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Abstract

In pairing-based cryptography, final exponentiation with a large fixed exponent
is crucial for ensuring unique outputs in Tate and optimal Ate pairings. While
optimizations for elliptic curves with even embedding degrees have been well-
explored, progress for curves with odd embedding degrees, particularly those
divisible by 3, has been more limited. This paper presents new optimization tech-
niques for computing the final exponentiation of the optimal Ate pairing on these
curves. The first exploits the fact that some existing seeds have a form enabling
cyclotomic cubing and extends this to generate new seeds with the same form.
The second is to generate new seeds with sparse ternary representations, replac-
ing squaring with cyclotomic cubing. The first technique improves efficiency by
1.7% and 1.5% compared to the square and multiply (SM) method for existing
seeds at 192-bit and 256-bit security levels, respectively. For newly generated
seeds, it achieves efficiency gains of 3.6% at 128-bit, 5% at 192-bit, and 8.5%
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at 256-bit security levels. The second technique improves efficiency by 3.3% at
128-bit, 19.5% at 192-bit, and 4.3% at 256-bit security levels.

Keywords: Elliptic curves, pairings, final exponentiation, cyclotomic cubing,
complexity

1 Introduction

Pairings on elliptic curves are crucial for various cryptographic applications, e.g.,
identity-based Encryption [1], short signatures[2], and tri-partite Diffie-Hellman [3].
Consequently, substantial efforts [4–6] have been made to develop several families of
elliptic curves specifically optimized for pairing applications. Other works have focused
on optimizing the Miller loop [7, 8] and the final exponentiation [9–12], as these op-
erations account for nearly all of the computational complexity involved in pairings.
Recently, Barbulescu and Duquesne presented, in [13], new parameters that resist an
attack for a discrete logarithm problem (DLP) proposed by Kim et al.in [14]. Addi-
tionally, they demonstrated that at 128−security level Barreto-Lynn-Scott family of
elliptic curves of embedding degree k = 12 (BLS12 ) and Kachisa-Schaefer-Scott fam-
ily of elliptic curves with k = 16 ( KSS16) can provide a more efficient pairing than
the Barreto-Naehrig family (BN). Unexpectedly, Barbulescu et al. announced in [15]
that other elliptic curve families with k = 9, 15, 27 can be competitive with BLS12,
KSS16 and BN . There are two components to the pairing’s final exponentiation:
’easy part’ refers to the first, and ’hard part’ to the second. The easy part’s compu-
tation is thought to be somewhat straightforward, whereas the hard part demands
a great deal of work. The hard part is computed in a cyclotomic subgroup where
the efficiency of certain cyclotomic operations in the target field can be exploited.
Specifically, the primary operation in the hard part calculation is exponentiation in
a cyclotomic subgroup using a prefixed integer called the ’seed’. This operation em-
ploys the square-and-multiply routine (SM), which squares for each binary digit of
the seed and multiplies when the digit is active (non-zero). If cyclotomic squaring [11]
is available, it should be used instead of the typical squaring to improve efficiency.
Thus, cyclotomic squaring plays a crucial role in enhancing the efficiency of the hard
part of the final exponentiation in pairings on elliptic curves with even embedding de-
grees, such as BLS12, KSS16, and BLS24. However, this operation is not available
for the curves with odd embedding degrees, such as BLS9, BLS15, and BLS27. Thus,
the exponentiation by a given seed in the cyclotomic subgroup of the target fields of
these curves is done using the square and multiply routine depending on the typical
squaring and multiplication. Fortunately, Granger and Scott noted that the techniques
developed in [11] for efficient cyclotomic squaring could also be adapted to create an
alternative approach for elliptic curves with an odd embedding degree divisible by 3.
We refer to this substitute as ’cyclotomic cubing’. Later, Nanjo et al. [16] provided an
explicit formula for calculating cyclotomic cubing, stating that it is 30% more efficient
than conventional cubing. Furthermore, we found that cyclotomic cubing outperforms
the standard method of squaring followed by multiplication, particularly in the field
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Fp27 . By analyzing the structure of the hard part of the final exponentiation on BLS
curves and the specific forms of certain seeds, we were inspired to apply cyclotomic
cubing in a partial manner. This partial application allows us to retain the efficiency
provided by the NAF representation [17], while further enhancing by the use of cy-
clotomic cubing. According to Nanjo et al. [16], the performance improvement from
using cyclotomic cubing on the BLS15 curve is not enough to justify replacing the
square-and-multiply (SM) method with a cubing and multiplication (CM) approach.
Another approach worth considering is the application of CM to new seeds with
sparse ternary representations. This motivated us to explore CM as an alternative to
SM to leverage the efficiency of cyclotomic cubing in the final exponentiation of the
optimal Ate pairing on BLS15 and BLS27 curves.

Our contribution

In this paper, we propose the following methods:

1. Two Consecutive Active Bits (TCAB): This method utilizes a special form of
two consecutive active bits in certain seeds to perform cyclotomic cubing through
simple factorization. It exploits the advantages of cyclotomic cubing while main-
taining the efficiency of the NAF representation. New seeds tailored for this method
will be generated, and results are compared with those obtained by applying SM
to the same seeds, as well as with results from existing seeds.

2. Exponentiation using Sparse Ternary Representation: We generate new
seeds with sparse ternary representation and apply theCMmethod, where squaring
is replaced by cyclotomic cubing. The efficiency of CM is evaluated by comparing
the results with those obtained from existing seeds using the SM method.

Although these methods apply to any elliptic curve with an odd embedding degree
divisible by 3, we focus on the BLS15 curve at 128 and 192-bit security levels, and
the BLS27 curve at 192 and 256-bit levels. We particularly emphasize BLS27, as it
is well-suited for computing the Miller loop and pairing products.

Paper overview

This paper is structured as follows: Section 2 provides background on arithmetic in
finite fields with an odd extension degree divisible by 3, along with an introduction
to cyclotomic arithmetic, elliptic curves, and pairings. Section 3 introduces our main
method, TCAB, which computes partial cyclotomic cubing by exploiting specific bits
within the seed. This section also analyzes the seed forms suitable for TCAB and com-
pares its computational complexity with the SM method, focusing on the BLS15 and
BLS27 curves. Section 4 investigates the use of ternary seed representations for final
exponentiation on the BLS15 and BLS27 curves, compares the efficiency of ternary
and NAF representations, and explores the generation of new sparse ternary seeds.
Finally, we summarise our findings and outline potential future research directions.

Notations

Let k ∈ N∗. In the rest of this paper, we use the following notations:

• p ≥ 3 is a prime number,
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• E is an elliptic curve defined over Fp,
• Mk stands for the cost of multiplication in Fpk ,
• Sk denotes the cost of squaring in Fpk ,
• Fk a Frobenius operation Fpk ,
• Ik denotes the costs of inversion in Fpk ,
• Cck

is the cost of cyclotomic cubing in Fpk ,
• Ick

represents the of cyclotomic inversion in Fpk ,
• Let u ∈ Z, Eu denotes the cost of the exponentiation by u,
• SL denotes the security level.

