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Abstract. S-boxes are the most popular nonlinear building blocks used
in symmetric-key primitives. Both cryptographic properties and imple-
mentation cost of an S-box are crucial for a good cipher design, especially
for lightweight ones. This paper aims to determine the exact minimum
area of optimal 4-bit S-boxes (whose differential uniform and linearity are
both 4) under certain standard cell library. Firstly, we evaluate the upper
and lower bounds upon the minimum area of S-boxes, by proposing a
Prim-like greedy algorithm and utilizing properties of balanced Boolean
functions to construct bijective S-boxes. Secondly, an SAT-aided auto-
matic search tool is proposed that can simultaneously consider multiple
cryptographic properties such as the uniform, linearity, algebraic degree,
and the implementation costs such as area, and gate depth complexity.
Thirdly, thanks to our tool, we manage to find the exact minimum area
for different types of 4-bit S-boxes.
The measurement in this paper uses the gate equivalent (GE) as standard
unit under UMC 180 nm library, all 2/3/4-input logic gates are taken into
consideration. Our results show that the minimum area of optimal 4-bit
S-box is 11 GE and the depth is 3. If we do not use the 4-input gates,
this minimum area increases to 12 GE and the depth in this case is 4,
which is the same if we only use 2-input gates. If we further require that
the S-boxes should not have fixed points, the minimum area continue
increasing a bit to 12.33 GE while keeping the depth. Interestingly, the
same results are also obtained for non-optimal 4-bit bijective S-boxes
as long as their differential uniform U(S) < 16 and linearity L(S) < 8
(i.e., there is no non-trivial linear structures) if only 2-input and 3-input
gates are used. But the minimum area reduce to 9 GE if 4-input gates are
involved. More strictly, if we require the algebraic degree of all coordinate
functions of optimal S-boxes be 3, the minimum area is 14 GE with fixed
point and 14.33 GE without fixed point, and the depth increases sharply
to 8.

⋆ Tingting Cui is the corresponding author.
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Besides determining the exact minimum area, our tool is also useful to
search for a better implementation of existing S-boxes. As a result, we
find out an implementation of Keccak’s 5-bit S-box with 17 GE. As a
contrast, the designer’s original circuit has an area of 23.33 GE, while
the optimized result by Lu et al. achieves an area of 17.66 GE. Also,
we find out the first optimized implementation of SKINNY’s 8-bit S-box
with 26.67 GE.

Keywords: S-box · automatic search · good cryptography properties · minimum
area · SAT

1 Introduction

1.1 Background

The substitution box (S-box) is the most widely used building blocks in symmetric-
key primitives, including block ciphers, hash functions, authenticated encryp-
tions and message authenticated codes. Security of these primitives heavily de-
pends on the cryptographic properties of their S-boxes, such as the differential
uniformity, linearity, algebraic degree, etc, thus choosing an S-box with good
cryptographic properties is crucial for cipher designers. On the other hand, the
rapid development of the Internet of Things (IoT) prefers ciphers that can be
easily deployed in resource-constrained devices, thus the implementation cost of
an S-box, such as the area and latency, needs to be as small as possible. To sum
up, both the cryptographic properties and implementation cost of S-boxes are
important, especially for lightweight ciphers.

There are two active research hotspots about S-boxes: constructing new
S-boxes and optimizing existing S-boxes. The former aims to construct an S-
box with excellent cryptographic properties but very small implementation cost,
while the latter would like to find the smallest implementation cost of an existing
S-box. Both research hotspots are challenging, especially for large S-boxes.

Previous effective methods available to construct S-boxes can be mainly clas-
sified into 3 types:
– Type 1: choose an S-box from equivalent categories;
– Type 2: construct an S-box by mathematical methods or special structures;
– Type 3: solve out an S-box by automatic tools.

The Type 1 method is only effective for constructing 4-bit S-boxes. In 2007,
Leander and Poschman [10] defined optimal 4-bit S-boxes according to their abil-
ity against differential and linear attacks, and classified all optimal 4-bit S-boxes
as 16 categories up to the so-called CCZ equivalence. Many cipher directly uses
4-bit S-boxes from the 16 equivalent categories, such as Serpent [1] and RECT-
ANGLE [23]. This classification was further developed by Zhang et al. in [24] to
183 categories. In the new classification, Bad-input-Bad-output (BIBO) differ-
ential/linear patterns were taken into consideration. Thanks to these classifica-
tions, it becomes easy to choose optimal 4-bit S-boxes from different categories
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as the nonlinear building block of symmetric ciphers. However, the implementa-
tion cost is not considered at all. In terms of Type 2 method, combining affine
transformations and the inverse function of a finite field to construct S-boxes
is a typical mathematical method, just like the S-box used in AES. For sake of
S-boxes with low implementation area, some special structures such as Feistel,
MISTY, Bridge [4, 11, 22] as well as cellular automata [8, 15] are also widely
used. However, these design strategies seriously depend on structures, so it is dif-
ficult to reach the minimum area. The Type 3 method, i.e., solving out an S-box
by automatic tool, is an interesting and comprehensive method. In [13], Lu et al.
proposed an automatic search method based on SAT, which can simultaneously
take multiple cryptographic properties into consideration. However, algebraic de-
gree, the very important cryptographic property of S-box, is not covered in this
method. Meanwhile, the implementation cost is also not considered yet. Beside
that, there are also some explorations on constructing low-depth or low-latency
S-boxes[18, 22].

Previous work on optimizing the implementations of existing S-boxes avail-
able are few. Jean et al. [9] proposed an automatic tool LIGHTER to search for
the circuits with small area for existing S-boxes. They use a graph-based meet-
in-the-middle search algorithm under the assumption that every instructions is
invertible. Despite of the efficiency and practical applicability for different S-
boxes, it is infeasible to prove that their implementation costs are optimal. In
FSE 2016, Stoffelen regarded the problem of finding an efficient implementation
of a lightweight S-box as a SAT problem [21]. With an SAT solver, the implemen-
tation of an S-box can be solved out with the smallest number of gates. Based on
Stoffelen’s work, Lu et al. [14] proposed an improved search algorithm and try to
find optimized implementations for existing S-boxes with the smallest area un-
der certain standard cell library. However, all previous methods aforementioned
are only effective on constructing 4-bit S-boxes and ineffective on larger S-boxes.
For example, Lu et al.’s method failed to give an optimal implementation for
the 5-bit KECCAK’s S-box.

To summarize, there still remain several questions awaiting for answers on
designing and optimizing implementation of S-boxes:

– Q1: What is the minimum area of all 4-bit S-boxes, if we would like to design
new S-boxes or optimize existing S-boxes under certain standard cell library?

– Q2: How to optimize the implementation for existing n-bit (n ≥ 5) S-boxes
with smaller area?

– Q3: How to consider area and depth complexity of an S-box simultaneously
when designing new S-boxes and optimizing existing S-boxes?

– Q4: How to cover the requirement on algebraic degree in the automatic
search for S-boxes?

In this paper, we aim to propose an improved automatic search method based
on SAT to answer these questions.
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1.2 Contributions

Since the area cost of different logic gates depends on the technology library,
we use the gate equivalent (GE) as the standard unit under the UMC 180nm
standard cell library shown in Table 5 to measure and compare the area of
S-boxes. The main contributions are briefly summarized as follows:

Propose Prim-like greedy algorithm and properties on balanced
Boolean functions to tighten the upper bound and lower bound of the
minimum area of S-boxes. Inspired by Prim algorithm in Graph Theory,
we transform the process to find the minimum area of S-boxes into a minimum
spanning tree problem under some conditions. As an application, to construct an
optimal 4-bit S-box, the upper bound of minimum area is 12 GE (8 logic gates)
by only using 2-input (or plus 3-input) gates, or 11 GE (6 logic gates) by using
2-input, 3-input and 4-input gates. To find the lower bound of the minimum area
of S-boxes, we proposed some properties on balanced Boolean functions, which
are helpful to speed up the search process. As a result, we found that it needs at
least 9 GE to construct a bijective S-box with U(S) < 16 and L(S) < 8 by only
using 2-input and 3-input gates. These findings are useful to shrink the possible
range of the minimum area of S-box.

Improve the automatic search model for S-boxes in [13] via adding
constraints on algebraic degree. Algebraic degree is an important crypto-
graphic property of S-boxes. It can be found from the ANFs of S-box’s coordinate
functions. However, constructing ANF of a Boolean function is difficult by the
truth table in SAT model. In this paper, we overcome this problem by the trans-
formation from SoP expression of Boolean function to ANF expression. There-
fore, it becomes able to express every coefficient in ANF and add constraints on
algebraic degree within the SAT model.

Improve the automatic search method for optimizing implemen-
tation of existing S-boxes in [14] via some acceleration techniques and
adding constraints on depth complexity. By utilizing the order-independence
of inputs for 2-input and 3-input logic gates, as well as bit-permutation equiva-
lence of S-boxes, the search space can be significantly reduced. Beside that, the
requirement on depth complexity can be added into our improved model. As a
result, we can search out better implementation of 5-bit S-box used in KEC-
CAK with smaller area. Meanwhile, we give the optimizing implementation of
8-bit S-box used in SKINNY with smaller area for the first time. The results are
summarized in Table 1.

Propose an automatic search model for S-boxes by considering mul-
tiple cryptographic properties and implementation area and depth
complexity simultaneously based on SAT. In theory, combining the mod-
els in [13] and [14] and some slight changes makes it possible to find an S-box
satisfying required cryptographic properties and area cost. However, by experi-
ments, we found that the combined model could not be solved out for even 4-bit
S-boxes when area cost is restricted as a lower value. In other words, the di-
rect combined model cannot be used to find the minimum area of 4-bit S-boxes.
However, based on the first three contributions, we made our model be able to



How Small Can S-boxes Be? 5

Table 1: Comparison of the minimum area cost of optimal 4-bit S-Boxes and a
few higher-bit S-boxes.

S-box Size # Gate Basis
Area (GE)

LIGHTER Stoffelen et al. Lu et al. Ours[9] [21] [14]
LBLOCK S0 4 10 {G1,G2} 16.33 23.00 16.33 16.33
PICCOLO 4 8 {G1,G2} 13.00 16.66 13.00 13.00
SKINNY-64 4 8 {G1,G2} 13.33 16.33 13.33 13.33

RECTANGLE 4 11 {G1,G2} 18.33 25.66 18.00 18.00
{G1,G2,G3,G4} – – 17.33 17.33

Ours 4 8 {G1,G2} – – – 12.00
Ours 4 6 {G1,G2,G3,G4} – – – 11.00

KECCAK 5 13 {G1,G2} – – 17.66 17.00
SKINNY-128 8 16 {G1,G2} – – – 26.67

solve the above problem. Specifically, by combining the improved models in the
second and third contributions, it is able to determine the minimum area be-
tween upper bound and lower bound. Under the minimum area of S-boxes, we
can further find the minimum depth. As a result, we apply it on 4-bit S-boxes. If
only 2-input and 3-input logic gates are used to construct general bijective 4-bit
S-boxes with U(S) < 16 and L(S) < 8, the minimum area is 12 GE with fixed
point, as well as 12.33 GE without fixed point. So does optimal 4-bit S-boxes.
Under each case above, the depth is at least 4. Furthermore, the minimum area
is 14 GE with fixed point, as well as 14.33 GE without fixed point to construct
optimal 4-bit S-boxes with all algebraic degree 3 of coordinate functions. Under
each case above, the depth is at least 8. If all logic gates including 4-input gates
are used to construct optimal 4-bit S-boxes, the minimum area is 11 GE without
fixed point, now the gate depth is at least 3. If all logic gates are involved to con-
struct general bijective 4-bit S-boxes, the minimum area is 9 GE, and the gate
depth is also at least 3. All results are summarized in Table 2. All source codes
of our tool and searched results are available at https://github.com/Chenhao-
Jia/Area-Optimized-Implementation-for-S-box.

