
Fair Exchange for Decentralized Autonomous

Organizations via Threshold Adaptor Signatures

Ruben Baecker1, Paul Gerhart2, Jonathan Katz∗3, and Dominique Schröder1,2

1Friedrich-Alexander-Universität Erlangen-Nürnberg
2TU Wien
3Google

Abstract

A Decentralized Autonomous Organization (DAO) enables multiple parties to collectively
manage digital assets in a blockchain setting. We focus on achieving fair exchange between
DAOs using a cryptographic mechanism that operates with minimal blockchain assumptions
and, crucially, does not rely on smart contracts.

Specifically, we consider a setting where a DAO consisting of nS sellers holding shares of
a witness w interacts with a DAO comprising nB buyers holding shares of a signing key sk;
the goal is for the sellers to exchange w for a signature under sk transferring a predetermined
amount of funds. Fairness is required to hold both between DAOs (i.e., ensuring that each DAO
receives its asset if and only if the other does) as well as within each DAO (i.e., ensuring that
all members of a DAO receive their asset if and only if every other member does).

We formalize these fairness properties and present an efficient protocol for DAO-based fair
exchange under standard cryptographic assumptions. Our protocol leverages certified witness
encryption and threshold adaptor signatures, two primitives of independent interest that we
introduce and show how to construct efficiently.

1 Introduction

A Decentralized Autonomous Organization (DAO) is a group of several parties who jointly exercise
control over digital assets in a blockchain setting. Real-world examples such as MakerDAO and
Uniswap’s DAO oversee assets with substantial value, as evidenced by the price of their underlying
governance tokens. For example, the governance token for Uniswap, UNI, has a market capital-
ization of roughly $5.7 billion according to CoinDesk. The governance of a DAO is distributed
among its members, with pivotal decisions (such as the purchase, sale, or exchange of assets) being
collectively determined by the members of the DAO through a voting process. The implementation
of DAOs frequently employs smart contracts, thereby ensuring transparent adherence to predefined
rules. In this work, we explore whether certain functions of a DAO can be achieved via crypto-
graphic mechanisms without relying on smart contracts. Such an approach is essential for ensuring
compatibility with blockchains such as Bitcoin and Monero that lack smart-contract functionality.

∗Portions of this work were done while at the University of Maryland.

1

Fair exchange of digital assets. We focus on fair exchange of digital assets between DAOs.
Specifically, we consider a setting where there is a seller DAO composed of nS sellers who hold
shares of a witness w for a public statement, and a buyer DAO consisting of nB buyers who hold
shares of a signing key sk controlling a digital asset. The members of the seller DAO interact with
the members of the buyer DAO with the goal of exchanging w for a signature under sk authorizing
the transfer of a predetermined amount of funds. After the exchange, all members of the buyer
DAO should learn w, and all members of the seller DAO should receive an equal share of the
transferred funds.

Security requirements. In the context of fair exchange between DAOs, there is an inherent
lack of trust between the parties. Sellers are concerned that buyers may not fulfill their payment
obligation, while buyers fear that sellers might fail to deliver the witness as promised. To ensure
fairness, we require that the protocol guarantees fairness for the buyer DAO even if all sellers are
corrupted and, likewise, fairness for the seller DAO even if all buyers are corrupted. Additionally,
fairness must hold within each DAO: malicious buyers should not be able to learn the witness while
preventing honest buyers from learning it, and similarly, malicious sellers should not be able to
receive funds while blocking honest sellers from doing so. In all cases, we consider an adversary
capable of corrupting both buyers and sellers. We formalize these fairness properties as two key
security requirements, defined formally in Section 3.2.

Buyer fairness: An adversary who controls all the sellers should be unable to obtain the funds of
any honest buyers unless those honest buyers successfully learn the witness w. This should
hold even if the adversary additionally controls up to some threshold of buyers.

Seller fairness: Analogously, an adversary who controls all the buyers should be unable to learn
any information about w unless all honest sellers receive their expected funds. This should
hold even if the adversary additionally controls up to some threshold of sellers.

We additionally require the following, which is not implied by the above:

Witness privacy: An adversary who corrupts up to some threshold of sellers but no buyers1

should not learn any information about the witness w (even if the sellers receive payment).

Witness privacy ensures that only the buyers learn w, and w is not revealed to sellers (or external
eavesdroppers) in the course of the protocol.

1.1 Our Contributions

We summarize our contributions at a high level, and refer the reader to Section 2 for a more detailed
technical overview.

Formalization. We introduce a formal framework for the problem of fair exchange in decentralized
autonomous organizations (DAOs). While previous works have explored different formula-
tions of fair exchange (cf. Section 1.2), our approach is the first to specifically address its
applicability to DAOs.

1Every buyer participating in the protocol learns the witness, so we must assume the adversary does not corrupt
any buyers here.

2

Building Blocks. We introduce two novel cryptographic building blocks:

• We introduce and construct threshold adaptor signatures[Erw+21; Aum+21].2 Our secu-
rity definitions align with the most recent formalizations of adaptor signatures [Ger+24a],
which address gaps in earlier works.

• We put forward the notion of certified witness encryption, which allows for the encryption
of a message based on a verification key/message pair (vk,m) such that decryption is
only possible given a valid signature on m relative to vk. (This can be viewed as a
form of witness encryption [Gar+13] for a specific NP language, thus allowing for an
efficient realization.) This primitive is particularly useful for achieving fairness in a
blockchain setting, where a signature on some transaction must be posted on a public
blockchain in order to be processed; once posted, anyone holding the corresponding
certified witness encryption of a message will be able to recover that message. We
also provide a framework for constructing certified witness encryption for a large class
of signature schemes based on the discrete-logarithm problem [Sch91; BBS04; CL03;
BSW06; KW03].

Possibility of Fair Exchange. We introduce a fair-exchange protocol that utilizes timelocks and
standard cryptographic assumptions, guaranteeing security against any level of buyer corrup-
tion. The protocol assumes a threshold tS, requiring the participation of at least tS honest
sellers. Our protocol is highly efficient, operates without the need for smart contracts, and
is built upon our newly introduced primitives: threshold adaptor signatures and certified
witness encryption.

Imossibility of Fair Exchange. We complement the above with an impossibility result demon-
strating that a fair-exchange protocol cannot achieve seller fairness in the presence of a min-
imal blockchain. In addition, in the presence of a minimal blockchain with timelocks, we
show that a fair-exchange protocol cannot achieve seller fairness if not at least tS honest
sellers participate in the exchange. This result establishes that our assumption of an honest
majority of participating sellers is optimal with respect to the minimal assumptions needed
for blockchain functionality.

1.2 Related Work

There is an extensive literature on fair exchange in various settings that we cannot hope to survey
here; instead, we focus on the most directly relevant prior work. The key feature distinguishing
our work from most prior work on fair exchange is that rather than consider the exchange of items
between two parties or among multiple parties, we consider the exchange of items between two
groups of parties with a threshold requirement within each group. We stress, in particular, that
this setting requires consideration of intra-group fairness and not just inter-group fairness as in
prior work, and also requires consideration of an adversary who may corrupt some parties in both
groups. The only prior work we are aware of in this setting assumes smart contracts [EFS20;
DEF18].

2Concurrent and independent work by Ji et al.[Ji+24] and Kaijta et al.[KOT24] also explores threshold adaptor
signatures. However, their definitions rely on prior formulations of adaptor signatures that have been shown to be
unsuitable for practical applications[Ger+24a]. Additionally, the latter work is restricted to the n-out-of-n case.

3

Several prior works have considered fair exchange (though not our variant, as discussed above)
in the presence of a blockchain. Secure computation with penalties [And+14; And+13; BK14;
KMB15; BDD20] does not guarantee fairness but does ensure that parties who violate fairness are
“penalized” by losing funds. Thus, that approach can achieve fairness against a rational adversary
whose utilities are assumed to be known, but not necessarily against a malicious adversary as we
consider here. Moreover, it is not clear how to extend that work to our setting, where it may
be possible to tell, e.g., that some seller cheated but it may not be clear which seller to penalize
(and it would be unfair to penalize them all). Other work [Cho+17; Gad+23] shows how to
achieve fairness in the presence of a blockchain utilizing trusted hardware or strong cryptographic
assumptions (witness encryption for all of NP).

Adaptor signatures [Poe17; Aum+21; Erw+21; DOY22; Ger+24b] have been shown to allow for
the fair exchange of a witness for a signature between two parties in the presence of a blockchain.
Our work can be viewed as extending that work to the case of two groups of parties with a threshold
requirement. While it is natural to replace the adaptor signature with a threshold adaptor signature
to do so, we stress that this is not sufficient to solve the fairness problem due to the added challenge
of ensuring intra-group fairness of the buyers.

In the two-party setting—with the two parties corresponding to the buyer DAO and the seller
DAO in our application—fairness [Cle86] (or even partial fairness [GK10]) is impossible to achieve
via generic secure computation. Although various relaxations of fair MPC have been considered,
they would all provide unacceptable security in our context.

1.3 Overview of the Paper

We give a high-level technical overview of our solution in Section 2. In Section 3, we formalize
fair exchange in our setting. Before constructing our fair-exchange protocol, we introduce two
essential building blocks: threshold adaptor signatures (Section 4) and certified witness encryption
(Section 5). With these primitives established, we present our fair-exchange protocol in Section 6.
Finally, we show our impossibility result in Section 7.

2 Technical Overview

As a starting point, observe that adaptor signatures [Poe17; Ger+24b] provide a solution for fair
exchange between two DAOs that each contain a single party. Recall that an adaptor signature is
defined relative to an NP relation R and a signature scheme Πsign. Fair exchange can be achieved
by having the buyer (who holds a signing key) create a pre-signature with respect to a particular NP
statement, and then sending the pre-signature to the seller. The seller converts the pre-signature
into a valid signature σcoin using the corresponding witness w it knows, and posts the signature on
the blockchain; at that point, the seller is paid. Upon observing σcoin on the blockchain, the buyer
is able to learn w. Our goal is to extend this approach to two independent DAOs, one for a set
of sellers and one for set of buyers, such that each set has an independent threshold requirement
for executing the exchange. We first generalize the set of buyers, followed by the set of sellers, and
discuss the resulting technical challenges of our approach.

4

2.1 The Buyer DAO

To generalize to a set of buyers, we extend adaptor signatures to the threshold setting, while
ensuring compatibility with existing blockchains such as Bitcoin by prioritizing natively supported
solutions. However, solving our problem requires additional cryptographic tools beyond (threshold)
adaptor signatures alone.

Threshold Adaptor Signatures We introduce a threshold variant of adaptor signatures that
allows a given subset of signers to jointly compute a pre-signature. To maintain compatibility with
the underlying blockchain, the resulting pre-signature must be indistinguishable from a single-user
pre-signature. In addition, our thresholding scheme preserves the core functionality of classical
adaptor signatures: (i) given a pre-signature σ̃ and a witness w, one can derive a full signature σ
(adaptation), and (ii) given a pre-signature σ̃, a signature σ, and a statement stmt, one can extract
the witness (extraction).

Our construction is based on the Schnorr threshold signature scheme Sparkle [CKM23]. In this
scheme, each signer samples a random value ri ←$ Zp, computes the partial nonce Ri = gri , commits
to it using the hash function Hcm, and shares the commitment with the other signers. Once all
commitments have been received, the signers reveal their nonces and check for consistency. After
collecting all nonces Ri, they compute partial pre-signatures by first verifying the commitments
and aggregating the combined nonce as

R =
∏

Ri.

We follow their basic strategy, but we multiply R with the statement s in the derivation of the
Fiat-Shamir challenge h as:

h = HSign(pk,m,R · s).

Note that smust be included for security reasons. Each signer then computes a partial pre-signature

zi = ri + h · λi · ski,

where λi is the Lagrange coefficient. Aggregating the partial presignatures yields the final presig-
nature

z =
∑
i

zi = r + h · sk,

where r is the combined randomness and sk is the aggregated signing key. The aggregated pre-
signature has the form

σ̃ = (R · s, z).

As with the single-signer Schnorr adaptor signature setting, this pre-signature can be adapted into a
full signature using a valid witness w for the statement s. Given σ̃ and w, the adaption is computed
as

σ = (R · s, z + w).

Since the nonce R is homomorphic, this adaptation implicitly results in a valid Schnorr signature
corresponding to the nonce

R · s = gr+w.

5

Certified witness encryption (CWE). Threshold adaptor signatures ensure fairness between
a set of honest buyers and a single seller, however, they do not inherently guarantee fairness among
the buyers themselves. In particular, a malicious buyer could abort the pre-signing protocol after
collecting the necessary partial pre-signatures from others without revealing her own pre-signature,
which would allow the adversary to compute a pre-signature while leaving the remaining buyers
unable to do so. The malicious buyer can forward this pre-signature to the (possibly malicious)
seller, who can convert it into a valid signature σcoin that it posts on the blockchain, thus receiving
the payment. All honest buyers have now paid but cannot extract the witness w using σcoin because
they do not know the corresponding pre-signature σ̃. We address this “intra-buyer” fairness problem
by introducing a primitive called certified witness encryption. At a high level, a CWE scheme allows
for encrypting a message relative to a signature verification key vk and a designated message m.
The resulting ciphertext can be decrypted by any party who knows a valid signature on m with
respect to vk. By using a CWE scheme, we can achieve fairness for all honest buyers in the following
way. Before disclosing their partial pre-signatures, all buyers encrypt their partial pre-signatures
using the CWE scheme and forward the resulting ciphertext alongside a proof of well-formedness
to all other buyers. This ciphertext can be decrypted by anyone who knows σcoin. After receiving
and verifying enough CWE ciphertexts, each honest buyer forwards its partial pre-signature to the
other buyers. Now, if the seller ever posts σcoin to the blockchain to receive a payment, all the
buyers will be able to decrypt the CWE ciphertexts they received to learn the corresponding partial
pre-signatures; this allows them to reconstruct the pre-signature and then (using σcoin) extract the
desired witness.

We construct a CWE scheme for Schnorr signatures to ensure compatibility with our Schnorr
threshold adaptor signature scheme. The key observation towards building a CWE scheme from
Schnorr lies in the Schnorr verification equation. Given a Schnorr signature σ = (R, z) = (R, sk ·
h+ r), where h = HSign(pk, R,m), verification is performed by checking the equation

gz = pkh ·R.

While pkh · R can be computed publicly using only the nonce R, public key pk, and message m,
obtaining the signature effectively requires computing the discrete logarithm z = sk · h + r which
is effectively possible knowing the secret and the DLog r of R. We leverage this discrete logarithm
relation to build encryption and decryption keys for our CWE scheme. To encrypt a message mEnc

that can be decrypted knowing a Schnorr signature valid for (pk,mSign, R), a party computes the
encryption key

ek = pkh ·R

and constructs the ciphertext
ct = ⟨gy, eky ·mEnc⟩,

where y ∈ Zp is a uniformly sampled random value. Effectively, this ciphertext is an ElGamal
ciphertext w.r.t. the key ek. Given a valid signature (R, z) and the ciphertext ct, decryption
follows standard ElGamal decryption using the decryption key dk = z. While this construction is
both efficient and simple, it satisfies the requirements of a CWE scheme and ensures intra-buyer
fairness in a threshold pre-signing protocol.

Following this blueprint, we extend CWE to a broad class of signature schemes, including
Camenisch-Lysyanskaya (CL) [CL03], Waters+ [BSW06], and Katz-Wang [KW03].

6

2.2 The Seller DAO

At first glance, the challenge of extending the setting from a single seller to multiple sellers seems
symmetrical to the case of multiple buyers. Consequently, one might expect that similar techniques
could be used to solve the problem. However, it turns out that the problem is fundamentally
different. To illustrate this issue, consider a scenario where multiple sellers each possess a share
of the witness w, and assume that the buyers have already provided a valid pre-signature σ̃. A
seemingly natural approach would be to execute a protocol among the sellers to reconstruct the
witness w. Given the properties of threshold adaptor signatures, once the sellers obtain w and have
a pre-signature σ̃, they can efficiently compute the signature σcoin and post it on the blockchain,
which authorizes the payment to the sellers. However, fairness emerges as a critical concern — this
time among the sellers.

Impossiblity of seller fairness with minimal blockchains. Unlike the single-seller case,
in the multi-seller case, it is in the seller’s interest not only to receive payment from the buyers but
also to gain access to the full witness w without triggering payment from the buyers. In particular,
an adversary who corrupts all buyers and a single seller can gain access to σcoin before any other
seller, thereby undermining the fairness of the exchange. Specifically, such an adversary could
use this knowledge to reconstruct the witness and spend the funds before σcoin is published to
the blockchain. As a result, σcoin becomes invalid, preventing the remaining sellers from receiving
their payments—an attack we call frontrunning. Moreover, it is impossible to detect the dishonest
seller in this setting, since they follow the protocol without any detectable deviation. However,
their actions still allow the adversary to prematurely spend the buyer’s DAO coin. This raises the
fundamental question of whether fairness can be achieved in a setting with a minimal blockchain
that lacks scripting support. Unfortunately, our first result in this direction is negative. As we
demonstrate in Section 7, frontrunning cannot be prevented in a minimal blockchain.

(Imp)Possibility of seller fairness with blockchains that support time locks. Since
achieving fairness for distributed sellers is impossible in the context of scriptless blockchains due
to frontrunning, we incrementally improve functionality in non-trivial ways — acknowledging that
simply enabling smart contracts would trivially solve the problem. Consequently, we consider
blockchains that support time-lock puzzles to prevent frontrunning. A time-lock puzzle allows
buyers to lock their coins in such a way that they can either be spent with a certain signature
or automatically refunded after a certain period of time. Our goal is to mitigate frontrunning by
ensuring that an adversary cannot spend the funds associated with σcoin. Instead, the timeout is
configured so that an honest seller who has received a sufficient number of shares is guaranteed
to complete payment before the funds become available to an adversarial entity. This mechanism
preserves fairness among sellers since no single corrupt seller can undermine the exchange by pre-
maturely accessing or invalidating the buyer’s DAO funds. Unfortunately, this intuitive approach
does not work in general:

Impossibility in the presence of fewer than tS honest sellers. If the protocol works with
less than tS honest sellers, fairness is not guaranteed. In this case, witness reconstruction
fails, preventing the protocol from completing on the seller’s side. Fairness for sellers requires
that once the protocol starts and at least one honest share is exchanged, it must be completed
to prevent the adversary from gaining an unfair advantage.

An adversary who controls up to tS − 1 sellers needs only one additional share from an

7

honest seller to reconstruct the witness w. Since sellers must eventually reveal their shares to
publish σcoin, the adversary can exploit this by identifying and corrupting the first recipient of
a message in the protocol that allows this party to compute the missing share, thus obtaining
w before any honest party. After obtaining the missing share, the adversary can withhold his
own by not sending further messages in the protocol, preventing the remaining honest sellers
(less than tS) from reconstructing w. This blocks the completion of the protocol on the sellers’
side. To ensure fairness, buyers reclaim their money if the protocol remains incomplete. Thus,
the adversary can both prematurely extract w and disrupt completion, undermining fairness.
As a result, the protocol ends in a state where the buyers did not pay the sellers, yet the
dishonest sellers successfully learned the witness. This outcome fundamentally violates seller
fairness.

