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Abstract

Indistinguishability obfuscation (iO) stands out as a powerful cryptographic primitive
but remains notoriously difficult to realize under simple-to-state, post-quantum assumptions.
Recent works have proposed lattice-inspired iO constructions backed by new “LWE-with-hints”
assumptions, which posit that certain distributions of LWE samples retain security despite
auxiliary information. However, subsequent cryptanalysis has revealed structural vulnerabilities
in these assumptions, leaving us without any post-quantum iO candidates supported by simple,
unbroken assumptions.

Motivated by these proposals, we introduce the Circular Security with Random Opening (CRO)
assumption—a new LWE-with-hint assumption that addresses structural weaknesses from
prior assumptions, and based on our systematic examination, does not appear vulnerable to
known cryptanalytic techniques. In CRO, the hints are random “openings” of zero-encryptions
under the Gentry–Sahai–Waters (GSW) homomorphic encryption scheme. Crucially, these
zero-encryptions are efficiently derived from the original LWE samples via a special, carefully
designed procedure, ensuring that the openings are marginally random. Moreover, the openings
do not induce any natural leakage on the LWE noises. These two features—marginally random
hints and the absence of (natural) noise leakage—rule out important classes of attacks that had
undermined all previous LWE-with-hint assumptions for iO. Therefore, our new lattice-based
assumption for iO provides a qualitatively different target for cryptanalysis compared to existing
assumptions.

To build iO under this less-structured CRO assumption, we develop several new technical
ideas. In particular, we devise an oblivious LWE sampling procedure, which succinctly encodes
random LWE secrets and smudging noises, and uses a tailored-made homomorphic evaluation
procedure to generate secure LWE samples. Crucially, all non-LWE components in this sampler,
including the secrets and noises of the generated samples, are independently and randomly
distributed, avoiding attacks on non-LWE components.

In the second part of this work, we investigate recent constructions of obfuscation for
pseudorandom functionalities. We show that the same cryptanalytic techniques used to break
previous LWE-with-hints assumptions for iO (Hopkins-Jain-Lin CRYPTO 21) can be adapted to
construct counterexamples against the private-coin evasive LWE assumptions underlying these
pseudorandom obfuscation schemes. Unlike prior counterexamples for private-coin evasive
LWE assumptions, our new counterexamples take the form of zeroizing attacks, contradicting
the common belief that evasive-LWE assumptions circumvent zeroizing attacks by restricting to
“evasive” or pseudorandom functionalities.
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1 Introduction

Indistinguishability obfuscation (iO) for general polynomial-size circuits [BGI+01, GKR08, GGH+13b]
requires that for any two circuits C0 and C1 of the same size and functionality—meaning C0(𝑥) =
C1(𝑥) for all inputs 𝑥—the obfuscated circuits iO(C0) and iO(C1) should be computationally
indistinguishable. Moreover, the obfuscator iO must run in probabilistic polynomial time and
output a circuit C′ that preserves functionality with probability 1, i.e., C′(𝑥) = C(𝑥) for all 𝑥.

Since its inception, iO has been a powerful cryptographic primitive, enabling a broad range
of applications in cryptography and complexity theory (see, e.g., [GGH+13b, SW14, BFM14,
GGG+14, HSW13, KLW15, BPR15, CHN+16, GPS16, HJK+16]). However, constructing secure iO
has remained a significant challenge. Following the first heuristic candidate [GGH+13b], a long
line of work [GGH13a, GGH+13b, BGK+14, BR14, PST14, AGIS14, BMSZ16, CLT13, CLT15, GGH15,
CHL+15, BWZ14, CGH+15, HJ16, BGH+15, Hal15, CLR15, MF15, MSZ16, DGG+18, Lin16, LV16,
AS17, Lin17, LT17, GJK18, AJS18, Agr19, LM18, JLMS19, BĲ+20, AP20, GJLS21] explored a diverse
range of hardness assumptions, including multilinear maps, affine determinant programs, and
block-local PRGs, before culminating in the first provably secure iO construction [JLS21], based on
four well-studied assumptions. This was later improved to rely on three assumptions [JLS22, RVV24],
namely, the Decisional Linear (DLin) assumption on symmetric bilinear maps, Learning Parity with
Noise (LPN) over large fields, and constant-local PRGs or sparse LPN.

Despite these advancements, a grand challenge remains: constructing iO that is secure against
quantum adversaries. Current state-of-the-art constructions [JLS21, JLS22, RVV24] rely on bilinear
maps, leaving them susceptible to quantum attacks. While some alternative approaches—such
as those based on multilinear maps, or affine determinant programs, or random local mix-
ing [CCMR24]—currently face no known quantum attacks, their security is not well understood,
lacking reductions to simple-to-state hardness assumptions. This gap risks relying on “security
by obscurity”, limiting confidence in their approach. Besides post-quantum security, another
important challenge is basing iO on simple-to-state hard problems w.r.t. a single mathematical
structure, rather than three as the current state-of-the-art constructions do.

For both challenges, the ultimate long-term objective is to construct iO from a standard post-
quantum assumption like Learning with Errors (LWE). However, our current understanding remains
far from this goal. This raises the following natural and compelling question as an intermediate
milestone toward that ultimate goal:

Can we build post-quantum iO from a simple-to-state, principled, assumption?

Recent Attempts. A recent exciting body of works have proposed lattice-inspired iO candi-
dates [BDGM20, GP21, WW21, DQV+21, BDGM22], some of which are based on new, simple-to-state
lattice assumptions. This includes the Circular Shielded Randomness Security (circ-SRL) assump-
tion by [GP21, BDGM22], the Homomorphic Pseudorandom LWE Samples (HPLS) conjecture
by [WW21], and the Subspace Flooding assumption by [DQV+21]. In addition, two very recent
works [BDJ+24, AKY24] constructed iO for pseudorandom functionalities–termed Pseudorandom
Obfuscation (PrO)–where the outputs of the circuits are pseudorandom, based on variants of
private-coin evasive LWE assumptions, first introduced by [Wee22, Tsa22, VWW22] in the context
of building attribute-based encryption and witness encryption.

Despite their differences, all these assumptions share a common structure:

LWE-with-hints assumptions posit that certain (circular) LWE samples retain some security
(indistinguishability or pseudorandomness) even in the presence of specific hints that leak
information about these samples.
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The presence of hints in these assumptions is crucial for achieving the functionality of iO, which
requires revealing the outputs of the circuit evaluated on arbitrarily chosen inputs in the clear.
Typically, these hints allow opening the output encoding derived via homomorphic evaluation from
the original LWE samples. Then iO security requires the LWE samples to retain some security in
the presence of hints, in order to argue that no information of the original circuit is revealed beyond
the outputs. However, the hints introduce a delicate trade-off: do they leak too much information,
possibly completely compromising LWE security? Prior works conjectured that the worst case does
not happen.

Unfortunately, subsequent cryptanalysis [HJL21, JLLS23, BDJ+24] has demonstrated counterex-
amples or attacks against all aforementioned LWE-with-hint assumptions, leaving us without any
iO constructions proven secure under simple, plausibly post-quantum assumptions.
Our Contributions. In this work, we show that even for the weaker notion of pseudorandom
obfuscation, there are counterexamples to the private-coin evasive LWE assumptions underlying
the recent constructions [AKY24, BDJ+24].

Moving beyond the attacks, we present a new iO construction based on a new, simple-to-state,
post-quantum assumption, that we call the Circular security with Random Opening (CRO)
assumption. CRO also has the LWE-with-hint format, and is falsifiable, instance-independent, and
fully specified. Importantly, CRO avoids the structural vulnerabilities in prior assumptions that has
been exploited in attacks, circumventing direct application of known attack strategies.

At a very high level, the CRO assumption considers real distributions consisting of circu-
lar LWE samples, denoted as encodings, together with hints R∗ that are random ”openings” of
certain ciphertexts C∗ of zeros under the Gentry-Sahai-Waters (GSW) homomorphic encryp-
tion scheme [GSW13]. The opened zero-ciphertext C∗ can be efficiently derived from the LWE
samples, using a carefully crafted procedure 𝐹, and the opening satisfies the constraint that
C∗ = 𝐹(encodings) = GSW.Enc(GSW.hpk, 0; R∗), where the public key GSW.hpk is contained in
encodings. The assumption postulates that the real distributions are indistinguishable to ideal
distributions where the LWE samples are replaced with random samples, while the hints are sampled
from a simulated distribution still satisfying the constraint.

We perform a systematic study of prior attack strategies, revealing that all prior LWE-with-hints
assumptions suffer from structural vulnerabilities either in their hints or in the leakage of LWE
noises induced by the hint. Except for contrived counterexamples, all known attacks exploit these
vulnerabilities by focusing solely on the hints or noise leakage, and are oblivious of the LWE samples
otherwise. See Table 1 for a summary of the structural vulnerabilities in prior assumptions. We
show that our CRO assumption introduces key structural differences, as highlighted below, that
circumvent direct application of prior attacks.

1. (Pseudo)Random Hints: The hints in CRO are marginally random in the real distributions and
pseudorandom in the ideal distributions, ensuring that the hints alone do not have any
structural vulnerabilities.

2. No Natural Noise Leakage: Since our hints are “opening” of zero-ciphertexts that can be effi-
ciently derived from the LWE samples available in the real distribution, it does not induce any
natural noise leakage, circumventing zeroizing attacks. (See more discussion shortly below.)

3. Pseudorandomness of LWE Samples Given Hints: Different from prior LWE-with-hint assump-
tions underlying iO [GP21, WW21, DQV+21, BDGM22] which all postulate the indistinguisha-
bility security of LWE samples at the presence of hints, and lack natural pseudorandom
variants of their assumptions, CRO gives a way to reason about the pseudorandomness of
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LWE samples, given hints that enable non-evasive and non-pseudorandom functionalities.
We further formulate a weaker, but still sufficient, indistinguishability version, shorthanded
as IND-CRO. We believe that the plausible pseudorandomness version, vetted against known
cryptanalytic techniques, adds confidence to the security of CRO and IND-CRO.

In short, comparing with prior LWE-with-hint assumptions, CRO exhibits fewer structural vulner-
abilities. As discussed in cryptanalysis in Section 2.3.2, the above features enable circumventing
previous attack avenues in a principled way.

In order to base security on the less structured CRO assumption, our new iO construction
develops several new ideas, building upon prior techniques especially [GP21, BDGM22]. We believe
that these ideas might be instrumental for future constructions of iO and other advanced primitives.

Next, we describe the CRO assumption in more detail and provide a high-level overview of
our construction. The formal definition and cryptanalysis of CRO are given in Section 2, while a
detailed construction overview appears in Section 5.

1.1 Our Construction and Assumption in a Nutshell

It is well known that to construct iO, it suffices to build exponentially efficient iO, or xiO [LPST16],
assuming LWE. xiO is the simpler task of obfuscating circuits Π that have polynomial-size truth
tables TT. The obfuscator is allowed to run in time polynomial in the size of the entire truth table,
with the only constraint that the resulting obfuscated circuit remains succinct – sublinear in the size
of TT1.

The work of [BDGM20], followed by [GP21, WW21, DQV+21, BDGM22], proposed an appealing
approach towards constructing xiO. The key idea is that, assuming (circular) LWE assumptions,
one can hide a secret circuit Π in a homomorphic encoding HEnc(Π), from which an encoded truth
table Enc(TT) can be efficiently computed (possibly under a slightly different encoding). The core
challenge in achieving xiO is devising a way to safely and succinctly “open” Enc(TT), revealing TT
and hopefully nothing else. The overall paradigm is depicted below.

HEncs
(
Π || 𝑓 circ(s) || · · ·

) HEval
=⇒ Enc(TT)

succinct opening open

}
=⇒ (TT, leak)

We note that typically in these constructions, besides the original circuit Π, the homomorphic
encoding also hides circular secret-dependent messages 𝑓 circ(s) to facilitate the final opening2.

Prior works developed different encoding and succinct opening methods, and captured security
of their scheme via different LWE-with-hint assumptions. Naturally, the LWE samples in the
assumptions facilitate the homomorphic encoding HEnc(Π), while the hint hint facilitates opening
open. Inevitably, the final encoding Enc(TT) also consists of LWE samples (derived via homomorphic
evaluation), and opening them reveals not only TT but also additional leakage leak of the LWE
noises, as indicated in the paradigm above.

A key issue in prior LWE-with-hint assumptions is that the hints and/or the noise leakage exhibit
structural vulnerabilities, which have been exploited in attacks. Notably, prior cryptanalysis efforts
focused entirely on hints and leakage, without attacking the LWE samples directly. Specifically, as
summarized in Table 1, [HJL21] attacked the hints in the circ-SRL security assumption of [GP21], and

1Otherwise, a trivial construction would be to simply output the truth table as the obfuscated circuit.
2Sometimes more than one LWE secrets are involved and the key-dependent messages may depend on multiple

secrets.
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Assumption hint =
LWE secret

LWE noise
leakage

hint =
GSW randomness

hint =
Lattice trapdoor

circ-SRL ([GP21]) ✗ ✗
Counterexample

([HJL21]) ✗

HPLS ([WW21]) Non-random Counterexample
([HJL21]) ✗ ✗

Subspace Flooding
([DQV+21]) Attack ([JLLS23]) Non-random ✗ ✗

Private-coin ELWE
([Tsa22, VWW22]) ✗

Counterexample
(Section 7) ✗ $

CRO (Ours) ✗ ✗ $ ✗

Table 1: Characterization for different information leakage beyond LWE samples for existing
assumptions toward iO/PrO. In the table, ✗ stands for no such leakage exist, $ stands for the leakage
is marginally random (from a well-defined distribution), Attack stands for that there exist adversary
breaking the assumption by focusing on the leakage, and Counterexample stands for that there exist
specific implementation for the assumption which can be broken by focusing on the leakage.

the leakage in the HPLS conjecture [WW21]. Similarly, [JLLS23] attacked the hints in the subspace
flooding assumption of [DQV+21]. Finally, in this work, in Section 7, we sketch attacks targeting
leakage in private-coin evasive LWE assumptions underlying pseudorandom obfuscation [BDJ+24,
AKY24].
Our Assumption CRO: Formally described in Figure 3, our CRO assumption postulates that a
real distribution of circular LWE samples with hints is indistinguishable to an ideal distribution
consisting of random samples and simulated hints. In the real distribution the circular LWE samples
contain a Gentry-Sahai-Waters (GSW) public key GSW.hpk, GSW ciphertexts GSW.hct, and other
LWE samples C, where the latter two hide secret-dependent messages. Their distribution is set up
in such a way that, using a special and carefully designed procedure 𝐹, one can efficiently derive certain
specific GSW ciphertexts of zeros, C∗ = 𝐹(GSW.hpk,GSW.hct,C).

The key idea in CRO is that the hints are random openings R∗ of C∗. An opening of C∗ is a random
string R satisfying C∗ = GSW.Enc(GSW.hpk, 0 ; R), which corresponds to a small-norm matrix in
GSW. Then, a random opening R∗ is sampled as a random small-norm Gaussian matrix satisfying
the same constraint, that is, R∗ ←𝒟|C∗=GSW.Enc(GSW.hpk,0 ; R∗), where𝒟 is the distribution of random
Gaussian matrix of appropriate dimension and Gaussian width.

The CRO assumption postulates that the real distribution of LWE encodings and opening R∗, is
indistinguishable to random encodings, and an equivocated opening R̂∗.

Real︷                                                  ︸︸                                                  ︷(
encodings = (GSW.hpk,GSW.hct,C), R∗

)
≈

Ideal︷                           ︸︸                           ︷
(encodings = ($, $, $), R∗),

In the ideal distribution, C∗ = 𝐹(encodings) is computed in the same way using procedure 𝐹 but
evaluated on random encodings. R∗ is also sampled in the same way w.r.t. C∗, that is random
small Gaussian matrix subject to constraint C∗ = GSW.Enc(GSW.hpk, 0 ; R∗). R∗ is well-defined,
corresponding to a “random opening” of C∗ relative to a truly random “public key”, owning to the
equivocal properties of GSW when the public key is random.
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Key Features of the CRO Assumption:

• (Pseudo)random hints: We prove that in the real distribution, C∗ is, marginally, a random GSW
ciphertext of zeros, and hence its random opening is, marginally, a truly random small-norm
Gaussian matrix. In the ideal distribution, we show that R∗ is pseudorandom. Therefore, no
attacks focusing on hints alone can succeed. The (pseudo)randomness of R∗ stems from the
carefully designed distribution of LWE encodings and the procedure 𝐹 for evaluating C∗ from
them.
This stands in contrast to the structured hints in the circ-SRL assumption [GP21] and the
subspace flooding assumption [DQV+21], which led to attacks [HJL21, JLLS23].

• No natrual noise leakage: The GSW public key and ciphertext have the form B̄𝑇 = (B𝑇 ,B𝑇r + e)
and (C∗)𝑇 = (P𝑇 ,P𝑇r + e∗), and a random opening R∗ satisfies B̄ · R∗ = C∗. R∗ may appear
similar to a lattice trapdoor R← B−1(P), satisfying B · R = P [MP12], but there is a crucial
distinction. A trapdoor R← B−1(P) yields an approximate equality B̄R ≈ C∗ and thus leaks
LWE noises e∗ − eR, whereas an opening R∗ yields an exact equality B̄R∗ = C∗, leaking no
information about LWE noises.
This distinguishes CRO from evasive LWE-type assumptions where the hints are lattice
trapdoors. It also rules out attacks that only combine encodings and hint in the most natural
way – multiplying B and R∗ yields C∗ = BR∗ which can already be efficiently computed from
the original LWE encodings in the assumption, giving no additional information.
In contrast, in Section 7 we describe new attacks on private-coin evasive LWE assumptions
underlying recent construction of pseudorandom obfuscation [AKY24, BDJ+24]. Unlike prior
attacks on private-coin evasive LWE [VWW22, BÜW24], our attack exploits structure in the
noise leakage obtained after computing B̄ · R. Hence, our attack is similar in principle to
previous zeroizing attacks (e.g., [GGH+13b]), and falsifies prior intuition that evasive LWE
assumptions are not subject to zeroizing attacks.
The attacks of [HJL21] on the HPLS conjecture [WW21] also focus on noise leakage only,
though their hints are different, and are functions of the LWE secrets.

• Pseudorandom vs Indistinguishability Assumptions: The distribution of encodings in CRO follow
the same principle behind circular-security of LWE and key-dependent-message security of
GSW. Therefore, attacks on the encodings alone would undermine widely adopted circular
security assumptions (e.g., [BV11, GSW13]). When combined with the opening R∗, there is an
efficiently verifiable constraint C∗ = 𝐹(encodings) = GSW.Enc(GSW.hpk, 0 ; R∗). CRO gives a
new way to reason about the pseudorandomness of the LWE encodings at the presence of
hint, stating that the real LWE encodings can be switched to random in an indistinguishable
way, if R∗ is simulaneously equivocated to maintain the constraint.
As discussed before, prior LWE-with-hint assumptions underlying iO [GP21, WW21, DQV+21,
BDGM22] postulate only indistinguishability security3. At first glance, indistinguishability
may appear weaker and more preferable. The subtle issue, however, is that these assumptions
do not have a natural stronger pseudorandom variant. In our view, the lack of a pseudorandom
variant is precarious: can LWE samples that lack pseudorandomness still retain any security? This
seems to be at odds with the common intuition that security of LWE-based schemes typically
relies on pseudorandomness.

3Private-coin evasive LWE assumptions are pseudorandomness type assumptions. However, they only enable
pseudorandom functionalities.
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Therefore, we view the plausible pseudorandomness of CRO, vetted against known cryptana-
lytic techniques, as a strength of the assumption. At the same time we formulate a weaker
(but sufficient) indistinguishability-based variant IND-CRO (described formally in Figure 9).

• Remaining Challenge in Cryptanalysis: The above three features entail that attacks on CRO
must combine encodings and hint in ways more sophisticated than simply computing B̄ · R∗.
However, to the best of our knowledge, it is unclear how to extend current cryptanalytic
techniques (e.g., lattice attacks) to leverage R∗ in a non-trivial way. In the literature, such
behavior has only arisen in contrived counterexamples – for instance, in prior cryptanalysis
of private-coin evasive LWE [VWW22, BÜW24], the attacker receives auxiliary information
(an obfuscated circuit) that helps leverage the trapdoors. By contrast, CRO does not provide
auxiliary information and instead features a natural distribution of encodings and hint.

Highlights of Our Construction In order to base security on CRO, our construction of xiO, building
upon [GP21, BDGM22], carefully combines several new ideas. The main component is oblivious
LWE sampling, whose goal is to generate LWE samples s̃A + ẽ, where s̃ ∈ Z𝑛𝑞 and A ∈ Z𝑛×ℓ𝑞 , from a
succinct encoding that is much shorter than the bit length ℓ log 𝑞 of generated samples. Crucially, the
security guarantee is that the secrets s̃ and ẽ remain pseudorandom and can be used to re-randomize
other LWE samples. Let us briefly highlight some key ideas in our construction; we refer the reader
to Section 4 for a detailed overview of how these ideas are implemented.

(1) We introduce new ways of encoding random LWE secrets s and smudging noises e inside the
oblivious LWE sampler or xiO encoding. Specifically, the encoding contains GSW ciphertexts
of s, along with LWE samples using noises e modulo a small modulus Δ≪ 𝑞. This encoding
differs from prior approaches, which either store s and e in the CRS, derive them from a PRF,
or expand them from sB + e and a trapdoor B−1(P).

(2) We design a carefully crafted homomorphic evaluation procedure to derive a GSW ciphertext
hct′ encrypting (sA+ e) mod 𝑞. This special procedure is crucial to ensure that the hint = R∗ in
CRO has a random marginal distribution in the real distribution and pseudorandom in the ideal
distribution, thereby avoiding certain attacks. In contrast, prior constructions rely on generic
homomorphic evaluation procedure, which ended up leading to counterexamples [HJL21].

(3) Next, the GSW ciphertext hct′ of (sA + e) mod 𝑞 is homomorphically decrypted using the
dual GSW scheme (a.k.a. the packed dual-Regev encryption), producing the final samples
s̃A + ẽ. Owing to (1) and (2), we can show that s̃ and ẽ are both truly random in their marginal
joint distribution. This allows the security reduction to CRO to internally emulate s̃ and ẽ by
sampling them randomly. As a result, the CRO assumption itself only contains an opening R∗
and does not incur natural noise leakage.

(4) Finally, it is essential to rerandomize the GSW ciphertext hct′ before performing homomorphic
decryption. We achieve this using public randomness R∗ in the CRS by setting hct′ = hct′+B̄R∗,
following the approach of [GP21]. Rerandomization is key to achieving simulation-based
security for oblivious LWE sampler and xiO (instead of mere indistinguishability). Indeed,
the simulator can “program” the truth table TT into R∗ in the CRS.
Recall that CRO conjectures the pseudorandomness of the LWE samples when the hint is
simultaneously equivocated. Intuitively, (as typically is the case when using pseudorandom
assumptions) to maintain the correctness of the oblivious LWE sampler/xiO when the LWE
samples switch to random, we need to “program” the outputs (fresh LWE samples or TT) into
the CRS. The stronger simulation security of xiO is interesting on its own.
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1.2 Paper Organization

In Section 2, we formally define our new CRO assumption. We also provide cryptanalysis of this
assumption and compare it with related assumptions. Section 3 presents the necessary preliminaries
for our iO construction, including a recall of functional encodings, a key primitive that implies 𝑖𝑂.

In Section 4, we provide an overview of our functional encoding construction, highlighting the
motivation behind our design and its essential algebraic components. Section 5 introduces a formal
construction of functional encoding schemes for all polynomial-sized circuits based on the CRO
assumption.

In Section 6, we define a weaker indistinguishability variant of the CRO assumption, denoted
IND-CRO, and demonstrate how it implies an oblivious LWE sampler, a primitive known to imply
functional encoding schemes.

Finally, in Section 7, we present a counterexample to the private-coin evasive LWE scheme.

2 Circular Security with Random Opening (CRO)

2.1 Preliminaries

Notations We denote the set of integers by Z, and the set of integers modulo 𝑞 by Z𝑞 . Vectors are
represented as boldface lowercase letters, while matrices are denoted by boldface uppercase letters.
For a matrix W ∈ Z(𝑛+1)×𝑚

𝑞 , we use W ∈ Z𝑛×𝑚𝑞 to denote the matrix W excluding its bottom row, and
we use W ∈ Z1×𝑚

𝑞 to denote the bottom row of the matrix W. The 𝑛-dimensional identity matrix is
denoted as I𝑛 , and zero vectors/matrices of corresponding dimensions are written as 0𝑛 and 0𝑛×𝑚 ,
respectively. We use 1𝑖 , 1𝑖 , 𝑗 to denote the unit vector/matrix with a 1 on the 𝑖-th/(𝑖 , 𝑗)-th index and
0 elsewhere. The notation 1 will only be used when the dimension of the unit vector/matrix is clear
from the context. For a vector a ∈ Z𝑛𝑞 , we denote the bitwise decomposition bits(a) ∈ {0, 1}𝑛⌈log 𝑞⌉,
which consists of the bitwise representation of each entry of a, ordered from the least significant to
the most significant bit. For matrix A ∈ Z𝑛×𝑚𝑞 , we define ∥A∥ as the maximal absolute value of its
entries, and vec(A) ∈ Z𝑛𝑚𝑞 as the column-wise vectorization of A. The discrete Gaussian distribution
over the integers with standard deviation 𝜎 is denoted by𝒟𝜎. For two matrices A, B, we define
their Kronecker product as A ⊗ B. We define the gadget vector and the gadget matrix as follows:

g𝑞 =
(
1, 2, . . . , 2⌈log 𝑞⌉−1)T ∈ Z⌈log 𝑞⌉

𝑞 , G𝑛,𝑞 = I𝑛 ⊗ gT
𝑞 ∈ Z

𝑛×𝑛⌈log 𝑞⌉
𝑞 .

We omit the subscripts 𝑛, 𝑞 when the dimensions/modulus are clear from the context. Given vector
p ∈ Z𝑛𝑞 , we define G−1(p) ∈ {0, 1}𝑛⌈log 𝑞⌉ as the bitwise decomposition bitsp. In particular, we have
GG−1(p) = p. We also extend the notation to matrices in a column-wise manner.
Standard Lemmas We introduce a few useful lemmas that will be used in this section.

Lemma 1 (Corollary of the Leftover Hash lemma ([HILL99, MM11])). Let 𝑛, 𝑚, 𝑞 be integers such that
𝑚 > 𝑐𝑛 log 𝑞 for some sufficiently large constant 𝑐, and 𝑞 ≥ 2. Then, for every 𝑘 = poly(𝑛), the statistical
distance of the following two distributions is bounded by 2−Ω(𝑛){

(B,BR)
���B← Z𝑛×𝑚𝑞 ,R← {0, 1}𝑚×𝑘

}
≈𝑠

{
(B,U)

���B← Z𝑛×𝑚𝑞 ,U← Z𝑛×𝑘𝑞

}
.

Furthermore, the lemma also holds for R←𝒟𝑚×𝑘
𝜎 for 𝜎 = 𝜔(

√
log 𝑛).

The following are a few well-known statistical lemmas. We omit the proofs here,
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Lemma 2 (Gaussian Tail). For all 𝜆 ∈ N and 𝜎 > 0,

Pr[|𝑥| ≥
√
𝜆𝜎|𝑥 ←𝒟𝜎] ≤ 2−𝜆

Lemma 3 (Discrete Gaussian Smudging). For all 𝜆 ∈ N, 𝑦 ∈ Z, and 𝜎 ≥ 2𝜆|𝑦|, the statistical distance
between 𝑦 +𝒟𝜎 and𝒟𝜎 is at most 2−Ω(𝜆).

Lemma 4 (Rounding lemma). Let 𝑛, 𝑞,Δ ∈ N such that Δ|𝑞. Let (v, e) ∈ (Z𝑛𝑞 )2 be (joint) random
variables where

• The marginal distribution of v is 𝜖-close to uniform in Z𝑛𝑞 .

• e has bounded norm, Pr[∥e∥ ≥ 𝐵] ≤ 𝜖′.

Then

Pr
[ ⌊ v
Δ

⌉
≠

⌊v + e
Δ

⌉]
≤ 2𝐵𝑛

Δ
+ 𝜖 + 𝜖′.

Lattice Trapdoor We recall the notion of lattice trapdoors from [GPV08, MP12].

Lemma 5 (Lattice Trapdoor[GPV08, MP12, BLP+13]). Let 𝑛, 𝑚, 𝑞 be integers such that 𝑚 ≥ 3𝑛 log 𝑞.
There exist efficient algorithms TrapGen,SampPre:

• TrapGen(1𝑛 , 𝑞, 𝑚) takes as input the lattice parameters and outputs matrix A ∈ Z𝑛×𝑚𝑞 and its trapdoor
T.

• SampPre(A,T,Y, 𝜎) takes as input a matrix A ∈ Z𝑛×𝑚𝑞 , its trapdoor T, a target Y ∈ Z𝑛×𝑘𝑞 , and a
width parameter 𝜎, and outputs a preimage R ∈ Z𝑚×𝑘𝑞 .

The algorithms satisfy the following two properties.

Statistical Randomness: The distribution of A sampled from TrapGen is 2−𝑛-close to uniform:{
A
���(A,T) ← TrapGen(1𝑛 , 𝑞, 𝑚)

}
≈2−𝑛
𝑠

{
A← Z𝑛×𝑚𝑞

}
.

Preimage Sampling For every polynomial 𝑘 = 𝑘(𝑛), every ensembles of target matrices {Y𝑛 ∈ Z𝑛×𝑘𝑞 }𝑛 ,
and every width parameter 𝜎 > 𝑚 log 𝑛, the preimage obtained from SampPre is 2−𝑛-close the
conditional Gaussian distribution:{
(A,R)

���� (A,T) ←$ TrapGen(1𝑛 , 𝑞, 𝑚)
R ←$ SampPre(A,T,Y, 𝜎)

}
𝑛

≈2−𝑛
𝑠

{
(A,R)

���� (A,T) ←$ TrapGen(1𝑛 , 𝑞, 𝑚)
R ←$𝒟𝑚×𝑘

𝜎 |AR=Y

}
𝑛

Learning with Error We recall the LWE assumption.

Definition 1 (LWE [Reg05]). Let 𝑛 = 𝑛(𝜆) and 𝑞 = 𝑞(𝜆) be integers, and let 𝜎 = 𝜎(𝜆) > 0 be a noise
parameter. We say that the 𝜖-LWE𝑛,𝑞,𝜎 assumption holds if for all 𝑚 = poly(𝑛), the following ensembles are
𝜖(𝜆) indistinguishable to all polynomial-sized adversaries:{

(A, sTA + eT)
��� A← Z𝑛×𝑚𝑞 , s← Z𝑛𝑞 , e←𝒟𝑚

𝜎

}
≈𝜖𝑐

{
(A, uT)

��� A← Z𝑛×𝑚𝑞 , u← Z𝑚𝑞
}

In this work, we rely on sub-exponential security for LWE with sub-exponential modulus-
to-noise ratio. Namely, i.e., 𝑛 = poly(𝜆), 𝑞/𝜎 = Θ(2𝑛𝛿 ) for some constant 𝛿 ∈ (0, 1). We assume
𝜖-LWE𝑛,𝑞,𝜎 holds for 𝜖(𝜆) = 2−𝜆𝜌 for some constant 𝜌 > 0.
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2.1.1 Homomorphic Encryption

We define our abstraction of GSW FHE scheme, which hides most details of the construction
and highlights the properties that are crucial for understanding the assumption structure. Note
that GSW supports evaluating mixed circuits 𝑓 : {0, 1}𝑘 → Zℓ𝑞 which first computes the bitwise
representation of the output and then packs the bits into Z𝑞 elements. We therefore consider
function class ℱ mapping to Z𝑞 vectors and define approximate correctness for decryption.

Definition 2 (Homomorphic Encryption.). Let 𝑛 be a positive integer, and all other parameters are
implicitly dependent on 𝑛. A homomorphic encryption scheme with message spaceℳ, key space 𝒦 , and
encryption space 𝒞 , supporting function class ℱ mapping vectors overℳ to vectors over a ring ℛ that is
contained inℳ, consists of the following algorithms:

• PKGen(r) takes as input a randomly sampled secret key r← Z𝑛𝑞 and outputs a public key hpk ∈ 𝒦 .