2 Background

Consider the finite field Fpk , with 3|k. This section offers the essential fundamentals of
arithmetic over Fpk with k being odd and divisible by 3, elliptic curves, and pairings
on curves of embedding degree k. For further information, the reader is referred to
[15, 16, 18–20].

2.1 Costs of arithmetic operations over Fpk

In the remainder of this paper, we will neglect additions and multiplications by con-
stants in Fpk when we compute the complexity. We also assume that M1 = S1. We
suppose that 3|k and represent Fpk as follows:

Fpk = F
p

k
3
[x]/(x3 − ξ),

where ξ is a cubic non-residue in F
p

k
3
. Using Karatsuba’s method [21], the complexity

of the multiplication in Fpk is 6M k
3
. To compute the squaring in fields with exten-

sion degree 3, it is recommended to utilize the Chung-Hasan method [22] which costs
2M k

3
+ 3S k

3
. Let i,∈ N∗ such that i < φ(k), where φ is the Euler’s totient function.

The Frobenius operation is an endomorphism defined over Fpk as follows:

πi : Fpk −→ Fpk

α 7−→ αpi

.

For more details the reader is referred to reference [18]. The costs of Frobenius opera-
tions are given in Table 1. According to [23], the complexity of the inversion in Fpk

is 9M k
3
+ 3S k

3
+ I k

3
.

Before presenting cyclotomic cubing and inversion in Fpk , we first define the cyclotomic
subgroup of this field.
Definition 1.
The cyclotomic subgroup of Fpk is given in [24] by:

GΦk(p) = {α ∈ F∗
pk ;α

Φk(p) = 1}, (1)

where ϕk is the k − th cyclotomic polynomial. The order of GΦk(p) is Φk(p).
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Example 1.
GΦ27(p) is the cylotomic subgroup of F∗

q27 of order Φ27(p) = p18 + p9 + 1.
Let α ∈ Fpk . If α ∈ GΦk(p), the inversion of α can be inferred from the cyclotomic

subgroup α ∈ GΦk(p)’s membership relation. In this case, it is called cyclotomic inver-
sion, which is frequently more efficient than the usual one. In the following example,
we demonstrate how to compute the cyclotomic inversion in Fp15 and Fp27 , along with
the associated computational cost.
Example 2.

• Let α ∈ GΦ15(p), then αΦ15(p) = 1, which gives α−1 = αp10

αp5

.

• Let α ∈ GΦ27(p), then αΦ27(p) = 1, which gives α−1 = αp18

αp9

.

Based on the method of Fouotsa et al. [18], we have Ic15 = 3 ×M5 + 3 × S5 and
Ic27 = 3 ×M9 + 3 × S9. Using the estimates of Aranha et al. [20], the cyclotomic
inversion costs 78M1 in Fp15 and 189M1 in Fp27 .

Similarly to cyclotomic inversion, the cubing of an element in GΦk(p) can be com-
puted taking advantage of the structure of this group. In this case, cubing is called
cyclotomic cubing. The method of calculating this operation is detailed in [16]. As
noted in [16], the cost of cyclotomic cubing is 4S k

3
+ 5M k

3
. This costs 117M1 in Fp15

and 288M1 in Fp27 . Since we will apply our improvements to BLS15 and BLS27, we
present, in Table 1, the costs of operations in Fp15 and Fp27 based on the estimates of
Aranha et al. [20].

Fields Operations Costs

Fp15

Multiplication M15

Squaring S15

Inversion I15
Fronenius F15

Cyclotomic inversion Ic15

Cyclotomic cubing Cc15

78M1

65M1

229M1

14M1

78M1

117M1

Fp27

Multiplication M27

Squaring S27

Inversion I27
Fronenius Fk

Cyclotomic inversion Ic27

Cyclotomic cubing Cc27

216M1

153M1

536M1

26M1

189M1

288M1

Table 1: The arithmetic operations costs
in the fields Fp15 and Fp27 [20].

2.2 Pairings

Let E be an elliptic curve defined over Fp. Let r be a large prime factor of #E(Fp)
and k be the smallest positive integer such that r|(pk−1). Let P ∈ E(Fp)[r] of order r
and fr,P be the rational function with the following divisor(See [19] for details about

5



divisors):
Div(fr,P ) = r(P )− r(P∞).

Let us consider the point Q ∈ E(Fpk)[r] of order r and let µr be the group of r − th
roots of unity of F∗

pk . Then, the reduced Tate pairing is a bilinear and non-degenerate
map defined as follows:

et : E(Fp)[r]× E(Fpk)[r] −→ µr

(P,Q) 7−→ fr,P (Q)
pk−1

r .

The Ate pairing is a variant of Tate pairing defined as follows:

eA : G2 ×G1 −→ G3

(Q,P ) 7−→ ft−1,Q(P )
pk−1

r ,

where G1 = E(Fp)[r]∩Ker(πp−1) = E(Fp)[r], G2 = E(Fp)[r]∩Ker(πp−p), G3 = µr,
and πp : E(Fp)→ E(Fp), πp(x, y) = (xp, yp), be the Frobenius endomorphism on
the curve E, and t is its trace. According to [7], a pairing e : G1 × G2 −→ G3, with
#G1 = #G2 = #G3 = r, is said to be an optimal pairing if it can be computed in
log2(r)
φ(k) + ϵ(k) basic Miller iterations, with ϵ(k) ≤ log2(k). The computation of pairing

is composed of two stages. The first consists of calculating the function f.,.(.) using
the Miller algorithm [25]. The second is to raise the output of Miller’s algorithm to

the power of pk−1
r . We refer to this stage as the final exponentiation. Its efficient

calculation has become a significant undertaking. Recall that the exponent pk−1
r is

split into the two parts as follows:

pk − 1

r
=

pk − 1

ϕk(p)

ϕk(p)

r
,

where ϕk is the k−th cyclotomic polynomial. Let A be the Miller’s algorithm’s output

and B = A
pk−1
ϕk(p) . Then the pairing’s output is B

ϕk(p)

r . Since there are few multiplica-
tions, inversions, and Frobenius operations in Fpk , the computation of the first part
B, is typically inexpensive and is called the ’easy part’. However, the computation of

the second part, B
ϕk(p)

r , is seen to be more challenging and is referred to as the ’hard
part’. Several methods have been proposed for performing this calculation [9, 18, 26–

28]. In particular, Zhang et al. [29] used a recursion relation to expand ϕk(p)
r in the

base p and compute the hard part of the final exponentiation for k = 27. Hayashida
et al.[30] generalized Zhang et al.’s method to arbitrary embedding degrees using the
homogeneous cyclotomic polynomial constructed from cyclotomic polynomial.
In the next section, we will focus on calculating the optimal Ate pairing on elliptic
curves with embedding degrees 15 and 27.
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2.3 Optimal Ate pairing on BLS15 and BLS27

Generally, BLS curves are defined over Fp by the equation:

E : y2 = x3 + b,

but our focus here is specifically on the BLS15 and BLS27 curves.

