
MERCURY: A multilinear Polynomial

Commitment Scheme with constant proof size

and no prover FFTs

Liam Eagen

Alpen Labs

Ariel Gabizon

Aztec Labs

March 4, 2025

Abstract

We construct a pairing-based polynomial commitment scheme for multilinear
polynomials of size n where constructing an opening proof requires O(n) field oper-
ations, and 2n+O(

√
n) scalar multiplications. Moreover, the opening proof consists

of a constant number of field elements. This is a significant improvement over pre-
vious works which would require either

1. O(n log n) field operations; or

2. O(log n) size opening proof.

The main technical component is a new method of verifiably folding a witness via
univariate polynomial division. As opposed to previous methods, the proof size and
prover time remain constant regardless of the folding factor.

1 Introduction

Polynomial Commitment Schemes (PCSs)[KZG10] allow a party to commit to a poly-
nomial and later prove an evaluation of the polynomial is correct. That is, for a com-
mitment cm and values a, b; a prover P can produce a proof that cm = com(f(X)) and
f(a) = b. PCSs form an essential part of most modern Succinct Non-interactive ARgu-
ments of Knowledge (SNARKs). They allow a protocol designer to focus on designing a
so-called polynomial Interactive Oracle Proof which can then be compiled, via a PCS, to
a SNARK (see [BFS19, GWC19, CHM+19] for descriptions of such compilers). In fact,

1

many of the most important properties of a SNARK, like proof size, verifier complexity,
and cryptographic assumptions, follow primarily from the PCS. The earliest polyno-
mial commitment schemes [KZG10] supported univariate polynomials and were used to
construct SNARKs like Plonk [GWC19] and Marlin [CHM+19] with O(n log n) prover
complexity and constant proof size. A different class of SNARKs [Set19, CBBZ22] arising
from the sumcheck protocol [LFKN92] have linear prover time, but require multilinear
Polynomial Commitment Schemes (ml-PCS’s).

1.1 Our results

Existing transformations from a univariate PCS to ml-PCS are either linear time but
require a logarithmic opening proof size, like gemini [BCHO22] and zeromorph [KT23],
or have constant size opening proofs but incur an additional O(n log n) prover cost to
perform univariate polynomial multiplication via FFT’s. We propose a new protocol that
goes beyond this tradeoff: MERCURY has constant proof size and only O(n) prover
operations (in addition to the O(λn/(log(λn)) operations for muti-scalar multiplications
arising in KZG commitments). It is also concretely more efficient than existing schemes
in terms of the required scalar multiplications, as can be seen in table 1.

Table 1: Comparison of pairing-based ml-PCS. G denotes a scalar multiplication. All
verifiers below additionally require two pairings. Proof size is measured in F-elements,
although all proofs also contain G-elements.

Scheme Proof size Prover Work Verifier Work

univariate-based e.g.[PH23] O(1) F O(n log n) F,O(n) G O(log n) F, O(1) G
gemini [BCHO22] O(log n) F O(n) F, 3n G O(log n) F, O(log n) G
zeromorph [KT23] O(log n) F O(n) F, 2.5n G O(log n) F, O(log n) G
MERCURY (this work) O(1) F O(n) F, 2n+O(

√
n) G O(log n) F, O(1) G

2 Overview of technique

In this overview, we use some of the notation defined in Sections 3.1 and 3.2.

Our technique is best thought of as an improvement of the gemini ml-PCS [BCHO22].
Let’s start by recalling how gemini works. gemini commits to a multilinear function as
a univariate KZG commitment[KZG10]. Specifically, fix a vector f ∈ Fn describing the
function’s values on the boolean cube Bs where s = log n. That is, we think of f as
representing the multilinear

M(X0, . . . , Xs−1) =
∑
i<n

eq(i,X0, . . . , Xs−1)fi.

2

(Here, as explained in Section 3.2, we interpret i as its binary decomposition (i0, . . . , is−1)
when used as input to eq.) Let srs =

{[
xi
]}

i<n
be a KZG structured reference string.

gemini outputs cm = [f(x)] =
∑

i<n fi
[
xi
]
as a commitment to M .