• Enc(hpk,m; R) takes as input a public key hpk, a message m ∈ ℳ𝑘 for some dimension 𝑘, and
encryption randomness 𝑅 ← 𝒟𝑘

enc sampled according to 𝒟enc, outputs a ciphertext hct which is a
vector over 𝒞 𝑘 . (Sometimes the notation hct(m) is used in order to explicitly indicate the encrypted
message.)

• Eval(hct(m), 𝑓 ) takes as input a ciphertext hct(m), a circuit 𝑓 ∈ ℱ , and outputs a ciphertext hct 𝑓 of
the output 𝑓 (m).

• Dec(hsk, hct) takes as input a secret key hsk and a ciphertext hct, and outputs a message m ∈ ℳ𝑘∪{⊥}.

We require a homomorphic encryption scheme to be correct and secure as defined below.

𝛼(𝑛)-Approximate Decryption Correctness: For every 𝑘 ∈ Z, message 𝑚 ∈ ℳ𝑘 , and function 𝑓 ∈ ℱ
taking inputs of 𝑘 elements, the output ciphertext of the homomorphic encryption decrypts to some
message that is 𝛼(𝑛)-close to the correct evaluation outcome 𝑓 (m) under the Euclidean norm.

Pr


Dec(hsk, hct 𝑓 ) − 𝑓 (m)

 ≤ 𝛼(𝑛)

����������
r← Z𝑛𝑞

hpk← PKGen(r)
R←𝒟𝑘

enc
hct = Enc(hpk,m; R)

hct 𝑓 = Eval(hct, 𝑓 )


= 1

𝜖(𝑛)-Pseudorandom Public Key and Ciphertext: For every polynomial 𝑘 = 𝑘(𝑛), every ensemble of
messages {m ∈ ℳ𝑘}𝑛 , the following ensembles are 𝜖(𝑛)-indistinguishable to all polynomial-sized
adversaries:(hpk, hct)

��������
r ← Z𝑛𝑞

hpk ← PKGen(r)
R ←𝒟𝑘

enc
hct = Enc(hpk,m; R)

𝑛 ≈
𝜖
𝑐

{
(hpk, hct)

���� hpk ←𝒦
hct ← 𝒞 𝑘

}
𝑛

We also formulate the following additional properties, which are satisfied by the GSW scheme.

Definition 3. A homomorphic encryption scheme is statistically (𝒟rand , 𝜖(𝑛))-rerandomizable, if for
every polynomial 𝑘 = 𝑘(𝑛), polynomial ℓ = ℓ (𝑛), ensemble of function-message pairs {m ∈ ℳ𝑘 , 𝑓 ∈ ℱ𝑘,ℓ}𝑛 ,
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where ℱ𝑘,ℓ is the subset of function class ℱ that mapsℳ𝑘 to ℛℓ , it holds that for sufficiently large 𝑛 ∈ Z,

Pr


SD ©«

(
hct 𝑓 ⊞ (− 𝑓 (m)) ⊞ hct0

�� hct0← Enc(hpk, 0ℓ ;𝒟rand)
)
,(

hct0
�� hct0← Enc(hpk, 0ℓ ;𝒟rand)

) ª®¬ ≤ 𝜖(𝑛)

����������
r← Z𝑛𝑞

hpk← PKGen(r)
R←𝒟𝑘

enc
hct = Enc(hpk,m; R)

hct 𝑓 = Eval(hct, 𝑓 )


= 1

where 0 denotes the zero element in ring ℛ, and ⊞ is the homomorphic addition operation over two ciphertexts
or over a ciphertext and a constant, implicitly defined by Eval, and SD(𝐴, 𝐵) denotes the statistical distance
between two distributions.

Definition 4. A homomorphic encryption scheme has 𝜖(𝑛)-equivocal mode if there are two additional
algorithms:

• TDGen(1𝑛 , 𝑞) samples a public key hpk together with a trapdoor T.

• TDSamp(hpk,T, hct) on input a public key hpk with a trapdoor T, and a target ciphertext hct ∈ 𝒞 ℓ ,
samples a matching encryption randomness R satisfying Enc(hpk, 0ℓ ; R) = hct.

These two algorithms satisfy the following two statistical properties:{
hpk

���� r ← Z𝑛𝑞
hpk ← PKGen(r)

}
𝑛

≈𝜖𝑠
{

hpk
�� (hpk,T) ← TDGen(1𝑛 , 𝑞)

}
𝑛

For every polynomial ℓ = ℓ (𝑛), every ensemble of ciphertexts {hct ∈ 𝒞 ℓ}𝑛 ,{
(hpk,R∗)

���� (hpk,T) ← TDGen(1𝑛 , 𝑞)
R∗ ←𝒟rand|Enc(hpk,0ℓ ;R∗)=hct

}
𝑛

≈𝜖𝑠
{
(hpk,R∗)

���� (hpk,T) ← TDGen(1𝑛 , 𝑞)
R∗ ← TDSamp(hpk,T, hct)

}
𝑛

2.1.2 GSW encryption

In this section, we recall the construction of the GSW encryption scheme [GSW13] under the
definitional framework of definition 2.

The GSW encryption has message spaceℳ = {0, 1} ∪ Z𝑚′𝑞 , key space Z𝑛𝑞 , and ciphertext space
Z(𝑛+1)×𝑚′
𝑞 , where 𝑚′ = (𝑛 + 1)⌈log 𝑞⌉ is the width of the gadget matrix G𝑛+1.

We first define the function class ℱ𝑑,𝑀 which the GSW HE scheme supports.

Definition 5 (Bounded depth packed circuit). The function class ℱ𝑑,𝑀 of packed circuit with depth bound
𝑑 and output size 𝑀 consists of functions of the form

𝑓 : {0, 1}𝑘 × Z𝑘′𝑚′𝑞 → Z𝑀𝑞 , 𝑓 (x, v) = 𝐿(𝐶(x), v),

where 𝐿 : Zℓ ′𝑚′𝑞 ×Z𝑘′𝑚′𝑞 → Z𝑀𝑞 is some linear function overZ𝑞 with {0, 1,−1}-coefficients, and 𝐶 : {0, 1}𝑘 →
Zℓ
′𝑚′
𝑞 is a function described by a polynomial sized depth 𝑑 circuit which computes bit outputs {0, 1}ℓ ′𝑚′⌈log 𝑞⌉,

subsequently packed into vectors in Zℓ
′𝑚′
𝑞 .

The GSW HE schemes supports bounded depth packed circuits ℱ𝑑,𝑀 for appropriate 𝑞 = 𝑚′Ω(𝑑)

and 𝑀 is a multiple of 𝑚′.
The scheme consists of the following algorithms:
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• PKGen(r): Sample a public matrix B ← Z𝑛×𝑚𝑞 for appropriate 𝑚 = Θ(𝑛 log 𝑞) and a noise
vector e←𝒟𝑛

𝜎 . Output the public key

hpk = B =

(
B

rTB + eT

)
∈ Z(𝑛+1)×𝑚

𝑞 .

• Enc(hpk, x; R): For a single element 𝑥 ∈ ℳ = {0, 1} ∪ Z𝑚′𝑞 , the encryption of 𝑥 is computed by

hct(𝑥) = BR + 𝑥 ·G𝑛+1 (if 𝑥 ∈ {0, 1}), hct(𝑥) = BR +
(
0𝑛×𝑚′

𝑥T

)
(if 𝑥 ∈ Z𝑚′𝑞 ),

where the encryption randomness R is sampled from𝒟enc = {0, 1}𝑚×𝑚
′
. For vectors x ∈ ℳ𝑘 ,

encryption can be performed element-wise.

• Eval(hct(x), 𝑓 ): The GSW scheme supports homomorphic evaluation of functions using the
following operations:

– HAdd: Ciphertext for bits and vectors are respectively additive homomorphic.

hct(𝑏1) ⊞ hct(𝑏2) = (BR1 + 𝑏1G) + (BR2 + 𝑏2G) = B(R1 + R2) + (𝑏1 + 𝑏2)G = hct(𝑏1 + 𝑏2),

hct(v1) ⊞ hct(v2) = (BR1 +
(

0
vT

1

)
) + (BR2 +

(
0
vT

2

)
) = B(R1 + R2) +

(
0

vT
1 + vT

2

)
= hct(v1 + v2).

Extending this to plaintext vectors, we have

hct(v1) ⊞ v2 = (BR +
(

0
vT

1

)
) +

(
0
vT

2

)
= BR +

(
0

vT
1 + vT

2

)
= hct(v1 + v2).

– HMult: Ciphertext for bits are multiplicative homomorphic.

hct(𝑏1) ⊠ hct(𝑏2) = hct(𝑏1) ·G−1(hct(𝑏2)) = BR× + 𝑏1𝑏2G,

where R× = R1G−1(hct(𝑏2)) + 𝑏1R2.
– Packing: Ciphertext for bits can be packed to ciphertext for vectors. Given a vector

v ∈ Z𝑚𝑞 with bitwise representation vT =
∑

2𝑡(𝑣1,𝑡 , . . . , 𝑣𝑚,𝑡),

Pack({hct(𝑣𝑖 ,𝑡)}) =
∑

hct(𝑣𝑖 ,𝑡)G−1(2𝑡 · 1𝑛+1,𝑖)

= B
(∑

R𝑖 ,𝑡G−1(2𝑡 · 1𝑛+1,𝑖)
)
+

(
0
vT

)
= hct(v),

where 1𝑛+1,𝑖 is the unit matrix which is one at the (𝑛 + 1, 𝑖)-th coordinate and 0 elsewhere.

With these homomorphic operation, the scheme evaluates 𝑓 (x, v) = 𝐿(𝐶(x), v) as follows:

1. Evaluate hct(x) → hct(bits(𝐶(x))) using HAdd and HMult.
2. Pack hct(bits(𝐶(x))) into hct(𝐶(x)),
3. Evaluate hct(𝐶(x), v) → hct(𝐿(𝐶(x), v)) using HAdd.
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• Dec(hsk, hct): Ciphertext for vectors can be linearly decrypted by

((−rT , 1) · hct(v))T =
(
(−rT , 1)

((
B

rTB + eT

)
R +

(
0
vT

)))T

= (vT + eTR)T ≈ v.

The GSW scheme satisfies all following desired properties listed in the previous section.

Approximate Decryption Correctness The decryption error of the output ciphertext

ct 𝑓 = BR 𝑓 ⊞ 𝑓 (x) ← Eval(hct(x), 𝑓 )

has norm bounded by
eTR 𝑓

 ≤ 𝑚𝑂(𝑑)∥e∥ = 𝑚𝑂(𝑑)𝑂(𝜆𝜎).

Pseudorandom Public Key and Ciphertext Assuming (sub-exponential) LWE and appropriate
𝑚 = Ω(𝑛 log 𝑞), the GSW scheme has (sub-exponential) pseudorandom public key and
ciphertext.

Rerandomizable By a standard smudging argument (lemma 3), the GSW scheme is statistically
rerandomizable using fresh ciphertext with randomness from large gaussian𝒟rand = 𝒟𝑚×ℓ𝑚′

𝜎0 .
Namely,

(BR 𝑓 ⊞ v) + BR0 ≈2−𝜆
𝑠 BR0 ⊞ v when R0 ←𝒟𝑚×ℓ𝑚′

𝜎 and 𝜎 ≥ 2𝜆
R 𝑓

.
Equivocal mode For appropriate 𝑚 = Ω(𝑛 log 𝑞), random GSW public keys B are 2−𝑛-close to

matrices sampled with trapdoor (lemma 5). Furthermore, given any ciphertext hct ∈ 𝒞 ℓ =
Z(𝑛+1)×ℓ𝑚
𝑞 , one can sample encryption randomness R∗ satisfying BR∗ = hct from the conditional

Gaussian distribution using the trapdoor of B (with up to 2−𝑛 statistical error).

2.2 Assumption Formulation

In this section, we present our assumption. In order to ease the exposition and build intuition
towards our assumption, we introduce it in two stages. Each stage will be associated with a key
concept central to our assumption.

2.2.1 Building Intuition via Abstract Formulation

We will first describe our assumption in two stages, in an abstract way w.r.t. a homomorphic
encryption scheme according to Definition 2. We believe the abstract versions better convey the
rationale (without the burden of concrete algebra). We emphasize that the abstract versions are
only for exposition, our actual assumption is w.r.t. the concrete GSW HE scheme [GSW13].
Stage 1: Circular Security. Our first stage is simply a variant of well-studied circular security of the
Homomorphic Encryption (HE) scheme in the context of Bootstrapping [Gen09]. The assumption
𝑓 circ-circular security is described in Figure 1. The assumption posits indistinguishability between
a real and an ideal distribution. Let Z𝑞 be the ambient space of the HE ciphertexts and the LWE
samples, and 𝑛 the dimension of HE secret keys and LWE secret vectors. In the real distribution, we
have two main components. The first component consists of an honestly homomorphic encryption
public key hpk generated using secret key r ∈ Z𝑛𝑞 , a circularly encrypted ciphertext hct encrypting
the secret key r and a fresh encryption hct0 of zeros. The second component simply consists of LWE
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samples with respect to random matrices A and D encoding secret related terms. The first LWE
sample ct1 with respect to A uses independent secret U and encodes a matrix Iℓ ⊗GT

𝑛r that depends
on r, where 𝑛 is the dimension of the secret key r and ℓ is an integer parameter polynomial in 𝑛 and
should be thought of as much larger than 𝑛. The second sample ct2 with respect to D uses r as the
secret vector and encodes a Z𝑞-vector-valued function 𝑓 circ on U and hct0. The distribution outputs
(hpk, hct, hct0 ,A,D, ct1 , ct2).

The ideal distribution is exactly the same except that all the components are now replaced with
randomly chosen vectors of appropriate size over Z𝑞 .

𝑓 circ-circular security

The assumption is parameterized by a polynomial sized circuit 𝑓 circ with do-
main/codomain implicitly defined below.

𝒟0: Real distribution 𝒟1: Ideal distribution

HE Components: HE Components:

• Secret key r← Z𝑛𝑞

• Public key hpk← KeyGen(r)

• Ciphertext hct← HE.Enc(hpk, r;𝒟enc)

• Mask hct0 ← HE.Enc(hpk, 0𝑀′;𝒟rand)

• Public key hpk← $

• Ciphertext hct← $

• Mask hct0 ← $

LWE Components: LWE Components:
• Public matrices A← Z𝑛×ℓ𝑞 ,D← Z𝑛×𝑀𝑞

• ct1 ← UTA + Iℓ ⊗ GT
𝑛r

::::::::::::::
, where U← Z𝑛×ℓ𝑛⌈log 𝑞⌉

𝑞

• ct2 ← rTD + 𝑓 circ(U, hct0)
:::::::::::::::::

• Public matrices A,D← $

• ct1 ← $

• ct2 ← $

Output: (hpk, enc), where encoding enc = (hct, hct0 ,A,D, ct0 , ct1)

Figure 1: 𝑓 circ-circular security of HE scheme. We use the curly notation · · ·
::

to hide the noise terms.

We note that by inspection, only looking at the HE component corresponds to the standard
circular security assumption used for bootstrapping GSW homomorphic encryption. Similarly,
examining the LWE components independently (ignoring the dependence on the public ciphertext
hct0 for the time-being) is close to the standard 2-circular security assumption. Our assumption
posits indistinguishability of these two components together. We discuss cryptanalysis of this
shortly in Section 2.3.2.
Stage 2: Security with Re-Randomized Opening. As such, the first assumption is not useful for iO
because one can never use these circularly encrypted ciphertexts to learn outputs securely in the
clear. Our next assumption modifies the circular security assumption in a way that allows us to
securely learn the outputs.

We consider the assumption, denoted as CRO, to be the 𝑓 circ-circular security (Figure 1) with
an additional opening component described in Figure 2. Since we work with the GSW encryption
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scheme, we provide a concrete version of this assumption in Figure 3.
In this assumption, we consider a function 𝑓 (with potentially Z𝑞-vector outputs) to be homo-

morphically evaluated. One computes hct 𝑓 = Eval( 𝑓 , hct). The assumption aims to securely open
the randomness to hct 𝑓 that allows one to learn 𝑓 (r).

One intuitive way to achieve this would be to release randomness R 𝑓 such that hct 𝑓 =

HE.Enc(hpk, 𝑓 (r); R 𝑓 ). Such a randomness can be computed as a deterministic function of the ran-
domness used in the initial ciphertexts used to compute hct 𝑓 relying on the well-known randomness
homomorphism structure in the GSW encryption scheme. Unfortunately, leaking R 𝑓 this was
could jeopardize security as it might have a structure that enables leaking sensitive information.
In fact, leveraging the prior attack techniques developed in [HJL21] one might be able to show
explicit attacks. Alternatively, one might try to release a random Gaussian opening R̃ 𝑓 subject to the
equation hct 𝑓 = HE.Enc(hpk, 𝑓 (r); R̃ 𝑓 ), hoping that the additional randomness helps with security.
This can be done, for example, by relying on a trapdoor matrix for the LWE coefficient matrix used
to generate hpk. Unfortunately, here too, one could find structural vulnerabilities enabling explicit
attacks. 4

A reasonable approach to handle this is to introduce some sort of shield (as also considered
by Gay and Pass [GP21]). Namely, we consider a fresh ciphertext hct0 that encrypts 0, encrypted
with randomness sampled from a special re-randomizing randomness distribution𝒟rand capable
of smudging the evaluated randomness inside hct 𝑓 (see the rerandomizability property of HE,
Definition 3). For GSW, the distribution𝒟rand consists of i.i.d. samples from a wide enough Gaussian
distribution. Then, one can release an opening of the re-randomized ciphertext hct∗𝑓 = hct 𝑓 + hct0.
The opening is simply R∗ = R 𝑓 + R0.

If the function 𝑓 (★) did not depend on the secret, and in addition there were no circular
encryptions of the secrets in the real distribution, the security of such a distribution can be proved
under LWE (see [GP21] for details). Note that however, since the ciphertext hct encrypts the secret
r, one has to be careful on which functions 𝑓 (★) should be allowed to learn. Therefore, for the
assumption to make sense, we consider functions 𝑓 (★) whose output can be computed publicly.
We capture this by the safety constraint in (1), where we require that in the real distribution, with
high probability 𝑓 (r) = 𝑓 (hct, hct0 ,A,D, ct1 , ct2) for an efficient function 𝑓 . This means revealing
the function output is benign, since it can already be computed efficiently from the encodings
themselves.

This describes the real distribution in Figure 3. Namely, the distribution consists of HE and LWE
encodings along with fresh encryption hct0 and the opening R∗. We note that 𝑓 (★) is a function
that satisfies a safety constraint outlined in Figure 2. Namely, the constraint requires that with
overwhelming probability 𝑓 (r) = 𝑓 (enc)where enc contains (hpk, hct, hct0 ,A,D, ct1 , ct2) for some
efficient functions 𝑓 , 𝑓 . One can also observe that instead of releasing R∗ = R0 + R 𝑓 , we release R∗

subject to hct∗𝑓 = HE.Enc(hpk, 0; R∗)⊞ 𝑓 (r)w.h.p.
= HE.Enc(hpk, 0; R∗)⊞ �̃� (enc). For the GSW encryption

scheme, the distribution of the openings generated deterministically as R0+R 𝑓 and through random
sampling are statistically close so long as𝒟rand is a wide-enough Gaussian. This choice is made as
it syntactically unifies our presentation of the real and ideal distributions.

At this point, we remark that Gay and Pass also proposed an assumption that gave rise to similar
structures, but as we point out in Section 2.3.3 there are major differences. Notably, in our case the
function 𝑓 (★) is independent of hct0. This causes R 𝑓 and R0 to be independent. As a consequence

4The attack works by leveraging ideas inspired by [HJL21]. Namely, the attack exploits that such an R̃ 𝑓 must satisfy
the equation eR̃ 𝑓 = eR 𝑓 where e is the error vector in the LWE sample contained inside hpk. This equation can be used
to infer non-trivial information about R 𝑓 . We omit the details as they are not very central to the proposal in this paper.

14



Opening procedure Open( 𝑓 , �̃� , ·)

Constraint: The opening is parameterized with two efficiently computable function 𝑓 and �̃�

where 𝑓 is in the function class supported by HE. 𝑓 maps tuple (r,A,D) to ℛ𝑀′, while �̃� maps
enc to ℛ𝑀′. The procedure is only defined if ( 𝑓 , �̃� ) satisfies the following constraint.

safety constraint: Pr[ 𝑓 (r,A,D) = �̃� (enc)] ≥ 1 − 𝜖(𝜆), (1)

where the probability is taken over the sampling of (r,A,D, enc) according to distribution𝒟0.
We require 𝜖 to be negligible when considering polynomial security of CRO, and require 𝜖 = 2−𝜆𝛿

when considering sub-exponential security.

Procedure Open( 𝑓 , �̃� , (hpk, enc)):
Parse enc = (hct, hct0 ,A,D, ct0 , ct1), the opening is computed as follow.

• Perform homomorphic evaluation over hct to get hct 𝑓 = HE.Eval(hct, 𝑓A,D), where function
𝑓A,D(·) = 𝑓 (·,A,D).
Comment: When enc follows the real distribution𝒟0, since hct is an honest encryption of r, by correctness of HE, hct 𝑓 is
a valid encryption of 𝑓A,D(r) = 𝑓 (r,A,D). Following the safety constraint (Equation (1)), hct 𝑓 is with overwhelming
probability a valid encryption of �̃� (enc).

• Rerandomize ciphertext using the mask hct∗𝑓 = hct 𝑓 + hct0 ⊟ �̃� (enc).
Comment: When enc follows the real distribution𝒟0, by the rerandomizable property of HE (Definition 3), the distribution
of hct∗

𝑓
is statistically close to HE.Enc(hpk, 0𝑀′ ;𝒟rand).

• Sample a random opening R∗ of hct∗𝑓 with respect to hpk, i.e.,

R∗ ←𝒟rand|hct∗
𝑓
=HE.Enc(hpk,0𝑀′ ;R∗).

Comment: When enc follows the real distribution 𝒟0, by the above discussion, the marginal distribution of R∗ is
statistically close to 𝒟rand (Theorem 1). When enc follows the ideal distribution 𝒟1, by the equivocation property of
HE (Definition 4) and the 𝑓 circ-circular security of HE (Figure 1), the marginal distribution of R∗ is pseudorandom
(Theorem 2).

Figure 2: ( 𝑓 , �̃� )-opening for 𝑓 circ-circularly secure HE scheme. We note that though the opening
procedure below is not necessarily efficient, it is possible to efficiently sample its output R∗ together
with𝒟0 or𝒟1.

R∗ = R 𝑓 +R0 behaves like a standard Gaussian matrix over integers. In the assumption proposed by
Gay and Pass, homomorphic evaluation of 𝑓 can depend on hct0, leading R∗ to have an extractable
bias, allowing for an efficient distinguisher in the assumption for a properly chosen 𝑓 [HJL21].

We now describe the ideal distribution in our assumption. Correspondingly, the new ideal
distribution contains (hpk, enc) ← 𝒟1 together with R∗ ← Open( 𝑓 , �̃� , (hpk, enc)). Here, both
hpk, enc are sampled as uniformly random matrices in their co-domains as opposed to being
generated honestly. While we do this, we make sure that the Open procedure is still well defined.
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In the case, the intermediate ciphertexts hct 𝑓 and hct∗𝑓 are now computed efficiently from random
public key hpk and random encodings enc by using the homomorphic evaluation procedures. The
opening R∗ is now sampled so that it satisfies the equation hct 𝑓 ∗ = HE.Enc(hpk, 0; R∗) ⊞ 𝑓 (enc). One
might wonder why can this be done? We note that when the public keys are random, GSW enjoys
an equivocal mode as defined in Definition 4 which guarantees such pre-images that can be sampled
using a trapdoor matrix for hpk. We also ensure that R∗ is sampled according to a discrete Gaussian
of the same width as in the case of real distribution.

2.2.2 Concrete Assumptions

We consider circular security with random opening assumption specifically with respect to the
GSW encryption scheme. We formulate three versions. First, a parameterized assumption w.r.t.
some appropriate tuple ( 𝑓 circ , 𝑓 , �̃� ), referred to as the ( 𝑓 circ , 𝑓 , �̃� )-CRO assumptions. Next, in quest
of identifying a fully-specified assumption sufficient for iO, we provide a completely specified
single assumption with concrete ( 𝑓 circ , 𝑓 , �̃� ) needed for our iO construction later. Throughout, this
is referred to as the CRO assumption that we use. In section 6, we weaken the pseudorandomness
requirement in CRO above and propose a weaker indistinguishability version, referred to as the
IND-CRO assumption.

The ( 𝑓 circ , 𝑓 , �̃� )-CRO assumptions For a tuple of appropriate functions ( 𝑓 circ , 𝑓 , �̃� ), with appropriate
domains/co-domains, and satisfying the safety constraint (Equation (1)), the abstract assumption
instantiated with GSW, which is an HE scheme satisfying all needed properties (see Section 2.1.2),
gives the following assumption.

Definition 6 (( 𝑓 circ , 𝑓 , �̃� )-Circular Security with Random Opening (CRO) Assumption). Let 𝜆 be
the security parameter. Let 𝑛, 𝑚, 𝑑, 𝑘, ℓ , 𝑀, 𝜎 be integer parameters that are polynomial in 𝜆, and 𝑞, 𝜎0 be
(potentially superpolynomial) integer parameters where 𝑚 = Ω(𝑛 log 𝑞) and 𝜎0 = 2𝜆𝑚Ω(𝑑) are sufficiently
large. Let 𝑓 ∈ ℱ𝑑,𝑀 be a bounded depth packed circuit (definition 5) which parses its input as bits and have
depth bound 𝑑 and output length 𝑀, where 𝑀 w.l.o.g. is a multiple of (𝑛 + 1)⌈log 𝑞⌉5, and 𝑓 circ and �̃� be
efficiently computable functions with domain/codomain implicitly defined in Figure 3.

We say that the (subexponential) ( 𝑓 circ , 𝑓 , �̃� )-CRO assumption holds if 𝒟0 and 𝒟1 in Figure 3 are
(sub-exponentially) indistinguishable to all polynomial time attackers.

{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2), hint = R∗) | (hpk, enc, hint) ← 𝒟0}𝜆
≈{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2), hint = R∗) | (hpk, enc, hint) ← 𝒟1}𝜆

Next, we provide the fully-specified version (referred to as the CRO assumption) that is needed
for our iO construction. The main difference between these assumptions is that this assumption
is a particular instantiation of the previous assumption working with specific parameters (such
as modulus, dimension, etc.) and specific functions ( 𝑓 circ , 𝑓 , �̃� ) satisfying the safety constraint, as
needed by our iO construction. Note that our iO construction needs to use this assumption for a
single choice of ( 𝑓 circ , 𝑓 , �̃� ). These functions do not depend on which circuit is being obfuscated, but
only on the input/output length and the circuit size.
The CRO assumption In fact, for our construction of iO, it suffices to assume the CRO assumption
for specific tuples of functions. By default, CRO-assumption refers to this version.

5One can always append zeros to the function output to make 𝑀 a multiple of (𝑛 + 1)⌈log 𝑞⌉. This is a technicality
due to the interface of GSW that we formalized in accordance with the abstract definition of HE, requiring that when
encrypting a Z𝑞 vector, the length of the vector is (𝑛 + 1)⌈log 𝑞⌉.
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( 𝑓 circ, 𝑓 , �̃� )-Circular Security with Random Opening

Real Distribution𝒟0 / Ideal Distribution𝒟1

HE (GSW) Components (Real): LWE Components (Real):

• r← Z𝑛𝑞 .

• hpk = B =

(
B

rTB + eT

)
, B← Z𝑛×𝑚𝑞 , e←𝒟𝑚

𝜎 .

• hct = BR + bits(r)T ⊗ G𝑛+1,
R← {0, 1}𝑚×𝑛(𝑛+1)⌈log 𝑞⌉2 .

• hct0 = BR0, R0 ←𝒟𝑚×𝑀
𝜎0 .

• A← Z𝑛×ℓ𝑞 ,D← Z𝑛×𝑘𝑞 .

• ct1 = UTA + EA + Iℓ ⊗ GT
𝑛r,

U← Z𝑛×ℓ𝑛⌈log 𝑞⌉
𝑞 , EA ←𝒟ℓ𝑛⌈log 𝑞⌉×ℓ

𝜎 .

• ct2 = rTD + eT
D + 𝑓 circ(U, hct0),

eD ←𝒟𝑘
𝜎

HE (GSW) Components (Ideal): LWE Components (Ideal):
• hpk← Z(𝑛+1)×𝑚

𝑞

• hct← Z(𝑛+1)×𝑛(𝑛+1)⌈log 𝑞⌉2
𝑞 .

• hct0 ← Z(𝑛+1)×𝑀
𝑞 .

• A← Z𝑛×ℓ𝑞 ,D← Z𝑛×𝑘𝑞 .

• ct1 ← Zℓ𝑛⌈log 𝑞⌉×ℓ
𝑞 .

• ct2 ← Z1×𝑘
𝑞 .

Open( 𝑓 , �̃� , (hpk, enc = (hct, hct0 ,A,D, ct1 , ct2))):
Functions ( 𝑓 , �̃� ) satisfies the safety constraint (1), i.e., with overwhelming probability over the
sampling of (hpk, hct, hct0 ,A,D, ct1 , ct2) according to𝒟0, it holds that 𝑓 (r,A,D) = �̃� (enc).

1. hct 𝑓 = HE.Eval(hct, 𝑓A,D)
in𝒟0
= BR 𝑓 ⊞ 𝑓 (r,A,D) , where function 𝑓A,D(·) = 𝑓 (·,A,D).

2. hct∗𝑓 = hct 𝑓 ⊞ (− �̃� (enc)) ⊞ hct0
in𝒟0≈𝑠 B(R 𝑓 + R0).

3. R∗ ← 𝒟𝑚×𝑘
𝜎0

����hct∗
𝑓
=BR∗ .

Output: (hpk, enc = (hct, hct0 ,A,D, ct1 , ct2),R∗).

Figure 3: 𝑛, 𝑚, 𝑞, 𝑑, 𝑘, ℓ , 𝑀, 𝜎, 𝜎0 are 𝜆-dependent parameters where 𝑛, 𝑚, 𝑑, 𝑘, ℓ , 𝑀, 𝜎 are polynomials in
𝜆, while 𝑞, 𝜎0 may be superpolynomial in 𝜆 satisfying (𝑛 + 1)⌈log 𝑞⌉|𝑀, 𝑚 = Ω(𝑛 log 𝑞), and 𝜎0 = 2𝜆𝑚Ω(𝑑),
where 𝑚, 𝜎0 are sufficiently large. Circuit 𝑓 ∈ ℱ𝑑,𝑀 is a bounded depth packed circuit (definition 5) with
depth bound 𝑑 and output length 𝑀. We assume that 𝑓 parses its input as bits.

17



Assumption 1 (Circular Security with Random Opening (CRO) Assumption). Let 𝜆 be the security
parameter, and 𝑛, 𝑞, 𝜎 be LWE parameters dependent on 𝜆, where 𝑛 = poly(𝜆), 𝜎 = poly(𝜆), 𝑞 ≤ 2𝑛𝛿 for some
constant 𝛿 ∈ (0, 1), 𝑞 is a multiple of Δ such that 𝑞/Δ ≥ 2𝜆, and Δ ≥ (2𝑛 log 𝑞)𝜆. The (subexponential) CRO
assumption with parameters (𝑛, 𝑞, 𝜎,Δ) states that for an appropriate 𝑚 = Θ(𝑛 log 𝑞), 𝜎0 = Δ/2Θ(𝜆), and
every efficiently computable polynomials 𝑄 : Z→ Z and ℓ : Z→ Z, the (subexponential) ( 𝑓 circ , 𝑓 , �̃� )-CRO
assumption holds for the following function tuple.

hct0 =

(
hct0,𝑖 ∈ Z𝑛×ℓ𝑞

hct0,𝑖 ∈ Z1×ℓ
𝑞

)
𝑖∈[𝑄]

D =

(
D𝑖 ∈ Z𝑛×𝑛⌈log 𝑞⌉

𝑞

)
𝑖∈[𝑄]

ct2 =
(
ct2,𝑖 = rTD𝑖 + eD,𝑖 + 𝑓 circ

𝑖
(U, hct0,𝑖)

)
𝑖∈[𝑄]

𝑓 circ =
(
𝑓 circ
𝑖

)
𝑖∈[𝑄] 𝑓 =

(
𝑓𝑖
)
𝑖∈[𝑄] �̃� =

(
�̃�𝑖

)
𝑖∈[𝑄]

𝑓 circ
𝑖 (U, hct0) = −vec(G−1(−hct0,𝑖))T · (UTG) ∈ Z1×𝑛⌈log 𝑞⌉

𝑞

𝑓𝑖(r,A,D)T = Δ

⌊
rTD𝑖 ·G−1(A)

Δ

⌉
∈ Z1×ℓ

𝑞

�̃�𝑖(hct, hct0 ,A,D, ct1 , ct2)T = Δ

⌊
ct2,𝑖 ·G−1(A) + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
∈ Z1×ℓ

𝑞

Note that 𝑓 is computable by a packed circuit of depth 𝑑 = 𝑂(log(𝑛 log 𝑞)). The corresponding distributions
𝒟0,𝒟1 in Figure 3 have parameters (𝑛, 𝑚 = Θ(𝑛 log 𝑞), 𝑞, 𝑑, 𝑘 = 𝑄𝑛⌈log 𝑞⌉, ℓ , 𝑀 = 𝑄ℓ , 𝜎, 𝜎0).

