations;
second, this frees up the last λ bits of each call to EK , and we use these to incorporate a non-random
input into Pencil that can be used as a chunk identifier—like in CENC, each random IV can be used in
multiple calls to Pencil (with distinct chunk identifier values) to get an output of up to 2λℓ blocks.

3.2 Formal Description

Let the i-th 2-block IV be denoted by R(i) = (R(i)
1 , R

(i)
2 )⊺, and the i-th output handle be denoted by

h
(i)
out, where R

(i)
1 , R

(i)
2 ∈ {0, 1}n−λ, and h

(i)
out ∈ {0, 1}λ. For generating the ℓ block-cipher inputs we use

an (ℓ + 1) × 2 matrix U over GF(2n−λ) with ℓ + 1 pairwise independent rows; we call such a matrix
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Figure 5: Diagram showing the computation of Pencil[U, E]K((R1, R2)⊺, hout) (left); and
Sharpen[E](K1,K2,K3)((N1, N2)⊺) (right).

locally non-degenerate. The input prefix vector for the i-th query is denoted X̃(i) := (X̃(i)
0 , . . . , X̃

(i)
ℓ )⊺, and

computed as X̃(i) ← U ·R(i), i.e., 
X̃

(i)
0
...

X̃
(i)
ℓ

← U(ℓ+1)×2 ·
(

R
(i)
1

R
(i)
2

)
. (9)

The input vector for the i-th query, denoted X(i) := (X(i)
0 , . . . , X

(i)
ℓ )⊺, is then computed by appending the

output handle as a suffix to each block prefix: X
(i)
j ← X̃

(i)
j ∥⟨hout⟩λ for each j ∈ [0..ℓ].

The intermediate output vector for the i-th query is denoted Y(i) := (Y (i)
0 , . . . , Y

(i)
ℓ )⊺, and computed

as Y
(i)

j ← EK(X(i)
j ) for each j ∈ [0..ℓ]. The final output vector of the weak PRF for the i-th query is

denoted Z(i) := (Z(i)
1 , . . . , Z

(i)
ℓ )⊺, and computed as Z

(i)
j ← Y

(i)
0 ⊕ Y

(i)
j for each j ∈ [0..ℓ]. We denote the

entire construction (mapping R(i) to Z(i)) as Pencil[U, E] (implicitly keyed with K). Fig. 5 (left) depicts
the computation of Pencil[U, E] with key K on an input (R = (R1, R2)⊺, hout), while Fig. 1 (top left)
describes its algorithm.

3.3 Main Security Result

As the main security result for Pencil, we show the following.

Theorem 3. Suppose U is a locally non-degenerate (ℓ + 1) × 2 matrix over GF(2n−λ) with3 ℓ ≥ 3 and
n3ℓ2 + nℓ ≤ 2n/2. For any q-query wPRF-adversary A, we can find a PRP-adversary B making at most
q(ℓ + 1) queries to its oracle such that

AdvwPRF
Pencil[U,E](A) ≤ 2ℓ2q

2n−λ
+ nℓ2q

2n
+ AdvPRP

E (B), (10)

as long as (ℓ + 1)2q ≤ 2n−λ−1 and nℓ2q ≤ 2n−4.
3The bound is of the same order even for smaller ℓ, but the constant factors degrade slightly, by a factor of about 1.5 for

ℓ = 2 and about 2.5 for ℓ = 1.
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Proof. As a first step we consider the unkeyed hybrid construction Pencil[U, π∗], which replaces the keyed
block cipher EK with a uniform random permutation π∗ : {0, 1}n → {0, 1}n.4 We will show the following
bound in Appendix A.1.

Lemma 1. For any q-query wPRF-adversary A, we can find a q-query wPRF-adversary A′ and a q(ℓ+1)-
query PRP-adversary B such that

AdvwPRF
Pencil[U,E](A) ≤ AdvwPRF

Pencil[U,π∗](A′) + AdvPRP
E (B). (11)

In the rest of this section we will establish a bound on AdvwPRF
Pencil[U,π∗](A) for any q-query adversary A.

Specifically, we will prove the following lemma.

Lemma 2. Suppose U is a locally non-degenerate (ℓ+1)×2 matrix over GF(2n) with ℓ ≥ 3 and n3ℓ2+nℓ ≤
2n/2. For any q-query wPRF-adversary A with (ℓ + 1)2q ≤ 2n−λ−1 and nℓ2q ≤ 2n−4,

AdvwPRF
Pencil[U,π∗](A) ≤ 2ℓ2q

2n−λ
+ nℓ2q

2n
. (12)

Theorem 3 follows from Lemmas 1 and 2.

3.4 Ideal World Sampling (Proof of Lemma 2)

For proving Lemma 2, we need to bound the advantage of a q-query wPRF-adversary A against Pencil[U,

π∗]. In the real world, for each input (R(i), h
(i)
out), the vectors X̃(i), X(i), Y(i), and Z(i) are computed in

sequence as described in Sec. 3.2, except that π∗ is used in place of EK for computing Y(i) from X(i); the
final output vector sent to A is Z(i). At the end of the query phase, the q vectors Y(i) for i ∈ [1..q] are also
released to A (X(i), of course, can be computed by A, since U is public). In the ideal world, on receiving
a query (R(i), h

(i)
out), the oracle O0 computes and returns Z(i) ← F ∗(R(i), h

(i)
out); at the end of the query

phase O0 samples Y := (Y(1), . . . , Y(q)) as described below and returns it to A.
In order to sample Y, O0 first computes X̃ ← U · R, where X̃ := (X̃(1), . . . , X̃(q)) and R := (R(1),

. . . , R(q)), and sets X
(i)
j = X̃

(i)
j ∥⟨s⟩λ for each i ∈ [1..q], j ∈ [0..ℓ]. It looks at the set of distinct values

{X(i)
j | i ∈ [1..q], j ∈ [0..ℓ]}, which are relabelled as X1, . . . , Xr, where r denotes the number of distinct

values taken by X
(i)
j . Let h : [1..q] × [0..ℓ] → [1..r] denote the relabelling function, such that for each

i ∈ [1..q], j ∈ [0..ℓ], Xh(i,j) = X
(i)
j . Next, O0 constructs a mirror system of ℓq equations Φ on r variables

Y1, . . . , Yr as follows: for each i ∈ [1..q], j ∈ [1..ℓ], O0 adds to Φ the equation Yh(i,0)⊕Yh(i,j) = Z
(i)
j . Finally,

if Φ is not a consistent mirror system, O0 samples Y(i) ←$ {0, 1}(ℓ+1)n for each i ∈ [1..q]; otherwise, it
samples (Y1, . . . , Yr)⊺ ←$ Γ(Φ), and assigns Y

(i)
j = Yh(i,j) for each i ∈ [1..q], j ∈ [0..ℓ].

Partitioning the Transcripts. Next we classify the set T of all attainable transcripts into Tbad and
Tgood. Each transcript tr is represented as a tuple (R, hout, Z, Y), where hout := (h(1)

out, . . . , h
(q)
out); analo-

gously, for each oracle O, let the stochastic component of Trs (AO) be parsed as (Trs (AO; 1), Trs (AO; 2),
Trs (AO; 3)), to denote the randomised nonce vector, output vector, and intermediate output vector re-
spectively. Let Φtr be the system of equations associated with a transcript tr in the manner described above
(where Φ is completely determined by R, hout, and Z), and, when Φtr is a mirror system, let ξmax(tr) be

4To be precise, π∗ can be thought of as the family of all permutations over {0, 1}n, and the particular choice of permutation
can be thought of as a key. These nuances don’t affect the proof, and therefore with slight abuse of notation we continue to
call the hybrid construction Pencil[U, π∗].
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the size of the largest component in G(ϕtr); for a positive integer L we say Φtr is L-scattered if ξmax(tr) ≤ L.
We first define the following two sets:

Tbad,1 := {tr | Φtr is not a redundancy-free, nℓ-scattered mirror system},
Tbad,2 := {tr | Φtr is not a consistent mirror system}.

Then we define Tbad := Tbad,1 ∪ Tbad,2, and Tgood := T \ Tbad. We state below two lemmas, which we will
prove in Sec. 3.5 and Appendix A.2 respectively.

Lemma 3. For any q-query adversary A,

Pr
[
Trs (AO0) ∈ Tbad

]
≤ 2ℓ2q

2n−λ
+ nℓ2q

2n
, (13)

under the assumptions that ℓ ≥ 3 and (ℓ + 1)2q ≤ 2n−λ−1.

Lemma 4. For any q-query adversary A and for any tr ∈ Tgood,

Pr
[
Trs (AO1) = tr

]
Pr [Trs (AO0) = tr] ≥ 1. (14)

under the assumptions that n3ℓ2 + nℓ ≤ 2n/2, and nℓ2q ≤ 2n−4.

Lemma 2 follows from Theorem 1 and Lemmas 3 and 4, by choosing ϵ1 = 2ℓ2q/2n−λ + nℓ2q/2n and
ϵ2 = 0.

3.5 Bad Probability Calculations (Proof of Lemma 3)

In this subsection, we’ll denote Trs (AO0) as tr = (R, hout, Z, Y); of these, hout is fully under adversarial
control, and the rest we treat as random variables sampled in the ideal world as described earlier. First
we observe that whether or not tr ∈ Tbad,1 is determined entirely by (R, hout), so we begin by bounding
various kinds of degeneracy events on the sampling of R. Let U⊺

k∗ denote the k-th row of U for each
k ∈ [0..ℓ].

Bounding within-query collisions. Let E1 denote the event that for some i ∈ [1..q] and j < j′ ∈ [0..ℓ]
with j ̸= j′,

X
(i)
j′ = X

(i)
j . (15)

We will show the following bound on Pr[E1] in Appendix A.3.

Lemma 5.
Pr[E1] ≤ ℓ(ℓ + 1)q

2n−λ+1 . (16)

Bounding two-query cycles. Let E2 denote the event that for some i1, i2 ∈ [1..q] with i1 < i2, and
some j1, j′1, j2, j′2 ∈ [0..ℓ] with j1 < j′1, j2 < j′2,

(X(i2)
j2 , X

(i2)
j′

2
) = (X(i1)

j1 , X
(i1)
j′

1
). (17)

We will show the following bound on Pr[E2] in Appendix A.4.

Lemma 6.
Pr[E2] ≤ ℓ2(ℓ + 1)2q(q − 1)

22n−2λ+3 . (18)
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Bounding long paths. Let E3 denote the event that for some i1, . . . , in+1 ∈ [1..q] with i1 < · · · < in+1,
and some j1, . . . , jn, j′2, . . . , j′n+1 ∈ [0..ℓ],

(X(i2)
j′

2
, . . . , X

(in+1)
j′

n+1
) = (X(i1)

j1 , . . . , X
(in)
jn

). (19)

We will show the following bound on Pr[E3] in Appendix A.5.

Lemma 7. As long as (ℓ + 1)2q ≤ 2n−λ−1,

Pr[E3] ≤ q

2n
. (20)

Bounding multi-query cycles. For each k ∈ [3..n], let E4,k denote the event that for some i1, . . . ,
ik ∈ [1..q] with i1 < · · · < ik, and some j1, . . . , jk, j′1, . . . , j′k ∈ [0..ℓ],

(X(i2)
j′

2
, . . . , X

(ik)
j′

k
, X

(i1)
j′

1
) = (X(i1)

j1 , . . . , X
(ik−1)
jk−1

, X
(ik)
jk

). (21)

Let E4 denote the event E4,3 ∨ · · · ∨ E4,n. We will show the following bound on Pr[E4] in Appendix A.6.

Lemma 8. As long as (ℓ + 1)2q ≤ 2n−λ−1,

Pr[E4] ≤ (ℓ + 1)6q3

23n−3λ−1 . (22)

Getting a bound for Pr[Trs (AO0) ∈ Tbad,1]. Let Ebad,1 be the event Trs (AO0) ∈ Tbad,1. We observe
that

Ebad,1 ⊆ E1 ∨ E2 ∨ E3 ∨ E4. (23)

Thus, applying union-bound to Eqns. (16), (18), (20), and (22), we get

Pr[Ebad,1] ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4]

≤ ℓ(ℓ + 1)q
2n−λ+1 + ℓ2(ℓ + 1)2q(q − 1)

22n−2λ+3 + q

2n
+ (ℓ + 1)6q3

23n−3λ−1

≤ (ℓ + 1)2q

2n−λ

[1
2 + (ℓ + 1)2q

2n−λ+3 + 1
(ℓ + 1)22λ

+ (ℓ + 1)4q2

22n−2λ−1

]
≤ (ℓ + 1)2q

2n−λ

[1
2 + 1

16 + 1
(ℓ + 1)22λ

+ 1
2

]
≤ 9

8
(ℓ + 1)2q

2n−λ
≤ 2ℓ2q

2n−λ
, (24)

the last inequality following from the assumption that5 ℓ ≥ 3.

