
An ETSI GS QKD compliant TLS
implementation⋆

Thomas Prévost1[0009−0000−2224−8574], Bruno Martin1[0000−0002−0048−5197], and
Olivier Alibart2[0000−0003−4404−4067]

1 Université Côte d’Azur, CNRS, I3S, France
{thomas.prevost,bruno.martin}@univ-cotedazur.fr

2 Université Côte d’Azur, CNRS, InPhyNi, France
olivier.alibart@univ-cotedazur.fr

Abstract. This paper presents our implementation of the Quantum
Key Distribution standard ETSI GS QKD 014 v1.1.1, which required
a modification of the Rustls library. We modified the TLS protocol while
maintaining backward compatibility on the client and server side. We
thus wish to participate in the effort to generalize the use of Quantum
Key Distribution on the Internet. Finally we used this library for a video
conference call encrypted by QKD.

Keywords: TLS · Quantum Key Distribution · Rust · ETSI.

1 Introduction

The public key cryptosystems used today, such as RSA or ECC, will indeed
not be able to resist the advent of the quantum computer [4,17]. It is therefore
possible that a malicious actor is listening to encrypted communications, in the
hope of being able to decrypt them once the quantum computer is operational.
This type of attack is called “harvest now, decrypt later” [14].

Post-quantum cryptography offers a response to the risk posed by quantum
computers. These public key cryptosystems are based on problems deemed diffi-
cult to solve by a quantum computer. However, attacks are regularly discovered
on these cryptosystems [12], and it is feared that these algorithms may not stand
the test of time. If public key encryption is today relevant for key transfer, we
aim to replace it with Quantum Key Distribution.

Quantum Key Distribution (QKD) is a key exchange mechanism offering the-
oretically perfect forward secrecy. It is based on very different mechanisms. All
security relies on the no-cloning theorem from quantum physics, which states
that it is impossible to copy the state of a qubit without modifying it [18]. Par-
ticipants exchange the key in the form of qubits, most often single photons. An
attacker who attempts to intercept communications would therefore necessarily

⋆ This work has been supported by a government grant managed by the Agence Na-
tionale de la Recherche under the Investissement d’avenir program, reference ANR-
17-EURE-004



2 T. Prévost et al.

modify the state of the qubits and could therefore be detected on the fly by the
participants, who would then be able to interrupt the communication. The au-
thenticity of messages is guaranteed by the authentication of participants, which
mostly remains based on a public key cryptosystem.

QKD therefore theoretically offers perfect forward secrecy. Security is no
longer based on the computational difficulty of finding the message for an adver-
sary who has intercepted the communications, but on the on-the-fly detection
of this adversary when listening to communications. In practice some attacks on
QKD could occur due to physical constraints of the devices used [9].

Since Quantum Key Distribution requires complex and expensive devices,
as well as a direct link between the two participants (for example a dedicated
optical fiber), it is especially interesting for cross-datacenter communication, as
well as for organizations such as banks or governments.

The ETSI GS QKD 014 v1.1.1 protocol [7] provides an interface standard for
managing QKD keys. In a previous paper we proved the security of this standard
using the ProVerif tool [5], under certain conditions [15]. We present here a con-
crete implementation of this standard via a modification of the TLS protocol.
Our TLS implementation no longer performs the handshake thanks to public
key encryption. Instead, both TLS participants make a key request to their local
datacenter’s QKD manager. This request is secured by classic HTTPS encapsu-
lation with a bilateral authentication. Indeed we consider public key cryptosys-
tems reliable in a local network. Once the quantum key is obtained, the two TLS
participants encrypt their messages with a classic secret key cryptosystem.

In the rest of this paper, we will call this protocol “TLS-QKD”. Our protocol
is intended to be backward compatible in both directions, that is to say that a
TLS-QKD client can connect to a classic TLS server, and a TLS-QKD server
can accept a connection from a classic client. We actually implemented a version
of TLS with an external Pre-Shared-Key (PSK). Other implementations of this
type already exist, and have been formally proven, as described for example
by the RFCs 9257 and 9258 [8,1]. We chose to design our own implementation
because we started by writing the formal proof of our protocol based on ETSI
GS QKD 014 v1.1.1 using ProVerif. We therefore wanted to adapt our protocol
to our formal proof. We also developed QKD key management software, and
implemented a video conference demonstration using the TLS-QKD protocol.