The case of BLS15

BLS15 is a family of parametrized elliptic curves with embedding degree 15 defined
in [31] by the following parameters: p = u12−2u11+u10+u7−2u6+u5+u2+u+1

3 ,
r = u8 − u7 + u5 − u4 + u3 − u+ 1,
t = u+ 1,

where u is an integer, known as seed, and it is chosen so that both p and r are integers
and simultaneously primes. For each seed u, we denote the curve in question by Eu.
As indicated in [18], the optimal Ate pairing on the curve Eu is given by:

eo : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p15−1

r ,

where G1 = Eu(Fp)[r] ∩ Ker(πp − 1) ⊂ Eu(Fp), G2 = Eu(Fp)[r] ∩ Ker(πp − p) ⊂
E(Fp15), G3 = µr ⊂ F∗

p15 . The value fu,Q(P ) is calculated using the Miller algorithm

[25]. Let A be the output of the Miller algorithm. The final exponentiation of the

optimal Ate pairing consists of calculating A
p15−1

r . According to [30], p15−1
r is split as

follows:
p15 − 1

r
= (p5 − 1)(p2 + p+ 1)

Φ15(p)

r
.

Therefore, A
p15−1

r = (A(p5−1)(p2+p+1))
Φ15(p)

r . The easy part of the final exponentiation

for BLS15 lies in the computation of B = A(p5−1)(p2+p+1), while the hard part involves

calculating B
Φ15(p)

r . Hayashida et al. indicate, in [30], that the exponent of the hard

part can be parameterized as 3.Φ15(p)
r . This exponent is given, in [30], as follows:

3.
Φ15(p)

r
= (u− 1)2(u2 + u+ 1) +

7∑
i=0

λi(u)p
i(u) + 3,

where λ7 = 1, λ6 = uλ7 − 1, λ5 = uλ6, λ4 = uλ5 + 1, λ3 = uλ4 − 1, λ2 = uλ3 + 1,
λ1 = uλ2, and λ0 = uλ1 − 1. To express the complexity of the final exponentiation
on BLS15, we distinguish two cases. The first is when we apply cyclotomic cubing,
exploiting the term 3 in the hard part decomposition. In this case, we express this
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complexity as follows:

I15 + 18×M15 +Cc15 + 10× F15 + Ic15 + 2×Eu−1 + 9×Eu. (2)

We use this expression to support the complexity of our subsequent methods, which
will leverage cyclotomic cubes. The second case considers the computation without
cyclotomic cubing, based on squaring. Here, the complexity is:

I15 + 19×M15 + S15 + 10× F15 + Ic15 + 2×Eu−1 + 9×Eu. (3)

The case of BLS27

BLS27 is a family of parametrized elliptic curves with embedding degree 27 given in
[29] by the following parameters: r(u) = u18+u9+1

3 ,
p(u) = (u− 1)2r(u) + u,
t(u) = u+ 1,

where u is a seed chosen in the same manner as BLS15. For each seed u, we denote
the curve in question by Eu. According to [18], the optimal Ate pairing on the curve
Eu is given by:

eo : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p27−1

r ,

where G1 = Eu(Fp)[r] ∩ Ker(πp − 1) ⊂ Eu(Fp), G2 = Eu(Fp)[r] ∩ Ker(πp − p) ⊂
E(Fp27), G3 = µr ⊂ F∗

p27 . The value fu,Q(P ) is computed using the Miller algorithm

[25]. Let A be the output of the Miller algorithm. The final exponentiation of the

optimal Ate pairing consists of calculating A
p27−1

r . The exponent p27−1
r is given in [30]

by:
p27 − 1

r
= (p9 − 1)

Φ27(p)

r
.

Thus, A
p27−1

r = (A(p9−1))
Φ27(p)

r . The easy part of the final exponentiation for BLS27

represents the computation of B = A(p9−1), whereas the hard part involves calculating

B
Φ27(p)

r . As given in [30], Φ27(p)
r is decomposed as follows:

(x− 1)2(x2 + px+ p2)(x6 + p3x3 + p6)(x9 + p9 + 1) + 3.

Using this decomposition, and similarly to BLS15, the complexity of the final
exponentiation of the optimal Ate pairing on BLS27 is:

I27 + 8×M27 +Cc27 + 6× F27 + 2×Eu−1 + 17×Eu (4)
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if cyclotomic cubing is considered. Otherwise, it is given by:

I27 + 9×M27 + S27 + 6× F27 + 2×Eu−1 + 17×Eu. (5)

3 Two Consecutive Active Bits(TCAB)

We observed that exponentiation of an element in the cyclotomic subgroup of Fpk

by an integer u, referred to as the ’seed’, is the dominant operation in the hard
part of pairing final exponentiation for the BLS family. Specifically, curves with odd
embedding degrees divisible by 3 are hindered by the lack of cyclotomic squaring.
Despite this limitation, existing works employ the SM method for this exponentiation.
Fortunately, cyclotomic cubing is available and allows us to leverage its efficiency.
In this context, we have noticed that we can find two consecutive active bits in the
NAF representation of u with a particular form ((6)) that allows a partial use of
the cyclotomic cubing. This section will explore scenarios where TCAB improves
exponentiation by u in the cyclotomic subgroup. We will examine existing ’seeds’
and generate new ones for optimal cases. In both cases, the application of TCAB
maintains the efficiency of the SM method while leveraging the cyclotomic cubing’s
superiority over the simultaneous use of squaring and multiplication.

3.1 Description

Recall that for k odd integer and divisible by 3, the field Fpk is represented as follows:

Fpk = F
p

k
3
[x]/(x3 − ξ)

where ξ is a cubic non-residue in F
p

k
3
. Let E be the BLS curve with embedding k

and u ∈ Z be the seed from which all the parameters of E are constructed. The NAF
representation of u is given as follows:

signed(u) = (bl−1 · · · b1b0)2,

where l ∈ N∗ is the length of u and b0, b1, · · · , bl−2 ∈ {−1, 0, 1}, bl−1 ̸= 0. We denote
by h the Hamming weight of u. The bits of u that are not equal to zero are called
’active bits’. Let bi1 , bi2 , · · · , bih be the active bits in the NAF representation of u,
where 0 ≤ i1 < i2 < · · · < ih−1 < ih ≤ l − 1. In the remainder of this section, we fix
1 < j ≤ h and α ∈ GΦk(p) ⊂ Fpk . We write αu in the following form:

αu = αbi12
i1+···+bij−2

2ij−2

(α2ij−1
)(bij−1

+bij
2ij−ij−1 )αbij+2

2ij+2+···+bih2ih

We want to establish a condition at the level of the j−th bit that allows the execution
of some cyclotomic cubings. The desired condition is specified as follows:

bij−1 + bij2
ij−ij−1 = ±3cj , (6)
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where cj ∈ N∗. We use the following theorem to determine the possible pairs taken by
(cj , ij − ij−1).
Theorem 1. [32, 33]
The only solutions of the equation

xa − yb = 1

in integers a, b ≥ 2 and nonzero integers x, y are given by a = 2, b = 3 and x = ±3,
y = 2.