Bounding zero blocks. For the rest of this proof, we condition on ¬Ebad,1, so we will only consider tr
such that Φtr is redundancy-free and nℓ-scattered. As discussed in Sec. 2.5, we can assume without loss of
generality that each component of G(Φtr) = Φ[A, Z] is a star graph. Let E5 be the event that Zj = 0 for
some j ∈ [1..ℓq]. Then

Pr[E5 | ¬Ebad,1] ≤ ℓq

2n
. (25)

5For ℓ = 2, we can bound this by 3ℓ2q/2n−λ, and for ℓ = 1, by 5ℓ2q/2n−λ.
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Bounding output collisions. Let E6 be the event that Zp
i = Zp

j for some p ∈ [1..c] and i, j ∈ [1..ξp]
with i ̸= j. Then

Pr[E6 | ¬Ebad,1] ≤
c∑

p=1

(
ξp

2

)
1
2n
≤ ξmax

2n+1

c∑
p=1

ξp ≤
nℓ2q

2n+1 . (26)

Getting a bound for Pr[Trs (AO0) ∈ Tbad,2 | ¬Ebad,1]. Let Ebad,2 be the event Trs (AO0) ∈ Tbad,2. We
observe that

Ebad,2 ∧ ¬Ebad,1 ⊆ (E5 ∧ ¬Ebad,1) ∨ (E6 ∧ ¬Ebad,1).

Thus, applying union-bound to Eqns. (25) and (26), we get

Pr[Ebad,2 | ¬Ebad,1] ≤ Pr[E5 | ¬Ebad,1] + Pr[E6 | ¬Ebad,1]

≤ ℓq

2n
+ nℓ2q

2n+1 = nℓ2q

2n

(1
2 + 1

nℓ

)
≤ nℓ2q

2n
. (27)

Getting a bound for Pr[Trs (AO0) ∈ Tbad]. From the definitions of Ebad,1, Ebad,2, and Tbad, and from
Eqns. (24) and (27), we get

Pr
[
Trs (AO0) ∈ Tbad

]
= Pr[Ebad,1 ∨ Ebad,2]

= Pr[Ebad,1] + Pr[Ebad,2 | ¬Ebad,1]

≤ 2ℓ2q

2n−λ
+ nℓ2q

2n
, (28)

thus establishing Eqn. (13), and completing the proof of Lemma 3.

4 Building a strong PRF from Pencil
Here we describe how to build a strong PRF from Pencil, by adding a preprocessing layer to the input.
Specifically, we design a function Sharpen : {0, 1}3κ × {0, 1}2n → {0, 1}2n−2λ that uses a 3κ-bit key and
accepts a 2n-bit user chosen input, and outputs a ‘randomised’ (2n − 2λ)-bit IV that can be fed into
Pencil. We use it to build a PRF ♯Pencil : {0, 1}4κ×{0, 1}2n×{0, 1}λ → {0, 1}ℓn,6 which uses a 4κ-bit key
and transforms a 2n-bit input along with a λ-bit output handle to an ℓn-bit output chunk. The function
Sharpen with key K̃ := (K1, K2, K3) ∈ {0, 1}3κ is defined as

Sharpen[E]K̃(N1, N2) := (msbn−λ(EK2(N1 ⊕ EK1(N2))),
msbn−λ(EK3(N1 ⊕ 2 · EK1(N2)))) .

Fig. 5 (right) depicts the computation of Sharpen[E] with key (K1, K2, K3) on an input N = (N1, N2)⊺,
while Fig. 1 (top right) describes its algorithm. The PRF ♯Pencil is then defined as

♯Pencil[U, E]K̃,K4
(N1, N2, hout) := Pencil[U, E]K4(Sharpen[E]K̃(N1, N2)⊺, hout).

Fig. 1 (bottom) describes the algorithm of ♯Pencil[U, E] with key (K1, K2, K3, K4) on an input (N = (N1,
N2)⊺, hout).

6Pronounced ‘sharp pencil’.
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4.1 Security Result

As the main security result for ♯Pencil, we show the following.

Theorem 4. Suppose U is a locally non-degenerate (ℓ + 1) × 2 matrix over GF(2n−λ), with ℓ ≥ 3 and
n3ℓ2 + nℓ ≤ 2n/2.. For any q-query PRF-adversary A, we can find three PRP-adversaries B1,B2,B3 each
making at most q queries to its oracle and a PRP-adversary B4 making at most q(ℓ + 1) queries to its
oracle such that

AdvPRF
♯Pencil[U,E](A) ≤ 13ℓ2q

2n−λ
+ nℓ2q

2n
+

4∑
i=1

AdvPRP
E (Bi), (29)

as long as (ℓ + 1)2q ≤ 2n−λ−1 and nℓ2q ≤ 2n−4.

Proof. The structure of the proof follows closely that of Theorem 3. As a first step we consider the
unkeyed hybrid construction ♯Pencil[U, π̃∗ := (π∗1, π∗2, π∗3, π∗4)], which replaces EKi with a uniform random
permutation π∗i : {0, 1}n → {0, 1}n for each i ∈ [1..4].7 We will show the following bound in Appendix B.1.

Lemma 9. For any q-query PRF-adversary A, we can find a q-query PRF-adversary A′, three q-query
PRP-adversaries B1,B2,B3, and a q(ℓ + 1)-query PRP-adversary B4 such that

AdvPRF
♯Pencil[U,E](A) ≤ AdvPRF

♯Pencil[U,π̃∗](A′) +
4∑

i=1
AdvPRP

E (Bi). (30)

In the rest of this section we will establish a bound on AdvwPRF
♯Pencil[U,π̃∗](A) for any q-query adversary

A. Specifically, we will prove the following lemma.

Lemma 10. Suppose U is a locally non-degenerate (ℓ + 1) × 2 matrix over GF(2n), with ℓ ≥ 3 and
n3ℓ2 + nℓ ≤ 2n/2. For any q-query PRF-adversary A,

AdvPRF
♯Pencil[U,π̃∗](A) ≤ 13ℓ2q

2n−λ
+ nℓ2q

2n
, (31)

as long as (ℓ + 1)2q ≤ 2n−λ−1 and nℓ2q ≤ 2n−4.

Theorem 4 follows from Lemmas 9 and 10.

4.2 Proof of Lemma 10

For proving Lemma 10, we need to bound the advantage of a q-query PRF-adversary A against ♯Pencil[U,
π̃∗]. As in the proof of Lemma 2, we first describe how all the intermediate and final outputs are com-
puted in the two worlds. In the real world, for each input (N(i), h

(i)
out), J (i), W(i), and R(i) are first

computed by running Sharpen[(π∗1, π∗2, π∗3)]—which replaces the calls to EK1 , EK2 , and EK3 with calls
to π∗1, π∗2, π∗3 respectively—as follows: J (i) ← π∗1(N (i)

2 ), W(i) := (W (i)
1 , W

(i)
2 )⊺ ← ( 1 1

1 2 ) · (N (i)
1 , J (i))⊺,

R
(i)
1 ← msbn−λ(π∗2(W (i)

1 )), R
(i)
2 ← msbn−λ(π∗3(W (i)

2 )). The vectors X̃(i), X(i), Y(i), and Z(i) are then
computed in sequence using Pencil[U, π∗4]; the final output vector sent to A is Z(i). At the end of the
query phase, J := (J (1), . . . , J (q)), R := (R(1), . . . , R(q)), and Y := (Y(1), . . . , Y(q)) are also released to A;
W := (W(1), . . . , W(q)) and X := (X(1), . . . , X(q)) can be computed by A.

In the ideal world, on receiving a query (N(i), h
(i)
out), the oracle O0 computes and returns Z(i) ← F ∗(N(i),

h
(i)
out); at the end of the query phase O0 computes J and R exactly as in the real world, by running

Sharpen[(π∗1, π∗2, π∗3)]; it then samples Y as described in Sec. 3.4, and returns J, R, and Y to A.
7Again, with slight abuse of notation, we continue to call the hybrid construction ♯Pencil[U, π∗].
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Partitioning the Transcripts. Each transcript tr is represented as a tuple (N, hout; Z; J, R, Y), where
hout := (h(1)

out, . . . , h
(q)
out). We will classify the set T of all attainable transcripts into Tbad and Tgood. For

each oracle O, let the stochastic component of Trs (AO) be parsed as (Trs (AO; 1), Trs (AO; 2), Trs (AO; 3)),
to denote the preprocessed input vector, final output vector, and intermediate output vector respectively.
Let Φtr be the system of equations associated with a transcript tr in the manner described above (where
Φ is completely determined by R, hout, and Z), and, when Φtr is a mirror system, let ξmax(tr) be the size
of the largest component in G(ϕtr). We recall that for a positive integer L we say Φtr is L-scattered if
ξmax(tr) ≤ L. We first define the following two sets:

Tbad,1 := {tr | Φtr is not a redundancy-free, nℓ-scattered mirror system},
Tbad,2 := {tr | Φtr is not a consistent mirror system}.

Then we define Tbad := Tbad,1 ∪ Tbad,2, and Tgood := T \ Tbad. We state below two lemmas, which we will
prove in Sec. 4.3 and Appendix B.2 respectively.
Lemma 11. For any q-query adversary A,

Pr
[
Trs (AO0) ∈ Tbad

]
≤ 13ℓ2q

2n−λ
+ nℓ2q

2n
, (32)

under the assumptions that ℓ ≥ 3 and (ℓ + 1)2q ≤ 2n−λ−1.

Lemma 12. For any q-query adversary A and for any tr ∈ Tgood,

Pr
[
Trs (AO1) = tr

]
Pr [Trs (AO0) = tr] ≥ 1. (33)

under the assumptions that n3ℓ2 + nℓ ≤ 2n/2, and nℓ2q ≤ 2n−4.

Lemma 10 follows from Theorem 1 and Lemmas 11 and 12, by choosing ϵ1 = 13ℓ2q/2n−λ + nℓ2q/2n

and ϵ2 = 0.

4.3 Proof of Lemma 11

In this subsection, we’ll denote Trs (AO0) as tr = (N, hout; Z; J, R, Y); of these, N and hout are under
adversarial control, and the rest we treat as random variables sampled in the ideal world as described
earlier. First we observe that whether or not tr ∈ Tbad,1 is determined entirely by (R, hout). So we begin
by bounding various kinds of degeneracy events on the sampling of R. Let U⊺

k∗ denote the k-th row of U
for each k ∈ [0..ℓ], and let Uks denote the s-th symbol of U⊺

k∗ for s ∈ {1, 2}.

Bounding Arms and Elbows. For distinct i1, i2 ∈ [1..q], the pair (i1, i2) is called an arm if either
W

(i1)
1 = W

(i2)
1 or W

(i1)
2 = W

(i2)
2 . Let Sar denote the set of all arms. Let Ear denote the event that |Sar| > q.

We will show the following bound on Pr[Ear] in Appendix B.3.
Lemma 13.

Pr[Ear] ≤
2q

2n
. (34)

For distinct i1, i2, i3 ∈ [1..q], the triple (i1, i2, i3) is called an elbow if W
(i1)
1 = W

(i2)
1 and W

(i2)
2 = W

(i3)
2 .

Let Sel denote the set of all elbows. Let Eel denote the event that |Sel| > q. We will show the following
bound on Pr[Eel] in Appendix B.4.
Lemma 14.