The paper is organized as follow: section 2 introduces the ETSI standard
proposal for Quantum Key Distribution, section 3 presents our implementation.
Finally we suggest avenues for improving and we discuss about a possible future
for Quantum Key Distribution protocols.

2 ETSI GS QKD 014 v1.1.1

In this section, we briefly recall the operative mode of the ETSI GS QKD 014
v1.1.1 standard proposal.



An ETSI GS QKD compliant TLS implementation 3

The ETSI standard proposal is mainly focused around a REST interface,
through which the different actors interact. The standard defines two types of
communication:

– Communication within “secure zones” (e.g. inside a datacenter’s LAN), where
public-key cryptography is allowed.

– Outside communication (e.g. between datacenters), where communications
have to be secured with QKD.

Two types of actors interact in the ETSI GS QKD protocol:

– KME: Key Management Entities, that manage keys within the datacenter’s
private network and exchange keys with KMEs in remote datacenters using
QKD.

– SAE: Secure Application Entities, applications that request keys to KMEs
for communication.

SAEs make requests to their datacenter’s KME via a REST API, secured
by HTTPS. The KME is therefore authenticated by the server certificate. To
authenticate itself, the SAE presents a client TLS certificate. This certificate
also uniquely identifies the SAE.

Each actor, KME and SAE, is identified by a unique identifier in the network.
The keys are identified by their UUID fingerprint, which is also supposed to be
unique. Fig. 1 shows an example of a key exchange between two SAEs on remote
data centers.

Here is an example of a request allowing the initiating SAE (“master”) to
request a key from the KME of its datacenter:

https://{KME hostname}/api/v1/keys/{slave SAE ID}/enc keys
The ETSI standard defines the interface and the order of communications.

It does not go into cryptographic details, e.g. how QKD is performed or key
identifiers are transmitted are considered “outside the scope of the document”.

When we formally verified the standard using ProVerif [15], we determined
that the ETSI prototype standard guaranteed the confidentiality and authentic-
ity of the key with the following constraints on the implementation:

– The connection between the two KMEs must be authenticated (this is al-
ready a prerequisite for the operation of QKD).

– The second SAE (“slave”) must send a cryptographic challenge to the initi-
ating SAE (“master”), in order to authenticate the latter by ensuring that
it has the correct quantum key.

– The key UUID can be transferred in plain text between the two SAEs.
– The quantum symmetric key exchanged between the KMEs must remain

secret and have high entropy.

The protocol verification done by ProVerif is available at the following URL: https:
//gist.github.com/thomasarmel/c2bfc851bb3b19348bf1df90ed041fac. There
are other frameworks dedicated precisely to the verification of this kind of hy-
brid protocol, notably [6]. However, we chose to use ProVerif because it is well
documented, and its soundness property has been widely proven.

https://gist.github.com/thomasarmel/c2bfc851bb3b19348bf1df90ed041fac
https://gist.github.com/thomasarmel/c2bfc851bb3b19348bf1df90ed041fac


4 T. Prévost et al.

Fig. 1: This diagram shows a typical quantum key exchange between the initiator
SAE 1 (“master”) and the SAE 2 ”slave”, as defined in the theoretical standard
proposal. The SAE 1 makes an authenticated key request to the KME of its
data center (KME 1), which will communicate the key enciphered within a TLS
response to the KME of the remote data center (KME 2). SAE 1 then transfers
the key identifier to its SAE 2 peer, which can then request the key from its data
center’s KME.



An ETSI GS QKD compliant TLS implementation 5

Fig. 2: This diagram shows the flow of a key exchange using the verified imple-
mentation of the ETSI protocol. This is a realistic and functional implementa-
tion, whose security has been formally verified. The SAE 2 sends a cryptographic
challenge to the initiating SAE 1 to ensure its authentication. Here we assume
that the KMEs have exchanged QKD keys before the start of the protocol, in
order to get a latency compatible with the smooth running of an IP protocol.