Now suppose prover P wants to convince verifier V that M(z) = v, for some z =
(z0, . . . , zs−1) ∈ Fs. In gemini, P sends commitments cm1, . . . , cms to the s incremental
restrictions leading to evaluation at z. Namely, to M1 = M(z0, X1, . . . , Xs−1), M2 =
M(z0, z1, X2, . . . , Xs−1), . . . ,Ms = M(z0, . . . , zs−1). Assuming P sent commitments to
the correct functions, all that is needed is to check that cms is the commitment to the
constant v. Of course, the interesting part is proving the commitments are to the correct
functions!

For this purpose, gemini exploits a connection between M and its corresponding
univariate f(X): Write f(X) = f0(X

2) +Xf1(X
2), for f0(X), f1(X) of degree < n/2.

Let fz0(X) be the univariate corresponding to M1 defined above. Then, we have

fz0(X) = (1− z0)f0(X) + z0f1(X).

Additionally, we can evaluate f0 and f1 via f using the equations

f0(X
2) =

f(X) + f(−X)

2
, f1(X

2) =
f(X)− f(−X)

2X

Thus, we can perform consistency checks between each pair cmi−1, cmi, via univariate
KZG openings at a random challenge, inductively showing cmi is indeed the commitment
to the next desired restriction. Of course, we get O(s) = O(log n) proof length due to
this sequence of restriction commitments.

Here is a first idea on how to reduce proof length. Protocols based on univariate
polynomials allow us to do multilinear evaluation in O(n log n) prover time with constant
proof size (e.g. Section 5 of [PH23]). Choose a parameter t and set b = 2t. We can run
only the first t rounds of gemini, reaching a restricted multilinear on n − t variables. If
n′ = n/b ≤ n/ log n, we can afford to run a univariate protocol with O(n′ log n′) = O(n)
prover time to evaluate Mt(zt, . . . , zs−1). This still doesn’t take us to overall constant
proof size - as we need to use a super-constant t to reach such n′. (For us t = log n/2
will be optimal, although t ≥ log log n suffices here.)

This raises the question - can we “skip” the intermediate gemini rounds and send
only the commitment cmt, and directly prove it is consistent with the original cm?
Extrapolating the gemini strategy in the natural way, we get the answer - yes, but not
with constant proof size: We can decompose f into b polynomials of degree < n/b:
f(X) =

∑
0≤i<bX

ifi(X
b). As in the b = 2 case, one can show the univariate f ′(X)

corresponding to Mt is a linear combination of the {fi(X)}. Moreover, evaluating the
fi using f (for the consistency check) can be done. However, it requires b evaluations of
f . Specifically, fi(r

b) is a linear combination of
{
f(r), f(rω), . . . , f(rωb−1)

}
where ω is

a primitive b’th root of unity.
Our central innovation is a different way to prove cmt is correct with constant proof

size. Let’s switch notation and denote the opening point as u = (u1, u2) where u1 ∈

3

Ft, u2 ∈ Fs−t. The (univariate corresponding to the) correct restricted polynomial is

h(X) =
∑

0≤i<b

eq(i, u1)fi(X).

Let g(X) := f(X) mod Xb − α. Calculation shows

g(X) =
∑

0≤i<b

Xifi(α).

The multilinear ĝ corresponding to g(X) is

ĝ(X0, . . . Xt−1) =
∑

0≤i<b

eq(i,X0, . . . , Xt−1)fi(α).

In particular, we have

ĝ(u1) =
∑

0≤i<b

eq(i, u1)fi(α) = h(α).

In words, the evaluation of g at u1 as a multilinear corresponds to the evaluation of h at
α as a univariate! We can use standard univariate KZG to open cmt at α. And, crucially,
we can afford to evaluate ĝ(u1) using the aforementioned univariate protocols as it is of
size b rather than n. In summary, we can show a committed polynomial corresponds to
the correct restriction. And now, again, we can afford to open h as a multilinear at u2
using univariate protocols as it has size n/b rather than n.

Comparison to sumcheck It is instructive to see what happens if we try to get a similar
result via a modification of the sumcheck protocol [LFKN92]. Note first that a multilin-
ear evaluation can indeed be written as a sum over the function’s values on Bs multiplied
by the eq function:

M(u) =
∑
b∈Bs

eq(b, u)M(b).

The classic sumcheck protocol, like gemini, works by log n reductions of the domain
size by a factor of two; each round fixing one more variable of the summed function. In
the above spirit, we could look at a modified sumcheck protocol, where the first variable
ranges over a domain of super-constant size b. The first round univariate P1 would thus
have degree roughly 2b. To maintain constant proof length, we could send a commitment
to P1 rather than its coefficients (as usually done in sumcheck). However, computing P1

would require superlinear time O(n log b) - as we need to perform a b-size FFT for n/b
values of the second variable appearing in the sum.