Possibility in the case of tS honest sellers. On the positive side, we show that seller fairness
is achievable if at least tS sellers participate in the fair exchange protocol. Specifically, we
describe a protocol that ensures fairness for both sellers and buyers. The protocol begins with
buyers locking their coins on the blockchain and generating a pre-signature—corresponding
to the locked coins—using a threshold adaptor signature scheme. This pre-signature is then
distributed to the sellers. Each seller subsequently shares its witness share with all other
sellers. Assuming that at least tS sellers participate, at least one honest seller will receive
enough shares to reconstruct the witness before the lock expires. This seller can then use the
witness to finalize the pre-signature, obtaining σcoin, and publishing it to the blockchain to
complete the payment. To ensure that sellers can successfully claim their payments, honest
sellers participate in the protocol only after verifying that the coins are locked for a sufficient
duration upon receiving the pre-signature. Moreover, they engage in the protocol only if they
are certain that at least tS honest sellers are involved. This can be achieved through a voting
mechanism conducted before the fair exchange protocol begins. The voting effectively checks,
if at least 2 · tS − 1 sellers vote for the execution. If the lock duration is insufficient or if the
required quorum of tS honest participating sellers is not met, they refrain from participating
and instead wait for the lock to expire, thereby preventing any unfair exchange.

Witness privacy. In the approach described above, each seller learns the witness during protocol
execution, and even passive eavesdroppers can gain access to it. This is highly undesirable as it
compromises confidentiality and control over the witness. To mitigate this problem, we introduce
a blinding mechanism. The buyers collaboratively compute a blinding value, which is then used to
re-randomize the exchanged witness. Instead of directly revealing the original witness, the sellers
exchange only a blinded version, ensuring that they do not gain any information about the true
value of the witness. Once the exchange is complete, all buyers can locally remove the blinding
factor to recover the original witness, preserving both security and fairness in the protocol.

In summary, our positive results show that both seller and buyer fairness can be achieved when
the protocol is run on blockchains that support time locks and under the assumption of tS honest
participating sellers. Our impossibility results complement this by proving that both conditions
— time locks and tS honest participating sellers — are not only necessary but also sufficient for
fairness to hold.

8

3 Defining Fair Exchange

Multiparty Fair Exchange (MPFE) protocols provide a cryptographic framework for decentralized
autonomous organizations (DAOs) to trade assets. An MPFE protocol involves multiple sellers
and buyers, with sellers attempting to exchange a witness for a digital coin held by the buyers.
Fairness in this setting requires that all parties reach a consensus on the exchange; otherwise, no
transaction takes place-ensuring that either all buyers simultaneously receive the witness or none
do. In addition, fairness guarantees that no individual seller can unilaterally reveal the witness and
that each seller either receives an equal share of the payment or no compensation at all.

3.1 Preliminaries

Notations. We denote uniform sampling of x from the set X by x ←$ X, and let λ represent
the security parameter. For a probabilistic polynomial-time (PPT) algorithm A that, given input x
and randomness r, outputs y, we write y ← A(x; r). If A is a deterministic polynomial-time (DPT)
algorithm, we use the notation y := A(x). A function negl(λ) : N → R is called negligible in λ
if, for every k ∈ N, there exists λ0 ∈ N such that for all λ ≥ λ0, it holds that |negl(λ)| ≤ λ−k.
We use the function assert to enforce conditions. Specifically, the function call assert condition
terminates the execution in which it is invoked if condition evaluates to false. A vector of elements
x1, . . . , xn is denoted as X. To denote the execution of a protocol among parties S1, . . . ,Sn, we
write ⟨S1(k1,m), . . . ,Sn(kn,m)⟩. If the inputs of the parties are clear from the context, we omit
them. When an adversary controls multiple parties, we use an abuse of notation to collapse all
adversarial parties into a single entity, denoted as ⟨S1,A⟩.
Blockchains. This paper contains both positive and negative results that rely on blockchains with
different capabilities. Our construction relies on transactions and a blockchain; we recall the formal
definitions in this section. In Section 7, we show that it is generally impossible to achieve fairness for
sellers in the presence of a minimal blockchain. To address this limitation, we introduce the notion
of minimal blockchains with timelocks. Looking ahead, incorporating timelocks will allow us to
build a MPFE protocol that ensures seller fairness. To model timelocks in a way that is compatible
with blockchain systems such as Bitcoin, we follow the abstraction approach of [Aum+21].

Definition 1 (Transaction). A transaction tx is a tuple (pkS, txprev,PK,X) consisting of a sender
public key pkS, an input transaction txprev, a vector of receiver public keys PK, and a vector of
receiver amounts X.

The first definition we present considers the blockchain as an immutable bulletin board [Suw+22],
where transactions are appended sequentially and cannot be modified once recorded.

Definition 2 (Minimal Blockchain). A minimal blockchain C is a public bulletin board consisting
of an ordered list of transactions. It provides the interfaces post and bal, which work like follows:

C′ ← post(C, tx, σ): The post interface has as input a transaction tx, and a signature σ. The post
interface outputs an updated chain C′.
x← bal(pk): The balance interface takes as input a public key pk and outputs the amount that is
associated with the public key pk at the current state of the blockchain.

9

A transaction-signature pair (tx, σ) that is posted on the blockchain C is valid if

• σ is a signature that verifies on the message tx and the public key pk, and

• the input transaction txprev was never spent by any transaction signed by pk that is posted
on the chain, and

• the outputs of the input transaction txprev that correspond to pk equal the cumulative outputs
of the transaction tx, and

• all receiver amounts are non-negative, i.e. xi ≥ 0 ∀xi ∈ X.

Each valid transaction-signature pair that is posted on the blockchain updates the balance of
the sender and the recipient. The balance of each recipient pkR,i ∈ PK is increased by the amount
xi and the balance of the sender pk is decreased by

∑
xi∈X xi. From this point forward, we assume

that each honestly generated public key has a non-empty balance at the beginning of our protocol,
i.e., there exists an initial transaction whose receivers are all honestly generated public keys. In
addition, if a coin is owned by a public key whose corresponding signing key is shared by n parties,
we add to the balance of each shareholder 1/n coins.

The next definition extends this minimal view of the blockchain by incorporating timelocks,
which enforce time constraints on when transactions can be executed.

Definition 3 (Minimal Blockchain with Timelocks). A minimal blockchain has timelocks if it
provides the lock interface.

C′ ← lock(C, σ, tx,R, t): The lock interface has as input a signature σ, a transaction tx, a commit-
ment R, and a time t. It updates an updated chain C′.

We define a transaction as locked if σ is a valid signature on (tx, R, t) with respect to the
signing key pk that controls the outputs of tx, and fewer than t messages have been posted to the
blockchain since the lock interface was invoked. While alternative measures of time can be used,
such as parties signing transactions to mark the end of rounds, for our proof it is sufficient that the
adversary cannot delay messages beyond the duration of the lock. Thus, counting the number of
messages posted is sufficient for our purposes. When a transaction is locked, it can only be used as a
valid input for a payment if the signature authorizing that payment matches the commitment R. In
our construction we use Schnorr signatures, i.e., a transaction can be spent if the signature is of the
form (R, z). However, the commitment can be chosen arbitrarily to regulate payments before the
lock expires. To extend the lock notation to a multiparty setting, we denote the locking operation
as C.lock(ski, tx, R), indicating that the signers jointly generate the locking signature using their
respective signing keys. In addition, we omit explicit mention of the locking duration, since it is
determined as a protocol parameter based on the adversary’s delay capabilities.

3.2 Fair Exchange

A multiparty fair exchange (MPFE) protocol is executed between a set of nS sellers and nB buyers.
For simplicity, we assume that the parties agree on the exchange terms before running the protocol.
By agreement, sellers jointly sell a witness w to buyers for a publicly known statement s. Fairness

10

requires that either both the witness and the payment are exchanged, or neither occurs. To enforce
fairness, w is secretly shared among sellers using a threshold scheme SShare, which ensures that
reconstruction requires the cooperation of a sufficient number of sellers. Let wj denote the share
of w associated with s. Similarly, buyers collectively control the payment. This is formalized by
distributing shares of the signing key skBi

to each buyer, where 1 ≤ i ≤ nB. Upon agreement to
sell, the buyers collaboratively generate a signature that verifies under the public key pkB, which
is associated with the payment transaction.

Definition 4 (Fair Distributed Buying). Let R be a hard relation and C be a blockchain. A fair
distributed buying MPFER,C of a coin owned by a public key pkB, for a statement-witness pair (s, w)
of the hard relation R, where the witness w is shared into nS parts via SShare(w) into (w1, . . . , wnS

),
executed between a set of buyers Bi (1 ≤ i ≤ nB) and a set of sellers Sj (1 ≤ j ≤ nS) consists of the
algorithm Setup and the protocol MPFE which are defined as follows:

(pkB, skB1
, . . . , skBnB

, skS1 , . . . , skSnS
)← Setup(tB, nB, tS, nS): The setup algorithm takes as input the

thresholds (tB, tS), and the number of participants (nB, nS). It outputs a public key pkB, a secret
key skBi

for every buyer, and a secret key skSj for each seller.

(w′,⊥)← ⟨{BC
i (skBi

, s, tx)i}i∈B, {SCj (skSj , tx, s, wj)j}j∈S⟩MPFE: The MPFE protocol is executed be-

tween nB buyers and nS sellers. Each buyer Bi has as input its signing key skBi
, a statement s, and

a transaction tx. Each seller has as input a secret key skSj , a transaction tx, a statement s, and
a partial witness wj. In addition, each party has access to a blockchain C. The protocol outputs a
witness w′ for the buyers and nothing for the sellers.

A fair distributed buying protocol (MPFER,C) is correct if, for any security parameter λ,
statement-witness pair (s, w), all keys pkB, skBi

, skSj and partial witnesses output by w1, . . . , wnS
←

SShare(w) generated by Setup(tB, nB, tS, nS), for every transaction tx, it holds true that: For each
each witness w′ output by MPFE, the condition R(s, w′) = 1 is satisfied. In addition, the blockchain
C contains a signature σcoin that verifies w.r.t. the buyer’s combined public key pkB on a valid trans-
action from pkB to all sellers.

3.3 Security Properties

We define the security properties of an MPFE protocol through buyer fairness, seller fairness, and
witness privacy, beginning with the adversarial model.

Adversarial model. Our security analysis considers a static adversary, meaning that corruptions
occur before the adversary interacts with the protocol [Chu+23]. This assumption is widely used
in fairness research, particularly in two-party settings where corruption decisions are fixed at the
outset. While some of our building blocks achieve adaptive security, extending our analysis to an
adaptive corruption model introduces significant technical challenges and is beyond the scope of
this work.

Buyer Fairness. Buyer fairness protects the honest buyers. Buyer fairness guarantees that if an
adversary controls all sellers and corrupts up to tB − 1 buyers, the adversary only gets paid if all
honest buyers can reveal a valid witness.

Definition 5 (Buyer Fairness). Let R be a hard relation and C be a blockchain. A multi-party fair
exchange protocol (MPFER,C) achieves tB-buyer fairness, if for every PPT adversary A there exists

11

a negligible function negl such that the probability

Pr
[
BFATAS,tB,nB,nS

(λ) = 1
]
≤ negl(λ),

where the experiment BFATAS,tB,nB,nS
is described in Figure 1, the probability is taken over the random

choices of all probabilistic algorithms, and tB ≤ nB ≤ λ.

BFATAS,tB,nB,nS
(λ):

1. The challenger runs the setup to generate the secret keys of the buyers and sellers. In
addition, the challenger samples a statement-witness pair (s, w) of the relation R.

2. The challenger forwards all public keys and the secret keys of all sellers and the statement-
witness pair (s, w) to A, and A selects the set of corrupted buyers corrB with a size of
at most tB − 1.

3. The challenger forwards the secret key of each corrupted buyer to A, and A can interact
with all honest buyers.

4. Eventually, A finishes the game.

5. The adversary wins the buyer fairness game if

• there is a valid payment on the chain C, which spends a coin from the buyers; and

• at least one honest buyer Bi cannot output a valid witness for the statement s.

Figure 1: Security game for buyer fairness.

Seller Fairness. The seller fairness security property considers the case where all buyers are
malicious, and the attacker additionally controls up to tS − 1 sellers. Seller fairness guarantees in
this setting that if the adversary learns the witness, then all honest sellers are compensated.

To capture this intuitive security goal, a natural first step is to require the adversary to output
a valid witness and a signature that verifies w.r.t. pkB on a transaction for which at least one honest
seller is not a recipient. Intuitively, one could argue that this signature causes a payment in which
at least one honest seller is not the recipient. Yet, we cannot bind the winning condition to the
knowledge of valid signatures due to a concurrency problem, which we call frontrunning.

Frontrunning. As a frontrunning adversary, we describe an adversary that follows a protocol
honestly, i.e., sends the outputs to all other parties but does concurrent actions, which makes the
protocol outputs irrelevant. In the case of seller fairness, frontrunning happens if the adversary A
acts as both a seller and a buyer. Then, if A learns the signature on a transaction first, it can pause
the protocol and spend the inputs of the transaction before continuing the protocol. Therefore,
frontrunning leads to an adversary that follows the protocol honestly and yet manipulates the
outcome of the protocol into a not-desired one: While each seller learns a signature on a transaction
tx, the signature does not correspond to a valid payment since the inputs of tx have already been

12

spent. To mitigate this unfortunate state of affairs, we utilize a blockchain C and compare the
balance of each honest seller before and after the execution of the protocol. This enforces that the
adversary not only outputs a signature (which might not lead to a payment) but actually makes a
payment, which is desired for seller fairness.

Comparing Balances. The remaining question is, which condition does the adversary need to
satisfy to break seller fairness? In exchange for the interaction with the adversary, the honest seller
expects to receive a payment worth its share of the witness value, which is 1/nS. So we challenge
the adversary to output a valid witness that is initially shared amongst the sellers while ensuring
that when the game terminates, at least one honest seller has a final balance balpost of less than
balpost < balprev+

1
nS
. Additionally, we extend the winning condition to account for scenarios where

the adversary does not learn the witness, yet at least one honest seller ends up with fewer funds
than before the protocol execution. This ensures that honest parties are protected from financial
loss and aligns with the guarantees provided by buyer fairness.

Definition 6 (Seller Fairness). Let R be a hard relation and C be a blockchain. A multi-party fair
exchange protocol (MPFER,C) achieves tS-seller fairness, if for every PPT adversary A there exists
a negligible function negl such that the probability

Pr
[
SFATAS,nB,tS,nS,C(λ) = 1

]
≤ negl(λ),

where the experiment SFATAS,nB,tS,nS,C is described in Figure 2, the probability is taken over the
random choices of all probabilistic algorithms, tS ≤ nS ≤ λ, and nB ≤ λ.

Witness Privacy.

Witness privacy ensures that w is disclosed only to buyers and remains hidden from sellers who
do not know it before protocol execution. Since w is secretly shared among nS sellers, requiring at
least tS shares for reconstruction, the definition assumes that less than tS malicious sellers cannot
reconstruct w after execution. To prevent trivial leakage, we assume that buyers act honestly, since
they eventually learn w and might otherwise leak it to malicious sellers.

Definition 7 (Witness Privacy). Let R be a hard relation and C be a blockchain. A multi-party
fair exchange protocol (MPFER,C) achieves tS-witness privacy, if for every PPT adversary A there
exists a negligible function negl such that the probability

Pr
[
WitPrivATAS,nB,tS,nS,C(λ) = 1

]
≤ negl(λ),

where the experiment WitPrivATAS,nB,tS,nS,C(λ) is described in Figure 3, the probability is taken over
the random choices of all probabilistic algorithms, tS ≤ nS ≤ λ, and nB ≤ λ.

Flexibility of our setting. Our security definitions account for both scenarios where each seller
is paid individually and where a single transaction transfers funds from the buyers to a shared key
controlled by the sellers. Additionally, standard techniques allow for modifying our protocol so
that each buyer learns only a share of the witness rather than the full witness.

4 Threshold Adaptor Signatures

We introduce threshold adaptor signatures (TAS), a generalization of classical adaptor signatures
that allows a subset of signers to jointly compute a pre-signature. Unlike standard adaptor signa-

13

SFATAS,nB,tS,nS,C(λ):

1. The challenger runs the setup to generate the secret keys of the buyers and sellers and
stores the balance of each public key into the list balprev.

2. The challenger forwards all public keys and the secret keys of all buyers to A, and A
selects the set of corrupted sellers corrS with a size of at most tS − 1.

3. The challenger forwards the secret key of each corrupted seller to A.

4. The challenger samples a fresh statement-witness pair (s, w) from the relation R, and
shares the witness w into nS parts running the SShare algorithm. The challenger outputs
the statement s and all witness shares that correspond to malicious sellers toA and stores
the witness shares of the honest sellers.

5. In addition, A can interact with all honest sellers.

6. Eventually, A outputs a witness w′, and the challenger stores the balance of each public
key in the list balpost.

7. The adversary wins if

• the witnesses w′ is a valid witness for the challenge statement s; and

• there exists at least an honest seller Sj , whose balance after the interaction with
the adversary is smaller than the expected value, i.e.,

balpost[Sj]− balprev[Sj] <
1

nS
,

or, the adversary also wins the seller fairness game without learning the witness if
there exists an honest seller whose balance after the interaction with the adversary
is smaller than before the interaction, i.e.,

balpost[Sj] < balprev[Sj].

Figure 2: Security game for seller fairness.

tures, where the pre-signature is derived via a single algorithm, our threshold construction requires
an interactive protocol between at least t-out-of-n signers to produce a pre-signature σ̃.

To ensure compatibility with the underlying blockchain, the resulting pre-signature must be
indistinguishable from a single-user pre-signature. Furthermore, our scheme preserves the funda-
mental properties of classical adaptor signatures:

• Adaptation: Given a pre-signature σ̃ and a witness w, one can compute a full signature σ.

14

WitPrivATAS,nB,tS,nS,C(λ):

1. The challenger runs the setup to generate the secret keys of the buyers and sellers.

2. The challenger forwards the public key pkB to A, and A selects the set of corrupted
sellers corrS that has size of at most tS − 1.

3. The challenger forwards the secret key of each corrupted seller to A.

4. The challenger samples a fresh statement-witness pair (s, w) from the relation R, and
shares the witness w into nS parts running the SShare algorithm. The challenger forwards
the statement s and all witness shares that correspond to malicious sellers toA and stores
the witness shares of the honest sellers.

5. A can interact with all honest sellers and all buyers.

6. Eventually, A outputs a witness w∗.

7. The adversary wins the witness privacy game if the witness w∗ is a valid witness for the
statement s.

Figure 3: Security game for WitPriv.

• Extraction: Given a pre-signature σ̃, the adapted pre-signature σ, and a statement s, one
can extract the corresponding witness w.

4.1 Defining Threshold Adaptor Signatures

Threshold adaptor signatures are defined as follows:

Definition 8 (Threshold Adaptor Signature). A threshold adaptor signature scheme w.r.t. a hard
relation R for some language LR and a threshold signature scheme TS = (Setup,KeyGen,Sign,Verify)
consists of a tuple of four algorithms and protocols TASR,TS = (pSign,Adapt, pVrfy,Extract) defined
as:

σ̃ ← ⟨pSign(ski, pk,m, s)⟩. The pre-signing protocol is an interactive algorithm of which an instance
is run by each signer S1, . . . ,St concurrently. Concretely, signer Si runs pSigni, which takes as input
a secret key share ski, the joined public key pk, a message m, and a NP-statement s. At the end of
the protocol, Si obtains a pre-signature σ̃ as output.

b← pVrfy(pk,m, s, σ̃). The pre-verification algorithm is a DPT algorithm that on input a public

key pk, message m ∈ {0, 1}ℓm, statement s ∈ LR, and pre-signature σ̃, outputs a bit b.