6 T. Prévost et al.

Fig. 2 shows an example protocol following an implementation compatible
with these security requirements.

3 Our implementation

In this section, we present our Key Management software, as well as our imple-
mentation of the modified Rustls library, and our video conferencing software
based on TLS-QKD.

3.1 KME key manager

Key Management Entities (KMEs) are responsible for managing keys within
the data center and exchanging keys with their remote counterparts, via QKD.
The protocol used for Quantum Key Distribution during our experiments is
BBM92 [3], based on the entanglement of photons pairs. Any other QKD pro-
tocol, however, would have given the same results (other protocols might have a
different maximum geographic distance between remote KMEs). After receiving
all the photons, the two remote KMEs share a sequence of random bits. In-
deed, the same measurement of two maximally entangled photons will give the
same result. It is necessary to add a Privacy Amplification (PA) step on both
sides in order to extract the maximum entropy from these shared bits [2]. This
step allows us to ensure the uniformity of the random distribution of the bits
of the symmetric key, and therefore the security of the latter. At the end of the
protocol, the two protagonists share a secret perfectly random bit string.

Our KME software takes as a parameter a folder in which the key files are
located after Privacy Amplification and cuts them into sections of 32 bytes, in
order to obtain 256-bit keys. If new keys are generated during operation of the
KME server, the latter will detect them and add them to its database. If the
KME exchanges keys with several other KMEs, it takes as parameter the folders
containing the keys exchanged with each of its counterparts.

SAEs are authenticated with their client TLS certificate, and identified with
the certificate serial number. Indeed, the serial number of the certificate is chosen
by the Certificate Authority, and can therefore be unique within the secure zone.
The KME associates the serial number with a unique identifier on the network,
a 64-bit integer. In addition to the standard, we added the following REST route
on the KME, in order to allow SAEs to know their identifier on the network:
https://{KME hostname}/api/v1/sae/info/me.

Each KME also has a unique identifier on the network in the form of a 64-bit
integer. The addressing of KMEs is independent of that of SAEs, which means
that a KME can have the same address as a SAE.

The UUID of the keys is generated from their SHA-1 fingerprint.
At any time SAEs can request from the KME the total Shannon entropy of

the stored keys, from the route given by the REST request
https://{KME hostname}/api/v1/keys/entropy/total. We added this route to al-
low an administrator to detect a failure in Quantum Key Distribution.



An ETSI GS QKD compliant TLS implementation 7

In order to inform its remote counterpart of the association between a SAE
and its key, the KME also uses the REST protocol, encrypted via HTTPS and
authenticated on both sides, between the two KMEs. Bilateral authentication
between KMEs is done with client and server TLS X.509 certificates.

The KME key manager source code can be retrieved at the following address:
https://github.com/thomasarmel/qkd_kme_server

3.2 Our implementation of TLS with QKD keys

Our implementation of TLS with QKD keys is a modification of the Rustls
library. We chose to modify this implementation for the following reasons:

– The excellent code quality of the library simplified our development work.
– Security offered by the Rust programming language reduces the probability

that our implementation is affected by certain classic security vulnerabilities,
such as memory corruption.

– The library being Rust-native, it compiles without problem on most plat-
forms; it is also easy to generate a static binary, portability is therefore
greatly facilitated.

Our version of Rustls is designed to be backward compatible in both di-
rections. Thus, a TLS-QKD client can connect to a classic TLS server, and a
TLS-QKD server can receive connections from a classic TLS client. We could
then fear that a malicious actor having intercepted the communications could
carry out a “downgrade attack”, that is to say force the protagonists to use
classic TLS to weaken the protocol [13]. We are fully aware of this vulnerability,
and believe this is an acceptable compromise at this time to facilitate adoption
of the protocol. However, the user who needs strict QKD protection could easily
disable TLS 1.3 backward compatibility in our implementation.