4

3 Preliminaries

3.1 Terminology and conventions

Fields and Groups We assume our field F is of prime order. We denote by F<d[X] the
set of univariate polynomials over F of degree smaller than d. We assume all algorithms
described receive as an implicit parameter the security parameter λ.

Whenever we use the term efficient, we mean an algorithm running in time poly(λ).
Furthermore, we assume an object generator O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G,G2,Gt, e,g,g2,gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G×G2 → Gt.

� g,g2 are uniformly chosen generators such that e(g,g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G and
G2 additively. We use the notations [x] := x · g and [x]2 := x · g2.

Vectors and polynomials We work with integer parameter n that we’ll assume through-
out the paper is of the form n = 22t for integer t > 0. We’ll denote its square root by
b := 2t =

√
n. We index vectors starting from zero. For example, for g ∈ Fb we have

g = (g0, . . . , gb−1). We associate vectors with univariate polynomials in the following
natural way: Given g ∈ Fb we denote g(X) :=

∑
0≤i<b giX

i.
We make the convention that integer ranges in sums begin at zero if not specified

otherwise. Thus, we write g(X) =
∑

i<b giX
i.

We assume vectors of size n are indexed by two indices ranging over {0, . . . , b− 1}.
Thus, for f ∈ Fn, we have f = (f0,0, . . . , f0,b−1, . . . , fb−1,0, . . . , fb−1,b−1). For 0 ≤ i < b,
we denote by fi the vector (f0,i, . . . , fb−1,i).

In particular, for f ∈ Fn we have under these notations that

f(X) :=
∑
i<b

Xifi(X
b) =

∑
i<b

∑
j<b

fi,jX
i+j·b

For integet m > 0, we denote by Bm the binary cube {0, 1}m ⊂ Fm of dimension m.

3.2 Multilinear polynomials

Let n = 22t, and s = 2t. We define the well-known eq multilinear polynomial in 2s
variables.

eq(x, y) :=
s−1∏
i=0

(xiyi + (1− xi)(1− yi))

We have for x, y ∈ Bs, eq(x, y) = 1 when x = y and eq(x, y) = 0 otherwise.

5

We use the convention that an integer 0 ≤ i < n can be used as an input to eq by
interpreting i as its binary representation. Namely, for 0 ≤ i < n, u ∈ Fs, eq(i, u) :=
eq(i0, . . . , is−1, u) where i =

∑
j<s ij2

j .

For f ∈ Fn, we define f̂ to be the multilinear polynomial obtaining f ’s values on the
boolean cube. Namely,

f̂(X0, . . . , Xs−1) :=
∑
i<n

eq(i,X0, . . . , Xs−1) · fi.

Decomposing eq We’ll overload eq to also denote the analogous equality function for
x, y ∈ Bt. With this overloading, given w1, w2, u1, u2 ∈ Bt we have the convenient
decomposition

eq((w1, w2), (u1, u2)) = eq(w1, u1)eq(w2, u2).

3.3 The algebraic group model

We introduce some terminology from [GWC19] to capture analysis in the Algebraic
Group Model of Fuchsbauer, Kiltz and Loss[FKL18].

In our protocols, by an algebraic adversary A in an SRS-based protocol we mean a
poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q+1[X] and uniform x ∈ F. In the following discussion let us assume we are executing
a protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for
the j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj].

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj]i he also outputs a vector v such that, from linearity,
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

6

The following lemma is inspired by [FKL18]’s analysis of [Gro16], and tells us that
for soundness analysis against algebraic adversaries it suffices to look at ideal checks.
Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 3.1. Fix integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1] , [x] , . . . ,
[
xQ

]
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

Lemma 3.2. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A par-
ticipating in a protocol with a degree Q SRS, the probability of any real pairing check
passing is larger by at most an additive negl(λ) factor than the probability the corre-
sponding ideal check holds.

See [GWC19] for the proof.

3.4 Polynomial commitment schemes for multilinear polynomials

We give a formal definition of an ml-PCS secure in the algebraic group model.

Definition 3.3. Let n = 2s. A multilinear polynomial commitment scheme (ml-PCS)
consists of

� gen(n) - a randomized algorithm that outputs an SRS srs 0.

