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Abstract

Oblivious Transfer (OT) is a significant two party privacy preserving cryptographic
primitive. OT involves a sender having several pieces of information and a receiver
having a choice bit. The choice bit represents the piece of information that the re-
ceiver wants to obtain as an output of OT. At the end of the protocol, sender remains
oblivious about the choice bit and receiver remains oblivious to the contents of the
information that were not chosen. It has applications ranging from secure multi-party
computation, privacy-preserving protocols to cryptographic protocols for secure com-
munication. Most of the classical OT protocols are based on number theoretic as-
sumptions which are not quantum secure and existing quantum OT protocols are not
so efficient and practical. Herein, we present the design and analysis of a simple yet
efficient quantum OT protocol, namely qOT. qOT is designed by using the asymmetric
key distribution proposed by Gao et al. [18] as a building block. The designed qOT
requires only single photons as a source of a quantum state, and the measurements
of the states are computed using single particle projective measurement. These make
qOT efficient and practical. Our proposed design is secure against quantum attacks.
Moreover, qOT also provides long-term security.
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1 Introduction

Secure multiparty computation (SMPC) refers to a collection of all cryptographic protocols,
allowing multiple parties to perform a computation collaboratively. Along with this, the
protocol keeps secret the confidentiality of their respective inputs. The primary goal is to
allow multiple parties to work together on a task without disclosing sensitive information to
each other. Oblivious transfer (OT) is a fundamental building block in the field of SMPC.
It has applications in voting systems, privacy-preserving databases, and other scenarios
where privacy and security are crucial. In 1981, Rabin[32] proposed the first OT protocol
in the classical domain. “1-out-of-2” OT, executed by a receiver and a sender where sender
holds two messages (say m0 and m1), and the receiver wants to achieve exactly one of these
messages without the sender learning which one was chosen. OT can be visualized as “1
out of n” OT, where receiver obtains one out of n messages as per his choice, or “k out of
n” OT, where receiver gets k messages out of the n messages, those he wants to achieve.

There have been several construction of classical and quantum OTs in the existing
state-of-the-art. However, the OT based on classical cryptography [8, 9, 22] faces threats
of quantum attacks. On the other hand, quantum cryptography based OT [1, 5, 12, 16, 28]
are not efficient and practical. In addition, their security proof requires additional assump-
tions. While post-quantum cryptography (PQC)[15, 36, 6, 30] provides an alternative
direction of research, it falls short of ensuring long-term security. The concern arises from
the possibility of future developments in classical or quantum algorithms capable of break-
ing the mathematical hard problems of PQC. In contrast, quantum cryptography (QC),
governed by the laws of quantum physics, guarantees security against quantum attacks. In
addition, QC also provides long-term security. Therefore, it is imperative to incorporate
QC in the development of privacy-preserving protocols, particularly in OT.

However, the manuscripts presented by Mayers [29], Lo et al. [26], and Lo et al.
[27] showed that one-sided two party computations are not unconditionally secure in the
quantum settings (no-go theorem). Therefore, it is not possible to perform unconditionally
secure bit commitment or OT protocol. Alternatively, the quantum OT protocols proposed
by Damgaard et al. [12], Erven et al. [16], Pitalúa et al. [31] achieve practical security
or unconditional security considering noisy or bounded storage model or presenting OT
in specific spacetime (Minkowski spacetime). Here, we introduce a quantum OT protocol
(qOT) based on the fundamental principles of quantum cryptography. The proposed qOT
is not designed on such assumptions as bounded storage model, noisy storage model, etc.
Our protocol does not contradict the no-go theorem as it is not an unconditionally secure
OT protocol rather qOT is interactive and achieves security against dishonest parties with
negligible cheating probability on adjusting the value of θ. In particular, qOT is designed
using quantum asymmetric key distribution [18] and the security level of qOT depends on
the security of the asymmetric key distribution protocol [18]. The key distribution de-
scribed in [18] is secure against the existing quantum attacks but achieves better database
security for a small θ and better user privacy for a large θ. Overall, Gao et al. [18] described
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that the protocol gains better security with a negligible cheating probability of user and
receiver for a small θ. Therefore, our proposed qOT is secure against existing quantum
attacks and obtains better security against a dishonest receiver without such assumptions.
To achieve better security against both user and receiver, we can adjust θ to make it small.
But in that case, we need to increase the length of the raw key that is asymmetrically
distributed between sender and receiver.