2 Preliminaries

2.1 Notations

This subsection introduces notations and conceptions used in this paper. Some
simple notations are given in Table 3.

A Boolean function is a mapping from Fn
2 to F2, while a vectorial Boolean

function is a mapping from Fn
2 to Fm

2 :

(x0, x1,· · ·, xn−1) 7→(f0(x0, x1,· · ·, xn−1), f1(x0, x1,· · ·, xn−1),· · ·, fm−1(x1, x2,· · ·, xn−1)),
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Table 2: Results on the minimum area cost of three types of S-boxes under the
basis {G1,G2}, {G1,G2,G3} and {G1,G2,G3,G4}.

Basis U(S) L(S) Min
deg(S)

Max
deg(S)

Without
fixed point

Optimal
S-box

#Logic
gate

Area
UMC 180nm

Area
TSMC 65nm

Minimum
area Depth

{G1,G2}

4 4

2 3 ✕ ✓ 8 12 GE 14 GE ✓ 4
2 3 ✓ ✓ 8 12.33 GE 14.5 GE ✓ 4
3 3 ✕ ✓ 9 14 GE 16.5 GE ✓ 8
3 3 ✓ ✓ 9 14.33 GE 17 GE ✓ 8

< 16 < 8

2 3 ✕ ✕ 8 12 GE 14 GE ✓ 4
2 3 ✓ ✕ 8 12.33 GE 14.5 GE ✓ 4
2 2 ✕ ✕ 8 12 GE 14 GE ✓ 4
2 2 ✓ ✕ 8 12.33 GE 14.5 GE ✓ 4

{G1,G2,G3}

4 4

2 3 ✕ ✓ 8 12 GE 14 GE ✓ 4
2 3 ✓ ✓ 8 12.33 GE 14.5 GE ✓ 4
3 3 ✕ ✓ 9 14 GE 16.5 GE ✓ 8
3 3 ✓ ✓ 9 14.33 GE 17 GE ✓ 8

< 16 < 8

2 3 ✕ ✕ 8 12 GE 14 GE ✓ 4
2 3 ✓ ✕ 8 12.33 GE 14.5 GE ✓ 4
2 2 ✕ ✕ 8 12 GE 14 GE ✓ 4
2 2 ✓ ✕ 8 12.33 GE 14.5 GE ✓ 4

{G1,G2,G3,G4}
4 4 2 3 ✓ ✓ 6 11 GE 13.5 GE ✓ 3

< 16 < 8 2 3 ✕ ✕ 5 9 GE 11 GE ✓ 3

Table 3: Notations used in this paper.
Zn The finite set {0, · · · , n− 1}.
F2 The finite field with only two elements {0, 1}.
Fn
2 The n-dimensional vector space over F2.

x⊕ y Bitwise exclusive OR of x and y
a ∧ b AND of Boolean variable a and b which equals to ab.
a ∨ b OR of Boolean variable a and b which equals to ab+ a+ b.
¬a NOT of Boolean variable a which equals to a+ 1.
G1 The logic gate set with only 1 input, i.e. G1 = {NOT}.
G2 The nonlinear logic gate set with 2 inputs, i.e. G2 = {AND,NAND,OR,NOR}.
G3 The nonlinear logic gate set with 3 inputs, i.e. G3 = {AND3, NAND3, OR3, NOR3}.
G4 The nonlinear logic gate set with 4 inputs, i.e. G4 = {MAOI1,MOAI1}.
Gl The linear logic gate set except NOT, i.e. Gl = {XOR,XNOR}.
wt(u) The Hamming weight of u where u ∈ Fn

2 , u = (u0, · · · , un−1).
f(x0,· · ·, xn−1)A function mapping Fn

2 to F2, also called an n-variable Boolean function.
⟨x, y⟩ The inner product of a and b which equals to

∑n−1
i=0 xiyi.

#{} The number of qualified set elements.
1 A Boolean variable is regard as a variable over F2 in this paper.
2 Unless otherwise specified, + and

∑
in this paper are operations over F2.

where each fi(x0, x1, · · · , xn−1) is a Boolean function. An S-box with n-bit input
and m-bit output can be represented by such a vectorial Boolean function.
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Boolean circuits are defined according to the logic gates they contain. For
example, a circuit might contain binary AND and OR gates and unary NOT
gates. Each gate corresponds to a small Boolean function that takes a fixed
number of bits as input and outputs a single bit. The most common gates used
in a circuit are shown in Table 4. This paper considers implementations of S-
boxes only with these gates.

Table 4: Common logic gates and their corresponding expressions in standard
cell library

Operation Function Operation Function

NAND (a, b)→ ¬(a ∧ b) NAND3 (a, b, c)→ ¬(a ∧ b ∧ c)
NOR (a, b)→ ¬(a ∨ b) NOR3 (a, b, c)→ ¬(a ∨ b ∨ c)
AND (a, b)→ (a ∧ b) AND3 (a, b, c)→ (a ∧ b ∧ c)
OR (a, b)→ (a ∨ b) OR3 (a, b, c)→ (a ∨ b ∨ c)
NOT a→ ¬a MAOI1 (a, b, c, d)→ ¬((a ∧ b) ∨ (¬(c ∨ d)))
XOR (a, b)→ (a⊕ b) MOAI1 (a, b, c, d)→ ¬((a ∨ b) ∧ (¬(c ∧ d)))
XNOR (a, b)→ ¬(a⊕ b)

2.2 Main Cryptographic Properties for an S-Box

We will first give the definitions of an S-box related to differential cryptanalysis,
linear cryptanalysis and various forms of algebraic/cubic cryptanalysis.

Definition 1 (Differential Distribution Table(DDT)[2, 3]). For a vecto-
rial Boolean function S : Fm

2 → Fn
2 , the DDT of S is a 2m×2n table whose rows

correspond to the input difference α to S and whose columns correspond to the
output difference β of S. The entry at index (α, β) is

δS(α, β) := # {x ∈ Fm
2 |S(x)⊕ S(x⊕ α) = β} . (1)

Definition 2 (Differential Uniformity[17]). The differential uniformity of
an S-box S : Fm

2 → Fn
2 is defined as:

U(S) := max
α∈Fm

2 \{0},β∈Fn
2

δS(α, β). (2)

Definition 3 (Linear Approximation Table (LAT)[16]). For a vectorial
Boolean function S : Fm

2 → Fn
2 , the LAT of S is a 2m × 2n table whose rows

correspond to the input mask α to S and whose columns correspond to the output
mask β of S. The entry at index (α, β) is

LATS(α, β) := |λS(α, β)− 2n−1|. (3)

where λS(α, β) = # {x ∈ Fm
2 |α · x⊕ β · S(x) = 0}.
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Definition 4 (Linearity[16]). The linearity of an S-box S : Fm
2 → Fn

2 is de-
fined as:

L(S) := max
α∈Fm

2 \{0},β∈Fn
2

|LATS(α, β)|.

In [10], Leander and Poschmann defined the optimal 4-bit S-boxes as those
S-boxes that simultaneously achieve optimal differential uniformity and linearity:

Definition 5 (Optimal 4-bit S-boxes[10]). Let S : F4
2 → F4

2 be an S-box. If
S fulfills the following conditions, then it is called an optimal 4-bit S-box:
1. S is a bijection.
2. U(S) = 4.
3. L(S) = 4.

Saarinen et al. put forward the definition of permutation-xor equivalence in
[19]. The algebraic degree, linearity and uniformity are example properties of
(vectorial) Boolean functions that are invariant over any of these equivalences.
Rasoolzadeh showed that the latency complexity is invariant also under the
extended bit permutation equivalence [18]. The definition of bit permutation
equivalent is as follows:

Definition 6 (Bit permutation equivalent[24]). Let P1 and P0 be two bit
permutation matrices. The S-box S′ defined by

S′(x) = P0S(P1(x))

belongs to the permutation-xor equivalence set of S, S′ ∈ PE(S).

Thus, the S-boxes within the same bit permutation equivalent class share the
same algebraic degree, uniformity, and linearity. Moreover, it is evident that the
area and depth complexity of the S-boxes within this class are also identical.

When applying to optimal 4-bit S-boxes, the following theorem formalized
as follows.

Theorem 1. [10] Let S′ permutation equivalent to S. If S is an optimal 4-bit
S-box, then S′ is an optimal 4-bit S-box as well.

In addition to the differential uniformity and linearity, another metric to
determine the security of an S-box is the algebraic degree.

Definition 7 (Algebraic Normal Form (ANF) of a Boolean function
and its algebraic degree [6, 7]). A Boolean function f : Fn

2 → F2 can be
uniquely represented by an n-variate polynomial over F2, named the algebraic
normal form of f :

f(x0, x1, . . . , xn−1) =
∑
u∈Fn

2

αu

n−1∏
i=0

xui
i , where αu ∈ F2.

where xi, ui are the i-th bit of x and u, respectively, and xui
i = xi when ui = 1

and 1 when ui = 0. The algebraic degree deg(f) of function f is

deg(f) = max
u∈Fn

2

{wt(u)|αu ̸= 0}.
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Lemma 1 ([5, 12]). Let f be an n-variable balanced Boolean function. Then
algebraic degree of f is at most n− 1.

Definition 8 (Algebraic Degree of an S-box[10]). The algebraic degree of
an S-box S : (x0, · · · , xn−1) 7→ (f0, · · · , fm−1) is

deg(S) = max
i
{deg(fi)}.

2.3 Implementation of Boolean Functions

The area and latency are two primary metrics when measuring the hardware
implementation cost of an S-box. The area of an S-box is typically measured in
terms of gate equivalent (GE). In different libraries GEs of different gates are
different. In this paper, we evaluate the area of S-boxes under different standard
cell librarys as shown in Table 5. It should be noted that unless specified, we
measure the area of S-boxes under UMC 180nm library. Table 5 also provides
the area of each gate in the respective libraries.

Table 5: GEs of mentioned gates in different libraries.

Library Gate AND NAND XOR NAND3 XOR3 NOT MAOI1 MOAI1OR NOR XNOR NOR3 XNOR3

UMC 180nm Area (GE) 1.33 1.00 3.00 1.33 4.67 0.67 2.67 2.00
Ratio 4 3 9 4 14 2 8 6

TSMC 65nm Area (GE) 1.50 1.00 3.00 1.50 5.50 0.50 2.50 2.50
Ratio 6 4 12 6 22 2 10 10

Nangate 45nm Area (GE) 1.33 1.00 2.00 1.33 4.00 0.67 2.67 2.00
Ratio 4 3 9 4 12 2 – –

1 The ratio is measured in multiples of 1
3

GE as the reference unit.