The CRO assumption is almost fully specified modulo the circuit that implements 𝑓A,D6. The
circuit hard-codes G−1(A) and D, and performs matrix multiplication, tensor products, modulo 𝑞,
and rounding. We simply choose canonical circuits implementing these operations.

We show below that 𝑓 , �̃� considered in the CRO assumption indeed satisfies the safety constraint.
A reader can safely skip the proof of this lemma below without affecting the understanding about
the assumption or our construction:

Lemma 6. The following safety constraint holds w.r.t. the distribution𝒟0 and functions ( 𝑓 circ , 𝑓 , �̃� ) specified
in Assumption 1.

safety constraint: Pr[ 𝑓 (r,A,D) = �̃� (enc)] ≥ 1 − 2−Ω(𝜆) , (2)

where the probability is taken over the sampling of (r,A,D, enc) according to𝒟0.

We defer the proof to section 2.4

Remark 1 (Falsifiability of the CRO assumption). We remark that the CRO assumption is falsifiable,
in particular, the two distributions𝒟𝑏 can be efficiently sampled in a statistically close way, and the main
question is whether the opening R∗ can be sampled efficiently.

We start with the ideal distribution𝒟1, where hpk = B and all encodings enc = (hct, hct0 ,A,D, ct1 , ct2)
are random. Using the lattice trapdoor techniques recalled in Lemma 5, the sampler can sample B with a
trapdoor T, and use the trapdoor to efficiently sample opening R∗ ← B

−1(hct∗𝑓 ). Therefore,𝒟1 is efficiently
sampleable.

In the real distribution𝒟0, B contains LWE samples in the last row and does not have trapdoors. Hence
we need a different efficient sampling procedure. We claim that 𝒟0 is statistically close to (hpk, enc =

6( 𝑓 circ , 𝑓 , �̃� ) is specified as above and the GSW homomorphic evaluation algorithms as in Section 2.1.2
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(hct, hct0 ,A,D, ct1 , ct2), (R 𝑓 + R0)) which can be sampled efficiently. This follows from the fact that the
following ways of sampling R∗ are all statistically close:

R∗ ← 𝒟𝑚×𝑘
𝜎0

����hct∗
𝑓
=hct 𝑓 ⊞(− �̃� (enc))⊞hct0=BR∗ [as in𝒟0]

R∗ ← 𝒟𝑚×𝑘
𝜎0

���BR 𝑓 ⊞hct0=BR∗ [hct 𝑓 ⊞ (− �̃� (enc)) in𝒟0≈𝑠 BR 𝑓 ]

R′0 ← 𝒟𝑚×𝑘
𝜎0 − R 𝑓

���hct0=BR′0
, R∗ = R′0 + R 𝑓 [identical distribution]

R′0 ← 𝒟𝑚×𝑘
𝜎0

���hct0=BR′0
, R∗ = R′0 + R 𝑓 [𝒟𝑚×𝑘

𝜎0 ≈𝑠 𝒟𝑚×𝑘
𝜎0 − R 𝑓 ]

R∗ = R0 + R 𝑓 [identical distribution R0 ≡ R′0]

A reader might find some superficial similarities between CRO and two assumptions considered
in prior works: Evasive LWE [Wee22, Tsa22, VWW22] and 2-Circ SRL security [GP21]. We stress that
there are many important differences in our assumptions that are crucial. It is these differences that
make our assumptions provably robust against natural applications of all known attacks applicable
to Evasive LWE and 2-Circ SRL security. We discuss these aspects and a detailed comparison in the
next section on cryptanalysis.

Before that, we first formally define the weaker circular security assumption implied by CRO so
that we can refer to and analyze it later.
CRO Implies the Weaker 𝑓 circ-Circular Security Assumption As mentioned before, the CRO
assumption strengthens a more basic circular security assumption where the distinguisher is given
all the LWE encodings without the opening R∗.

Definition 7 ( 𝑓 circ-Circular Security Assumption). Let 𝜆, 𝑛, 𝑚, 𝑑, 𝑘, ℓ , 𝑀, 𝜎, 𝑞, 𝜎0 and 𝑓 circ be parame-
ters and a function as specified in Definition 6.

We say that the (subexponential) 𝑓 circ-circular security assumption holds if𝒟0 and𝒟1 without R∗ in
Figure 3 are (sub-exponentially) indistinguishable to all polynomial time attackers.

{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2)) | (hpk, enc, hint) ← 𝒟0}𝜆
≈{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2)) | (hpk, enc, hint) ← 𝒟1}𝜆

Assumption 2 (Base Circular Security Assumption). The base circular security assumption with respect
to parameters (𝑛, 𝑞, 𝜎,Δ) satisfying the conditions specified in Assumption 1, states that the 𝑓 circ-circular
security assumption with 𝑓 circ and additional parameters (𝑚, 𝑑, 𝑘, ℓ , 𝑀, 𝜎0) described in Assumption 1
holds.

The CRO assumption implies the base circular security assumption.

2.3 Cryptanalysis

In this section, we discuss natural avenues to break our assumption, including prior cryptanalytic
attempts on related assumptions implying iO and PrO.

As mentioned previously, our assumption falls into the category of LWE-with-hints assumptions.
Indeed, as described in Figure 3 we have HE and LWE components, in addition to opening R∗ that
is referred to as hint in this case. We start by characterizing/summarizing the state of attacks by
discussing what parts of the assumption these attacks focus on as well as cryptanalytic techniques.
Then, we will understand our assumption in light of this characterization.
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2.3.1 Characterization of Prior Attacks

Broadly speaking, all known prior attacks on assumptions fitting into LWE-with-hints framework
[JLMS19, AJL+19, WW21, GP21, BDGM22, DQV+21, BDJ+24, AKY24] could be characterized into
three categories:

• Type 1 Attacks: These are attacks that only exploit the structure present in the hints or any
immediately derivable leakage from the hint. These typically are the most worrisome kinds
of attacks. Most of the previous attacks such as [HJL21, JLLS23] and even the attacks in this
work, section 7, on private-coin evasive LWE are of this kind.

• Type 2 Attacks: These are attacks that exploit only the structure present in the (circularly
encrypted) samples but do not make use of any additional hint.

• Type 3 Attacks: These are attacks that make use of hints, together with samples, as well as
any auxiliary information, if any, present in the assumption.

These attacks can also be characterized on the basis of cryptanalytic techniques:

• Algebraic Attacks: These attacks entail setting up systems of equations and solving them
algebraically to recover various secrets involved in the assumption. The attack described by
[JLLS23] on the assumption in [DQV+21] was a Type 1 attack that set linear equations based
on the provided hint and recovered the secrets involved.

• Correlation Attacks: These are attacks that examine the hint or immediately derivable
leakage from the hint. These attacks extract a biased bit of information either correlated with
secrets or that enables an efficient distinguisher. Attacks on the assumptions considered in
previous schemes [WW21, BDGM22, GP21] described in [HJL21] and the attack on private-coin
evasive LWE underlying pseudorandom obfuscation [BDJ+24, AKY24] in this work are Type 1
correlation attacks. Finally, we note that there were simple-to-state, instance-independent
and falsifiable LWE-with-hints assumptions that implied iO together with Bilinear maps
[JLMS19, AJL+19, Agr19]. Earlier versions of these assumptions also had Type 1 correlation
based attacks based on sum-of-squares [BHJ+19].

• Corner Cases: Often, a family of assumptions is meant to capture certain security heuristic,
such as the evasive LWE assumption family, or the circular security assumption family. An
important type of cryptanalysis is searching for corner cases, which are attacks that exploit the
freedom in the assumption family, or in coming up with variants of the assumption family, to
find broken corner cases. When the corner cases are contrived and/or unnatural, they do not
completely invalidate the security heuristic especially in “natural” applications (reminiscent
of the random oracle heuristic). Nevertheless, they show how robust a security heuristic is,
and we would ideally like to have assumptions that do not have broken corner cases.
So far, all direct attacks on LWE-with-hints assumptions underlying iO or PrO are of Type
1. For the broader class of private-coin evasive LWE assumptions which allows for general
auxiliary information, there had been Type 3 attacks [VWW22, BÜW24] that designed complex
auxiliary information containing obfuscated programs. The obfuscated programs can for
example help utilize the matrix trapdoors in the post-conditions of evasive LWE in a way
that cannot be matched in the pre-condition without matrix trapdoors. Note our CRO and
IND-CRO assumptions do not allow any auxiliary input.
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Furthermore, there had been attacks on circular security of lattice-based schemes that feature
unnatural distributions [GKW17b, GKW17a, WZ17]. In a nutshell, these encryption schemes
rely on the cycle-tester framework typically instantiated using lockable/compute-and-compare
obfuscation.
However, these corner cases are not known to be applicable to prior assumptions towards iO
or PrO, nor to our CRO and IND-CRO assumptions, which contain (circular) LWE samples
that follow natural distributions, unlike these in the corner cases.
Finally, typically the more freedom an assumption family allows, or the more under-specified
an assumption is, the more prone it can be to existence of corner cases. Our CRO and IND-CRO
assumptions are fully-specified, thereby, reducing the room for such corner cases.

• Lattice-Based Attacks: Finally, an important class of attacks are lattice-based attacks. The
goal here is to somehow translate the problem of LWE samples with hints into an efficiently
solvable lattice problem. This is an important potential class of attacks, however, when the
hints are matrix trapdoors (as in evasive LWE) or openings (as in this work) it is unclear how
to use them in lattice attacks beyond the straightforward way – simply using the hints to
obtain new LWE samples by multiplying B with the hint, and then attacking the original
LWE samples together with these new samples, ignoring the hints. Recall that in CRO and
IND-CRO, using the openings in this way only gives BR∗ which can already be efficiently
computed from the original LWE encodings, reducing to Type 2 attacks that ignore the hints.
In fact, the question whether there are lattice techniques that can significantly speed up attacks
on LWE encodings by using matrix trapdoors in a non-straightforward way is a question
implicitly posted by the evasive LWE assumptions. As discussed later in Section 2.3.3, despite
various attacks on private coin evasive LWE, no such lattice techniques have been developed
so far. We believe that this is a highly important question to investigate.

2.3.2 Security Against Attacks

Armed with the characterization of previous attacks and types of attacks, we now discuss the
plausibility of our assumption with respect to these attacks.
Resistance against Type - 1 Attacks. Perhaps a major silver lining in our assumption is that one can
show provable resistance against Type 1 attacks. These are typically the most devastating attacks as
witnessed in most attacks to recent LWE-with-hints assumptions [BHJ+19, HJL21, JLLS23].

As it turns out, our hint R∗ (in the real distribution) as seen in Figure 3 is statistically closely
distributed to a canonical discrete Gaussian distribution.

Theorem 1. In the real distribution𝒟0 of the ( 𝑓 circ , 𝑓 , �̃� )-CRO assumption (Figure fig. 3), if 𝑓 , �̃� satisfies
the (subexponential) safety condition (equation 1), then the marginal distribution of the opening R∗ in𝒟0 is
(subexponentially) statistically-close to a fresh discrete Gaussian𝒟𝑚×𝑀

𝜎0 .

Furthermore, we can also prove that in the ideal distribution, the hints R∗ are computationally
indistinguishable to the same Gaussian distribution, assuming the 𝑓 circ-circular security assumption
described in Figure 1.

Theorem 2. In the ideal distribution𝒟1 of the ( 𝑓 circ , 𝑓 , �̃� )-CRO assumption (Figure fig. 3), if 𝑓 , �̃� satisfies the
(subexponential) safety condition (equation 1), then assuming the (subexponential) 𝑓 circ-circular assumption
(definition 7), the marginal distribution of the opening R∗ in𝒟1 is (subexponentially) indistinguishable to a
fresh discrete Gaussian𝒟𝑚×𝑀

𝜎0 for all polynomial-sized adversaries.
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We defer the proof of these statements to Section 2.4.
Moreover, in our assumption there is no additional "immediate natural leakage" enabled by the

hint. If R∗ is used in the straightforward way, one can only compute:

hct∗𝑓 = BR∗ = hct 𝑓 ⊞ hct0 ⊟ �̃� (enc),

which is a known function of the LWE/HE encodings. In that sense, our assumption does not
produce additional natural leakage, unlike some of the prior assumptions [WW21, DQV+21], and
like [GP21].
Resistance against Type - 2 Attacks. Next, we discuss security of just the HE/LWE encodings, i.e.,
the 𝑓 circ-circular security. The non-standardness in our LWE samples comes from the fact that they
are circularly encoded. If one is not careful with the dependency of various secrets and public
matrices, it is easy to construct easy-to-attack distributions.

For example, if only one secret s is involved, it is problematic to consider samples with the
pattern {sA1 + 𝑓1(s,A2) + e1 , sA2 + 𝑓2(s,A1) + e2}, where 𝑓1 , 𝑓2 are efficiently computable “circular"
functions. The reason for this is that one could choose 𝑓1(s,A2) = −sA2 and 𝑓2(s,A1) = −sA1
producing samples that add up to a small norm vector e1 + e2. These counterexamples do not
apply when one of 𝑓1 , 𝑓2 becomes independent of the coefficient matrices. These problematic
patterns would also be an issue in the two-secret settings. For instance, samples of the form
{s1A + 𝑓1(s2 ,B) + e1 , s2B + 𝑓2(s1 ,A) + e2} is prone to the exact same counterexample.

It seems problematic when the dependency on the public matrix is also circular. In the above
example, we have function of B encoded by LWE samples of matrix A, and function of A circularly
encoded by LWE samples of matrix B.

Our assumption, on the other hand, follows a good circular security pattern in the two-secret
setting, where the dependency on the public matrices is non-circular. As described in Assumption 1,
we have samples of the form {s2A + 𝑓0(s2) + e0 , s1B + 𝑓1(s2) + e1 , s2C + 𝑓2(s1 ,A) + e2}. Note that the
only sample featuring a matrix in the encoded term is the third sample, but crucially, randomness
(C, e2) used in this sample is not circularly encoded.

One can further generalize the above case into a circular encoding pattern that seems safe,
without known counterexamples. In the single secret setting, one can assign an order to the
encodings, such that, the 𝑖’th encoding encodes a function 𝑓𝑖(s, {A𝑗 , e𝑗}𝑗<𝑖) of the secret s and
randomness (A𝑗 , e𝑗) used in previous encodings 𝑗 < 𝑖, using fresh and independent randomness
(A𝑖 , e𝑖). That is, we have samples of form {sA𝑖 + 𝑓𝑖(s, {A𝑗 , e𝑗}𝑗<𝑖)}𝑖∈[ℓ ], where all A𝑖 , e𝑖 are randomly
sampled. In the case of multiple secrets, the circular functions 𝑓𝑖 can depend on all secrets. We
leave it as an exciting open question to identify a set of efficient functions obeying this dependency
pattern that leads to an efficient attack.

So far, the only circular security counterexamples on lattice-based schemes [GKW17b] make
use of specific designs consisting of a cycle-tester framework containing lockable-obfuscation of
carefully chosen programs. These structures are absent in our assumption.
Resistance to Type-3 Attacks. As mentioned above, currently there lack cryptanalytic techniques
that can leverage the hint R∗ in a non-straightforward way. The only exception is the corner cases of
private-coin evasive LWE [Tsa22, VWW22] that leverage complex auxiliary information depending
on LWE matrices and/or secrets. Again, our assumption contains no auxiliary information. If
R∗ were used in the straightforward way, it produces encodings that can be efficiently computed
from the original encodings in the assumption distributions, reducing security to the 𝑓 circ-circular
security. We leave it as an exciting question to find such attacks on our assumption.
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2.3.3 Comparison with Previous Assumptions

Our assumption bears some resemblance with two prior assumptions considered in the literature.
We discuss these assumptions and mention differences and similarities. We also describe why our
assumption might be on firmer foundations compared to these assumptions.
Comparison with Evasive LWE Evasive LWE was introduced by Wee and Tsabary independently
in two works [Wee22, Tsa22]. Since then the assumption has been used in myriad works [VWW22,
WWW22, HLL23, ARYY23, HLL24, MPV24, CM24, BDJ+24, AKY24] for a variety of applications
including witness encryptions and advanced encryption schemes.

In its simplest form, the assumption roughly posits that if a certain pre-condition of the following
kind holds:

(sB + e1 , sP + e2 , aux) ≈𝑐 ($, $, aux)
Then, the following post-condition holds:

(sB + e1 ,T, aux) ≈𝑐 ($,T, aux),

where T is sampled as a random low-norm trapdoor satisfying BT = P. There are several versions
of evasive LWE depending on how the matrices and the secrets are chosen and their relationship
with the auxiliary information. We won’t be making this distinction for our discussion. We refer
the reader to [BÜW24] for a case-study of evasive LWE.

At a superficial level, it might seem that our CRO assumption is similar to evasive LWE in that
both postulate indistinguishability of samples in the presence of a trapdoor, however, there are major
differences between the two assumptions. First, our assumption does not have a pre-condition at all.
It posits indistinguishability of two fully-specified distributions. Moreover, there is no additional
auxiliary input in our assumption, which is an important source of troubles in defining evasive
LWE assumption (see counterexamples of [VWW22, BÜW24]).

Perhaps, most importantly the governing heuristics are different. The evasive LWE assumptions
rest upon two heuristics:

• The first heuristic is that the most effective way of leveraging the trapdoor T is the straightfor-
ward way–simply multiplying T with sB + e1 to derive an LWE sample of the form sP + e1T.
Therefore, the post-condition reduces to the security of samples B, P, sB + e1 , sP + e1T.

• Note that the second sample contains structured noise e1T, and it’s unclear how to reason
about its security. The second heuristic is that if B,P, sB + e1 , sP + e2 with fresh noise e2 is
secure, then there is no effective way of leveraging the structured noise e1T.

Existing attacks [VWW22, BÜW24] found corner cases of the first heuristic, when there is complex
auxiliary information that enables using the trapdoor in a non-straightforward way. However, these
corner cases are ad-hoc. So far, there has not been systematic algorithmic advance, such as the
development of new lattice techniques, that can make use of trapdoor in a non-straightforward
way. In comparison, CRO does not contain auxiliary information, but still relies on the lack of
algorithmic techniques that can leverage trapdoors or openings in a non-straightforward way.

Furthermore, in Section 7, we present a new attack on private coin evasive LWE that invalidates
the second heuristic behind evasive LWE. Jumping ahead, our attack uses T in the straightforward
way and exploits the structured noise eT

1T to break the assumption.
Since CRO contains opening instead of trapdoor, one can’t hope to use R∗ to learn new LWE

samples as explained in the introduction. Therefore, a significant distinction is that CRO does not
rely on the second heuristic.
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Comparison with 2-CircSRL security. Another assumption that is closely related to CRO is
the 2-Circ-SRL security introduced by Gay and Pass [GP21]. The assumption is described for
completeness in Figure 4. The assumption is also meant to enable releasing secure openings of
computed output on circularly encrypted ciphertexts. Moreover, similarly to us, before the opening
is released, the evaluated ciphertext is rerandomized by adding to an encryption of 0 (see last step
in Figure 4). Also similarly to us, the function 𝑓 is restricted so that its output is “safe", in the sense
of being publicly computable (in the second step in Figure 4, the output 𝛼 is computed by the
attacker).

2-Circ SRL Security

SRL Game 𝐺𝑏 :

• Adversaries provides message 𝑚0 , 𝑚1.

• Challenger prepares the following 2-circ components of (rerandomizable) homo-
morphic encryption HE1 and homomorphic encryption HE2, including

– Public key hpk1 , hpk2.
– Circular ciphertext hct1 = HE1.Enc(hsk2;𝑅), hct2 = HE2.Enc(hsk1).
– Mask hct0 = HE1.Enc(0;𝑅0).
– Challenge ciphertext hctch = HE1.Enc(𝑚𝑏).

• Adversary specify 𝑓 , 𝛼 such that 𝑓 (hsk2) = 𝛼.

• Challenger computes homomorphic randomness 𝑅 𝑓 for ciphertext hct 𝑓 =

HE1.Eval(hct1 , 𝑓 ), and releases 𝑅∗ = 𝑅 𝑓 + 𝑅0.

Figure 4: Two HE schemes are 2-Circ SRL secure if 𝐺0 ≈𝑐 𝐺1.

Beyond these similarities, there are important differences between CRO and 2-Circ-SRL security.
In SRL security, the function 𝑓 and output 𝛼 are chosen by the attacker, whereas in CRO, 𝑓 and 𝑓

are fixed functions, where �̃� specifies how the output can be computed from the public encodings.
When using SRL to construct iO, the function 𝑓 depends on the circuit obfuscated and hence SRL is
instance dependent, whereas CRO is instance independent.

More importantly, in SRL, both 𝑓 and 𝛼 depend on all LWE encodings, including the zero-
encryption hct0 used for re-randomizing the output ciphertext hct 𝑓 produced by homomorphic
evaluation. When the homomorphic evaluation can depend on hct0, re-randomization using hct0
no longer has guarantees.

The crucial distinction in the case of CRO is the function 𝑓 (★) is independent of the fresh
encryption of zero hct0, and hence R0. This implies that the opening R∗ = R 𝑓 + R0 is statistically
random because R 𝑓 is independent of R0 (Theorem 1 and 2). In contrast in SRL, R∗ is not random,
as 𝑓 , and hence R 𝑓 , are correlated to R0. Furthermore, the work of [HJL21] showed that such
correlation could be used to make R∗ reveal a secret bit, which led to counterexamples to SRL.

Moreover, the SRL security assumes indistinguishability of circular LWE samples hiding
messages 𝑚0 or 𝑚1 (similar to PKE security) at the presence of an opening R∗ revealing output 𝛼
of function 𝑓 . At a first glance, it appears LWE-with-hints assumptions that aim at “controlled
opening” of LWE samples – revealing some function outputs but nothing else – cannot posit the
pseudorandomness of LWE samples, because the correctness condition no longer holds when the
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LWE samples were switched to random. Indeed, SRL and other LWE-with-hints assumptions
toward iO [WW21, DQV+21] have indistinguishability type.

CRO offers a new way to reason about pseudorandomness of the (circular) LWE samples: It
posits that the LWE samples are pseudorandom, if the (random) opening R∗ in the real distribution
can be switched to a simulated opening maintaining correctness in the ideal distribution. We
believe that this new type of pseudorandomness assumption is interesting.

2.4 Deferred Proofs

Proof of lemma 6. For each 𝑖 ∈ [𝑄]we have

�̃�𝑖(hct, hct0 ,A,D, ct1 , ct2)T = Δ

⌊
ct2,𝑖 ·G−1(A) + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
Using the same variable in the description of𝒟0 and in Assumption 1, with the additional notation
that R0 = (R0,𝑖)𝑖∈[𝑄] such that hct0,𝑖 = BR0,𝑖 , we can expand each terms in �̃�𝑖 by

ct2,𝑖 ·G−1(A) =
(
rTD𝑖 + eD,𝑖 − vec(G−1(−BR0,𝑖))T · (UTG)

)
·G−1

𝑛 (A)
= rTD𝑖G−1

𝑛 (A) + eD,𝑖G−1
𝑛 (A) − vec(G−1(−BR0,𝑖))TUTA

vec(G−1(−hct0,𝑖))Tct1 = vec(G−1(−BR0,𝑖))T
(
UTA + EA + Iℓ ⊗ GT

𝑛r
)

= vec(G−1(−BR0,𝑖))TUTA + vec(G−1(−BR0,𝑖))TEA − rTBR0,𝑖

hct0,𝑖 = (rTB + eT)R0,𝑖

= rTBR0,𝑖 + eTR0,𝑖

Therefore,

�̃�𝑖(hct, hct0 ,A,D, ct1 , ct2)T = Δ

⌊
rTD𝑖G−1(A) + eD,𝑖G−1(A) + vec(G−1(−BR0,𝑖))TEA + eTR0,𝑖

Δ

⌉
.

Note that r,A,D are all sampled at random, therefore the marginal distribution of rTD𝑖G−1(A) is
random in Z1×ℓ

𝑞 . Furthermore, by the Gaussian tail bound (lemma 2), with probability 1− 2−Ω(𝜆) the
noise term would have norm bounded byeD,𝑖G−1(A) + vec(G−1(−BR0,𝑖))TEA + eTR0,𝑖

 ≤ √𝜆ℓ𝜎 + √𝜆ℓ𝑛⌈log 𝑞⌉𝜎 +
√
𝜆𝜎𝜎0 = poly(𝜆)𝜎0.

Combined with the setup that 𝜎0 = Δ/2Θ(𝜆), we can apply the rounding lemma 4 to conclude that

�̃�𝑖(hct, hct0 ,A,D, ct1 , ct2)T = Δ

⌊
rTD𝑖G−1(A) + eD,𝑖G−1(A) + vec(G−1(−BR0,𝑖))TEA + eTR0,𝑖

Δ

⌉
w.h.p.
= Δ

⌊
rTD𝑖G−1(A)

Δ

⌉
= 𝑓𝑖(r,A,D)T

where the second equality holds with probability 1 − 2−Ω(𝜆). Finally, with a union bound over
𝑖 ∈ [𝑄], we conclude that the safety constraint holds with probability 1 − 2−Ω(𝜆). □
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Proof for Theorem 1. Observe that in 𝒟0, the opening is sampled by R∗ ← 𝒟𝑚×𝑀
rand |hct∗

𝑓
=BR∗ , which

expands to

R∗ ←𝒟𝑚×𝑀
rand |BR∗=hct 𝑓 ⊞(− �̃� (enc))⊞hct0 ,

where the right hand side of the condition can be further expanded by

hct 𝑓 ⊞ (− �̃� (enc)) ⊞ hct0 = B(R 𝑓 + R0) ⊞ ( 𝑓 (r,A,D) − �̃� (enc)).

By the safety constraint, 𝑓 (r,A,D) − �̃� (enc) is zero for probability 1− 𝜖(𝜆). Furthermore, the matrix
R 𝑓 has norm bound

R 𝑓

 = 𝑚𝑂(𝑑), implying that 𝜎0 > 2𝜆
R 𝑓

. Therefore by the smudging lemma
(lemma 3), the sum of variables (R 𝑓 +R0) distributes 2−Ω(𝜆)-close to R0 ←𝒟𝑚×𝑀

𝜎0 . Therefore, the
marginal distribution of R∗ is

(
2−Ω(𝜆) + 𝜖(𝜆)

)
-close to

R∗ ←𝒟𝑚×𝑀
rand |BR∗=BR0

, where R0 ←𝒟𝑚×𝑀
𝜎0 ,

which gives exactly the discrete Gaussian distribution𝒟𝑚×𝐿𝑚′
𝜎0 . □

Proof for Theorem 2. We consider the following sequence of hybrids.

• ℋ0: This is the marginal distribution of R∗ in the ideal distribution 𝒟1. The opening is
sampled by

R∗ ←𝒟𝑚×𝑀
rand |BR∗=hct 𝑓 ⊞(− �̃� (hct,hct0 ,A,D,ct1 ,ct2))⊞hct0 ,

where B, hct, hct0 ,A,D, ct1 , ct2 ← $

• ℋ1: This hybrid replaces the random matrix B with a matrix sampled with trapdoor
(B0 ,T) ← TrapGen(1𝑛+1 , 𝑞, 𝑚) (variable name changed for clarity). The opening is sampled by

R∗ ←𝒟𝑚×𝑀
rand |B0R∗=hct 𝑓 ⊞(− �̃� (hct,hct0 ,A,D,ct1 ,ct2))⊞hct0 .

• ℋ2: This hybrid samples R∗ efficiently using the trapdoor, i.e.,

R∗ ← SampPre(B0 ,T, hct 𝑓 ⊞ (− �̃� (hct, hct0 ,A,D, ct1 , ct2)) ⊞ hct0 , 𝜎0).

• ℋ3: This hybrid samples hct, hct0 ,A,D, ct1 , ct2 following the real distribution 𝒟0 of the
( 𝑓 circ , 𝑓 , �̃� )-CRO assumption (Figure fig. 3). Namely,

– hct = BR + bits(r)T ⊗ G, hct0 = BR0, where B =

(
B

rTB + eT

)
.

– A,D← $, ct1 ← UTA + Iℓ ⊗ GT
𝑛r

::::::::::::::
, ct2 ← rTD + 𝑓 circ(U, hct0)

:::::::::::::::::
.

We can expand the opening sampling equation to

R∗ ← SampPre(B0 ,T,B(R 𝑓 + R0) ⊞ ( 𝑓 (r,A,D) − �̃� (enc)), 𝜎0).

• ℋ4: This hybrid samples the opening by

R∗ ← SampPre(B0 ,T,BR0 , 𝜎0),

where B =

(
B

rTB + eT

)
, R0 ←𝒟𝑚×𝐿𝑚

𝜎0 .
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• ℋ5: This hybrid switches B to random and samples the opening by

R∗ ← SampPre(B0 ,T,BR0 , 𝜎0),

where B← Z(𝑛+1)×𝑚
𝑞 , R0 ←𝒟𝑚×𝐿𝑚′

𝜎0 .

Observe that

• ℋ0 is 2−𝑛-close toℋ1 by the statistical randomness property of lattice trapdoors (lemma 5).

• ℋ1 is 2−𝑛-close toℋ2 by the preimage sampling property of lattice trapdoors (lemma 5).

• ℋ2 and ℋ3 are (subexponentially) indistinguishable assuming the (subexponential) 𝑓 circ-
circular security assumption.

• ℋ3 is (subexponentially)-close to ℋ4. This follows identical arguments from the proof of
Theorem 1.

• ℋ4 andℋ5 are (subexponentially) indistinguishable assuming (subexponential) LWE, which
is implied by (subexponential) 𝑓 circ-circular security assumption.

Finally, by the leftover hash lemma (lemma 1), the distribution of BR0 inℋ5 is 2−𝑛-close to uniform.
Furthermore, combining the leftover hash lemma and the preimage sampling property of lattice
trapdoor, a preimage sampled from the SampPre algorithm with respect to a uniformly random
target is 2−𝑛-close to the discrete Gaussian distribution. Therefore the output distribution ofℋ5 is
2−Ω𝑛-close to the discrete Gaussian distribution𝒟𝑚×𝑀

𝜎0 .
With these, we conclude that the marginal distribution of R∗ in 𝒟1 is (subexponentially)

indistinguishable to the discrete Gaussian distribution. □

3 Preliminaries for Construction

3.1 Indistinguishability Obfuscation (iO)

Definition 8 (Indistinguishability Obfuscation (iO) [BGI+01, GGH+13b]). An indistinguishability
obfuscation scheme for a circuit class {𝒞𝜆}𝜆∈N consists of the following two efficient algorithms:

• Obf(1𝜆 ,Π): On input a security parameter 𝜆 and a circuit Π ∈ 𝒞𝜆, outputs an obfuscated circuit Π̃.

• Eval(1𝜆 , Π̃, 𝑥): On input a security parameter 𝜆, an obfuscated circuit Π̃, and an input 𝑥, outputs an
evaluation result 𝑦.

We require an iO scheme to satisfy the following properties:

Correctness: For all 𝜆, 𝑛 ∈ N, every circuit Π ∈ 𝒞𝜆, with input length 𝑛, and every 𝑥 ∈ {0, 1}𝑛 ,

Pr[Eval(1𝜆 ,Obf(1𝜆 ,Π𝜆), 𝑥) = Π𝜆(𝑥)] = 1.