If the property (6) is verified, we examine all possible values for bij−1 and bij ,
and apply the Theorem 1 to conclude that the only pairs taken by (cj , ij − ij−1) are
{(1, 1), (1, 2), (2, 3)}. Furthermore, αu takes the following form:

αu = αbi12
i1+···+bij−2

2ij−2

(α2ij−1
)±3cj

αbij+2
2ij+2+···+bih2ih ,

This form allows for a combination of the usual calculation using the SM method and
the computation of cj cyclotomic cubing. In this case, TCAB method is said to apply
to the seed u at position j.

3.2 Complexity

Assuming that condition (6) holds, we introduce some notations to analyze the
complexity of the TCAB method. For g ∈ {2, · · · , h}, we define g− by:

g− =

{
1 if ∃i ∈ {i1, · · · , ih} \ {ig−1, ig}; bi = −1
0 otherwise.

Specifically, we use g− to indicate whether there is a negative bit outside the positions
g and g− 1. This helps us to determine whether a cyclotomic inversion is needed. Let
sj be given by:

sj =

{
0 if bij−1 + bij2

ij−ij−1 = 3cj

1 if bij−1 + bij2
ij−ij−1 = −3cj .

To compute αu, the TCAB method needs the following complexity:

[1{j ̸=h}(j)ih + 1{h}(j)ih−1]Sk + (h− 2)Mk +max{j−, sj}Ick
+ cjCck

,

where 1A represents the indicator function over a set of integers A. For the same goal,
the SM method requires:

ihSk + (h− 1)Mk +max{(h− 2)−, h−}Ick
.

The gain of TCAB compared to SM, is:

[ih−1{j ̸=h}(j)ih−1{h}(j)ih−1]Sk+1Mk+[max{(h−2)−, h−}−max{j−, sj}]Ick
−cjCck

.

Remark 1. (Multi-positions application)
We suppose that it is possible to apply the method TCAB to a given seed u n times,

10



with n ∈ N∗. Let J = {j1, j2, · · · , jn} ⊂ {2, 3, · · · , h} be the set of positions where we
can apply this method. Then the total complexity of this application is given by:

[1{j1 ̸=h}(j1)ih + 1{h}(j1)ih−1]Sk + (h− 1− n)Mk + [max{j1−, sj1}]Ick
+

n∑
r=1

cjrCck
,

3.3 Application

In this section, we study the TCAB method on the curves BLS15 and BLS27 based
on the placement of positions within the seed u where TCAB is applicable: at the
beginning, in the middle, and at the end. We will use existing seeds for analysis.
Then, we interpret the optimal scenario. Finally, we propose new seeds for TCAB
use, offering comparisons to highlight the efficiency compared to the SM method.
Throughout this section, we will use Table 1 to estimate the costs.

3.3.1 The case of BLS15

Assume that Fp15 is represented by:

Fp15 = Fp5 [x]/(x3 − ξ5),

where ξ5 is a cubic non-residue in Fp5 . Let α ∈ GΦ15(p) ⊂ Fp15 and u ∈ Z. We apply
the TCAB method for BLS15 at the middle and end of some existing seeds, as no
seeds in the literature were found where TCAB is applicable at the beginning.

TCAB in the middle of the seed:

Let um15
be the seed proposed in [18], given by:

um15
= 1 + 28 + 29 + 241 + 248,

and matches the 192−bit security level. We write αum15

αum15 = α(α28

)3α241+248 .

The complexity of the exponentiation by um15
in Gϕ15(p) using TCAB and SM is

given in Table 2. We give, in Table 3, the cost of exponentiation in Gϕ15(p) by the

Method Complexity

TCAB 3M15 + 48S15 +Cc15

SM 4M15 + 48S15

Table 2: The complexity of expo-
nentiation in GΦ15(p) by um15 using
SM and TCAB.
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application of TCAB and SM to um15 and provide the possible gain. From Table

Method Cost Gain

TCAB 3471M1 −39M1

SM 3432M1

Table 3: Comparison of costs
of one exponentiation by um15

in GΦ15(p) using SM and
TCAB.

3, we remark that replacing TCAB by SM is not advantageous in the middle of the
seed.

TCAB at the end of the seed:

Let ue15 be the seed proposed in [20], given by:

ue15 = 26 + 259 + 262 + 273 + 274,

and matches the 128−bit security level. We put αue15 in the following form:

αue15 = α26+259+262(α273

)3.

For this seed, the complexity of TCAB is 3M15 + 73S15 + Cc15 , while SM costs
4M15 + 74S15. Since ue15 is even and its NAF representation does not contain any
negative digit, the exponentiation in Gϕ15(p) by ue15 − 1 requires more M15 and Ic15
than that by ue15 . The cost of TCAB is 5096M1, whereas the cost of SM is 5122M1.
Consequently, the gain provided by the application of TCAB instead of SM is 26M1.
For this reason, we extend the comparison to the final exponentiation. Using the
expressions (2) and (3), we compute this complexity and give it in Table 4.

Method Complexity

TCAB I15 + 53M15 + 803S15 + 12Cc15 + 3Ic15 + 10F15

SM I15 + 65M15 + 815S15 + 3Ic15 + 10F15

Table 4: The complexity of the final exponentiation applying
SM and TCAB to ue15 .

Applying TCAB to the seed ue15 , using the Table 1 and the expression (2), the
final exponentiation of the optimal Ate pairing on BLS15 costs:

229M1+53×(78M1)+803×(65M1)+12×(117M1)+3×(78M1)+10×(14M1) = 58336M1.

12



By applying SM to the same seed, the final exponentiation complexity is:

229M1 + 65× (78M1) + 815× (65M1) + 3× (78M1) + 10× (14M1) = 58648M1.

We give these costs in Table 5 and provide the gain of using TCAB instead of SM.

Method Cost Gain

TCAB 58336M1 312M1

SM 58648M1

Table 5: Comparison of costs
of the final exponentiation
on BLS applying SM and
TCAB to ue15 .

3.3.2 The case of BLS27

Let Fp27 be represented as follows:

Fp27 = Fp9 [x]/(x3 − ξ),

where ξ is a cubic non-residue in Fp9 . Let α ∈ GΦ27(p) ⊂ Fp27 and u ∈ Z. We will
apply the TCAB method in three situations: at the beginning, middle, and end of
the given seed u.

Application of TCAB at the beginning of the seed:

Let ub27 be the seed proposed in [15], given by:

ub27 = 23 + 24 + 211 + 215,

and matches the 128−bit security level. Then, we have:

αub27 = (α23

)3α211+215 .

The complexity of the exponentiation by ub27 in Gϕ27(p) using TCAB and SM is
given in Table 6. We give, in Table 7, the cost of exponentiation in Gϕ27(p) by the
application of TCAB and SM to ub27 and provide the possible gain. From Table 7,
we remark that replacing TCAB by SM is not advantageous in the middle of the
seed. In the current situation, TCAB shows no advantage over SM.