σ ← Adapt(pk, σ̃, w). The adapting algorithm is a DPT algorithm that on input a pre-signature σ̃
and witness w for the statement s ∈ LR outputs an adapted signature σ.

w ← Extract(pk, σ̃, σ, s). The extracting algorithm is a DPT algorithm that on input a pre-signature

15

σ̃, signature σ, and statement s ∈ LR, outputs a witness w such that (s, w) ∈ R, or ⊥.

A threshold adaptor signature is correct under the following intuitive conditions: First, for
any honestly generated set of keys and honestly computed instance of some hard relation, any
pre-signature that has been honestly generated and which is denoted by σ̃, the adaption of σ̃ for
a corresponding witness w, should result in a valid signature σ, using the specified adaptation
algorithms. Furthermore, given both a valid pre-signature and a valid signature together with the
statement s, it should be computationally feasible to deduce or extract the corresponding witness
w efficiently. We refer to this property as pre-signature correctness.

Definition 9 (Pre-signature correctness). A threshold adaptor signature scheme TAS satisfies pre-
signature correctness, if for all λ, t < n ∈ N and m ∈ {0, 1}ℓm

Pr

pVrfy(pk,m, s, σ̃) = 1 ∧
Vrfy(pk,m, σ) = 1 ∧

(s, w′) ∈ R

∣∣∣∣∣∣∣∣∣∣

par ← Setup(n, t)
(pk, ski)← ⟨KeyGen(i)⟩
(s, w)← genR(1λ),
σ̃ ← ⟨pSign(ski, pk,m, s)⟩
σ := Adapt(pk, σ̃, w),
w′ := Extract(pk, σ̃, σ, s)

 = 1.

4.2 Security of Threshold Adaptor Signatures

We adapt the security definitions of Gerhart et al.[Ger+24a] to the threshold setting. A thresh-
old adaptor signature scheme must satisfy extractability, unique extractability, unlinkability, pre-
signature adaptability, and pre-verification soundness. These properties are formally defined below.

Extractability. Extractability ensures that a malicious party cannot use a pre-signature σ̃
w.r.t. a statement s to forge a valid signature σ without revealing a corresponding witness w,
thereby protecting the signer.

Definition 10 (Extractability). A threshold adaptor signature scheme TAS is extractable if for
every PPT adversary A, there is a negligible function negl such that for every λ, t < n ∈ N

Pr
[
ExtATAS,t,n(λ) = 1

]
≤ negl(λ),

where the experiment ExtATAS,t,n(λ) is defined in Figure 4 and the randomness is taken over all
random coins used by the probabilistic algorithms.

Unique Extractability. Unique extractability guarantees that a verified pre-signature commits
to a single valid signature and a single witness. No efficient adversary can generate a pre-signature
σ̃ for a message m and a statement s such that two distinct signatures on m can be derived from
σ̃, each revealing a valid witness. More formally:

Definition 11 (Unique Extractability). A threshold adaptor signature scheme TAS is unique ex-
tractable, if for every PPT adversary A there exists a negligible function negl such that for every
λ, t < n ∈ N

Pr
[
UniqueExtractabilityATAS,t,n(λ) = 1

]
≤ negl(λ) ,

where experiment ExtATAS,t,n(λ) is described in Figure 5, and the probability is taken over the random
choices of all probabilistic algorithms.

16

ExtATAS,t,n(λ)

1 : par ← Setup(n, t)

2 : (pk, {skj}j∈{1,...,n})← KeyGen(par)

3 : corr← A(pk); hon← {1, . . . , n} \ corr
4 : QSign,QpSign,Qstmt ← ∅
5 : O := (pSign(·, ·, ·),Sign(·, ·),NewS())
6 : (m∗, σ∗)← AO(pk, {skj}(j∈corr)))

7 : assert Vrfy(pk,m, σ∗)

8 : assert m∗ /∈ QSign

9 : // The adversary cannot succeed without disclosing shares

10 : assert ∀(σ̃, s) ∈ QpSign[m
∗] : pVrfy(pk, σ̃, s)

11 : return (∀(σ̃, s) ∈ QpSign[m
∗] s.t. s /∈ Qstmt :

12 : (s,Extract(s, σ̃, σ∗)) /∈ R)

pSign(i,m, s)

1 : assert i ∈ hon

2 : σ̃ ← ⟨pSign(ski,m, s),A⟩

3 : QpSign[m]
∪← {(σ̃, s)}

4 : return σ̃

Sign(i,m)

1 : assert i ∈ hon

2 : σ ← ⟨Sign(ski,m),A⟩

3 : QSign
∪← {m}

4 : return σ

NewS(λ)

1 : (s, w)← R.genR(1λ)

2 : Qstmt
∪← s

3 : return s

Figure 4: The security game ExtATAS,t,n,corr(λ).

Unlinkability. Unlinkability ensures that an adversary cannot distinguish between standard
signatures and those derived from adapted pre-signatures, even if the adaptations use adversary-
provided witnesses. Since adversary-controlled signers can trivially determine whether a signature
was obtained by signing or by pre-signing and adapting, we depart from the notion of unlinkability
for non-threshold adaptor signatures. Instead, we adopt the canonical signing notion from [DOY22]
to define unlinkability in the threshold setting. Intuitively, a threshold adaptor signature scheme
achieves unlinkability if adapted pre-signatures are indistinguishable from ordinary signatures.

Definition 12 (Unlinkability). A threshold adaptor signature scheme TAS is unlinkable if for every
two-stage PPT adversary A = (A1,A2) there exists a negligible function negl such that for every
λ, t < n ∈ N

Pr
[
UnlinkabilityATAS,t,n(λ) = 1

]
≤ negl(λ) ,

where experiment UnlinkabilityATAS,t,n(λ) is described in Figure 6, and the probability is taken over
the random choices of all probabilistic algorithms.

Pre-Signature Adaptability. Pre-signature adaptability ensures that a pre-signature related
to a statement s can be transformed into a valid signature with a witness w, even in cases where
the signer acts maliciously.

Definition 13 (Pre-signature adaptability). A threshold adaptor signature scheme TAS satisfies
pre-signature adaptability, if for all λ ∈ N, messages and pre-signatures σ̃,m ∈ {0, 1}∗, state-
ment/witness pairs (s, w) ∈ R, public keys pk we have,

if pVrfy(pk,m, s, σ̃) = 1, then Vrfy(pk,m,Adapt(pk, σ̃, w)) = 1.

17

UniqueExtractabilityATAS,t,n(λ)

1 : par ← Setup(n, t)

2 : (pk, {skj}j∈{1,...,n})← KeyGen(par)

3 : corr← A(pk); hon← {1, . . . , n} \ corr
4 : QSign,QpSign,Qstmt ← ∅
5 : O := (pSign(·, ·, ·),Sign(·, ·))
6 : (m, s, σ̃, σ, σ′)← AO(pk, {skj}(j∈corr))

7 : assert (σ ̸= σ′)

8 : assert Vrfy(pk,m, σ) ∧ Vrfy(pk,m, σ′)

9 : assert pVrfy(pk,m, s, σ̃)

10 : y ← Extract(s, σ̃, σ); y′ ← Extract(s, σ̃, σ′)

11 : return (s, w) ∈ R ∧ (s, w′) ∈ R

pSign(i,m, s)

1 : assert i ∈ hon

2 : σ̃ ← ⟨pSign(ski,m, s),A⟩
3 : return σ̃

Sign(i,m)

1 : assert i ∈ hon

2 : σ ← ⟨Sign(ski,m),A⟩
3 : return σ

Figure 5: The security game UniqueExtractabilityATAS,t,n(λ).

Pre-Verify Soundness. Pre-verify soundness ensures that the pre-verification algorithm satisfies
computational soundness w.r.t. the relation R. In particular, pVrfy should reject pre-signatures
computed using statements s /∈ R. Intuitively, pre-verify soundness ensures that every valid pre-
signature can be adapted to a full signature, and one can extract a witness from it. This strengthens
the property of pre-signature adaptibility (Definition 13), which is restricted to honestly generated
pre-signatures on statements in the relation.

Definition 14 (Computational Pre-Verify Soundness). An adaptor signature scheme TAS satisfies
computational pre-verify soundness if for every PPT adversary A there exists a negligible function
negl such that for every λ ∈ N and polynomially-bounded s /∈ LR,

Pr [(sk, pk)← KGen(λ), (m, σ̃)← A(sk) : pVrfy(pk,m, σ̃, s) = 1] ≤ ν(λ).

4.3 Schnorr Threshold Adaptor Construction

We present a Schnorr threshold adaptor signature scheme and refer the reader to Section 2.1 for
an outline of the construction.

Construction 1 (Schnorr Threshold Adaptor Signature). Let λ ∈ N be the security parameter,
R be a relation for the language LR := {(s, w)|s = gw}. Let Sparkle be a threshold signature as
defined in Construction 3. We construct the threshold adaptor signature TASSparkle,R by defining
the algorithms pSign0, pSign1, pSign2,Combine,Adapt,Extract, pVrfy in Figure 7 which lead to the
following pre-signing protocol.

σ̃ ← ⟨pSign(ski, pk,m, s)⟩ The pre-signing protocol constists of the three pre-signing rounds pSign0,

pSign1, pSign2, and a combination algorithm Combine. Each signer executes the pre-signing rounds,
and the local outputs ρi, ρ

′
i, ρ

′′
i of each pre-signing round are forwarded to all other signers. After the

three rounds are executed, each signer combines the outputs {ρi}i∈S using the Combine algorithm.

18

UnlinkabilityATAS,t,n(λ)

1 : par ← Setup(n, t); parse A as (A1,A2)

2 : (pk, {skj}j∈{1,...,n})← KeyGen(par)

3 : corr← A1(pk); hon← {1, . . . , n} \ corr
4 : QSign,QpSign,Qstmt ← ∅; b←$ {0, 1}
5 : O := (pSign(·, ·, ·),Sign(·, ·),Chall(b, ·, ·, ·));
6 : A1({skj}(j∈corr))); b

′ ← AO
2 (pk, hon)

7 : return b′ == b

Chall(b, i,m, (s, w))

1 : assert i ∈ hon

2 : assert (s, w) ∈ R
3 : σ̃ ← ⟨pSign(ski,m, s),A1⟩
4 : σ0 ← Adapt(pk, σ̃, w)

5 : σ1 ← ⟨Sign(ski,m),A1⟩
6 : return σb

pSign(i,m, s)

1 : assert i ∈ hon

2 : σ̃ ← ⟨pSign(ski,m, s),A1⟩
3 : return σ̃

Sign(i,m)

1 : assert i ∈ hon

2 : σ ← ⟨Sign(ski,m),A1⟩
3 : return σ

Figure 6: The security game UnlinkabilityATAS,t,n(λ).

pSign0(i,m, s,S)
1 : ri ←$ Zp;Ri ← gri

2 : cmi ← Hcm(m,S, Ri, s)

3 : ρi ← cmi

4 : sti ← (ρi, Ri, ri,m, s ,S)
5 : return (ρi, sti)

pSign1(sti, {ρi}i∈S ,S)
1 : parse ρi as cmi ∀i ∈ S
2 : parse sti as (ρi, Ri, ri,m, s ,S)
3 : return ⊥ if cmi /∈ {cmi}i∈S

4 : ρ′i ← Ri

5 : sti ← (ρi, Ri, ri,m, s ,S, {ρi}i∈S)

6 : return (ρ′i, sti)

pSign2(sti, ski, {ρ′i}i∈S ,S)
1 : // pSign2 must be called once per sti

2 : parse sti as (ρi, Ri, ri,m, s ,S, {ρi}i∈S)

3 : parse ρ′j as Rj∀j ∈ S
4 : return ⊥ if Ri /∈ {Rj}j∈S

5 : for j ∈ S do

6 : return ⊥ if cmj ̸= Hcm(m,S, Rj , s)

7 : R̃←
∏
i∈S

Ri ·s

8 : h← HSign(pk,m, R̃)

9 : zi ← ri + h · λi · ski
10 : // λi is the Lagrange coefficient for i w.r.t. S

11 : ρ′′i ← zi

12 : return ρ′′i

Figure 7: Schnorr threshold adaptor signature construction based on Sparkle [CKM23]. We defer
the algorithms Adapt,Extract, pVrfy, and Combine to Figure 13 in Appendix C. We mark the main
changes compared to Sparkle in gray .

Theorem 1 (Security of Construction 1). Let TASSparkle,R be defined as in Construction 1. If
Sparkle is existentially unforgeable and R is a hard relation, then TASSparkle,R achieves extractability,
unique extractability, unlinkability, pre-signature adaptability, and computational pre-verify sound-
ness in the random oracle model.

We prove Theorem 1 by showing each security property in a separate lemma.

19

Lemma 1 (Extractability). Let TASSparkle,R be defined as in Construction 1. If Sparkle is strongly
unforgeable and R is a hard relation, then TASSparkle,R achieves extractability in the random oracle
model.

Proof of Lemma 1. To prove Lemma 1, we follow the strategy of [Aum+21], which proves single-
signer adaptor signatures secure. I.e., we build a reduction from the extractability of TASSparkle,R to
the hardness of the relation R and the strong unforgeability of Sparkle. The most challenging part
of this reduction is to simulate the pre-signature oracle to the adversary, which we do as follows:
When the adversary queries the pSign oracle for the signer i, the reduction calls its Sign0 oracle
and forwards the output to the adversary. When the adversary sends all of its commitments to the
reduction, the reduction calls its Sign1 oracle to receive its own commitment Ri. Afterward, the
reduction extracts the commitments {Rj}j∈S\i of all signers by checking the inputs to the random

oracle Hcm. Having these commitments available, the reduction queries its Sign2 oracle and stores
the partial signature zi ← ri + hλiski, which is output by its Sign2 oracle. The reduction proceeds
by programming the random oracle HSign, such that HSign(pk,

∏
j∈S Rj · s,m) = h and outputs its

commitment Ri to the adversary. Since the adversary does not know the random commitment Ri

at the time of reprogramming the random oracle HSign, the probability that the adversary queried
the random oracle HSign on the particular input is negligible. When the adversary provides all
shares {Rj}j∈S\i to the reduction, the reduction outputs the previously stored partial signature zi.
Since the reduction reprogrammed the random oracle, this partial signature zi is indistinguishable
from a partial pre-signature w.r.t. the statement s from the adversary’s point of view.

With this intuition in mind, we now start the formal proof of Lemma 1. We assume towards
contradiction that there exists an adversary A that breaks the full extractability of TAS and build
a reduction B that breaks the strong unforgeability of Sparkle or the hardness of the relation R.
This reduction B simulates the game Ext perfectly to the adversary, which we show using a series
of game hops with negligible transition.

Game G0: The initial game G0 is the original Ext game. Since G0 simulates the Ext game perfectly,
it holds that Pr[Ext(λ) = 1] = Pr[G0(λ) = 1].

Game G1: The first game G1 differs from game G0 when the event BreakR happens. BreakR occurs
if the adversary outputs a forgery, which allows breaking a challenge instance of the hard relation
(i.e., a statement that was output by the oracle NewS). If BreakR happens, the game G1 aborts.
This game hop does not differ from Ext if the adversary returns an adapted pre-signature on a
non-challenge statement since the winning condition covers this already.

Claim 1. Let BreakR be the event, whereby G1 aborts. Then, the adversary A found a signature
forgery σ∗ that allows extracting a challenge witness using a previously output pre-signature. If
BreakR happens, then we can build a reduction B′ that can break the hardness of the hard relation
R. Thus, BreakR occurs only with negligible probability negl1(λ).

Proof of the claim. To show this claim, we build a reduction B against the hardness of the hard
relation R. As input, B gets a challenge statement Y ′. The reduction B guesses which of the
polynomially many requested challenge statements will be broken by A and replaces this statement
with Y ′. When the game G1 aborts as BreakR happened, B extracts a witness for s′ using the extract
algorithm, the signature forgery σ∗ and the corresponding pre-signature. This extracting yields a
valid witness since BreakR happened. B then outputs this valid witness for s′. The probability that

20

B is successful is polynomially bounded by the ability of the adversary to cause the event BreakR
to happen. As we assume that the relation R is a hard relation, such a B cannot exist, and hence,
the gap between the games G0 and G1 is negligible.

Game G2: In this game, we simulate the pre-signing and signing oracles using the signing oracles
provided by the strong unforgeability game of Sparkle. As input, B receives the public key pk and
forwards pk to A. Eventually, A outputs the corrupted set corr, and B also outputs corr. Eventually,
B receives the corrupted signing keys and forwards these to A. When A queries the signing oracle,
B forwards the request to its own signing oracle. When A queries the pre-signing oracle on a
message m and a statement Y , B randomly samples a message m′ and requests its signing oracle
on m′. It receives a partial signature of the form (Ri, ski · h+ ri). Then, B programs the RO, such
that HSign(pk, R · s,m) = h. Afterward, B interacts with the other signers and extracts from the
ROM, such that the final random commitment of the random signature equals Y · R as described
at the beginning of this proof. The challenger for the unforgeability of sparkle simulates the keys
and oracles perfectly, but A can notice a gap if it queries the random oracle before B reprograms
it accordingly.

Claim 2. Let coll denote the event where G2 aborts due to an unprogrammable pre-signature. In
this scenario, the adversary A must have queried the random oracle Hcm with the honest signer’s
random commitment Ri, or queried the random oracle HSign with an input of (pk, R · s,m), before
obtaining the random share Ri from the honest signer. Since the set of statements is exponentially
large, coll occurs only with negligible probability negl2(λ).

When winning the Ext game, the adversaries output (m∗, σ∗) is a valid forgery that breaks
the existential unforgeability of Sparkle with overwhelming probability. The pair (m∗, σ∗) is only
not a valid forgery against the existential unforgeability of Sparkle if m∗ was previously chosen
as a random message when our reduction queried its signature oracle. Since the messages were
chosen uniformly at random by the reduction, this is only the case with a probability of at most
q/2λ, where q is the number of queried pre-signatures. This probability is negligible in λ since q is
polynomially bounded.

We defer the other lemmas and proofs to Appendix B.1.

5 Certified Witness Encryption

This section introduces a new cryptographic primitive, which we call Certified witness encryption
(CWE). At a high level, CWE is a form of witness encryption where a valid signature serves as the
witness required for decryption. More precisely, in an CWE scheme, a party provides a certificate
(vk,m) = s and receives an encryption key ek. Any ciphertext encrypted under ek can only be
decrypted by someone who possesses a valid signature σ on m with respect to vk. This naturally
defines a witness encryption scheme for the language

LR := {((vk,m), σ) = (s, w) | Vrfy(vk, σ,m) = 1}.

The security of CWE aligns with the standard notion of Chosen Plaintext Attack (CPA) security
for encryption schemes, with one key difference: the adversary is allowed to choose the message m

21

defining the language LR. Intuitively, CWE should remain CPA-secure even when the adversary
selects the certificate’s message.

We formalize CWE, define its corresponding security notion, and present a construction based
on Schnorr signatures and ElGamal encryption in Section 5. Additionally, we provide a general
framework for constructing CPA-secure CWE encryption from a broad class of signature schemes
in Appendix D. Our framework applies to signatures based on the DDH and CDH assumptions,
including the Camenisch-Lysyanskaya (CL) [CL03], Waters+ [BSW06], and Katz-Wang [KW03]
signature schemes.