� com(f, srs) - that given a polynomial f ∈ Fn returns a commitment cm to f .

� A public coin protocol open(cm, n, u, v) between parties P and V. P is given f ∈
Fn. P and V are both given integer n, cm- the purported commitment to f , u ∈ Fs

and v ∈ F - the purported value f̂(u).

such that

� Completeness: Suppose that cm = com(f, srs). Then if open is run correctly with
values n, cm, u, v = f̂(u), V outputs accept with probability one.

� Knowledge soundness in the algebraic group model: There exists an ef-
ficient E such that for any efficient algebraic adversary A the probability of A
winning the following game is negl(λ) over the randomness of A and gen.

1. Given srs, A outputs n, cm.

2. E, given access to the messages of A during the previous step, outputs f ∈ Fn.

3. A outputs u ∈ Fs and v ∈ F.
4. A takes the part of P in the protocol open with inputs n, cm, u, v.

5. A wins if

– V outputs accept at the end of the protocol.

– f̂(u) ̸= v.

7

4 Components

In this section we go over known components (with some new optimizations), that will
be used in our main protocol in Section 6. The treatment will be semi-formal, and
assume basic familiarity with the KZG polynomial commitment scheme [KZG10]. The
formal treatment will be part of the description and knowledge soundness proof of the
main protocol in Section 6.

4.1 Inner products in O(b log b) time.

Fix polynomials g1(X) =
∑d1

i=0 aiX
i, g2 =

∑d2
i=0 biX

i in F[X]. We define < g1, g2 >

to be
∑d

i=0 aibi where d := min {d1, d2}. We present a convenient way to verify inner
products < g1, g2 > similar to [BCC+16, MBKM19]. The basic observation is that
< g1, g2 > is the constant coefficient of the rational function R(X) := g1(X)g2(1/X).
Thus, < g1, g2 >= v is equivalent to the existence of polynomials S1(X), S2(X) such
that

g1(X)g2(1/X) = 1/X · S1(1/X) + v +X · S2(X).

We can thus sends commitments to S1, S2 as proof of the correctness of v. As an
optimization, we observe that we can “symmetrize” R and look instead at the rational
function

R′(X) := g1(X)g2(1/X) + g1(1/X)g2(X).

The advantage of R′ is that the negative and positive coefficients are equal. Thus,
< g1, g2 >= v is equivalent to the existence of S(X) ∈ F[X] such that

g1(X)g2(1/X) + g1(1/X)g2(X) = 2v +X · S(X) + (1/X)S(1/X).

Claim 4.1. Suppose g1(X), g2(X) ∈ F<b[X]. Let S(X) be as defined above. Then S can
be computed in O(b log b) F-operations.

Proof. When g1(X), g2(X) ∈ F<b[X] we multiply the equation above by Xb−1 to get

Xb−1(g1(X)g2(1/X) + g1(1/X)g2(X)) = Xb−1(2v +X · S(X) + (1/X)S(1/X)).

We can use an O(b log b) time FFT to evaluate the LHS on 2b points. We then do
an inverse FFT to get the coefficients c0, . . . , c2b−2 of the LHS. Now, we can output
S = (cb, . . . , c2b−2).

Batching inner product checks Suppose we now have two inner product claims< g1, g2 >=
v1 and < h1, h2 >= v2. The following claim gives us a way to randomly batch them so
that one polynomial S(X) suffices to prove both.

8

Claim 4.2. Fix polynomials g1, g2, h1, h2 ∈ F[X] and v1, v2 ∈ F. Suppose < g1, g2 ≯= v1
or < h1, h2 ≯= v2. Then, e.w.p 1/|F| over γ ∈ F there does not exist S(X) ∈ F[X] such
that

g1(X)g2(1/X) + g1(1/X)g2(X) + γ(h1(X)h2(1/X) + h1(1/X)h2(X))

= 2(v1 + γv2) +X · S(X) + (1/X)S(1/X)

Proof. Denote (v′1, v
′
2) = (< g1, g2 >,< h1, h2 >)). The constant coefficient of the LHS

is v′1 + γv′2. To satisfy the equation in the claim for some S, we need

v′1 + γv′2 = v1 + γv2,

which can hold for at most one γ when (v1, v2) ̸= (v′1, v
′
2).