Related Works: In 1983, Wiesner proposed the idea of quantum conjugate coding [39].
It was the first template that served as a building block of quantum OT such as BBCS92
[5]. BBCS92 is not secure against quantum attacks. Subsequently, Crepeau and Kilian
[10] addressed the security issue of [5] by presenting a quantum OT using quantum bit
commitment scheme as a building block. However, Mayers, Lo, and Chau [29, 27] demon-
strated that building bit commitment, and consequently OT, based solely on quantum
information properties is impossible. This negative result posed a significant obstacle, sug-
gesting additional physical, computational, or modelling assumptions based quantum OT
protocol [38, 11]. Nonetheless, researchers recognized the potential advantages of quantum
information in constructing secure computation systems. Recently, the work of Agarwal et
al. [1] presented a new template for quantum OT which they have called the “fixed basis”
framework.

1.1 Motivation of this work

Oblivious transfer is a powerful tool for 2-party protocol as well as it is used as a building
block for secure multiparty protocol. Moreover, OT works as a basic cryptographic tool
for secure information disclosure.

• Due to the existence of Shor’s algorithm [35], quantum computers have the capability
to break down the security of all of the classical cryptosystems which rely on the
hardness of factoring integers, discrete logarithms. Moreover, achieving long-term
security in the design of a classical cryptosystem becomes a challenging task. To
overcome these challenges, we are motivated to develop a secure OT protocol in
quantum setting.

• In the existing state of the art, there are some quantum 1-out-of-2 OT protocols
[12, 16, 28], where the long-term security achieved under some assumption models
like the “Bounded Storage Model” or “Noisy Storage model”. Our goal is to design
a quantum OT that achieves long-term security without any assumption model and
any complicated oracles.

• One of the main objectives of this work is to compute multiple OT executions in
classical channel after only one time execution of the quantum key distribution unlike
[1, 5, 12, 28].
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1.2 Our Contribution

In this paper, we focus on the design and analysis of a simple and efficient OT protocol
(namely qOT) in the quantum domain. We utilize the asymmetric key distribution of Gao
et al.[18] as a building block in qOT. The design of qOT enables a sender to transfer one of
several pieces of information to a receiver while keeping the sender oblivious to which piece
of information was actually transferred. Although, there are several other constructions of
OT in quantum domain, qOT is efficient when compared to the existing state-of-the-art de-
signs [1, 5, 12, 16, 28] as it doesn’t require quantum entangled states, complicated quantum
operators, and quantum commitment schemes. The proposed scheme relies on quantum
resources in the form of single photons, and measurements are executed using simple single
projective measurements. The quantum communication and computational overheads of
qOT are 3n+ κ qubits and O(3n+ κ) projective measurements respectively. The security
of our proposed protocol relies on the principle of quantum cryptography. Consequently,
it achieves quantum security in contrast to the classical OT protocols. Moreover, qOT
obtains long term security as a quantum 1-out-of-2 OT. We also explored the possible
application of qOT in the context of secure information disclosure. The proposed qOT
can also be used as a building block in the construction of secure multi-party computation
protocols in the quantum domain.

1.3 Article Organization

In section 2, some mathematical preliminaries have been provided, which are useful for
describing and analyzing the proposed quantum 1-out-of-2 oblivious transfer qOT described
in section 3. We then provide the efficiency analysis and also a comparative study with
the existing competing schemes in section 4. The security analysis is provided in section
5. Next, an application to secure information disclosure is discussed in section 6 with the
help of the designed protocol, qOT. We conclude this manuscript in section 7 and finally,
section 3.2 contains a toy example describing the proposed qOT.