Our implementation of TLS-QKD is a modification of the TLS 1.3 proto-
col [16], which is the latest version of the protocol as of this writing. This ver-
sion of TLS is much faster than the previous one, TLS 1.2. Indeed, TLS 1.3
handshake only requires two messages: the client sends a ClientHello, which also
contains its ephemeral Diffie-Hellman KeyShare. The server then responds with
a ServerHello, containing its certificate as well as its ephemeral Diffie-Hellman
KeyShare. The client and the server then have enough information to establish
an encrypted and authenticated communication channel. In comparison, TLS 1.2
handshake requires 4 messages to complete.

Here are the changes we made to the protocol:

Client and server configuration interface. The TLS client and server are
two SAEs in the ETSI protocol. Client is the initiating (“master”) SAE. They
must collect the keys from the KME of their respective data center. The client
and the server take the address and port number of the KME interface as pa-
rameters. SAEs authenticate with KMEs using client TLS certificates. The con-
figuration therefore takes as parameter the path of a .pfx client certificate file,

https://github.com/thomasarmel/qkd_kme_server


8 T. Prévost et al.

as well as the password allowing this file to be unlocked. Files with .pfx exten-
sion are typically used to store X.509 certificates, and can be encrypted using a
password. In addition, the client takes as parameter the unique identifier of the
server, in the form of a 64-bit integer. This identifier will be used to request the
key from KME.

Protocol version. TLS messages contain the protocol version number in two
bytes. For example, the code associated with TLS version 1.3 is 0x0304. For our
TLS-QKD implementation, we arbitrarily chose the number 0x0E00.

Client request to KME. Equipped with its client TLS certificate and the
SAE identifier of the TLS server, the client can make a request to the KME of
its “secure zone” to request a key allowing it to communicate with the remote
SAE. The remote SAE is identified by its unique identifier, a 64-bit integer. This
number is specified by the programmer when establishing the connection with
the KME. The KME then returns the key in base64 format as well as the UUID
of this key: https://{KME hostname}/api/v1/keys/{slave SAE ID}/enc keys.

The TLS clients will also request their SAE identifier from their KME:
https://{KME hostname}/api/v1/sae/info/me.

ClientHello extension. The TLS client communicates to the server its SAE
identifier as well as the UUID of the key via an extension of the ClientHello
message. We add to the extension the Initialization Vector (IV) which will sub-
sequently be used for secret key encryption (we could also have generated the IV
with a key derivation function like PBKDF2 [11]). This data is binary encoded
in this order in the ClientHello extension. Each type of extension is associated
with a 2-byte number. We arbitrarily chose the number 0xFEA6 for this Clien-
tHello extension. If the TLS server detects this extension in ClientHello, it will
then be able to determine that the client supports TLS-QKD.

Server request to KME. The TLS server having detected that the client
wishes to communicate using TLS-QKD, it makes in turn a request to the KME
of its ‘secure-zone”, to ask for the key associated with the UUID and the identifier
of the initiating SAE “master”, received in ClientHello. If the response from the
KME is positive, the TLS client and server then share a secret key. However, it
remains to correctly authenticate the initiating SAE, which will be done later
by a cryptographic challenge.

ServerHello extension. In order to authenticate the client, the TLS server
must ensure that the latter is in possession of the quantum key. To do this, it will
send him a cryptographic challenge, in the form of a 256 bits random token and
a 256 bits random seed, encrypted with the quantum key. The TLS client must
send back the same token as well as a different random seed, encrypted with the



An ETSI GS QKD compliant TLS implementation 9

same quantum key. The challenge is inserted as an extension in the ServerHello
response. The 2-byte number we arbitrarily chose for this ServerHello extension
is 0xFEA7. By finding this extension in the ServerHello response, the client will
have confirmation that the server supports TLS-QKD.