4.2 Multilinear evaluations as inner products of univariate polynomials.

For u ∈ Bt define the polynomial Pu(X) :=
∑

i<b eq(i, u)X
i. Note that for g(X) ∈

F<b[X], we have

< Pu, g >=
∑
i<b

eq(i, u)gi = ĝ(u).

As leveraged in [BGH19], we have the product formula

Pu(X) =
t−1∏
i=0

(
uiX

2i + 1− ui

)
,

implying Pu(X) can be evaluated in O(t) F-operations. Hence, a verifier V operating in
O(log n) time can evaluate Pu(X) itself.

Using the polynomials Pu, mutlilinear evaluations can be proven in a batched manner
based on Claim 4.2: Suppose we want to show given committed univariates g(X), h(X) ∈
F[X], u1, u2 ∈ Ft, v1, v2 ∈ F that ĝ(u1) = v1 and ĥ(u2) = v2.

1. V sends random γ ∈ F.

2. P sends commitment to S such that

g(X)Pu1(1/X) + g(1/X)Pu1(X) + γ(h(X)Pu2(1/X) + h(1/X)Pu2(X))

= 2(v1 + γv2) +X · S(X) + (1/X)S(1/X).

3. V chooses a random z ∈ F.

4. P sends and proves correctness of the values of g, h and S on z, 1/z.

5. V evaluates Pu1 , Pu2 at z, 1/z.

6. V checks the equation in step 2 holds at z.

9

4.3 Degree checks

The idea presented here is from [Tha23]. Suppose P wants to prove to V that cm is
a commitment to a polynomial g(X) ∈ F<b[X]. Let D(X) := Xb−1g(1/X). The idea
is that D(X) is a polynomial if and only if g(X) has degree < b. Thus, assuming our
structured reference string doesn’t contain negative powers, P can commit to D if and
only if g(X) ∈ F<b[X].

This motivates the following protocol.

1. P sends a commitment d to D(X).

2. V chooses random z ∈ F.

3. P sends Dz := D(z), ḡz := g(1/z), and uses KZG to prove their correctness.

4. V can now check D’s correctness on z, using the equation

Dz
?
= zb−1ḡz.

5 Univariate division

Our protocol crucially relies on the following simple claim about division by a polynomial
of the form Xb − α.

Claim 5.1. Fix integers b > 0 and let n = b2. Fix α ∈ F, and f(X) ∈ F<n[X].
Let f0(X), . . . , fb−1(X) ∈ F<b[X] be such that f(X) =

∑
i<bX

ifi(X
b). Let g(X) ∈

F<b[X], q(X) ∈ F[X] be such that

f(X) = (Xb − α) · q(X) + g(X).

Then,

1. g(X) =
∑

i<bX
ifi(α).

2. The coefficients of q(X) can be computed in O(n) F-operations.

Proof. To see the first item, note that reduction mod Xb−α corresponds to substituting
α into Xb inside each fi(X

b) in the expression
∑

i<bX
ifi(X

b). We proceed to the
computation of q(X). We compute for each 0 ≤ i < b, the coefficients of the quotient
qi(X) ∈ F[X] such that

fi(X) = qi(X)(X − α) + fi(α).

Using Horner’s method for division by the linear polynomial X − α this requires only n
multiplications and additions in F. Now, we have that

f(X) =
∑
i<b

Xifi(X
b) =

∑
i<b

Xi
(
qi(X

b)(Xb − α) + fi(α)
)
= q(X)(Xb − α) + g(X),

for q(X) :=
∑

i<bX
iqi(X

b). Thus, the coefficients of q(X) are simply the interleaving
of the coefficients of the {qi(X)}.

10

6 Main Construction

MERCURY is the tuple (gen, com, open) described next.

gen(n): Choose random x ∈ F and outputs
{
[1] , [x] , . . . ,

[
xn−1

]
, [1]2 , [x]2

}
com(n, f, srs): Output

∑
i<b

∑
j<b fi,j ·

[
xi·b+j

]
.

open(n, cm, u, v; f):

1. Committing to partial sums:

(a) Let u = (u1, u2) for u1, u2 ∈ Bt. P computes the polynomial h(X) :=∑
i<b eq(i, u1)fi(X). Note that the coefficient ofXj in h(X) is

∑
i<b eq(i, u1)fi,j

- hence we think of it as a commitment to partial sums.

(b) P computes and sends h := [h(x)].