Definition of Certified Witness Encryption. A CWE scheme is defined w.r.t. some signa-
ture scheme ΠΣ = (KGenΣ,Sign,Vrfy) for the relation LR as defined above. The key generation
algorithm KGCWE takes as input the statement s and outputs an encryption key ek only. The
encryption algorithm EncCWE encrypts messages under ek and the resulting ciphertexts can be
decrypted using a witness w. We emphasize that while statements for LR can be efficiently sam-
pled, generating valid statement-witness pairs (s, w) efficiently requires knowledge of a signing key
corresponding to the verification key vk.

Definition 15 (Certified Witness Encryption). A certified witness encryption scheme ΠCWE =
(KGCWE,EncCWE,DecCWE) w.r.t. a signature scheme ΠSign and the hard relation R with statement-
witness pairs (s, w) that corresponds to the language LR as defined above and consists of the fol-
lowing efficient algorithms:

ek← KGCWE(s): The input of the key generation algorithm is a statement s ∈ LR and it returns
an encryption key ek.

ct← EncCWE(ek,m): The encryption algorithm takes as input a public key ek and a message m, it
outputs a ciphertext c.

m← DecCWE(w, ct): The input of the decryption algorithm is a witness w and a ciphertext c, it
outputs a message m.

Let ΠΣ = (KGenΣ, Sign,Vrfy) be a signature scheme for the relation R as defined above. A
certified witness-encryption scheme ΠCWE = (KGCWE,EncCWE,DecCWE) is correct, if for all security
parameter λ, all pairs (s, w) ← genR(1λ), all ek ← KGCWE(s), all messages m, we have m =
DecCWE(w,EncCWE(ek,m)).

In cases where we need verifiability of our encryption, we extend the functionality with the
algorithms (VEncCWE,VrfyCWE) similar to verifiable encryption as defined in Appendix A.5. The
algorithm VEncCWE takes as input an encryption key ek, a message m, and a commitment M to
m. It outputs a verifiable ciphertext ct. The algorithm VrfyCWE takes as input an encryption
key ek, a commitment M , and a verifiable ciphertext ct. It outputs a bit b indicating whether c
encrypts a valid opening of M with respect to ek. These algorithms can be instantiated by applying
simulation-sound NIZK schemes to our encryption protocols.

Security of Certified Witness Encryption. We formalize the security of CWE similar to
CPA security for encryption schemes, but we let the adversary choose the message m that is used
for the computation of the witness. More precisely, we consider the hard relation R(1λ,m) with
auxiliary information m for the language

LR := {((vk,m), σ) = (s, w) s.t. Vrfy(vk, σ,m) = 1}.

22

Since every CWE is defined with respect to a signature scheme ΠΣ, we give the attacker A the
public key vk of the signature scheme as input. The attacker outputs two equal messages m0,m1

and one message m for the key derivation; it receives the encryption cb of the message mb under ek
as well as the statement s as input and outputs its choice bit b. Our definition is sufficient for our
purposes and we leave the notion of security, e.g., where to get access to the signing oracle, open
for future research.

Definition 16 (CPA Security of CWE). Let R be a hard relation for the language LR, and ΠΣ =
(KGenΣ,Sign,Vrfy) be a signature scheme. A certified witness encryption scheme ΠCWE = (KGCWE,
EncCWE,DecCWE) has indistinguishable encryptions under a chosen-plaintext attack if for every
PPTadversary A, there exists a negligible function negl such that∣∣∣Pr[CWE− CPA1

A,ΠCWE
(λ) = 1

]
− Pr

[
CWE− CPA0

A,ΠCWE
(λ) = 1

]∣∣∣ ≤ negl(λ),

where the experiment CWE− CPAb
A,ΠCWE

is described in Figure 8, and the probabilities are taken
over the random choices of all probabilistic algorithms.

CWE− CPAb
A,ΠCWE,ΠΣ,R(λ)

1 : (vk, sk)← KGenΣ(λ)

2 : (m0,m1,m)← A(vk) // s.t. |m0| = |m1|
3 : (s, w)← genR(1λ,m)

4 : ek← KGCWE(s)

5 : cb ← EncCWE(ek,mb)

6 : b′ ← A(cb, s)
7 : return b′ == b

Figure 8: The security game CWE− CPAb
A,ΠCWE

(λ).

We propose a certified witness encryption scheme for Schnorr signatures. This scheme adapts
the ElGamal public-key encryption scheme but uniquely incorporates Schnorr signatures [Sch91]
to serve as decryption witnesses.

CWE for Schnorr Signatures. Schnorr signatures are defined within a group G of prime order
p with a generator g and a hash function H. For a given verification key vk = gsk and message m,
a Schnorr signature has the form σ = (R, z) = (gr, sk ·h+ r), where h is obtained from H(vk, R,m)
and r is a randomly chosen element of Zp. Verifying a Schnorr signature involves checking whether
vkh ·R equals gz.

Given the intrinsic nature of Schnorr signatures, where each message-key pair can generate
an exponential number of witnesses (i.e., different signatures corresponding to each element of
randomness in Zp), we design our construction to avoid the need to decrypt for every potential
witness. I.e., we formulate a specific hard relation for Schnorr signatures that possesses unique
witnesses: The statement of the relation includes the verification key vk, the message m, and a
commitment to the randomness R. The witness for such a statement is a Schnorr signature (R, z),
incorporating the random commitment R. More formally, we define the hard relation w.r.t. the

23

language

LR := {((vk,m,R), (R, z)) = (s, w) s.t. Vrfy(vk, (R, z),m) = 1}.

This relation is as hard as computing a valid signature Schnorr signature on the verification key
vk, the message m, and the random commitment R. In the next step, we build a CWE scheme for
this hard relation.

To compute encryption keys, we observe the structure of the verification algorithm of Schnorr
signatures: Having available the values (vk,m,R), one can locally compute the value vkh ·R, which
equals gz. The encryption of a message mEnc using the encryption key ek follows a process similar
to ElGamal encryption: We sample a random element y ←$ Zp and output the pair (gy, eky ·m).
To decrypt a ciphertext (c1, c2) using a signature (R, z), we compute m = c2/(c

z
1). More formally,

we construct CWE for Schnorr signatures in Construction 2.

Construction 2 (DDH-Based CWE encryption scheme). Let G be a group of prime order p with a
generator g. We define the CWE scheme ΠCWE = (KGCWE,EncCWE,DecCWE) for Schnorr signatures
w.r.t. (G, p, g) in Figure 9.

KGCWE(vk,m,R)

1 : h← H(vk||R||m)

2 : ek := vkh ·R
3 : return ek

EncCWE(ek,m)

1 : y ←$ Zp

2 : return (gy, eky ·m)

DecCWE(σ, c)

1 : parse c as (c1, c2)

2 : parse σ as (R, z)

3 : return c2/ (c
z
1)

Figure 9: Schnorr-based CWE encryption from DDH. In Appendix D, we extend this construction
into a “signed” setting by leveraging the random oracle (RO) to mask encrypted messages. The use
of the RO enables a security proof based on the Computational Diffie-Hellman (CDH) assumption.

This construction is correct and CPA secure. We show correctness in Lemma 9 in the appendix
and CPA security in Theorem 2.

Theorem 2 (Security of Schnorr CWE). If the decisional Diffie-Hellman (DDH) assumption is
hard, and H is a compressing, non-zero hash function, then Construction 2 is a CPA secure CWE
scheme.

Proof Sketch. By contradiction, we assume that there exists an adversary A that breaks the CPA
security of ΠCWE with non-negligible probability. We use this adversary to build a reduction
from the CPA security of ΠCWE to the hardness of DDH. The reduction R gets as input the
values ([α], [β], [γ]), such that γ is either a random value or α · β. The reduction forwards [α] as
verification key to A, which eventually outputs three messages (mi,m1,m). R samples a fresh
randomness, commitment pair (R, r) ← genR(1λ) and computes the challenge ciphertext on the
challenge message mb via cb ← ([β], [β]r ·[γ]h ·mb). The reduction forwards cb to A, which eventually
outputs a bit b′ and R returns b′ == b. If γ = α · β, then the ciphertext is exactly constructed as
the adversary expects it to be

c := ([β], [β]r · [γ]h ·mb) = ([β], [β · r + α · β · h] ·mb) = ([β], [β · (r + α · h)] ·mb).

24

If γ ̸= α · β, then γ the challenge ciphertext cb is also a random element in Zp (as H is a non-zero
function) and is independent of the challenge messagemb. We show in the full proof (Appendix B.3),
that if γ ̸= α · β, then A wins with probability at most 1/2, and if γ = α · β, then A wins with
non-negligible advantage 1/2 + ε. Therefore, it holds that:∣∣Pr[DDH0

A(λ) = 1
]
− Pr

[
DDH1

A(λ) = 1
]∣∣ ≥∣∣Pr[CPA1

A(λ) = 1
]
− Pr

[
CPA0

A(λ) = 1
]∣∣ ≥ ∣∣∣∣12 + ε− 1

2

∣∣∣∣ ≥ ε.

This contradicts the hardness of DDH; thus, no efficient adversary against the CPA security of
Construction 2 can exist.

6 A Fair-Exchange Protocol

In this section, we provide a construction for a Schnorr-based MPFE and formally prove its security.
Our Multi-Party Fair Exchange MPFE framework uses threshold adaptor signatures as a funda-
mental component. We split our protocol into three phases: The commit phase that is executed
amongst the buyers, the settle phase that is executed amongst the sellers and the reveal phase that
is run by each buyer locally. In the commit phase, all buyers jointly compute a pre-signature as a
public state. They forward this pre-signature to the sellers, who run the settle protocol to jointly
adapt the pre-signature and post it alongside the payment transaction to the blockchain. In the
reveal phase, each buyer obtains the latest blockchain state and locally extracts the witness w. A
notable challenge using this approach is the lack of fairness during both the pre-signing and the
adapting phase, which we address in the commit and settle protocols.

Construction 1 (Schnorr-BasedMPFE). Let R be a relation for the DLog language, and TAS be the
threshold adaptor signature based on sparkle. Let CWE be a verifiable certified witness encryption
based on Schnorr signatures. We define the protocols Setup,Commit,Eval,Reveal in Figures 15, 10,
and 11.

Setup. The setup algorithm generates the private and public keys for each protocol participant.
Each buyer receives a threshold signing key skTS,i shared amongst the buyers and a random key k,
which is consistent amongst all buyers. The two keys are combined into the key skBi

= (skTS,i, k).
Each seller receives a public-secret key pair for encryption skSj = skEnc,j , which are combined
into the seller secret key (skTS,j , skEnc,j). In addition, the setup algorithm outputs a shared public
signing key for all buyers and one per seller. From this point forward, we assume that all public keys
generated by setup are known to all protocol participants, and we abuse the notation of pkSj , which
refers to the public encryption key when encrypting elements and the public signature verification
key when verifying signatures.

Commit. The commit protocol enables each buyer to establish an internal state state, which ensures
that a witness can be revealed once a designated signature corresponding to a valid payment appears
on the blockchain. Additionally, the protocol generates an external state ρ, which is forwarded to
the sellers. In our construction, ρ consists of a pre-signature computed with respect to pkB and
a rerandomization factor that blinds the final witness from the sellers, preserving witness privacy.
Each buyer begins by computing a randomization factor for every seller as ej ← H(k, tx, s, j),

25

where k is the buyer-specific secret key and j denotes the seller’s identifier. These individual
shares are then combined using Lagrange interpolation over a degree-tS polynomial to derive a
shared rerandomization factor e. This factor can be reconstructed with knowledge of at least
tS shares or, alternatively, by any buyer possessing the key k. The rerandomization factor e is
fundamental for ensuring witness privacy. Since we assume that at most tS − 1 sellers may be
corrupted, no adversarial seller can learn e, ensuring that the witness remains perfectly blinded.
When a buyer later extracts the blinded witness w + e, knowledge of k allows them to recover e
and ultimately obtain w in plaintext. To commit to a transaction, buyers must first agree on a
pre-signature randomness R̃ using the threshold adaptor signature algorithms pSign0 and pSign1.
Once consensus on R̃ is reached, they jointly lock the input transaction on-chain for a sufficient
duration. This locking mechanism ensures that the transaction remains accessible to buyers after a
predefined time while allowing the adapted pre-signature to spend the transaction beforehand. To
maintain clarity, we defer the full details of this locking procedure to the seller-fairness proof. Once
the transaction is locked, each buyer locally executes pSign2 to generate a partial pre-signature
ρ′′, which is then verifiably encrypted using the CWE scheme. The use of CWE ensures that, once
the adapted pre-signature is posted on the blockchain, all buyers can decrypt the ciphertexts and
reconstruct the pre-signature—even in cases where some buyers attempt to abort the protocol
unfairly. Before proceeding, each buyer verifies the encrypted shares from all other buyers. After
successful verification, they send their respective partial pre-signatures ρ′′ to the group. Upon
collecting a sufficient number of pre-signature shares, each buyer finalizes their internal state state,
storing all ciphertexts related to the pre-signature shares. Simultaneously, they output the pre-
signature and rerandomization factors as an external state ρ. A formal definition of our Commit
construction is provided in Figure 10.

Settle. The settlement protocol ensures that sellers collaboratively adapt the pre-signature into
a valid signature and submit it to the blockchain alongside the corresponding transaction. The
process unfolds as follows: Each seller sends their blinded witness wj + ej to all other sellers. Once
a seller collects at least tS blinded witnesses, they compute the final blinded witness w + e and
use it to adapt the pre-signature into a valid signature. The adapted pre-signature is then posted
on-chain, completing the exchange. From a security perspective, this mechanism ensures that a
valid payment is triggered once the adapted pre-signature appears on the blockchain. Since the
adversary has locked the transaction inputs to require this pre-signature, and an honest majority
of participating sellers provide their blinded witness shares in time, the protocol guarantees that a
valid signature will eventually be posted. We formally define the settle protocol in Figure 11.

Reveal. The reveal algorithm enables each buyer to extract the witness w using the adapted
signature σ and their internal state. This internal state consists of verifiable certified witness en-
cryption (CWE) ciphertexts containing the pre-signature shares of other buyers. Once the adapted
signature σ is posted on the blockchain, each buyer decrypts the CWE ciphertexts to recover the
pre-signature shares. Looking ahead, the security analysis will show that if the sellers manage to
post a valid signature on the blockchain, each buyer has a sufficient number of pre-signature shares
in its local state to reconstruct the pre-signature. After reconstructing the pre-signature, the buyer
runs the extraction algorithm from the threshold adaptor signature scheme to obtain the blinded
witness w+ e. Since the buyer knows the blinding factor e, they can efficiently recover the witness
w. We give a formal description of the reveal algorithm in Figure 11.

26

Bi.Commit(skBi
, s, tx)

1 : // Compute rerandomization factors.

2 : ej ← H(k, tx, s, j); e =
∑

ejλj ;E ← ge

3 : // Agree on a pre-signature randomness R̃

4 : (ρi, sti)← pSign0(i, tx, s · E,B)
5 : send ρi to all Bj ; upon receiving all other ρi

6 : (ρ′i, sti)← pSign1(sti, {ρi}i∈B,B)
7 : send ρ′i to all Bj ; upon receiving all other ρ′i

8 : R̃←
∏
j∈B

ρ′j · E · s

9 : // Lock the input transaction

10 : C.lock(skBi
, tx, R̃)

11 : // Encrypt the pre-signature share using the CWE scheme

12 : ek← KGCWE(pk, tx, R̃, tx)

13 : ρ′′i ← pSign2(sti, skBi
, {ρ′i}i∈B,B)

14 : comi ← VEncCWE(ek, ρ
′′
i , R̃)

15 : send comi to all Bj

16 : // Reveal the pre-signature share after verifying all commitments

17 : upon receiving all other comj :

18 : assert VrfyCWE(comj , pkBj
, R̃, tx)

19 : send ρ′′i to all Bj ; upon receiving all other ρ′′j :

20 : σ̃ ← Combine({ρ′i, ρ′′i }i∈B)

21 : statei ← ({comi}i∈B, e); ρ← (σ̃, tx, {ΠEnc.Enc(pkSj
, ej)}1≤j≤nS

)

22 : return (statei, ρ)

Figure 10: Construction of the Commit protocol.

6.1 Security

We now establish the security of our MPFE construction. Initially, our goal was to analyze the
security of the MPFE scheme in relation to the CPA security of the CWE scheme. However, in
our construction, a partial pre-signature is encrypted using the CWE scheme, and the adapted and
combined pre-signature effectively functions as the decryption key. As a result, a direct reduction
to the CPA security of CWE is not possible. Instead, we adopt the framework of transparent
reductions [Ger+24a] and prove the security of our MPFE scheme based on the hardness of the
CDH assumption in the underlying group. Additionally, we ensure that the random oracle is

27

Si.Settle
C(skSi , ρ, wi)

1 : parse ρ as (σ̃, tx, {ctj}1≤j≤nS
)

2 : ei ← ΠEnc.Dec(skSi
, cti), w

′
i = wi + ei

3 : send w′
i to all Sellers

4 : upon receiving all other w′
j

5 : w′ ←
∑
j∈S

w′
j

6 : σ ← Adapt(pkB, σ̃, w
′)

7 : C.post(tx, σ)
8 : return

Reveal.Bi(pkB, statei, σ)

1 : parse statei as ({comj}j∈B, e)

2 : parse σ as (R, z)

3 : dk← z

4 : foreach j ∈ B do :

5 : ρ′′ ← DecCWE(dk, comj)

6 : σ̃ ← Combine(pkB, {ρ′′}j∈B)

7 : w′ ← Extract(pkB, σ̃, σ)

8 : return w′ − e

Figure 11: The Settle Protocol and the reveal algorithm.

programmed in a way that prevents circular security.

Security Parameters. We prove the security of our MPFE scheme under optimal bounds.
Specifically, we establish fairness guarantees based on threshold conditions: buyer fairness holds
for any tB < nB in the presence of a minimal blockchain, while seller fairness requires tS honest
participating sellers. (i.e., nS ≥ 2 · tS−1) in the presence of a minimal blockchain with timing. Our
impossibility result confirms that these conditions are both necessary and sufficient. For our security
analysis, we assume that at least tS honest sellers participate in the exchange. This assumption
is practical, as sellers can enforce agreement through a voting mechanism before executing the
protocol and enforce the participation of at least 2 · tS−1 sellers. To keep our construction concise,
we leave the voting process out of scope and focus solely on the cryptographic core of the protocol.
Honest sellers only participate if the required threshold is met. To faciliate notations, we talk
about tS-seller fairness (tB-buyer fairness) and assume, that in these cases tS − 1 sellers (tB − 1
buyers) are corrupted.

Theorem 3. Let R be a hard relation for the DLog language in the group G, and let TAS be
the secure Schnorr threshold adaptor signature scheme defined in Construction 1. Let CWE be a
verifiable certified witness encryption scheme for Schnorr signatures, as defined in Construction 4,
using a simulation-sound non-interactive zero-knowledge proof of knowledge (NIZK). Let ΠEnc be a
CPA secure public key encryption scheme. If the CDH assumption holds in G, then Construction 1
is a secure MPFE protocol in the random oracle model. Specifically, Construction 1 guarantees:

• tB-buyer fairness for any tB ≤ nB in the presence of a minimal blockchain;

• tS-seller fairness for tS participating honest sellers (i.e., nS ≥ 2 · tS − 1) in the presence of a
minimal blockchain with timing;

• witness privacy for any tS ≤ nS.