It can be seen that, AND and OR gates, as well as XOR gates, have a larger
GE plus NOT than their inverse gates at UMC 180nm, so we do not take NOT
gates into our consideration when pursuing GE minimization. We recall the
definitions of Gate Count Complexity and Gate Depth Complexity to measure
the cost of implementing Boolean functions as follows.

Definition 9 (Gate Count Complexity[21]). The gate count complexity of
a Boolean function is defined as the minimum number of logic gates required to
implement this function.

Even though different types of gates have different implementation (area)
costs, this definition is typically considered the first simplified estimation for the
minimum area cost for hardware implementation of a function.
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In [21], Stoffelen transformed the problem of searching for hardware and
software implementations of S-boxes into a Boolean satisfiability problem for
solving. Compared to heuristic algorithms, the model constructed by Stoffelen
can be used to search for the minimum number of standard logic gates required
for hardware and software implementation of S-boxes, achieving the smallest
possible number of standard logic gates used. However, since different standard
logic gates have different hardware implementation areas, a circuit with the
minimum number of standard logic gates does not necessarily have the minimum
area.

Definition 10 (Gate Depth Complexity[21]). The depth of a circuit is de-
fined as the length of the longest paths from an input gate to an output gate.

In the case of the gate depth complexity, even though different types of gates
have different implementation (delay) costs, this definition is usually considered
the first estimation for the minimum delay cost for hardware implementation of
a function.

3 Tight Bounds on Minimum Area to Construct S-boxes

In this section, we first propose a Prim-like greedy algorithm to tighten the
upper bound of the minimum area to construct S-boxes with certain crypto-
graphic properties in subsection 3.1. Then, by finding some properties on bal-
anced Boolean functions, the lower bound of minimum area to construct S-boxes
is tightened in subsection 3.2.

3.1 Upper Bound of Minimum Area to Construct S-boxes under
Certain Cryptographic Properties

In this part, we concentrate on finding the upper bound on the minimum area
for constructing a bijective S-box with differential uniform U(S) and linearity
L(S). Each S-box coordinate function fi(x) is composed of a certain number of
logic gates, and meanwhile, different coordinate functions share some gates. To
find the minimum area of an S-box is to find the optimal circuit implementation
with minimum gate area. Thus, we transform the construction of an S-box into a
minimum spanning tree problem under conditions with the help of graph theory.
The circuit implementation process of an S-box can be regarded as a weighted
diagraph, as shown in Figure 1.

In this diagraph, there are two sets: edge set E and vertex set V . Each edge
gi ∈ E means a logic gate, while the weight wi of gi means the are cost of this
gate. The vertexes (vi, vi+1) on both sides of edge gi means the input/output
states of corresponding logic gate. It is worth noting that, there may be multiple
inputs for a gate. To describe clearly, the vertex vi in graph only denotes the
input with longest depth. But, in actual search with code, vi is stored as an
expression gi(x0, xi, · · · , xn−1, v1, · · · , vi−1). Finally, the output (f0, · · · , fm−1)
of S is located in some vertexs. To find the minimum area of S-boxes under
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f0 f1 fn−2 fn−1fi fi+s

· · ·· · · · · · · · · · · ·
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...
...

...
...

(d)

Fig. 1: Demo on Prim-like greedy Algorithm

certain differential uniform U(S) and linearity L(S) is to find the minimum of∑n
i=1 wi in the diagraph to get special (f0, · · · , fm−1) satisfies Lemma 2 and

Lemma 3 as follows.

Lemma 2 ([18]). For an n-bit bijective S-box S = (f0, . . . , fn−1) with linearity
linearity L(S), each of its component functions, namely ⟨α, S⟩ with any α ∈ Fn

2

\{0}, is balanced and has a linearity of at most L(S).

Using Lemma 2 makes it possible to filter out some of the possibilities, only
by having some of the coordinate functions. Precisely, assume that f0 and f1
are already chosen, then without choosing other coordinate functions, we can
check for balancedness and linearity of f0 ⊕ f1. If f0 ⊕ f1 is balanced and has a
linearity at most ℓ, then we choose the third coordinate function, f2. Again, we
can check for balancedness and linearity of f0 ⊕ f2, f1 ⊕ f2, and f0 ⊕ f1 ⊕ f2.
Continuing in this way, after choosing the last coordinate function, fn−1, we can
check for balancedness and linearity of other 2n−1 − 1 component functions. If
these 2n−1 − 1 conditions are met, then we have a bijective S-box with linearity
at most ℓ.

Lemma 3 ([18]). For an n-bit S-box S = (f0, . . . , fn−1) with differential uni-
form U(S), the differential uniformity of sub-S-box S′

i = (f0, . . . , fi) with i < n
is upper bounded by min{U(S) · 2n−i−1, 2n}.
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Lemma 3 can also be used to filter out coordinate functions that meet the
differential uniformity requirement for the sub-S-box S′

i = (f0, f1, . . . , fi).
Next, we illustrate the algorithm to find the minimum of

∑n
i=1 wi meeting

certain differential uniform and linearity with the help of Lemma 2 and Lemma
3, which is shown in Algorithm 1. Inspired by Prim algorithm in graph theory,
we construct the coordinate functions of an S-box one by one to achieve local
optimization. At the very begin, we build a pre-computation table T [cost] to
store all combinations of logic gates, indexing by area cost as shown in Table 6.
Please note that the combinations in this table are ordered by the number of
used gates.

Algorithm 1: Prim-like greedy Algorithm to achieve the locally mini-
mum solution for area cost.

Input: n, G, V
Output: Cost

1 V 0, . . . , V n−1 ← ∅;
2 Vy = ∅;
3 global Cost, Cost′ = 0;
4 global iter = −1;
5 Function FindingLocalMinimumArea(n,G, V ):
6 iter++;
7 for i = 3, 4, 5... do
8 if count = 0 then
9 for k = 1 to ⌊i/3⌋ do

10 if count = 0 then
11 for g0, . . . , gk−1 ∈ G and

∑k−1
j=0 |gj | = i do

12 V iter = V ;
13 for v0, . . . , vn−1 (n = 2, 3, 4) ∈ V iter do
14 tj = gj(v0, . . . , vn−1), V iter ← V iter ∪ {tj};
15 if {α ∈ Fiter+1

2 \{0}|⟨α, Vy ∪
tk−1⟩} is balanced && L(Vy ∪ tk−1) ≤ L(S) then

16 if U(Vy ∪ tk−1) ≤ min{u · 2n−iter−1, 2n} then
17 V ← V ∪ V iter, Vy ← Vy ∪ tk−1;
18 count++;
19 if iter ≤ n− 1 then
20 FindingLocalMinimumArea (n,G, V );

21 break

22 return

23 Cost = Cost′/3

In detail, to construct the first coordinate function f0, the steps are as follows.
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Table 6: Precomputed table for gate combinations.

cost(GE) combinations of logic gates # combinations
1/3× 1 ∅ 0
1/3× 2 {NOT} 1

...
...

...

1/3× 5
{NOT, NAND}, {NOT, NOR}
{NAND, NOT}, {NOR, NOT} 4

...
...

...

– Step 1: Try the combination of logic gates from pre-computation T [cost]
successively according to area cost. Assume the current combination of logic
gates is If0 , and the number of logic gates used in If0 is |If0 |:

If0 : v0
g0−→ v1

g1−→ · · ·
g|If0

|−2

−−−−−→ v|If0
|−1 = f0(x0, · · · , xn−1), (4)

where v0 is the initial vertex, and v|If0
|−1 is the final vertex.

– Step 2: Try possible inputs of gate g0 from initial input set V = {x0, · · · , xn−1},
possible inputs of gate g1 from V ∪{v1}, . . . , possible inputs of gate g|If0

|−1

from V ∪ {v1, v2, · · · , v|If0
|−2}.

– Step 3: Check if v|If0
|−1 = f0(x0, · · · , xn−1) satisfies Lemma 2 and Lemma

3. If so, continue to construct the next coordinate function. Otherwise, return
back to Step 2 and Step1.
This process is shown in Figure 1(a). Now the area cost is

∑|If0
|−1

i=0 wi.

To construct the second coordinate function f1 is slightly different with the
process to construct f0. The steps are as follows:

– Step 1: Try the combination of logic gates from the pre-computation table
T [cost] successively according to area cost. Assume the current combination
of logic gates is If1 , and the number of logic gates used in If1 is |If1 |:

If1 : v′0
g|If0

|
−−−−→ v|If0

|
g|If0

|+1

−−−−−→ v|If0
|+1 −→ · · · −→ v|If0

|+|If1
|−1 = f1(x0, · · · , xn−1).

(5)

– Step 2: Choose initial vertex v′0 from set V = {v0, v1, · · · , v|If0
|−1} one by

one.
– Step 3: Assume the current v′0 = vi, 0 ≤ i ≤ |If0 | − 1. Try possible inputs

of gate g|If0
| from initial input set V = {x0, · · · , xn−1, v0, · · · , vi}, possi-

ble inputs of gate g|If0
|+1 from V ∪ {v|If0

|}, . . . , possible inputs of gate
g|If0

|+|If1
|−1 from V ∪ {v|If0

|, v|If0
|+1, · · · , v|If0

|+|If1
|−2}.

– Step 4: Check if v|If0
|+|If1

|−1 = f1(x0, · · · , xn−1) satisfies Lemma 2 and
Lemma 3. If so, continue to construct the next coordinate function. Other-
wise, return back to Step 3, Step 2 and Step 1.
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This Process is shown in Figure 1(b). Now the area cost
∑|If0

|−1

i=0 wi +∑|If1
|−1

i=0 w|If0
|+i.

To construct the other coordinate functions f2, · · · , fn−1 sequentially is simi-
lar to the process to construct f1. But the difference lies in that the initial vertex
set V and the input set V would be changed and larger. The process is shown in
Figure 1(c)(d). In the end, the total area cost is

∑|If0
|+|If1

|+···+|Ifn−1
|−1

i=0 wi.
Application to 4-bit S-boxes. We apply Algorithm 1 on 4-bit S-boxes with

both differential uniformity and linearity as 4. By using different sets of logic
gates, we get different upper bound of minimum area of 4-bit S-boxes under UMC
180nm library. When we only use 2-input logic gates from G2, the minimum area
of S-boxes we found is 12 GE, composed of 8 logic gates. When we use 2-input
and 3-input logic gates from {G2,G3}, the minimum area of S-boxes we found
is 12 GE, composed of 8 logic gates. When we use 2-input, 3-input and 4-input
logic gates from {G2,G3,G4} together, the minimum area of S-boxes we found is
11 GE, composed of 6 logic gates. The results are summarized in Table 7.

Table 7: Upper bound of minimum area of optimal 4-bit S-boxes under UMC
180nm library

U(S) L(S) basis #logic gate area (GE)
4 4 {G2} 8 12
4 4 {G2, xG3} 8 12
4 4 {G2,G3,G4} 6 11

3.2 Lower Bound of Minimum Area to Construct Bijective S-boxes

In this part, we try to seek the lower bound of the minimum area to construct a
bijective S-box based on the balanced property of Boolean functions. By default,
the algebraic degree of each coordinate function of the S-box should be no less
than 2.

Firstly, we propose some properties to real how to construct balanced Boolean
functions implemented by logic gates with 2 or 3 inputs.