Pr[Eel] ≤
q

2n
+ q2

22n
. (35)
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Bounding Stale Nodes on Chains. For some k ≥ 2 and distinct i1, . . . , ik ∈ [1..q], we call ζ := (i1,
. . . , ik) a k-chain if for some j1, . . . , jk−1, j′2, . . . , j′k ∈ [0..ℓ],

(X(i2)
j′

2
, . . . , X

(ik)
j′

k
) = (X(i1)

j1 , . . . , X
(ik−1)
jk−1

). (36)

Each query index id for d ∈ [1..k] in a k-chain ζ is called a node of ζ. A node id for d ≥ 2 is called fresh if
either W

(id)
1 /∈ {W (ia)

1 | 1 ≤ a < d} or W
(id)
2 /∈ {W (ia)

2 | 1 ≤ a < d} (or both), and stale otherwise.
Let Ech,k denote the event that there exists a k-chain ζ = (i1, . . . , ik) such that id is stale for some

d ∈ [2..k]. Let Ech denote the event Ech,3 ∨ · · · ∨ Ech,n+1. We will show the following bound on Pr[Ech] in
Appendix B.5.

Lemma 15. As long as (ℓ + 1)2q ≤ 2n−λ−1,

Pr[Ech] ≤ q

2n
+ q2

22n
+ (ℓ + 1)2q

2n−λ−1 . (37)

Bounding within-query collisions. Let E†1 denote the event that for some i ∈ [1..q] and j < j′ ∈ [0..ℓ]
with j ̸= j′,

X
(i)
j′ = X

(i)
j . (38)

We will show the following bound on Pr[E†1 ] in Appendix B.6.

Lemma 16.
Pr[E†1 ] ≤ ℓ(ℓ + 1)q

2n−λ+1 . (39)

Bounding two-query cycles. Let E†2 denote the event that for some i1, i2 ∈ [1..q] with i1 < i2, and
some j1, j′1, j2, j′2 ∈ [0..ℓ] with j1 < j′1, j2 < j′2,

(X(i2)
j2 , X

(i2)
j′

2
) = (X(i1)

j1 , X
(i1)
j′

1
). (40)

We will show the following bound on Pr[E†2 | ¬Ear] in Appendix B.7.

Lemma 17.
Pr[E†2 | ¬Ear] ≤

ℓ(ℓ + 1)q
2n−λ

+ ℓ2(ℓ + 1)2q2

22n−2λ+4 . (41)

Bounding long paths. Let E†3 denote the event that for some i1, . . . , in+1 ∈ [1..q] with i1 < · · · < in+1,
and some j1, . . . , jn, j′2, . . . , j′n+1 ∈ [0..ℓ],

(X(i2)
j′

2
, . . . , X

(in+1)
j′

n+1
) = (X(i1)

j1 , . . . , X
(in)
jn

). (42)

We will show the following bound on Pr[E†3 | ¬Ech] in Appendix B.8.

Lemma 18. As long as (ℓ + 1)2q ≤ 2n−λ−1,

Pr[E†3 | ¬Ech] ≤ q

2n
. (43)
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Bounding multi-query cycles. For each k ∈ [3..n], let E†4,k denote the event that for some i1, . . . ,
ik ∈ [1..q] with i1 < · · · < ik, and some j1, . . . , jk, j′1, . . . , j′k ∈ [0..ℓ],

(X(i2)
j′

2
, . . . , X

(ik)
j′

k
, X

(i1)
j′

1
) = (X(i1)

j1 , . . . , X
(ik−1)
jk−1

, X
(ik)
jk

). (44)

Let E†4 denote the event E†4,3 ∨ · · · ∨ E
†
4,n. We will show the following bound on Pr[E†4 | ¬Ech,¬Ear] in

Appendix B.9.

Lemma 19. As long as (ℓ + 1)2q ≤ 2n−λ−1,

Pr[E†4 | ¬Ech,¬Ear] ≤
6(ℓ + 1)4q2

22n−2λ
. (45)

Getting a bound for Pr[Trs (AO0) ∈ Tbad,1]. Let E†bad,1 be the event Trs (AO0) ∈ Tbad,1. We observe
that Trs (AO0) cannot have redundancy except by triggering E†1 , E†2 , or E†4 , and cannot be nℓ-scattered
except by triggering E†3 . Thus,

E†bad,1 ⊆ E
†
1 ∨ E

†
2 ∨ E

†
3 ∨ E

†
4 . (46)

Define Eaux := Ear ∨ Ech. Then we can write

Pr[E†bad,1] = Pr[E†bad,1 ∧ Eaux] + Pr[E†bad,1 ∧ ¬Eaux]

≤ Pr[Eaux] +
4∑

i=1
Pr[E†i ∧ ¬Eaux]

≤ Pr[Ear] + Pr[Ech] + Pr[E†1 ] + Pr[E†2 ∧ ¬Ear]
+ Pr[E†3 ∧ ¬Ech] + Pr[E†4 ∧ ¬Eaux]

≤ Pr[Ear] + Pr[Ech] + Pr[E†1 ] + Pr[E†2 | ¬Ear]
+ Pr[E†3 | ¬Ech] + Pr[E†4 | ¬Ear,¬Ech]. (47)

Substituting the bounds from Eqns. (34), (37), (39), (41), (43), and (45) (Lemmas 13, 15, 16, 17, 18, and
19) in Eqn. (47) gives

Pr[E†bad,1] ≤ 2q

2n
+ q

2n
+ q2

22n
+ (ℓ + 1)2q

2n−λ−1 + ℓ(ℓ + 1)q
2n−λ+1

+ ℓ(ℓ + 1)q
2n−λ

+ ℓ2(ℓ + 1)2q2

22n−2λ+4 + q

2n
+ 6(ℓ + 1)4q2

22n−2λ

≤ 7(ℓ + 1)2q

2n−λ+1 + 7(ℓ + 1)4q2

22n−2λ
≤ 7(ℓ + 1)2q

2n−λ
≤ 13ℓ2q

2n−λ
, (48)

using the assumption ℓ ≥ 3 for the last inequality and the assumption (ℓ + 1)2q ≤ 2n−λ−1 for the one
before.

Bounding zero blocks. For the rest of this proof, we condition on ¬E†bad,1, so we will only consider tr
such that Φtr is redundancy-free and nℓ-scattered. As discussed in Sec. 2.5, we can assume without loss of
generality that each component of G(Φtr) = Φ[A, Z] is a star graph. Let E†5 be the event that Zj = 0 for
some j ∈ [1..ℓq]. Then

Pr[E†5 | ¬E
†
bad,1] ≤ ℓq

2n
. (49)
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CAU[E,H].Enc(EK, Ñ , AD, M )
1 : IV ← ⟨Ñ⟩r∥0n−r−11
2 : LM ← |M |B
3 : µ← ⌈LM /16⌉
4 : for j = 1 to µ do
5 : Zi ← E(EK, IV + i)
6 : Z ← msb8LM (Z1∥ . . . ∥Zµ)
7 : C ← M ⊕ Z

8 : LAD ← |AD|B
9 : data← AD∥C∥⟨LAD⟩64∥⟨LM ⟩64

10 : HK← E(EK, 0n)
11 : T ← H(HK, data)⊕ E(EK, IV )
12 : return (C , T)

CAU[E,H].Dec(EK, Ñ , AD, C , T )
1 : IV ← ⟨Ñ⟩r∥0n−r−11
2 : LAD ← |AD|B
3 : LM ← |C |B
4 : data← AD∥C∥⟨LAD⟩64∥⟨LM ⟩64

5 : HK← E(EK, 0n)
6 : T ′ ← H(HK, data)⊕ E(EK, IV )
7 : if T ′ ̸= T
8 : return ⊥
9 : µ← ⌈LM /16⌉

10 : for j = 1 to µ do
11 : Zi ← E(EK, IV + i)
12 : Z ← msb8LM (Z1∥ . . . ∥Zµ)
13 : M ← C ⊕ Z

14 : return M

Figure 6: Algorithm of CAU[E,H].

Bounding output collisions. Let E†6 be the event that Zp
i = Zp

j for some p ∈ [1..c] and i, j ∈ [1..ξp]
with i ̸= j. Then

Pr[E†6 | ¬E
†
bad,1] ≤

c∑
p=1

(
ξp

2

)
1
2n
≤ ξmax

2n+1

c∑
p=1

ξp ≤
nℓ2q

2n+1 . (50)

Getting a bound for Pr[Trs (AO0) ∈ Tbad,2 | ¬E†bad,1]. Let E†bad,2 be the event Trs (AO0) ∈ Tbad,2. We
observe that

E†bad,2 ∧ ¬E
†
bad,1 ⊆ (E†5 ∧ ¬E

†
bad,1) ∨ (E†6 ∧ ¬E

†
bad,1).

Thus, applying union-bound to Eqns. (49) and (50), we get

Pr[E†bad,2 | ¬E
†
bad,1] ≤ Pr[E†5 | ¬E

†
bad,1] + Pr[E†6 | ¬E

†
bad,1] ≤ ℓq

2n
+ nℓ2q

2n+1 . (51)

Getting a bound for Pr[Trs (AO0) ∈ Tbad]. From the definitions of E†bad,1, E†bad,2, and Tbad, and from
Eqns. (48) and (51), we get

Pr
[
Trs (AO0) ∈ Tbad

]
= Pr[E†bad,1 ∨ E

†
bad,2]

= Pr[E†bad,1] + Pr[E†bad,2 | ¬E
†
bad,1]

≤ 13ℓ2q

2n−λ
+ ℓq

2n
+ nℓ2q

2n+1 ≤
13ℓ2q

2n−λ
+ nℓ2q

2n
, (52)

thus establishing Eqn. (32), and completing the proof of Lemma 11.

5 Pencil-based Key Derivation for GCM

In this section, we present an alternative to DNDK-GCM [Gue24a, Gue24b]. The idea of using a key-
derivation function to derive the key of an AEAD from the input nonce and key has been used earlier

22



Pencil-DK-CAU[U, E,H].Enc(rK, N, AD, M )
1 : (EK, Ñ)← msbκ+r(♯Pencil[U, E](rK, N, 0λ))
2 : return CAU[E,H].Enc(EK, Ñ , AD, M )

Pencil-DK-CAU[U, E,H].Dec(rK, N, AD, C , T )
1 : (EK, Ñ)← msbκ+r(♯Pencil[U, E](rK, N, 0λ))
2 : return CAU[E,H].Dec(EK, Ñ , AD, C , T)

Figure 7: Algorithm of Pencil-DK-CAU[U, E,H].

in designs like AES-GCM-SIV [GL17]. In DNDK-GCM the key-derivation function is DNDK, which derives
the AES-GCM key from a 24-byte nonce and then proceeds to execute AES-GCM with the derived key
and a fixed nonce 096. Our proposed new mode Pencil-DK-CAU (defined as a modification of CAU, the
generalisation of AES-GCM) accepts a larger nonce like DNDK-GCM, with the added advantage that the
nonce does not have to be randomly sampled.

5.1 The CAU mode

We first recall the AEAD mode CAU, which is a generalisation of GCM. Let E : {0, 1}κ×{0, 1}n → {0, 1}n
be a block cipher with a κ-bit key and an n-bit output, and let H : {0, 1}n × {0, 1}∗ → {0, 1}n be an
c-AXU hash function with an n-bit hash key and an n-bit output. CAU uses a single κ-bit key EK, and
generates the n-bit hash key as HK ← E(EK, 0n). It accepts an r-bit nonce Ñ for some r < n, and sets
the n-bit IV as IV ← ⟨Ñ⟩r∥0n−r−11.

Encryption of an LM -byte message M is done in counter mode, with the i-th block of the keystream
being generated as E(EK, IV +i), and the final keystream block being truncated if needed to bring the total
number of keystream bytes to LM . The authentication tag is generated from the LAD-byte associated data
AD and LM -byte ciphertext as T ← H(HK, AD∥C∥⟨LAD⟩64∥⟨LM ⟩64)⊕E(K, IV ), and truncated down to
the desired length.

Fig. 6 gives a formal description of the encryption and decryption algorithms of CAU. Note that
AES-GCM is an instantiation of CAU, with E = AES, H = GHASH, n = 128, r = 96, and κ = 128 or 256.
In particular, this means that the construction we propose next is also applicable to AES-GCM.

Hoang et al. [HTT18] showed the following multi-user security bound for CAU in the ideal cipher model.