To prove Theorem 3, we show buyer fairness, seller fairness, and witness privacy in separate
lemmas. We show buyer fairness now and defer the other lemmas and proofs to Appendix B.2.

28

Lemma 2 (Buyer Fairness). Let R be a hard relation for the DLog language in the group G,
and let TAS be the secure Schnorr threshold adaptor signature scheme defined in Construction 1.
Let CWE be a verifiable certified witness encryption scheme for Schnorr signatures, as defined in
Construction 4, using a simulation-sound non-interactive zero-knowledge proof of knowledge. If the
CDH assumption holds in G, then Construction 1 achieves tB-buyer fairness for any tB ≤ nB.

Proof of Lemma 2. To prove Lemma 2, we construct a reduction from the buyer fairness of our
construction to one of the following security properties:

• The simulation soundness of the NIZK.

• The hardness of the Computational Diffie-Hellman (CDH) problem in G.

• The extractability of the threshold adaptor signature scheme.

We assume, for contradiction, that there exists an efficient adversary A that breaks the buyer fair-
ness of Construction 1. Since the settle and reveal algorithms are executed locally by each party,
the adversary can only violate buyer fairness by interacting with honest parties in the commit pro-
tocol. To succeed, the adversary must output a valid signature signed by the buyers while ensuring
that at least one buyer cannot reconstruct the corresponding challenge witness. In our reduction,
the interaction with honest buyers is simulated by providing buyer oracles to the adversary. We
define two events based on the type of forgery the adversary produces:

• Fresh forgery (fresh): The forgery is fresh if it corresponds to a random commitment R̃ and
message m that was never used in a signing session when interacting with the oracles.

• Non-fresh forgery (¬fresh): The forgery is non-fresh if the pair (R̃,m) was previously used
in a signing session.

The adversary wins if either of these cases holds and it holds that

Pr[BF(λ) = 1] = Pr[BF(λ) = 1 ∧ fresh] + Pr[BF(λ) = 1 ∧ ¬fresh].

We analyze both cases independently and begin by analyzing the non-fresh case: In the non-fresh
case, we distinguish two subcases. The first case occurs when the adversary A aborts the commit
protocol before receiving the plaintext pre-signature shares (Line 19 in Figure 10). We define the
event where the adversary does not wait for the shares as EA. Looking ahead, we will reduce
the case EA to the hardness of CDH. The second case occurs when A completes the interaction
and receives the pre-signature shares before forging a signature. We will reduce this case to the
simulation soundness of the NIZK. It holds, that

Pr[BF(λ) = 1 ∧ fresh] = Pr[BF(λ) = 1 ∧ fresh ∧ EA] + Pr[BF(λ) = 1 ∧ fresh ∧ ¬EA].

Since the event EA is a part of the event fresh, we omit fresh for better readability. To show that
fresh forgeries happen only with negligible probability, we analyze these two subcases separately
and show that both probabilities are negligible. In the first case, EA, the adversary outputs a valid
signature before receiving its commitments to the honest buyer’s pre-signature shares. We now
construct a reduction that uses this adversary to break the CDH assumption in G. To achieve this,

29

we perform a sequence of game hops, gradually transforming the adversary’s attack into a CDH
solver. We begin with the initial game G0, which is simply the BF security game conditioned on
the event EA. By definition, the adversary’s success probability in this game equals

Pr[BF(λ) = 1 ∧ EA] = Pr[G0(λ) = 1].

In the first game hop, we move to game G1, where we modify the protocol by replacing the NIZK
proofs used in the verifiable CWE encryption with simulated proofs from the simulator of the
simulation-sound NIZK scheme. Since the simulation soundness of NIZK ensures that this change
does not affect the adversary’s ability to distinguish the real and simulated proofs, this transition
introduces only a negligible difference in the adversary’s success probability:

Pr[G0(λ) = 1] ≤ Pr[G1(λ) = 1] + negl1(λ).

Next, in game G2, we set up a reduction to the hardness of the CDH problem. The reduction
receives as input two group elements [α] and [β] and must compute the CDH solution [γ] = [α · β].
To do so, the reduction simulates the protocol execution while embedding the CDH challenge into
the adversary’s environment. The reduction begins by generating random signing key shares ski for
all parties and forwards the signing keys of the corrupted parties to the adversary. It then guesses
the signing session in which the adversary will attempt to break buyer fairness (the guess is efficient,
as there are qsess signing sessions which are polynomially bounded). Since we are in the non-fresh
case, such a session exists. To embed the CDH challenge, the reduction programs the signature
randomness R̃ in the guessed session to be [α]. This is achieved by setting the randomness of a
single honest party to

Ri =
[α]

E · s ·R′ ,

where R′ is the product of the random nonces of all other parties, extracted from the commitments
of the first signing round by using the random oracle. To further embed the challenge, the reduction
sets the ciphertext comi for the guessed honest party to

comi = ([β], r), where r ←$ Zp.

For all other signing sessions, the reduction answers queries honestly. This is feasible as it knows
the signing key shares of all honest parties. The final step in the reduction is extracting the CDH
solution. The reduction guesses if and when the adversary queries the random oracle on the CDH
solution. This introduces a loss factor of 1/2 and 1/qro, where qro is the number of random oracle
queries (also polynomially bounded). If the guess is correct and the adversary indeed queries the
RO on a solution for CDH, the reduction can compute

[γ] = [α]−h·sk · x,

where x is the adversary’s random oracle query and h = H(pk, R̃,m). If the guess is correct, the
reduction obtains [γ], thereby solving the CDH problem. The reduction finishes and the adversary
cannot distinguish the simulated comi from an honest one, as it never receives the RO evaluation
on its input. If the adversary does not query the random oracle on a CDH solution, it must still
produce a non-fresh forgery. Since the reduction controls the signing key, it can extract β = r̃ from
the forgery (R̃, sk · H(pk, R̃,m) + r̃), thereby still solving CDH. Introduced by the guessing of the

30

reduction, obtaining the CDH solution adds a polynomial loss to the reduction. If all guesses are
correct, the reduction B solves the CDH instance. This imposes

Pr[B([α], [β]) = [α · β]] = Pr[G2(λ, [α], [β]) = 1] =
qro + 1

2 · qsess · qro
· Pr[G1(λ) = 1].

Since we assume the probability of solving CDH to be negligible, and we have a negligible transition
from game G1 to the game BF∧EA, this concludes the proof for the EA case. Specifically, we showed
that the adversary’s success probability in the case EA is negligible.

We now analyze the second case, where the adversary does not abort early (¬EA). In this
scenario, the adversary successfully completes the interaction, receives the plaintext pre-signature
shares, and subsequently produces a non-fresh forgery. This implies that the challenger has verified
the NIZK corresponding to the VPKE of the pre-signature shares provided by the adversary, yet at
least one honest buyer is unable to reconstruct a valid pre-signature after the adversary outputs the
forgery. By the correctness of the CWE scheme and the bijectivity of the Schnorr signature scheme,
the challenger is able to decrypt all well-formed commitments comi that the adversary submitted
before the challenger outputs the pre-signature forgery. Since the adversary violates buyer fairness,
at least one honest buyer must be unable to reconstruct a valid pre-signature using the decrypted
commitments. This violates the well-formedness of the commitments and leads to a reduction
against the simulation soundness of the NIZK system. To construct this reduction, the challenger is
given a common reference string crs for the NIZK. The challenger runs the setup algorithm for the
MPFE scheme, ensuring that it can answer all adversary queries. When the adversary produces a
ciphertext that verifies correctly but fails to decrypt into a valid pre-signature share, the challenger
outputs the pre-signature encryption along with the corresponding NIZK proof. This contradicts
the simulation soundness of the NIZK, demonstrating that the adversary’s success probability in
this case is negligible. Having established that the adversary’s success probability is negligible in
both cases—whether it aborts early (EA) or completes the interaction (¬EA)—we conclude that no
efficient adversary can break buyer fairness by outputting a non-fresh signature in Construction 1.

In the case where the forgery is fresh (fresh), the adversary’s forgery was not obtained by
adapting any pre-signature that had been partially output by an honest buyer. This directly
contradicts the extractability of the threshold adaptor signature scheme. This can be shown by
a trivial reduction to the extractability: The reduction forwards corrupted keys and answers each
oracle query using the provided oracles. Since the forgery is fresh and valid, by the bijectivity of
the Schnorr verification, no previously output pre-signature allows for extracting a valid challenge
witness. Thus, the reduction breaks extractability whenever the adversary breaks buyer fairness in
the fresh case. Thus, the probability of winning with a fresh forgery is negligible.

Summarizing our results, we have divided the adversary’s winning probability into three distinct
cases: the event where the adversary aborts early and the forgery is non-fresh (EA∧¬fresh), the event
where the adversary completes the interaction but still produces a non-fresh forgery (¬EA∧¬fresh),
and the event where the forgery is fresh (fresh). We have shown that in each of these cases, the
adversary’s success probability is negligible. Furthermore, we need to guess which case applies.
This guessing introduces, at most, a polynomial loss. Therefore, we conclude that no efficient
adversary can successfully violate the buyer fairness of Construction 1.

31

7 Impossibility Result

We prove the impossibility of a multiparty fair exchange protocol when using a minimal blockchain,
which we model as a public bulletin board with ordering. Our proof follows a two-step approach:
First, we show that seller fairness cannot be guaranteed under any threshold assumptions when
relying solely on a minimal blockchain. Second, we extend this result by proving that even with
the addition of timing mechanisms to the blockchain, fairness remains unattainable in the presence
of less than tS honest participating sellers. A MPFE protocol for exchanging a coin for a witness
using a minimal blockchain operates in the following setting:

• The witness w is secret-shared among the sellers, requiring at least tS sellers to reconstruct.

• The buyers collectively hold a signing key.

• The blockchain functions as an append-only ordered bulletin board (c.f. Definition 3).

• Each participant maintains an internal state: initially, the buyers hold the signing key, while
each seller possesses a share of the witness.

Communication Model. We model communication and computation in a sequential setting.
Looking ahead to our adversarial model, adopting a sequential model is reasonable since we assume
that the adversary can delay messages on the network. Consequently, we consider messages posted
to the blockchain and exchanged between users to be sequential [FY92; Kat24].

Adversarial Model. We assume an adversary who is able to delay every message sent over the
network and to the blockchain. In addition, the adversary controls the order in which parties are
activated to perform computations. To constrain the adversary, we impose an ordering constraint:
no party can compute twice until all other parties have computed at least once in the meantime.
While this constraint limits the adversary’s power, it ultimately strengthens our impossibility result,
since we show that no protocol can exist even under this weakened adversarial model.

Protocol Execution. Using this adversarial model, we structure protocol execution in rounds:
At the beginning of each round, the adversary chooses a party to execute in that round. The
selected party then receives any pending messages addressed to it that the adversary may have
delayed from previous rounds. In addition, the party learns the current state of the blockchain
as provided by the adversary. However, the adversary cannot arbitrarily change the state of the
blockchain; it can only reorder transactions within the constraints of the protocol and delay their
inclusion. After receiving its inputs, the party has polynomial time to perform its computations.
At the end of the round, the party forwards any outgoing messages to the adversary, who controls
their delivery, and outputs an updated blockchain state. This process continues in successive rounds
until all parties have completed protocol execution.

Impossibility. We now show that in our modeled setup, no MPFE protocol that achieves tB-buyer
fairness can also achieve tS-seller fairness in the presence of a minimal blockchain.

Theorem 4 (Impossibility of Fairness for Minimal Blockchains). No multi-party fair exchange
protocol ΠMPFE that achieves tB-buyer fairness can also achieve tS-seller fairness in the presence of
only a minimal blockchain.

32

Proof Intuition. We provide an intuition over our proof. If a buyer’s payment appears on-chain,
the buyer must be able to extract the witness w; otherwise, an adversary could make the buyer
pay without revealing w, breaking buyer fairness (Lemma 15). There must exist a critical last
message (Lemma 16) that enables the final signature σB, and this message is received by a seller
first. Without it, a malicious buyer could extract w without paying, violating seller fairness. The
adversary corrupts all buyers and a set of sellers. If a corrupted seller receives the last message
(this happens with probability tS − 1/nS), the adversary learns σB and extracts w. Before posting
σB, the adversary can invalidate all buyer transactions, ensuring no honest seller is paid. Since w
is extracted without full payment, seller fairness is violated. This attack exploits classical front-
running, where an adversary anticipates and manipulates transaction order to its advantage. Since
this attack succeeds with non-negligible probability, achieving fairness for both buyers and sellers
is impossible with a minimal blockchain. We defer the full proof to Appendix E.

Theorem 5 (Impossibility of Fairness with a Majority of Dishonest Sellers). No multi-party fair
exchange protocol ΠMPFE that achieves tB-buyer fairness can also achieve tS-seller fairness in the
presence of a minimal blockchain with timelocks if not at least tS honest sellers participate in the
protocol.

Proof intuition. If not at least tS honest sellers participate, then for any MPFE protocol, an adver-
sary can ensure that only corrupted parties receive a final message (Lemma 17). This allows the
adversary to compute the final signature and learn the witness while no honest seller learns the
witness (due to the missing last message for honest sellers). For seller fairness to hold, honest sellers
must still receive payments. This could happen either before or after the adversary receives the final
message. We show that both cases occur with negligible probability. Thus, the adversary extracts
the witness while ensuring at least one honest seller remains unpaid, breaking seller fairness. Since
this occurs with non-negligible probability, achieving fairness for both sides is impossible under
these conditions. We defer the full proof to Appendix E.

Acknowledgments

This work was partially supported by Deutsche Forschungsgemeinschaft as part of the Research and
Training Group 2475 “Cybercrime and Forensic Computing” (grant number 393541319/GRK2475/1-
2019), grant 442893093, by the state of Bavaria at the Nuremberg Campus of Technology (NCT)
which is a research cooperation between the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg Georg Simon Ohm (THN), and by the Smart
Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe
research and innovation program in the scope of the CONFIDENTIAL6G project under Grant
Agreement 101096435. The contents of this publication are the sole responsibility of the authors
and do not in any way reflect the views of the EU.

References

[And+13] Marcin Andrychowicz et al. Secure Multiparty Computations on Bitcoin. Cryptology
ePrint Archive, Report 2013/784. 2013. url: https://eprint.iacr.org/2013/784.

33

https://eprint.iacr.org/2013/784

[And+14] Marcin Andrychowicz et al. “Fair Two-Party Computations via Bitcoin Deposits”. In:
FC 2014 Workshops. Ed. by Rainer Böhme et al. Vol. 8438. LNCS. Springer, Berlin,
Heidelberg, Mar. 2014, pp. 105–121. doi: 10.1007/978-3-662-44774-1_8.

[Aum+21] Lukas Aumayr et al. “Generalized Channels from Limited Blockchain Scripts and
Adaptor Signatures”. In: ASIACRYPT 2021, Part II. Ed. by Mehdi Tibouchi and
Huaxiong Wang. Vol. 13091. LNCS. Springer, Cham, Dec. 2021, pp. 635–664. doi:
10.1007/978-3-030-92075-3_22.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”. In: CRYPTO 2004.
Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer, Berlin, Heidelberg, Aug. 2004,
pp. 41–55. doi: 10.1007/978-3-540-28628-8_3.

[BDD20] Carsten Baum, Bernardo David, and Rafael Dowsley. “Insured MPC: Efficient Secure
Computation with Financial Penalties”. In: FC 2020. Ed. by Joseph Bonneau and
Nadia Heninger. Vol. 12059. LNCS. Springer, Cham, Feb. 2020, pp. 404–420. doi:
10.1007/978-3-030-51280-4_22.

[BK14] Iddo Bentov and Ranjit Kumaresan. “How to Use Bitcoin to Design Fair Protocols”.
In: CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617.
LNCS. Springer, Berlin, Heidelberg, Aug. 2014, pp. 421–439. doi: 10.1007/978-3-
662-44381-1_24.

[BSW06] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Signatures Based
on Computational Diffie-Hellman”. In: PKC 2006. Ed. by Moti Yung et al. Vol. 3958.
LNCS. Springer, Berlin, Heidelberg, Apr. 2006, pp. 229–240. doi: 10.1007/11745853_
15.

[CD00] Jan Camenisch and Ivan Damg̊ard. “Verifiable Encryption, Group Encryption, and
Their Applications to Separable Group Signatures and Signature Sharing Schemes”.
In: ASIACRYPT 2000. Ed. by Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Berlin,
Heidelberg, Dec. 2000, pp. 331–345. doi: 10.1007/3-540-44448-3_25.

[Cho+17] Arka Rai Choudhuri et al. “Fairness in an Unfair World: Fair Multiparty Computation
from Public Bulletin Boards”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham
et al. ACM Press, 2017, pp. 719–728. doi: 10.1145/3133956.3134092.

[Chu+23] Hien Chu et al. “Practical Schnorr Threshold Signatures Without the Algebraic Group
Model”. In: CRYPTO 2023, Part I. Ed. by Helena Handschuh and Anna Lysyanskaya.
Vol. 14081. LNCS. Springer, Cham, Aug. 2023, pp. 743–773. doi: 10.1007/978-3-
031-38557-5_24.

[CKM23] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. “Fully Adaptive Schnorr Thresh-
old Signatures”. In: CRYPTO 2023, Part I. Ed. by Helena Handschuh and Anna
Lysyanskaya. Vol. 14081. LNCS. Springer, Cham, Aug. 2023, pp. 678–709. doi: 10.
1007/978-3-031-38557-5_22.

[CL03] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme with Efficient Protocols”.
In: SCN 02. Ed. by Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano. Vol. 2576.
LNCS. Springer, Berlin, Heidelberg, Sept. 2003, pp. 268–289. doi: 10.1007/3-540-
36413-7_20.

34

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-030-92075-3_22
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1007/978-3-031-38557-5_24
https://doi.org/10.1007/978-3-031-38557-5_24
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/978-3-031-38557-5_22
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20

[Cle86] Richard Cleve. “Limits on the Security of Coin Flips when Half the Processors Are
Faulty (Extended Abstract)”. In: 18th ACM STOC. ACM Press, May 1986, pp. 364–
369. doi: 10.1145/12130.12168.

[Dam+21] Ivan Damg̊ard et al. “Two-Round n-out-of-n and Multi-signatures and Trapdoor Com-
mitment from Lattices”. In: PKC 2021, Part I. Ed. by Juan Garay. Vol. 12710. LNCS.
Springer, Cham, May 2021, pp. 99–130. doi: 10.1007/978-3-030-75245-3_5.

[DEF18] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. “FairSwap: How To Fairly Ex-
change Digital Goods”. In: ACM CCS 2018. Ed. by David Lie et al. ACM Press, Oct.
2018, pp. 967–984. doi: 10.1145/3243734.3243857.

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Non-Interactive Zero-Knowledge
Proof Systems”. In: CRYPTO’87. Ed. by Carl Pomerance. Vol. 293. LNCS. Springer,
Berlin, Heidelberg, Aug. 1988, pp. 52–72. doi: 10.1007/3-540-48184-2_5.

[DOY22] Wei Dai, Tatsuaki Okamoto, and Go Yamamoto. “Stronger Security and Generic Con-
structions for Adaptor Signatures”. In: INDOCRYPT 2022. Ed. by Takanori Isobe
and Santanu Sarkar. Vol. 13774. LNCS. Springer, Cham, Dec. 2022, pp. 52–77. doi:
10.1007/978-3-031-22912-1_3.