Client challenge acknowledgment. After having confirmed that the server
supports TLS-QKD, the client must now send the cryptographic challenge back
to the server in order to authenticate. After decrypting the ServerHello chal-
lenge, the client encrypts it again after changing the random seed. It sends the
response to the challenge in the form of a new message type, ChallengeAck.
TLS provides a one-byte code for each message type. For example, Application-
Data messages have the code 0x17. For ChallengeAck messages, we arbitrarily
chose the code 0x50. Once the acknowledgment has been verified by the server,
both participants directly start the data transfer using the quantum symmetric
key.

Checking the TLS server certificate. The client no longer checks the server’s
TLS certificate, since the TLS-QKD protocol is sufficient to guarantee its au-
thentication provided that the security assumptions on the KMEs are respected,
as proven by ProVerif in [15].

Symmetric encryption. For symmetric encryption, we use AES with the Au-
thenticated Encryption with Associated Data (AEAD) mode. This is not, how-
ever, a security necessity, as the authentication is already guaranteed by the
protocol, as proven in [15]. The key size is arbitrarily fixed to 256 bits, a stan-
dard to be quantum safe. The key size is hardcoded in our implementation. Keys
are never regenerated in this implementation, we are considering this feature in
future work.

Handshake authentication As proven with ProVerif, the two participants are
authenticated as long as it is ensured that they both have the same symmetrical
quantum key. It is therefore no longer necessary to send a Finished message to
authenticate the handshake.

Implementation. Implementation can be found at: https://github.com/

thomasarmel/rustls/tree/qkd. Fig. 3 shows the difference between a classic
TLS 1.3 handshake and a TLS-QKD handshake.

3.3 Proof of concept: a video conference call encrypted by
TLS-QKD

In order to provide a proof of concept of our protocol, we created videoconferenc-
ing software encrypted with TLS-QKD. We created our own videoconferencing

https://github.com/thomasarmel/rustls/tree/qkd
https://github.com/thomasarmel/rustls/tree/qkd


10 T. Prévost et al.

(a) Handshake on TLS-QKD.

(b) Handshake on classic TLS 1.3.

Fig. 3: Comparison of handshakes on TLS-QKD and TLS 1.3.



An ETSI GS QKD compliant TLS implementation 11

Fig. 4: Our setup for videoconferencing with TLS-QKD between the INRIA cen-
ter in Sophia-Antipolis (France) and the InPhyNi physics department site in
Nice (France). The two sites are separated by a distance of approximately 25
kilometers.

software because it was simpler than reusing existing code, especially because
Rust is very suitable for developing this kind of applications. This software is
separated into two parts:

– A server, which displays the video stream and plays the audio part.

– A client, which captures the video stream from the camera and the audio
from the microphone.

To make a videoconference call, it is therefore needed to first launch the server
on both machines, then the client. Code can be found at the following address:
https://github.com/thomasarmel/qkd_camera_streaming_client.

During our tests between the INRIA center, in Sophia Antipolis (France)
and the InPhyNi site, in Nice (France), we managed to set up a videoconference
with a resolution of 720 pixels and 10 fps. The conversation was absolutely
not hampered by sound latency. TLS-QKD typically took less than 1 second
to perform the key handshake. Fig. 4 gives the network topology during our
experiment.

In order to test the operation of backward compatibility towards classic TLS,
we also launched requests in HTTPS, in the following configurations:

– TLS-QKD client to TLS-QKD server

– TLS-QKD client to classic TLS server (https://fr.wikipedia.org)

– Classic client (curl command line) to TLS-QKD server

The code corresponding to these tests can be found in our unit tests, available
at https://github.com/thomasarmel/rustls/blob/qkd/rustls/tests/qkd.
rs.

https://github.com/thomasarmel/qkd_camera_streaming_client
https://fr.wikipedia.org
https://github.com/thomasarmel/rustls/blob/qkd/rustls/tests/qkd.rs
https://github.com/thomasarmel/rustls/blob/qkd/rustls/tests/qkd.rs


12 T. Prévost et al.

4 Discussion

Recent attacks on post-quantum public key cryptosystems raise the question of
the long-term security of asymmetric encryption. Our protocol offers a solution
against “harvest now-decrypt later” attacks if the attacker is able to listen to
communications on the outside network. Our protocol remains vulnerable if the
attacker is able to break QKD authentication between KMEs on the fly, since
she will be able to carry out a Man-In-The-Middle attack. However, this type of
scenario seems unlikely to us at the moment. Indeed, if we still use classic public
key or post quantum cryptography for inter-KMEs authentication (for QKD
and key requests), it is very unlikely that an attacker would have been able to
secretly develop a quantum computer capable of breaking such a cryptosystem
in a short time.