Property 1. If f is an n-variables Boolean function with algebraic degree l(l ≥ 2)

obtained by logic gate g, i.e. f : V
g−→ t = f(V = {x0, · · · , xn−1}), where g is a

logic gate involved in this paper except G1 ∪ G4 (i.e. g ∈ (Gl ∪ G2 ∪ G3)), then
f(x0, · · · , xn−1) is not balanced.

Proof. Suppose that f(x0, · · · , xn−1) is a balanced Boolean function obtained
by logic gate g in (Gl ∪ G2 ∪ G3).



How Small Can S-boxes Be? 15

Case 1. The gate g is in Gl. Obviously, the Boolean function expression of
gate g would be g(xi, xj) = xi + xj or g(xi, xj) = xi + xj + 1. Thus, deg(f) =
deg(g) = 1 which contradicts the algebraic degree of f being greater than or
equal to 2.

Case 2. The gate g is not in Gl. According to the expressions of the logic
gates given in Table 4, we have Boolean function expressions of gate g2 in G2
and gate g3 in G3 as shown in Equation 6 and 7 respectively.

g2(xi, xj) = xixj + λ1(xi + xj) + λ0, (6)

g3(xi, xj , xk) = xixjxk + λ1(xixj + xixk + xjxk + xi + xj + xk) + λ0, (7)

where λ0 and λ1 are constants with values of 0 or 1 and xi, xj , xk ∈ F2. Obvi-
ously, g2(xi, xj) is a binary Boolean function about variables xi and xj , and its
leading term is xixj , i.e. deg(g2(xi, xj)) = 2. According to Lemma 1, g2(xi, xj) is
not a balanced Boolean function. Similarly, g3(xi, xj , xk) is also not a balanced
Boolean function. Thus, whether g = g2 or g = g3, g is unbalanced.

Therefore, f(x0, · · · , xn−1) with algebraic degree l(l ≥ 2) obtained by logic
gate g is not a balanced Boolean function.

Property 2. The function f(x0, · · · , xn−1) is an n-variable balanced Boolean
function with algebraic degree l(l ≥ 2) obtained by the composite use of logic
gates g0 and g1, i.e. f : V

g0−→ t0
g1−→ t1 = f(V = {x0, · · · , xn−1}) , where g0 and

g1 are logic gates involved in this paper except G1 ∪ G4 and the output t0 of g0
is an input of g1, if and only if g0 is a nonlinear gate and g1 is a linear gate.

Proof. Denote t0 and t1 as the outputs of g0 and g1 respectively. There are four
cases below.

Case 1. The gate g0 and g1 are both in Gl. Obviously, the Boolean function
expression of gate g would be g1(t0) = t0+1 or g1(t0, xi) = t0+xi or g1(t0, xi) =
t0 + xi +1. By the proof of Property 1, we have deg(f) = deg(g1) = deg(t0) = 1
which contradicts the algebraic degree of f being greater than or equal to 2.

Case 2. The gate g0 is in Gl and g1 is in G2 ∪ G3. It is clear that t0 =
g0(xi, xj) = xi + xj or t0 = g0(xi, xj) = xi + xj + 1 and Pr(t0 = 0) = 1

2 .
Depending on the number of inputs to g1, there are two subcases.

Subcase 1. The gate g1 is in G2. According to Equation 6, we have

t1 = g2(t0, xi) = t0xi + λ1(t0 + xi) + λ0 =

{
(λ1 + 1)xi + λ1 + λ0 t0 = 1

λ1xi + λ0 t0 = 0.

Since the value of t0 is determined by two input variables, whether there is a
dependency between t0 and xi, we have 0 < Pr(xi = u|t0 = v) < 1 where
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u, v ∈ {0, 1}. Thus

Pr(t1 = 0) =Pr(t0 = 1) · Pr((λ1 + 1)xi + λ1 + λ0 = 0)

+ Pr(t0 = 0) · Pr(λ1xi + λ0 = 0)

=


1
2Pr(xi = 0|t0 = 1) + 1

2 λ1 = 0, λ0 = 0
1
2Pr(xi = 1|t0 = 1) λ1 = 0, λ0 = 1
1
2Pr(xi = 0|t0 = 0) λ1 = 1, λ0 = 0
1
2 + 1

2Pr(xi = 1|t0 = 0) λ1 = 1, λ0 = 1

̸=1

2
.

(8)

Subcase 2. The gate g1 is in G3. According to Equation 6, we have

t1 = g3(t0, xi, xj) = t0xixj + λ1(t0xi + t0xj + xixj + t0 + xi + xj) + λ0

=

{
t0xi + λ1(t0 + xi) + λ0 xi = xj

λ1 + λ0 xi ̸= xj .

(9)

Thus

Pr(t1 = 0) =Pr(xi = xj) · Pr(t0xi + λ1(t0 + xi) + λ0 = 0)

+ Pr(xi ̸= xj) · Pr(λ1 + λ0 = 0)

=

{
1
2Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj) +

1
2 λ1 + λ0 = 0

1
2Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj) λ1 + λ0 ̸= 0

(10)
Similar to Subcase 1, the value of t0 is determined by two input variables, thus
we can obtain that 0 < Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj) < 1 whether
there is a dependency between t0 and xi. Therefore,

Pr(t1 = 0) ̸= 1

2
. (11)

By Equation 8 and 11, we have Pr(t1 = 0) ̸= 1
2 when the gate g0 is in Gl and

g1 is in G2 ∪ G3. Since f(x0, · · · , xn) = t1, f is not a balanced Boolean function
when the gate g0 is in Gl and g1 is in G2 ∪ G3.

Case 3. The gate g0 and g1 are both in G2 ∪ G3. Obviously, by the proof of
Property 1, Pr(t0 = 0) ̸= 1

2 . Depending on the number of inputs to g1, there are
two subcases.

Subcase 1. The gate g1 is in G2. According to Equation 6, we have

t1 = g2(t0, xi) = t0xi + λ1(t0 + xi) + λ0 =

{
(λ1 + 1)t0 + λ1 + λ0 xi = 1

λ1t0 + λ0 xi = 0.
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Note that, whether there is a dependency between t0 and xi, we have 0 < Pr(t0 =
u|xi = v) < 1 where u, v ∈ 0, 1. Thus,

Pr(t1 = 0) =Pr(xi = 1) · Pr((λ1 + 1)t0 + λ1 + λ0 = 0)

+ Pr(xi = 0) · Pr(λ1t0 + λ0 = 0)

=


1
2Pr(t0 = 0|xi = 1) + 1

2 λ1 = 0, λ0 = 0
1
2Pr(t0 = 1|xi = 1) λ1 = 0, λ0 = 1
1
2Pr(t0 = 0|xi = 0) λ1 = 1, λ0 = 0
1
2 + 1

2Pr(t0 = 1|xi = 0) λ1 = 1, λ0 = 1

̸=1

2

(12)

Subcase 2. The gate g1 is in G3. According to Equation 7, we have

t1 = g3(t0, xi, xj) = t0xixj + λ1(t0xi + t0xj + xixj + t0 + xi + xj) + λ0

=

{
t0xi + λ1(t0 + xi) + λ0 xi = xj

λ1 + λ0 xi ̸= xj .

(13)

Thus,

Pr(t1 = 0) =Pr(xi = xj) · Pr(t0xi + λ1(t0 + xi) + λ0 = 0)

+ Pr(xi ̸= xj) · Pr(λ1 + λ0 = 0)

=

{
1
2Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj) +

1
2 λ1 + λ0 = 0

1
2Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj) λ1 + λ0 ̸= 0

(14)
About the value of Pr(t0xi + λ1(t0 + xi) + λ0 = 0|xi = xj), we can obtain that
it is greater than 0 and less than 1 by the former case. Therefore,

Pr(t1 = 0) ̸= 1

2
. (15)

By Equation 8 and 15, we have Pr(t1 = 0) ̸= 1
2 when the gate g0 and g1 are

both in G2 ∪ G3. Since f(x0, · · · , xn) = t1, f is not a balanced Boolean function
when the gate g0 and g1 are both in G2 ∪ G3.

Case 4. The gate g0 is in G2 ∪ G3 and g1 is in Gl. There does exist some g0
and g1 such that f is balanced, e.g.,

t0 = g0(xi, xj) = xixj , t1 = g1(t0, xk) = t0 + xk,

f(x0, · · · , xn−1) = t1 = g1(t0, xk) = t0 + xk = xixj + xk,
(16)

where 0 ≤ i, j, k < n, i ̸= j, i ̸= k and j ̸= k. Obviously,

Pr(f = 0) = Pr(t1 = 0) = Pr(xk = 0)·Pr(xixj = 0)+Pr(xk = 0)·(1−Pr(xixj = 0)) =
1

2
.

Thus, f is indeed a balanced Boolean function.
In sum, f is balanced Boolean function if and only if g0 is a nonlinear gate

and g1 is a linear gate.
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From the above properties, according to the cost of logic gates in Table 5,
it takes at least 3 GE to achieve a balanced Boolean function with an algebraic
degree of at least 2.

We define "continuous composite use of logic gates" as the case that the
output of the previous gate is the input of the next gate like a chain. Then we
propose the following property.

Property 3. Let f(x0, · · · , xn−1) is an n-variable Boolean function with algebraic
degree l(l ≥ 2) obtained by g̃ and g1, i.e. f : V

g̃−→ tm
g1−→ tm+1 = f(V =

{x0, · · · , xn−1}), where g̃ is some continuous composite use of logic gates except
G1 ∪ G4, g1 is a nonlinear logic gate with 2 inputs, and the output tm of g̃ is an
input of g1. If tm is the first balanced output among the outputs of the logic
gates used in g̃, then f is not a balanced Boolean function.

Proof. Since tm reaches an balanced state, we have Pr(tm = 0) = 1
2 . Since the

gate g1 is in G2, according to Equation 6, we have

tm+1 = g2(tm, ts) = tmts + λ1(tm + ts) + λ0 =

{
(λ1 + 1)ts + λ1 + λ0 tm = 1

λ1ts + λ0 tm = 0.

where ts is one of the outputs of the logic gates used in g̃ or directly belongs to
V. And

Pr(tm+1 = 0) =Pr(tm = 1) · Pr((λ1 + 1)ts + λ1 + λ0 = 0)

+ Pr(tm = 0) · Pr(λ1ts + λ0 = 0)

=


1
2Pr(ts = 0|tm = 1) + 1

2 λ1 = 0, λ0 = 0
1
2Pr(ts = 1|tm = 1) λ1 = 0, λ0 = 1
1
2Pr(ts = 0|tm = 0) λ1 = 1, λ0 = 0
1
2 + 1

2Pr(ts = 1|tm = 0) λ1 = 1, λ0 = 1.

(17)

When ts is one of the outputs of the logic gates used in g̃, Pr(ts = 0) ̸= 1
2 .

Since g̃ is some continuous composite use of logic gates, tm can be regarded as
the output of ts as an input through the continuous composite use of logic gates.
On the other hand,

Pr(tm = u) = Pr(ts = 0, tm = u) + Pr(ts = 1, tm = u)

= Pr(tm = u|ts = 0)Pr(ts = 0) + Pr(tm = u|ts = 1)Pr(ts = 1) =
1

2
, u = 0, 1.