2 Preliminaries

2.1 Gao Protocol [18]

Gao [18] proposes a novel method for the quantum private database query. The fundamen-
tal concept of the Gao protocol is to construct an N -bit string (Kf ), that will act as an
oblivious key for an N -bit database using quantum key distribution (QKD) in conjunction
with suitable classical post-processing. It generalizes Jakobi et al.’s protocol (J protocol)
[21] by introducing a security parameter θ ∈ (0, π2 ). To share the raw key Kf , [18] uses the
B92 QKD [3] scheme instead of SARG04 QKD [34] or BB84 [4] protocol. The protocol in
[18] is described below:
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1. Sender sends a long sequence of qubits (in terms of photons) randomly chosen from
{|0⟩ , |1⟩ , |0′⟩ , |1′⟩} to receiver where |0′⟩ = cos θ|0⟩ + sin θ|1⟩ and |1′⟩ = sin θ|0⟩ −
cos θ|1⟩

2. Receiver measures each of the quantum states in either {|0⟩ , |1⟩} or {|0′⟩ , |1′⟩} basis
chosen randomly. In the following, he declares the instances where he has effectively
identified the qubit while discarding the photons that are either lost or undetected.

3. After successful measurement by receiver, sender declares one bit 0 or 1 for each
measured qubit, where 0 codes that a given qubit is originally in the state |0⟩ or |0′⟩
while 1 codes for |1⟩ or |1′⟩.

4. Receiver analyzes the outcomes of his measurements with the declared bits by sender
in Step 3. Measurement in Step 2 will produce a conclusive outcome with probability
p = (sin2 θ)/2 and an inconclusive one with a probability 1− p. Both conclusive and
inconclusive results are retained by the receiver.

5. The generated string should have a length of kN (where k is a security parameter).
Then, this kN -bit string is divided into the substrings, each of lengthN . Adding these
k substrings bitwise diminishes receiver’s information about the key to approximately
one bit.

6. After Step 5, if the receiver has no identified bits, the protocol needs to be initiated
again.

7. Suppose receiver is aware about the j-th bit Kf
j and wants to get the i-th bit of the

database Xi (of length N bit). He declares the number s = j − i. Sender shifts the

updated Kf by s and announces C1, C2, . . . , CN where Cr = Xr
⊕

Kf
r+s ( mod N)

for r = 1, 2, . . . , n. But receiver can read only Ci = Xi
⊕

Kf
j , thus obtaining Xi.

2.1.1 Security Properties

The security property of Gao protocol [18] depends on the parameter θ. For θ = π
4 , the

security analysis of this protocol can be referred to as the analysis of the J protocol. For
θ ̸= π

4 they analyzed the security property as the following:

• Sender privacy: Receiver can’t obtain anything beyond Xi, where i is the choice
query address of receiver.

• Receiver Privacy: Sender can’t know the query address i of the receiver.
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Figure 1: 1-out-of-2 Oblivious Transfer

The database is secure against a dishonest receiver who wants to obtain more key bits from
the raw key Kf . A dishonest sender can’t have the advantage of having receiver’s query
address and providing the correct answer to the query simultaneously. For a small θ, the
protocol achieves higher database security from existing quantum attacks like memory-
based quantum attack, and the privacy of user is assured by the no-signaling principle.

2.2 Oblivious Transfer Protocol[12]

Oblivious Transfer protocol (OT) [12] is a cryptographic two party protocol where a sender
is able to confidentially transmit a message from a set of messages to a receiver. The sender
remains unaware of the choice of the receiver, and the receiver remains oblivious to the
content of the other messages. A schematic diagram of 1-out-of-2 OT is provided in Figure
1. The security properties of OT are discussed in Section 5.

3 Proposed Quantum OT Protocol (qOT)

We give a brief description about the formation of the proposed qOT, quantum 1-out-of-2
OT protocol in this section.
A high level overview: qOT is a 1-out-of-2 quantum OT protocol. It involves two
parties: a sender having two messages m0,m1 ∈ {0, 1}λ and another is a receiver with
choice bit b ∈ {0, 1}. We use the asymmetric key distribution of [18] to distribute a few
number of bits of the key to the receiver, and the full key to the sender. In particular,
sender learns the full 3n bit key, say Kf

1 , while the receiver learns only the n bit key, say

Sf
1 . According to the choice bit b, the receiver randomly chooses a permutation π on the

set {1, 2, . . . , 3n} such that on applying π to Sf
1 , the entries shift to either the first n bit

positions (if b = 0) or the second n bit positions (if b = 1). We assume the resulting n bit

as S. In the following, receiver sends π to the sender. On applying π on Kf
1 , sender obtains