Theorem 5 ([HTT18], Theorem 3.1). For an adversary A playing an mu-AEAD game against CAU[E,H],
making p ≤ 2n−2 ideal cipher queries to E and q total construction queries with the total number of queried
blocks not exceeding σ and the number of queried blocks for each user not exceeding B, and subject to the
restriction that each nonce is repeated by at most d users, the advantage of A satisfies the bound

Advmu-AEAD
CAU[E,H](A) ≤ d(p + q) + n(p + q + σ)

2κ
+ σ(2B + cn + 3)

2n

+ 2q + 1
22n

+ σ(σ + cnd) + 2pq

2κ+n
. (53)

5.2 The new key-derivation proposal using ♯Pencil
In our proposed mode Pencil-DK-CAU, instead of using a fixed 0r as the nonce for CAU, a random r-bit
nonce Ñ is derived from the root key rK and the input nonce N in addition to the encryption key. This
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modification has the effect of reducing the number of users who repeat the same nonce (the quantity d in
Theorem 5).

Pencil-DK-CAU[U, E,H] works as follows: it uses a 4κ-bit root key rK := (K1, . . . , K4) (where κ is the
key-length of E and hence of CAU[E,H]), and accepts a 2n-bit nonce N; for each fresh nonce N, it makes
one call to ♯Pencil[U, E] with N and the output handle set to 0λ, and truncates the nℓ-bit output to κ + r
bits (assuming κ + r ≤ nℓ). This output is parsed as (EK, Ñ), which become respectively the encryption
key and nonce in the ensuing call to the appropriate interface of CAU[E,H], with the rest of the inputs
to Pencil-DK-CAU passed on untouched. Fig. 7 gives a concise formal definition of the encryption and
decryption functions of Pencil-DK-CAU.

We show the following result for Pencil-DK-CAU[U, E,H].

Theorem 6. For an AEAD adversary A playing against Pencil-DK-CAU[U, E,H], making p ≤ 2n−2 ideal
cipher queries to E and q ≤ 2r−1 total construction queries with the total number of queried blocks not
exceeding σ and the number of queried blocks for each nonce not exceeding B, we can find—one, an
mu-AEAD adversary A′ playing against CAU[E,H], making p ideal cipher queries to E and q total con-
struction queries with the total number of queried blocks not exceeding σ and the number of queried blocks
for each user not exceeding B, and subject to the restriction that each nonce is repeated by at most n
users; and two, a PRF adversary playing against ♯Pencil[U, E], making p ideal cipher queries to E and q
construction queries;—such that the advantage of A satisfies the bound

AdvAEAD
Pencil-DK-CAU[U,E,H](A) ≤ Advmu-AEAD

CAU[E,H](A′)

+ AdvPRF
♯Pencil[U,E](B) + 4(p + q)

2κ
+ q

2n
. (54)

The following Corollary to Theorem 6 immediately follows from the bounds in Theorems 4 and 5.

Corollary 1. For an AEAD adversary A playing against Pencil-DK-CAU[U, E,H], making p ≤ 2n−2 ideal
cipher queries to E and q ≤ 2r−1 total construction queries with the total number of queried blocks not
exceeding σ and the number of queried blocks for each nonce not exceeding B, we can find three PRP-
adversaries B1,B2,B3 each making at most q queries to its oracle and a PRP-adversary B4 making at most
q(ℓ + 1) queries to its oracle such that

AdvAEAD
Pencil-DK-CAU[U,E,H](A) ≤ 13ℓ2q

2n−λ
+ nℓ2q

2n
+

4∑
i=1

AdvPRP
E (Bi)

+ 4(p + q)
2κ

+ q

2n
+ n(p + q) + n(p + q + σ)

2κ

+ σ(2B + cn + 3)
2n

+ 2q + 1
22n

+ σ(σ + cn2) + 2pq

2κ+n
. (55)

Proof (of Theorem 6). We prove the claimed bound with a sequence of game hops. In game G0, A plays
against Pencil-DK-CAU[U, E,H], which is the real world in the AEAD game.

In game G1, the construction queries of A are answered by Pencil-DK-CAU[U, E′/E,H], where two
independent ideal ciphers E′ and E are used in the ♯Pencil portion and the CAU portion respectively (see
Fig. 8), while the ideal cipher queries continue to be answered by E. This game is identical to the game
against Pencil-DK-CAU[U, E,H] unless one of the p ideal cipher query keys or q encryption keys passed to
CAU collide with one of the four keys in ♯Pencil’s root key. Since this involves a collision between at most
p + q keys on one side and 4 keys on the other, we have∣∣∣Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]

∣∣∣ ≤ 4(p + q)
2κ

. (56)
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Pencil-DK-CAU[U, E′/E,H].Enc(rK, N, AD, M )
1 : (EK, Ñ)← msbκ+r(♯Pencil[U, E′](rK, N, 0λ))
2 : return CAU[E,H].Enc(EK, Ñ , AD, M )

Pencil-DK-CAU[U, E′/E,H].Dec(rK, N, AD, C , T )
1 : (EK, Ñ)← msbκ+r(♯Pencil[U, E′](rK, N, 0λ))
2 : return CAU[E,H].Dec(EK, Ñ , AD, C , T)

Figure 8: The hybrid Pencil-DK-CAU[U, E′/E,H] game.

In game G2, the ♯Pencil layer is dropped, and instead, for each unique nonce R, an ℓ-block random
string is directly sampled as Z ←$ {0, 1}ℓn. CAU is called with (EK, Ñ) ← msbκ+r(Z). Consider a PRF
adversary B against ♯Pencil[U, E′], which simulates A, defined as follows: on receiving an encryption
query (N, AD, M ) from A, B queries its own oracle with (N, 0λ), and receives a response Z; it then sets
(EK, Ñ)← msbκ+r(Z), and returns CAU[E,H].Enc(EK, Ñ , AD, M ) to A; on receiving an decryption query
(N, AD, C , T ) from A, B again queries its own oracle with (N, 0λ), and receives a response Z; it then sets
(EK, Ñ)← msbκ+r(Z), and returns CAU[E,H].Dec(EK, Ñ , AD, C , T ) to A. Then we have∣∣∣Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]

∣∣∣ ≤ AdvPRF
♯Pencil[U,E′](B). (57)

In game G3, (EK, Ñ) is directly sampled as (EK, Ñ)←$ {0, 1}κ+r, instead of first sampling a full chunk
Z. Since the distribution of (EK, Ñ) is identical here to that in G2, we have∣∣∣Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]

∣∣∣ = 0. (58)

In game G4, the CAU layer is dropped; the encryption queries are answered uniform random strings of
the requested length, and decryption queries are always answered with ⊥. Consider an mu-AEAD adversary
A′′ against CAU[E,H]. A′′ simulates A, and associates a unique user number i(N) with each unique nonce
N queried by A (e.g., by storing the nonces in a table and assigning the corresponding row number to i).
Further, for each user number i, A′′ samples a uniform random r-bit nonce Ñi ←$ {0, 1}r. On receiving
an encryption query (N, AD, M ) from A, A′′ queries its own encryption oracle with (i(N), Ñi(N), AD, M ),
and passes on the response to A; on receiving a decryption query (N, AD, C , T ) from A, A queries its own
decryption oracle with (i(N), Ñi(N), AD, C , T ), and passes on the response to A. It is clear that as long
as A’s encryption queries are nonce-respecting, A′′’s encryption queries are also nonce-respecting. At the
end of the game, A′′ copies the final output bit of A. Then we have∣∣∣Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]

∣∣∣ ≤ Advmu-AEAD
CAU[E,H](A′′). (59)

Next consider an adversary A′ which behaves identically to the adversary A′′, except after sampling
each Ñi, it counts the number ν(Ñi) of previous users i′ with Ñi′ = Ñi; if ν(Ñi) ≤ n, it sets Ñi to the
lexicographically smallest Ñ ∈ {0, 1}r such that ν(Ñ) ≤ n, and continues as A′′ does. Let E be the event
that there is an (n + 1)-multicollision on the r-bit nonces. As long as q ≤ 2r−1, we have

Pr[E ] ≤
(

q

n + 1

)( 1
2r

)n

≤ q

(
q

2r

)n

≤ q

2n
. (60)

We observe that A′ and A′′ are identical unless E happens. Thus, from Eqn. (60), we have

Advmu-AEAD
CAU[E,H](A′′) ≤ Advmu-AEAD

CAU[E,H](A′) + q

2n
. (61)
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Plugging Eqn. (61) in Eqn. (59) yields∣∣∣Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]
∣∣∣ ≤ Advmu-AEAD

CAU[E,H](A′) + q

2n
. (62)

The game G4 is identical to the ideal world of the AEAD game. Thus, we have

AdvAEAD
Pencil-DK-CAU[U,E,H](A) =

∣∣∣Pr[AG0 ⇒ 1]− Pr[AG4 ⇒ 1]
∣∣∣

≤
∣∣∣Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]

∣∣∣
+
∣∣∣Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]

∣∣∣
+
∣∣∣Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]

∣∣∣
+
∣∣∣Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]

∣∣∣. (63)

Plugging in the bounds from Eqns. (56), (57), (58), and (62) in Eqn. (63) completes the proof.
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[CDN+23] Benôıt Cogliati, Avijit Dutta, Mridul Nandi, Jacques Patarin, and Abishanka Saha. Proof of
mirror theory for a wide range of ξmax. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part IV, volume 14007 of LNCS, pages 470–501. Springer, Cham, April 2023.
(Cited on pp. 10 and 11.)

[CLL19] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of truncated random
permutations. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 175–195. Springer, Cham, December 2019. (Cited on p. 3.)

[CLL24] Wonseok Choi, Jooyoung Lee, and Yeongmin Lee. Toward full n-bit security and nonce misuse
resistance of block cipher-based macs. In Kai-Min Chung and Yu Sasaki, editors, Advances in
Cryptology - ASIACRYPT 2024 - 30th International Conference on the Theory and Application
of Cryptology and Information Security, Kolkata, India, December 9-13, 2024, Proceedings,
Part IX, volume 15492 of Lecture Notes in Computer Science, pages 251–279. Springer, 2024.
(Cited on p. 10.)

27



[CLLL21] Wonseok Choi, ByeongHak Lee, Jooyoung Lee, and Yeongmin Lee. Toward a fully secure
authenticated encryption scheme from a pseudorandom permutation. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 407–434.
Springer, Cham, December 2021. (Cited on p. 5.)

[CLP15] Benoit Cogliati, Rodolphe Lampe, and Jacques Patarin. The indistinguishability of the XOR
of k permutations. In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540
of LNCS, pages 285–302. Springer, Berlin, Heidelberg, March 2015. (Cited on p. 10.)

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 327–350. Springer, Berlin, Heidelberg, May 2014. (Cited on p. 9.)
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Appendix

A Deferred Proofs of Lemmas from Sec. 3

A.1 Proof of Lemma 1

The adversary A′ simulates A, and simply passes the queries of A to its own oracle and passes the oracles
responses back to A, and eventually replicates the output bit of A.

The adversary B also simulates A. It first initialises an empty table In. On receiving a query (h(i)
in , h

(i)
out)

from A, B checks whether h
(i)
in ∈ In; if yes, it sets R(i) ← In[h(i)

in ]; otherwise, it samples R(i) ←$ GF(22n−2λ),
and sets In[h(i)

in ] ← R(i). Next, B computes X̃(i) ← U ·R(i), and sends the (ℓ + 1) queries X̃
(i)
0 ∥⟨h

(i)
out⟩λ,

. . . , X̃
(i)
ℓ ∥⟨h

(i)
out⟩λ to its own oracle, to receive the respective responses Y

(i)
0 , . . . , Y

(i)
ℓ ; then it computes

Z
(i)
j ← Y

(i)
0 ⊕ Y

(i)
j for each j ∈ [0..ℓ] and returns (R(i), Z(i)) to A; at the end of the game B also replicates

the output bit of A.
It is easy to verify that A′ makes q queries and B makes (ℓ + 1)q queries, so it remains to show the

bound in Eqn. (11). Let F ∗ : {0, 1}2n−λ → {0, 1}ℓn be a uniform random function. Then from Eqn. (1)
we have

AdvwPRF
Pencil[U,E](A) =

∣∣∣Pr[APencil[U,E] ⇒ 1]− Pr[AF ∗ ⇒ 1]
∣∣∣

=
∣∣∣Pr[APencil[U,π∗] ⇒ 1]− Pr[AF ∗ ⇒ 1]

+ Pr[APencil[U,E] ⇒ 1]− Pr[APencil[U,π∗] ⇒ 1]
∣∣∣

=
∣∣∣Pr[A′Pencil[U,π∗] ⇒ 1]− Pr[A′F ∗ ⇒ 1]

+ Pr[BE ⇒ 1]− Pr[Bπ∗ ⇒ 1]
∣∣∣

≤
∣∣∣Pr[A′Pencil[U,π∗] ⇒ 1]− Pr[A′F ∗ ⇒ 1]

∣∣∣
+
∣∣∣Pr[BE ⇒ 1]− Pr[Bπ∗ ⇒ 1]

∣∣∣
= AdvwPRF

Pencil[U,π∗](A′) + AdvPRP
E (B),

which establishes Eqn. (11), thus completing the proof.