(18)
If Pr(ts = 0, tm = u) = 0, then Pr(tm = u) = Pr(tm = u|ts = 1)Pr(ts =
1) ≤ Pr(ts = 1) < 1

2 , which is in contradiction with Pr(tm = 0) = 1
2 . Thus,

Pr(ts = 0, tm = u) ̸= 0. Similarly, Pr(ts = 1, tm = u) ̸= 0. Therefore, 0 <
Pr(ts = 0, tm = u) < 1 and 0 < Pr(ts = 1, tm = u) < 1. Furthermore,
0 < Pr(ts = u|tm = v) < 1 where u, v ∈ 0, 1. According to Equation 17, we have
Pr(tm+1) ̸= 1

2 . Then we have f is not a balanced function.
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When ts ∈ V , then the case become Case 2. in Property 2 and we have f is
not a balanced function.

In sum, f is not balanced.

Application on 4-bit S-boxes. From [10], it is known that the optimal
4-bit S-boxes can be derived from 16 representative S-boxes of CCZ equivalence
through affine equivalence. By applying affine transformations to the coordinate
functions of these 16 optimal S-boxes, it is observed that each coordinate function
of an optimal 4-bit S-box must contain quadratic terms. Therefore, it is evident
that a structure where g1, i.e. f : V

g̃−→ tm
g1−→ tm+1 = f(V = {x0, · · · , xn−1}) (

g1 is a linear component) cannot construct a second balanced Boolean function
where tm is the first balanced Boolean function with algebraic degree l(l ≥ 2).
This is because either tm+1 lacks quadratic terms or tm + tm+1 lacks quadratic
terms. Property 1 and 3 shows that the second balanced Boolean function cannot
be obtained by adding only one nonlinear gate with 2 inputs. What’s more, we
found that only adding one nonlinear gate with 3 inputs or only adding two
nonlinear gates (with 2 or 3 inputs) cannot reach the second balanced Boolean
function when the cost of g̃ does not exceed 3 GE. And if only using nonlinear
gates, two balanced Boolean functions cannot be obtained under the combined
gates with a cost not exceeding 5 GE.

Thus, the optimal way to construct a second coordinate function is that if and
only if g0 is a nonlinear gate and g1 is a linear gate in f : V

g̃−→ tm
g1−→ tm+1

g2−→
tm+2 = f(V = {x0, · · · , x3}) where Pr(tm = 0) = 1

2 and the cost of g̃ is 3 GE.
From the perspective of area optimization, constructing two balanced Boolean
functions requires at least 2 nonlinear gates and 2 linear gates. On this basis,
constructing the other two coordinate functions requires at least 2 additional
nonlinear gates. Using this combination of gates as a constraint in the model
described in Section 4, we found that no such 4-bit S-box exists. Therefore,
constructing a 4-bit S-box requires at least one more gate or replacing one of the
nonlinear gates with a linear gate. The minimum area for 4 nonlinear gates and
2 linear gates was found to be 8 GE. Adding at least one more gate or replace
one nonlinear gate results in a total minimum area of 9 GE. Hence, we roughly
tightened the lower bound for the minimum area construct a 4-bit S-box to be
9 GE if only 2-input and 3-input logic gates are used.

4 Improved Automatic Search Model Considering
Multiple Cryptographic Properties and Implementation
Cost Simultaneously

Using the Prim-Like greedy algorithm, we explore the upper bound of the mini-
mum area for an S-box under specific cryptographic properties, as well as study
the lower bound of the area for bijective S-boxes in Section 3. In order to further
determine the minimum area for an S-box with given cryptographic properties,
we first propose an improved automatic search method to construct S-boxes un-
der certain cryptographic properties in Section 4.1. Then we propose an improved
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optimization method for S-boxes in Section 4.2. Finally in Section 4.3, we com-
bine these two models above which can take multiple cryptographic properties
and area, gate depth into consideration simultaneously.

4.1 Improved Automatic Search Method to Construct S-boxes
under Certain Cryptographic Properties

Original model in [13] In [13], Lu et al. constructed the STP-based automatic
S-box search by first determining the constraints of the S-boxes cryptographic
properties in the CVC language format, including differential uniform U(S),
linearty L(S), frequency of U(S) and L(S), bijectivity, fix point and so on.
According to Definition 1 ∼ 4, U(S) and L(S) in this model are constrained as
follows:

δS(α, β) ≤ U(S),
|λS(α, β) − 2n−1| ≤ L(S).

To obtain δS(α, β) and λS(α, β), we need to traverse the constraints across
the entire DDT and LAT under (α, β):

IsTrueDDT (α, β, x) =

{
1, if S(x⊕ α) = S(α)⊕ β,

0, others.

IsTrueLAT (α, β, x) =

{
1, if α · x⊕ β · S(x) = 0,

0, others.

Then, δS(α, β) and λS(α, β) are constructed as follows:

δS(α, β) =

2n−1∑
x=0

IsTrueDDT (α, β, x),

λS(α, β) =

2n−1∑
x=0

IsTrueLAT (α, β, x).

For the constraints of other cryptographic properties of an S-box, please refer to
[13].

Improved model by considering algebraic degree Lu et al.’s method can
consider many cryptographic properties, but unfortunately, it fails to cover the
algebraic degree of an S-box which is also a significant cryptographic property.
An S-box’s algebraic degree can be get from the ANF expression of the S-box’s
coordinate functions. However, it is difficult to construct ANF in the SAT model.
In this part, we give a method to add the constraints about the algebraic degree
into the SAT model via SoP expression of Boolean function.

The definition of SoP expression for Boolean function is defined as follows:
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Definition 11 (SoP expression for Boolean function [20]). Assume f(x) :
Fn
2 → F2 is a Boolean function, then its SoP expression is:

f(x) =
∨

(f(u) · gu(x)), (19)

where gu(x) is the Minterm Boolean function defined as follows:

gu(x) =

n−1∏
j=0

(xj + uj + 1) =

{
1, x = u

0, x ̸= u,
(20)

where x = (x0, x1, . . . , xn−1) and u = (u0, u1, . . . , un−1).

From Definition 11, it is easy to find that there are 2n different Minterm
Boolean function gu(x) according to the value of u. Each Minterm gu(x) = 1
only when x = u. This means that only one of 2n items f(u) · gu(x) in Equation
(19) will be 1 for given x, while other items are all zero. As a result, the SoP
expression of f(x) can be directly transformed as

f(x) =
∑

f(u) · gu(x). (21)

Actually, the SoP expression cannot be directly used to constrain the alge-
braic degree, we need to convert the SoP expression in Equation (21) into the
ANF expression. It is achieved by combining Definition 11 and Equations (20)
(21) as follows:

f(x) =
∨

u∈Fn
2

f(u) · gu(x)

=
∑
u∈Fn

2

f(u) ·
n−1∏
j=0

(xj + uj + 1).

=
∑
u∈Fn

2

(f(u) ·
∑
v∈Fn

2

((1 + u0)
v0 · (1 + u1)

v1 · · · (1 + u
vn−1

n−1 )) · x
v0
0 xv1

1 . . . x
vn−1

n−1 )

=
∑
u∈Fn

2

(f(u) ·
∑
v∈Fn

2

αu
v · x

v0
0 xv1

1 . . . x
vn−1

n−1 )

= (
∑
u∈Fn

2

f(u) · αu
2n−1) · x0 · · ·xn−1 + · · ·+ (

∑
u∈Fn

2

f(u) · αu
1 ) · x3 + (

∑
u∈Fn

2

f(u) · αu
0 ),

where αu
v = (1 + u0)

v0 · (1 + u1)
v1 · · · (1 + u

vn−1

n−1 ).
Until now, all coefficients in ANF of f(x), which are

∑
f(u)·αu

2n−1,
∑

f(u)·
αu
2n−2, · · · ,

∑
f(u) ·αu

0 , can be expressed into SAT model since all αu
v (v ∈ Fn

2 )
can be pre-computed. If we require the algebraic degree of f(x) at least d, then
at least one coefficient {wt(v) ≥ d |

∑
f(u) · αu

v} is not zero. In other word,{∑
wt(v)>d(f(u) · αu

v ) = 0,∑
wt(v)=d(f(u) · αu

v ) ≥ 1.
(22)
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Actually an S-box: Fn
2 → Fn

2 can be regarded as a vectorial Boolean function
(f0(x), · · · , fn−1(x)). To set the algebraic degree of an S-box as d is to set the
algebraic degree of at least one coorinate function as d.

Algorithm 2: Improved automatic search model for n-bit S-boxes un-
der certain cryptographic properties.
Input: U(S), L(S), deg(S) = d, pre-computed α[u][v]
Output: CVC-based search model.

1 for in← 0 to 2n − 1 do
2 for out← 0 to 2n − 1 do
3 for v ← 0 to 2n − 1 do
4 ASSERT (IF yv⊕in

0 @ · · ·@yv⊕in
n−1 = yv0@ · · · yvn−1⊕out THEN

IsTrueDDT (in, out, v) = 1 ELSE IsTrueDDT (in, out, v) = 0);
5 ASSERT (IF in · v = out · yv0@ · · ·@yvn−1 THEN

IsTrueLAT (in, out, v) = 1 ELSE IsTrueLAT (in, out, v) = 0);

6 ASSERT (δS [in][out] =
∑2n−1

v=0 IsTrueDDT (in, out, v));

7 ASSERT (λS [in][out] =
∑2n−1

v=0 IsTrueLAT (in, out, v));
8 ASSERT (δS [in][out] ≤ U(S));
9 ASSERT (2n−1 − L(S) ≤ λS [in][out] ≤ 2n−1 + L(S));

10 for X ← 0 to 2n − 1 do
11 x0@x1@ · · ·@xn−1 = X;
12 ASSERT (X ̸= yX0 @yX1 @ · · ·@yXn−1); // without fixed point
13 for Z ← X + 1 to 2n − 1 do
14 ASSERT (yX0 @ · · ·@yXn−1 ̸= yZ0 @ · · ·@yZn−1); //bijective S-box

15 // Constrain the algebraic degree of an S-box to be d.
16 ASSERT (

∑n−1
i=0

∑2n−1
u=0

∑
wt(v)=d(y

u
i · α[u][v]) ≥ 1);

17 for i← 0 to n− 1 do
18 ASSERT (

∑2n−1
u=0

∑
wt(v)>d(y

u
i · α[u][v]) = 0);

For example, assume the algebraic degree of one coordinate function f of a
4-bit S-box to be 3. In the ANF of f(x), we only need to focus on the coefficients
of the cubic monomials, i.e., the coefficients of x0x1x2, x0x1x3, x0x2x3, x1x2x3,
which are

∑
u∈Fn

2
f(u)αu

14,
∑

u∈Fn
2
f(u)αu

13,
∑

u∈Fn
2
f(u)αu

11 and
∑

u∈Fn
2
f(u)αu

7

respectively. Since for an n-bit Boolean function, each ANF expression of gu(x)
can be computed. By expanding all gu(x), we obtain all of αu

14, αu
13, αu

11, αu
7 ,

which are shown in Table 8.
Finally, we constrain the algebraic degree of one coordinate function of an

S-box to be 3, that is:

∑
u∈Fn

2

f(u)αu
14 +

∑
u∈Fn

2

f(u)αu
13 +

∑
u∈Fn

2

f(u)αu
11 +

∑
u∈Fn

2

f(u)αu
7 ≥ 1. (23)
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Table 8: Coefficient of each cubic monomial in the ANF expansion of gu(x) for
a 4-bit Boolean function.

u of gu(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
αu
14 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

αu
13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

αu
11 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
αu
7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Combining the new findings on algebraic degree and original model in [13],
we propose an improved automatic search model based on SAT, which is shown
in Algorithm 2.