In general, in the case where we wish to offer perfect forward-secrecy, it seems
relevant to us to envisage a world where public key cryptography no longer offers
long-term forward secrecy, as has been considered until now.

Finally, our protocol relies on QKD for key sharing between the two partici-
pants, but any solution allowing a random secret to be established between the
two remote KMEs is possible.

5 Further improvements

Fig. 5: All messages exchanged between SAE and KME for the first key request
stage.

The main problem with TLS-QKD is its relative slowness at the handshake
stage, i.e. to exchange the quantum symmetric key. In fact, each SAE must start



An ETSI GS QKD compliant TLS implementation 13

by establishing a secure connection with its KME. As shown in Fig. 5, a total
of 7 messages is exchanged between the “master” SAE and KME at the time of
the key request.

A total of 29 messages is exchanged between the different actors (SAEs and
KMEs) during handshake. One way to reduce the number of messages would be
to pre-establish a TLS connection between the SAEs and the KMEs. However,
this would make our library much less portable, since programs running on SAEs
would have to communicate with a background service responsible for keeping
the connection with the KME active. Since we are targeting data center use, this
compromise could be acceptable.

Another solution would be to rely on the QUIC protocol [10], which uses
UDP instead of TCP. Since SAE-KME communications operate over a LAN,
packet loss should not be too much of a problem. This solution would at least
reduce latency in communications between SAEs and KMEs.

It would further be possible to pre-establish TLS connections in advance
between KMEs. This would work at least as long as the overall network of
KMEs is not too large. If the network size becomes too large, we could ensure
that only the most frequent inter-KME links pre-establish the TLS connection
in advance.

In this implementation, we never regenerate the symmetric key. Adding this
feature would increase the security of our protocol. The property of forward
secrecy is in fact not assured if an attacker were to discover the quantum key,
which is more vulnerable because it is shared between four actors (the two KMEs
and the two SAEs).

In our current implementation, the TLS client (initiating SAE) is required to
know the TLS server SAE identifier in advance. To avoid managing a directory of
correspondence between nodes and their identifiers, we could consider deriving
unique identifiers from network addresses. If the IPv6 standard were to be widely
adopted, then we could use it as a unique identifier, since IPv6 addresses are the
same in the LAN and the WAN.

We might consider a protocol change to use Kerberos rather than bilateral
TLS certificates for communication between SAE and KME. The security of
communications on a local network would no longer be ensured by a public
key cryptosystem but by a pre-established secret, for example a password. This
would require setting up a Key Distribution Center (KDC), but it is likely that
this service is already set up in most data centers. This implementation would
however not be compliant with the ETSI GS QKD 014 v1.1.1 standard.

6 Conclusion

In this paper, we presented a modified TLS protocol which uses keys exchanged
by Quantum Key Distribution (QKD), compliant with the standard proposal
ETSI GS QKD 014 v1.1.1.

This protocol is backward compatible in both directions, meaning that a
TLS-QKD client can connect to a classic TLS server, and a TLS-QKD server



14 T. Prévost et al.

can accept a classic TLS connection. We have deliberately chosen to leave this
backward compatibility despite the risk of “downgrade attack”, in order to fa-
cilitate a potential adoption of our protocol. However, backward compatibility
can easily be disabled in the future.

The protocol is based on TLS 1.3, but adds additional configuration for com-
munication with Key Management Entities (KME). The information necessary
for the protocol to run is sent in extensions that we added to the ClientHello
and ServerHello messages. Additionally, another message is sent by the client at
the end of the handshake to confirm their identity, ChallengeAck.