A.2 Proof of Lemma 4

Fix a tr = (R, Z, Y) ∈ Tgood. By definition of Tbad, we know that Φtr := Φ[Ar×ℓq, Z] is a consistent mirror
system and ξmax(tr) ≤ nℓ. First we observe that since the random nonce generation step doesn’t depend
on the oracle, we have

Pr
[
Trs (AO1 ; 1) = R

]
= Pr

[
Trs (AO0 ; 1) = R

]
= 1

22(n−λ)q . (64)

For the rest of the transcript, we examine the real world and the ideal world separately. Since A has r

rows, there must be r distinct values of X
(i)
j in X. Since the corresponding outputs are sampled uniformly

without replacement by π∗ in the real world, we have

Pr
[
Trs (AO1 ; 3) = Y | Trs (AO1 ; 1) = R

]
= 1

(2n)r
. (65)
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Finally, in the real world, Z is determined from Y, we have

Pr
[
Trs (AO1 ; 2) = Z | Trs (AO1 ; 1) = R, Trs (AO1 ; 3) = Y

]
= 1. (66)

From Eqns. (64), (65), and (66) we have

Pr
[
Trs (AO1) = tr

]
= 1

22(n−λ)q(2n)r
. (67)

Next we turn our attention to the ideal world. Here, (AO0 ; 2) is sampled first, and independently of
(AO0 ; 1), so we have

Pr
[
Trs (AO0 ; 2) = Y | Trs (AO0 ; 1) = R

]
= 1

2nℓq
. (68)

In the final step, sampling (AO0 ; 3) is equivalent to a uniform sampling from Γ(Φtr), so we have

Pr
[
Trs (AO0 ; 3) = Y | Trs (AO0 ; 1) = R, Trs (AO0 ; 2) = Y

]
= 1
|Γ(Φtr)|

. (69)

From Eqns. (64), (68), and (69) we have

Pr
[
Trs (AO0) = tr

]
= 1

22(n−λ)q+nℓq|Γ(Φtr)|
. (70)

To complete the proof, we need to find an appropriate bound for the ratio of Pr[Trs (AO1) = tr] and
Pr[Trs (AO0) = tr]. From Eqns. (67) and (70) we have

Pr
[
Trs (AO1) = tr

]
Pr [Trs (AO0) = tr] = 2nℓq|Γ(Φtr)|

(2n)r
. (71)

As the final step in the proof, we want to bound |Γ(Φtr)| by applying Theorem 2. We already know that
Φtr is a consistent mirror system, so we just need to verify the conditions on ξmax(tr). Using the bound
ξmax(tr) ≤ nℓ and the assumptions n3ℓ2 + nℓ ≤ 2n/2 and nℓ2q ≤ 2n−4, we have

nξmax(tr)2 + ξmax(tr) ≤ n3ℓ2 + nℓ ≤ 2n/2, (72)

and
12ℓqξmax(tr) ≤ 12nℓ2q ≤ 2n. (73)

Thus, all the conditions for Theorem 2 are satisfied, and applying this theorem gives

|Γ(Φtr)| ≥
(2n)r

2nℓq
. (74)

Substituting Eqn. (74) in Eqn. (71) completes the proof of Lemma 4.

A.3 Proof of Lemma 5

Eqn. (15) is equivalent to X̃
(i)
j′ = X̃

(i)
j , which we can rewrite as

U⊺
j′∗ ·R

(i) = U⊺
j∗ ·R

(i), or (U⊺
j′∗ ⊕U⊺

j∗) ·R(i) = 0.

Since U is locally non-degenerate, its rows are pairwise independent, which means in particular that
U⊺

j′∗ ⊕U⊺
j∗ ̸= 0. Thus, (U⊺

j′∗ ⊕U⊺
j∗) ·R(i) is distributed uniformly over GF(2n−λ), so that

Pr
[
(U⊺

j′∗ ⊕U⊺
j∗) ·R(i) = 0

]
= 1

2n−λ
. (75)

There are q choices for i, and ℓ(ℓ + 1)/2 choices for j, j′, so applying union-bound to Eqn. (75) yields
Eqn. (16).
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A.4 Proof of Lemma 6

For Eqn. (17) to be satisfiable, we need h
(i1)
out = h

(i2)
out ; then it reduces to (X̃(i2)

j2 , X̃
(i2)
j′

2
) = (X̃(i1)

j1 , X̃
(i1)
j′

1
),

which we can rewrite as
(Uj2∗, Uj′

2∗)
⊺ ·R(i2) = (Uj1∗, Uj′

1∗)
⊺ ·R(i1). (76)

Since Uj2∗ and Uj′
2∗ are independent, (Uj2∗, Uj′

2∗)
⊺ is an invertible 2× 2 matrix, so we can further rewrite

Eqn. (76) as
R(i2) = (Uj2∗, Uj′

2∗)
⊺−1 · (Uj1∗, Uj′

1∗)
⊺ ·R(i1). (77)

Since h
(i1)
out = h

(i2)
out , R(i2) is sampled uniformly from (GF(2n−λ))2, and independently of R(i1), we can write

Pr [Eqn. (77)] = 1
22n−2λ

. (78)

There are q(q−1)/2 choices for i1, i2 (since there’s no restriction on how many times a suffix s can repeat),
and ℓ2(ℓ + 1)2/4 choices for j1, j′1, j2, j′2, so applying union-bound to Eqn. (78) yields Eqn. (18).

A.5 Proof of Lemma 7

As before, for Eqn. (19) to hold, we must have h
(i1)
out = h

(i2)
out = · · · = h

(in+1)
out , so we can assume here that

R(i1), R(i2), . . . , R(in+1) are all independent and uniformly sampled from GF(2n−λ); then Eqn. (19) reduces
to (X̃(i2)

j′
2

, . . . , X̃
(in+1)
j′

n+1
) = (X̃(i1)

j1 , . . . , X̃
(in)
jn

), which we can rewrite as

(U⊺
j′

2∗
·R(i2), . . . , U⊺

j′
n+1∗
·R(in+1)) = (U⊺

j1∗ ·R
(i1), . . . , U⊺

jn∗ ·R
(in)). (79)

For any k ∈ [1..n], let Ẽ [1, . . . , k] denote the event (U⊺
j′

2∗
·R(i2), . . . , U⊺

j′
k+1∗
·R(ik+1)) = (U⊺

j1∗ ·R
(i1), . . . ,

U⊺
jk∗ · R

(ik)). Let us fix a k ∈ [1..n]. Since Uj′
k+1∗ is not a 0 vector (by local non-degeneracy of U),

U⊺
j′

k+1∗
·R(ik+1) is distributed uniformly on GF(2n−λ) and is independent of R(ik). Thus,

Pr
[
U⊺

j′
k+1∗
·R(ik+1) = U⊺

jk∗ ·R
(ik) ∣∣ R(ik)

]
= 1

2n−λ
. (80)

When k ≥ 2, since the event U⊺
j′

k+1∗
·R(ik+1) = U⊺

jk∗ ·R
(ik) is independent of R(i1), . . . , R(ik−1), we can

rewrite Eqn. (80) as

Pr
[
U⊺

j′
k+1∗
·R(ik+1) = U⊺

jk∗ ·R
(ik) ∣∣ R(i1), . . . , R(ik)

]
= 1

2n−λ
.

Moreover, since the above probability is not a function of R(i1), . . . , R(ik), we also get the same probability
when we condition on the event Ẽ [1, . . . , k − 1], so we have

Pr
[
U⊺

j′
k+1∗
·R(ik+1) = U⊺

jk∗ ·R
(ik) ∣∣ Ẽ [1, . . . , k − 1]

]
= 1

2n−λ
. (81)

Since for any two events B1 and B2, Pr[B1 ∩B2 | B2] = Pr[B1 | B2], we have from Eqn. (81) that

Pr
[
Ẽ [1, . . . , k]

∣∣ Ẽ [1, . . . , k − 1]
]

= 1
2n−λ

. (82)

Writing out Eqn. (82) for each k ∈ [1..n] and taking the product yields

Pr
[
Ẽ [1, . . . , n]

]
= 1

2n(n−λ) . (83)
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The event Ẽ [1, . . . , n] is exactly the event described in Eqns. (19) and (79). Since there are (q)n+1 choices
for i1, . . . , in+1 (since they must all be distinct) and (ℓ + 1)2n choices for j1, . . . , jn, j′2, . . . , j′n+1, applying
union-bound to Eqn. (83) gives

Pr[E3] ≤ (q)n+1(ℓ + 1)2n

2n(n−λ) ≤ qn+1(ℓ + 1)2n

2n(n−λ) = q

(
(ℓ + 1)2q

2n−λ

)n

≤ q

2n
,

where in the last inequality we use the assumption that (ℓ + 1)2q ≤ 2n−λ−1. This gives us the final bound
of Eqn. (20).

A.6 Proof of Lemma 8

Again, for Eqn. (21) to hold, we must have h
(i1)
out = h

(i2)
out = · · · = h

(ik)
out , so we can assume that R(i1), R(i2),

. . . , R(ik) are all independent and uniformly sampled from GF(2n−λ); then Eqn. (21) reduces to

(X̃(i2)
j′

2
, . . . , X̃

(ik)
j′

k
, X̃

(i1)
j′

1
) = (X̃(i1)

j1 , . . . , X̃
(ik−1)
jk−1

, X̃
(ik)
jk

).

To bound the probability of this, we first focus on the last two indices, and swap the last term on either
side to get the equation

(X̃(ik)
j′

k
, X̃

(ik)
jk

) = (X̃(ik−1)
jk−1

, X̃
(i1)
j′

1
). (84)

We can rewrite Eqn. (84) as

(Uj′
k
∗, Ujk∗)⊺ ·R(ik) = (U⊺

jk−1∗ ·R
(ik−1), U⊺

j′
1∗
·R(i1))⊺,

and since (Uj′
k
∗, Ujk∗)⊺ is invertible, this becomes

R(ik) = (Uj′
k
∗, Ujk∗)⊺−1 · (U⊺

jk−1∗ ·R
(ik−1), U⊺

j′
1∗
·R(i1))⊺.

Let (u, v)⊺ denote (Uj′
k
∗, Ujk∗)⊺−1 · (U⊺

jk−1∗ ·R
(ik−1), U⊺

j′
1∗
·R(i1))⊺. Since R(ik) is sampled uniformly from

(GF(2n−λ))2 and is independent of R(i1), . . . , R(ik−1), we have

Pr
[
R(ik) = (u, v)⊺

∣∣ R(i1), . . . , R(ik−1)
]

= 1
22n−2λ

.

Arguing as before Eqn. (81), we get

Pr
[
R(ik) = (u, v)⊺

∣∣ Ẽ [1, . . . , k − 2]
]

= 1
22n−2λ

. (85)

Taking k − 2 instead of n in the derivation of Eqn. (83) gives

Pr
[
Ẽ [1, . . . , k − 2]

]
= 1

2(n−λ)(k−2) . (86)

We observe that Eqn. (21) is exactly the conjunction of the events R(ik) = (u, v)⊺ and Ẽ [1, . . . , k − 2].
Thus, taking the product of Eqns. (85) and (86) gives

Pr [Eqn. (21)] = 1
2(n−λ)k . (87)
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Since there are (q)k choices for i1, . . . , ik and (ℓ+1)2k choices for j1, . . . , jn, j′1, . . . , j′n, applying union-bound
to Eqn. (87) gives

Pr[E4,k] ≤ (q)k(ℓ + 1)2k

2(n−λ)k ≤ qk(ℓ + 1)2k

2(n−λ)k =
(

(ℓ + 1)2q

2n−λ

)k

. (88)

We recall that E4 denotes the event E4,3 ∨ · · · ∨ E4,n. Then by Eqn. (88) and union-bound we have

Pr[E4] ≤
n∑

k=3

(
(ℓ + 1)2q

2n−λ

)k

=
(

(ℓ + 1)2q

2n−λ

)3

·
n−3∑
k=0

(
(ℓ + 1)2q

2n−λ

)k

. (89)

Using the assumption that (ℓ + 1)2q ≤ 2n−λ−1, we can bound Eqn. (89) as

Pr[E4] ≤
(

(ℓ + 1)2q

2n−λ

)3

·
n−3∑
k=0

(1
2

)k

≤ 2
(

(ℓ + 1)2q

2n−λ

)3

,

which establishes the bound in Eqn. (22).