4.2 Improved Optimization Implementation Method for Given
S-boxes

Original model in [14] The model proposed in [14], built upon the Gate Count
Complexity model from [21], optimizes the area cost of an S-box by assigning a
weight to each gate corresponding to its area. This approach enables to calculate
the minimum area for a given S-box and support 4-input gates. Assume there
are k gates in total, the expressions for four possible inputs of the i-th (i =
0, 1, . . . , k − 1) gate can be written as:


q4i = ai0 · x0 + · · ·+ ain−1 · xn−1 + ain · t0 + · · ·+ ain+i−1 · ti−1,

q4i+1 = bi0 · x0 + · · ·+ bin−1 · xn−1 + bin · t0 + · · ·+ bin+i−1 · ti−1,

q4i+2 = ci0 · x0 + · · ·+ cin−1 · xn−1 + cin · t0 + · · ·+ cin+i−1 · ti−1,

q4i+3 = di0 · x0 + · · ·+ din−1 · xn−1 + din · t0 + · · ·+ din+i−1 · ti−1.

(24)

where xi (i = 0, 1, . . . , n − 1) denotes the i-th input bit of S-box, and ti (i =
0, 1, . . . , k − 1) denotes the output bit of the i-th gate.

Each input bit of the i-th gate comes either from one input bit of S-box or one
output bit from any preceding gate. Thus, in each expression for q4i, q4i+1, q4i+2, q4i+3,
only one coefficient is 1, other coefficients are all 0, i.e. that is


∑n+i−1

j=0 aij = 1,∑n+i−1
j=0 bij = 1,∑n+i−1
j=0 cij = 1,∑n+i−1
j=0 dij = 1.

(25)
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Within the search model, we can collect constraints between the inputs and
output of every logic gate under {G1,G2,G3,G4} using the following formula:

ti =βi
0 · q4i · q4i+1 · q4i+2 · q4i+3 + βi

0 · q4i · q4i+1 · q4i+2 + βi
0 · q4i · q4i+1 · q4i+3+

βi
0 · q4i+2 · q4i+3 + βi

0 · q4i+2 + βi
0 · q4i+3 + βi

1 · q4i · q4i+1 · q4i+2+

βi
2 · q4i · q4i+1 + βi

2 · q4i · q4i+2 + βi
2 · q4i+1 · q4i+2 + βi

2 · q4i + βi
2 · q4i+1+

βi
2 · q4i+3 + βi

3 · q4i + βi
3 · q4i+1 + βi

3 · q4i+2 + βi
4 · q4i · q4i+1+

βi
5 · q4i + βi

5 · q4i+1 + βi
6 · q4i + βi

7,
(26)

where the coefficients (βi
0, β

i
0, . . . , β

i
7) determine the type of the i-th gate and its

area. The corresponding relationship between (βi
0, β

i
0, . . . , β

i
7) and logic gates is

shown in Table 9.

Table 9: Corresponding relationship between the values of (βi
0, β

i
1, . . . , β

i
7) and

logic gates in [14].

Logic Gates βi
0 βi

1 βi
2 βi

3 βi
4 βi

5 βi
6 βi

7 Cost/GE
NOT 0 0 0 0 0 0 1 1 0.67
XOR 0 0 0 0 0 1 0 0 3.00

XNOR 0 0 0 0 0 1 0 1 3.00
NOT 0 0 0 0 0 1 1 1 0.67
AND 0 0 0 0 1 0 0 0 1.33

NAND 0 0 0 0 1 0 0 1 1.00
OR 0 0 0 0 1 1 0 0 1.33

NOR 0 0 0 0 1 1 0 1 1.00
AND3 0 1 0 0 0 0 0 0 1.33

NAND3 0 1 0 0 0 0 0 1 1.67
OR3 0 1 1 0 0 0 0 0 1.33

NOR3 0 1 1 0 0 0 0 1 1.67
XOR3 0 0 0 1 0 0 0 0 4.67

XNOR3 0 0 0 1 0 0 0 1 4.67
MAOI1 1 0 0 0 0 0 0 0 2.67
MOAI1 1 0 0 0 0 0 0 1 2.00

In the end, each of n output bits yi (i = 0, 1, . . . , n− 1) of S-box also comes
either from one input bit of S-box or one output bit from any preceding gate.
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Thus, the expression for each yi can be written as:
y0 = ak,00 · x0 + · · ·+ ak,0n−1 · xn−1 + ak,0n · t0 + · · ·+ ak,0n+k−1 · tk−1,

y1 = ak,10 · x0 + · · ·+ ak,1n−1 · xn−1 + ak,1n · t0 + · · ·+ ak,1n+k−1 · tk−1,
...

...
yn−1 = ak,n−1

0 · x0 + · · ·+ ak,n−1
n−1 · xn−1 + ak,n−1

n · t0 + · · ·+ ak,n−1
n+k−1 · tk−1.

(27)
Similar to add constraints on coefficients as that in Equation (25), here we can
describe the constraints on output bits as well.

Additionally, the constraints on area should be added into the model. since
all logic gates are multiples of 0.33 GE, the proportion of area for different
logical gates is used to measure the area in our model for the sake of simplicity
and convenience. For example, the area of AND in the model is set to be 4,
since its actual area is 4 times of 0.33GE. By summing up the area of all k
logic gates and ensuring it is no more than the target area Costtarget, we can
find the optimized implementation for a given S-box under such target area.
Furthermore, by gradually reducing the target area, we can find the minimum-
area implementation for a given S-box. The corresponding constraints in the
model are as follows.

ASSERT ( Cost = BV PLUS(g[β0
0@β0

1@...@β0
7 ], . . . , g[β

k−1
0 @βk−1

1 @...@βk−1
7 ]));

ASSERT ( BV LE( Cost, Costtarget) );

where g([βi
0@βi

1@...@βi
7]) is a pre-computed array that stores the area of each

logic gate according to the value of (βi
0, β

i
1, . . . , β

i
7).

Improved model on reducing the search space Most standard cell libraries
include 2-input gates in G2 and 3-input gates in G3. The logical representation of
these gates are shown in Table 3. Via observing the logic gates, we find that the
output of each 2-input/3-input gates cannot be affected by the order of inputs
which is summarized in Observation 1.

Observation 1 For any n-input gate g ∈ Gn (n = 2, 3) and g(x0, . . . , xn−1) :
Fn
2 → Fn

2 , we have

g(x0, . . . , xn−1) = g(P (x0, . . . , xn−1)),

where P (x0, . . . , xn−1) denotes any simple permutation on Fn
2 .

With Observation 1, it is able to add constraints on the order of inputs for
each 2-input/3-input logic gate in the model as follows:{

ai0||ai1||· · · ||ain+i−1 > bi0||bi1||· · · ||bin+i−1

bi0||bi1||· · · ||bin+i−1 > ci0||ci1||· · · ||cin+i−1

.



26 Chenhao Jia, Tingting Cui et al.

By such constraints, the search space can be reduced at least 50% on inputs of
every gate. Since MAOI1 and MOAI1 gates in G4 do not comply with Observation
1, these two gates must be restricted in the SAT model when applying this
acceleration technique.

Besides that, since two S-boxes within the same bit permutation equivalent
class share the same cryptographic properties and implementation area, it is no
need to distinguish the order of output bits when searching a new S-box. Similar
to shrink the search space on each logic gate, we can add constraints on the
order of (y0, y1, . . . , yn−1) to further reduce the search space just as follows :

ak,00 ||a
k,0
1 ||· · · ||a

k,0
n+k−1 > ak,10 ||a

k,1
1 ||· · · ||a

k,1
n+k−1,

ak,10 ||a
k,1
1 ||· · · ||a

k,1
n+k−1 > ak,20 ||a

k,2
1 ||· · · ||a

k,2
n+k−1,

...
ak,n−2
0 ||ak,n−2

1 ||· · · ||ak,n−2
n+k−1 > ak,n−1

0 ||ak,n−1
1 ||· · · ||ak,n−1

n+k−1.

By adding these n − 1 constraints, we need only search through one of the n!
possible output orders. As a result, the search space is reduced to 1

n! of the
original search space.

Improved model by constraining on gate depth complexity The auto-
matic model in [14] can only be used to optimize the area of a given S-box, but
it cannot be used to optimize the gate depth of a given S-box. In this part, we
propose a technique to take the gate depth into our model.

To describe the gate depth in the model, we set new variables Di in the
model. Firstly, we set Di, 0 ≤ i < n to represent the depth of the i-th input bit
position of S-box. Of course, we have

D0 = D1 = · · · = Dn−1 = 0.

Secondly, we set Dn+i, 0 ≤ i to represent the depth of the i-th gate used in
the model. According to Equation (24) and (25), each input bit of the i-th gate
comes from one input bit of S-box or one output bit of preceding gates. That
means the depth of the i-th gate increases by 1 compared to the largest depth
of related preceding gates or input bit positions.

For 2-input gates, we have{
0 < βi

0@βi
1@...@βi

7 ≤ 0b00001101,

Dn+i = max{
∑n+i−1

j=0 aij ·Dj ,
∑n+i−1

j=0 bij ·Dj}+ 1.
(28)

For 3-input gates, we have{
0b00001101 < βi

0@βi
1@...@βi

7 ≤ 0b01100001,

Dn+i = max{
∑n+i−1

j=0 aij ·Dj ,
∑n+i−1

j=0 bij ·Dj ,
∑n+i−1

j=0 cij ·Dj}+ 1.
(29)
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For 4-input gates, we have{
0b10000000 ≤ βi

0@βi
1@...@βi

7,

Dn+i = max{
∑n+i−1

j=0 aij ·Dj ,
∑n+i−1

j=0 bij ·Dj ,
∑n+i−1

j=0 cij ·Dj ,
∑n+i−1

j=0 dij ·Dj}+ 1.

(30)
These three cases above could be involved into the model with if statement.
Combining the techniques on shrink of the search space in Section 4.2 and

description of gate depth in Section 4.2, as well as the original model in [13],
we propose an improved automatic optimization model based on SAT, which is
shown in Algorithm 3.

This algorithm can optimize the area and gate depth of a given S-box, when
the number of required gates k and implementation area Costtarget are fixed.
At the very beginning, we need to pre-store all ordered combination of gates
satisfying k gates and Costtarget area into the array P[] and pre-store the area
of each logic gate according to the value of βi

0@βi
1@...@βi

7 in g[]. By running
codes corresponding to Algorithm 3, we can get a CVC file. With the help of
solver such as STP, an optimized implementation result could be solved out, or
no solution. As we indeed do not know how many gates and what is the minimum
area for a given S-box, we have to first try all possible cases of area from more
to less, then try all possible cases of #gates under each fixed area from more to
less.

4.3 Improved Automatic Method to Search New S-boxes

In this part, thanks to the improved automatic search method in Section 4.1 and
improved optimization implementation method in Section 4.2, we propose an
automatic method to search new S-boxes which can consider the cryptographic
properties, implementation area and gate depth simultaneously.