𝜖(𝜆)-IND-security For every pair of circuit sequences {Π0
𝜆}, {Π1

𝜆} ∈ {𝒞𝜆} such that Π0
𝜆 and Π1

𝜆 are
functionally equivalent, the following ensembles are 𝜖(𝜆)-indistinguishable to all polynomial-sized
adversaries::

{Obf(1𝜆 ,Π0
𝜆)}𝜆 ≈

𝜖
𝑐 {Obf(1𝜆 ,Π1

𝜆)}𝜆.
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3.2 Exponentially-Efficient iO (xiO)

Definition 9 (xiO with preprocessing [LPST16]). An exponentially-efficient indistinguishability ob-
fuscation scheme with preprocessing for a circuit class {𝒞𝜆}𝜆∈N consists of the following three efficient
algorithms:

• Gen(1𝜆 , 1𝑁 , 1𝑠): On input a security parameter 𝜆, the circuit input space size 𝑁 = 2𝑛 , and an upper
bound 𝑠 on the circuit size, outputs an common reference string crs. We assume that crs implicitly
includes the parameters (1𝜆 , 1𝑁 , 1𝑠).

• Obf(crs,Π): On input the common reference string crs and a circuit Π ∈ 𝒞𝜆 with size at most 𝑠 and
taking 𝑛 = log𝑁 bit input, outputs an obfuscated circuit Π̃.

• Eval(crs, Π̃, 𝑥): On input the common reference string crs, an obfuscated circuit Π̃, and an input 𝑥,
outputs an evaluation result 𝑦.

We require an xiO scheme to satisfy the following properties:

Correctness: For all 𝜆, 𝑁 , 𝑠 ∈ N, every circuits Π ∈ 𝒞𝜆 with size at most 𝑠 and taking 𝑛 = log𝑁 bit
input, and every input 𝑥 ∈ {0, 1}𝑛 ,

Pr
[
Eval(crs, Π̃, 𝑥) = Π(𝑥)

��� crs← Gen(1𝜆 , 1𝑁 , 1𝑠), Π̃← Obf(crs,Π)
]
= 1

Succinctness There exist a constant 𝜖 ∈ (0, 1) and some polynomial poly such that for all 𝜆, 𝑁 , 𝑠 ∈ N, all
circuits Π ∈ 𝒞𝜆 with 𝑛 = log𝑁 bit input and size at most 𝑠, all crs, and all obfuscated circuit Π̃ in
the support of Obf(1𝜆 , crs,Π), the size of the obfuscated circuit is bounded by

|Π̃| ≤ 𝑁1−𝜖 · poly(𝜆, 𝑠).

𝜖(𝜆)-IND-security For all polynomial 𝑁(·), 𝑠(·) and every pair of circuit sequences {Π0
𝜆}, {Π1

𝜆} ∈ {𝒞𝜆}
consisting of circuits with size at most 𝑠(𝜆) and taking 𝑛(𝜆) = log𝑁(𝜆) bit input, if Π0

𝜆 and Π1
𝜆

are functionally equivalent for all 𝜆 ∈ N, the following ensembles are 𝜖(𝜆)-indistinguishable to all
polynomial-sized adversaries:{
(crs, Π̃)

���� crs ← Gen(1𝜆 , 1𝑁(𝜆) , 1𝑠(𝜆))
Π̃ ← Obf(crs,Π0

𝜆)

}
𝜆

≈𝜖𝑐
{
(crs, Π̃)

���� crs ← Gen(1𝜆 , 1𝑁(𝜆) , 1𝑠(𝜆))
Π̃ ← Obf(crs,Π1

𝜆)

}
𝜆

Theorem 3 ([LPST16, BDGM22]). Assuming the sub-exponential hardness of the learning with errors
(LWE) problem, and a sub-exponentially secure xiO scheme with preprocessing for polynomial-sized circuits,
iO exists for all polynomial-sized circuits.

3.3 Functional Encodings

In this section, we recall a slight variant of the functional encoding scheme introduced in [WW21],
which is a useful primitive implying iO.

Definition 10 (Functional Encoding). A functional encoding scheme in the CRS model for a circuit class
{𝒞𝜆}𝜆∈N consists of the following efficient algorithms:
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• Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑) takes as input a security parameter 𝜆, a bound 𝑄 on the number of openings,
the circuit input/output length 1𝐾 , 1𝐿, and a bound 1𝑑 on circuit depth. The algorithm outputs a
common reference string crs. We assume that crs implicitly encodes the parameters (1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑).

• Enc(crs, x;𝑅) takes as input the common reference string crs and an input x ∈ {0, 1}𝐾 . With
randomness 𝑅, the algorithm outputs an encoding ct.

• Open(crs, 𝑔, 𝑖, x, 𝑅) takes as input the common reference string crs, a depth 𝑑 circuit 𝑔 : {0, 1}𝐾 →
{0, 1}𝐿 in 𝒞𝜆, an index 𝑖 ∈ [𝑄], an input x ∈ {0, 1}𝐾 , and a encoding randomness 𝑅. The algorithm
deterministically outputs 𝜌𝑖 as the opening corresponding to the 𝑖-th function 𝑓 .

• Dec(crs, 𝑔, 𝑖, ct, 𝜌) takes as input the common reference string crs, a depth 𝑑 circuit 𝑔 : {0, 1}𝐾 →
{0, 1}𝐿 in 𝒞𝜆, an index 𝑖 ∈ [𝑄], an encoding ct, and an opening 𝜌. The algorithm deterministically
outputs the decoding result y ∈ {0, 1}𝐿.

The algorithms are required to satisfy the following properties:

Correctness For all𝜆, 𝑄, 𝐾, 𝐿, 𝑑 ∈ N, all depth 𝑑 circuit 𝑔 : {0, 1}𝐾 → {0, 1}𝐿 in𝒞𝜆, all input x ∈ {0, 1}𝐾 ,
and all index 𝑖 ∈ [𝑄], it holds that

Pr
Dec(crs, 𝑔, 𝑖, ct, 𝜌) = 𝑔(x)

������ crs← Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑)
ct← Enc(crs, x;𝑅)
𝜌← Open(crs, 𝑔, 𝑖, x, 𝑅)

 = 1

Succinctness There exist a constant 𝜀 ∈ (0, 1) such that for all 𝜆, 𝑄, 𝐾, 𝐿, 𝑑 ∈ N, all crs, all depth 𝑑
circuit 𝑔 : {0, 1}𝐾 → {0, 1}𝐿 in 𝐶𝜆, all 𝑖 ∈ [𝑄], all x ∈ {0, 1}𝐾 , and all 𝑅, the size of the encoding
ct = Enc(crs, x;𝑅) and the opening 𝜌 = Open(crs, 𝑔, 𝑖, x, 𝑅) are bounded by:

|ct| ≤ (𝐿1−𝜖𝑄 + poly(𝐿)) · poly(𝜆, 𝐾, 𝑑), |𝜌| ≤ 𝐿1−𝜀 · poly(𝜆, 𝐾, 𝑑).

𝜖(𝜆) SIM-security There exists an efficient simulator Sim such that for all polynomials 𝑄 = 𝑄(𝜆), 𝑘 =

𝑘(𝜆), 𝐿 = 𝐿(𝜆), 𝑑 = 𝑑(𝜆), every ensemble of messages-function tuple {x, 𝑔1 , . . . , 𝑔𝑄}𝜆 where input
𝑥 ∈ {0, 1}𝐾 and each function 𝑔𝑖 : {0, 1}𝐾 → {0, 1}𝐿 are depth 𝑑 circuits in 𝐶𝜆, the following
ensembles are 𝜖(𝑛)-indistinguishable to all polynomial-sized adversaries:(crs, ct, {𝜌𝑖}𝑖∈[𝑄])

������ crs ← Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑)
ct ← Enc(crs, x;𝑅)
𝜌𝑖 ← Open(crs, 𝑔𝑖 , 𝑖 , x, 𝑅)

𝜆

≈𝜖𝑐
{
Sim(1𝜆 , {𝑔𝑖 , 𝑔𝑖(x)}𝑖∈[𝑄])

}
𝜆

Theorem 4 ([WW21]). Assuming a (sub-exponential) secure functional encoding scheme for polynomial-
sized circuits, there exists a (sub-exponential) secure xiO scheme with preprocessing for polynomial-sized
circuits.
Remark 2. In [WW21], functional encodings were defined with a stronger succinctness requirement, where
the encoding size is bounded by poly(𝜆, 𝐾, 𝐿, 𝑑), independent of the number of openings. Nevertheless, the
FE to xiO transformation given in [WW21] remains valid as long as the parameters 𝑄 and 𝐿 are chosen such
that 𝑁 = 𝑄𝐿 and the total size (|ct| +𝑄|𝜌|) is sublinear in 𝑁 , which is also achievable under our definition.
Remark 3. One might observe that functional encoding schemes inherently provide a simulation-secure
xiO scheme with preprocessing, leading to an exponentially efficient pseudorandom obfuscation (xPrO) with
preprocessing. However, the known transformation from xiO with preprocessing to iO does not directly extend
to transforming xPrO with preprocessing into pseudorandom obfuscation (PrO). Consequently, the existence
of functional encoding schemes does not contradict the impossibility result for PrO established in [BDJ+24].
This leaves open the plausibility of constructing secure functional encoding schemes.
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3.4 Dual-GSW Encryption

In this section, we recall the secret key dual-GSW encryption scheme (also known as the Packed
dual-Regev encryption scheme), formulated according to the syntax of a functional encoding
scheme. It satisfies correctness and succinctness, but not simulation security. The algebraic structure
of the dual-GSW encryption scheme closely resembles that of the GSW encryption scheme [GSW13],
as recalled in section 2.1.

The dual-GSW encryption scheme consists of the following algorithms.

• Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑): The algorithm picks an encoding size 𝜅, modulus 𝑝, 𝑞 such that 𝑝|𝑞,
𝑞/𝑝 > 2𝜅, and 𝑝 ≫ ℓΘ(𝑑)poly(𝜎), and dimension ℓ ≥ max(𝐿/𝜅, log 𝑞). It outputs a random
matrix A← Z𝑛×ℓ𝑞 .

• Enc(crs, x;𝑅 = (U, E)): Vector x ∈ {0, 1}𝐾 of bits is encrypted by

dct = UTA + E + x ⊗ GT
ℓ ,where U← Z𝑛×𝐾ℓ⌈log 𝑞⌉

𝑞 , E←𝒟𝐾ℓ⌈log 𝑞⌉×ℓ
𝜎 .

Note that Gℓ has dimension ℓ × ℓ⌈log 𝑞⌉, and so are the G in the rest of the description.

• Open(crs, 𝑔, 𝑖, x, 𝑅): We first start with describing the homomorphic evaluation operations
supported by the dual GSW scheme. Then use them to describe the opening algorithm.

– HAdd: For bits 𝑏1 , 𝑏2 ∈ {0, 1},

dct(𝑏1) ⊞ dct(𝑏2) = (UT
1A + E1 + 𝑏1 ⊗ GT) + (UT

2A + E2 + 𝑏2 ⊗ GT) = UT
+A + E+ + (𝑏1 + 𝑏2)GT ,

where U+ = (U1 +U2), ∥E+∥ ≤ 2∥E1 , E2∥.
– HMult: Ciphertext for bits are multiplicative homomorphic. For bits 𝑏1 , 𝑏2 ∈ {0, 1},

dct(𝑏1) ⊠ dct(𝑏2) = (G−1(dctT
1))

T · dct2 = UT
×A + E× + 𝑏1𝑏2GT

where UT
× = G−1(ctT

1)TUT
2 + 𝑏2UT

1
7, and E× ≤ 2ℓ∥E1 , E2∥.

– Packing: Ciphertext for bits can be packed to ciphertext for vectors. Given a vector
v ∈ Zℓ𝑞 with bitwise representation vT =

∑
2𝑡(𝑣1,𝑡 , . . . , 𝑣𝑚,𝑡),

Pack({dct(𝑣𝑖 ,𝑡)}) =
∑

G−1(2𝑡 · 1𝑖)Tdct(𝑣𝑖 ,𝑡) = uT
PackA + eT

Pack + vT ,

where 1𝑖 is the unit vector which is one at the 𝑖-th coordinate and 0 elsewhere, uPack =∑
UG−1(2𝑡 · 1𝑖), and ∥ePack∥ ≤ poly(ℓ , log 𝑞)∥E∥.

Combining these operations, any polynomial-sized depth 𝑑 circuit 𝐶 : {0, 1}𝐾 → Zℓ𝑞 can be
homomorphically evaluated as

Eval(dct(x), 𝐶) = uT
𝐶A + eT

𝐶 + 𝐶(x), EvalU(dct(x), 𝐶, x,U) = u𝐶 ,

where ∥e𝐶∥ ≤ ℓ𝑂(𝑑)∥E∥, and the randomness evaluating algorithm EvalU is efficiently com-
putable.
Equipped with the above homomorphic evaluation operation, the opening algorithm proceeds
as follows: It parses the encryption randomness as 𝑅 = (U,E). For an input function

7Notice that (G−1(PT))T ·GT = (G ·G−1(PT))T = P.
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𝑔 : {0, 1}𝐾 → {0, 1}𝐿 represented as a circuit 𝐶, the algorithm prepares another circuit 𝐶𝑔
𝐶𝑔 : {0, 1}𝐾 → Zℓ𝑞 with Z𝑞 outputs. For the parameters 𝑝 and 𝜅 chosen at setup, an output
element 𝑦𝑖 of 𝐶𝑔 satisfies that 𝑦𝑖 mod 𝑝 = 0 and 𝑦/𝑝 is the integer representation of the 𝑖’th
𝜅-bit chunk of the output of 𝑔. Note that if 𝑔 has depth 𝑑𝑔 , 𝐶𝑔 can be implemented in depth
𝑑𝑔 + 𝑂(log𝜆).
It outputs the opening 𝜌 = u𝐶𝑔 = EvalU(dct(x), 𝐶𝑔 , x,U).

• Dec(crs, 𝑔, 𝑖, dct, 𝜌 = u): Given 𝑔 represented as a circuit 𝐶, prepare the same circuit 𝐶𝑔
described above. Homomorphically evaluate𝐶𝑔 to obtain output ciphertext dct𝑔 = Eval(dct, �̃�),
and recover the output 𝑔(x) by computing⌊dct𝑔 − uTA

𝑝

⌉
.

The dual GSW scheme is correct since 𝑝𝑝 ≫ ℓΘ(𝑑)∥E∥, indicating that all errors introduced in
the homomorphic evaluation procedure do not exceed the rounding boundary.

With appropriate parameters, it also satisfies succinctness since |dct(x)| is independent of 𝑄,
and the length of each opening that |𝜌| = 𝑛 log 𝑞 is sublinear in 𝐿. Note first that for LWE to
hold, we need 2𝑛1−𝜖

> (𝑞/𝜎) for some 𝜖 > 0, where 𝜎 = poly(𝜆) is the width of the noises in LWE
samples, which holds if setting 𝑛 = (log 𝑞)1+𝜖′ for some 𝜖′ > 0 (dependent on 𝜖). We also have
the constraint that 𝑞 > 2𝜅𝑝 ≫ 2𝜅ℓΘ(𝑑)𝜎. Therefore, the succinctness of opening |𝜌| = 𝑛 log 𝑞 =

(log 𝑞)2+𝜖′ = 𝐿1−Ω(1)poly(𝜆, 𝐾, 𝑑) follows if (𝜅 + Θ(𝑑) log ℓ + 𝜆)2+𝜖′ = 𝐿1−Ω(1)poly(𝜆, 𝐾, 𝑑). This holds
when the parameter 𝜅 is smaller than 𝐿(1−𝜖′′)/(2+𝜖′) for 𝜖′ determined by LWE security and 𝜖′′ an
arbitrarily small positive constant.

Unfortunately, dual GSW does not satisfy the simulation security required by definition 10.
Indeed, the opening u 𝑓 can leak information of the encryption randomness U.

We also note that there is an alternative dual GSW encoding that supports linear homomorphism.
Namely, we can encode a vector v ∈ Z𝑛𝑞 by

dct(v) = UTA + E + Iℓ ⊗ GT
𝑛v.

For matrices 𝑀 ∈ Z𝑛×ℓ𝑞 , the encoding satisfies homomorphic relation

vec(G−1(M))Tdct(v) = uT
MA + E′ + vTM, where uM = U · vec(G−1(M)), ∥E′∥ ≤ ℓ𝑛∥E∥, (3)

where the equation follows by the fact vec(AB) = (I ⊗ A)vec(B).

4 Overview for Functional Encoding Construction

GSW and dual-GSW, through the Lens of Functional Encoding Both the GSW and dual GSW
homomorphic encryption scheme can be converted into a functional encryption scheme: To encode
an input x, simply encrypt it hct = Enc(x; 𝜌). To open the output of a function 𝑔, first perform
homomorphic evaluation to obtain hct𝑔 = Enc(x; 𝜌𝑔) and use the randomness 𝜌𝑔 underlying the
output ciphertext as the opening. More specifically,

B =

(
B

rTB + eT
B

)
, GSW.hct(x) = BR + xT ⊗ G =⇒ GSW.hct𝑔 = BR𝑔 +

(
0
𝑔(x)

)
dGSW.hct(x) = UTA + x ⊗ GT + E =⇒ dGSW.hct𝑔 = uT

𝑔A + 𝑔(x) + eT
𝑔
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Both GSW and dual-GSW allow packing and 𝑔(x) can be a Z𝑞 vector of some dimension ℓ , and bit
length close to 𝐿 = ℓ log 𝑞 (modulo low order bits). The GSW opening is not succinct, as 𝜌𝑔 = R𝑔

has size 𝑛 log 𝑞 · ℓ · log 𝑞. But dual-GSW does have succinct openings, with 𝜌𝑔 = u𝑔 of size 𝑛 · log 𝑞,
which is sublinear in 𝐿. Note that GSW does not have noise leakage, whereas dual-GSW leaks e𝑔 .

The main issue is that their openings reveal more information than 𝑔(x). In both cases, R𝑔 , u𝑔 is
a linear function (dependent on x, 𝑔, hct) of the original randomness R,U. The revelation of them
could completely compromise security.

One way to create a safe opening is through re-randomization: If there is additionally a fresh
ciphertext of zero hct0 generated using randomness from an appropriate distribution, we can instead
open hct′𝑔 = hct𝑔 + hct0. The randomness of hct0 can ensure that the re-randomized opening and
noise leakage reveals only 𝑔(x). More specifically, in GSW, the randomness in hct0 is R̃, consisting
of i.i.d. sufficiently wide discrete Gaussian samples, and the opening becomes R∗ = R𝑔 + R̃, while
in dual-GSW, the randomness in hct0 consists of random s and smudging noise e, and the opening
becomes s̃ = u𝑔 + s, leaking noise ẽ = e𝑔 + e. The fact that they reveal only 𝑔(x) can be proven using
the standard simulation technique that “programs” the output 𝑔(x) into hct0 (e.g., see [WW21] for
such a proof). Interestingly, GSW admits an alternative simulation strategy that “programs” 𝑔(x)
into the opening R∗ (e.g., see [GP21] for such a proof).

The problem is we need fresh and independent zero-ciphertexts {hct0,𝑖}𝑖∈[𝑄] for each functional
opening for 𝑔𝑖 . There is no place for these zero-ciphertexts: They are too large, larger than 𝑄 · 𝐿
bits, to be put in the succinct functional encoding. On the other hand, leaving them in the CRS
renders them useless, as giving re-randomized openings such as R̃, s̃ requires knowing the secrets
related to the CRS.
Version 0: Combining GSW with dual-GSW In this work, we will leverage both the succinct
opening of dual-GSW and the GSW simulation strategy of programming into randomness R∗
. A technique of combining them, introduced by [BDGM20, BDGM22, GP21], is to perform
homomorphic evaluation using GSW, followed by homomorphic decryption using dual-GSW, as
shown in Figure 5.

An encoding of x contains a GSW public key hpk = B with secret r ∈ Z𝑛𝑞 , and a ciphertext hct(x).
It also contains a dual-GSW ciphertext dct using public matrix A and encrypting the GSW secret r
in a special form Iℓ ⊗ GT

𝑛r ∈ Zℓ ·𝑛·log 𝑞×ℓ
𝑞 .

Opening the output of a function 𝑔𝑖 proceeds as described in bottom part of Figure 5: Step 1)
computes a GSW-ciphertext hct𝑔𝑖 of 𝑔𝑖(x), followed by Step 2) that homomorphically decrypts hct𝑔𝑖
under dual-GSW by computing dct𝑔𝑖 .

dct𝑔𝑖 = vec
(
G−1(−hct𝑔𝑖 )

)T︸                 ︷︷                 ︸
v𝑔𝑖=vec(G−1(−BR𝑔𝑖

)

·dct = vT
𝑔𝑖
·UT︸  ︷︷  ︸

uT
𝑔𝑖

·A + vT
𝑔𝑖
· EA︸  ︷︷  ︸

eT
𝑔𝑖

+vT
𝑔𝑖
· (Iℓ ⊗ GTr)︸            ︷︷            ︸
−rT·BR𝑔𝑖

(5)

Adding hct𝑔𝑖 and dct𝑔𝑖 gives a dual-GSW ciphertext of 𝑔𝑖(x) as shown in Equation (4), which can be
succinctly opened by revealing u𝑔𝑖 . However, just as dual-GSW, revealing u𝑔𝑖 and leaking e𝑔𝑖 may
completely compromise security.
Version I: Special Encoding of Secrets (s, e) of Zero-Ciphertexts In order to hide u𝑔𝑖 , e𝑔𝑖 , we attempt
to re-randomize the final dual-GSW ciphertext. Since, as discussed above, there is no suitable place
for storing zero-ciphertexts {sT

𝑖
A+ eT

𝑖
}𝑖∈[𝑄], we instead encrypt their secrets as described in Figure 6.

Version I encrypts all s𝑖’s using GSW, and hides all e𝑖’s in LWE samples cT
𝑖
= (sT

𝑖
A + eT

𝑖
mod Δ)

modulo a much smaller modulus Δ≪ 𝑞. (The dual-GSW components stay the same.) Note that the
LWE samples {c𝑖}𝑖∈[𝑄] are succinct, of size 𝑄 · ℓ · logΔ≪ 𝑄 · ℓ · log 𝑞 ≈ 𝑄 · 𝐿. This also shows we
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Encoding of x:
GSW components dGSW components

hpk = B =

(
B

rTB + eT
B

)
.

hct(x) = BR + xT ⊗ G𝑛+1 .

A
dct = UTA + EA + Iℓ ⊗ GT

𝑛r.

Opening u𝑔𝑖 for 𝑔𝑖 :
(1) Evaluate 𝑔𝑖 . (2) Linear decryption of hct𝑔𝑖

hct𝑔𝑖 = Eval(hct(x), 𝑔𝑖),(
hct𝑔𝑖
hct𝑔𝑖

)
=

(
BR𝑔𝑖

(rTB + eT
B)R𝑔𝑖 + 𝑔𝑖(x)

)
.

v𝑔𝑖 = vec(G−1(−hct𝑔𝑖 ))
= vec(G−1(−BR𝑔𝑖 ))

dct𝑔𝑖 = vT
𝑔𝑖
· dct = uT

𝑔𝑖
A + eT

𝑔𝑖
− rT(BR𝑔𝑖 ).

Correctness: hct𝑔𝑖 + dct𝑔𝑖 = uT
𝑔𝑖

A + 𝑔𝑖(x) + (eT
BR𝑔𝑖 + eT

𝑔𝑖
) (4)

Figure 5: Combining GSW and dual-GSW. The matrix/vectors are sampled as r← Z𝑛𝑞 , B← Z𝑛×𝑚𝑞 ,
eB ←𝒟𝑚

𝜎 , R← {0, 1}𝑚×(𝑛+1)⌈log 𝑞⌉·|x|, U← Z𝑛×ℓ𝑛⌈log 𝑞⌉
𝑞 , A← Z𝑛×ℓ𝑞 , EA ←𝒟ℓ𝑛⌈log 𝑞⌉×ℓ

𝜎 . The function
𝑔𝑖 has outputs in Zℓ𝑞 . Hence variables derived from the homomorphic evaluation have dimensions:
R𝑔𝑖 ∈ Z𝑚×ℓ𝑞 , u𝑔𝑖 ∈ Z𝑛𝑞 , e𝑔𝑖 ∈ Zℓ𝑞 . The opening u𝑔𝑖 is succinct: |u𝑔𝑖 | = 𝑛 log 𝑞 ≪ ℓ log 𝑞 = |𝑔𝑖(x)|.

cannot afford, for succinctness, to encrypt all the smudging noises e𝑖 in any regular ciphertexts
mod 𝑞.

Encoding:
GSW components Connecting components dGSW components

hpk =

(
B

rTB + eT
B

)
.

{hct(s𝑖) = BR+bits(s𝑖)T⊗G𝑛+1}𝑖 .
{cT
𝑖
= (sT

𝑖
A + eT

𝑖
mod Δ)}𝑖 . A

dct = UTA + E + Iℓ ⊗ GT
𝑛r.

Oblivious LWE Sampling:

(1) Evaluate 𝑓𝑖(s𝑖) = Δ

⌊
sT
𝑖
A
Δ

⌉
. (2) Add c𝑖 (3) Linear decryption for hct 𝑓𝑖

hct 𝑓𝑖 = Eval(hct(s𝑖), 𝑓𝑖),(
hct 𝑓𝑖
hct 𝑓𝑖

)
=

(
BR 𝑓𝑖

(rTB + eT
B)R 𝑓𝑖 + 𝑓𝑖(s𝑖)

)
hct 𝑓𝑖+c𝑖 = (rTB+eT

B)R 𝑓𝑖+sT
𝑖A+eT

𝑖

v 𝑓𝑖 = vec(G−1(−hct 𝑓𝑖 ))
dct 𝑓𝑖 = vT

𝑓𝑖
· dct

= uT
𝑓𝑖
A + eT

𝑓𝑖
− rT(BR 𝑓𝑖 )

Correctness : ∀𝑖 ∈ [𝑄], hct 𝑓𝑖 + cT
𝑖
+ dct 𝑓𝑖 = s̃T

𝑖
A + ẽT

𝑖

where s̃𝑖 = u 𝑓𝑖 + s𝑖 , ẽT
𝑖
= eT

𝑖
+ eT

BR 𝑓𝑖 + eT
𝑓𝑖

(6)

Figure 6: Version I: Encrypt secrets (s𝑖 , e𝑖) of zero-ciphertexts. Note that e𝑖’s are encoded in LWE
samples with modulus Δ, where Δ ≫ ∥e𝑖∥. The output of 𝑓𝑖 has roughly bit length 𝐿 = ℓ log 𝑞.
By setting logΔ ≪ log 𝑞 and log 𝑞 to be sublinear in 𝐿, each c𝑖 is succinct with length 𝐿1−𝜖. The
marginal distribution of {ẽ𝑖} is statistically close to iid Gaussian.

In the following, we will temporarily switch to the goal of oblivious LWE sampling, which
captures the key ideas. Intuitively, we can think of computing the function 𝑓𝑖 with output

33



sT
𝑖
A + eT

𝑖
mod 𝑞, and the final dual-GSW ciphertext s̃T

𝑖
A + ẽT

𝑖
= (u𝑔𝑖 + s𝑖)TA + (e𝑔𝑖 + e𝑖)T will be the

generated LWE samples. (Note we use 𝑓𝑖 to denote the functions related to oblivious LWE sampling,
to not confuse with the functions 𝑔𝑖 computed using functional encoding.) Our goal is to ensure
that LWE secrets (s̃𝑖 , ẽ𝑖) are pseudorandom, given the encoding and CRS (currently empty) from
which they are generated. Eventually, this will be shown via simulation – the encodings and CRS
can be simulated from s̃T

𝑖
A + ẽT

𝑖
with truly random s̃𝑖 , ẽ𝑖 .

To this end, our first attempt at generating s̃TA+ẽT is described in the bottom part of Figure 6. Step
1) uses GSW to homomorphically evaluate the function 𝑓𝑖(s𝑖) = Δ⌊sT

𝑖
A/Δ⌉ to get hct 𝑓𝑖 ; Step 2) adds

c𝑖 = (s𝑖A+e𝑖 mod Δ) to the last row of hct 𝑓𝑖 to obtain a GSW ciphertext of 𝑓𝑖(s𝑖)+c𝑖 = (sT
𝑖
A+eT

𝑖
mod 𝑞);

Step 3) homomorphically decrypts hct 𝑓𝑖 under dual-GSW as done in Equation (5) to produce the
final LWE samples s̃T

𝑖
A + ẽT

𝑖
.

Advantage and Drawbacks The advantage of Version I is that the LWE noises {ẽ𝑖}𝑖 follow the
distribution of iid Gaussian ẽ𝑖 , 𝑗 ∼ 𝒟𝜎0 . This is because ẽ𝑖 = e𝑖 + eBR 𝑓𝑖 + e 𝑓𝑖 , note that both eBR 𝑓𝑖

and e 𝑓𝑖 resulting from homomorphic evaluation in Step 1) and 3) have bounded norm and are
independent of the smudging noise e𝑖 . By sampling e𝑖 according to 𝒟𝜎0 with sufficient width
𝜎0 ≫ ||e 𝑓𝑖 + eBR 𝑓𝑖 ||, ẽ𝑖 distributes statistically closely to iid Gaussian𝒟𝜎0 . This means the noises ẽ𝑖
alone are safe to reveal.

It may appear that the LWE secret s̃𝑖 is random, because of the randomness in s𝑖 . This is false
because u 𝑓𝑖 may be correlated with s𝑖 . Recall that uT

𝑓𝑖
= vT

𝑓𝑖
·UT and v 𝑓𝑖 = vec

(
G−1(−hct 𝑓𝑖 )

)
. Note the

top part hct 𝑓𝑖 of the GSW output ciphertext hct 𝑓𝑖 is correlated with the encrypted secret bits(s𝑖), and
so is u 𝑓𝑖 . Therefore, revealing s̃𝑖 may leak information u 𝑓𝑖 which may compromise security.
Comparisons In table 2, we provide a comparison on the distribution of the leakage/opening
components for existing lattice-based iO constructions.

In all prior constructions of xiO and pseudorandom random obfuscation [DQV+21, WW21,
AKY24, BDJ+24], except for [GP21, BDGM22], the marginal distribution of noise leakage is far from
random. The structure in the noise leakage was leveraged in showing counterexamples [HJL21]
against certain instances of [WW21] and in the attack in section 7 against private-coin evasive
LWE [AKY24, BDJ+24].

The distinction lies in how the smudging noise e𝑖 is encoded or generated. In prior works, they
are generated either through homomorphic decryption of the CRS, or homomorphic evaluation of
a PRF, or expanded from a few samples (sTB + eT) using a trapdoor K = B−1(P). In these examples,
the generated smudging noise e𝑖 is not random. The key idea in Version I is that random e𝑖 is
directly encoded in LWE samples with small modulus, and added to e 𝑓𝑖 .
Version II: Special Homomorphic Evaluation Procedure We now fix the drawback in Version I
that s̃𝑖 = u 𝑓𝑖 + s𝑖 is not marginally random. To this end, we remove the correlation between u 𝑓𝑖 and
s𝑖 , by carefully designing a special procedure for homomorphically evaluating sT

𝑖
A + eT

𝑖
. Our key

observation is as follows: Given LWE sample cT
s,𝑖 = rTD𝑖 + s𝑖G + eT

s,𝑖 together with c𝑖 introduced
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Construction LWE secret LWE noise GSW randomness Lattice trapdoor

[GP21] $ $ Counterexample
([HJL21]) ✗

[BDGM22] $ $ Counterexample1

([HJL21]) ✗

[WW21] Non-random Counterexample
([HJL21]) ✗ ✗

[DQV+21] Attack ([JLLS23]) Non-random ✗ ✗

[BDJ+24]
[AKY24] ✗

Counterexample
(Section 7) ✗ $

Ours $2 $2 $2 ✗

1 While [HJL21] did not directly give a counterexample for [BDGM22], the construction shares similar weakness
structure as in [GP21], and it is pointed out in [HJL21] that the counter example is likely to extend.
2 In our construction, these three leakages are jointly random.

Table 2: Characterization for different information leakage beyond LWE samples for existing iO/PrO
constructions. These leakages typically come from the “opening components” required to enable
evaluation procedures. In the table, ✗ stands for no such leakage exist, $ stands for the leakage is
marginally random (from a well-defined distribution), Attack stands for that there exist adversary
breaking the construction through the leakage, and Counterexample stands for that there exist specific
implementation for the construction which can be broken through the leakage.

above, we can obtain sT
𝑖
A + eT

𝑖
hidden by a pad PAD𝑖(r) dependent only on r.