Finally, we showed that our protocol is usable in real application cases, such
as videoconferencing. However, the time required for the handshake remains
significantly longer than a classic TLS handshake, since many more messages
are sent and that the application spends a lot of time waiting for the KMEs
stack to return the symmetric keys.

References

1. Benjamin, D., Wood, C.: RFC 9258: Importing external pre-shared keys (PSKs)
for TLS 1.3 (2022)

2. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental
quantum cryptography. Journal of cryptology 5 (1992)

3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s
theorem. Physical review letters 68(5) (1992)

4. Bhatia, V., Ramkumar, K.: An efficient quantum computing technique for crack-
ing RSA using Shor’s algorithm. In: 2020 IEEE 5th international conference
on computing communication and automation (ICCCA). IEEE (2020). https:

//doi.org/10.1109/ICCCA49541.2020.9250806

5. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: Proverif 2.00: automatic cryp-
tographic protocol verifier, user manual and tutorial. Version from (2018)

6. Dowling, B., Hansen, T.B., Paterson, K.G.: Many a mickle makes a muckle: A
framework for provably quantum-secure hybrid key exchange. In: International
Conference on Post-Quantum Cryptography. Springer (2020)

7. ETSI, G.: 014. Quantum Key Distribution (QKD); protocol and data format of
REST-based key delivery API (2019)

8. Housley, R., Hoyland, J., Sethi, M., Wood, C.: RFC 9257: Guidance for external
pre-shared key (psk) usage in TLS (2022)

9. Huang, A., Navarrete, Á., Sun, S.H., Chaiwongkhot, P., Curty, M., Makarov, V.:
Laser-seeding attack in quantum key distribution. Physical Review Applied 12(6)
(2019)

10. Iyengar, J., Thomson, M., et al.: QUIC: A UDP-based multiplexed and secure
transport. In: RFC 9000. Internet Engineering Task Force (IETF) Fremont, CA,
USA (2021)

11. Kaliski, B.: Password-based cryptography specification. RFC 2898 (2000)
12. Kaluderovic, N.: Attacks on some post-quantum cryptographic protocols: The case

of the Legendre PRF and SIKE. Tech. rep., EPFL (2022). https://doi.org/10.
5075/epfl-thesis-8974

13. Lei Zhang, H.: Three attacks in SSL protocol and
their solutions. Internet: https://www. cs. auckland. ac.

https://doi.org/10.1109/ICCCA49541.2020.9250806
https://doi.org/10.1109/ICCCA49541.2020.9250806
https://doi.org/10.1109/ICCCA49541.2020.9250806
https://doi.org/10.1109/ICCCA49541.2020.9250806
https://doi.org/10.5075/epfl-thesis-8974
https://doi.org/10.5075/epfl-thesis-8974
https://doi.org/10.5075/epfl-thesis-8974
https://doi.org/10.5075/epfl-thesis-8974


An ETSI GS QKD compliant TLS implementation 15

nz/courses/compsci725s2c/archive/termpapers/725zhang. pdf [June, 2014]
(2014)

14. Paul, S.: On the transition to post-quantum cryptography in the industrial Internet
of things (2022)

15. Prévost, T., Martin, B., Alibart, O.: Formal verification of the ETSI proposal on
a standard QKD protocol. GTMFS (2024)

16. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Tech. rep.
(2018)

17. Wohlwend, J.: Elliptic curve cryptography: Pre and post quantum.
http://math.mit.edu/~apost/courses/18.204-2016/18.204_Jeremy_

Wohlwend_final_paper.pdf (2016)
18. Zygelman, B., Zygelman, B.: No-cloning theorem, quantum teleportation and

spooky correlations. A First Introduction to Quantum Computing and Information
(2018)

http://math.mit.edu/~apost/courses/18.204-2016/18.204_Jeremy_Wohlwend_final_paper.pdf
http://math.mit.edu/~apost/courses/18.204-2016/18.204_Jeremy_Wohlwend_final_paper.pdf

	An ETSI GS QKD compliant TLS implementation