2. Committing to “folded” polynomial g:

(a) V sends random α ∈ F.
(b) P computes polynomials g(X) ∈ F<b[X] and q(X) ∈ F[X] such that

f(X) = (Xb − α) · q(X) + g(X).

(c) P computes and sends q := [q(x)] and g := [g(x)].

3. Sending proofs of correctness for h and the degree of g:

(a) V sends a random batching challenge γ ∈ F.
(b) P computes and sends s = [S(x)] where S(X) ∈ F[X] is such that

g(X)Pu1(1/X) + g(1/X)Pu1(X) + γ · (h(X)Pu2(1/X) + h(1/X)Pu2(X))

= 2(h(α) + γ · v) +X · S(X) + (1/X)S(1/X).

(c) P computes and sends d := [D(x)] where

D(X) := Xb−1g(1/X).

4. KZG evaluations:

(a) V sends a random evaluation challenge z ∈ F.
(b) P sends the values gz := g(z), ḡz := g(1/z), hz := h(z), h̄z := h(1/z), hα :=

h(α), sz := S(z), s̄z := S(1/z).

11

(c) V computes the expected values for D(z) and h(α) assuming the equations
in steps 3b,3c are satisfied. That is, Dz := zb−1ḡz, and

hα :=
(
gzPu1(1/z) + ḡzPu1(z) + γ(hzPu2(1/z) + h̄zPu2(z)− 2v)− zsz − (1/z)s̄z

)
/2.

(d) P computes and sends the KZG opening proof πz to check the equation of
step 2b at z. That is πz := [H(x)] for

H(X) :=
f(X)− (zb − α)q(X)− gz

X − z
.

(e) P computes and sends a batched KZG opening proof π′ for the values sent in
step 4b and computed by V in step 4c, as described in Section 4 of [BDFG20].

(f) V checks the proof πz via pairings as in [KZG10]:

e(cm−
[
zb − α

]
· q− gz, [1]2) = e(πz, [x− z]2).

(g) V checks the opening proof π′ as described in [BDFG20].

(h) If one of the checks in steps 4f,4g fails, V outputs reject. Otherwise V
outputs accept.

Runtime of P: Computing q(X) in step 2b requires O(n) operations by Claim 5.1.
Computing q and πz requires two MSMs of size n. All other steps are on polynomials of
size O(b) = O(

√
n). Thus, other commitments clearly require O(

√
n) scalar multiplica-

tions. It is easy to see other steps require o(n) F-operations. The least trivial of these
is perhaps the computation of S(X) shown to require O(b log b) = o(n) operations in
Claim 4.1.

Proving knowledge soundness: Let A be an efficient algebraic adversary participating in
the Knowledge Soundness game from Definition 3.3. We show its probability of winning
the game is negl(λ). We define the extractor E to simply output the vector f ∈ Fn A
outputs (as it’s algebraic) with com(f) = cm together with cm.

As A is algebraic, when sending the commitments h,q,g,s,d,πz,π
′ during protocol exe-

cution it also sends polynomials h(X), q(X), g(X), S(X), D(X), H(X), Q(X) ∈ F<n[X]
such that the former are their corresponding commitments. Let E be the event that V
outputs accept. Let A be the event that A wins the knowledge soundness game. Note
that by definition A ⊂ E, and our goal is to show prob(A) = negl(λ). We will define
a constant number of events such that their union contains A and each has probability
negl(λ). This implies the knowledge soundness of the protocol.

E implies all pairing checks have passed. Let E0 ⊂ E be the event that one of the
corresponding ideal pairing checks as defined in Section 3.3 didn’t pass. According to
Lemma 3.2, prob(E0) = negl(λ).

Given that E0 didn’t occur, we have from the knowledge soundness proof of batched
KZG in Section 3 of [BDFG20] that the evaluations sent by P and computed by V are
all correct. That is,

12

1. gz = g(z), ḡz = g(1/z), hz = h(z), h̄z = h(1/z), sz = S(z), s̄z = S(1/z),

2. D(z) = zb−1g(1/z),

3.

2(h(α)+γv) = g(z)Pu1(1/z)+g(1/z)Pu1(z)+γ(h(z)Pu2(1/z)+h(1/z)Pu2(z))−zS(z)−(1/z)S(1/z).

4. g(z) = f(z)− (zb − α)q(z)− g(z).