Δ ·
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 = Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ
+

sT
𝑖
A + eT

𝑖
− (sT

𝑖
A + eT

𝑖
mod Δ)

Δ

⌉
+ cT

𝑖

= Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ

⌉
+ Δ ·

⌊sT
𝑖
A + eT

𝑖

Δ

⌉
+ (sT

𝑖A + eT
𝑖 mod Δ)

𝑤.ℎ.𝑝
= Δ ·

⌊
rTD𝑖G−1(A)

Δ

⌉
+ sT

𝑖A + eT
𝑖

= PAD𝑖(r) + sT
𝑖A + eT

𝑖 (7)

where the second last equality holds with high probability when the noises eT
s,𝑖G

−1(A) − e𝑖 are
much smaller than Δ.

The Version II encoding is described in Figure 7. It includes a circular GSW ciphertext hct(r)
and LWE samples cT

s,𝑖 = rTD + sT
𝑖
G + eT

s,𝑖 , in addition to c𝑖 , dct as before. The evaluation proceeds
as follows. Step 1) uses GSW homomorphic evaluation to obtain a ciphertext hct 𝑓𝑖 encrypting
the pad 𝑓𝑖(r) = −PAD𝑖(r). Step 2) computes PAD𝑖(r) + s𝑖A + e𝑖 as in Equation (7), and Step 3)
homomorphically decrypts the GSW ciphertext under dual-GSW to obtain the LWE sample s̃T

𝑖
A+ ẽT

𝑖
.

The overall correctness is summarized in Equation (8).
Advantage The advantage of Version II is that the joint distribution of the LWE secret s̃𝑖 and noise ẽ𝑖 is,
marginally, random. s̃𝑖 is uniformly random over Z𝑞 since s𝑖 is random and independent of u 𝑓𝑖 (and
ẽ𝑖 is iid random Gaussian as in Version I). Recall again that uT

𝑓𝑖
= vT

𝑓𝑖
· UT and v 𝑓𝑖 = vec

(
G−1(−hct 𝑓𝑖 )

)
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Encoding
GSW components Connecting components dGSW components

hpk =

(
B

rTB + eT
B

)
.

hct(r) = BR + bits(r)T ⊗ G𝑛+1.

{cT
𝑖
= (sT

𝑖
A + eT

𝑖
mod Δ)}𝑖∈[𝑄].

{D𝑖}𝑖∈[𝑄].
{cT

s,𝑖 = rTD𝑖 + es,𝑖 + sT
𝑖
G}𝑖∈[𝑄]

A
dct = UTA + E + Iℓ ⊗ GTr

Oblivious LWE Sampling:
(1) Evaluate
𝑓𝑖(r) = −Δ

⌊
rTD𝑖G−1(A)

Δ

⌉
.

(2) Round and Mult by Δ and
Add c𝑖 .

(3) Linear decryption for hct 𝑓𝑖 .

hct 𝑓𝑖 = Eval(hct(s𝑖), 𝑓𝑖),(
hct 𝑓𝑖
hct 𝑓𝑖

)
=

(
BR 𝑓𝑖

(rTB + eT
B)R 𝑓𝑖 + 𝑓𝑖(s𝑖)

) Δ

⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ c𝑖

=Δ

⌊
rTDG−1(A)

Δ

⌉
+ sT

𝑖A + eT
𝑖

v 𝑓𝑖 = vec(G−1(−hct 𝑓𝑖 ))
dct 𝑓𝑖 = vT

𝑓𝑖
· dct

= uT
𝑓𝑖
A + eT

𝑓𝑖
− rT(BR 𝑓𝑖 )

Correctness : ∀𝑖 ∈ [𝑄], hct 𝑓𝑖 + Δ
⌊

cT
s,𝑖G

−1(A)−cT
𝑖

Δ

⌉
+ cT

𝑖
+ dct 𝑓𝑖 = s̃T

𝑖
A + ẽT

𝑖

where s̃T
𝑖
= uT

𝑓𝑖
+ sT

𝑖
, ẽT

𝑖
= eT

𝑖
+ eT

BR 𝑓𝑖 + eT
𝑓𝑖

(8)

Figure 7: Version II: Special Homomorphic Evaluation Procedure for Computing GSW ciphertexts
of sT

𝑖
A + eT

𝑖
. Each cs,𝑖 has dimension 𝑛 log 𝑞 and bit length 𝑛 log 𝑞 log 𝑞, which is sublinear in

𝐿 = ℓ log 𝑞 if 𝑛 log 𝑞 ≪ ℓ .

depends on the top part of the ciphertext hct 𝑓𝑖 . Different from Version I, hct 𝑓𝑖 is now the result of
evaluating 𝑓𝑖(r) and hence is only correlated with hct(r) and 𝑓𝑖 which depends on matrices D,A,
and hence independent of s𝑖 .
Comparison In prior constructions [DQV+21, WW21], the LWE secrets s̃ produced in the scheme are
far from random. In particular, this was leveraged by [JLLS23] to launch a polynomial-time attack
on [DQV+21].
Drawbacks Now that (s̃𝑖 , ẽ𝑖) is jointly random, can we reduce the security of Version II to some
LWE-with-hints assumption with random hints? We show below that this could be done, however,
the resulting assumption needs to postulate security of LWE-based encodings with an “unnatural”
distribution, in particular, they are provably not pseudorandom given the hints.

We observe that there is a reduction ℛ2 that given a sample from the following “smaller”
distribution can emulate the distribution of Version II:

Realv2 : (hpk, hct(r), {D𝑖 , ĉ𝑖}𝑖 , A, dct) , where ĉT
𝑖 = rTD𝑖 − uT

𝑓𝑖
G + êT

𝑖

Above, components hpk, hct(r),D,A, dct are sampled exactly as in Version II. Therefore, the
reduction ℛ2 just needs to emulate the missing components (s̃𝑖 , ẽ𝑖 , c𝑖 , cs,𝑖) in Version II. Leveraging
that (s̃𝑖 , ẽ𝑖) are random, ℛ2 can sample them internally, which implicitly defines sT

𝑖
= s̃T

𝑖
− uT

𝑓𝑖
and

eT
𝑖
= ẽT

𝑖
− (eT

𝑓𝑖
+ eT

BR 𝑓𝑖 ). Next, the correctness constraint (Equation (8)) gives a way to emulate c𝑖 as
follows:

c𝑖 emulation: cT
𝑖 =

(
s̃T
𝑖A + ẽT

𝑖

)
− hct 𝑓𝑖 − dct 𝑓𝑖 (mod Δ) (9)
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Finally, cs,𝑖 , which should encrypt sT
𝑖
G = s̃T

𝑖
G − uT

𝑓𝑖
G can be emulated using ĉ𝑖 :

cs,𝑖 emulation: cT
s,𝑖 = ĉT

𝑖 + s̃T
𝑖G (10)

Hence, any property of the distribution in Version II translates to some property of Realv2, and vice
versa.

Examining the distribution Realv2, it contains circular LWE encodings – hct(r) circularly encrypts
r under r, dct encrypts Iℓ ⊗ GT · r under U, and ĉ𝑖 encrypts u 𝑓𝑖 under r. It appears that by the
commonly used circular LWE security rationale, one could postulate the pseudorandomness of
Realv2, which would imply some form of the security of Version II.

However, this is false. Realv2 is provably not pseudorandom, because the correctness condition
(Equation (8)) of Version II translates (via ℛ2) into an efficiently verifiable constraint on Realv2 that
truly random encodings do not satisfy.

To unravel the apparent contradiction, it is instrumental to note that the encoding ĉ is not a “safe”
circular encoding. In general, a circular encoding tTH + 𝑓 (t) + eT is only secure if the encrypted
message 𝑓 (t) is independent of the encoding randomness (H, e) (a trivial counterexamples is
𝑓 (t) = −tT ·H). However, ĉ violates this rule-of-thumb: The message u 𝑓𝑖 depends on the random
matrix D𝑖 used to encode it. The correlation exists because u 𝑓𝑖 depends on the function 𝑓𝑖 , which
computes 𝑓𝑖(r) = −Δ⌊rTD𝑖G−1(A)/Δ⌉ and is dependent on D𝑖 .

We distill a take-away message from the above discussion. For any assumption that contains LWE-
based encodings, we view the lack of plausible pseudorandomness of the encodings problematic,
as it stands at odds with our intuition that security based on LWE encodings relies on their
pseudorandomness8.

Therefore, our goal is to formulate an LWE-with-hint assumption, where the LWE encodings
in the real distribution are switched to random in the ideal distribution. Towards this, in Version
III we will introduce a URS (uniform random CRS), and show simulation security, namely, the
encodings and URS can be simulated using s̃T

𝑖
A + ẽT

𝑖
.

Comparison In all prior oblivious LWE sampler and xiO constructions [BDGM20, DQV+21, WW21,
GP21, BDGM22], the underlying hardness / assumption postulates indistinguishability security,
and lack natural pseudorandomness variants of their assumptions.
Version III: GSW Rerandomization, Pseudorandom LWE-with-Hint, and Simulation Security
Towards the aforementioned goal of relying on pseudorandom LWE-with-hint assumption and
achieving simulation security, Version III uses a technique introduced in [GP21] that re-randomizes
the GSW ciphertext before dual-GSW homomorphic decryption, as described in Figure 8. The
re-randomization uses sufficiently wide random Gaussian matrices R∗ = {R∗

𝑖
}𝑖∈[𝑄] contained in the

URS. In particular, after Step 1) obtaining the GSW ciphertext hct 𝑓𝑖 , Step 2) “rerandomizes” the
ciphertext to

hct′ = hct 𝑓𝑖 + BR∗𝑖 =
(

BR̃𝑖

(rTB + eT
B)R̃𝑖 + 𝑓𝑖(r)

)
, where R̃𝑖 = (R 𝑓𝑖 + R∗𝑖 )

Following that, evaluation proceeds identically as in Version II.
Advantage We first formulate a distribution Realv3 from which Version III can be emulated, and

8This should be separated from LWE-based constructions, e.g., NIZK, where pseudorandomness does not hold but
ZK or indistinguishability holds. Such behaviors are the result of careful design, whereas when formulating assumptions,
we are considering LWE encodings that we do not fully know how to analyze.
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Encoding:
Common reference string: crs = {R∗

𝑖
←𝒟𝑚×ℓ

𝜎0 }𝑖∈[𝑄].
GSW components Connecting components dGSW components

hpk =

(
B

rTB + eT
B

)
hct(r) = BR + bits(r)T ⊗ G𝑛+1

{cT
𝑖
= (sT

𝑖
A + eT

𝑖
mod Δ)}𝑖∈[𝑄]

{D𝑖}𝑖∈[𝑄]
{cT

s,𝑖 = rTD𝑖 + eT
s,𝑖 + sT

𝑖
G}𝑖∈[𝑄]

A
dct = UTA + E + Iℓ ⊗ GTr

Oblivious LWE Sampling:
(1) Evaluate
𝑓𝑖(r) = −Δ

⌊
rTD𝑖G−1(A)

Δ

⌉ (3) Round and Mult by Δ and
Add

(4) Linear decryption for hct′𝑖

hct 𝑓𝑖 = Eval(hct(s𝑖), 𝑓𝑖),(
hct 𝑓𝑖
hct 𝑓𝑖

)
=

(
BR 𝑓𝑖

(rTB + eT
B)R 𝑓𝑖 + 𝑓𝑖(s𝑖)

) ⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖

=

⌊
rTDG−1(A)

Δ

⌉
+ sT

𝑖A + eT
𝑖

v𝑖 = vec(G−1(−hct
′
𝑖))

dct𝑖 = vT
𝑖 · dct

= uT
𝑖A + e′𝑖

T − rT(BR̃𝑖)
(uT

𝑖 = vT
𝑖U

T , e′𝑖
T
= vT

𝑖E)

(2) Rerandomization
hct′𝑖 = hct 𝑓𝑖 + BR∗𝑖(

hct
′
𝑖

hct′𝑖

)
=

(
BR̃𝑖

(rTB + eT
B)R̃𝑖 + 𝑓𝑖(r)

)
,

where R̃𝑖 = R 𝑓𝑖 + R∗
𝑖

Correctness : ∀𝑖 ∈ [𝑄], hct′𝑖 + Δ
⌊

cT
s,𝑖G

−1(A)−cT
𝑖

Δ

⌉
+ cT

𝑖
+ dct𝑖 = s̃T

𝑖
A + ẽT

𝑖

where s̃𝑖 = u𝑖 + s𝑖 , ẽT
𝑖
= eT

𝑖
+ eT

BR̃𝑖 + e′
𝑖
T , e′

𝑖
T
= v𝑖E

(11)

Figure 8: Version III: Rerandomizing the GSW ciphertext.

show that the LWE encodings in Realv3 now follow sound circular security rationale.

Realv3 : encodings =

(
hpk = B, hct(r), {hct0,𝑖 = BR̃𝑖}, D, {̂c𝑖}, A, dct

)
, hint = {R∗𝑖}

where R̃𝑖 = R 𝑓𝑖 + R∗𝑖 , ĉ𝑖 = rTD𝑖 + êT
𝑖 − uT

𝑖G, uT
𝑖G = vec(G−1(−BR̃))TUTG = 𝑓 circ(U, hct0) .

Additionally, (hpk, hct(r),D,A, dct,R∗) are sampled, and R 𝑓𝑖 ,u𝑖 computed just as in Version III.
To emulate the full distribution of Version III, a reduction ℛ3 given a sample from Realv3 needs
to emulate the missing terms (s̃𝑖 , ẽ𝑖 , c𝑖 , cs,𝑖) similarly to ℛ2. Because the distribution of s̃𝑖 , ẽ𝑖 are
random and independent of all the components in Realv3, they can be sampled by ℛ3 internally,
cs,𝑖 is emulated by ĉ𝑖 + s̃T

𝑖
G as in Equation (9), and c𝑖 is emulated according to the new correctness

condition (Equation (11)):

New c𝑖 emulation: c𝑖 =
(
s̃T
𝑖A + ẽT

𝑖

)
− hct0,𝑖 − dct𝑖 (mod Δ) (12)

Thanks to re-randomization, the LWE encodings encodings in Realv3 are now safe circular
encoding. hct(r), hct0,𝑖 , dct are standard circular encodings. We further observe that ĉ𝑖 now encrypts
a message u𝑖 using independent randomness (D, ê). This is because u𝑖 depends on U and BR̃𝑖 .
Thanks to smudging, R̃𝑖 = R 𝑓𝑖 + R∗

𝑖
is a random Gaussian matrix and hence u𝑖 is independent of

D and ê. Therefore, by circular security rationale, the encodings alone is pseudorandom. This
overcomes the drawback of Version II.
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Our Pseudorandom LWE-with-hints Assumption: We explore whether the LWE encodings encodings
is still pseudorandom, at the presence of hint, by formulating an LWE-with-hints assumption. While
encodings alone is pseudorandom by circular security, and R∗

𝑖
’s are marginally random, their joint

distribution is subject to a constraint implied by the correctness condition of Version III. Hence, the
main question is when encodings is switched to random in an ideal distribution, how should the
distribution of R∗

𝑖
change accordingly to ensure that the constraint is still satisfied?

Let’s examine the distribution of R∗
𝑖
. In the real distribution Realv3, it is a random Gaussian

matrix subject to the following constraint:

R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 , conditioned on hct 𝑓𝑖 + BR∗𝑖 = hct0,𝑖 +

(
0
𝑓𝑖(r)

)
Furthermore, the correctness equality of Version III is equivalent to an equality showing that
𝑓𝑖(r) can be computed publicly from existing LWE encodings (hct0,𝑖 , ĉ𝑖 , dct) with overwhelming
probability.

Claim 1. The correctness constraint in Version III is equivalent to the following equality:

𝑓𝑖(r)
𝑤.ℎ.𝑝
= �̃�𝑖(hct0,𝑖 , ĉ𝑖 , dct) =

⌊
−̂cT

𝑖
G−1(A) + dct𝑖 − hct0,𝑖

Δ

⌉
· Δ, dct𝑖 = vec(G−1(−hct0,𝑖))T · dct

Proof. The proof follows from algebraic derivation, starting from the correctness of Version III.

s̃T
𝑖A + ẽT

𝑖 = hct0,𝑖 + 𝑓𝑖(r) + Δ
⌊
cT

s𝑖 ,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 + dct𝑖

𝑓𝑖(r) = s̃T
𝑖A + ẽT

𝑖 − hct0,𝑖 − dct𝑖 − cT
𝑖 − Δ

⌊
cT

s𝑖 ,𝑖G
−1(A) − cT

𝑖

Δ

⌉
= s̃T

𝑖A + ẽT
𝑖 − hct0,𝑖 − dct𝑖 − cT

𝑖 −
(
cT

s𝑖 ,𝑖G
−1(A) − cT

𝑖

)
+

((
cT

s𝑖 ,𝑖G
−1(A) − cT

𝑖

)
mod Δ

)
= s̃T

𝑖A + ẽT
𝑖 − hct0,𝑖 − dct𝑖 − cT

𝑖 −
(̂
cT
𝑖G
−1(A) + s̃T

𝑖A − cT
𝑖

)
+

( (̂
cT
𝑖G
−1(A) + s̃T

𝑖A − cT
𝑖

)
mod Δ

)
= ẽT

𝑖 − hct0,𝑖 − dct𝑖 − ĉT
𝑖G
−1(A) +

( (̂
cT
𝑖G
−1(A) + s̃T

𝑖A −
(
s̃T
𝑖A + ẽT

𝑖 − hct0,𝑖 − dct𝑖
))

mod Δ

)
= Δ

⌊
ẽT
𝑖
− hct0,𝑖 − dct𝑖 − ĉT

𝑖
G−1(A)

Δ

⌉
𝑤.ℎ.𝑝
= Δ

⌊
−hct0,𝑖 − dct𝑖 − ĉT

𝑖
G−1(A)

Δ

⌉
= �̃�𝑖(hct0,𝑖 , ĉ𝑖 , dct)

The fourth equality follows from emulation of cs𝑖 ,𝑖 by (10). The fifth equality follows from emulation
of c𝑖 by (12). The last equality follows with high probability since the noise ẽ𝑖 is small. □

We can now formulate our pseudorandom LWE-with-hints assumption:

encodings =
(

hpk = B, hct(r), {hct0,𝑖 = BR̃𝑖}, D, {̂c𝑖}, A, dct
)
, hint = {R∗

𝑖
}

≈ encodings =
(

$, $, {$}, $, {$}, $, $
)
, hint = {R∗

𝑖
}

where R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 , conditioned on hct 𝑓𝑖 + BR∗𝑖 = hct0,𝑖 +

(
0

�̃�𝑖(hct0,𝑖 , ĉ𝑖 , dct)

)
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Note that the constraint on R∗ is efficiently verifiable. In the real distribution, the encodings
contains honestly generated LWE encodings, and R∗ follows the Gaussian distribution subject to the
constraint, while in the ideal distribution, encodings is truly random and R∗ is still Gaussian subject
to the constraint. Furthermore, the marginal distribution of R∗

𝑖
is truly random Gaussian in the real

distribution (Theorem 1), and is pseudorandom Gaussian in the ideal distribution (Theorem 2). Our
assumption postulates that these two distributions are indistinguishable. We show that it resists
existing attacks and cryptanalytic techniques in Section 2.3.2.
Simulation Security: Our assumption immediately enables proving simulation security. Given
s̃T
𝑖
A + ẽT

𝑖
, a simulator simulates the LWE encodings and the CRS in Version III as follows: It samples

encodings at random and R∗
𝑖
as in the ideal distribution. Note that sampling R∗

𝑖
as Gaussian with

width 𝜎0 conditioned on BR∗
𝑖

being equal to a target matrix can be done efficiently if B in encodings
is sampled together with a trapdoor. Then the simulator invokesℛ3 to simulate the rest components
in Version III. We note that the output LWE samples s̃T

𝑖
A + ẽT

𝑖
are “programmed” in R∗

𝑖
in the CRS

(note this is the alternative simulation strategy of GSW).
Construction of Functional Encoding: Once we have an oblivious LWE sampler, it becomes easy to
construct a functional encoding. The high-level idea is that the CRS of the functional encoding is
exactly the CRS of the oblivious LWE sampler, namely R∗. The functional encoding of an input x
includes all the encodings in the oblivious LWE sampler, and additionally a dual-GSW ciphertext
of the binary input x.

dct(x) = WTA + Ex + x ⊗ GT
ℓ

dGSW.Eval
=⇒ dct𝑔𝑖 = wT

𝑔𝑖
A + eT

𝑔𝑖
+ 𝑔𝑖(x)T , for 𝑔𝑖(x) ∈ Zℓ𝑞

Using the homomorphic evaluation of dual-GSW, we can obtain a ciphertext of the output 𝑔𝑖(x) ∈ Zℓ𝑞 .
To reveal the output, instead of opening w𝑔𝑖 which compromises security, we re-randomize dct𝑔𝑖
using the obliviously sampled LWE samples and open w𝑔𝑖 + s̃𝑖 , which reveals 𝑔𝑖(x) + e𝑔𝑖 + ẽ𝑖 and
hence the high order bits of 𝑔𝑖(x). Thanks to the fact that s̃𝑖 , ẽ𝑖 are pseudorandom, w𝑔𝑖 and e𝑔𝑖 are
now hidden. By a similar simulation strategy as above, we can show simulation security of the
functional encoding.

5 Constructing Functional Encoding from CRO

We now present the formal construction and proof of functional encoding from the CRO assumption.

Construction 1. In the construction, we always use the discrete Gaussian distribution with bounded norm.
In particular, we use the notation𝒟𝜎 to denote the conditional distribution 𝑥 ←𝒟𝜎

��
|𝑥|≤𝜎

√
𝜆.

• Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑): The algorithm picks appropriate parameters pp = (𝑛, 𝑚,Δ, 𝜅, 𝑝, 𝑞, ℓ , 𝜎, 𝜎0 , 𝜎e)
samples GSW rerandomization matrix

R∗ = (R∗1 , . . . ,R∗𝑄) ← 𝒟
𝑚×𝑄ℓ
𝜎0 ,

and output crs = (pp,R∗).
Note: The parameters need to satisfy certain relations. We specify them below when a relation is first
needed, and set the parameters at the end of the section.

• Enc(crs, x;𝑅): The algorithm on input the crs, and a binary input x ∈ {0, 1}𝐾 , generates the following
components.
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– GSW components:

‗ Public key hpk = B =

(
B

rTB + eT
B

)
, where𝑚 = Θ(𝑛 log 𝑞), r← Z𝑛𝑞 , B← Z𝑛×𝑚𝑞 , eB ←𝒟

𝑚

𝜎

‗ Ciphertext hct = BR + bits(r)T ⊗ G, where R← {0, 1}𝑚×𝑛(𝑛+1)⌈log 𝑞⌉2

– Connecting components
‗ Public matrix A ← Z𝑛×ℓ𝑞 , where ℓ is an appropriate sublinear quantity in the function

output length 𝐿 as described in Theorem 6.
‗ Public matrix D← Z𝑛×𝑄𝑛⌈log 𝑞⌉

𝑞 , where D = (D1 , . . . ,D𝑄).

‗ For 𝑖 ∈ [𝑄], c𝑖 = (sT
𝑖
A + eT

𝑖
(mod Δ)), where s𝑖 ← Z𝑛𝑞 , e𝑖 ←𝒟

ℓ

𝜎e .

‗ For 𝑖 ∈ [𝑄], cs,𝑖 = rTD𝑖 + eT
s,𝑖 + sT

𝑖
G𝑛 , where es,𝑖 ←𝒟

𝑛⌈log 𝑞⌉
𝜎

– Dual GSW components

‗ Ciphertext for secret key dct = UTA + EA + Iℓ ⊗ GT
𝑛r, where U ← Z𝑛×ℓ𝑛⌈log 𝑞⌉

𝑞 , EA ←
𝒟ℓ𝑛⌈log 𝑞⌉×ℓ

𝜎 .
‗ Ciphertext for message dctx = WTA + Ex + x ⊗ GT

ℓ
, where w ← Z𝑛×𝐾ℓ⌈log 𝑞⌉

𝑞 , Ex ←
𝒟𝐾ℓ⌈log 𝑞⌉×ℓ

𝜎 .

The algorithm outputs

ct = (hpk, hct,D, {c𝑖 , cs𝑖}𝑖∈[𝑄] ,A, dct, dctx).

• Open(crs, 𝑔, 𝑖, x, 𝑅): The algorithm first runs the encryption algorithm Enc(crs, x;𝑅) to recompute
all intermediate variables generated in the encryption process as described above, and then computes the
opening as follows.

0. Parse function 𝑔 : {0, 1}𝐾 → {0, 1}𝐿 as 𝑔 : {0, 1}𝐾 → Zℓ2𝜅 , where every 𝜅-bit chunk of the output
is parsed as a 𝜅 bit integer in [0, 2𝜅 − 1]. Define �̃� : {0, 1}𝐾 → Zℓ𝑞 where �̃�(x) = 𝑝 · 𝑔(x) mod 𝑞.
We require that 𝑞 > 2𝜅𝑝.

1. Homomorphically evaluate the function �̃� over the dual-GSW ciphertext dctx to obtain

dct �̃� = wT
�̃�
A + eT

�̃�
+ �̃�(x)T ,

where w�̃� is efficiently computable.

2. H̄omomorphically evaluate function 𝑓𝑖 where 𝑓𝑖(r)T = Δ

⌊
rTD𝑖G−1(A)

Δ

⌉
over the GSW ciphertext

hct to obtain

hct 𝑓𝑖 =
(
hct 𝑓𝑖
hct 𝑓𝑖

)
=

(
BR 𝑓𝑖

(rTB + eT
B)R 𝑓𝑖 + 𝑓𝑖(r)T

)
3. Rerandomize −hct 𝑓𝑖 by(

hct
′
𝑖

hct′𝑖

)
= hct′𝑖 = BR∗𝑖 − hct 𝑓𝑖 =

(
BR̃𝑖

(rTB + eT
B)R̃𝑖 − 𝑓𝑖(r)T

)
,

where R̃𝑖 = R∗
𝑖
− R 𝑓𝑖 .
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4. Homomorphically decrypt hct′𝑖 using dual GSW ciphertext dct by

v𝑖 = vec(G−1(−hct
′
𝑖)), dct𝑖 = vT

𝑖 · dct = uT
𝑖A + e′𝑖

T − rT(BR̃𝑖),
where uT

𝑖
= vT

𝑖
UT is efficiently computable.

Finally, the algorithm outputs the opening 𝜌𝑖 = u𝑖 +w�̃� + s𝑖 .

• Dec(crs, 𝑔, 𝑖, ct, 𝜌): The algorithm first parses

ct = (hpk, hct,D, {c𝑖 , cs𝑖}𝑖∈[𝑄] ,A, dct, dctx).
Following the same procedure as the opening algorithm, the decryption algorithm computes

– Dual GSW ciphertext

dct �̃� = wT
�̃�
A + eT

�̃�
+ �̃�(x)T.

– Rerandomized GSW ciphertext(
hct
′
𝑖

hct′𝑖

)
= hct′𝑖 =

(
BR̃𝑖

(rTB + eT
B)R̃𝑖 − 𝑓𝑖(r)T

)
.

– Dual GSW ciphertext

dct𝑖 = uT
𝑖A + e′𝑖

T − rT(BR̃𝑖).

The algorithm approximately decodes �̃�(x) by

�̃�(x)T ≈ ỹT = hct′𝑖 + dct𝑖 + dct �̃� + Δ
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 − 𝜌TA. (13)

The algorithm outputs bit string 𝑦, which extracted from bits(
⌊

ỹ
𝑝

⌉
).

Theorem 5 (Correctness). Suppose Δ|𝑞, 𝑚 = Ω(𝑛 log 𝑞), 𝑞 ≤ 2𝑛 , 𝜎0 ≥ 𝑚Ω(log 𝑛), 𝜎e ≥ ℓΩ(𝑑)𝜎𝜎0
Δ ≥ 2𝜆𝜎e, and 𝑝 ≥ 8Δ, where 𝑚, 𝜎0 , 𝜎e are sufficiently large, then Construction 1 is correct.

Moreover, the following correctness condition holds with probability 1 − 2−Ω(𝜆).

hct′𝑖 + dct𝑖 + dct �̃� + Δ
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 − 𝜌TA = �̃�(x)T + ẽT
𝑖 (14)

ẽT = eT
BR̃𝑖 + eT

�̃�
+ e′𝑖

T + eT
𝑖

Proof. First observe that in the decryption equation 13, the connecting components satisfy

Δ ·
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 = Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) + sT

𝑖
A − (sT

𝑖
A + eT

𝑖
mod Δ)

Δ

⌉
+ cT

𝑖

= Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ
+

sT
𝑖
A + eT

𝑖
− (sT

𝑖
A + eT

𝑖
mod Δ)

Δ

⌉
+ cT

𝑖

= Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ

⌉
+ Δ ·

⌊sT
𝑖
A + eT

𝑖

Δ

⌉
+ (sT

𝑖A + eT
𝑖 mod Δ)

= Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ

⌉
+ sT

𝑖A + eT
𝑖 .
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Therefore, by expanding the decryption equation, we get

ỹT = (rTB + eT
B)R̃𝑖 − Δ

⌊
rTD𝑖G−1(A)

Δ

⌉
+wT

�̃�
A + eT

�̃�
+ �̃�(x)T + uT

𝑖A + e′𝑖
T − rT(BR̃𝑖)

+ Δ ·
⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ

⌉
+ sT

𝑖A + eT
𝑖 − (u𝑖 +w�̃� + s𝑖)TA

= �̃�(x)T + eT
BR̃𝑖 + eT

�̃�
+ e′𝑖

T + eT
𝑖 + Δ𝜂𝑖 , (15)

where 𝜂𝑖 =

(⌊
rTD𝑖G−1(A) + eT

s,𝑖G
−1(A) − eT

𝑖

Δ

⌉
−

⌊
rTD𝑖G−1(A)

Δ

⌉)
.

The error terms in the above equation are bounded byeT
BR̃𝑖

 ≤ eT
BR 𝑓𝑖

 + eT
BR∗𝑖

 ≤ 𝜎
√
𝜆 · 𝑚 · (𝑚𝑂(log 𝑛) + 𝜎0

√
𝜆) ≤ 2𝑚𝜆𝜎𝜎0 ,e�̃�

 ≤ ℓ𝑂(𝑑)𝜎√𝜆 ≤ 𝜎e , ,
e′𝑖

 ≤ ℓ𝑛𝜎√𝜆, ∥e𝑖∥ ≤ 𝜎e ,

|𝜂𝑖| ≤ 1 since
eT

s,𝑖G
−1(A) − eT

𝑖

 ≤ Δ + 𝑚𝜎
√
𝜆 + 𝜎e

√
𝜆 ≤ Δ

The norm bound
R 𝑓𝑖

 = 𝑚𝑂(log 𝑛) follows from the observation that the function 𝑓𝑖 can be computed
by a circuit of depth 𝑂(log(𝑛 log 𝑞)) = 𝑂(log 𝑛). Therefore, the decoding error of ỹ has norm bound⌊ ỹ

𝑝

⌉
−

⌊
�̃�(x)
𝑝

⌉ =

⌊ ỹ − �̃�(x)
𝑝

⌉ ≤ ⌊
5𝜎e + Δ

𝑝

⌉
≤

⌊
1
4

⌉
= 0,

where the first equation follows from the fact that �̃�(x) is always a multiple of 𝑝. Therefore,⌊
ỹ
𝑝

⌉
=

⌊
�̃�(x)
𝑝

⌉
, indicating that the decryption algorithm recovers 𝑔(x) perfectly. Moreover, by the

observation that eT
s,𝑖G

−1(A) − eT
𝑖

 ≤ Δ + 𝑚𝜎
√
𝜆 + 𝜎e

√
𝜆 ≤ 2−Ω(𝜆)Δ,

along with the fact that rTD𝑖G−1(A) is marginally random, the rounding lemma guarantees that
with probability 1 − 2−Ω(𝜆),⌊

rTD𝑖G−1(A) + eT
s,𝑖G

−1(A) − eT
𝑖

Δ

⌉
=

⌊
rTD𝑖G−1(A)

Δ

⌉
.