[EFS20] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. “OptiSwap: Fast Optimistic
Fair Exchange”. In: ASIACCS 20. Ed. by Hung-Min Sun et al. ACM Press, Oct. 2020,
pp. 543–557. doi: 10.1145/3320269.3384749.

[Erw+21] Andreas Erwig et al. “Two-Party Adaptor Signatures from Identification Schemes”.
In: PKC 2021, Part I. Ed. by Juan Garay. Vol. 12710. LNCS. Springer, Cham, May
2021, pp. 451–480. doi: 10.1007/978-3-030-75245-3_17.

[Fis05] Marc Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors”. In: CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. LNCS. Springer,
Berlin, Heidelberg, Aug. 2005, pp. 152–168. doi: 10.1007/11535218_10.

[FY92] Matthew K. Franklin and Moti Yung. “Communication Complexity of Secure Compu-
tation (Extended Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 699–
710. doi: 10.1145/129712.129780.

[Gad+23] Sivanarayana Gaddam et al. How to Design Fair Protocols in the Multi-Blockchain
Setting. Cryptology ePrint Archive, Report 2023/762. 2023. url: https://eprint.
iacr.org/2023/762.

[Gar+13] Sanjam Garg et al. “Witness encryption and its applications”. In: 45th ACM STOC.
Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June 2013,
pp. 467–476. doi: 10.1145/2488608.2488667.

[Ger+24a] Paul Gerhart et al. “Foundations of Adaptor Signatures”. In: Progress in Cryptology—
Eurocrypt 2024. Springer, 2024, pp. XXX–XXX.

[Ger+24b] Paul Gerhart et al. “Foundations of Adaptor Signatures”. In: EUROCRYPT 2024,
Part II. Ed. by Marc Joye and Gregor Leander. Vol. 14652. LNCS. Springer, Cham,
May 2024, pp. 161–189. doi: 10.1007/978-3-031-58723-8_6.

[GK10] S. Dov Gordon and Jonathan Katz. “Partial Fairness in Secure Two-Party Compu-
tation”. In: EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Springer,
Berlin, Heidelberg, 2010, pp. 157–176. doi: 10.1007/978-3-642-13190-5_8.

35

https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/978-3-031-22912-1_3
https://doi.org/10.1145/3320269.3384749
https://doi.org/10.1007/978-3-030-75245-3_17
https://doi.org/10.1007/11535218_10
https://doi.org/10.1145/129712.129780
https://eprint.iacr.org/2023/762
https://eprint.iacr.org/2023/762
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1007/978-3-031-58723-8_6
https://doi.org/10.1007/978-3-642-13190-5_8

[Ji+24] Yunfeng Ji et al. “Threshold/Multi Adaptor Signature and Their Applications in
Blockchains”. In: Electronics 13.1 (2024). issn: 2079-9292. doi: 10.3390/electronics13010076.
url: https://www.mdpi.com/2079-9292/13/1/76.

[Kat24] Jonathan Katz. “Round-Optimal, Fully Secure Distributed Key Generation”. In: CRYPTO 2024,
Part VII. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14926. LNCS. Springer,
Cham, Aug. 2024, pp. 285–316. doi: 10.1007/978-3-031-68394-7_10.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. 2nd. Chapman & Hall/CRC, 2014. isbn: 1466570261.

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. “How to Use Bitcoin to Play Decen-
tralized Poker”. In: ACM CCS 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher
Kruegel. ACM Press, Oct. 2015, pp. 195–206. doi: 10.1145/2810103.2813712.

[KOT24] Kaisei Kajita, Go Ohtake, and Tsuyoshi Takagi. Consecutive Adaptor Signature Scheme:
From Two-Party to N-Party Settings. Cryptology ePrint Archive, Paper 2024/241.
https://eprint.iacr.org/2024/241. 2024. url: https://eprint.iacr.org/
2024/241.

[KW03] Jonathan Katz and Nan Wang. “Efficiency Improvements for Signature Schemes with
Tight Security Reductions”. In: ACM CCS 2003. Ed. by Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger. ACM Press, Oct. 2003, pp. 155–164. doi: 10.1145/948109.
948132.

[Lin17] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: CRYPTO 2017, Part II.
Ed. by Jonathan Katz and Hovav Shacham. Vol. 10402. LNCS. Springer, Cham, Aug.
2017, pp. 613–644. doi: 10.1007/978-3-319-63715-0_21.

[Poe17] Andrew Poelstra. “Scriptless scripts”. In: Presentation Slides (2017).

[Sah99] Amit Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security”. In: 40th FOCS. IEEE Computer Society Press, Oct. 1999, pp. 543–
553. doi: 10.1109/SFFCS.1999.814628.

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: Journal of
Cryptology 4.3 (Jan. 1991), pp. 161–174. doi: 10.1007/BF00196725.

[Suw+22] Misni Harjo Suwito et al. “A Systematic Study of Bulletin Board and Its Application”.
In: ASIACCS 22. Ed. by Yuji Suga et al. ACM Press, 2022, pp. 1213–1215. doi:
10.1145/3488932.3527280.

[Wat05] Brent R. Waters. “Efficient Identity-Based Encryption Without Random Oracles”.
In: EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. LNCS. Springer, Berlin,
Heidelberg, May 2005, pp. 114–127. doi: 10.1007/11426639_7.

A Preliminaries

A.1 Hard Relations

A relation, denoted R, is a function that maps R : DS × DW → {0, 1}, where DS represents the
set of all possible statements and DW the set of all potential witnesses. Consider a statement Y

36

https://doi.org/10.3390/electronics13010076
https://www.mdpi.com/2079-9292/13/1/76
https://doi.org/10.1007/978-3-031-68394-7_10
https://doi.org/10.1145/2810103.2813712
https://eprint.iacr.org/2024/241
https://eprint.iacr.org/2024/241
https://eprint.iacr.org/2024/241
https://doi.org/10.1145/948109.948132
https://doi.org/10.1145/948109.948132
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/3488932.3527280
https://doi.org/10.1007/11426639_7

belonging to the space DS, and a witness y from the space DW. The relation R assigns the pair
(s, w) the value 1 if and only if w serves as a valid witness for the statement s.

A relation is said to be hard if, given only the statement s, it is computationally hard to find
a witness w that satisfies the relation (i.e., makes R(s, w) = 1). This feature is crucial for certain
applications.

Two conditions are essential for practicality: first, verifying that a given witness statement pair
is valid (i.e., confirming that R(s, w) = 1 for a given s and w) should be computationally easy.
Second, generating instances of the relation - pairs (s, w) where w is a witness for s - should also
be computationally easy. These conditions ensure that while it is hard to find a witness for a given
proposition, it is not hard to check the validity of a given witness-proposition pair and to generate
examples of valid pairs.

Definition 17 (Hard Relation [Ger+24b]). Let R ⊆ DS×DW with statement/witness pairs (s, w) ∈
DS × DW be a relation and let the language LR ⊆ DS associated to this relation R be defined as
LR := {s ∈ DS |∃ w ∈ DW s.t. (s, w) ∈ R}. We say that R is a hard relation if:

Sampling (s, w)← genR(λ). There exists a PPT sampling algorithm genR(λ) that on input the
security parameter λ outputs a pair (s, w) ∈ R.
Decidability R(s, w). The relation R(s, w) is poly-time decidable.

Hardness. An efficiently sampable and decidable relation R is hard, if for all PPT adversaries A,
the following probability is negligible:

Pr[R(s, w∗) = 1 | (s, w)← genR(λ);w∗ ← A(s)] ≤ negl(λ)(1λ),

where the probability is taken over the random choice of genR and A.

To construct CWE encryption schemes, we require hard relations where sampling is not per-
formed uniformly at random but instead depends on auxiliary information. We model this using
a sampling algorithm genR′ that takes as input the security parameter λ and an auxiliary input
x. In the absence of auxiliary information, genR′ reduces to the standard sampling algorithm for
hard relations. We impose the usual requirements of decidability and hardness, ensuring that these
properties hold even when an adversary provides auxiliary information. More formally:

Definition 18 (Hard Relation with Auxiliary Information). Let R ⊆ DS×DW with statement/witness
pairs (s, w) ∈ DS × DW be a relation and let the language LR ⊆ DS associated to this relation R
be defined as LR := {s ∈ DS |∃ w ∈ DW s.t. (s, w) ∈ R}. We say that R is a hard relation with
auxiliary input if:

Sampling (s, w)← genR′(λ, x). There exists a PPT sampling algorithm genR(λ) that on input the

security parameter λ and auxiliary input x ∈ {0, 1}λ outputs a pair (s, w) ∈ R.
Decidability R(s, w). The relation R(s, w) is poly-time decidable.

Hardness. An efficiently sampable and decidable relation R is hard, if for all PPT adversaries A,
the following probability is negligible:

Pr[R(s, w∗) = 1 |x∗ ← A(λ); (s, w)← genR(λ, x∗);w∗ ← A(s, x∗)] ≤ negl(λ),

where the probability is taken over the random choice of genR and A.

37

A.2 Adaptor Signatures

We begin by recalling the definition of (standard) adaptor signatures [Erw+21; Aum+21]. An
adaptor signature scheme, defined for a hard relation R and signature scheme Σ, consists of four
algorithms. The pre-signing algorithm links a statement s from R and a message msg to a publicly
verifiable pre-signature σ̃. It ensures that anyone with the correct witness w can convert σ̃ to a full
signature σ using the Adapt method. In addition, possession of σ and σ̃ allows efficient extraction
of the witness w using the Extract algorithm.

Definition 19 (Adaptor Signature). An adaptor signature scheme w.r.t. a hard relation R
and a signature scheme Σ = (KGen, Sign,Vrfy) consists of a tuple of four algorithms ASR,Σ =
(pSign,Adapt, pVrfy,Extract) defined as:

σ̃ ← pSign(sk,m, s). The pre-signing algorithm is a PPT algorithm that on input a secret key sk,

message m ∈ {0, 1}lm and statement s ∈ LR, outputs a pre-signature σ̃.

b← pVrfy(pk,m, s, σ̃). The pre-verification algorithm is a DPT algorithm that on input a public

key pk, message m ∈ {0, 1}lm, statement s ∈ LR and pre-signature σ̃, outputs a bit b.

σ ← Adapt(pk, σ̃, w). The adapting algorithm is a PPT algorithm that on input a pre-signature σ̃
and witness w for the statement s ∈ LR outputs an adapted signature σ.

w ← Extract(pk, σ̃, σ, s). The extracting algorithm is a DPT algorithm that on input a pre-signature
σ̃, signature σ and statement s ∈ LR, outputs a witness w such that (s, w) ∈ R, or ⊥.

Definition 20 (Pre-signature correctness). An adaptor signature ASR,Σ satisfies pre-signature
correctness, if for all λ ∈ N and m ∈ {0, 1}lm:

Pr

pVrfy(pk,m, s, σ̃) = 1 ∧
Vrfy(pk,m, σ) = 1 ∧

(s, w′) ∈ R

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← KGen(1λ),
(s, w)← genR(1λ),
σ̃ ← pSign(sk,m, s)
σ := Adapt(pk, σ̃, w),
w′ := Extract(pk, σ̃, σ, s)

 = 1.

For the security properties of adaptor signatures, we refer to [Ger+24b].

A.3 Threshold Signatures

Threshold signatures are a type of ’t-out-of-n’ signature: They require a key generation process that
involves n participants, and after this, any subset of t members (where n and t are predetermined
parameters set during the initial key generation) can collaboratively generate a valid signature under
a collective public key. This public key represents the entire group of n participants. Furthermore,
unforgeability guarantees that even a group of up to t−1 malicious signers cannot produce a forged
signature.

Definition 21 (Threshold Signature Scheme [Dam+21; Lin17]). A threshold signature scheme
TS = (Setup,KeyGen, Sign,Verify) consists of algorithms and protocols as follows:

par ← Setup(n, t): The setup algorithm Setup takes as input the number n of signers and the
signing threshold t, and outputs public parameters par. From now on, par is an implicit input to
all subsequent algorithms.

38

(pk, {sk1, . . . , skn})← KeyGen(par): The key generation algorithm KeyGen takes as input the public
parameters par and outputs a combined public key pk, and a signing key share ski for each signer
Si.
σ ← ⟨Sign(ski,m)⟩: The signing protocol Sign is an interactive algorithm of which an instance is
run by each signer S1, . . . ,Sn concurrently. Concretely, signer, Si runs Signi, which takes as input
a secret key share ski, and a message m. At the end of the protocol, Si obtains a signature σ as
output.

b← Verify(pk,m, σ): The verification algorithm takes as input a public key pk, a message m, and
a signature σ. It outputs a boolean b, where b = true means that the signature is valid and false
that it is invalid.

Correctness. A threshold signature scheme is correct if for all λ, t ≤ ninN, all messages m ∈
{0, 1}∗, for all keys (pk, {sk1, . . . , skn})← KeyGen(par), each hon ⊂ {1, . . . , n} with |hon| ≥ t, each
output of the signing protocol also verifies, i.e.,

Vrfy(pk,m, ⟨{Sign(ski,m)}i∈hon⟩) = 1.

Construction 3 (Sparkle Schnorr Threshold Signature [CKM23]). We construct the sparkle Schnorr
threshold signature scheme using the algorithms Setup,KGen, Sign0, Sign1,Sign2,Combine,Vrfy, which
we provide in Figure 12.

A.4 Non-Interactive Zero-Knowledge Proofs

Let R : b← {0, 1}∗×{0, 1}∗ be a NP-witness-relation with NP-language LR := {x | ∃w : R(x,w) =
1}. A non-interactive zero-knowledge proof (NIZK) system [DMP88; Fis05] for the relation R
consists of the three efficient algorithms crs←$ Setup(1λ), π ←$ P(crs, x, w), and b← V(crs, x, π).
The setup algorithm inputs the security parameter and returns a common reference string. The
prove algorithm takes as input crs and a statement x with a witness w and generates a proof π.
The verify algorithm takes as input crs, x, and π and returns b = 1 if the proof is valid and b = 0
otherwise. We use a NIZK system that is:

• complete, requiring that for every x ∈ L, P generates proofs that V accepts Pr[V(crs, x, π) =
1|crs←$ Setup(1λ), π ←$ P(crs, x, w)] ≥ 1− negl(λ)∀x ∈ L,

• sound, meaning that for every x /∈ L, it is hard for an adversary to generate proofs that V
accepts Pr[V(crs, x, π) = 1|crs←$ Setup(1λ), π ←$ P(crs, x, w)] ≤ negl(λ)∀x /∈ L,,

• simulation sound [Sah99], meaning that the system is sound even after the adversary has seen
simulated proofs of its choice, and

• zero-knowledge, ensuring that the verifier learns nothing beyond the validity of the statement
x This property is proved by constructing a simulator Sim that computes proofs without
knowing the witness (but with some trapdoors) that are indistinguishable from “real” proofs.∣∣∣Pr[ASim(crs,x) = 1

]
− Pr

[
AV(crs,x,w) = 1

]∣∣∣ ≤ negl(λ).

For formal security definitions, we refer the reader to [DMP88; Fis05].

39

Setup(1λ)

1 : (G, p, g)← GenG(λ)

2 : Hcm,HSign : {0, 1}∗ → Zp

3 : par ← (G, p, g,Hcm,HSign)

4 : return par

KGen(par)

1 : sk←$ Zp; pk← gsk

2 : {sk1, . . . , skn} ← SShare(sk, t, n)

3 : return (pk, {sk1, . . . , skn})

Combine({ρ′i, ρ′′i }i∈S)
1 : parse Ri ← ρ′i, zi ← ρ′′i ∀i ∈ S

2 : R̃←
∏
i∈S

Ri; z ←
∑
i∈S

zi

3 : σ̃ ← (R̃ · s, z)
4 : return σ̃

Vrfy(pk,m, σ̃)

1 : parse σ as (R̃, z)

2 : h← HSign(pk,m, R̃)

3 : return R̃ · pkh = gz

Sign0(i,m,S)
1 : ri ←$ Zp;Ri ← gri

2 : cmi ← Hcm(m,S, Ri)

3 : ρi ← cmi

4 : sti ← (ρi, Ri, ri,m,S)
5 : return (ρi, sti)

Sign1(sti, {ρi}i∈S ,S)
1 : parse ρi as cmi ∀i ∈ S
2 : parse sti as (ρi, Ri, ri,m,S)
3 : return ⊥if cmi /∈ {cmi}i∈S

4 : ρ′i ← Ri

5 : sti ← (ρi, Ri, ri,m,S, {ρi}i∈S)

6 : return (ρ′i, sti)

Sign2(sti, ski, {ρ′i}i∈S ,S)
1 : // Sign2 must be called once per sti

2 : parse sti as (ρi, Ri, ri,m,S, {ρi}i∈S)

3 : parse ρ′i as Ri ∀i ∈ S
4 : return ⊥if Rk /∈ {Ri}i∈S

5 : for i ∈ S do

6 : return ⊥if cmi ̸= Hcm(m,S, Ri)

7 : R̃←
∏
i∈S

Ri

8 : h← HSign(pk,m, R̃)

9 : zi ← ri + hλiski
10 : // λi is the Lagrange coefficient for i w.r.t. S

11 : ρ′′i ← zi

12 : return ρ′′i

Figure 12: Algorithms of Sparkle [CKM23].

A.5 (Verifiable) Public Key Encryption Schemes

We recite the definition of a public key encryption scheme.

Definition 22 (Public-Key Encryption Scheme [KL14]). A public-key encryption scheme Π =
(KGen,Enc, dec) consists of three PPT algorithms

(sk, pk)← KGen(1λ): The key generation algorithm outputs a pair (sk, pk). We refer to the first of
these as the private key and the second as the public key.

c← Enc(pk,m): The encryption algorithm takes as input a public-key pk and a plaintext message
m and outputs a ciphertext c.

40

m =: Dec(sk, c): The decryption algorithm takes as input a private-key sk and a ciphertext c and
outputs some plaintext m.

We say a public key encryption scheme Π verifiably [CD00] encrypts a message m ∈ Zp w.r.t. a
group G of order p (p is a prime), if the final ciphertext consists of the ciphertext c of the encryption
scheme, a statement M = gm and a NIZK, which proves that c arises by encrypting the value m,
which corresponds to the statement M . If we want to use such a generic verifiable encryption, we
use the canonical algorithms VPKE.Enc,VPKE.Vrfy to denote encryption and canonical ciphertext
verification.

We say a public key encryption scheme Π verifiably encrypts [CD00] a messagem within a group
G of prime order p if its output includes the encrypted message c, a statement M = gm, and a
Non-Interactive Zero-Knowledge (NIZK) proof. This proof ensures that c encrypts the message m,
aligning with the statement M . We write VPKE.Enc for encryption and VPKE.Vrfy for ciphertext
verification.

B Additional Proofs

In this section, we provide deferred proofs for threshold adaptor signatures, multi-party fair ex-
change protocols, and certified witness encryption.

B.1 Proofs for Threshold Adaptor Signatures

Lemma 3 (Unique Extractability). Let TASSparkle,R be defined as in Construction 1. Then TASSparkle,R
achieves extractability in the random oracle model.

Proof of Lemma 3. To prove the unique extractability of Construction 1, we show that it is impos-
sible to construct two distinct signatures, which both extract with the same pre-signature into a
valid witness. The first observation of this impossibility is that sparkle is defined w.r.t. a bijective
hard relation. I.e., each statement s corresponds to exactly one single witness s. Therefore, if there
exist two distinct signatures σ = (σ1, σ2) ̸= σ′ = (σ′

1, σ
′
2) that both extract with a pre-signature

σ̃ = (σ̃1, σ̃2), then it holds, that :

σ2 − σ̃2 = w = σ′
2 − σ̃2,

which implies that σ2 = σ′
2. But if σ2 = σ′

2, then also σ1 = σ′
1, as the relation is bijective,

and the random oracle model is collision-free. This implies that the winning condition of unique
extractability cannot be met for Construction 1.