Note that items 2-4 can be viewed as rational equations evaluated at z. Let E1 be the
event that E0 didn’t occur, and one of the equations in steps 2-4 doesn’t hold as a
rational identity. Multiplying denominators, we have from the Schwarz-Zippel Lemma
that E1 occurs with probability at most 2n/|F| = negl(λ) over z ∈ F. Assuming E0 and
E1 didn’t occur we have that

1. D(X) = Xb−1g(1/X),

2.

2(h(α)+γv) = g(X)Pu1(1/X)+g(1/X)Pu1(X)+γ(h(X)Pu2(1/X)+h(1/X)Pu2(X))

−XS(X)− (1/X)S(1/X).

3. g(X) = f(X)− (Xb − α)q(X).

Let E2 be the event that E0 and E1 don’t occur but ĝ(u1) ̸= h(α) or ĥ(u2) ̸= v.
According to Claim 4.2, given the equation in item 2, E2 occurs with probability at
most 1/|F| over γ.

Let E3 be the event that E0 ∪ E1 ∪ E2 don’t occur and

1. h(X) ̸=
∑

i<b eq(i, u1)fi(X),

2. h(α) =
∑

i<b eq(i, u1)fi(α).

Obviously, E3 has probability negl(λ).
Assume E0 ∪ E1 ∪ E2 ∪ E3 doesn’t occur. We show that f̂(u) = v, and thus we are

outside the event A. In other words, A ⊂ E0 ∪ E1 ∪ E2 ∪ E3.
Since D(X) = Xb−1g(1/X) we know that deg(g) < b. Since g(X) = f(X) − (Xb −

α)q(X), from Claim 5.1 we know that g(X) =
∑

i<b fi(α)X
i. Hence, we know that

ĝ(u1) =
∑
i<b

eq(i, u1)fi(α) = h(α).

Using ¬E3 we know that h(X) =
∑

i<b eq(i, u1)fi(X). Hence, writing h(X) =
∑

j<b hjX
j

we have hj =
∑

i<b eq(i, u1)fi,j . Thus, we have

f̂(u) =
∑
i<b

∑
j<b

eq(i, u1)eq(j, u2)fi,j =
∑
j<b

eq(j, u2)
∑
i<b

eq(i, u1)fi,j

=
∑
j<b

eq(j, u2)hj = ĥ(u2) = v.

13

References

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. pages
327–357, 2016.

[BCHO22] J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. Gemini: Elastic snarks for diverse
environments. IACR Cryptol. ePrint Arch., page 420, 2022.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commit-
ment schemes for multiple points and polynomials. IACR Cryptol. ePrint
Arch., page 81, 2020.

[BFS19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from DARK
compilers. IACR Cryptol. ePrint Arch., page 1229, 2019.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. Halo: Recursive proof composition
without a trusted setup. IACR Cryptol. ePrint Arch., page 1021, 2019.

[CBBZ22] B. Chen, B. Bünz, D. Boneh, and Z. Zhang. Hyperplonk: Plonk with linear-
time prover and high-degree custom gates. IACR Cryptol. ePrint Arch., page
1355, 2022.

[CHM+19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:
Preprocessing zksnarks with universal and updatable SRS. IACR Cryptology
ePrint Archive, 2019:1047, 2019.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, pages 33–62, 2018.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KT23] T. Kohrita and P. Towa. Zeromorph: Zero-knowledge multilinear-evaluation
proofs from homomorphic univariate commitments. IACR Cryptol. ePrint
Arch., page 917, 2023.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. pages 177–194, 2010.

14

[LFKN92] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured ref-
erence strings. IACR Cryptology ePrint Archive, 2019:99, 2019.

[PH23] S. Papini and U. Haböck. Improving logarithmic derivative lookups using
GKR. IACR Cryptol. ePrint Arch., page 1284, 2023.

[Set19] S. T. V. Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. IACR Cryptol. ePrint Arch., page 550, 2019.

[Tha23] S. Thakur. A flexible snark via the monomial basis. IACR Cryptol. ePrint
Arch., page 788, 2023.

15

	Introduction
	Our results

	Overview of technique
	Preliminaries
	Terminology and conventions
	Multilinear polynomials
	The algebraic group model
	Polynomial commitment schemes for multilinear polynomials

	Components
	Inner products in O(blogb) time.
	Multilinear evaluations as inner products of univariate polynomials.
	Degree checks

	Univariate division
	Main Construction
	References