In detail, by combining Algorithm 2 and Algorithm 3, it is able to search
optimization implementation when the number of gates and total area are given.
As we indeed do not know how many gates and what is the required area to
construct minimum-area S-boxes, we have to first try all possible cases of area
from more to less, then try all possible cases of #gates under each fixed area
from more to less. The workload of traversal is enormous. To solve this problem,
we can use the work in Section 3 to obtain the tight upper bound and lower
bound of minimum area to construct S-boxes at the very beginning. At last,
by utilizing the constraints on gate depth proposed in Section 4.2, it is able to
optimize the gate depth under the minimum area.

5 Results

5.1 Results on the Minimum Area Cost of 4-bit S-boxes

In this section, we apply the tight bounds on minimum area of S-boxes in Section
3 and the automatic search method in Section 4 to seek the minimum area of 4-bit
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Algorithm 3: Improved optimization model for a given S-box under
given number of gates and area.

Input: an n-bit S-box, number of gates k, target area cost Costtarget,
pre-computed array g[], pre-computed array P[].

Output: A CVC-based model.
1 for X ← 0 to 2n − 1 do
2 xX

0 @xX
1 @ · · ·@xX

n−1 = X;
3 for i← 0 to k − 1 do
4 ASSERT (qX4i =

∑n−1
j=0 ai

j · xX
j +

∑i−1
j=0 a

i
n+j · tXj );

5 ASSERT (qX4i+1 =
∑n−1

j=0 bij · xX
j +

∑i−1
j=0 b

i
n+j · tXj );

6 ASSERT (qX4i+2 =
∑n−1

j=0 cij · xX
j +

∑i−1
j=0 c

i
n+j · tXj );

7 ASSERT (qX4i+3 =
∑n−1

j=0 dij · xX
j +

∑i−1
j=0 d

i
n+j · tXj );

8 ASSERT (tXj = βi
0 · qX4i · qX4i+1 · qX4i+2 · qX4i+3 + · · ·+ β7); // by Equation

(26)
9 for i← 0 to n− 1 do

10 ASSERT (yX
i =

∑n−1
j=0 ak,i

j · x
X
j +

∑n+k−1
j=n ak,i

j · t
X
j );

11 for i← 0 to k − 1 do
12 ASSERT (

∑n+i−1
t=0 ai

t = 1);

13 ASSERT (
∑n+i−1

t=0 bit = 1);

14 ASSERT (
∑n+i−1

t=0 cit = 1);

15 ASSERT (
∑n+i−1

t=0 dit = 1);

16 for i← 0 to n− 1 do
17 ASSERT (

∑n+k−1
t=0 ak,i

t = 1);

18 for i← 0 to k − 1 do
19 ASSERT (ai

0||ai
1|| · · · ||ai

n+i−1 > bi0||bi1|| · · · ||bin+i−1);

20 ASSERT (bi0||bi1|| · · · ||bin+i−1 > ci0||ci1|| · · · ||cin+i−1);

21 for i← 0 to n− 2 do
22 ASSERT (ak,i

0 ||a
k,i
1 || · · · ||a

k,i
n+k−1 > ak,i+1

0 ||ak,i+1
1 || · · · ||ak,i+1

n+k−1);

23 for i← 0 to n− 1 do
24 ASSERT (Di = 0);

25 for i← 0 to k − 1 do
26 ASSERT (Dn+i = 1+

27 max{
∑n+i−1

j=0 ai
j ·Dj,

∑n+i−1
j=0 bij ·Dj,

∑n+i−1
j=0 cij ·Dj,

∑n+i−1
j=0 di

j ·Dj});

28 for i← 0 to k − 1 do
29 P[i] = βi

0@βi
1@ . . .@βi

7 // [βi
0@βi

1@ . . .@βi
7] records the types

of gates from the 0-th gate to the (k − 1)-th gate.

30 ASSERT ( Cost =
∑k−1

i=0 g[βi
0@βi

1@ . . .@βi
7]);

31 ASSERT ( Cost = Costtarget);
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S-boxes under three different basis: {G1,G2}, {G1,G2,G3}, and {G1,G2,G3,G4}.
In detail, three types of S-boxes are taken into consideration, including the op-
timal 4-bit S-boxes, the optimal 4-bit S-boxes with algebraic degree of 3 for all
coordinate functions, as well as the general 4-bit S-boxes with algebraic degree
of at least 2 for all coordinate functions. Generally, the algebraic degree of every
coordinate function of an S-box should not be 1, or it will lead to nonzero linear
approximation pattern with probability 1. Thus, we do not care the S-boxes with
algebraic degree of 1 for some coordinate functions.

Fig. 2: Implementation circuit of an optimal 4-bit S-box with minimum area of
12 GE and gate depth of 4 under the basis {G1,G2}

Minimum area cost of the optimal 4-bit S-boxes. Firstly, we seek the
minimum area of optimal 4-bit S-boxes under UMC 180nm library. As a result,
we find out that the minimum area of optimal 4-bit S-boxes under the basis
{G1,G2} and {G1,G2,G3} is 12 GE with fixed point as well as 12.33 GE without
fixed point while the minimum gate depth under 12 GE is 4. By analyzing, all
these optimal S-boxes with minimum area need at least 8 gates, including 4
NAND/NOR gates and 4 XNOR gates. Totally, we find out over 20000 optimal
S-boxes with 12 GE, which can be further divided into some classes according
to bit permutation equivalence. An instance of the optimal S-boxes with 12 GE
is shown as follows and its implementation circuit is shown in Figure 2.

S(x) = {0x0, 0xb, 0xf, 0x5, 0x3, 0xa, 0xe, 0x6, 0x9, 0x2, 0xd, 0x7, 0xc, 0x4, 0x8, 0x1}

Secondly, we seek the minimum area of optimal 4-bit S-boxes under the basis
{G1,G2,G3, G4}. By using the Prim-like greedy algorithm in Section 3.1, we find
a tight upper bound on the minimum area of optimal S-boxes as 11 GE. After
that, we use the automatic search model in Section 4.3 to search optimal S-boxes
under the constraint of area no more than 11 GE. In the end, we find that the
minimum area of optimal 4-bit S-boxes is exactly 11 GE including 6 gates while
the minimum depth under the S-box of 11 GE is 3. Surprisingly, the founded
S-box has no fixed point. An instance of the optimal S-boxes with 11 GE is
shown as follows and its implementation circuit is shown in Figure 3.

S(x) = {0x7, 0x2, 0xd, 0xb, 0x6, 0xa, 0xc, 0x3, 0x1, 0x0, 0x9, 0x8, 0x4, 0xe, 0xf, 0x5}
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Fig. 3: Implementation of the optimal 4-bit S-box whose minimum area is 11 GE
and gate depth is 3 under the basis {G1,G2,G3,G4}.

Minimum area cost of the optimal 4-bit S-boxes with algebraic
degree of 3 for all coordinate functions. According to Definition 8, the
algebraic degree of optimal 4-bit S-boxes is exactly 3. It means the algebraic
degree of at least one coordinate function for a given S-box should be 3. In other
words, the algebraic degree of some coordinate functions can be 2. In this part,
we care the optimal 4-bit S-boxes with algebraic degree of 3 for all coordinate
functions. Intuitively, this type of S-boxes has better cryptographic properties,
but needs more area cost. We search the minimum area for this type of S-boxes
under the basis {G1,G2} and {G1,G2,G3}, respectively. As a result, we find out
that the minimum area of such type of S-boxes is 14 GE with fixed point as well
as 14.33 GE without fixed point while the minimum gate depth under 14 GE or
14.33 GE is 8. An example of the optimal 4-bit S-box with 14 GE is shown as
follows, while its implementation circuit is shown in Figure 4.

S(x) = {0x1, 0x2, 0xa, 0x7, 0xc, 0x5, 0x8, 0x0, 0xf, 0xe, 0x6, 0x9, 0xd, 0x4, 0xb, 0x3}

Unfortunately, it is unable to determine the minimum area of the optimal S-
boxes with algebraic degree of 3 for all coordinate functions under the basis
{G1,G2,G3,G4}, because the search space is too large to solve out in time.

Fig. 4: Implementation circuit of an optimal 4-bit S-box with algebraic degree of
3 for all coordinate functions under the basis {G1,G2}. (Its area is 14 GE and
gate depth is 8.)
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Minimum area cost of the general S-boxes with algebraic degree of
at least 2 for all coordinate functions. In this part, we expand the search
scope to general S-boxes with algebraic degree of at least 2 for all coordinate
functions, i.e., U(S) < 16 and L(S) < 8. It means no obvious weaknesses on
differential uniformity and linearity. Intuitively, this type of S-boxes has worse
cryptographic properties, intuitively one might assume that they require less area
cost than the optimal 4-bit S-boxes. As a result, we find out that the minimum
area of this type of S-boxes is also 12 GE with fixed point and 12.33 GE without
fixed point under the basis {G1,G2} and {G1,G2,G3}, which are the same as the
minimum area of optimal 4-bit S-boxes. Besides, when 4-input gates are involved,
we find out the minimum area is 9 GE, which is shown in Figure 5.

Fig. 5: Implementation circuit of a general 4-bit S-box with minimum area of 9
GE and gate depth of 3 under the basis {G1,G2,G3,G4}.

5.2 Improved Optimized Implementation on KECCAK and
SKINNY-128’s S-boxes

In this part, we propose the improved optimized implementation on 5-bit S-box
used in KECCAK cipher and 8-bit S-box used in SKINNY cipher by using the
improved automatic optimization method in Section 4.2. The two S-boxes are
provided in Appendix A.

Until now, the best previous optimized implementation of KECCAK’s S-
box was given by Lu et al. in [14]. It needs 17.66 GE. In this paper, we find
out the minimum area cost of KECCAK’s S-box is exactly 17 GE in terms
of the theoretical GE of the UMC 180nm library. Figure 6 shows the optimal
implementation circuit of KECCAK’s S-box with minimum area of 17 GE.

By using our improved optimization method, we propose the optimized im-
plementation of SKINNY-128’s S-box for the first time. It needs 26.67 GE, which
is smaller than 29.33 GE calculated according to the circuit in its design docu-
ment. Figure 7 shows the optimized implementation circuit of SKINNY’s S-box
with area of 26.67 GE.

Remark. There are mainly four methods to optimize the implementation area
of a given S-box or search new S-box with smaller area, including Lighter in [9],
Stoffelen’s method in [21], Lu et al.’s method in [14] and our method in this
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Fig. 6: Optimized implementation circuit of KECCAK’s S-box with minimum
area of 17 GE.

paper. The first three methods can only be used to optimize the area of a given
S-box, they cannot be used to find new S-boxes with small area. In detail, Lighter
and Stoffelen’s method can only optimize the S-boxes with size of no more than 4
bits, while Lu et al.’s method can roughly optimize 5-bit S-box such as Keccak’s
S-box. Our method in this paper cannot only be used to search new S-boxes
with small area, but also can be used to optimize large S-boxes, even 8-bit ones.
Because of the acceleration techniques in Section 4.2, the search space is signifi-
cantly reduced so that our method can achieve a more accurate optimization for
large S-boxes. Thus, we search the optimization implementation of KECCAK’s
S-box better than Lu et al.’s result, while propose the first optimized implemen-
tation result for SKINNY-128’s S-box. Since the search complexity increases as
the number of logic gates grows, our method has been limited to optimize the
lightweight large S-boxes. Besides KECCAK’s and SKINNY-128’s S-boxes, we
also optimize other lightweight S-boxes such as the one used in Ascon cipher,
but no better results are found.