Therefore 𝜂𝑖 = 0 with overwhelming probability. Hence, combining the decryption equation (13)
with equation (15), we conclude that the equation (14) holds with overwhelming probability. □

Theorem 6 (Succinctness). Construction 1 is succinct if there exists constants 𝛼, 𝛽, 𝛾 ∈ (0, 1) such that
𝑛 ≤ 𝐿𝛼 · poly(𝜆, 𝑘, 𝑑), 𝜅 ≤ 𝐿𝛽 , ℓ ≤ 𝐿𝛾 where 𝛽 + 𝛾 ≥ 1 and 𝛼 + 𝛽 < 1/2, 𝑚 = Θ(𝑛 log 𝑞), 𝑞 = 2Θ(𝜅)𝑝,
and parameters (logΔ, log 𝑝) = poly(𝜆, 𝐾, 𝑑, log 𝐿).

Proof. The size of the opening is bounded by

|𝜌𝑖| = 𝑛 log 𝑞 = 𝑛(log 𝑝 + 𝑂(𝜅)) = 𝐿𝛼+𝛽poly(𝜆, 𝐾, 𝑑),
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where 𝛼 + 𝛽 < 1/2. For the encoding, we can separate the components into 𝑄-dependent and
𝑄-independent terms. The 𝑄 independent terms have size bounded by

|hpk|, |hct|, |A|, |dct|, |dctx| = poly(𝑛, 𝑚, 𝐾, ℓ , log 𝑞) = poly(𝐿) · poly(𝜆, 𝐾, 𝑑).

On the other hand, the 𝑄-dependent terms have size bounded by

|D| = 𝑄𝑛𝑚 log 𝑞 ≤ 𝑄𝐿2𝛼+2𝛽 · poly(𝜆, 𝐾, 𝑑),
|{cs,𝑖}𝑖∈𝑄 | = 𝑄𝑚 log 𝑞 ≤ 𝑄𝐿𝛼+2𝛽 · poly(𝜆, 𝐾, 𝑑),
|{c𝑖}𝑖∈𝑄 | = 𝑄ℓ logΔ ≤ 𝑄𝐿𝛾 · poly(𝜆, 𝐾, 𝑑).

Therefore the overall size of the encoding is bounded by (𝑄𝐿1−𝜖 + poly(𝐿)) · poly(𝜆, 𝐾, 𝑑) for constant
𝜖 = 1 −max(2(𝛼 + 𝛽), 𝛾). □

Theorem 7 (SIM-security). Assuming 𝑛 = poly(𝜆), 𝑞 < 2𝑛 , 𝑚 = Ω(𝑛 log 𝑞), 𝜎0 ≥ 2𝜆𝑚Ω(log 𝑛)𝜎,
𝜎e ≥ 2𝜆𝜎𝜎0ℓ

Ω(log 𝑛+𝑑), and Δ ≥ 2𝜆ℓΩ(𝑑)𝜎𝜎0, where 𝑚, 𝜎0 , 𝜎e, Δ are sufficiently large, and assuming that the
CRO assumption (assumption 1) is (sub-exponentially) secure for parameters (𝑛, 𝑞,Δ, 𝜎), then construction 1
is (sub-exponentially) SIM-secure.

Proof. We consider the following sequence of hybrids. We inline intuition on why neighboring
hybrids are indistinguishable and provide formal proofs after all hybrids are described.

• ℋ0: This is the LHS of the SIM-security definition in definition 10. For message-function
tuple (x, 𝑔1 , . . . , 𝑔𝑛), the output distribution of this hybrid is described by(crs, ct, {𝜌𝑖}𝑖∈[𝑄])

������ crs ← Gen(1𝜆 , 1𝑄 , 1𝑘 , 1𝐿 , 1𝑑)
ct ← Enc(crs, x;𝑅)
𝜌𝑖 ← Open(crs, 𝑔𝑖 , 𝑖 , x, 𝑅)


• ℋ1: Same asℋ0, except that in all algorithms, the samples from the bounded discrete Gaussian
𝒟 are replaced with samples from the standard discrete Gaussian𝒟. Hybridℋ1 is statistically
close toℋ0 following the fact that Gaussian distributions have small tails (Lemma 2).

• ℋ2: Same asℋ1, but in the encryption algorithm, the randomness s𝑖 , e𝑖 for the connecting
components are computed differently. The hybrid first samples

s̃𝑖 ← Z𝑛𝑞 , ẽ𝑖 ←𝒟ℓ
𝜎e ,

then programs

s𝑖 = s̃𝑖 − u𝑖 −w�̃�𝑖 , eT
𝑖 = ẽ𝑖 − eT

BR̃𝑖 − e′𝑖
T − eT

�̃�𝑖
.

Note that the opening 𝜌𝑖 = s̃𝑖 for all 𝑖 ∈ [𝑄]. Hybrid ℋ2 is statistically close to ℋ1 because
the marginal distribution of s̃𝑖 , ẽ𝑖 inℋ1 is uniformly random over Z𝑞 and statistically close to
i.i.d. Gaussian𝒟𝜎e . Therefore, it is statistically close to sample them first, and then reverse
compute s𝑖 and e𝑖 . See Lemma 8.

• ℋ3: Same asℋ2, but in the encryption algorithm, the connecting components are computed
differently. The hybrid sets

cT
𝑖 = (s̃T

𝑖A + ẽT
𝑖 − dct 𝑓𝑖 − hct′𝑖 − dct �̃�𝑖 + �̃�(x)T mod Δ).
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For elements cs,𝑖 , the hybrid first computes intermediate elements

ĉT
𝑖 = rTD𝑖 + eT

s,𝑖 − uT
𝑖G = rTD𝑖 + eT

s,𝑖 − vec(G−1(−hct
′
𝑖)) ·UTG

then set cT
s,𝑖 = ĉT

𝑖
+ s̃T

𝑖
G − w�̃�𝑖G. Note that w�̃�𝑖 is efficiently computable given secret W,

ciphertext, dctx, function 𝑔𝑖 , and message x.
Hybridℋ3 andℋ2 are identically distributed. The emulation of cT

𝑖
is perfect following from

the correctness condition Equation (14) in Theorem 5. The emulation of cs,𝑖 is also perfect
because cs,𝑖 is supposed to encode s𝑖G which by the programming step in ℋ2 equals to
(s̃𝑖 − u𝑖 −w�̃�𝑖 )G.

• ℋ4: Same asℋ3, but in the generation of crs, the hybrid samples R∗ indirectly. Namely, the
algorithm first sample R0 = (R0,1 , . . . ,R0,𝑄) ← 𝒟𝑚×𝑄ℓ

𝜎0 , compute ciphertexts hct0,𝑖 = BR0,𝑖 for
all 𝑖 ∈ [𝑄], then reverse sample R∗ from the conditional distribution

R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 |BR∗

𝑖
=hct0,𝑖 .

Note that in this hybrid, the GSW rerandomization can be written by

hct′𝑖 = hct0,𝑖 − hct 𝑓𝑖

therefore one can equivalently write the reverse sample of R∗ by

R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 |BR∗

𝑖
=hct′

𝑖
+hct 𝑓𝑖

Hybridℋ4 is identically distributed toℋ3 since it only changes the order of sampling to hct0
first and R∗ second, and replaces hct0 using equality.

• ℋ5: Same asℋ4, but rewrites the GSW rerandomization equation by

hct′𝑖 = hct0,𝑖 ⊟ 𝑓𝑖(r)

Notice that this implies hct
′
𝑖 = hct0,𝑖 . The sampling of R∗ is subsequently replaced by

R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 |BR∗

𝑖
=hct 𝑓𝑖+hct0,𝑖⊟ 𝑓𝑖(r)

Hybridℋ5 is statistically close toℋ4 because by the re-randomizability of GSW, hct0,𝑖 ⊟ 𝑓𝑖(r) is
statistically close to hct0,𝑖 − hct 𝑓𝑖 . The former is a fresh encryption of 𝑓𝑖(r) using wide Gaussian
𝒟𝜎0 and the latter is a re-randomized encryption of 𝑓𝑖(r).

• ℋ6: Define function �̃�𝑖 as

�̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖)T = Δ

⌊
ĉT
𝑖
G−1(A) + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖

Δ

⌉
,

and replace 𝑓𝑖(r) by �̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖) in the sampling equation of R∗
𝑖
, namely,

R∗𝑖 ←𝒟𝑚×ℓ
𝜎0 |BR∗

𝑖
=hct 𝑓𝑖+hct0,𝑖⊟ �̃�𝑖(hct,hct0,𝑖 ,A,D𝑖 ,dct,cu,𝑖).

All other variables are sampled as inℋ5.
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Hybrid ℋ6 is statistically close to ℋ5 because 𝑓𝑖(r) = �̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖) with over-
whelming probability, which follows from arguments similar to claim 1. See Lemma 12.
Observe that inℋ6, the sampling of (hpk, hct, hct0 ,A,D, dct, ĉ)matches that of (hpk, hct, hct0 ,A,
D, ct1 , ct2) in the real distribution𝒟0 of the CRO assumption, Assumption 1. In particular, dct =
ct1 and ĉ encrypts the same circular message as ct2, u𝑖 = 𝑓 circ(U, hct0) = −vec(G−1(−hct𝑖))·UTG,
given hct𝑖 = hct

′
𝑖 . The function 𝑓𝑖(r) is the same as described in the CRO assumption, and the

above function �̃�𝑖 computes 𝑓𝑖 using public encodings, corresponding to the safety constraint
in the CRO assumption.

• ℋ7: This hybrid samples the following components as random.

(hpk, hct, dct, {hct0,𝑖 , ĉ𝑖}𝑖∈[𝑄]) ← Z(𝑛+1)×𝑚
𝑞 × Z(𝑛+1)×𝑛(𝑛+1)⌈log 𝑞⌉2

𝑞 × Zℓ𝑛⌈log 𝑞⌉×ℓ
𝑞 × (Z(𝑛+1)×ℓ

𝑞 × Z𝑛⌈log 𝑞⌉
𝑞 )𝑄 ,

and compute/sample the remaining elements as inℋ6.
Hybridℋ7 is computationally indistinguishable toℋ6 following the CRO assumption (As-
sumption 1) w.r.t. parameters (𝑛, 𝑞,Δ, 𝜎). As sketched in Hybrid ℋ6 and as detailed in
Lemma 13, the real and ideal distribution of CRO matches exactlyℋ6 andℋ7.

• ℋ8: Same asℋ7, except that the GSW public key is sampled with trapdoor (lemma 5), namely,

(hpk = B,T) ← TrapGen(1𝑛+1 , 1𝑚).

Hybridℋ8 andℋ7 are statistically close by properties of lattice trapdoor sampling.

• ℋ9: Same asℋ8, except that the the conditional sampling of R∗ is replaced by the efficient
procedure

R∗𝑖 ← SampPre(A,T, (hct 𝑓𝑖 + hct0,𝑖 ⊟ �̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖)), 𝜎0)

Hybrid ℋ8 and ℋ7 are statistically close by properties of preimage sampling using lattice
trapdoors.

• ℋ10: Same asℋ9, except now cs,𝑖 ← Z𝑚𝑞 are sampled at random, while ĉT
𝑖
= cT

s,𝑖 − s̃T
𝑖
G +wT

�̃�𝑖
G.

Hybridℋ10 is identically distributed asℋ9, since in the latter ĉ𝑖 ← Z𝑚𝑞 and cT
s,𝑖 = ĉ𝑖+s̃T

𝑖
G−wT

�̃�𝑖
G.

• ℋ11: Define function �̃� ′
𝑖

as

�̃� ′𝑖 (hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , cs,𝑖 , s̃𝑖 , �̃�𝑖(x))T

=Δ


cT

s,𝑖G
−1(A) − s̃T

𝑖
A + dctT

�̃�𝑖
− �̃�𝑖(x)T + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖

Δ

 ,
and replace �̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , ĉ𝑖)by �̃� ′

𝑖
(hct, hct0,𝑖 ,A,D𝑖 , dct, cs,𝑖 , s̃𝑖 , �̃�𝑖(x)) in the preim-

age sampling equation, namely,

R∗𝑖 ← SampPre(A,T, (hct 𝑓𝑖 + hct0,𝑖 ⊟ �̃� ′𝑖 (hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , cs,𝑖 , s̃𝑖 , �̃�𝑖(x))), 𝜎0)

All other elements are sampled the same as ℋ10. Hybrid ℋ11 is statistically close to ℋ10,
following from the fact that ĉT

𝑖
G−1(A) = cT

s,𝑖G
−1(A) − s̃T

𝑖
A + dctT

�̃�𝑖
− �̃�𝑖(x)T − eT

�̃�𝑖
, and the last

error term does not affect rounding result with overwhelming probability.
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Note that in this hybrid, the intermediate terms ĉ𝑖 are no longer needed. Therefore, the hybrid
does not need to compute the secret w�̃�𝑖 and the ciphertext dctx is the only term directly
dependent on the secret W.

• ℋ12: Same as ℋ11, except now dctx is sampled at random. Hybrid ℋ12 is computationally
indistinguishable to ℋ11 following the LWE assumption, since dctx is a fresh dual-GSW
encryption of x using secret W that is not used for the rest of sampling ofℋ11.
ℋ12 is the RHS of the SIM-security definition in definition 10, where every term is efficiently
simulatable given 𝑔𝑖 and 𝑔𝑖(x). For full exposure, we describe the simulator as follows.
Sim(1𝜆 , {𝑔𝑖 , 𝑔𝑖(x)}𝑖∈[𝑄]):

– Set parameters pp as in Gen(1𝜆 , 1𝑄 , 1𝐾 , 1𝐿 , 1𝑑).
– Sample public key (hpk = B,T) ← TrapGen(1𝑛+1 , 1𝑚).
– Sample elements (s̃𝑖 , ẽ𝑖 , hct, hct0,𝑖 , dct, dctx , cs,𝑖) ← $.
– Compute cT

𝑖
= (s̃T

𝑖
+ ẽT

𝑖
− dct 𝑓𝑖 − hct∗𝑖 − dct �̃�𝑖 + �̃�𝑖(x)T mod Δ).

– Sample R∗
𝑖
← SampPre(A,T, (hct 𝑓𝑖 + hct0,𝑖 ⊟ �̃� ′

𝑖
(hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , cs,𝑖 , �̃�𝑖(x))), 𝜎0).

– Output crs = (pp,R∗), ct = (hpk, hct,D, {c𝑖 , cs𝑖}𝑖∈[𝑄] ,A, dct, dctx), and 𝜌𝑖 = s̃𝑖 for all
𝑖 ∈ [𝑄].

Next, we formally argue the indistinguishability between neighboring hybrids.

Lemma 7. The statistical distance betweenℋ0 andℋ1 is bounded by 2−Ω(𝜆).

Proof. This follows directly from Lemma 2, which states that each sample from𝒟 is 2−𝜆-close to
sample𝒟. □

Lemma 8. If 𝜎0 ≥ 𝑚𝑂(log 𝑛) and 𝜎e = 2𝜆 · 𝜎𝜎0ℓ
Ω(log 𝑛+𝑑), the statistical distance between ℋ1 and ℋ2 is

bounded by 2−Ω(𝜆).

Proof. It is easy to observe that the distribution of s𝑖 is uniformly random in both hybrids. For the
distribution of e𝑖 , observe that with probability 2−Ω(𝜆),eT

BR̃𝑖 − e′𝑖
T − eT

�̃�𝑖

 ≤ 𝜎
√
𝜆 · 𝑚 · (𝑚𝑂(log 𝑛) + 𝜎0

√
𝜆) + ℓ𝑛𝜎

√
𝜆 + ℓ𝑂(𝑑)𝜎

√
𝜆 ≤ poly(𝜆)𝜎𝜎0ℓ

𝑂(log 𝑛+𝑑) ,

where the analysis is identical to the proof of Theorem 5. Thus, following the smudging lemma
(lemma 3), the statistical distance between e𝑖 ←𝒟ℓ

𝜎e and e𝑖 ←𝒟ℓ
𝜎e + (eT

BR̃𝑖 − e′
𝑖
T − eT

�̃�𝑖
)T is bounded

by 2−Ω(𝜆), which completes the proof. □

Lemma 9. ℋ2 is identical toℋ3.

Proof. Inℋ3, c𝑖 is computed by

cT
𝑖 = (s̃T

𝑖A + ẽT
𝑖 − dct 𝑓𝑖 − hct′𝑖 − dct �̃�𝑖 + �̃�𝑖(x)T mod Δ)

=
©«
(s𝑖 + u𝑖 +w�̃�𝑖 )TA + (eT

𝑖 + eT
BR̃𝑖 + e′𝑖

T + eT
�̃�𝑖
) − (uT

𝑖A + e′𝑖
T − rT(BR̃𝑖))

−((rTB + eT
B)R̃𝑖 − 𝑓𝑖(r)) − (wT

�̃�𝑖
A + eT

�̃�𝑖
+ �̃�𝑖(x)T) + �̃�𝑖(x)T

mod Δ
ª®¬

= (sT
𝑖A + eT

𝑖 + 𝑓𝑖(r)T mod Δ) = (sT
𝑖A + eT

𝑖 mod Δ),
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which is identical toℋ2. Notice that the last equation follows from the observation that Δ| 𝑓𝑖(r).
We note that one can similarly obtain the relation through the correctness equation (14) described

in theorem 5. Assuming the required conditions for theorem 5 holds, by reordering the variables in
the correctness equation (14) we get

cT
𝑖 = 𝜌𝑖A + ẽT

𝑖 − �̃�(x)T − hct′𝑖 − dct𝑖 − dct �̃� − Δ
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
.

By taking module Δ on both sides, this immediately gives

cT
𝑖 = (s̃T

𝑖A + ẽT
𝑖 − dct 𝑓𝑖 − hct′𝑖 − dct �̃�𝑖 + �̃�𝑖(x)T mod Δ)

□

Lemma 10. ℋ3 is identical toℋ4.

Proof. This follows from the simple observation that, for every distribution𝒟 and every deterministic
function ℎ,

{𝑥 ←𝒟} ≡
{
𝑥 ←𝒟|ℎ(𝑥)=𝑦

���� 𝑥0 ←𝒟
𝑦 = ℎ(𝑥0)

}
. (16)

Therefore the distribution of R∗
𝑖

is identical in both hybrids. The remaining difference between the
two hybrids is just a change of variables. □

Lemma 11. If 𝑞 < 2𝑛 and 𝜎0 = 2𝜆𝑚Ω(log 𝑛), the statistical distance betweenℋ4 andℋ5 is bounded by 2−Ω(𝜆).

Proof. The only difference between the two hybrids is that in the computation of the rerandomized
ciphertext hct′𝑖 ,

ℋ4 : hct′𝑖 = B(R0,𝑖 − R 𝑓𝑖 ) ⊟ 𝑓𝑖(r), ℋ5 : hct′𝑖 = BR0,𝑖 ⊟ 𝑓𝑖(r),

where
R 𝑓𝑖

 ≤ 𝑚𝑂(log 𝑛) since 𝑓𝑖 is computable in depth𝑂(log(𝑛 log 𝑞)) = 𝑂(log 𝑛). Therefore, by the
smudging lemma (lemma 3), the distribution of R0,𝑖 ←𝒟𝑚×ℓ

𝜎0 is 2−Ω(𝜆)-close to R0,𝑖 ←𝒟𝑚×ℓ
𝜎0 + R 𝑓𝑖 ,

which completes the proof. □

Lemma 12. If Δ ≥ 2𝜆 · 𝜎𝜎0, the statistical distance betweenℋ5 andℋ6 is bounded by 2−Ω(𝜆).

Proof. Inℋ6, the output of �̃�𝑖 is

�̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖)T

= Δ

⌊
ĉT
𝑖
G−1(A) + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖

Δ

⌉
= Δ

⌊
(rTDG−1(A) + eT

s,𝑖G
−1(A) − uT

𝑖
A) + (uT

𝑖
A + e′

𝑖
T − rT(BR0,𝑖)) + (rTBR0,𝑖 + eT

BR0,𝑖)
Δ

⌉
= Δ

⌊
rTDG−1(A) + eT

s,𝑖 + e′
𝑖
T + eT

BR0,𝑖

Δ

⌉
.
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Notice that the term rTDG−1(A) is marginally random given that r, A, D are all sampled uniform
randomly, and that with probability 2−Ω(𝜆), the error vector has norm bounded byeT

s,𝑖 + e′𝑖
T + eT

BR0,𝑖

 ≤ 𝜎
√
𝜆 + 𝜎

√
𝜆 · ℓ𝑛 + 𝜎

√
𝜆 · 𝑚 · 𝜎0

√
𝜆 ≤ poly(𝜆) · 𝜎𝜎0.

Therefore by lemma 4, we have

�̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖)T = Δ

⌊
rTDG−1(A) + eT

s,𝑖 + e′
𝑖
T + eT

BR0,𝑖

Δ

⌉
= Δ

⌊
rTDG−1(A)

Δ

⌉
= 𝑓𝑖(r)T

with probability at least (poly(𝜆) · 𝜎𝜎0)/Δ + 2−Ω(𝜆) = 2−Ω(𝜆), which completes the proof.
As a remark, the relation between 𝑓𝑖 and �̃�𝑖 arises from the correctness equation (14), following

similar arguments given in claim 1 in section 4. □

Lemma 13. If Δ = 2Ω(𝜆) · 𝜎𝜎0, thenℋ6 andℋ7 are 𝜖-computationally indistinguishable for all polynomial
sized adversaries assuming 𝜖(𝜆) security for the CRO assumption with parameters (𝑛, 𝑞,Δ, 𝜎) (assumption 1).

Proof. Let ( 𝑓 circ , 𝑓 CRO , �̃� CRO) be the function tuple defined in assumption 1 with respect to LWE
parameters (𝑛, 𝑞,Δ, 𝜎), for polynomial parameters (𝑄, ℓ ) of the functional encoding. We start by
arguing that one can perfectly simulate the distribution ℋ6 with the real distribution 𝒟0 of the
( 𝑓 circ , 𝑓CRO , �̃�CRO)-CRO assumption. For (hpk, hct, hct0 ,A,D, ct1 , ct2 ,R∗) ← 𝒟0, observe that

• hpk = B, hct = BR + bits(r)T ⊗ G, hct0 = BR0 are computed identically asℋ6

• A, D are sampled at random, identical toℋ6.

• ct1 = UTA + EA + Iℓ ⊗ GT
𝑛r, identical to the component dct inℋ6

• ct2,𝑖 = rTD𝑖 + eT
D,𝑖 + 𝑓

circ
𝑖
(U, hct0) = rTD𝑖 + eT

D,𝑖 − vec(G−1(−hct0,𝑖)) · UTG, which is identical to
the computation of ĉ𝑖 inℋ6 since hct

′
𝑖 = hct0,𝑖 .

• The opening R∗ is sampled from discrete Gaussian conditioning on BR∗
𝑖
= hct 𝑓𝑖 ⊞ hct0,𝑖 ⊟

�̃� CRO
𝑖
(enc). Note that the function �̃� CRO is of the form

�̃� CRO
𝑖 (hct, hct0 ,A,D, ct1 , ct2)T = Δ

⌊
ct2,𝑖 ·G−1(A) + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
,

which is identical to the function �̃�𝑖 defined inℋ6 after establishing the equality ct1 = dct and
ct2,𝑖 = ĉ𝑖 . Therefore R∗ sampled from the CRO real distribution distributes identically with R∗
sampledℋ6

Furthermore, the remaining elements inℋ6, including c𝑖 , dctx, and s̃, can be computed/sampled
given the samples listed in the above comparison. This directly gives a simulator ofℋ6 given𝒟0
from CRO.

Now, following the CRO assumption the samples given by the real distribution𝒟0 is indistin-
guishable from the ideal distribution𝒟1, where (hpk, hct, hct0 ,A,D, ct1 = dct, ct2 = {̂c𝑖}𝑖∈[𝑄]) are
all sampled at random, and R∗ is sampled with respect to the random elements. This is exactly
the output distribution ofℋ7. Therefore,ℋ6 andℋ7 are 𝜖(𝜆)-computationally indistinguishable
assuming 𝜖 security for the CRO assumption. □
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Lemma 14. If 𝑚 ≥ 3𝑛 log 𝑞, the statistical distance betweenℋ7 andℋ8 is bounded by 2−Ω(𝜆).

Proof. This follows directly from the statistical randomness property of lattice trapdoors (lemma 5).
□

Lemma 15. If 𝑚 ≥ 3𝑛 log 𝑞 and 𝜎0 > 𝑚 log 𝑛, the statistical distance betweenℋ8 andℋ9 is bounded by
2−Ω(𝜆).

Proof. This follows directly from the preimage sampling property of lattice trapdoors (lemma 5).
□

Lemma 16. ℋ9 is identical toℋ10.

Proof. It is easy to observe that the distribution of ĉ𝑖 is uniformly random in both hybrids. □

Lemma 17. If Δ = 2𝜆 · ℓΩ(𝑑)𝜎, the statistical distance betweenℋ10 andℋ11 is bounded by 2−Ω(𝜆).

Proof. Inℋ11, the output of �̃� ′ is

�̃� ′𝑖 (hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , cs,𝑖 , s̃𝑖 , �̃�𝑖(x))T

=Δ

⌊
cT

s,𝑖G
−1(A) − s̃T

𝑖
A + dct �̃�𝑖 − �̃�𝑖(x)T + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖

Δ

⌉
=Δ


(̂cT
𝑖
G−1(A) + s̃T

𝑖
A −wT

�̃�𝑖
A) − s̃T

𝑖
A + (wT

�̃�𝑖
A + eT

�̃�𝑖
+ �̃�𝑖(x))T − �̃�𝑖(x)T + vec(G−1(−hct0,𝑖)) · dct + hct0,𝑖
Δ


=Δ


(̂cT
𝑖
G−1(A) + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖) + eT

�̃�𝑖

Δ

 ,
where the major terms tT =

(̂
cT
𝑖
G−1(A) + vec(G−1(−hct0,𝑖))T · dct + hct0,𝑖

)
has uniformly random

marginal distribution given that hct0,𝑖 is random and independent to the remaining terms, and the
error term has norm bounded by

e�̃�𝑖
 ≤ ℓ𝑂(𝑑)𝜎√𝜆 with 1 − 2−Ω(𝜆) probability. Therefore, again by

lemma 4, we have with probability 1 − 2−Ω(𝜆),

�̃� ′𝑖 (hct, hct0,𝑖 ,A,D𝑖 , dct, dctx , cs,𝑖 , s̃𝑖 , �̃�𝑖(x))T = Δ

⌊ tT + eT
�̃�𝑖

Δ

⌉
= Δ

⌊
tT

Δ

⌉
= �̃�𝑖(hct, hct0,𝑖 ,A,D𝑖 , dct, ĉ𝑖)T ,

which completes the proof. □

Lemma 18. Assuming 𝜖(𝜆) security for LWE𝑛,𝑞,𝜎 (Assumption 1), thenℋ11 andℋ12 are 𝜖(𝜆)-computationally
indistinguishable for all polynomial sized adversaries.

Proof. Assuming 𝜖(𝜆) security for LWE𝑛,𝑞,𝜎 we immediately have that the following two ensembles
are 𝜖(𝜆)-computationally indistinguishabledctx = WTA + Ex + x ⊗ GT

�������
A ← Z𝑛×ℓ𝑞

W ← Z𝑛×𝐾ℓ⌈log 𝑞⌉
𝑞

E ←𝒟𝐾ℓ⌈log 𝑞⌉×ℓ
𝜎

 ≈
𝜖
𝑐

{
dctx = V + x ⊗ GT

��� V← Z𝐾ℓ⌈log 𝑞⌉×ℓ
𝑞

}
.
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The right distribution is identical to sampling dctx at random, matching the sampling procedure in
ℋ12. Therefore,ℋ11 andℋ12 is also 𝜖(𝜆)-indistinguishable. □

Assuming (subexponential) security for CRO 9, 𝑛 = poly(𝜆), 𝑞 < 2𝑛 , 𝑚 = Ω(𝑛 log 𝑞), 𝜎e ≥
2𝜆𝜎𝜎0ℓ

Ω(log 𝑛+𝑑), 𝜎0 ≥ 2𝜆𝑚Ω(log 𝑛)𝜎, and Δ ≥ 2𝜆ℓΩ(𝑑)𝜎𝜎0, where 𝑚, 𝜎0 , 𝜎e ,Δ are sufficiently large,
then all conditions required by the above lemmas are satisfied. Therefore, combining lemmas 7 to 18,
we immediately know thatℋ0 andℋ12 are sub-exponentially indistinguishable, which completes
the proof.

□

Parameter instantiation We now give a set of plausible parameters toward a sub-exponentially
secure functional encoding scheme. In the following, we use the notation 𝑂(·) for the asymptotic
notation suppressing all terms of order poly log(𝜆, 𝑘, 𝐿, 𝑑).

Let 𝛿 ∈ (0, 1) be the LWE modulus-to-noise ratio parameter. We set our variables as follow.

• 𝜅 = 𝐿0.1𝛿, ℓ = 𝐿1−0.1𝛿,

• 𝑛 = 𝑂(𝜆𝐿0.1𝛿𝑑)1/𝛿, 𝑚 = 𝑂(𝑛 · poly log 𝑛),

• 𝜎 = poly(𝜆),

• 𝜎0 = 2𝜆𝑚𝑂(log 𝑛)𝜎 = 2𝑂(𝜆)𝑛𝑂(log 𝑛),

• 𝜎e = 2𝜆𝜎𝜎0ℓ
𝑂(𝑑+log 𝑛) ≤ 2𝑂(𝜆)𝐿𝑂(𝑑+log 𝑛),

• Δ = 2𝜆ℓ𝑂(𝑑)𝜎𝜎0 ≤ 2𝑂(𝜆)𝐿𝑂(𝑑+log 𝑛),

• 𝑝 = 𝑂(𝜆(ℓ + 𝑚)𝑂(𝑑+log 𝑛)𝜎𝜎e + Δ) ≤ 2𝑂(𝜆)(𝑛 + 𝐿)𝑂(𝑑+log 𝑛) where Δ|𝑝.

• 𝑞 = 2𝜅𝑝 = 2𝑂(𝜆)(𝑛 + 𝐿)𝑂(𝑑+log 𝑛) · 2𝐿0.1𝛿 , where log 𝑞 = 𝑂(𝜆) + (𝑑 + log 𝑛) log(𝑛 + 𝐿)𝐿0.1𝛿 =

𝑂(𝜆𝐿0.1𝛿𝑑) ≤ 𝑛𝛿.

Under the parameter setting, construction construction 1 is correct, succinct, and subexponentially
SIM-secure. Therefore, we immediately get the following theorem.

Theorem 8. Assuming the subexponential CRO assumption (assumption 1), there exists a subexponentially
secure functional encoding scheme for all polynomial-sized circuits.

6 Oblivious LWE Sampling from IND-CRO Assumption

In this section, we formulate a weaker indistinguishability version of the CRO assumption (IND-
CRO), and show that IND-CRO assumption implies an Oblivious LWE Sampler [WW21], which
also implies functional encodings.

9Note that CRO readily implies LWE with the same parameters (𝑛, 𝑞, 𝜎).
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6.1 The IND-CRO Assumption

The IND-CRO assumption shares the same structure as the CRO assumption, but instead of stating
the pseudorandomness of the ciphertexts and LWE samples, the IND-CRO assumption states that
the samples jointly hide a secret bit 𝛽. The left and right distributions𝒟𝛽 of IND-CRO both augment
the real distributions in CRO with an additional LWE sample ct0 w.r.t. public matrix A that uses
independent secrets W, and hides the secret bit 𝛽 in the form 𝛽GT

ℓ
. Additionally, the LWE sample

ct2 that used to hide just a circular function 𝑓 circ(U, hct0) of the secret U and hct0, also hides (the
concatenation of) linear functions of W of form −G−1

ℓ
(v𝑖)TWTG𝑛 and functions of 𝛽 of form −𝛽ŝT

𝑖
G𝑛 ,

where vT
𝑖
= ŝT

𝑖
A + êT

𝑖
are fresh LWE samples w.r.t. public matrix A.

We now formally define the ( 𝑓 circ , 𝑓 , �̃� )-IND-CRO assumptions.

Definition 11 (( 𝑓 circ , 𝑓 , �̃� )-Indistinguishability Circular Security with Random Opening (CRO)
Assumption). Let 𝜆 be the security parameter. Let 𝑛, 𝑚, 𝑑, 𝑘′, ℓ , 𝑀, 𝜎 be integer parameters that are
polynomial in 𝜆, and 𝑞, 𝜎0 be (potentially superpolynomial) integer parameters where 𝑚 = Ω(𝑛 log 𝑞) and
𝜎0 = 2𝜆𝑚Ω(𝑑) are sufficiently large. Let 𝑓 ∈ ℱ𝑑,𝑀 be a bounded depth packed circuit (definition 5) which
parses its input as bits and have depth bound 𝑑 and output length 𝑀, where 𝑀 w.l.o.g. is a multiple of
(𝑛 + 1)⌈log 𝑞⌉ and 𝑓 circ and �̃� be efficiently computable functions with domain/codomain implicitly defined
in Figure 9.