K0,K1 and K2, each having n bit length. Sender computes k0 = H(K0), k1 = H(K1) for
a hash function H : {0, 1}n −→ {0, 1}λ. In the following, sender XORs the updated keys
k0 and k1 with the messages m0 and m1 respectively to obtain m′

0 and m′
1, and sends the

message pair (m′
0,m

′
1) to the receiver. Receiver computes m′

b

⊕
H(S) to obtain the desired

message mb. Communication flow of qOT is depicted in Figure 2 and we refer to section
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3.2 for a toy example. Figure 3 represents the communication flow of secure information
disclosure.

The proposed protocol consists of two phases: qOT Raw Key and qOT Computation
which are described below.

qOT Raw Key

1. Sender and receiver engage in the asymmetric key distribution of [18] for sharing
3n+ κ bit key Kf = {r1, r2, . . . , r3n+κ} such that sender receives the whole key
Kf , while the receiver gains only n + κ bits Sf of Kf . To achieve this, the

parameter θ is set as sin−1(
√

2(n+κ)
3n+κ ) (where κ < n) as described in [18].

2. From Sf , receiver selects κ bits randomly. He asks sender for revealing the
corresponding bits from Kf . Subsequently, the receiver compares its own chosen
part with the corresponding portion from the sender. If receiver’s κ bits match
with sender’s κ bits, they proceed to the next phase. In case of a mismatch, the
receiver aborts the process.

3. The κ bits, used for comparison in step 2 are deleted from Kf by sender and
obtains the modified key Kf

1 = {u1, u2, . . . , u3n} by adjusting the positions of
the remaining 3n bits within Kf . Like as, if κ = 2, and the checking bits are in
the 1st and 4th positions i.e., r1 and r4 are deleted, hence u1 = r2, u2 = r3, ui
= ri+2 for i = 3, 4, . . . , 3n.

4. Receiver obtains the updated key Sf
1 = {t1, t2, . . . , tn} = {up1 , up2 , . . . , upn}

by deleting the compared κ bits from Sf and adjusting the positions of the
remaining n bits in Sf . Here pi represents the position of ti = upi in Kf

1 . Like
as, if n = 5 and Sf = {r1, r3, r4, r6, r12, r15, r17} then t1 = r3 = u2, t2 = r6 =
u4, t3 = r12 = u10, t4 = r15 = u13, t5 = r17 = u15, i.e., p1 = 2, p2 = 4, p3 =
10, p4 = 13, p5 = 15.

qOT Computation

1. Receiver randomly selects a permutation π on the set {1, 2, . . . , 3n} such that

on applying π to Sf
1 , the entries of Sf

1 shift to either the first n positions (if b

= 0) or the second n positions (if b = 1). Sf
1 is a 3n bit string of which only

n bit values and its positions are known to the receiver. π maps the known bit
positions to the set {1, 2, . . . , n} or the set {n + 1, n + 2, . . . , 2n} according to

the choice bit b. The final output, obtained from Sf
1 , is denoted by S. In the

following, it sends π to sender.

2. Sender receives π from the receiver and updates her key as K by applying π on
Kf

1 , i.e. K = π(Kf
1 ) = K0||K1||K2, where K0,K1,K2 are respectively the first

n bits, second n bits and the last n bit positions. It computes k0 = H(K0), k1
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Figure 2: Communication diagram of quantum 1-out-of-2 oblivious transfer qOT

= H(K1) and m′
0 = m0

⊕
k0 , m′

1 = m1
⊕

k1. Finally, (m
′
0,m

′
1) is transmitted

to the receiver.

3. Receiver evaluates m′
b

⊕
H(S) to obtain mb.

3.1 Correctness

The protocol outputs the desired message of the receiver, ‘mb’ according to the receiver’s
choice bit b, whenever the sender and the receiver both follow the protocol correctly. Sender
obtains the raw key Kf

1 and receiver obtains Sf
1 after the asymmetric key distribution.