B Deferred Proofs of Lemmas from Sec. 4

B.1 Proof of Lemma 9

The adversary A′ simulates A, and simply passes the queries of A to its own oracle and passes the oracles
responses back to A, and eventually replicates the output bit of A.

The adversary B1 also simulates A. It initially samples three random keys K2, K3, K4 ←$ {0, 1}n. On
receiving a query (N(i), h

(i)
out) from A, B1 first queries N

(i)
2 to its own oracle to receive J (i) as response; it

then computes X̃(i) as follows: W(i) := (W (i)
1 , W

(i)
2 )⊺ ← ( 1 1

1 2 ) · (N (i)
1 , J (i))⊺, R

(i)
1 ← msbn−λ(E(K2, W

(i)
1 )),

R
(i)
2 ← msbn−λ(E(K3, W

(i)
2 )), X̃(i) ← U ·R(i). Next, for each j ∈ [0..ℓ], B1 computes Y

(i)
j ← E(K4, X̃

(i)
j )

and Z
(i)
j ← Y

(i)
0 ⊕ Y

(i)
j , and returns Z(i) to A. At the end of the game B1 also replicates the output bit of

A.
The adversary B2 also simulates A. It initially samples one random permutation π∗1 ←$ S2n , and

two random keys K3, K4 ←$ {0, 1}n. On receiving a query (N(i), h
(i)
out) from A, B2 first computes J (i) ←

π∗1(N (i)
2 ), and W(i) := (W (i)

1 , W
(i)
2 )⊺ ← ( 1 1

1 2 ) · (N (i)
1 , J (i))⊺. It then queries W

(i)
1 to its own oracle and

truncates the response to n − λ bits to get R
(i)
1 , and computes R

(i)
2 ← msbn−λ(E(K3, W

(i)
2 )) and X̃(i) ←

U ·R(i). Next, for each j ∈ [0..ℓ], B2 computes Y
(i)

j ← E(K4, X̃
(i)
j ) and Z

(i)
j ← Y

(i)
0 ⊕ Y

(i)
j , and returns

Z(i) to A. At the end of the game B2 also replicates the output bit of A.
The adversary B3 also simulates A. It initially samples two random permutations π∗1, π∗2 ←$ S2n , and

one random key K4 ←$ {0, 1}n. On receiving a query (N(i), h
(i)
out) fromA, B2 first computes J (i) ← π∗1(N (i)

2 ),
and W(i) := (W (i)

1 , W
(i)
2 )⊺ ← ( 1 1

1 2 ) · (N (i)
1 , J (i))⊺. It then queries W

(i)
2 to its own oracle and truncates the

response to n− λ bits to get R
(i)
2 , and computes R

(i)
1 ← msbn−λ(π∗2(W (i)

1 )) and X̃(i) ← U ·R(i). Next, for
each j ∈ [0..ℓ], B3 computes Y

(i)
j ← E(K4, X̃

(i)
j ) and Z

(i)
j ← Y

(i)
0 ⊕ Y

(i)
j , and returns Z(i) to A. At the end

of the game B3 also replicates the output bit of A.
The adversary B4 also simulates A. It first samples three random permutations π∗1, π∗2, π∗3 ←$ S2n . On

receiving a query (N(i), h
(i)
out) from A, B4 first computes R(i) as follows: J (i) ← π∗1(N (i)

2 ), W(i) := (W (i)
1 ,

W
(i)
2 )⊺ ← ( 1 1

1 2 ) · (N (i)
1 , J (i))⊺, R

(i)
1 ← msbn−λ(π∗2(W (i)

1 )), R
(i)
2 ← msbn−λ(π∗3(W (i)

2 )). Next, B4 computes
X̃(i) ← U ·R(i), and sends the (ℓ + 1) queries X̃

(i)
0 ∥⟨h

(i)
out⟩λ, . . . , X̃

(i)
ℓ ∥⟨h

(i)
out⟩λ to its own oracle, to receive
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the respective responses Y
(i)

0 , . . . , Y
(i)

ℓ ; then it computes Z
(i)
j ← Y

(i)
0 ⊕ Y

(i)
j for each j ∈ [0..ℓ] and returns

Z(i) to A; at the end of the game B4 also replicates the output bit of A.
It is easy to verify that A′, B1, B2, and B3 make q queries each and B4 makes (ℓ + 1)q queries, so it

remains to show the bound in Eqn. (30). For four random permutations π∗1, . . . , π∗4 ←$ S2n and π̃∗ := (π∗1,
. . . , π∗4), define the following hybrids of ♯Pencil:

• ♯Pencil[U, π̃∗/E : 1/3] uses three keys K2, K3, K4 ←$ {0, 1}n, and encrypts encrypts N
(i)
2 , W

(i)
1 , W

(i)
2 ,

and {X(i)
j | j ∈ [0..ℓ]} using π∗1, E(K2, ·), E(K3, ·), and E(K4, ·) respectively;

• ♯Pencil[U, π̃∗/E : 2/2] uses two keys K3, K4 ←$ {0, 1}n, and encrypts N
(i)
2 , W

(i)
1 , W

(i)
2 , and {X(i)

j |
j ∈ [0..ℓ]} using π∗1, π∗2, E(K3, ·), and E(K4, ·) respectively;

• ♯Pencil[U, π̃∗/E : 3/1] uses one key K4 ←$ {0, 1}n, and encrypts N
(i)
2 , W

(i)
1 , W

(i)
2 , and {X(i)

j | j ∈
[0..ℓ]} using π∗1, π∗2, π∗1, and E(K4, ·) respectively.

Let F ∗ : {0, 1}2n+λ → {0, 1}ℓn be a uniform random function. Then from Eqn. (1) we have

AdvPRF
♯Pencil[U,E](A)

=
∣∣∣Pr[A♯Pencil[U,E] ⇒ 1]− Pr[AF ∗ ⇒ 1]

∣∣∣
=
∣∣∣Pr[A♯Pencil[U,π̃∗] ⇒ 1]− Pr[AF ∗ ⇒ 1]

+ Pr[APencil[U,π̃∗/E:3/1] ⇒ 1]− Pr[APencil[U,π̃∗] ⇒ 1]
+ Pr[APencil[U,π̃∗/E:2/2] ⇒ 1]− Pr[APencil[U,π̃∗/E:3/1] ⇒ 1]

+ Pr[APencil[U,π̃∗/E:1/3] ⇒ 1]− Pr[APencil[U,π̃∗/E:2/2] ⇒ 1]

+ Pr[APencil[U,E] ⇒ 1]− Pr[APencil[U,π̃∗/E:1/3] ⇒ 1]
∣∣∣

=
∣∣∣Pr[A′Pencil[U,π̃∗] ⇒ 1]− Pr[A′F ∗ ⇒ 1]

+ Pr[BE
1 ⇒ 1]− Pr[Bπ∗

1
1 ⇒ 1]

+ Pr[BE
2 ⇒ 1]− Pr[Bπ∗

2
2 ⇒ 1]

+ Pr[BE
3 ⇒ 1]− Pr[Bπ∗

3
3 ⇒ 1]

+ Pr[BE
4 ⇒ 1]− Pr[Bπ∗

4
4 ⇒ 1]

∣∣∣
≤
∣∣∣Pr[A′Pencil[U,π̃∗] ⇒ 1]− Pr[A′F ∗ ⇒ 1]

∣∣∣
+
∣∣∣Pr[BE

1 ⇒ 1]− Pr[Bπ∗
1

1 ⇒ 1]
∣∣∣

+
∣∣∣Pr[BE

2 ⇒ 1]− Pr[Bπ∗
2

2 ⇒ 1]
∣∣∣

+
∣∣∣Pr[BE

3 ⇒ 1]− Pr[Bπ∗
3

3 ⇒ 1]
∣∣∣

+
∣∣∣Pr[BE

4 ⇒ 1]− Pr[Bπ∗
4

4 ⇒ 1]
∣∣∣

= AdvPRF
♯Pencil[U,π̃∗](A′) +

4∑
i=1

AdvPRP
E (Bi),

which establishes Eqn. (11), thus completing the proof.
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B.2 Proof of Lemma 12

Fix a tr = (N, hout; Z; J, R, Y) ∈ Tgood. By definition of Tbad, we know that Φtr := Φ[Ar×ℓq, Z] is a
consistent mirror system and ξmax(tr) ≤ nℓ. First we observe that since the preprocessing step is identical
for both oracles, we have

Pr
[
Trs (AO1 ; 1) = R

]
= Pr

[
Trs (AO0 ; 1) = R

]
= ρ(R) (say). (90)

For the rest of the transcript, we examine the real world and the ideal world separately. Since A has r

rows, there must be r distinct values of X
(i)
j in X. Since the corresponding outputs are sampled uniformly

without replacement by π∗4 in the real world, we have

Pr
[
Trs (AO1 ; 3) = Y | Trs (AO1 ; 1) = R

]
= 1

(2n)r
. (91)

Finally, in the real world, Z is determined from Y, so we have

Pr
[
Trs (AO1 ; 2) = Z | Trs (AO1 ; 1) = R, Trs (AO1 ; 3) = Y

]
= 1. (92)

From Eqns. (90), (91), and (92) we have

Pr
[
Trs (AO1) = tr

]
= ρ(R)

(2n)r
. (93)

Next we turn our attention to the ideal world. Here, (AO0 ; 2) is sampled first, and independently of
(AO0 ; 1), so we have

Pr
[
Trs (AO0 ; 2) = Y | Trs (AO0 ; 1) = R

]
= 1

2nℓq
. (94)

In the final step, sampling (AO0 ; 3) is equivalent to a uniform sampling from Γ(Φtr), so we have

Pr
[
Trs (AO0 ; 3) = Y | Trs (AO0 ; 1) = R, Trs (AO0 ; 2) = Y

]
= 1
|Γ(Φtr)|

. (95)

From Eqns. (90), (94), and (95) we have

Pr
[
Trs (AO0) = tr

]
= ρ(R)

2nℓq|Γ(Φtr)|
. (96)

To complete the proof, we need to find an appropriate bound for the ratio of Pr[Trs (AO1) = tr] and
Pr[Trs (AO0) = tr]. From Eqns. (93) and (96) we have

Pr
[
Trs (AO1) = tr

]
Pr [Trs (AO0) = tr] = 2nℓq|Γ(Φtr)|

(2n)r
. (97)

As the final step in the proof, we want to bound |Γ(Φtr)| by applying Theorem 2. We already know that
Φtr is a consistent mirror system, so we just need to verify the conditions on ξmax(tr). Using the bound
ξmax(tr) ≤ nℓ, we have

nξmax(tr)2 + ξmax(tr) ≤ n3ℓ2 + nℓ ≤ 2n/2, (98)
and

12ℓqξmax(tr) ≤ 12nℓ2q ≤ 2n. (99)
Thus, all the conditions for Theorem 2 are satisfied, and applying this theorem gives

|Γ(Φtr)| ≥
(2n)r

2nℓq
. (100)

Substituting Eqn. (100) in Eqn. (97) completes the proof of Lemma 12.
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B.3 Proof of Lemma 13

For each pair (i1, i2) ∈ [1..q]2, let Ii1,i2 be the indicator random variable for membership in Sar, defined as

Ii1,i2 = 1, if (i1, i2) ∈ Sar,

= 0, otherwise.

If N
(i1)
2 = N

(i2)
2 , then W

(i1)
1 ̸= W

(i2)
1 and W

(i1)
2 ̸= W

(i2)
2 , so (i1, i2) can only form an arm if N

(i1)
2 = N

(i2)
2 ,

so that J (i1) and J (i2) are outputs of π∗1 on two different inputs.. We observe that

Pr
[
W

(i1)
1 = W

(i2)
1

]
= Pr

[
N

(i1)
1 ⊕ J (i1) = N

(i2)
1 ⊕ J (i2)

]
= 1

2n − 1 ,

Pr
[
W

(i1)
2 = W

(i2)
2

]
= Pr

[
N

(i1)
1 ⊕ 2 · J (i1) = N

(i2)
1 ⊕ 2 · J (i2)

]
= 1

2n − 1 .