Lemma 4 (Unlinkability). Let TASSparkle,R be defined as in Construction 1. Then TASSparkle,R
achieves unlinkability.

Proof. To show the unlinkability of Construction 1, we show that adapted pre-signatures, even in
the presence of t− 1 malicious signers, are identically distributed over ordinary signatures. Hence,
no adversary can distinguish them. An adapted pre-signature for the statement-witness pair (s, w)

41

has the form (R · s, r + y + sk · h) and an ordinary signature has the form (R′, r′ + sk · h′). Both
Construction 1 and Sparkle have an initial commit round pSign0, which guarantees that the final
randomness r is used so the sign is uniformly distributed. If r is a uniformly random element, then
so is r + w for all w. Therefore, the distributions are equal, which implies that no adversary can
distinguish adapted pre-signatures from ordinary signatures.

Lemma 5 (Pre-Signature Adaptability). Let TASSparkle,R be defined as in Construction 1. Then
TASSparkle,R achieves pre-signature adaptability.

Proof. A Schnorr signature σ = (R, z) = (gr, sk ·h+r) with h = H(pk, R,m) verifies, if pkh ·R = gz.
A pre-signature σ̃ = (R ·s, z) = (gr, sk ·h+r) with h = H(pk, R ·s,m) of Construction 1 pre-verifies,
if pkh ·R · s = gz · Y . Therefore, each adapted pre-signature (i.e., (R · s, z +w)) verifies if and only
if it pre-verifies as pre-signature since gz · s = gz+w.

Lemma 6 (Computational Pre-Verify Soundness). Let TASSparkle,R be defined as in Construction 1.
Then TASSparkle,R achieves pre-verify soundness.

Proof. Since the DLog relation is bijective; each element in the domain of the statements is also in
the language of the relation. If a statement s is not in this domain, the multiplications gz · s and
gz · w fail. Therefore, Construction 1 achieves computational pre-verify soundness.

B.2 Proofs for MPFE

Lemma 7 (Seller Fairness). Let R be a hard relation for the DLog language in the group G,
and let TAS be the secure Schnorr threshold adaptor signature scheme defined in Construction 1.
Then,Construction 1 achieves tS-seller fairness if at least tS honest sellers participate in the protocol
in the presence of a minimal blockchain with timing and in the random oracle model.

Proof of Lemma 7. To prove the seller fairness of Construction 1, we assume, towards contradiction,
that there exists an efficient adversary A breaking the seller fairness. This means the adversary has
to produce at least a single challenge witness, for which at least one honest seller is not compensated,
or at least a single honest seller has fewer funds after the protocol execution than before. In our
protocol, the buyer locks the input transaction for the fair exchange for a sufficient time. This
means, that when a single honest seller receives the pre-signature and the blinded witness in time,
such a seller can claim the payment. Since we assume tS honest sellers participate in the selling
protocol, and all honest sellers share their blinded witness share upon receiving the pre-signature,
there will be at least a single honest seller who can combine the full blinded witness before the
time-lock expires. This seller can then adapt the pre-signature. By the pre-signature adaptability
and pre-verify soundness of the threshold adaptor signature scheme, this adapted pre-signature is
valid w.r.t. pkB. Since the coins are locked, the honest seller can post the adapted pre-signature
on-chain. This means, the sellers can successfully claim the payment. Hence, we are always in
a situation where all honest sellers are paid. Since no seller authorizes a payment, the second
winning condition cannot be triggered. In addition, since the witness is information-theoretically
hidden from the adversary, the adversary cannot learn the witness when no coin has been locked
before.

42

Lemma 8 (Witness Privacy). Let R be a hard relation for the DLog language in the group G whose
witness is shared using Shamir secret sharing. Let ΠEnc be a CPA secure public key encryption
scheme. Then, Construction 1 achieves witness privacy for any tS ≤ nS in the random oracle
model.

Proof of Lemma 8. To prove the witness privacy of Construction 1, we assume, towards a contra-
diction, that there exists an efficient adversary A that is capable of winning the WitPriv game with
non-negligible probability. To win this game, A has to output a challenge witness, from which it
knows tS−1 shares. Since the Shamir secret sharing is information-theoretically secure, A can only
break the WitPriv game by learning the witness share of at least one honest seller. The honest sellers
follow the construction Construction 1, and hence, only forward blinded witness-shares wi + ei to
A. Since ei is random (it is output by a random oracle and A does not know the random key k),
the witness share is information-theoretically hidden from A, as long as it does not know ei. The
adversary has three attack vectors to learn ei. First, the adversary knows the statement Ei = gei .
Second, the adversary knows the CPA-secure encryption of ei w.r.t. the honest seller’s encryption
key. Third, the adversary knows tS − 1 computations of ei. We now build a series of game hops
that show that the adversary’s capabilities of winning the WitPriv game are negligible.

Game G0: The initial game G0 equals the WitPriv game and it holds that Pr[WitPriv(λ) = 1] =
Pr[G0(λ) = 1].

Game G1: In the first game, we replace each honest signer’s partial blinding factor ej , which is
encrypted using the CPA secure encryption scheme by a random value in each public state that is
forwarded to the adversary.

Claim 3. The games G0 and game G1 have a negligible transition of Pr[G0(λ) = 1] ≤ Pr[G1(λ) = 1]+
negl1(λ) due to the CPA security of the encryption scheme.

Proof. The proof of this claim equals the CPA security game-hop proof of Lemma 7.

In the situation of game G1, the adversary has no knowledge of the random element ei. Therefore,
the honest witness share wi is information-theoretically hidden from A. The winning probability
of A in winning the game G1 is exactly as in breaking the hardness of the relation R. The winning
probability of A when brute-forcing the key k is also negligible since the value ei is computed by a
random oracle and the key k is chosen uniformly from an exponential space. Therefore, no efficient
adversary against the witness privacy of Construction 1 exists.

B.3 Proofs for Certified Witness Encryption

Lemma 9. The Schnorr CWE scheme in Construction 2 is correct.

Proof. To verify correctness of Construction 2, we have to check, that for all messages m and
statement-witness pairs ((vk,m,R), (R, z)) ∈ R, with vk = gsk and R = gr it holds that m =

43

DecCWE(w,EncCWE(ek,m)). If σ = (R, z) is a valid signature w.r.t. (vk,m) it holds that vkh ·R = gz

for h = H(vk||R||m). Therefore, we have that for all (c1, c2) output by EncCWE, that

c2
cz1

=
eky ·m
gy·z

=
g(sk·h+r)·y ·m
gy·(sk·h+r)

= m.

Henceforth, Construction 2 is correct.

Proof of Theorem 2. By contradiction, we assume that there exists an adversary A that breaks the
CPA security of ΠCWE with non-negligible probability. We use this adversary to build a reduction
from the CPA security of ΠCWE to the hardness of DDH. The reduction R gets as input the
values ([α], [β], [γ]), such that γ is either a random value or α · β. The reduction forwards [α] as
verification key to A, which eventually outputs three messages (mi,m1,m). R samples a fresh
randomness, commitment pair (R, r) ← genR(1λ) and computes the challenge ciphertext on the
challenge message mb via

cb ← ([β], [β]r · [γ]h ·mb).

The reduction forwards cb to A, which eventually outputs a bit b′ and R returns b′ == b.

Claim 4. If γ ̸= α · β, then A wins with probability at most 1/2.

Proof. If γ ̸= α · β, then γ is a random element in Zp. Thus, the challenge ciphertext cb is also a
random element in Zp (as H is a non-zero function) and is independent of the challenge message
mb. So, the claim follows.

Claim 5. If γ = α · β, then A wins with non-negligible advantage ε.

Proof. If γ = α · β, then the ciphertext is exactly constructed as the adversary expects it to be:

c := ([β], [β]r · [γ]h ·mb) = ([β], [β · r + α · β · h] ·mb)

= ([β], [β · (r + α · h)] ·mb).

As we assume by contradiction that A breaks the CPA security of the encryption scheme with
non-negligible probability, this probability carries over if γ = α · β.

With the standard argument for the CPA security of the original Elgamal encryption, it holds
that ∣∣Pr[DDH0

A(λ) = 1
]
− Pr

[
DDH1

A(λ) = 1
]∣∣ ≥∣∣Pr[CPA1

A(λ) = 1
]
− Pr

[
CPA0

A(λ) = 1
]∣∣ ≥∣∣∣∣12 + ε− 1

2

∣∣∣∣ ≥ ε.

This contradicts the hardness of DDH; thus, no efficient adversary against the CPA security of
Construction 2 can exist.

44

Adapt(pk, σ̃, w)

1 : parse σ̃ as (σ̃1, σ̃2)

2 : return (σ̃1, σ̃2 + w)

Extract(pk, σ̃, σ, w)

1 : parse σ̃ as (σ̃1, σ̃2)

2 : parse σ as (σ1, σ2)

3 : return (σ2 − σ̃2)

pVrfy(pk,m, s, σ̃)

1 : parse σ̃ as (R̃ · s, z)

2 : h← HSign(pk,m, R̃ · s)

3 : return R̃ · pkh = gz · s

Combine({ρ′i, ρ′′i }i∈S)
parse ρ′i, zi ← ρ′′i as Ri ∀i ∈ S

R̃←
∏
i∈S

Ri; z ←
∑
i∈S

zi

σ̃ ← (R̃ · s, z)
return σ̃

Figure 13: The algorithms Adapt,Extract, pVrfy, and Combine

C Threshold Adaptor Sigantures

We provide the missing algorithms for threshold adaptor signatures in Figure 13.

D A Framework for CWE

A detailed examination of the DDH-based construction described in Sec. 5 identifies certain prop-
erties that are essential for developing a highly efficient CWE. In this section, we will abstract
these properties with the goal of constructing CPA-secure CWE for a large class of signatures. We
refer to this class of signatures as ”certificate-extractable” signatures and provide a construction
that leverages the properties of certificate-extractable signatures into a CWE scheme. Our general-
ization is general enough to encompass constructions that are secure under the CDH assumption,
which is of particular interest in the context of bilinear-pairing friendly groups. As for concrete
instances, we show that our framework is compatible with the Schnorr [Sch91], the BBS+ [BBS04]
the Camenisch-Lysyanskaya (CL) [CL03], (Waters+) [BSW06], and Katz-Wang [KW03] signature
schemes.

In light of our warmup example, three principal properties inherent to the signature scheme
are necessary for the construction of a secure CWE scheme. First, it is necessary to establish a
methodology for the computation of an encryption key derived from the tuple (vk, m, and R)
and a decryption key derived from the corresponding signature (σ). This property is referred to
as certifiability. Secondly, it is necessary that there are not exponentially many signatures that
can serve as a decryption key; instead, only the signature generated with the correct randomness
can be used. Therefore, it is essential that we can extract the commitment, denoted as commit-
ment extractability, from a signature. More formally, we define certificate-extractable signatures as
follows.

Definition 23 (Certificate-Extractable Signature). Let Σ = (KGen,Sign,Vrfy) be a randomized
signature scheme with randomness space Zp. We denote R as the commitment of a signature’s

45

randomness, vk as a verification key from the signature schemes keyspace, and m a message from
the message space. We say Σ is certificate extractable if the following conditions hold.

Certifiability: There exist deterministic functions PrivC and PubC. The function PrivC extracts a
certificate from a signature (i.e., c← PrivC(σ)). The function PubC computes a commitment to a
signatures certificate using public inputs (i.e., C ← PubC(vk,m,R)).

One-Wayness: It holds, that PubC(vk,m,R) = [PrivC(σ)].

Commitment Extractability: There exists an efficient algorithm ExtR that on input a signature σ
and a verification key vk outputs a commitment R to the signature’s randomness.

CWE for Certificate-Extractable Signatures. The use of certificate-extractable signatures
necessitates the definition of a language for an underlying hard relation that ensures that not every
valid signature on a message can be decrypted, but only those signatures that are based on the
correct randomness. To construct such a language, we generalize the language from the Schnorr
setting and utilize the commitment extractability of the certificate-extractable signature scheme.
More formally, we define a statement of LR as a tuple of the verification key vk, message m, and
commitment to a randomness R and a witness a valid signature w.r.t. (vk,m) which extracts the
commitment R leading to the language

LR := {((vk,m,R), σ) s.t. Vrfy(vk, σ,m) = 1 ∧ ExtR(σ) = R}.

Using this language, we now define the CWE scheme for certificate-extractable signatures.

Construction 4 (CWE for CE Signatures). Let G be a group of prime order p. Let H be a function
mapping into G. We define the CWE scheme ΠCWE = (KGCWE,EncCWE,DecCWE) for certificate
extractable signatures w.r.t. (G, p) in Figure 14.

KGCWE(vk,m,R)

1 : ek← PubC(vk,m,R)

2 : return ek

DecCWE(σ, c)

1 : parse c as (c1, c2)

2 : dk← PrivC(σ)

3 : return c2/
(
H(cdk1)

)
EncCWE(ek,m)

1 : a←$ Zp

2 : h← H(eka) ·m
3 : return ([a], h)

Figure 14: CWE encryption for certificate-extractable signatures.

CWE from DH. In this section, we show the CPA security of Construction 4 based on the decisional
Diffie-Hellman (DDH) and the computational Diffie-Hellman (CDH) assumptions.

Looking ahead to the proof of the CPA security of Construction 4 w.r.t. the DDH/CDH
assumptions, we first formalize a property that the signature scheme needs to achieve for our proof
to simulate the challenge ciphertexts properly. We refer to this property as DH simulatability. On
a high level, DH simulatability guarantees, that given a DH tuple [α], [β], our reduction can come
up with a verification key vk, a random commitment R, such that for any message m, our reduction
can simulate the value [δ] = Cα for C ← PubC(vk,m,R) using the factors [α], [β]. Looking ahead,
this will allow us to reduce the security of our reduction to both the CDH and the DDH assumption.

Definition 24 (DH Simulatability). We say a certificate-extractable signature scheme Σ is DH-
simulatable, if for any β ←$ Zp, there exists an algorithm SimDDH, that on input [β] outputs a set

46

(vk, R, x0, x1), such that vk is in the domain of Σ’s verification keys, R = OWF(r) is a commitment
to a signatures randomness r, x0, x1 ∈ Zp, and x0 ̸= 0. In addition, for all m in the message space,
the value C ← PubC(vk,m,R) can be expressed via C = x0[β] + x1.

If C = [c] can be represented via x0[β] + x1, we can build the value [α · c] via [α · c] =
[α(x0β + x1)] = x0[αβ] + x1[α]. Thus, if we are able to find [α · c], we can compute [αβ] via

[α · β] = [α·c]−x1[α]
x0

solving the CDH instance. In addition, given a DDH triple ([α], [β], [γ]), we
can express [α · c] by non-trivially using [γ], allowing us to reduce the CPA security of CWE to
DDH. Using DH simulatability, we now state the CPA security of Construction 4 based on both
DDH and CDH for DH-simulatable certificate-extractable signature schemes. We defer the proof
to Appendix B.3. In addition, we defer the proof of CWE from DDH, and instantiations of our
framework to Appendix D.

Theorem 6 (CPA Secure CWE from DDH). Let Σ be a certificate-extractable signature scheme
with DH-simulatability w.r.t. a one-way function OWF. If the decisional Diffie-Hellman (DDH)
assumption is hard in G w.r.t. OWF, and H is the identity in G, then the CWE construction in
Figure 14 is a CPA secure CWE scheme.

Theorem 7 (CPA Secure CWE from CDH). Let Σ be a certificate-extractable signature scheme
w.r.t. a one-way function OWF. If the CDH assumption is hard in G w.r.t. OWF, and H modeled
as a random oracle, then the CWE construction in Figure 14 is a CPA secure CWE scheme.

Lemma 10. The CWE scheme in Construction 4 is correct.

Proof. To verify correctness of Construction 4, we have to check, that for all messages m,m′, verifi-
cation keys vk, and certificate pairs C ← PubC(vk, R,m), c← PrivC(σ), where σ is a valid signature
w.r.t. (m′, R, vk) it holds that m = DecCWE(c,EncCWE(C,m)). By the certificate extractability of
the signature scheme, we have that C = c; hence, we have

c2
cc1

=
H([c · y]) ·m
H([c · y])

= m.

Henceforth, Construction 4 is correct.

Proof of Theorem 6. This proof primarily follows the proof of Theorem 2, with the main difference
being the need to incorporate DH simulatability and certificate-extractability as abstract concepts,
both provided by Schnorr signatures. Assume, for contradiction, that there exists an adversary
A that can break the CPA security of ΠCWE with a non-negligible probability. We will use this
adversary to build a reduction from the CPA security of ΠCWE to the hardness of DDH. The
reduction R receives the values ([α], [β], [γ]), where γ is either a random value or α · β. The
reduction runs SimDDH([β]) to obtain the values (vk, R, x0, x1), such that C = x0[β] + x1. The
reduction then forwards the key vk to A, which eventually outputs three messages (m0,m1,m).
The reduction computes the challenge ciphertext for the challenge message mb as follows:

cb ← ([α],H(x0 · [γ] + x1[α]) ·mb).

Note that in Theorem 6, the hash function is the identity, so this computation matches the con-
struction. Furthermore, by the DH simulatability, the value x0 · [γ] + x1[α] equals [α · c]. The
reduction forwards cb to A, which eventually outputs a bit b′, and R returns b′ == b.

47

Claim 6. If γ ̸= α · β, then A wins with probability at most 1/2.

Proof. If γ ̸= α · β, then γ is a random element in Zp. Thus, the challenge ciphertext cb is also a
random element in Zp, since x0 ̸= 0 and is independent of the challenge message mb. So, the claim
follows.

Claim 7. If γ = α · β, then A wins with non-negligible advantage ε.

Proof. If γ = α · β, then the ciphertext is exactly constructed as the adversary expects it to be.
As we assume by contradiction that A breaks the CPA security of the encryption scheme with
non-negligible probability, this probability carries over if γ = α · β.

With the standard argument for the CPA security of the original Elgamal encryption, it holds
that ∣∣Pr[DDH0

A(λ) = 1
]
− Pr

[
DDH1

A(λ) = 1
]∣∣ ≥∣∣Pr[CPA1

A(λ) = 1
]
− Pr

[
CPA0

A(λ) = 1
]∣∣ ≥∣∣∣∣12 + ε− 1

2

∣∣∣∣ ≥ ε.

This contradicts the hardness of DDH; thus, no efficient adversary against the CPA security of
Construction 4 can exist.

Proof of Theorem 7. To prove Theorem 7, we assume via contradiction, that there exists an adver-
sary against the CPA security of Construction 4 and build a reduction that leverages the capabilities
of this adversary to compute a solution for a CDH instance. As input, the reduction gets a CDH-
pair [α], [β]. Following the proof of Theorem 6, the reduction uses the SimDDH algorithm to obtain
values (vk, R, x0, x1), such that C = x0[β]+x1. The reduction then forwards the key vk to A, which
eventually outputs three messages (m0,m1,m). The reduction computes the challenge ciphertext
for the challenge message mb as follows by sampling a random value h←$ G and outputting

cb ← ([α], h ·mb).