5.3 Discussion

Extension to different cell libraries. Though the main results of this pa-
per are obtained by using the GE as the standard unit under the UMC 180nm
standard cell library to measure and compare the areas of S-boxes, our tool can
be easily generalized to other libraries. With different technological libraries,
we need to re-calculate the unit of GEs and model the corresponding GE val-
ues of different gates. The remaining model keep unchanged. Indeed, the cost
GEs of one S-box might differ under different cell libraries. We conduct the ex-
periments under the TSMC 65nm Library. The minimum area of optimal 4-bit
S-boxes is 14 GE under the basis {G1,G2} or {G1,G2,G3} , while 13.5 GE un-
der the basis {G1,G2,G3,G4}. The minimum area of optimal 4-bit S-boxes with
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Fig. 7: Optimized implementation circuit of SKINNY-128’s S-box with the area
of 26.67 GE.

algebraic degree of 3 for all coordinate functions is 16.5 GE under the basis
{G1,G2} or {G1,G2,G3}. The minimum area of optimal 4-bit S-boxes with alge-
braic degree of at least 2 for all coordinate functions is 14 GE under the basis
{G1,G2} or {G1,G2,G3}. Although the minimum area of an S-box varies under
different libraries, the minimum-area S-boxes under the UMC 180nm library are
the minimum-area ones under the TSMC 65nm library as well. Note that there
are more minimum-area S-boxes under the TSMC 65nm library, because the
area of both MAOI1 and MOAI1 gates are identical in this library. In a short,
under any certain cell library, our model can solve out the minimum area of 4-bit
optimal S-boxes and obtain their logic circuit implementation.
Extension to other “special gates”. Our method is generic that can represent
all the gates listed by Lighter. Equation (26) provides a general formula for the
relationship between the inputs and outputs of all the logic gates within this
model under the UMC 180nm Library. In this formula, (β0, β1, . . . , β7) controls
the type of logic gate, which is provided in Table 9. and the cascaded values of βi

contains some redundancy. Thus, the formula for the input-output relationship of
logic gates provided in this paper can represent more gates, such as the ANDN
and ORN gates from the TSMC 65nm library, which can be represented as
β0@β1@ · · ·@β7 = 0b00001010 and β0@β1@ · · ·@β7 = 0b00001011 respectively.
What’s more, for more “special gates” which may existed in other cell libraries,
users can introduce new variables βi(i > 7)to involve them in the model.
Practical synthesis results. We synthesized the current S-boxes used in PIC-
COLO, SKINNY, RECTANGLE, LBLOCK and KECCAK under the Nangate
45nm library and the TSMC 65nm library respectively. Besides, we synthesized
the optimal 4-bit S-box obtained in this paper, as shown in Figure 3. We com-
pared three synthesis methods in total. The first method is based on the lookup
table (LUT), where the mapping table of the S-box will be automatically opti-
mized into a circuit implementation with a relatively small area by synthesizers.
The second method is using the optimized tool in Lighter [9], which is currently
one of the most effective tools for area-optimized synthesis of small S-boxes. We
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Table 10: The synthesis results of different S-boxes under the Nangate 45nm
library and TSMC 65nm library. The columns of “LUT” contains the synthesis
areas of LUTs for different libraries. The columns of “Light” means the circuits
that are synthesized are from the Light tool. The “Synthesis” and “Theory” in
the “This paper” columns mean the circuits are from our SAT tool, where the
area values of “Theory” is calculated by us according to the numbers of gates in
the corresponding libraries.

S-box
Nangate 45nm library TSMC 65nm library

LUT LIGHTER
This paper

LUT LIGHTER
This paper

Synthesis Theory Synthesis Theory

PICCOLO
13.832µm2 9.576µm2 9.576µm2 – 35.04µm2 26.88µm2 24.96µm2 –
17.33GE 12.00GE 12.00GE 12.00GE 18.25GE 14.00GE 13.00GE 14.00GE

SKINNY-64
14.364µm2 9.576µm2 9.576µm2 – 36.48µm2 24.96µm2 24.96µm2 –
18.00GE 12.00GE 12.00GE 12.00GE 19.00GE 13.00GE 13.00GE 14.00GE

RECTANGLE
18.088µm2 15.428µm2 14.896µm2 – 48.00µm2 36.48µm2 36.00µm2 –
22.67GE 19.33GE 18.67GE 18.00GE 25.00GE 19.00GE 18.75GE 21.50GE

LBLOCK S0
15.162µm2 12.768µm2 12.768µm2 – 36.96µm2 34.08µm2 31.20µm2 –
19.00GE 16.00GE 16.00GE 16.33GE 19.25GE 17.50GE 16.25GE 19.50GE

KECCAK
13.832µm2 – 13.566µm2 – 35.04µm2 – 35.52µm2 –
17.33GE – 17.00GE 17.00GE 18.25GE – 18.50GE 19.00GE

SKINNY-128
74.746µm2 – 18.088µm2 – 180.48µm2 – 50.88µm2 –
93.67GE – 22.67GE 24.00GE 94.00GE – 26.50GE 28.00GE

S-box in Fig.3
– – – – 29.76µm2 – 22.08µm2 –
– – – – 15.50GE – 11.50GE 13.50GE

use the optimized S-box implementations achieved by [9] to synthesise again both
in TSMC 65nm library and Nangate 45nm library. The third method is based
on the improved automatic search model in this paper. We used the model in
Section 4 to obtain an optimized implementation of the S-boxes and, where
possible, achieve the optimal implementation. The resulting logic circuit was
synthesized and compared with the previous two methods. The synthesis results
are summarized in Table 10.

From Table 10, we can see that the synthesis results obtained by Lighter and
our method are both better than those obtained using the LUT-based method. A
more detailed comparison shows that for the current 4-bit S-boxes, the synthesis
area obtained by our method is no larger than the results achieved by Lighter.
Moreover, our method yields better results than Lighter for some cases, such
as the result of RECTANGLE’s S-box in both libraries, and results for the S-
boxes of PICCOLO and LBlock S0 under the TSMC 65nm library. Additionally,
we synthesized the optimized circuits of the KECCAK’s S-box and SKINNY-
128’s S-box. Notably, the synthesis implementation of the SKINNY-128’s S-
box obtained using our method shows significant improvement compared to the
circuit optimized by LUT-based method. Finally, we synthesized the optimal 4-
bit S-box shown in Figure 3. In the TSMC 65nm library, which provides MOAI1
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and MAOI1 gates, we achieved a circuit implementation area of 11.5 GE. This
is smaller than the area of the existing lightweight optimal 4-bit S-boxes.

6 Conclusion

In this paper, we propose an improved automatic search method to obtain the
minimum area of optimal 4-bit S-boxes under certain technological library. Be-
sides that, we study the minimum area of other 4-bit S-boxes with differential
cryptographic properties, as well as propose the optimizing implementation of
the existing S-boxes such as KECCAK′s 5-bit S-box and SKINNY′s 8-bit S-box
with smaller area. To measure and compare the area cost, we use the gate equiv-
alent (GE) as standard unit under UMC 180 nm library which has 2/3/4-input
logic gates. Of course, our automatic search method is also effective under other
technique libraries and can be used to find better optimizing implementation of
other existing S-boxes. However, this method can only determine the minimum
area of 4-bit S-boxes and cannot optimize the implementation of complex 8-bit
S-boxes yet. In the future work, it may be possible to significantly shrink the
search space via some techniques based on graph theory and cryptographic the-
ory.
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A Appendix

The S-boxes used in KECCAK and SKINNY-128 are shown as follows:

SKECCAK(x) ={0x00, 0x09, 0x12, 0x0b, 0x05, 0x0c, 0x16, 0x0f,

0x0a, 0x03, 0x18, 0x01, 0x0d, 0x04, 0x1e, 0x07,

0x14, 0x15, 0x06, 0x17, 0x11, 0x10, 0x02, 0x13,

0x1a, 0x1b, 0x08, 0x19, 0x1d, 0x1c, 0x0e, 0x1f }

SSKINNY(x) = {
0x65,0x4c,0x6a,0x42,0x4b,0x63,0x43,0x6b,0x55,0x75,0x5a,0x7a,0x53,0x73,0x5b,0x7b,

0x35,0x8c,0x3a,0x81,0x89,0x33,0x80,0x3b,0x95,0x25,0x98,0x2a,0x90,0x23,0x99,0x2b,

0xe5,0xcc,0xe8,0xc1,0xc9,0xe0,0xc0,0xe9,0xd5,0xf5,0xd8,0xf8,0xd0,0xf0,0xd9,0xf9,

0xa5,0x1c,0xa8,0x12,0x1b,0xa0,0x13,0xa9,0x05,0xb5,0x0a,0xb8,0x03,0xb0,0x0b,0xb9,

0x32,0x88,0x3c,0x85,0x8d,0x34,0x84,0x3d,0x91,0x22,0x9c,0x2c,0x94,0x24,0x9d,0x2d,

0x62,0x4a,0x6c,0x45,0x4d,0x64,0x44,0x6d,0x52,0x72,0x5c,0x7c,0x54,0x74,0x5d,0x7d,

0xa1,0x1a,0xac,0x15,0x1d,0xa4,0x14,0xad,0x02,0xb1,0x0c,0xbc,0x04,0xb4,0x0d,0xbd,

0xe1,0xc8,0xec,0xc5,0xcd,0xe4,0xc4,0xed,0xd1,0xf1,0xdc,0xfc,0xd4,0xf4,0xdd,0xfd,

0x36,0x8e,0x38,0x82,0x8b,0x30,0x83,0x39,0x96,0x26,0x9a,0x28,0x93,0x20,0x9b,0x29,

0x66,0x4e,0x68,0x41,0x49,0x60,0x40,0x69,0x56,0x76,0x58,0x78,0x50,0x70,0x59,0x79,

0xa6,0x1e,0xaa,0x11,0x19,0xa3,0x10,0xab,0x06,0xb6,0x08,0xba,0x00,0xb3,0x09,0xbb,

0xe6,0xce,0xea,0xc2,0xcb,0xe3,0xc3,0xeb,0xd6,0xf6,0xda,0xfa,0xd3,0xf3,0xdb,0xfb,

0x31,0x8a,0x3e,0x86,0x8f,0x37,0x87,0x3f,0x92,0x21,0x9e,0x2e,0x97,0x27,0x9f,0x2f,

0x61,0x48,0x6e,0x46,0x4f,0x67,0x47,0x6f,0x51,0x71,0x5e,0x7e,0x57,0x77,0x5f,0x7f,

0xa2,0x18,0xae,0x16,0x1f,0xa7,0x17,0xaf,0x01,0xb2,0x0e,0xbe,0x07,0xb7,0x0f,0xbf,

0xe2,0xca,0xee,0xc6,0xcf,0xe7,0xc7,0xef,0xd2,0xf2,0xde,0xfe,0xd7,0xf7,0xdf,0xff}.