We say that the (subexponential) ( 𝑓 circ , 𝑓 , �̃� )-CRO assumption holds if 𝒟0 and 𝒟1 in Figure 9 are
(sub-exponentially) indistinguishable to all polynomial time attackers.{(

hpk, enc = (hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2)
) �� (hpk, enc, hint) ← 𝒟0(v)

}
𝜆

≈
{(

hpk, enc = (hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2)
) �� (hpk, enc, hint) ← 𝒟1(v)

}
𝜆

Similar to the case of the CRO assumption, to construct the oblivious LWE sampler, it suffices
to assume the IND-CRO assumption for specific tuples of functions. By default, the IND-CRO
assumption refers to this version.
Assumption 3 (Indistinguishability Circular Security with Random Opening (IND-CRO) Assump-
tion). Let 𝜆 be the security parameter, and 𝑛, 𝑞, 𝜎 be LWE parameters dependent on 𝜆, where 𝜎 = poly(𝜆),
𝑞 ≤ 2𝑛𝛿 for some constant 𝛿 ∈ (0, 1), 𝑞 is a multiple of Δ such that 𝑞/Δ ≥ 2𝜆, and Δ ≥ (2𝑛 log 𝑞)𝜆.
The (subexponential) IND-CRO assumption with parameters (𝑛, 𝑞, 𝜎,Δ) states that for an appropriate
𝑚 = Θ(𝑛 log 𝑞), 𝜎0 = Δ/2Θ(𝜆), and every efficiently computable polynomials 𝑄 = 𝑄(𝜆) and ℓ = ℓ (𝜆), the
(subexponential) ( 𝑓 circ , 𝑓 , �̃� )-IND-CRO assumption holds for the following function tuple, where ( 𝑓 circ , 𝑓 )
are identical to assumption 1:

hct0 =

(
hct0,𝑖 ∈ Z𝑛×ℓ𝑞

hct0,𝑖 ∈ Z1×ℓ
𝑞

)
𝑖∈[𝑄]

D =

(
D𝑖 ∈ Z𝑛×𝑛⌈log 𝑞⌉

𝑞

)
𝑖∈[𝑄]

ct2 =

(
ct2,𝑖 = rTD𝑖 + eD,𝑖 + 𝑓 circ

𝑖
(U, hct0,𝑖) −G−1

ℓ
(v𝑖)TWTG𝑛 − 𝛽ŝT

𝑖
G𝑛

)
𝑖∈[𝑄]

,where eD = {eD,𝑖}𝑖∈[𝑄]

𝑓 circ =
(
𝑓 circ
𝑖

)
𝑖∈[𝑄] 𝑓 =

(
𝑓𝑖
)
𝑖∈[𝑄] �̃� =

(
�̃�𝑖

)
𝑖∈[𝑄]

𝑓 circ
𝑖 (U, hct0) = −vec(G−1

𝑛 (−hct0,𝑖))T · (UTG𝑛)

𝑓𝑖(r,A,D)T = Δ

⌊
rTD𝑖 ·G−1

𝑛 (A)
Δ

⌉
�̃�𝑖(hct, hct0 ,A,D, {v𝑖}𝑖∈𝑄 , ct0 , ct1 , ct2)T = Δ

⌊
ct2,𝑖 ·G−1

𝑛 (A) + vec(G−1
𝑛 (−hct0,𝑖))Tct1 +G−1

ℓ
(v𝑖)Tct0 + hct0,𝑖

Δ

⌉
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( 𝑓 circ, 𝑓 , �̃� )-IND-CRO Assumption

Distribution𝒟𝛽

HE (GSW) Components: LWE Components:

• r← Z𝑛𝑞 .

• hpk = B =

(
B

rTB + eT

)
,

B← Z𝑛×𝑚𝑞 , e←𝒟𝑚
𝜎 .

• hct = BR + bits(r)T ⊗ G𝑛+1,
R← {0, 1}𝑚×𝑛(𝑛+1)⌈log 𝑞⌉2 .

• hct0 = BR0, R0 ←𝒟𝑚×𝑀
𝜎0 .

• A← Z𝑛×ℓ𝑞 ,D← Z𝑛×𝑘
′𝑛⌈log 𝑞⌉

𝑞 .

• ∀𝑖 ∈ [𝑘′], v𝑖 = ŝ𝑖A + ê𝑖 , ŝ𝑖 ← Z𝑛𝑞 , ê𝑖 ←𝒟ℓ
𝜎.

• ct0 = WTA + E0 + 𝛽GT
ℓ
,

W← Z𝑛×ℓ⌈log 𝑞⌉
𝑞 , E0 ←𝒟ℓ⌈log 𝑞⌉×ℓ

𝜎 .

• ct1 = UTA + EA + Iℓ ⊗ GT
𝑛r,

U← Z𝑛×ℓ𝑛⌈log 𝑞⌉
𝑞 , EA ←𝒟ℓ𝑛⌈log 𝑞⌉×ℓ

𝜎 .

• ct2 = rTD + eT
D + 𝑓 circ(U, hct0)
−

(
. . .

��G−1
ℓ
(v𝑖)TWTG𝑛 + 𝛽ŝT

𝑖
G𝑛

�� . . .) ,
eD ←𝒟𝑘′𝑛⌈log 𝑞⌉

𝜎

Open( 𝑓 , �̃� , (hpk, enc = (hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2))): Functions ( 𝑓 , �̃� ) satisfies the
safety constraint (1) in both𝒟0 and𝒟1, i.e., with overwhelming probability over the sampling of
(hpk, hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2) according to either𝒟0 or𝒟1, it holds that 𝑓 (r,A,D) =
�̃� (enc).

1. hct 𝑓 = HE.Eval(hct, 𝑓A,D) = BR 𝑓 ⊞ 𝑓 (r,A,D) , where function 𝑓A,D(·) = 𝑓 (·,A,D).

2. hct∗𝑓 = hct 𝑓 ⊞ (− �̃� (enc)) ⊞ hct0 ≈𝑠 B(R 𝑓 + R0).

3. R∗ ← 𝒟𝑚×𝑀
𝜎0

����hct∗
𝑓
=BR∗ .

Output: (hpk, enc = (hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2),R∗).

Figure 9: The difference between the CRO assumption and IND-CRO assumption are highlighted.
𝑛, 𝑚, 𝑞, 𝑑, 𝑘′, ℓ , 𝑀, 𝜎, 𝜎0 are 𝜆-dependent parameters where 𝑛, 𝑚, 𝑑, 𝑘, 𝑘′, ℓ , 𝑀, 𝜎 are polynomials
in 𝜆, while 𝑞, 𝜎0 may be superpolynomial in 𝜆 satisfying (𝑛 + 1)⌈log 𝑞⌉|𝑀, 𝑚 = Ω(𝑛 log 𝑞), and
𝜎0 = 2𝜆𝑚Ω(𝑑), where 𝑚, 𝜎0 are sufficiently large. Circuit 𝑓 ∈ ℱ𝑑,𝑀 is a bounded depth packed circuit
(definition 5) with depth bound 𝑑 and output length 𝑀. We assume that 𝑓 parses its input as bits.

The corresponding IND-CRO distribution𝒟0,𝒟1 in Figure 9 have parameters (𝑛, 𝑚 = Θ(𝑛 log 𝑞), 𝑞, 𝑑, 𝑘′ = 𝑄,
ℓ , 𝑀 = 𝑄ℓ , 𝜎, 𝜎0).

Similar to lemma 6, we can verify that 𝑓 , �̃� considered in the IND-CRO assumption indeed
satisfies the safety constraint:

Lemma 19. For all 𝛽 ∈ {0, 1}, the following safety constraint holds w.r.t. the distribution𝒟𝛽 and functions
( 𝑓 circ , 𝑓 , �̃� ) specified in Assumption 3.

safety constraint: Pr[ 𝑓 (r,A,D) = �̃� (enc)] ≥ 1 − 2−Ω(𝜆) , (17)
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where the probability is taken over the sampling of (r,A,D, enc) according to𝒟𝛽.

Proof. For each 𝑖 ∈ [𝑄]we have

�̃�𝑖(hct, hct0 ,A,D, {v𝑖}𝑖∈𝑄 , ct0 , ct1 , ct2)T = Δ

⌊
ct2,𝑖 ·G−1

𝑛 (A) + vec(G−1
𝑛 (−hct0,𝑖))Tct1 +G−1

ℓ
(v𝑖)Tct0 + hct0,𝑖

Δ

⌉
Using the same variable in the description of𝒟𝛽 and in Assumption 3, with the additional notation
that R0 = (R0,𝑖)𝑖∈[𝑄] such that hct0,𝑖 = BR0,𝑖 , we can expand each term in �̃�𝑖 by

ct2,𝑖 ·G−1(A) =
(
rTD𝑖 + eT

D,𝑖 − vec(G−1
𝑛 (−BR0,𝑖))TUTG𝑛 −G−1

ℓ (v𝑖)TWTG𝑛 − 𝛽ŝT
𝑖G𝑛

)
·G−1

𝑛 (A)
= rTD𝑖G−1

𝑛 (A) + eT
D,𝑖G

−1
𝑛 (A) − vec(G−1

𝑛 (−BR0,𝑖))TUTA −G−1
ℓ (v𝑖)TWTA − 𝛽ŝT

𝑖A

vec(G−1
𝑛 (−hct0,𝑖))Tct1 = vec(G−1

𝑛 (−BR0,𝑖))T
(
UTA + EA + Iℓ ⊗ GT

𝑛r
)

= vec(G−1
𝑛 (−BR0,𝑖))TUTA + vec(G−1

𝑛 (−BR0,𝑖))TEA − rTBR0,𝑖

G−1
ℓ (v𝑖)Tct0 = G−1

ℓ (v𝑖)T
(
WTA + E0 + 𝛽GT

ℓ

)
= G−1

ℓ (v𝑖)TWTA +G−1
ℓ (v𝑖)TE0 + 𝛽vT

𝑖

= G−1
ℓ (v𝑖)TWTA +G−1

ℓ (v𝑖)TE0 + 𝛽ŝT
𝑖A + 𝛽êT

𝑖

hct0,𝑖 = (rTB + eT)R0,𝑖

= rTBR0,𝑖 + eTR0,𝑖

Therefore,

�̃�𝑖(hct, hct0 ,A,D, {v𝑖}𝑖∈𝑄 , ct0 , ct1 , ct2)T

= Δ

⌊
rTD𝑖G−1

𝑛 (A) + eT
D,𝑖G

−1
𝑛 (A) + vec(G−1

𝑛 (−BR0,𝑖))TEA +G−1
ℓ
(v𝑖)TE0 + 𝛽êT

𝑖
+ eTR0,𝑖

Δ

⌉
Note that r,A,D are all sampled at random, therefore the marginal distribution of rTD𝑖G−1(A) is
random in Z1×ℓ

𝑞 . Furthermore, by the Gaussian tail bound (lemma 2), with probability 1− 2−Ω(𝜆) the
noise term would have norm bounded byeT

D,𝑖G
−1
𝑛 (A) + vec(G−1

𝑛 (−BR0,𝑖))TEA +G−1
ℓ (v𝑖)TE0 + 𝛽êT

𝑖 + eTR0,𝑖


≤
√
𝜆ℓ𝜎 + 2

√
𝜆ℓ𝑛⌈log 𝑞⌉𝜎 + 𝜎 +

√
𝜆𝜎𝜎0 = poly(𝜆)𝜎0.

Combined with the setup that 𝜎0 = Δ/2Θ(𝜆), we can apply the rounding lemma 4 to conclude that

�̃�𝑖(hct, hct0 ,A,D, {v𝑖}𝑖∈𝑄 , ct0 , ct1 , ct2)T
w.h.p.
= Δ

⌊
rTD𝑖G−1

𝑛 (A)
Δ

⌉
= 𝑓𝑖(r,A,D)T

where the first equality holds with probability 1 − 2−Ω(𝜆). Finally, with a union bound over 𝑖 ∈ [𝑄],
we conclude that the safety constraint holds with probability 1 − 2−Ω(𝜆). □

We show that the IND-CRO assumption is implied by the CRO assumption.

Lemma 20. The (subexponential) IND-CRO assumption (Assumption 3) with parameters (𝑛, 𝑞, 𝜎,Δ) holds
if the (subexponential) CRO assumption (Assumption 1) holds with the same parameters.
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Proof. Fix parameters (𝑛, 𝑞, 𝜎,Δ) and any polynomial𝑄, ℓ , it suffice to show that the ( 𝑓 circ , 𝑓 , �̃�IND-CRO)-
IND-CRO assumption holds for the function tuple defined in assumption 3 is implied by the
( 𝑓 circ , 𝑓 , �̃�CRO) for the function tuple defined in assumption 1. Note that ( 𝑓 circ , 𝑓 ) are defined
identically in both assumptions. Fixing the tuple ( 𝑓 circ , 𝑓 , �̃�IND-CRO , 𝑓

circ
CRO), we start by showing that

for all 𝛽 ∈ {0, 1}, the IND-CRO distribution𝒟 IND-CRO
𝛽 can be statistically simulated given a sample

from the real CRO distribution𝒟CRO
0 . In particular, we can give the simulator as follows.

Sim0(𝛽):

• Sample
(
hpk, encCRO = (hct, hct0 ,A,D, ct1 , ctCRO

2 ), hint = R∗
)
←𝒟CRO

0

• For all 𝑖 ∈ [𝑄], sample v𝑖 = ŝT
𝑖
A + êT

𝑖
, where ŝ𝑖 ← Z𝑛𝑞 , ê𝑖 ←𝒟ℓ

𝜎.

• Compute ct0 = WTA + E0 + 𝛽GT
ℓ
, where W← Z𝑛×ℓ⌈log 𝑞⌉

𝑞 , E0 ←𝒟ℓ⌈log 𝑞⌉×ℓ
𝜎 .

• For all 𝑖 ∈ [𝑄], compute ctIND-CRO
2,𝑖 = ctCRO

2,𝑖 −G−1
ℓ
(v𝑖)TWTG𝑛 − 𝛽ŝT

𝑖
G𝑛 .

• Output
(
hpk, encIND-CRO = (hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑄] , ct0 , ct1 , ctIND-CRO

2 ), hint = R∗
)
.

By inspection, it is easy to observe hpk, encIND-CRO is sampled identically to𝒟 IND-CRO
𝛽 . For the

hint R∗, observe that it is sampled in𝒟CRO
0 following

R∗ ← 𝒟𝑚×𝑀
𝜎0

���hct 𝑓 ⊞(− �̃� CRO(encCRO))⊞hct0=BR∗

The safety constraint for both CRO and IND-CRO (lemmas 6 and 19) guarantee that with probability
1 − 2Ω(𝜆) over the sampling randomness, it holds that

�̃� CRO(encCRO) = 𝑓 (r,A,D) = �̃� IND-CRO(encIND-CRO).

Therefore Sim0(𝛽) statistically simulates𝒟 IND-CRO
𝛽 .

We define Sim1(𝛽) which is identical to Sim0(𝛽) except that it samples the CRO distribution
(hpk, encCRO , hint) from the ideal distribution𝒟CRO

1 . By the CRO assumption, Sim0(𝛽) and Sim1(𝛽)
are computationally indistinguishable.

Next, we define the efficient simulator Sim2(𝛽), which samples the distribution (hpk, encCRO , hint)
by

• hpk = B is sampled with trapdoor, (B,T) ← TrapGen(1𝑛+1 , 𝑞, 𝑚).

• encCRO ← $, identical to𝒟CRO
1 .

• hint = R∗ is computed efficiently, R∗ = SampPre(B,T, hct 𝑓 ⊞ hct0 ⊞ (− �̃� CRO(encCRO)), 𝜎0).

By the properties of lattice trapdoor (lemma 5), Sim1(𝛽) and Sim2(𝛽) are 2−Ω(𝑛)-close.
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Now, observe that the computation of �̃� CRO can be altered through the following equation:

�̃� CRO
𝑖 (encCRO)T

= Δ

⌊
ctCRO

2,𝑖 ·G−1(A) + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖
Δ

⌉
= Δ

⌊
ctIND-CRO

2,𝑖 ·G−1(A) +G−1
ℓ
(v𝑖)TWTA + 𝛽ŝT

𝑖
A + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
= Δ

⌊
ctIND-CRO

2,𝑖 ·G−1(A) +G−1
ℓ
(v𝑖)Tct0 −G−1

ℓ
(v𝑖)TE0 − 𝛽êT

𝑖
+ vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
w.h.p.
= Δ

⌊
ctIND-CRO

2,𝑖 ·G−1(A) +G−1
ℓ
(v𝑖)Tct0 + vec(G−1(−hct0,𝑖))Tct1 + hct0,𝑖

Δ

⌉
The last equality holds with probability 1 − 2−Ω(𝜆) following lemma 4 since ctIND-CRO

2,𝑖 ·G−1(A) is
marginally random and G−1

ℓ
(v𝑖)TE0 has norm bound

√
𝜆ℓ⌈log 𝑞⌉𝜎 ≪ Δ with probability 1 − 2−Ω(𝜆).

With the alternation, the hint R∗ can be computed without depending on ctCRO
2 . Therefore, the

𝛽-dependent terms computed in Sim3 has the following format(
ct0 , {ctIND-CRO

2,𝑖 }𝑖∈[𝑄]
)
=

(
WTA + E0 + 𝛽GT

ℓ , {ctCRO
2,𝑖 −G−1

ℓ (v𝑖)TWTG𝑛 − 𝛽ŝT
𝑖G𝑛}𝑖∈[𝑄]

)
.

Assuming LWE, the components computationally hide 𝛽. Therefore Sim3(0) and Sim3(1) are
indistinguishable, thereby proving the IND-CRO assumption. □

We also show that the underlying circular assumption of the IND-CRO is implied by the
underlying circular assumption of CRO

Lemma 21. Let 𝜆, 𝑛, 𝑚, 𝑑, 𝑘, ℓ , 𝑀, 𝜎, 𝑞, 𝜎0 and 𝑓 circ be parameters and a function as specified in Defini-
tion 11. We say that the (subexponential) augmented- 𝑓 circ-circular security assumption holds if𝒟0 and𝒟1
without R∗ in Figure 9 are (sub-exponentially) indistinguishable to all polynomial time attackers.

{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2)) | (hpk, enc, hint) ← 𝒟0}𝜆
≈{(hpk, enc = (hct, hct0 ,A,D, ct1 , ct2)) | (hpk, enc, hint) ← 𝒟1}𝜆

Assuming the (subexponential) 𝑓 circ-circular security assumption (assumption 2) holds, the (subexpo-
nential) augmented- 𝑓 circ-circular security assumption also holds.

Proof. The lemma follows from the same set of observations from the proof of lemma 20. It is easy
to observe that the simulator Sim′0(𝛽), which is identical to Sim0(𝛽) except that it does not sample
nor output the hint R∗, perfectly samples the augmented- 𝑓 circ-circular security distributions. By
the 𝑓 circ-circular security assumption, the simulator is indistinguishable to Sim′1(𝛽), which is again
identical to Sim1(𝛽) except not sampling nor outputting the hint. Now, since Sim′1 is already efficient,
by LWE Sim′1(0) is indistinguishable to Sim′1(1), which completes the proof. □

6.2 Oblivious LWE Sampling

We recall the definition of oblivious LWE sampler from [WW21]. Just as definition 10 of functional
encodings, we slightly relax the succinctness requirement while ensuring the outcome is non-trivially
succinct, which suffices for applications.
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Definition 12 (Oblivious LWE Sampler). Let 𝜆 be the security parameter. All other parameters implicitly
depend on 𝜆. Let 𝑛, ℓ , 𝑞, 𝜎, 𝐵e be lattice parameters. An oblivious LWE sampler consists of the following
algorithms

• genCRS(1𝜆 , 1𝑄) → crs

• init(1𝑄 ,A ∈ Z𝑛×ℓ𝑞 ) → pub, where |pub| = 𝑄ℓ 1−𝜖 log 𝑞 + poly(𝜆) for some constant 𝜖 < 1, i.e., pub is
smaller than 𝑄 LWE samples in Zℓ𝑞 .

• Sample(crs, pub, 𝑖) = b𝑖 ∈ Zℓ𝑞 is deterministic.

• Sim(1𝜆 , 1𝑄 ,A, {b̂𝑖}𝑖∈[𝑄]) → (crs, pub, {s̃𝑖}𝑖∈[𝑄])

An oblivious LWE sampler should satisfy the following properties

Correctness Let (A,T) ← TrapGen(1𝑛 , 𝑞, ℓ ), crs ← genCRS(1𝜆 , 1𝑄), pub ← init(1𝑄 ,A), b ←
Sample(crs, pub, 𝑖), then with overwhelming probability there exists s̃ ∈ Z𝑛𝑞 , ẽ ∈ [−𝐵e , 𝐵e]ℓ such that
bT = s̃TA + ẽT. In other words, the output of Sample should be LWE samples with respect to A.

Security The following distributions are computationally indistinguishable.

• Real distribution: (A,T) ← TrapGen(1𝑛 , 𝑞, ℓ ), crs← genCRS(1𝜆 , 1𝑄), pub← init(1𝑄 ,A),
for all 𝑖 ∈ [𝑄], b𝑖 ← Sample(crs, pub, 𝑖), s̃𝑖 = LWE−1

T (b), where LWE−1
T is the efficient LWE

secret solving procedure given the trapdoor. Output (crs,A, pub, {s̃𝑖}𝑖∈[𝑄])
• Simulated distribution: (A,T) ← TrapGen(1𝑛 , 𝑞, ℓ ). Sample ŝ ← Z𝑛𝑞 , ê ← 𝒟ℓ

𝜎 and
set b̂T = ŝTA + êT. Simulate (crs, pub, {s̃𝑖}𝑖∈[𝑄]) ← Sim(1𝜆 , 1𝑄 ,A, {b̂𝑖}𝑖∈[𝑄]) and output
(crs,A, pub, {s̃𝑖 − ŝ𝑖}𝑖∈[𝑄]).

In other words, the output distribution of oblivious LWE sampling is indistinguishable to the simulated
distribution which hides an additional LWE shift.

6.3 Construction

We can construct an oblivious LWE sampler from IND-CRO following the exact same recipe in the
construction 1 of functional encoding. Instead of encoding an input x, it encodes a bit 𝛽, which
is zero in the real scheme, and instead of evaluating arbitrary functions 𝑔𝑖 , it can be viewed as
evaluating a specific function −𝛽 · b̂𝑖 , where b̂ is an additional string in the CRS. These ideas come
from the construction of oblivious LWE sampler in [WW21].

Construction 2 (Oblivious LWE Sampler (Sketched)). The construction is described as follows.

• genCRS(1𝜆 , 1𝑄) output crs = (pp,A, {R∗
𝑖
, b̂𝑖}𝑖∈[𝑄]), where pp,A,R∗

𝑖
are defined identically as

construction 1, while b̂𝑖 ← Z𝑛𝑞 are sampled at random.

• init(1𝑄 ,A) outputs pub which consists of every element in the output of the encoding algorithm Enc in
construction 1 except the message term dctx (since there is no message). The message term is replaced
with a dual GSW ciphertext of 0:

dct0 = WTA + E0 , where W← Z𝑛×ℓ⌈log 𝑞⌉
𝑞 , E0 ←𝒟ℓ⌈log 𝑞⌉×ℓ

𝜎 .
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• Sample(crs, pub, 𝑖) largely follows the decryption algorithm Dec in construction 1, with the difference
that the message homomorphism is replaced by

dctb̂𝑖 = G−1(b̂𝑖)Tdct0 = wT

b̂𝑖
A + eT

b̂𝑖
.

Finally, the sampling algorithm outputs LWE sample induced by the correctness equation (equation (13))
from the decryption algorithm

s̃T
𝑖A + ẽT

𝑖 = (s𝑖 + u𝑖 +wb̂𝑖 )
TA + ẽT

𝑖 = hct′𝑖 + dct𝑖 + dctb̂𝑖 + Δ
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 . (18)

• Sim(1𝜆 , 1𝑄 ,A, {b̂𝑖}𝑖∈[𝑄]) executes genCRS to obtain crs, but programs b̂𝑖 using its input, it then
runs init(1𝑄 ,A) for pub, but replaces dct0 as a dual GSW ciphertext of 1,

dct0 = WTA + E0 +GT
ℓ , where W← Z𝑛×ℓ⌈log 𝑞⌉

𝑞 , E0 ←𝒟ℓ⌈log 𝑞⌉×ℓ
𝜎 .

Finally, it execute the Sample(crs, pub, 𝑖) algorithm for each 𝑖 (with all randomness used to generate
pub known) and output (crs, pub, s̃𝑖 = (s𝑖 + u𝑖 +wb̂𝑖 )). Note that the components sampled by the
simulator admit the correctness equation

s̃T
𝑖A + ẽT

𝑖 = (s𝑖 + u𝑖 +wb̂𝑖 )
TA + ẽT

𝑖 = hct′𝑖 + dct𝑖 + dctb̂𝑖 + Δ
⌊
cT

s,𝑖G
−1(A) − cT

𝑖

Δ

⌉
+ cT

𝑖 + b̂𝑖 . (19)

The correctness of the oblivious LWE sampler follows directly from the correctness equa-
tion 18. The security follows from the same observation used for proving security of con-
struction 1, that all elements in the construction can be simulated by the IND-CRO distribu-
tion. In particular, we can simulate all elements in the construction by the sample (hpk, enc =

(hct, hct0 ,A,D, {v𝑖}𝑖∈[𝑘′] , ct0 , ct1 , ct2),R∗) from the IND-CRO distribution𝒟𝛽 with the function tuple
defined in assumption 3 as follows:

• b𝑖 = ŝT
𝑖
A + ê𝑖 = v𝑖 .

• s̃′
𝑖
← Z𝑛𝑞 , ẽ′

𝑖
←𝒟ℓ

𝜎e , where implicitly s̃𝑖 = s̃′
𝑖
+ 𝛽ŝ𝑖 , ẽ𝑖 = ẽ′

𝑖
+ 𝛽ê𝑖 .

• dct0 = ct0 = WTA + E0 + 𝛽GT
ℓ
, dct = ct1.

• c𝑖 = ((s̃′𝑖)TA + (ẽ′𝑖)T − dct 𝑓𝑖 − hct′𝑖 − dct �̃�𝑖 mod Δ)

• cT
s,𝑖 = ct2,𝑖 + s̃′

𝑖
G, where ct2,𝑖 = rTD𝑖 + eT

D,𝑖 − vec(G−1(−hct0,𝑖))TUTG−G−1
ℓ
(v𝑖)TWTG𝑛 − 𝛽ŝT

𝑖
G𝑛 is

the 𝑖-th segment of ct2.

When 𝛽 = 0, the simulation statistically simulates the real distribution (crs,A, pub, {s̃′
𝑖
= s̃𝑖}𝑖∈[𝑄]),

while when 𝛽 = 1, the simulation statistically simulates the simulated distribution (crs,A, pub, {s̃′
𝑖
=

s̃𝑖 − ŝ𝑖}𝑖∈[𝑄]). Therefore, the security reduces directly to the indistinguishability of the IND-CRO
output components, which is provided by the assumption.
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7 Counterexample for Private-Coin Evasive LWE

In this section, we introduce some counterexamples for the private-coin evasive LWE assumptions.
Along the way, we would highlight the problematic heuristic behind current evasive LWE formula-
tions, and provide a concrete attack strategy against the heuristic. Unlike previous counterexamples
[VWW22, BÜW24], which provided counterexamples based on obfuscation or in the non-standard
case where the precondition does not have the target matrix, our attack is a new zeroization attack
inspired by techniques from [HJL21]. This is a new class of attacks that were not known for any
formulation of Evasive LWE.

More specifically, we provide a simple counterexample to the version of the assumption called
private-coin binding evasive LWE (named by [BÜW24]), which underpins the security of many
recent obfuscation and advanced encryption schemes [VWW22, WWW22, HLL23, ARYY23, HLL24,
MPV24, CM24, BDJ+24, AKY24]. Our counterexample is based on the standard LWE assumption,
and involves distributions that are highly similar to existing schemes, particularly [AKY24].

7.1 Evasive LWE Definitions

We start by introducing the private-coin evasive LWE assumption [Tsa22, VWW22]. In the following,
we adopt the private-coin binding evasive LWE formulation by Brzuska et.al. [BÜW24], but we also
note that all existing variants of evasive LWE assumptions share similar heuristics, and we believe
that our attack strategy likely applies to other variants of private-coin evasive LWE assumptions.

Assumption 4 (Private-coin Binding Evasive LWE [BÜW24]). Let the parameters 𝑛, 𝑚, 𝑚𝑃 , 𝑡 , 𝑞, 𝜎𝐵 , 𝜎𝑃 , 𝜎𝑇
be parameterized by 𝜆. Let Samp be an efficient algorithm taking input 1𝜆 and outputs

S ∈ Z𝑛×𝑡𝑞 , P ∈ Z𝑛×𝑚𝑃𝑞 , aux ∈ {0, 1}∗

The precondition of evasive LWE states that the following two distributions are computationally
indistinguishable:

(B, P, STB + EB , STP + EP , aux) ≈ (B, P,CB ,CP , aux)

where (S, P, aux) ← Samp(1𝜆), B← Z𝑛×𝑚𝑞 , EB ←𝒟𝑡×𝑚
𝜎𝐵 , EP ←𝒟𝑡×𝑚𝑃

𝜎𝑃 , CB ← Z𝑡×𝑚𝑞 , CP ← Z𝑡×𝑚𝑃𝑞 .
The postcondition of evasive LWE states that the following two distributions are computationally

indistinguishable:

(B, P, STB + EB ,T = B−1(P), aux) ≈ (B, P,CB ,T = B−1(P), aux)

where (S, P, aux) ← Samp(1𝜆), B← Z𝑛×𝑚𝑞 , EB ←𝒟𝑡×𝑚
𝜎𝐵 , CB ← Z𝑡×𝑚𝑞 , and the short preimage T = B−1(P)

is sampled from the conditional discrete Gaussian distribution T←𝒟𝑚×𝑚𝑃
𝜎𝑇 |BT=P.

The evasive LWE assumption states that, for all efficient sampler Samp, if the precondition holds, then the
postcondition holds.

Informally speaking, the Evasive LWE assumption is built on the following two heuristics:

• Heuristic 1: No non-trivial use of trapdoors. The first heuristic is that in the post-condition,
the most “effective” way in which an attacker can make use of the trapdoor matrix T is to
multiply it with the corresponding LWE sample STB + EB. This multiplication yields the
product (STB + EB)T = STP + EBT. Under this heuristic, if somehow STP + EBT turned out to
be pseudorandom, then T is useless.
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In other words,

(STB + EB , STP + EBT, aux) ≈ ($, $, aux) =⇒ (STB + EB ,T, aux) ≈ ($,T, aux)

• Heuristic 2: No attack on structured error. The second heuristic says that the resulting
LWE sample STP + EBT with a structured error vector EBT produced in the post-condition, is
essentially as immune against attacks as a sample with fresh and independent Gaussian error
from the correct LWE error distribution. In other words,

(STB + EB , STP + EP , aux) ≈ ($, $, aux) =⇒ (STB + EB , STP + EBT, aux) ≈ ($, $, aux)

New Dimension of Attacks. We note that all the current known counterexample including [VWW22,
BÜW24] attack the first heuristic. The attacks proceed by setting up a contrived auxiliary information
aux that contains an obfuscated program expecting short preimages as input. The rationale behind
the ongoing research agenda of constructing schemes based on this variant of Evasive LWE is that
“natural" schemes typically do not make use of such contrived auxiliary information. Therefore, one
might believe that the schemes are *plausibly* secure.

Our attack on the other hand exploits vulnerabilities in the second heuristic, for which no
contradictions were known. Moreover, it is extremely simple, and involves similar structures
underlying existing schemes.

7.2 Overview on Our Attack Strategy

In the following, we will stick to evasive LWE assumptions where 𝑡 = 1, i.e., the secret s and errors
e are vectors.

Our main technical inspiration for the counterexample comes from the recent application of
private-coin-evasive LWE to designing pseudorandom obfuscation [BDJ+24, AKY24] and other
related primitives [VWW22, WWW22, HLL23, ARYY23, HLL24, MPV24, CM24, BDJ+24, AKY24].
Notable feature of many of these constructions is a novel usage of predicate encryption [GVW15]
encodings to allow a “secure" decryption (under evasive LWE, in fact we show that this step is
problematic) of pseudorandom function evaluations.