Since the value h is randomly sampled and the RO models a truly random function, the adver-
sary can only distinguish the message encrypted in the challenge ciphertext with a higher probability
than guessing if it queries [α · c] = [α(x0β + x1)] = x0[αβ] + x1[α] at least once to the random
oracle. To catch the respective query, the reduction guesses the occurrence of this query amongst
all random oracle calls and aborts the simulation by outputting the element

h1 − x1[α]

x0
,

where h1 is the respective query. If the guess is correct, the simulator successfully returns [α · β],
since the DH simulatability holds. Hence, the simulator outputs a valid solution for the CDH
problem. The probability that the guess is correct is polynomially bounded since the adversary can
only make polynomially many RO queries. Thus, there cannot be an efficient adversary against
the CPA security of Construction 4.

48

Instances. We now demonstrate that the BBS [BBS04] signature scheme complies with The-
orem 7. Thus, we have CPA-secure CWE encryptions for BBS+. We defer the examples of the
other signature schemes to Appendix B.3. We show in this section that the BBS+ signature is
a certificate-extractable signature scheme. Since the BBS+ is defined w.r.t. a group capable of
bilinear pairings, we show that the BBS+ signature satisfies the requirements of Theorem 7, i.e.,
BBS+ is DH simulatable and lives in a CDH-hard group.

Lemma 11 (BBS+ is CE). The BBS+ signature scheme is a certificate-extractable DH simulatable
signature scheme.

Proof. A BBS+ signature has the form (A, e, r), where r ←$ Zp. We define R as gr1 where g1 is part
of the verification key. To show certifiability, we define PubC(vk,m,R) := R and PRIV(A, e, r) := r.
Having available a signature (A, e, r) and a verification key vk, we define ExtR(vk, (A, e, r)) := gr1,
which is well-defined, since g1 is part of the verification key. Moreover, it holds that R = [r], so one-
wayness holds. So, BBS+ is a certificate-extractable signature scheme. To show DH simulatability,
we define SimDDH via SimDDH([β]) := (vk ←$ G, [β], [1], [0]).This way, for all m in the message
space, [α · c] can truly be expressed via [α · c] = [α · r] = [α · β].

Since the security of the BBS+ signature scheme is based on q-SDH [BBS04], which follows
from CDH, all the assumptions of Theorem 7 are satisfied, and Construction 4 is a CPA secure
CWE scheme for BBS+.

D.1 Certificate Extractable Signature Schemes

In this section, we show that Schnorr [Sch91], the Camenisch-Lysyanskaya (CL) [CL03], (Wa-
ters+) [BSW06], and Katz-Wang [KW03] signature schemes are certificate extractable signature
schemes which are DH simulatable.

CL Signatures. CL signatures are defined w.r.t. the quadratic residues modulo n QRn. A public
key of a CL signature has the form vk = a, b, c, n, and a signature of the CL signature scheme
consists of the elements (v, e, r), where ve ≡ am · br · c mod n.

Lemma 12. The CL signature scheme [CL03] is a certificate-extractable DH simulatable signature
scheme.

Proof. We defineR := br, which is extractable from a signature (v, e, r). We define PubC(vk,m,R) :=
R and PrivC(v, e, r) := r, such that it holds C = R = [r] = [c]. To show DH-simulatability, we set
SimDDH([β]) = (vk, [β], 1, 0), where vk is a normally crafted encryption key, and b has the same
basis as β.

Waters+ Signatures. The Waters+ signature arises by the waters signature if one applies the
BSW transformation [BSW06] to the waters signature [Wat05]. We defer a formal description of
the BSW compiler to [BSW06], since we only rely on the fact, that BSW compiled signatures have
the randomness in plain, and use a commitment to this randomness in the signature.

Lemma 13. The Waters+ signature scheme [BSW06] is a certificate-extractable DH simulatable
signature scheme.

49

Proof. The structure of CL signatures and BSW compiled signatures is similar, i.e. the signatures
consist of three elements (σ1, σ2, r), where a random commitment [r] is used to compute σ1. Hence,
we follow the proof of CL and set C = R = [r] and c = r, which shows all needed properties.

Katz-Wang Signatures. A signature of the Katz-Wang signature scheme [KW03] consists of
the three elements (A,B, z), for some r ←$ Zp, and random group elements g, h ∈ G ⊂ vk,
A = gr, B = hr, and z = H(vk, A,B,m) · sk+ r. The security of the Katz-Wang signature scheme
is based on the hardness of DDH in G.

Lemma 14. The Katz-Wang signature scheme [KW03] is a certificate-extractable DH simulatable
signature scheme.

Proof. To show the certificate-extractability, we define R := A, PubC(vk, R,m) := A · vkH(vk,A,B,m),
and PrivC(A,B, z) := z. It holds, that C = [z] = [c]. Moreover, R = A can be recovered from a
signature σ. The Katz-Wang signature scheme is DH simulatable when defining SimDDH([β]) =
([β], [r], h, r) for a random r ←$ Zp, and a random h. For DDH simulatability to hold, we have to
program the RO such that H(vk, A,B,m) = h.

Schnorr Signatures. We have already introduced Schnorr signatures since a combined Sparkle
signature verifies as a Schnorr signature. Moreover, we have implicitly shown in our warm-up
section that Schnorr signatures are certificate-extractable and DH-simulatable. For a more formal
treatment, we refer to the paragraph of the Katz-Wang signatures, which imply the DH simulat-
ablity and certificate-extractrability of Schnorr.

E Impossibility Result

In this section,we formally prove our impossibility result. We begin by introducing auxiliary lemmas
and definitions.

Lemma 15 (Extractability). Let ΠMPFE be a multi-party fair-exchange protocol of a coin for a
witness w that achieves buyer fairness. Let C∗ be the blockchain state, in which the first signature
σB signed by the buyers w.r.t. a transaction from the buyers is contained and yields into a valid
payment from the buyers. This blockchain state allows each buyer to locally extract the witness w.

Proof. We prove this lemma using proof via contradiction and show how the buyer fairness breaks
for ΠMPFE if the lemma does not hold. We assume, via contradiction, that C∗ contains a valid
payment from the buyer, but the buyer cannot learn the witness using its internal state and C∗. If
the buyer cannot extract the witness using C∗, we define the following adversary: The adversary
interacts with the buyer in the protocol and corrupts all sellers. At this point, where the signature
σB is posted on the chain, the adversary aborts all communication and aborts the protocol. Then,
the buyer cannot extract the witness, since there is no further message from any seller. In addition,
the buyer paid the sellers some amount, since this is the signature σB. Therefore, our adversary
breaks buyer fairness.

Definition 25 (Final Chain). We call the blockchain state of Lemma 15 that allows the buyers to
extract the witness final blockchain state C∗.

50

Lemma 16 (Last Message). Let ΠMPFE be a multi-party fair-exchange protocol of a coin for a
witness w that achieves seller fairness. There exists a message m∗, which we call final message.
When a party receives the final message, then this party is able to compute and post the final
signature σB conveying the blockchain into the final blockchain state C∗. The first final message
is received by a seller, and before this seller receives the final message, no party can compute the
signature σB.

Proof. We show, that this lemma must hold if seller fairness holds. We assume a single corrupted
buyer for simplicity. The last message must exist since otherwise the malicious buyer could compute
this signature on its own but not post it. This implies by Lemma 15, that the malicious buyer
can use the signature σB and the blockchain state right before posting σB to extract the witness
w locally. This breaks seller fairness, since the buyer does not pay any seller and yet learns the
witness w. Hence, such a last message must exist. In addition, this implies that the recipient of the
final message must be a seller. Otherwise, the above attack again breaks seller fairness.

Proof of Theorem 4. We prove this theorem by providing an adversary that breaks seller fairness
with non-negligible probability if it can corrupt tS − 1 sellers (and also all buyers by definition of
seller fairness).

To start the attack, the adversary corrupts all buyers and a random majority of sellers. Even-
tually, the last message is sent to one seller (c.f. Lemma 16). If the receiving seller is not a
corrupted one, the adversary aborts. This happens with probability nS−tS+1

nS
. If the adversary does

not abort, the adversary learns the final message in this round and can compute the final signature
(by definition of the last message). Knowing both the final signature and the internal state of
each buyer (this is the case since the adversary controls all buyers), the adversary can extract the
witness locally (Lemma 15). To end the round, the adversary invalidates each unspent payment
of the buyer by computing a valid signature w.r.t. the buyer’s signing key (since the corrupted
parties share the state, this is possible) and all possible input transactions controlled by the buyer
and posts this signature on the blockchain invalidating all open input transactions (especially the
inputs of the final signature). After extracting the witness and invalidating each possible payment
from the buyer (the buyer did not post a valid signature on the chain yet since this would be the
final signature, so the buyer still controls all initial input transactions), we have two cases:

1. In the first case, all honest sellers are paid their share of the coin.

2. In the second case, at least one honest seller does not receive a payment with its share of the
coin. This violates seller fairness, as the adversary has extracted a valid witness while not
compensating all honest sellers.

In the following, we show that the case in which the adversary does not break seller fairness (Case 1)
only happens with negligible probability.

Claim 8. The probability that all honest sellers are paid their share of the coin is negligible.

Proof. For this claim, we are in the setting that there is a seller, S∗, that received the last message
but did not post a signature on-chain, which would have triggered a payment of the buyer. At this
point, posting such a signature has become impossible since the buyer has already invalidated all

51

its input transactions. In this case, the protocol has to distinguish whether S∗ is corrupted or not
to attain fairness: If S∗ is corrupted, this seller can collude with the corrupted buyers and learn the
witness (as described above). Then, the remaining sellers would have to spend nS−1/nS coins held
by S∗ to pay all honest sellers. Otherwise, seller fairness breaks, since the adversary can output a
valid witness while at least a single honest seller is not paid. If S∗ is not corrupted, the remaining
sellers must not spend the coins of S∗, since otherwise seller fairness breaks. (The honest S∗ would
have fewer funds after the protocol than before.) To prove this claim, we show that the remaining
(honest) protocol participants cannot distinguish whether the witness leaking S∗ is corrupted or
not. To prove this indistinguishability, we recall the actions of a witness leaking S∗: S∗ follows the
protocol honestly, receives the final message, and continues to follow the protocol honestly. When
S∗ finishes the round, the adversary that controls the network implants the invalidation signature
on-chain, such that even when following the protocol honestly, the final signature does not refer to
a valid transaction on-chain. Since the corrupted S∗ did not deviate from executing the protocol
honestly (despite sharing its internal state with A, which is not detectable by all honest parties),
the actions of this corrupted S∗ cannot be distinguished from the actions of an honest S. Thus, the
claim holds.

Using this claim, we can deduce that the adversary breaks seller fairness with overwhelming
probability if it receives the last message. Still, this happens with non-negligible probability nS−tS+1

nS
.

Therefore, we have shown that no multi-party fair exchange protocol ΠMPFE that achieves tB-buyer
fairness can also achieve tS-seller fairness in the presence of only a minimal blockchain. This closes
the proof of Theorem 4.

Impossibility with Timelocks and Dishonest Majority. Now, we show the impossibility
of MPFE protocols for minimal blockchains with timelocks and a dishonest majority of sellers.
To this extent, we update our setting, such that we have a minimal blockchain with timing. In
addition, in our adversarial model, we assume that the adversary can delay messages at most tA
rounds and assume that the time of a timelock is a multiple of the maximal computation time of
a round. Therefore, we can assume that each party can run computations while coins are locked,
and the adversary cannot circumvent the locking by delaying messages. In this setting, we show
our impossibility. We start with an auxiliary lemma.

Lemma 17. If less than tS honest sellers participate, there exists an adversary for every MPFE
protocol, such that only the adversary can receive any last message.

Proof. In the setting of seller fairness, the adversary controls tS − 1 sellers and all buyers. To
compute the final signature, shares s1, . . . , snS+nB

, based on the secret inputs of the parties, are
required. Any party can compute the final signature locally if it knows enough of these shares.
Using our reflective thresholds tS and tB, this party needs the shares of tB buyers and the shares
of tS sellers. The adversary controls all buyers and tS − 1 sellers. Hence, the adversary only needs
the share of a single honest party to have enough shares available to compute the final signature.
The honest parties alone lack enough shares since at most tS − 1 honest sellers participate in the
protocol. We run our protocol sequentially in rounds, and we can assume that, eventually, the
participants reveal their shares to the other participants. In particular, there must be a seller S∗

revealing its share first to another party. Since S∗ reveals its share first, the share of no other seller
is known to any other party at this point. We define the following adversary A that guarantees that

52

no honest party ever learns a final message: A guesses the identity of S∗ and leaves S∗ uncorrupted.
In addition, A guesses the receiver of the first exchanged share and corrupts this receiver. Since
the receiver is corrupted, A knows the shares of all buyers and tS shares of the sellers. Hence, A
can compute the final signature (thus, this message is the final message for A). Since the seller who
sends this message is honest, this message cannot be the last message for honest sellers since, at this
time, no seller has shared its share yet, and hence honest parties know at most tS− 1 many shares.
In addition, no other seller has revealed its share yet, since S∗ was the first one. No dishonest seller
will send its share after the first final message is received. Therefore, no honest seller can learn the
signature, and thus no honest seller learns any last message. We want to emphasize that our result
is unaffected by timed cryptography, since even with timed commitments, the PPT adversary can
eventually learn the committed message.

Proof of Theorem 5. We use Lemma 17 to build an adversary that learns the final message, while
no honest party receives any final message. Using this adversary we build the following adversary
that breaks seller fairness: A learns the final message and computes the final signature. A breaks
seller fairness if there is an honest seller who did not receive their share of the coin. We already
know, that there is no payment from the buyers to the sellers since this would be associated with
the final signature that is not posted yet. Therefore, there must be a payment from the dishonest
sellers to the honest sellers to attain seller fairness. In the following, we show, that this cannot be
the case for corrupted buyers and a dishonest majority of sellers. We have two cases: In the first
case, all honest sellers are paid before the adversary receives the final message. In the second case,
all honest sellers are paid after the adversary receives the final message. In the following, we show
that the probability for both cases is negligible.

Claim 9. The probability that all honest sellers are paid before the adversary receives the final
message is negligible.

Proof. Suppose the honest sellers have already been paid before the final message has been sent.
In that case, we know that this payment cannot come from the buyers (otherwise, the signature
for this payment would be the final signature and the final message would have been exchanged
already). Thus, there exists a seller whose balance after this payment is higher than before the
payment. We call this seller S∗. We define the following adversary that breaks seller fairness: The
adversary corrupts all buyers and guesses which seller is S∗ and corrupts this seller and a set of
tS − 2 other sellers (if tS > 2), such that there remains at least a single honest seller, who pays S∗.
Once the seller S∗ is paid, the adversary terminates the protocol but forwards messages of honest
parties. This adversary breaks seller fairness if the guess of S∗ is correct since S∗ is dishonest and
has more funds after the protocol than before (by our case assumption). In addition, the adversary
refuses communication of all dishonest parties before a final share is exchanged, and hence no party
can receive a last message. Since coins also cannot be crafted by the sellers, there must be at least
a single honest seller who has fewer funds after the protocol than before. This adversary would
break seller fairness, and hence, there is at least a single honest seller that was not paid before the
adversary received the final message.

Claim 10. The probability that all honest sellers are paid after the adversary receives the final
message is negligible.

53

Proof. If all honest sellers are paid after the adversary receives the final message and stops inter-
acting in the protocol (while still forwarding messages of the honest parties), this payment is made
by the honest sellers in one of two ways: Either the minority of tS − 1 honest sellers can enforce
this payment on their own (we call this case the minority payment case), or the minority of (tS− 1
honest) sellers already received shares of the adversary before the final message was delivered, which
now allows them to make the payment (we call this case the majority payment case). To show that
the claim holds, we show that the probability of each case to happen is negligible.

To show the negligible probability for the minority payment case, we observe that if a minority
can enforce a payment that spends funds of a party that is not part of this minority, the adversary
can simply corrupt exactly this minority, and sufficiently more sellers such that at least a single
honest sellers has less funds afterward, make the payment, and terminate the protocol. This breaks
seller fairness since at least a single seller has less balance at the end of the protocol than before.
More formally, we define the following adversary against seller fairness: The adversary corrupts
all buyers, guesses the minority that can trigger the payment, and corrupts exactly this minority.
In addition, the adversary also guesses which seller will make the payment (i.e., will have fewer
funds after the payment) and corrupts sufficiently many more sellers, such that the one spending
party remains honest. The adversary uses the power of the minority and makes a payment that
spends coins of at least a single seller which is honest. Then, the adversary terminates the protocol
but continues forwarding messages of honest parties. This adversary breaks seller fairness since no
payment of the buyer can be triggered in this corruption scenario: The adversary did not send the
share of a malicious seller, so no honest seller can receive the final message.

Next, we show the negligible probability for the majority payment case. If a minority of sellers
receives sufficient information to punish another seller before this seller learns the final message, we
can flip corruption to violate seller fairness: The adversary corrupts the minority that triggers the
payment and does not corrupt the party that will be punished. In addition, A corrupts sufficiently
many more sellers. Once the party to be punished reveals the information needed for punishment
(this happens before the final message is sent), the adversary triggers the punishment and terminates
the protocol. Therefore, an honest seller is punished. The adversary breaks seller fairness if no
payment from the buyers to the sellers appears on-chain. This is indeed the case since the final
message was not sent when the adversary punished the first receiving seller. In addition, the
adversary does not send any messages after punishing and the final message can only be sent by
the adversary (dishonest majority of sellers).

Taking together both claims, we can deduce that the adversary breaks seller fairness with
overwhelming probability if it receives the last message. This holds since A learns the witness, but
there exists an honest seller that is not compensated for revealing its partial witness.

F Additional Figures

In this section, we provide additional figures.

54

Setup(tB, nB, tS, nS)

1 : // Keys for the buyers

2 : k ← {0, 1}λ

3 : parB ← TS.Setup(nB, tB)

4 : (pkB, {skTS,i}1≤i≤nB
)← TS.KGen(parB)

5 : for 1 ≤ i ≤ nB : skBi
← (skTS,i, k)

6 : // Keys for the sellers

7 : parS ← TS.Setup(nS, tS)

8 : (pkS, {skTS,j}1≤j≤nS
)← TS.KGen(parS)

9 : for 1 ≤ j ≤ nS :

10 : (pkEnc,j , skEnc,j)← KGenEnc(λ)

11 : skSj
← (skTS,j , skEnc,j)

12 : return pkB, pkS, {skBi
}1≤i≤nB

, {skSj
}1≤j≤nS

Figure 15: The setup algorithm.

55

	Introduction
	Our Contributions
	Related Work
	Overview of the Paper

	Technical Overview
	The Buyer DAO
	The Seller DAO

	Defining Fair Exchange
	Preliminaries
	Fair Exchange
	Security Properties

	Threshold Adaptor Signatures
	Defining Threshold Adaptor Signatures
	Security of Threshold Adaptor Signatures
	Schnorr Threshold Adaptor Construction

	Certified Witness Encryption
	A Fair-Exchange Protocol
	Security

	Impossibility Result
	Preliminaries
	Hard Relations
	Adaptor Signatures
	Threshold Signatures
	Non-Interactive Zero-Knowledge Proofs
	(Verifiable) Public Key Encryption Schemes

	Additional Proofs
	Proofs for Threshold Adaptor Signatures
	Proofs for MPFE
	Proofs for Certified Witness Encryption

	Threshold Adaptor Sigantures
	A Framework for CWE
	Certificate Extractable Signature Schemes

	Impossibility Result
	Additional Figures