Application of TCAB in the middle of the seed:

Let um27 be the seed proposed in [15], given by:

um27
= 1+ 2+ 24 + 26 + 27 + 29 + 210 + 212 + 229,
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Method Complexity

TCAB 2M27 + 15S27 +Cc27

SM 3M27 + 15S27

Table 6: The complexity of expo-
nentiation in GΦ27(p) by ub27 using
SM and TCAB.

Method Cost Gain

TCAB 3015M1 −72M1

SM 2943M1

Table 7: The costs of
one exponentiation by ub27

in GΦ27(p) using SM and
TCAB.

and matches the 256−bit security level. It should be noted that TCAB is applied
three times to the middle of this seed. We can express αum27 as:

αum27 = α3α24(α26)3(α29)3α212+229 ,

Table 8 contains the complexity of the exponentiation by um27
in Gϕ27(p) using TCAB

and SM. In Table 9, we give the cost of exponentiation in Gϕ27(p) applying TCAB

Method Complexity

TCAB 5M27 + 29S27 + 3Cc27

SM 8M27 + 29S27

Table 8: The complexity of exponen-
tiation in GΦ27(p) by um27

using SM
and TCAB.

and SM to um27
and provide the possible gain. In the current situation, TCAB offers

no advantage over SM.

Application of TCAB at the end of the seed:

Since we expect a positive gain in this situation and the utility of BLS27 at 192- and
256-bit security levels, we present two existing seeds for these levels. However, no valid
seed has been found for the 128-bit security level.
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Method Cost Gain

TCAB 6381M1 −216M1

SM 6165M1

Table 9: The costs of one ex-
ponentiation by um27

inGΦ27(p)

using SM and TCAB.

• At 192−bit security level:
Let ue27.192 be the seed proposed in [15], given by:

ue27.192 = −25 + 28 + 212 + 216 + 221 + 222.

Thus, αue27.192 can be expressed as:

αue27.192 = α−25+28+212+216(α221

)3.

The complexity for TCAB is 4M27 + 21S27 + Cc27 + Ic27 , while for SM it is
5M27 + 22S27 + Ic27 . As ue27.192 is even and its NAF representation contains a
negative digit, the exponentiation in Gϕ27(p) by ue27.192 − 1 requires more M27 than
that by ue27.192 . The costs of exponentiation by ue27.192 in GΦ27(p) using TCAB
and SM are 4554M1 and 4635M1, respectively. The gain from TCAB over SM
is 81M1. Since this gain is positive, we can proceed to the final exponentiation for
comparison. Using the expressions (4) and (5), this complexity of is given in Table
10. Applying TCAB to the seed ue27.192 , using the Table 1 and the expression (4),

Method Complexity

TCAB I27 + 86M27 + 399S27 + 20Cc27 + 19Ic27 + 6F27

SM I27 + 106M27 + 419S27 + 19Ic27 + 6F27

Table 10: The complexity of the final exponentiation applying
SM and TCAB to ue27.192 .

the final exponentiation of the optimal Ate pairing on BLS27 costs:

536M1+86×(216M1)+399×(153M1)+20×(288M1)+19×(189M1)+6×(26M1) = 89666M1.

By applying SM to the same seed, the final exponentiation complexity is:

536M1+106×(216M1)+419×(153M1)+19×(189M1)+6×(26M1) = 91286M1.

Those costs are given in Table 11 with the gain of using TCAB instead of SM.
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Method Cost Gain

TCAB 89666M1 1620M1

SM 91286M1

Table 11: Comparison of costs
of the final exponentiation
on BLS27 applying SM and
TCAB to ue27.192 .

• At 256−bit security level:
Let ue27.256 be the seed proposed in [29], given by:

ue27.256 = −23 + 28 + 225 + 227 + 228,

and matches the 256−bit security level. Let α ∈ GΦ27(p) ⊂ Fp27 . Then, we have:

αue27.256 = α−23+28+225(α227

)3,

The complexity of exponentiation by ue27.256 in GΦ27(p) using TCAB is 3M27 +
27S27+Cc27 + Ic27 , while it is 4M27+28S27+ Ic27 using SM. The exponentiation
in Gϕ27(p) by ue27.256 − 1 requires more M27 than that by ue27.256 because ue27.256

is even and its NAF representation contains a negative digit. The costs of TCAB
and SM are 5256M1 and 5337M1, respectively. We use the expressions (4) and (5)
to give the complexity of the final exponentiation in Table 12. Applying TCAB to

Method Complexity

TCAB I27 + 67M27 + 513S27 + 20Cc27 + 19Ic27 + 6F27

SM I27 + 87M27 + 533S27 + 19Ic27 + 6F27

Table 12: The complexity of the final exponentiation applying
SM and TCAB to ue27.256 .

the seed ue27.192 , using the Table 1 and the expression (4), the final exponentiation
of the optimal Ate pairing on BLS27 costs:

536M1+67×(216M1)+513×(153M1)+20×(288M1)+19×(189M1)+6×(26M1) = 103004M1.

By applying SM to the same seed, the final exponentiation complexity is:

536M1+87×(216M1)+533×(153M1)+19×(189M1)+6×(26M1) = 104624M1.

Those costs are given in Table 13 with the gain of using TCAB instead of SM.
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Method Cost Gain

TCAB 103004M1 1620M1

SM 104624M1

Table 13: Comparison of costs
of the final exponentiation
on BLS27 applying SM and
TCAB to ue27.256 .

3.4 Optimal Gain Analysis

In this section, we evaluate the efficiency of TCAB based on its application positions.
Although our analysis focuses on the curves BLS27 and BLS15, the insights are also
relevant for other curves with an odd embedding degree divisible by 3. Assuming
also that M1 = S1, based on all previous assumptions, using the same notation as
in TCAB description, and assuming k ∈ {15, 27}, we present the following possible
cases.

1. We suppose that we can apply TCAB to a given seed u over the positions set J =
{j1, j2, · · · , jn}, such that h /∈ J . Here, SM and TCAB need the same squaring
number. The gain of TCAB compared to SM is nMk − (

∑n
r=1 cjr )Cck

. For this
gain to be positive, we require that

∑n
r=1 cjr < 3

4n for BLS27, and
∑n

r=1 cjr < 2
3n

for BLS15. These conditions are not feasible because
∑n

r=1 cjr ≥ n > 1. In this
case, we can not benefit from applying TCAB,

2. Let us suppose that we can perform the first case and apply TCAB at the end of
the seed u. In this case, SM need more squaring than TCAB The gain of TCAB
is

(n+ 1)Mk + (ih − ih−1)Sk − (ch +

n∑
r=1

cjr )Cck
.

This gain can exceed 27M1 for BLS27, but it cannot be positive for BLS15.
3. Suppose that we can apply TCAB only at the end of the seed u. In this case, the

possible positive gains are 81M1 and 99M1 for BLS27, and 26M1 and 39M1 for
BLS15.

We conclude that optimal gain is achieved by applying the TCAB method at the end
of the seed.