We start by recalling the overall approach. We assume that the reader is familiar with the
predicate encryption scheme of Gorbunov et. al. [GVW15] and its predecessor ABE scheme by
Boneh et. al. [BGG+14] (henceforth referred to as GVW and BGG). The idea in these schemes is that
one considers a distribution of the form:

hpk, hct(k),A,C, ct = (sT [A − bits(hct(k))T ⊗ G | C − rT ⊗ G] + eT) .

Above hpk is a public key for the GSW encryption scheme with secret key r, hct(k) is a GSW
encryption of a PRF key k which needs to be evaluated. ct is the predicate encoding of the PRF key
under matrices A,C.

The main advantage of the GVW encodings is that, by appropriate homomorphic evaluation
procedure, one can compute samples of the form:

sTA 𝑓 + 𝑓 (k)T + êT ,

where 𝑓 : {0, 1}𝑘 → Zℓ𝑞 is the required PRF computation. Importantly, A 𝑓 is efficiently computable
from only the public matrices A,C and the computation 𝑓 .
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One approach to securely learn 𝑓 (k) could be to provide a sample of the form:

sTA 𝑓 + e′T ,

for an independent wide-enough Gaussian error e′. One can show that this only reveals 𝑓 (k),
although the decryption is noisy where the lower bits of the output might be incorrect. This
intuition is not new, and has already been useful in many prior works, such as in the context of
laconic function evaluation [QWW18] and indistinguishability obfuscation [GJLS21].

Unfortunately, the schemes cannot afford to provide samples of the form sTA 𝑓 +eT as the number
of samples will depend linearly on the number of output bits and can’t be re-used for different
secrets. This approach will violate the succinctness needed for iO applications. This is where
Evasive LWE comes in.
Compression via Evasive LWE. Instead of releasing samples of the form sTA 𝑓 + eT, one can release
succinct LWE samples (B, sTB + eT

B) with dimension of B much smaller than A 𝑓 , along with a
trapdoor matrix T = B−1(A 𝑓 ). This will let us generate samples of the form sTA 𝑓 + eT

BT where the
error eT

BT is not random, but nevertheless it is small in norm. Therefore the trapdoor serves as
a succinct proxy for the fresh sample sTA 𝑓 + e′T where e′ is an independent Gaussian error. The
resulting distribution is:

Postcondition Distribution:
B, sTB + eT

B ,T = B−1(A 𝑓 ),
hpk, hct(k),A,C
ct = (sT[A − bits(hct(k))T ⊗ G|C − rT ⊗ G] + eT).

(20)

We show that this heuristic can be proven secure under evasive LWE and LWE, assuming the
security of the PRF, whereas the distribution is not pseudorandom. This argument requires the
predicate encryption and GSW encryption to have some natural structural properties that can be
satisfied under LWE and were shown to exist by [HJL21].
Security via Evasive LWE. To prove the trapdoor heuristic described above is secure, we analyze
the precondition statement required by evasive LWE. The precondition requires us to show that
(B, sTB + eT , sTA 𝑓 + êT)with *fresh* ê in the following distribution is indistinguishable to random,
given (hpk, hct,A,C, ct).

Precondition Distribution: (B, sTB + eT , sTA 𝑓 + êT , hpk, hct,A,C, ct).

This can be more or less proven similarly as in prior works related to laconic function evaluation
[QWW18], the only notable requirement that we need is that the function 𝑓 (★) is pseudorandom
over the entire domain Z𝑞 . This is also proven in lemma 25.

Once the precondition can be proven, the evasive LWE assumption asserts that the postcondition
holds, which requires that in the distribution in Equation (20), the LWE sample sTB + eT

B is
indistinguishable to random. Once we replace the sample by random, we can appeal to LWE to
argue that even (hct(k), ct) is indistinguishable to random and independent of the pseudorandom
function key. This would let us complete a *security proof*. Unfortunately, we show counterexamples
on the post-condition.
Vulnerability in the Post-Condition. Our counterexample examines the noisy output learned
upon decryption. Namely, if one inspects the decryption equation for the function output 𝑓 , we get
a noisy outcome of the form

(sTA 𝑓 + 𝑓 (k)T + êT) − (sTB + eT
B)T = 𝑓 (k)T + êT − eT

BT
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Moreover, êT is a noise that is a sum of two noises êHE + êPE where êHE is the noise that arises from
the GSW homomorphic evaluation10, and êPE is the noise from the GVW homomorphic evaluation.
Moreover, it turns out that êT

PE = eTH where H is known low-norm integer matrix and is an efficient
deterministic function of the public matrices, hct and the function 𝑓 .

Thus, now examining the structure decrypted output:

𝑓 (k)T + êT
HE + eTH︸︷︷︸

êT
PE

− eT
BT

The next step is to observe the following claims applying to the colored components. Recall
that given an arbitrary function 𝑓 represented by a Boolean circuit 𝐶 𝑓 , to perform GSW and GVW
homomorphic evaluation, one needs to convert it into an arithmetic circuit 𝐶′

𝑓
computing the same

function, consisting of ADD and MULT gates between two wire values, or between one wire value
and a constant. Inspired by [HJL21], we show that, instead of using the canonical conversion
from a Boolean circuit to arithmetic circuit, by using a specific arithmetic circuit implementation,
one can control the parity bits of the noises in the output ciphertexts resulting from GSW/GVW
homomorphic evaluation.

• By choosing a special arithmetic circuit implementation of 𝑓 , the noise term eTH arose from
the predicate encryption scheme is always even. The ideas for this part already existed in the
work of [HJL21]. Note that this modification only affects the structure of the noises and has
no bearings on the security of the predicate encryption scheme, when the modulus 𝑞 is odd.
This is proven in Lemma 22.

• Leveraging the special arithmetic circuit implementation of 𝑓 , and by setting the noises
in the GSW public key to be even (for which LWE holds when 𝑞 is odd), we have that
𝑓 (k)T + êT

HE mod 𝑞 is also even. This modification also has no bearing to the security of the
GSW encryption. The ideas for such a scheme already existed in the work of [HJL21]. This is
proven in Lemma 23

• The final missing piece is the component eT
BT. Note that both T and eB are small norm integer

vectors. Furthermore, because T is wide, modulo 2, the error eT
BT lives in a low-dimensional

vector space mod 2.

As a consequence, with these observations, one can simply compute the result of:

yT = 𝑓 (k)T + êT
HE + êT

PE − eT
BT mod 2. (21)

Since the sum of the first three terms modulo 2 yields zero, we can then check if the result lives
inside a low-dimensional vector space. In Lemma 24, we show that this strategy will not work if the
encodings were random. This concludes a high-level overview of the counterexample.

Before proceeding to details of our counterexamples, we make two remarks. First, our
counterexamples attack the output plus noise term, and hence is zeroizing. The fact that the
output 𝑓 (k) is large and marginally pseudorandom does not help since the noises are correlated.
Second, our manipulation of the structure of GVW/GSW noises highlights that it is easy to find
bad examples of arithmetic circuit implementation of 𝑓 . While it is easy to avoid these specific bad
examples, it is unclear how to characterize good circuit implementation.

10Recall that the predicate encryption encodes GSW encryption of k as an attribute. This noise corresponds to the
inner-product of the GSW secret key with a GSW evaluation of this ciphertext.
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7.3 Counterexample

In this section, we give a fully specified description of our counterexample along with all the
required lemmas. The construction fully follows the overview given in section 7.2
The GVW Encodings We start by recalling the algebraic structure of the GVW predicate encryption.
Theorem 9 (GVW Encodings [GVW15]). Let 𝑛, 𝑞 be integers and 𝑚 = 𝑛⌈log 𝑞⌉. There exist efficient
algorithms Evalf,Evalfx such that for all input x ∈ {0, 1}𝑘 , all function 𝑓 : {0, 1}𝑘 → Z(𝑛+1)×ℓ

𝑞 where every
bit of (the bitwise representation of) the output can be computed by a depth 𝑑 circuit, and all matrices
A ∈ Z𝑛×𝑘𝑚𝑞 ,C ∈ Z𝑛×𝑛𝑚𝑞 , it holds that

• Evalf(A,C, 𝑓 ) = A 𝑓 ∈ Z𝑛×ℓ𝑞 outputs a decryption pad that only depends on 𝑓 and public matrices.

• Evalfx(A,C, 𝑓 , x) = H 𝑓 ,x ∈ Z(𝑛+𝑘)𝑚×ℓ outputs a evaluation matrix H 𝑓 ,x with bounded norm,
∥H 𝑓 ,x∥ = 𝑚𝑂(𝑑).

• The output of Evalf and Evalfx satisfies the following decryption equation.

[A − xT ⊗ G|C − rT ⊗ G] ·H 𝑓 ,x = A 𝑓 − Y, where Y =

(
0𝑛×ℓ

(rT ,−1) · 𝑓 (x)

)
The idea of GVW predicate encryption is to combine the above encoding with a GSW homo-

morphic encryption scheme with secret key r, where the format of Y corresponds to the linear
decryption. In particular, by plugging in x as the (bitwise representation of) a GSW ciphertext

x = hct(k) =
(

BHE
rTBHE + eT

HE

)
R + kT ⊗ G of some random seed k, and the function 𝑓 as the GSW

homomorphic evaluation for a pseudorandom function 𝑓 = GSW.Eval(·,PRF), one can obtain the
equation

[A − xT ⊗ G|C − rT ⊗ G] ·H 𝑓 ,x = A 𝑓 −
(

0𝑛×ℓ
−PRF(k) − eT

HERPRF

)
. (22)

Subsequently, with GVW secret sT = (tT , 1) and GVW error ePE, we have the following homomorphic
relation over LWE samples.

(sT
[
A − xT ⊗ G|C − rT ⊗ G] + eT

PE
)
·H 𝑓 ,x = sTA 𝑓 + PRF(k)T + eT

HERPRF + eT
PEH 𝑓 ,x. (23)

As described in the overview (section 7.2), we aim to provide modified GVW and GSW
homomorphic evaluations, such that the error terms in equation (23) admits the correlations that
PRF(k)T + eT

HERPRF is even and eT
PEH 𝑓 ,x.

Correlation-inducing gates Our approach toward the desired correlation follows the same
framework in [HJL21]. We introduce the so-called correlation-inducing gates, which are special
identity gates that introduce correlation to errors without affecting the homomorphic evaluation
procedure. This allows us to transform any circuit into a “bad” implementation (by injecting
correlation-inducing gates appropriately to the original circuit) such that the homomorphic
evaluation of the bad circuit implementation comes with correlated decryption error.
Notations In the following, we always use odd prime modulus 𝑞, and we write 2−1 to denote the
multiplicative inverse of 2 under mod 𝑞. For integer matrix T, we abuse the notation and write
T = 𝑏 (mod 2) for bit 𝑏 ∈ {0, 1} to denote the condition where every entry T[𝑖 , 𝑗] of T satisfies
T[𝑖 , 𝑗] = 𝑏 (mod 2). We say T is even when T = 0 (mod 2), and T is odd when T = 1 (mod 2)

We start by introducing the correlation-inducing gates for the GVW encodings such that we can
argue eT

PEH = 0 (mod 2).
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Observation 1 (Even-error gate for GVW). For any GVW encoding [A − xT ⊗G|C − rT ⊗G], homomor-
phically evaluating the function ℎ(𝑏) = 2−1 · 𝑏 + 2−1 · 𝑏 on the input wires result in the even-error evaluation
matrix Hℎ = 2G−1(2−1G), which admits the relation

[A − xT ⊗ G|C − rT ⊗ G]H0 = [AH0 − xT ⊗ G|CH0 − rT ⊗ G]
where the term on the right is still a GVW encoding for the same input.

By adding the even-error gate on each input wire of the homomorphic evaluated circuit, we
obtain a new Evalfx algorithm which always outputs evaluation matrix of form H0H, with the
guarantee that H0H = 0 (mod 2).

For technical requirements of our evasive LWE postcondition distinguisher, we also need A 𝑓

to be marginally random. This can be achieved by introducing additional encodings of 0, and
appending a dummy addition-by-0 gate on the output wires.

Observation 2 (Addition by 0 gate for GVW). Let A0 ← Z𝑛×ℓ𝑞 be a random matrix, parsed as a GVW
encoding of a zero vector. By extending the GVW encoding to [A0|A− xT ⊗G|C− rT ⊗G], and evaluating a
circuit (with evaluation matrix H 𝑓 ,x) an additional addition-by-0 gate computing the function ℎ(𝑣) = 𝑣+2 ·0,

we obtain a new evaluation matrix H′ =
(

2I
H 𝑓 ,x

)
that admits the following decryption equation.

[A0|A − xT ⊗ G|C − rT ⊗ G] ·
(

2I
H 𝑓 ,x

)
= (A 𝑓 + 2A0) −

(
0𝑛×ℓ

(rT ,−1) · 𝑓 (x)

)
The decryption pad A′

𝑓
= A 𝑓 + 2A0 is uniformly random in Z(𝑛+1)×ℓ

𝑞 , and the evaluation matrix H′ =
(

2I
H 𝑓 ,x

)
is even whenever H 𝑓 ,x is.

Combining the above two observations, we get the following lemma for GVW homomorphic
encodings.

Lemma 22 (GVW homomorphic encodings with bad circuit implementation). For every circuit
𝑓 : {0, 1}𝑘 → Z(𝑛+1)×ℓ

𝑞 where each output bit can be computed by a depth 𝑑 circuit, there exist a functionally
equivalent circuit implementation 𝑓 ′ (containing additional correlation-inducing gates) with constant blowups
on circuit depth, such that the GVW homomorphic evaluation for circuit 𝑓 ′ admits the following conditions.

• Evalf(A0 ,A,C, 𝑓 ′) = A 𝑓 ′ ∈ Z𝑛×ℓ𝑞 , where the distribution of A 𝑓 ′ is marginally random given random
input A0 ← Z𝑛×ℓ𝑞 .

• Evalfx(A0 ,A,C, 𝑓 ′, x) = H 𝑓 ′,x ∈ Z(𝑛+𝑘)𝑚×ℓ , where H 𝑓 ′,x has bounded norm ∥H 𝑓 ′,x∥ = 𝑚𝑂(𝑑), and
H 𝑓 ′,x = 0 (mod 2).

• [A0|A − xT ⊗ G|C − rT ⊗ G] ·H 𝑓 ′,x = A 𝑓 ′ − Y, where Y =

(
0𝑛×ℓ

(rT ,−1) · 𝑓 (x)

)
.

We now move to the correlation-inducing gates for the GSW encryption scheme, intending to
achieve the correlation PRF(k) = eT

HERPRF (mod 2).
Observation 3 (Correlation-friendly GSW settings). We focus on GSW encryptions with settings friendly
to our correlation inducing gates. We require the dimension 𝑛 and modulus 𝑞 to both be odd integers. For the
public key, we require the error eHE to be odd, i.e.,

hpk = B =

(
BHE

rTBHE + eT
HE

)
, where B← Z𝑛×𝑚𝑞 , r← Z𝑛𝑞 , eHE ←𝒟𝑚

𝜎 |eHE=0 mod 2.
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Note that the conditional discrete Gaussian distribution 𝑒 ← 𝒟𝜎|𝑒=0 mod 2 is efficiently sampleable by
rejection sampling.

For (bit) encryptions, we require the encryption randomness R to also be odd. Namely

hct(𝑏) = BR + 𝑏G, where R← {±1}𝑚×(𝑛+1)⌈log 𝑞⌉

The correlation-friendly setting ensures eTR 𝑓 is even/odd whenever R 𝑓 is. Note that the GSW HE scheme
with this setting is provably secure from standard LWE.

Using the ideas from [HJL21], we can provide correlation-inducing gates which generate R 𝑓

that is always even or has parity consistent with the encrypted value.

Observation 4 (Even-error gate for GSW). For any (not necessarily fresh) bit ciphertext hct(𝑏) = BR+𝑏G,
homomorphically evaluating the function ℎ(𝑏) = 2−1 · 𝑏 + 2−1 · 𝑏 result in ciphertext hct′(𝑏) = BRℎ + 𝑏G,
where ∥Rℎ∥ =

R · 2G−1(2−1G)
 ≤ 2𝑚∥R∥, and Rℎ is even.

Observation 5 (Multiplication by 1 gate for GSW). For any (not necessarily fresh) bit ciphertext
hct(𝑏) = BR + 𝑏G with even randomness R = 0 (mod 2), homomorphically evaluating the function
ℎ(𝑏) = 𝑏 · 1 with a fresh ciphertext of 1 hct1 = BR1 + 𝑏G result in ciphertext hct′(𝑏) = BRℎ + 𝑏G where
∥Rℎ∥ =

R ·G−1(hct1) + 𝑏R1
 ≤ 𝑚∥R∥ + 1, and Rℎ = 𝑏 (mod 2).

Finally, we show that the correlation can be preserved through the packing operation.

Observation 6 (GSW packing). For 𝑣 ∈ Z𝑞 and its bitwise representation 𝑣 =
∑
𝑖 2𝑖𝑣𝑖 , given ciphertexts

• hct0 = BR0 + 𝑣0G, where R0 = 𝑣0 (mod 2).

• For all 𝑖 ∈ [⌈log 𝑞⌉ − 1], hct𝑖 = BR𝑖 + 𝑣𝑖G, where R𝑖 = 0 (mod 2).

The packing operation admits

Pack({hct𝑖}) =
∑
𝑖

hct𝑖G−1(1𝑛+1) = BrPack +
(
0𝑛
𝑣

)
, where rPack = (

∑
R𝑖)G−1(1𝑛+1).

Note that
∑

R𝑖 = 𝑣0 (mod 2), and that G−1(1𝑛+1) is a unit vector. Therefore rPack = 𝑣0 (mod 2), implying
that the decryption error eT

HErPack = 𝑣 (mod 2). Since the packing operation for vector v ∈ Zℓ𝑞 is a
columnwise concatenation of packing operations of each of its entries, the parity relation directly extends to
packing vectors.

Combining the above observations, we get the following lemma for GSW homomorphic
evaluations over packed circuits.

Lemma 23 (GSW homomorphic evaluations with bad circuit implementation). Under GSW parameter
settings following observation 3, for every packed-circuit 𝑓 : {0, 1}𝑘 → Zℓ𝑞 ∈ ℱ𝑑,ℓ , there exists an equivalent
circuit implementation 𝑓 ′ with constant blow up in depth such that the homomorphic evaluation satisfies

Eval(hct(x), 𝑓 ′) = BR 𝑓 ′ ⊞ ( 𝑓 ′(x)) =
(

BR 𝑓 ′

rTBR 𝑓 ′ + eT
HER 𝑓 ′ + 𝑓 ′(x)T

)
, where eT

HER 𝑓 ′ = 𝑓 ′(x)T (mod 2)
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Finally, we give the following lemma which shows that the subspace structure we detect from
the decryption outcome

yT = (sTA 𝑓 + PRF(k)T + êT
HE + êT

PE) − (sTB + eT
B)T mod 2

= PRF(k)T + eT
HERPRF + eT

PEH 𝑓 ,x − eT
BT mod 2

= eT
BT mod 2 ∈ span(T mod 2)

no longer exists when the LWE sample (sTB + eT
B) is replaced with a uniformly random vector. This

gives a concrete distinguisher for the evasive LWE postcondition.

Lemma 24. Let 𝑞, 𝑚, 𝑚𝑇 , 𝜎𝑃 be integers, where 𝑞 is odd, 𝑚𝑇 ≥ 𝜆𝑚, and 𝑞 ≥ 2𝜆𝜎𝑃 . Let (·)𝑞 denote the
operation of parsing a vector in Z𝑞 into an integer vector with entries in range [0, 𝑞 − 1]. Let 𝒱 be a
distribution over vectors v ∈ Z𝑚𝑇𝑞 such that

• v is even with overwhelming probability, i.e.,

Pr[v = 0 mod 2|v←𝒱] ≥ 1 − negl(𝜆).

• v is pseudorandom when added with a small error. Formally,

(v + e| v←𝒱 , e←𝒟𝑚𝑇
𝜎𝑃 ) ≈𝑐 (u← Z𝑚𝑇𝑞 )

Then, it holds that

Pr
[
(cTT − vT)𝑞 mod 2 ∈ span(T mod 2)

��� c← Z𝑚𝑞 ,T←𝒟𝑚×𝑚𝑇
𝜎𝑇 , v←𝒱

]
≤ negl(𝜆)

Proof. Observe that

(cTT − vT)𝑞 mod 2 = (cTT)𝑞 − vT + 𝑞
⌊ (cTT)𝑞 − vT

𝑞

⌉
mod 2 = (cTT)𝑞 +

⌊ (cTT)𝑞 − vT

𝑞

⌉
mod 2 (24)

Since 𝑞 ≥ 2𝜅𝜎P and the distribution of (cTT)𝑞 is marginally random in Z𝑞 , with overwhelming
probability it holds that⌊ (cTT)𝑞 − vT

𝑞

⌉
=

⌊ (cTT)𝑞 − vT − eT

𝑞

⌉
, where e←𝒟𝑚

𝜎𝑃 . (25)

Now, observe that whether or not a vector falls in the span of (T mod 2) is efficiently checkable.
Therefore, by the pseudorandomness of v + e we have���������

Pr
[
(cTT)𝑞 +

⌊ (cTT)𝑞 − vT − eT

𝑞

⌉
∈ span((T mod 2))

]
− Pr

u←Z
𝑚𝑃
𝑞

[
(cTT)𝑞 +

⌊ (cTT)𝑞 − uT

𝑞

⌉
∈ span((T mod 2))

]
��������� ≤ negl(𝜆). (26)

where we can bound the second probability for most tT = (cTT)𝑞 by observing that

• Since t is (marginally) random in [0, 𝑞 − 1], with overwhelming probability over t, there exists
1/3 fraction of indices such that 𝑡𝑖 ∈ (14 𝑞, 3

4 𝑞). Denote the index set as 𝑆𝑡
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• For every binary vector w ∈ {0, 1}𝑚𝑃 ,

Pr
u

[
∀𝑖 ∈ 𝑆𝑡 ,

(
𝑡𝑖 +

⌊
𝑡𝑖 − 𝑢𝑖
𝑞

⌉)
𝑖

= 𝑤𝑖

]
≤ (3/4)|𝑆𝑡 |.

Therefore, by a union bound over the 2𝑚 vectors in the row span of (T mod 2), we have

Pr
u←Z

𝑚𝑃
𝑞

[
(cTT)𝑞 +

⌊ (cTT)𝑞 − uT

𝑞

⌉
∈ span((T mod 2))

]
≤ 2𝑚 · (3/4)1/3𝑚𝑇 + negl = negl. (27)

Combining equation (24) to (27), we conclude that

Pr
[
(cTT − vT)𝑞 mod 2 ∈ span(T mod 2)

]
≤ negl(𝜆)

□

Counterexample Sampler We now formally describe the sampler corresponding to the counterex-
ample construction.
Samp(1𝜆):

Let 𝜆 be the security parameter, all other parameters depend on 𝜆. Let 𝑛, 𝑞 be odd integers,
𝑚, 𝑚𝑃 be integers such that 𝑚 = Θ(𝑛 log 𝑞) and 𝑚𝑃 ≥ 𝜆𝑚. Let PRF : {0, 1}𝑘 × {0, 1}𝐾 → Zℓ𝑞 be a
matrix-value pseudorandom function where each output bit of the function can be computed by
depth 𝑑0 = 𝑂(log𝜆) circuits, and let 𝑑 = poly log𝜆 be the circuit depth of the GSW homomorphic
evaluation circuit GSW.Eval(·,PRF(·, 0𝐾)). Let 𝜎, 𝜎𝐵 , 𝜎𝑃 , 𝜎𝑇 be Gaussian width parameter such that
LWE with parameter (𝑛, 𝑞, 𝜎) is secure, 𝜎 = 𝜎𝐵 = 𝜎𝑇 = poly(𝜆), 𝜎𝑃 = 2𝜆𝑚Ω(𝑑)𝜎, and 𝑞 ≥ 2𝜆𝜎𝑃 . The
sampler computes the following components.

• Sample PRF seed k← {0, 1}𝜆.

• Sample correlation-friendly GSW public key hpk = B =

(
BHE

rTBHE + eT
HE

)
, where BHE ← Z𝑛×𝑚𝑞 ,

r← Z𝑛𝑞 , and eHE ←𝒟𝑚
𝜎 |eHE=0 mod 2 is sampled as odd error.

• Compute correlation-friendly GSW ciphertext of seed k by as ct = DR + k ⊗ G.

hct = BR + kT ⊗ G, where R← {±1}𝑚×𝜆(𝑛+1)⌈log 𝑞⌉

• Set the GVW attribute x = bits(hct) ∈ {0, 1}𝜆(𝑛+1)2⌈log 𝑞⌉2 to be the bitwise representation of
the GSW ciphertext of the PRF seed, and policy 𝑓 = GSW.Eval(·,PRF(·, 0𝐾)) be the GSW
homomorphic evaluation function, where the circuit implementations of PRF and GSW.Eval
are chosen as the correlation-inducing implementation introduced in lemma 22 and 23.

• Sample GVW public matrices A0 ← Z(𝑛+1)×ℓ
𝑞 ,A← Z(𝑛+1)×|x|(𝑛+1)⌈log 𝑞⌉

𝑞 , C← Z𝑛×𝑛(𝑛+1)⌈log 𝑞⌉
𝑞 .

• Compute GVW encodings ct = sT[A0|A − xT ⊗ G|C − rT ⊗ G] + eT
PE, where sT = (tT , 1), t← Z𝑛𝑞 ,

and ePE ←𝒟𝑚PE
𝜎 with dimension 𝑚PE = ℓ + |x|(𝑛 + 1)⌈log 𝑞⌉ + 𝑛(𝑛 + 1)⌈log 𝑞⌉.

• Set P = A 𝑓 = Evalf(A0 ,A,C, 𝑓 ) to be the decryption pad.

• Set aux = (hpk, hct,A0 ,A,C, ct)
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• Output (s, P, aux)

We show that the above sampler is indeed an evasive LWE counterexample by proving that the
precondition holds while the postcondition does not hold.

Lemma 25 (Precondition). For the set of parameters specified by Samp, assuming the LWE assumption, it
holds that

(B, P, sTB + eT
B , s

TP + eT
P , aux) ≈ (B, P, cT

B , c
T
P , aux)

where (s, P, aux) ← Samp(1𝜆), B← Z𝑛×𝑚𝑞 , eB ←𝒟𝑚
𝜎𝐵 , eP ←𝒟𝑚𝑃

𝜎𝑃 , cB ← Z𝑚𝑞 , cP ← Z𝑚𝑃𝑞 .

Proof. The proof follows the standard techniques from existing works. We sketch the sequence of
hybrids as follows.

• ℋ0 is the left distribution.

• ℋ1 replaces sTP + eT
P by

ct ·H 𝑓 ,x + eT
P − PRF(k, 0𝐾),

where H 𝑓 ,x ← Evalfx(A0 ,A,C, 𝑓 , x = bits(hct)). Observe that the replacement satisfies

ct ·H 𝑓 ,x + eT
P − PRF(k, 0𝐾) = sTP + eT

P + eT
HERPRF + eT

PEH 𝑓 ,x ,

where
eT

HERPRF + eT
PEH 𝑓 ,x

 ≤ 𝑚𝑂(𝑑)𝜎 < 𝜎P/2𝜆. Therefore, ℋ0 ≈𝑠 ℋ1 follows from the
smudging argument (lemma 3).

• ℋ2 samples matrix A′ ← Z(𝑛+1)×|x|(𝑛+1)⌈log 𝑞⌉
𝑞 ,C′ ← Z𝑛×𝑛(𝑛+1)⌈log 𝑞⌉

𝑞 , and program [A|C] =
[A′ + xT ⊗G|C+ rT ⊗G]. The GVW encoding is then computed by ct = sT[A0|A′|C′] + eT

PE. ℋ1
andℋ2 are identical.

• ℋ3 switches the LWE samples sTB+ eT
B and ct = sT[A0|A′|C′] + eT

PE to random. Note that these
two components are the only components that (directly) depend on s, thus by LWE,ℋ2 ≈𝑐 ℋ3.

• ℋ4 switches back to sampling [A|C] by random. ℋ3 andℋ4 are identical.

• ℋ5 samples hpk, hct by random. Assuming LWE, the pseudorandom public key and ciphertext
property for the GSW HE scheme impliesℋ4 ≈𝑐 ℋ5.

• ℋ6 replaces the term ct ·H 𝑓 ,x + eT
P − PRF(k, 0𝐾) by random. Since hct no longer depends on k,

ℋ5 ≈ ℋ6 follows from the PRF security.

• ℋ7 switch back the sampling of aux according to Samp. ℋ6 ≈𝑐 ℋ7 follows from reverting the
changes made byℋ5 toℋ2, and the indistinguishability argument is identical. ℋ7 is the right
distribution.

□

Lemma 26 (Postcondition). For the set of parameters specified by Samp, there exists an efficient distinguisher
𝐷 with non-negligible advantage 𝜖 such that��Pr[𝐷(B, P, sTB + eT

B ,T = B−1(P), aux) = 1] − Pr[𝐷(B, P, cT
B ,T = B−1(P), aux) = 1]

�� ≥ 𝜖(𝜆).

where (s, P, aux) ← Samp(1𝜆), B← Z𝑛×𝑚𝑞 , eB ←𝒟𝑚
𝜎𝐵 , eP ←𝒟𝑚𝑃

𝜎𝑃 , cB ← Z𝑚𝑞 , cP ← Z𝑚𝑃𝑞 .
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Proof. We start by constructing the following distinguisher 𝐷 as follows.
𝐷(B, P, cB ,T, aux = (hpk, hct,A0 ,A,C, ct)) :

• Compute yT = ctH 𝑓 ,x − cT
BT, where H 𝑓 ,x ← Evalfx(A0 ,A,C, 𝑓 , x).

• Test whether (yT)𝑞 mod 2 ∈ span(T mod 2). Output 1 if true and 0 otherwise.

On input the left distribution, where cT
B = sTB + eT

B, by the correctness of the GVW encodings,

yT = ctH 𝑓 ,x − (sTB + eT
B)T

= sTA 𝑓 + PRF(k)T + eT
HERPRF + eT

PEH 𝑓 ,x − sTA 𝑓 − eT
BT

= PRF(k)T + eT
HERPRF + eT

PEH 𝑓 ,xeT
BT.

Therefore,

(yT)𝑞 mod 2 = (PRF(k)T + eT
HERPRF + eT

PEH 𝑓 ,xeT
BT)𝑞 mod 2

w.h.p.
= PRF(k)T + eT

HERPRF + eT
PEH 𝑓 ,xeT

BT mod 2
= eT

BT mod 2 ∈ span(T mod 2).
The second equality follows from the fact that PRF(k) is pseudorandom in Z𝑞 , therefore it is far
from the rounding boundary of 𝑞 with overwhelming probability. The last equality follows from
the error correlation demonstrated by lemma 22 and 23. Therefore the distinguisher outputs 1 with
overwhelming probability.

On input the right distribution, where cB is sampled by random, by definition

yT = ctH 𝑓 ,x − cBT = (sTB − cT
B)T + PRF(k)T + eT

HERPRF + eT
PEH 𝑓 ,x.

Observe that cT = (sTB−cT
B) is random inZ𝑚𝑞 , T← B−1(A 𝑓 )marginally distributes statistically close to

discrete Gaussian of width 𝜎𝑇 since A 𝑓 is marginally random, and vT = PRF(k)T+eT
HERPRF+eT

PEH 𝑓 ,x
is pseudorandom when added with a small error eP ← 𝒟𝑚𝑃

𝜎𝑃 , as observed in the the proof of
lemma 25. Therefore immediately by lemma 24, we know that the probability that ((yT)𝑞 mod 2)
falls in the row span of (T mod 2) is negligible11. Therefore the distinguisher outputs 1 with
negligible probability.

Combining all the above, we conclude that 𝐷 has a overwhelming advantage on distinguishing
the postcondition of the evasive LWE assumption. □

Remark 4. We note that the given sampler is a private-coin sampler, where the PRF seed k and the
GSW secret/randomness r, eHE ,R needs to be kept private even given the auxiliary information aux =

(hpk, hct,A0 ,A,C, ct). It is an interesting open question whether or not one can construct a public-coin
sampler, where all random coins of its sampling procedure are revealed in aux, such that it still admits a
counterexample for evasive LWE.
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