By union-bound, we have

E [Ii1,i2 ] = Pr [(i1, i2) ∈ Sar]

≤ Pr
[
W

(i1)
1 = W

(i2)
1

]
+ Pr

[
W

(i1)
2 = W

(i2)
2

]
≤ 2

2n − 1 .

Since |Sar| =
∑

(i1,i2)∈[1..q]2 Ii1,i2 , we have

E[|Sar|] =
∑

(i1,i2)∈[1..q]2
E[Ii1,i2 ] ≤ 2q(q − 1)

2n − 1 ≤ 2q2

2n
.

By applying Markov’s Inequality, we get

Pr[Ear] = Pr[|Sar| > q] ≤ E[|Sar|]
q

≤ 2q

2n
,

which establishes the bound in Eqn. (34).

B.4 Proof of Lemma 14

For each triple (i1, i2, i3) ∈ [1..q]3, let Ii1,i2,i3 be the indicator random variable for membership in Sel,
defined as

Ii1,i2,i3 = 1, if (i1, i2, i3) ∈ Sel,

= 0, otherwise.

If N
(i1)
2 = N

(i2)
2 , then W

(i1)
1 ̸= W

(i2)
1 , and if N

(i2)
2 = N

(i3)
2 , then W

(i2)
2 ̸= W

(i3)
2 . Thus, the event W

(i1)
1 =

W
(i2)
1 , W

(i2)
2 = W

(i3)
2 can have non-zero probability only when N

(i2)
2 /∈ {N (i1)

2 , N
(i3)
2 }. In this case, we can

write this event as

N
(i1)
1 ⊕ J (i1) = N

(i2)
1 ⊕ J (i2), (101)

N
(i2)
1 ⊕ 2 · J (i2) = N

(i3)
1 ⊕ 2 · J (i3). (102)

Since N
(i1)
2 ̸= N

(i2)
2 , J (i1) and J (i2) are outputs of π∗1 on two different inputs. Thus,

Pr [Eqn. (101)] = 1
2n − 1 . (103)
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If in addition N
(i1)
2 ̸= N

(i3)
2 , then J (i3) is the output of π∗1 on yet another different input, so that

Pr [Eqn. (102) | Eqn. (101)] = 1
2n − 2 . (104)

From Eqns. (103) and (104), we get

Pr
[
W

(i1)
1 = W

(i2)
1 , W

(i2)
2 = W

(i3)
2

]
= Pr [Eqns. (101), (102)]

= Pr [Eqn. (101)] Pr [Eqn. (102) | Eqn. (101)]

= 1
(2n − 1)(2n − 2) . (105)

This leaves the case N
(i1)
2 = N

(i3)
2 =⇒ J (i1) = J (i3). Multiplying Eqn. (101) by 2, adding to Eqn. (102),

setting J (i1) = J (i3), and rearranging the terms gives

N
(i3)
1 = 3 ·N (i2)

1 ⊕ 2 ·N (i1)
1 . (106)

Define the set S∗ ⊆ [1..q]3 as

S∗ :=
{

(i1, i2, i3)
∣∣ N

(i3)
1 = 3 ·N (i2)

1 ⊕ 2 ·N (i1)
1 , N

(i3)
2 = N

(i1)
2

}
.

For (i1, i2, i3) ∈ S∗, Eqn. (101) implies Eqn. (102), so we have

Pr
[
W

(i1)
1 = W

(i2)
1 , W

(i2)
2 = W

(i3)
2

]
= Pr [Eqn. (101)] = 1

2n − 1 . (107)

If (i1, i2, i3) /∈ S∗ and yet N
(i3)
2 = N

(i1)
2 , Pr[W (i1)

1 = W
(i2)
1 , W

(i2)
2 = W

(i3)
2 ] = 0, because Eqn. (106) does

not hold. From Eqns. (105) and (107), we can conclude that

E[Ii1,i2,i3 ] = Pr[(i1, i2, i3) ∈ Sel] ≤


1

2n − 1 , if (i1, i2, i3) ∈ S∗,
1

(2n − 1)(2n − 2) , otherwise.

Since |Sel| =
∑

(i1,i2,i3)∈[1..q]3 Ii1,i2,i3 , we have

E[|Sel|] =
∑

(i1,i2,i3)∈[1..q]3
E[Ii1,i2,i3 ]

=
∑

(i1,i2,i3)∈S∗

E[Ii1,i2,i3 ] +
∑

(i1,i2,i3)/∈S∗

E[Ii1,i2,i3 ]

≤
∑

(i1,i2,i3)∈S∗

1
2n − 1 +

∑
(i1,i2,i3)/∈S∗

1
(2n − 1)(2n − 2)

= |S∗|
2n − 1 + q(q − 1)(q − 2)− |S∗|

(2n − 1)(2n − 2)

≤ |S∗|
2n − 1 + q(q − 1)(q − 2)

(2n − 1)(2n − 2) . (108)

To bound |S∗|, we observe that for each (i1, i2, i3) ∈ S∗, fixing i1 and i2 completely determines i3. Thus,
|S∗| ≤ q(q − 1). Substituting this bound in Eqn. (108) gives

E[|Sel|] ≤
q(q − 1)
2n − 1 + q(q − 1)(q − 2)

(2n − 1)(2n − 2) ≤
q2

2n
+ q3

22n
.
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By applying Markov’s Inequality, we get

Pr[Eel] = Pr[|Sel| > q] ≤ E[|Sel|]
q

≤ q

2n
+ q2

22n
,

which establishes the bound in Eqn. (35).

B.5 Proof of Lemma 15

For Eqn. (36) to hold, we must have h
(i1)
out = h

(i2)
out = · · · = h

(ik)
out , so we can assume here that N(i1), N(i2),

. . . , N(ik) are all distinct; then Eqn. (36) reduces to (X̃(i2)
j′

2
, . . . , X̃

(ik)
j′

k
) = (X̃(i1)

j1 , . . . , X̃
(ik−1)
jk−1

), which we can
rewrite as

(U⊺
j′

2∗
·R(i2), . . . , U⊺

j′
k
∗ ·R

(ik)) = (U⊺
j1∗ ·R

(i1), . . . , U⊺
jk−1∗ ·R

(ik−1)).

A chain ζ can be treated interchangeably with the event of the chain forming, i.e., the conjunction of
all the collisions necessary for ζ to satisfy the definition of a chain. In this way we can make sense of an
expression like Pr[ζ]. For 2 < d ≤ k and a k-chain ζ, let ζ<d denote the (d − 1)-chain (i1, . . . , id−1) (or,
equivalently, the conjunction of the d− 2 collisions required for this chain), and let ζd denote the collision
required to link id−1 to id, i.e., the event that for some jd−1, j′d ∈ [0..ℓ], U⊺

jd∗ · R
(id) = U⊺

jd−1∗ · R
(id−1).

Note that by this notation,

ζ =
k∧

d=2
ζd.

We observe that if W
(id)
1 /∈ {W (ia)

1 | 1 ≤ a < d}, R
(id)
1 will be the truncated output of π∗2 on an input

that did not appear earlier in the chain, and similarly, if W
(id)
2 /∈ {W (ia)

1 | 1 ≤ a < d}, R
(id)
2 will be the

truncated output of π∗3 on an input that did not appear earlier in the chain. Thus, if id is fresh, at least
one of R

(id)
1 and R

(id)
2 will be a source of fresh randomness after conditioning on ζ<d. This is a key feature

of fresh nodes that we will repeatedly invoke.
With the above in mind, we can start analysing the probability of Ech. We first look at the probability

of Ech,2. In a 2-chain (i1, i2), the only candidate for a stale node is i2, and the only way for i2 to be stale
if to have both W

(i2)
1 = W

(i1)
1 and W

(i2)
2 = W

(i1)
2 , which is impossible because R(i1) ̸= R(i2), and the

mapping R(i) 7→W(i) is injective. Thus,
Pr[Ech,2] = 0.

Next, for k > 2, define
Ech,<k :=

∨
2≤k′<k

Ech,k′ .

We want to examine the probability of Ech,k conditioned on ¬Ech,<k. So suppose Ech,<k has not occurred.
Consider a k-chain ζ = (i1, . . . , ik) with one or more stale nodes, and let id be its first stale node from
the left. We observe that if d < k, (i1, . . . , id) is a d-chain with id as a stale node, which contradicts the
assumption that Ech,<k (and thus in particular Ech,d) has not occurred. Thus, the only candidate for a
stale node in ζ is ik.

Now, since i2 is fresh (it cannot be otherwise, as we saw earlier), for any fixed j′2, j1 ∈ [0..ℓ] we have

Pr
[
U⊺

j2∗ ·R
(i2) = U⊺

j1∗ ·R
(i1)
]
≤ 2λ

2n − 1 ,

by the randomness of R
(i2)
1 or R

(i2)
2 , whichever lends freshness to i2. Since there are ℓ + 1 choices each for

j1 and j′2, we have

Pr[ζ2] ≤ 2λ(ℓ + 1)2

2n − 1 . (109)
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Further, if k ≥ 4, for any d with 2 < d < k, since id is fresh (by the above discussion), for any fixed
j′d, jd−1 ∈ [0..ℓ] we have

Pr
[
U⊺

jd∗ ·R
(id) = U⊺

jd−1∗ ·R
(id−1) ∣∣ ζ<d

]
≤ 2λ

2n − d + 1 ,

and counting the choices for j′d and jd−1 gives

Pr [ζd | ζ<d] ≤ 2λ(ℓ + 1)2

2n − d + 1 . (110)

By induction, we can show that

Pr[ζ<d+1] ≤ 2λ(d−1)(ℓ + 1)2(d−1)

(2n − 1)d−1
. (111)

For the proof of this bound, Eqn. (109) serves as base case; for the induction step we use the identity
Pr[ζ<d+1] = Pr[ζd ∧ ζ<d] = Pr[ζd | ζ<d] Pr[ζ<d] and plug in the bound from Eqn. (110).

Taking d = k − 1 in Eqn. (111) gives

Pr[ζ<k] ≤ 2λ(k−2)(ℓ + 1)2(k−2)

(2n − 1)k−2
.

Since ζk =⇒ ζ<k, we have

Pr[ζk ∧ ik is stale] ≤ Pr[ζk] ≤ Pr[ζ<k] ≤ 2λ(k−2)(ℓ + 1)2(k−2)

(2n − 1)k−2
.

Since ik is stale and Ech,<k did not occur, ik must be fresh in the chain (i2, . . . , ik). Thus, either W
(ik)
1 /∈

{W (ia)
1 | 2 ≤ a < k} or W

(id)
2 /∈ {W (ia)

2 | 2 ≤ a < k}. First suppose W
(ik)
1 /∈ {W (ia)

1 | 2 ≤ a < k}. Since ik

is stale in ζ, we must have W
(ik)
1 = W

(i1)
1 . This in turn implies that W

(ik)
2 ̸= W

(i1)
2 , so again by staleness

of ik, we must have W
(ik)
2 ̸= W

(ia)
2 for some a ∈ [2..k− 1]. Thus, (i1, ik, ia) must be an elbow. Similarly, if

instead W
(id)
2 /∈ {W (ia)

2 | 2 ≤ a < k}, we can show that (ia, ik, i1) must be an elbow.
In either case, the number of choices for i1, ia, ik is bounded by |Sel|, which is bounded by q if Eel has

not occurred. Then the other k − 3 indices in ζ can be picked in (q − 3)k−3 ways. Thus, by union-bound,
we have

Pr[Ech,k | ¬Ech,<k,¬Eel] ≤
2λ(k−2)(ℓ + 1)2(k−2)q(q − 3)k−3

(2n − 1)k−2
. (112)

To simplify this bound, we observe that since q − 3 < 2n − 1,
q − 3− i

2n − 2− i
≤ q − 3

2n − 2 ≤
q − 1

2n

for any i ∈ [0..k − 4]. Thus,

q(q − 3)k−3
(2n − 1)k−2

= q

2n − 1

k−4∏
i=0

q − 3− i

2n − 2− i
≤ q(q − 1)k−3

(2n − 1)2n(k−3) . (113)

Substituting Eqn. (113) in Eqn. (112) gives

Pr[Ech,k | ¬Ech,<k,¬Eel] ≤
(ℓ + 1)2(k−2)q(q − 1)k−3

(2n − 1)2n(k−3)−λ(k−2) ≤
(

(ℓ + 1)2q

2n−λ

)k−2

.
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Recall that Ech denotes the event Ech,3 ∨ · · · ∨ Ech,n+1. Then by union-bound we have

Pr[Ech | ¬Eel] ≤
n+1∑
k=3

(
(ℓ + 1)2q

2n−λ

)k−2

= (ℓ + 1)2q

2n−λ
·

n−2∑
k=0

(
(ℓ + 1)2q

2n−λ

)k

. (114)

Using the assumption that (ℓ + 1)2q ≤ 2n−λ−1, we can bound Eqn. (114) as

Pr[Ech | ¬Eel] ≤
(ℓ + 1)2q

2n−λ
·

n−2∑
k=0

(1
2

)k

≤ (ℓ + 1)2q

2n−λ−1 . (115)

From Eqns. (35) (Lemma 14) and (115) we get

Pr[Ech] = Pr[Ech ∧ Eel] + Pr[Ech ∧ ¬Eel]

≤ Pr[Eel] + Pr[Ech | ¬Eel] ≤
q

2n
+ q2

22n
+ (ℓ + 1)2q

2n−λ−1 ,

which establishes the bound in Eqn. (37).