3.5 Optimal new seeds

We focus on the optimal case mentioned above to generate new seeds valid for TCAB
on the curves BLS27 and BLS15. For this goal, we follow Barbulescu and Duquesne’s
recommendations [13] for discrete logarithm computation. We also considered the size
of the seeds produced in [15, 18] for the curves BLS27 and BLS15.
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3.5.1 New seed for TCAB at the 128−bit security level

Case of k = 15

Based on Barbulescu and Duquesne’s recommendations [13], we generated the seed
u = 2+212+226+228+229. This results in a prime p with 355 bits and a prime r with
238 bits. The complexity of exponentiation in GΦ15(p) by the seed u provided above
using TCAB is 3M15+28S15+Cc15 . Using the estimates mentioned in Table 1, this
exponentiation costs 2171M1. Note that the exponentiation in GΦ15(p) by u − 1 has
the same cost. Using expression (2) (where complexity is based on cyclotomic cubing),
we apply TCAB to the seed u, showing that the final exponentiation of the optimal
ate pairing on the curve BLS15 has the following cost:

229M1 + 18× (78M1) + 117M1

+ 10× (14M1) + 78M1

+ 2× (2171M1) + 9× (2171M1)

= 25849M1

The case of k = 27

We successfully generated the seed u = 2+29+212+215, resulting in a prime p of 303
bits and a prime r of 272 bits. Using this seed, the complexity of the exponentiation in
GΦ27(p) using TCAB is 2M27+12S27+2Cc27 . For this seed, the exponentiation by u
or u−1 costs 2844M1. Applying TCAB to the current seed and using the complexity
expression (4), the final exponentiation on BLS27 costs:

536M1+8×(216M1)+288M1+6×(26M1)+2×(2844M1)+17×(2844M1) = 56744M1.

3.5.2 New seeds for TCAB at the 192−bit security level

Case of k = 15

Based on the recommendations in [13], we found the seed u = 1+29+216+268+271,
which leads to a prime p of 853 bits and a prime r of 570 bits. The complexity of
exponentiation in GΦ15(p) by this seed using TCAB is 3M15 + 68S15 + 2Cc15 . The
cost of this exponentiation is 4888M1. For the current seed, the exponentiation in
GΦ15(p) by u− 1 is 4810M1. Applying TCAB to the seed u and using the complexity
expression (2), the final exponentiation of optimal ate pairing on the curve BLS15
costs:

229M1 + 18× (78M1) + 117M1

+ 10× (14M1) + 78M1 + 2× (4810M1)

+ 9× (4888M1) = 55580M1.

Case of k = 27

Following the recommendations in [13], we found the seed u = 1+211+220+223+224,
this gives a a prime p of 492 bits and a prime r of 443 bits. The current seed results
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in an exponentiation in GΦ27(p) with a complexity of 3M27 + 23S27 + Cc27 . This
costs 4455M1, while the exponentiation by u−1 costs 4239M1. Using the complexity
expression (4) and applying TCAB to the current seed, the total cost of the final
exponentiation of optimal ate pairing on the curve BLS27 is:

536M1+8×(216M1)+288M1+2×(4239M1)+17×(4455M1)+6×(26M1) = 86921M1.

3.5.3 New seeds for TCAB at the 256−bit security level (k = 27)

We followed the same recommendations as in [13] to generate the seed u = 2 +
241 + 245 + 248 for TCAB use. This seed gives a prime p of 963 bits and a prime
r of 866 bits. The complexity of exponentiation in GΦ27(p) by applying TCAB is
2M27 + 45S27 + 2Cc27 . This exponentiation costs 7893M1, which is also the cost for
exponentiation by u− 1. Based on the complexity expression (4), the total cost of the
final exponentiation of optimal ate pairing on the curve BLS27 by applying TCAB
to the seed u is:

536M1+8×(216M1)+288M1+2×(7893M1)+17×(7893M1)+6×(26M1) = 152675M1.

We group all newly generated seeds in Table 14, providing the following: the curve
embedding degree, the size of the prime p, the security level, and the curve equation
coefficient b.

Seeds k Size(p) Size(pk) SL b DL algorithm

2 + 241 + 245 + 248 27 963 25975 256 3 exTNFS

1 + 211 + 220 + 223 + 224 27 492 13265 192 2 SexTNFS

1 + 29 + 216 + 268 + 271 15 853 12787 192 1 exTNFS

2 + 29 + 212 + 215 27 303 8160 128 16 SexTNFS

2 + 212 + 226 + 228 + 229 15 355 5323 128 16 SexTNFS

Table 14: New valid seeds for TCAB use.

3.6 Comparison

This section presents two comparison steps. First, we conduct an self comparison
where we compare the application of TCAB and SM to our new seeds, emphasizing
the superiority of TCAB. Second, we perform an external comparison in which
we compare the cost of the final exponentiation for optimal ate pairing on both
BLS15 and BLS27, using our new seeds alongside existing ones.
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3.6.1 Self comparison

In Table 15, we compare the complexity of the final exponentiation of the optimal Ate
pairing on the BLS15 and BLS27 curves, applying TCAB and SM to our novel seeds.
In this comparison, we used the expressions (2) and (4) to calculate the complexity
of TCAB, and (3) and (5) to calculate the complexity of SM. Based on Tables 1

Seed k Method
Complexity

Ik Mk Sk Cck Ick Fk

2 + 241 + 245 + 248 27
SM 1 66 913 0 0 6

TCAB 1 46 855 39 0 6

1 + 211 + 220 + 223 + 224 27
SM 1 83 457 0 0 6

TCAB 1 63 437 20 0 6

1 + 29 + 216 + 268 + 271 15
SM 1 61 782 0 1 10

TCAB 1 49 748 23 1 10

2 + 29 + 212 + 215 27
SM 1 66 286 0 0 6

TCAB 1 46 228 39 0 6

2 + 212 + 226 + 228 + 229 15
SM 1 63 320 0 1 10

TCAB 1 51 308 12 1 10

Table 15: Comparison of the complexity of the final exponentiation on BLS15
and BLS27 by applying TCAB and SM to the new seeds.

and 15, we compare the final exponentiation cost on the BLS15 and BLS27 curves in
Table 16 when applying TCAB and SM. Furthermore, we assess the gain of TCAB
over SM. From Table 16, we confirm our previous analysis by noting that our new
seeds are more beneficial when applying TCAB rather than SM.

3.6.2 External comparison

We select a seed for each security level to compare, in Table 17, with existing seeds
in terms of the complexity of the final exponentiation cost on the curves BLS15 and
BLS27. TCAB is applied to our seeds, while SM is used for the others. Furthermore,
in Table 18, we compare the cost of the final exponentiation, highlighting the gains
achieved with our seeds.
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Seeds: k Methods Cost in Fp Gain (TCAB/SM)

2 + 241 + 245 + 248 27
SM 154637M1 1962M1

TCAB 152675M1

1 + 211 + 220 + 223 + 224 27
SM 88541M1 1620M1

TCAB 86921M1

1 + 29 + 216 + 268 + 271 15
SM 56035M1 455M1

TCAB 55580M1

2 + 29 + 212 + 215 27
SM 58706M1 1962M1

TCAB 56744M1

2 + 212 + 226 + 228 + 229 15
SM 26161M1 312M1

TCAB 25849M1

Table 16: Comparison of the cost of the pairing’s final exponentiation on BLS15
and BLS27 and by applying TCAB and SM to the new seeds.