According to the choice bit b, receiver generates π in such a way that S is equal to Kb.
Here, S is the rearrangement of Sf

1 after applying π to Sf
1 . Sender applies π to Kf

1 and the
rearranged key K is divided into substrings K0,K1,K2. Kb is the substring according to
the choice bit b. Sender encrypts the message mb by XOR-ing mb with kb = H(Kb) and
obtains m′

b. At the end of this protocol, receiver obtains the encrypted message m′
b and

computes m′
b

⊕
H(S). Note that m′

b = mb
⊕

kb = mb
⊕

H(Kb). Receiver obtains S by

applying π on Sf
1 . By the construction of π, S is equal to Kb and hence, H(S) = H(Kb).
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Therefore,

m′
b

⊕
H(S) = mb

⊕
H(Kb)

⊕
H(S)

= mb

⊕
H(Kb)

⊕
H(Kb)

= mb

3.2 Toy Example

Suppose, there are two parties: Alice and Bob. Let n = 4, κ = 2 and λ = 6. Alice has
messages m0 = 101101 and m1 = 001011. The choice bit of Bob is b = 0.

• Set θ = sin−1
(√

6
7

)
in the asymmetric key distribution [18]. As a result, Alice

obtains a 3n+ κ = 14-bit string key
Kf = r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14

and Bob obtains n+ κ = 6-bit string key
Sf = r1 ? ? r4 ? ? ? r8 ? ? r11 ? r13 r14 where ri ∈ {0, 1} for i = 1, 2, . . . , 14 and
”?” symbolizes bits whose value is unknown to Bob.

• Bob selects 4th and 14th positions of Kf i.e., r4 and r14 for comparison with Al-
ice’s part. After the deletion of r4 and r14, the modified key of Alice becomes
Kf

1 = r1 r2 r3 r5 r6 r7 r8 r9 r10 r11 r12 r13 and modified part of Bob becomes Sf
1=

r1 ? ? ? ? ? r8 ? ? r11 ? r13

• Bob chooses the permutation π = (2 10) (3 12) (4 7) (5 6) (8 11) and applies it on Sf
1

to get S as follows S = r1 r11 r13 r8 . In the following, he sends π to Alice.

• Alice updates her key Kf
1 by applying π on Kf

1 as
K = r1 r11 r13 r8 r7 r6 r5 r12 r10 r2 r9 r3 and obtains K0 =

r1 r11 r13 r8 ; K1 = r7 r6 r5 r12 and K2 = r10 r2 r9 r3 . She computes k0 =
H(K0), k1 = H(K1) and m′

0 = m0
⊕

k0 and m′
1 = m1

⊕
k1. Then sends (m′

0,m
′
1)

to Bob.

• Bob computes H(S) and m′
0

⊕
H(S) = m′

0

⊕
H(K0) = m′

0

⊕
k0. It gives the desired

message m0 as an output of this protocol.

4 Efficiency and Comparison

We now discuss the efficiency of qOT. It uses quantum computation and quantum commu-
nication during the key distribution between sender and receiver only. The remaining steps
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of qOT involve only classical communication and simple operations like XOR, permutation,
and hash evaluation. The round cost, computational and communication overhead of qOT
are discussed below.

Round cost: 3 rounds (1 quantum and 2 classical) are required in the qOT Raw Key
phase, while 2 classical rounds are needed in the qOT Computation phase.

Communication cost: 3n+ κ qubits are required during asymmetric key distribution,
while during qOT Raw Key phase sender needs to transmit κ bits to the receiver.
A permutation π is needed to be exchanged between the sender and receiver. In
addition, 2λ bits are transmitted by sender during the qOT Computation phase.

Computation cost: To achieve the key Sf during qOT Raw Key phase, the receiver
requires to carry out O(3n + κ) projective measurements in 2-dimensional Hilbert
space. Sender performs one permutation, two hash evaluations, and two XOR oper-
ations, while the receiver is needed to compute one permutation, one hash evaluation,
and one XOR operation.

A detailed comparative analysis of proposed qOT with the existing OT protocol in
the quantum domain is overviewed in table 1. qOT does not require quantum entangled
states, quantum commitment scheme as described in [1, 5, 12, 16, 28]. Unlike [5, 12, 16,
28, 24], our protocol is secure without any additional assumptions like “limited storage
model”, “bounded quantum storage model”, “noisy quantum storage”, and “memoryless
assumption” etc. Another advantage of our protocol is that in contrast to [1, 5, 12, 28, 24],
one-time quantum communication and computation allow for multiple executions of the
OT protocol. Thus, qOT is efficient and practical when compared to the existing state-of-
the-art quantum OTs.