B.6 Proof of Lemma 16

Eqn. (38) is equivalent to X̃
(i)
j′ = X̃

(i)
j , which we can rewrite as

U⊺
j′∗ ·R

(i) = U⊺
j∗ ·R

(i), or (U⊺
j′∗ ⊕U⊺

j∗) ·R(i) = 0.

Since U is locally non-degenerate, its rows are pairwise independent, which means in particular that
U⊺

j′∗ ⊕U⊺
j∗ ̸= 0. Without loss of generality, assume its first element is non-zero, i.e., Uj′1 ⊕Uj1 ̸= 0. Then

(Uj′1 ⊕ Uj1) · R(i)
1 is distributed uniformly over GF(2n−λ). Moreover, since R

(i)
1 and R

(i)
2 are independent

(being the truncated outputs of the indepdendent random permutations π∗2 and π∗3 respectively), it follows
that (U⊺

j′∗ ⊕U⊺
j∗) ·R(i) is distributed uniformly over GF(2n−λ), so that

Pr
[
(U⊺

j′∗ ⊕U⊺
j∗) ·R(i) = 0

]
= 1

2n−λ
. (116)

There are q choices for i, and ℓ(ℓ + 1)/2 choices for j, j′, so applying union-bound to Eqn. (116) yields the
bound in Eqn. (39).

B.7 Proof of Lemma 17

For Eqn. (40) to be satisfiable, we need h
(i1)
out = h

(i2)
out ; then it reduces to (X̃(i2)

j2 , X̃
(i2)
j′

2
) = (X̃(i1)

j1 , X̃
(i1)
j′

1
),

which we can rewrite as
(Uj2∗, Uj′

2∗)
⊺ ·R(i2) = (Uj1∗, Uj′

1∗)
⊺ ·R(i1). (117)

Since Uj2∗ and Uj′
2∗ are linearly independent, (Uj2∗, Uj′

2∗)
⊺ is an invertible 2×2 matrix, so we can further

rewrite Eqn. (117) as
R(i2) = (Uj2∗, Uj′

2∗)
⊺−1 · (Uj1∗, Uj′

1∗)
⊺ ·R(i1). (118)

If (i1, i2) /∈ Sar, W
(i1)
1 ̸= W

(i2)
1 , so R

(i1)
1 and R

(i2)
1 are truncated outputs of π∗2 on different inputs, and

similarly W
(i1)
2 ̸= W

(i2)
2 , so R

(i1)
2 and R

(i2)
2 are truncated outputs of π∗3 on different inputs. So we can write

Pr [Eqn. (118)] = 22λ

(2n − 1)2 .
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In this case, there will be ℓ2(ℓ+1)2/4 choices for j1, j′1, j2, j′2. If (i1, i2) ∈ Sar, the two equations in Eqn. (40)
may be reduced to one equation. But one of W

(i1)
1 ̸= W

(i2)
1 and W

(i1)
2 ̸= W

(i2)
2 must still hold, so we must

still have
Pr [Eqn. (118)] ≤ 2λ

2n − 1 . (119)

Moreover, this case fixes the choices of j2 and j′2, so there are ℓ(ℓ + 1)/2 choices for j1, j′1, j2, j′2. Let E i1,i2
2

denote the event that for some j1, j′1, j2, j′2 ∈ [0..ℓ] with j1 < j′1, j2 < j′2, (X(i2)
j2 , X

(i2)
j′

2
) = (X(i1)

j1 , X
(i1)
j′

1
).

Then we have

Pr[E i1,i2
2 | ¬Ear] ≤


2λℓ(ℓ + 1)
2(2n − 1) , if (i1, i2) ∈ Sar,

22λℓ2(ℓ + 1)2

4(2n − 1)2 , otherwise.

Recalling that |Sar| ≤ q as long as Ear has not occurred, we get

Pr[E†2 | ¬Ear] =
∑

(i1,i2)∈[1..q]2
Pr[E i1,i2

2 | ¬Ear]

=
∑

(i1,i2)∈Sar

Pr[E i1,i2
2 | ¬Ear] +

∑
(i1,i2)/∈Sar

Pr[E i1,i2
2 | ¬Ear]

≤ |Sar|
2λℓ(ℓ + 1)
2(2n − 1) + q(q − 1)

2
22λℓ2(ℓ + 1)2

4(2n − 1)2

≤ ℓ(ℓ + 1)q
2n−λ

+ ℓ2(ℓ + 1)2q2

22n−2λ+4 ,

which establishes the bound in Eqn. (41).

B.8 Proof of Lemma 18

Eqn. (42) is equivalent to an (n + 1)-chain ζ. If Ech has not happened, each node in this chain must be
fresh, so arguing as in the bounding of Pr[ζ<d+1], we have

Pr[ζ | ¬Ech] ≤ 2λn(ℓ + 1)2n

(2n − 1)n
. (120)

Since there are (q)n+1 choices for the indices in ζ, by union-bound we have

Pr[E3 | ¬Ech] ≤ 2λn(ℓ + 1)2n(q)n+1
(2n − 1)n

≤ q

(
(ℓ + 1)2q

2n−λ

)n

≤ q

2n
,

using the assumption that (ℓ + 1)2q ≤ 2n−λ−1. This establishes the bound in Eqn. (43).

B.9 Proof of Lemma 19

Eqn. (44) is equivalent to (i1, . . . , ik−1) forming a (k − 1)-chain ζ<k, and ik satisfying the condition

(X(ik)
j′

k
, X

(ik)
jk

) = (X(ik−1)
jk−1

, X
(i1)
j′

1
). (121)

For this to hold we need h
(ik)
out = h

(i1)
out (which in turn is already equal to h

(id)
out for each other d ∈ [2..k− 1]);

then we can rewrite Eqn. (121) as

(Uj′
k
∗, Ujk∗)⊺ ·R(ik) = (U⊺

jk−1∗ ·R
(ik−1), U⊺

j′
1∗
·R(i1))⊺,
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and since (Uj′
k
∗, Ujk∗)⊺ is invertible, this becomes

R(ik) = (Uj′
k
∗, Ujk∗)⊺−1 · (U⊺

jk−1∗ ·R
(ik−1), U⊺

j′
1∗
·R(i1))⊺.

Let (u, v)⊺j′
k

,jk,j′
k−1,j1

denote (Uj′
k
∗, Ujk∗)⊺−1 · (U⊺

jk−1∗ · R
(ik−1), U⊺

j′
1∗
· R(i1))⊺. Since ζ := (i1, . . . , ik) is a

chain, ik will be fresh in ζ unless Ech has occurred. If both W
(id)
1 /∈ {W (ia)

1 | 1 ≤ a < d} and W
(id)
2 /∈

{W (ia)
2 | 1 ≤ a < d}, then we can use the randomness of both R

(ik)
1 and R

(ik)
2 after conditioning on ζ<k, to

get

Pr
[
R(ik) = (u, v)⊺j′

k
,jk,j′

k−1,j1

∣∣ ζ<k,¬Ech,¬Ear

]
≤ 22λ

(2n − k + 1)2 . (122)

Like in Eqn. (120), taking k − 2 instead of n, we get

Pr[ζ<k | ¬Ech,¬Ear] ≤
2λ(k−2)(ℓ + 1)2(k−2)

(2n − 1)k−2
. (123)

Let ζ⟲ denote the cyclic closure of ζ, i.e., the chain ζ together with the event that we can find j′k, jk, j′k−1,
j1 ∈ [0..ℓ] such that Eqn. (121) holds. Then we have

Pr
[
ζ⟲
∣∣ ζ<k,¬Ech,¬Ear

]
= Pr

 ∨
j′

k
,jk,j′

k−1,j1

(
R(ik) = (u, v)⊺j′

k
,jk,j′

k−1,j1

) ∣∣∣ ζ<k,¬Ech,¬Ear


≤

∑
j′

k
,jk,j′

k−1,j1

Pr
[
R(ik) = (u, v)⊺j′

k
,jk,j′

k−1,j1

∣∣ ζ<k,¬Ech,¬Ear

]

≤ 22λ(ℓ + 1)4

(2n − k + 1)2 , (124)

by applying union-bound to Eqn. (122). Recalling that ζ⟲ ∧ ζ<k = ζ⟲, from Eqns. (123) and (124) we get

Pr
[
ζ⟲
∣∣ ¬Ech,¬Ear

]
≤ Pr

[
ζ⟲
∣∣ ζ<k,¬Ech,¬Ear

]
Pr
[
ζ<k

∣∣ ¬Ech,¬Ear
]

≤ 2λk(ℓ + 1)2k

(2n − 1)k−2(2n − k + 1)2 ≤
2λk(ℓ + 1)2k

(2n − 1)k
. (125)

If for some d ∈ [1..k− 1] either W
(id)
1 ∈ {W (ia)

1 | 1 ≤ a < d} or W
(id)
2 ∈ {W (ia)

2 | 1 ≤ a < d} holds, then
(id, ik) ∈ Sar, and we can argue as before Eqn. (119) that

Pr
[
R(ik) = (u, v)⊺j′

k
,jk,j′

k−1,j1

∣∣ ζ<k,¬Ech,¬Ear

]
≤ 2λ

2n − k + 1 ,

and that this fixes jk and j′k, so that

Pr
[
ζ⟲
∣∣ ζ<k,¬Ech,¬Ear

]
≤ 2λ(ℓ + 1)2

2n − k + 1 ,

and hence
Pr
[
ζ⟲
∣∣ ¬Ech,¬Ear

]
≤ 2λ(k−1)(ℓ + 1)2(k−1)

(2n − 1)k−1
. (126)
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Since Ear did not occur, (id, ik) can be chosen in at most q ways, and the rest of the queries in at most
(q − 2)k−2 ways. Thus, combining the two cases from Eqns. (125) and (126), we have

Pr[E†4,k | ¬Ech,¬Ear] ≤
2λk(ℓ + 1)2k(q)k

(2n − 1)k
+ 2λ(k−1)(ℓ + 1)2(k−1)q(q − 2)k−2

(2n − 1)k−1

≤ 2
(

(ℓ + 1)2q

2n−λ

)k

+ 2
(

(ℓ + 1)2q

2n−λ

)k−1

≤ 3
(

(ℓ + 1)2q

2n−λ

)k−1

, (127)

where in the last inequality we use the assumption that (ℓ + 1)2q ≤ 2n−λ−1, and in the one before we use
the inequality

2nk

(2n − 1)k
=
(

1 + 1
2n − 1

)k

≤ ek/(2n−1) ≤ 2.

Recall that E†4 denotes the event E†4,3 ∨ · · · ∨ E
†
4,n. Then by Eqn. (127) and union-bound we have

Pr[E†4 | ¬Ech,¬Ear] ≤
n∑

k=3

3
(

(ℓ + 1)2q

2n−λ

)k−1


= 3
(

(ℓ + 1)2q

2n−λ

)2

·
n−3∑
k=0

(
(ℓ + 1)2q

2n−λ

)k

≤ 3
(

(ℓ + 1)2q

2n−λ

)2

·
n−3∑
k=0

(1
2

)k

≤ 6(ℓ + 1)4q2

22n−2λ
,

which establishes the bound in Eqn. (45).
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