Seeds k SL Complexity

2 + 241 + 245 + 248

(This work) 27 256
I27 + 46M27 + 855S27 + 39Cc27 + 6F27

1 + 29 + 228 + 242 + 251

[18]
I27 + 83M27 + 970S27 + 6F27

1 + 211 + 220 + 223 + 224

(This work) 27 192
I27 + 63M27 + 437S27 + 20Cc27 + 6F27

1 + 24 + 214 + 217 + 225

[18]
I27 + 83M27 + 476S27 + 6F27

2 + 212 + 226 + 228 + 229

(This work) 15 128
I15 + 51M15 + 308S15 + 12Cc15 + Ic15 + 10F15

22 + 25 + 219 + 231

[18]
I15 + 52M15 + 342S15 + Ic15 + 10F15

Table 17: Comparison of our seeds with some existing seeds in terms of the paring’s
final exponentiation complexity on BLS15 and BLS27.

4 Exponentiation using the sparse ternary
representation

In this section, we generate new seeds for the BLS15 and BLS27 curves, sparse
in ternary representation. We then evaluate the efficiency of final exponentiation on
these curves using the ’Cubing and Multiply’ (CM) method (Algorithm 1) with these
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Seeds k SL Cost Gain

2 + 241 + 245 + 248

(This work) 27 256
152675M1 14202M1

1 + 29 + 228 + 242 + 251

[18]
166877M1

1 + 211 + 220 + 223 + 224

(This work) 27 192
86921M1 4527M1

1 + 24 + 214 + 217 + 225

[18]
91448M1

2 + 212 + 226 + 228 + 229

(This work) 15 128
25771M1 962M1

22 + 25 + 219 + 231

[18]
26733M1

Table 18: Comparison of our seeds with some existing seeds
in terms of the paring’s final exponentiation cost on BLS15
and BLS27.

seeds, compared to ’Square and Multiply’ (SM) for exponentiation in the cyclotomic
subgroup, utilizing cyclotomic cubing.

4.1 Cubing and multiplication (CM)

Let u be a positive integer. The ternary representation of u is given as follows:

tern(u) = (t0t1 · · · tn−2tn−1)3,

where t0, t1, · · · , tn−2, tn−1 ∈ {0, 1, 2}, u = t03
0 + t13

1 + · · · + tn−23
n−2 + tn−13

n−1

and n denotes the length of the ternary representation.
Example 3.
Let u = 21456. Then, its ternary representation is given by:

tern(u) = (0022012001)3.

Let k ∈ N∗, such that 3|k. Let α ∈ GΦk(p) ⊂ Fpk . To fully leverage the efficiency
of cyclotomic cubing, we need a method that maximizes its use. Thus, we introduce
the CM method, which processes the ternary seed representation, performing one
cyclotomic cubing for each digit and one multiplication if the digit is non-zero. This
method is described in Algorithm 1.

4.2 Ternary and NAF Representations: Efficiency Comparison

The immediate idea to benefit from the cyclotomic cubing efficiency is to apply CM to
the existing seeds instead of SM. We will assess the feasibility of this idea as follows:
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Algorithm 1 CM (Cubing and multiplication)

Input: Parameter u = (t0, t1, · · · , tn)3, α ∈ GΦk(p) ⊂ Fpk

Output: αu.

1. r = 1.
2. β = α2.//If the ternary representation of α contains 2
3. for j = n− 1 down to 0 do
3.1 r ← r3.
3.2 if ti = 1 then r ← rα.
3.3 if ti = 2 then r ← rβ. //If the ternary representation of a contains 2

4. return r.

Let hb be the Hamming weight of a given seed u in its NAF representation and ht be
its Hamming weight in its ternary representation. Then, if we use the method CM
to compute the exponentiation by u in Fpk ’s cyclotomic subgroup, the computation
complexity is given by:

(ht − 1)Mk + Sk + (log3(u)− 1)Cck
.

If we utilize the method SM to perform the wanted exponentiation, the complexity
is expressed as:

(hb − 1)Mk + (log2(u)− 1)Sk.

We should minimize ht and hb to reduce the above complexities. In other words,
the seed u should be as sparse as possible. Since ht and hb are both used to count
multiplications and are typically very small, forCM to be more efficient than SM, it is

required that log3(u)Cck
< log2(u)Sk. This implies

Cck

Sk
< log(3)

log(2) ≈ 1.58. Nanjo et al.

demonstrated in [16] that this condition does not hold for the BLS15 curve. Specifically,
Cc15

S15
= 1.81 > log(3)

log(2) ≈ 1.58. Therefore, using CM instead of SM is not advantageous.

We reached a similar conclusion with the BLS27 curve, as
Cc27

S27
= 1.88 > log(3)

log(2) .

Thus, applying CM to the ternary representations of existing binary seeds
is not beneficial.

4.3 Generating new sparse ternary seeds

Since CM did not outperform SM on existing BLS15 and BLS27 binary seeds,
we now explore the potential of generating sparse ternary seeds to enhance the effi-
ciency of the CM method. The new seeds should meet the security specifications for
discrete logarithm computation outlined in [13]. Additionally, they should be com-
parable in complexity to the seeds proposed in [15, 18], which adhere to the same
specifications. We denote each of our new seeds as u0 and each seed from [18] as
u. For CM applied to u0 to be more efficient than SM applied to u, we require
log3(u0)Cc15 < log2(u)S15 for BLS15 and log3(u0)Cc27 < log2(u)S27 for BLS27.
This implies log3(u0) < log2(u)

S15

Cc15
and log3(u0) < log2(u)

S27

Cc27
. In other words,

log3(u0) <
5
9 log2(u) for BLS15 and log3(u0) <

17
32 log2(u) for BLS27. Once these in-

equalities are satisfied, we adjust the Hamming weights to generate the desired seeds.
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For BLS27, we generated the seed 1 + 3 + 2 × 320 + 2 × 326 at the 256−bit security
level and the seed 1 + 2 × 39 + 311 at the 192−bit security level. We also generated
the seed 1 + 32 + 35 + 310 + 316 for BLS15 at the 128−bit security level.

4.4 Comparison

We conduct this comparison in two steps. The first step assesses the security of the
new seeds and compares the efficiency of their ternary and NAF representations for
exponentiation in the cyclotomic subgroup. We refer to this step as self comparison.
The second step contrasts the security and efficiency of our seeds with those proposed
in [18], and we refer to it as an external comparison.

4.4.1 Self comparison

We summarize, in Table 19, the security properties of our new ternary seeds based on
the security specifications presented in [13]. In Table 20, we compare the complexity

Seeds k Size(p) Size(pk) SL b DL algorithm

1 + 3 + 2× 320 + 2× 326 27 843 22752 256 16 exTNFS

1 + 2× 39 + 311 27 353 9529 192 16 exTNFS

1 + 32 + 35 + 310 + 316 15 303 4542 128 1 exTNFS

Table 19: Security proprieties of our new ternary seeds

of exponentiation in the cyclotomic subgroup using the SM method with the NAF
representation versus the CM method with the ternary representation of these seeds.
We give also the gains provided by applying TCAB to our seeds instead of SM.
For our new seeds, it is clear from Table 20 that exponentiation in the cyclotomic
subgroups of BLS15 and BLS27 is more efficient in ternary representation than in
NAF representation.

Seeds k Methods
Complexity

Gain(CM/SM)
Mk Sk Cck

1 + 3 + 2× 320 + 2× 326 27
SM 20 42 0

2457M1

CM 3 1 26

1 + 2× 39 + 311 27
SM 8 17 0

576M1

CM 2 1 11

1 + 32 + 35 + 310 + 316 15
SM 15 25 0

611M1

CM 4 0 16

Table 20: The complexity of exponentiation in Gϕ15(p) and Gϕ27(p) using CM
and SM applied to the new ternary seeds.
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We now proceed to compare our new ternary seeds with existing seeds. In Table 21,
we compare the security properties of our new ternary seeds with those proposed in
[18]. Although our seeds meet security levels considering the sizes p and r in bits,

Seeds SL Size(p) Size(r) Size(pk) DL Alg

1 + 3 + 2× 320 + 2× 326
256

851 766 22976 exTNFS

1 + 29 + 228 + 242 + 251 [18] 1019 883 27499 SexTNFS

1 + 2× 39 + 311
192

353 318 9529 exTNFS

1 + 24 + 214 + 217 + 225 [18] 511 410 13461 SexTNFS

1 + 32 + 35 + 310 + 316
128

303 203 4542 exTNFS

22 + 25 + 219 + 231 [18] 371 249 5557 SexTNFS

Table 21: Comparison of security proprieties of our ternary seeds with binary
seeds in [18]. k = 27 for SL= 256 or 192 and k = 15 for SL= 128.

they are less secure than those proposed in [18].
In Table 22, we compare the complexity of exponentiation in the cyclotomic subgroups
of Fp15 and Fp27 using our new seeds and those proposed in [18]. Additionally, we
present the performance gains achieved by applying the CM method to ternary seeds,
as compared to the SM method applied to binary seeds used in [18]. Since the gains are

Seed k
Complexity

Gain in Fp
Mk Sk Cck

1 + 3 + 2× 320 + 2× 326
27

3 1 26
378M1

1 + 29 + 228 + 242 + 251 [18] 4 51 0

1 + 2× 39 + 311
27

2 1 11
936M1

1 + 24 + 214 + 217 + 225 [18] 4 25 0

1 + 32 + 35 + 310 + 316
15

4 0 16
65M1

22 + 25 + 219 + 231 [18] 3 31 0

Table 22: Comparison of the complexity of exponentiation by the
ternary seeds and the seeds of [18] in Gϕ15(p) and Gϕ27(p).

positive in Table 22, we will continue by comparing the costs of the final exponentiation
of the optimal Ate pairing on BLS15 and BLS27 using our ternary seeds with those
proposed in [18]. For the curve BLS15 and at 128−bit security level, we apply CM
to the seed u1 + 32 + 35 + 310 + 316. We find Eu−1 = 2106M1 and Eu = 2184M1 .
We use the complexity expression (3) to compute the cost of the final exponentiation
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on BLS15 as follows:

229M1 + 18× (78M1) + 117M1 + (78M1) + 10× (14M1)

+ 2× (2106M1) + 9× (2184M1)

= 25836M1.

For BLS27 curve and at 192−bit security level, we apply CM to the seed u = 1 +
2 × 39 + 311 to get Eu−1 = 3537M1 and Eu = 3753M1 . We use the complexity
expression (4) to compute the cost of the final exponentiation on BLS27 as follows:

536M1+8×(216M1)+288M1+6×(26M1)+2×(3537M1)+17×(3753M1) = 73583M1.

For BLS27 curve and at 256−bit security level, where the seed is u = 1+3+2×320+
2× 326, we apply CM to u to obtain Eu−1 = 8073M1 and Eu = 8289M1. Thus, the
cost of the final exponentiation on BLS27 for the current seed is computed as follows:

536M1+8×(216M1)+288M1+6×(26M1)+2×(8073M1)+17×(8289M1) = 159767M1.

We give these costs in Table 23 and compare them with the costs provided by the
seeds proposed in [18], highlighting the gains achieved by using our seeds to calculate
the final exponentiation.

Seeds k SL Cost Gain

1 + 3 + 2× 320 + 2× 326

(This work) 27 256
159767M1 7110M1

1 + 29 + 228 + 242 + 251

[18]
166877M1

1 + 2× 39 + 311

(This work) 27 192
73583M1 17865M1

1 + 24 + 214 + 217 + 225

[18]
91448M1

1 + 32 + 35 + 310 + 316

(This work) 15 128
25836M1 897M1

22 + 25 + 219 + 231

[18]
26733M1

Table 23: Comparison of the final exponentiation costs and
the gain offered by our seeds

Based on the tables presented in this section, we conclude the following regarding the
use of cyclotomic cubing and ternary representation for computing final exponentiation
on elliptic curves curves with odd embedding degrees divisible by 3:
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1. Applying the CM method to a seed where the SM method is already efficient
offers no advantage,

2. We can generate a sparse ternary seed where the CM method outperforms the SM
method on the NAF representation of the same seed,

3. Given a seed u0 with a sparse binary representation where the SM method is
efficient, we can generate a sparse ternary seed v0 for which CM outperforms SM
on u0. However, the ternary seed has less security than the binary seed, according
to the security constraints in [13].

4. If a sparse ternary seed v0 is generated to match the same security of a sparse
binary seed u0, then CM applied to v0 is less efficient than SM applied to u0.

5 Conclusion

The choice of seed for generating pairing-friendly curve parameters is critical in opti-
mizing the efficiency of the Miller algorithm and the final exponentiation. To enhance
these tasks, selecting a seed with a sparse NAF representation is essential. For elliptic
curves with odd embedding degrees divisible by 3, such as BLS27, cyclotomic cub-
ing has been shown to outperform squaring followed by multiplication. Inspired by
Nanjo et al. [16], we optimized the final exponentiation of the optimal Ate pairing
on the BLS family, achieving a consistent slight improvement. Furthermore, we in-
troduced the TCAB method, which leverages partial cyclotomic cubing based on the
specific structure of certain seeds, while preserving the efficiency of the Miller algo-
rithm through the sparse NAF representation of the seed. Cyclotomic cubing on these
curves motivated us to generate new seeds with sparse ternary representations, accel-
erating exponentiation in the cyclotomic subgroups of Fp15 and Fp27, and improving
final exponentiation on BLS15 and BLS27. However, two challenges emerged with
ternary representations: first, generating seeds with competitive complexity to exist-
ing seeds with sparse binary representation risks reducing security; second, the ternary
seeds do not always exhibit sparse NAF representations, limiting the efficiency of the
Miller algorithm. Further improvements in cyclotomic cubing and the development of
a ternary-based alternative to the double-and-add method [34] are needed to address
these challenges.
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