Other OT protocols like spacetime-constrained oblivious transfer (SCOT) [31] is an
OT protocol in Minkowski’s spacetime that achieves unconditional security in that space-
time region. But, SCOT allows receiver to obtain the message m1−b in the outside region
R1−b whereas, qOT do not allow receiver to gain any knowledge about m1−b. Moreover,
qOT is secure against the existing quantum attacks. Amiri et al. [2] proposed semiran-
dom quantum OT using unambiguous state elimination measurement. Semirandom OT is
a variant of 1-out-of-2 OT where receiver obtains one of sender’s bits randomly without
having no choice bit of the receiver. They discussed that combining their proposed semi-
random OT with a trivial OT (refer [2, 7]) achieves a scheme where the average cheating
probability of sender and receiver is bounded below 3

4 . However, the average cheating
probability of sender and receiver for the proposed qOT depends on the value of θ as de-
scribed in section 5. For θ = π

4 , sender’s privacy is obtained with cheating probability
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Table 1: Comparison summary of quantum OT protocols
Protocol Ours [1] [5] [12] [16] [28] [24] [31] [37]

Quantum re-
source

SP MPES SP SP MPES SP SP SP multi
particle
quantum
state

Complicated or-
acle operators

not re-
quired

required not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

Commitment
scheme

not re-
quired

required not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

not re-
quired

Dimension of
Hilbert Space

2 2 2 2 2 2 2 2 4

Simple sin-
gle particle
projective mea-
surement

yes no yes yes no yes yes yes square
root mea-
surement,
a type of
projective
measure-
ment

Multiple exe-
cutions of OT
functionality
with only one
time quantum
communication
and quantum
computation

yes no no no yes no no no -

Secure against
receiver

yes yes no probability
depend-
ing on
storage
rate γ

secure ex-
cept with
error 3ϵ

security
depend-
ing upon
noise pa-
rameter
rj

security
depends
on CN · γ

security
achieves
in
Minkowski
spacetime

cheating
prob-
ability
is lower
bounded
by 3

4

Communication
Cost

3n + κ
qubits
O(κ) and
O(λ) bits

O(n)
qubits
and
O(λ), O(k)
bits

O(n)
qubits
and
O(n), O(λ)
bits

O(n)
qubits
and
O(n), O(λ)
bits

O(n)
qubits
and O(λ)
bits

O(n)
qubits
and O(λ)
bits

O(n)
qubits
and
O(n), O(λ)
bits

O(λ)
qubits
and O(λ)
bits

1 qubit
where
sender’s
input is a
single bit

Computation
Cost

O(3n+κ) O(2n+ k) O(n) O(n) O(n+ λ) O(n+ λ) O(n+ λ) O(2λ) 6 qubits
and 1
bit where
sender’s
input is a
single bit

Round com-
plexity in OT
computation
phase

1 4 1 1 1 2 2 1 -

SP = single photons, λ = message length, κ, n, k = security parameter, MPES = multi-
particle entangled states, γ = storage rate, ϵ = security error, rj = trusted noise parameter,
N= quantum channel
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P =
sin2 π

4
2 = 1

4 . And for θ = 1.5 ≈ π
2 , receiver’s privacy is obtained with cheating prob-

ability Pcon = cos2 1.5
2 = 0.535 ≈ 1

2 (refer [18]). Moreover, the input messages m0,m1 for
semirandom OT ∈ {0, 1} while for qOT, m0,m1 ∈ {0, 1}λ. A quantum XOR OT proto-
col (XOT) presented by Storh et al. [37] achieves the least cheating probability against
unrestricted dishonest parties. The XOT protocol proposed is noninteractive and the out-
put of the protocol is one of {m0, m1, m0

⊕
m1} at random. Here sender is oblivious to

the message that receiver learned and receiver is only aware of the output message. In
qOT, receiver only gets one of {m0, m1} according to his choice b. qOT is interactive and
achieves security against dishonest parties with negligible cheating probability on adjusting
the value of θ.

As qOT is proposed using quantum asymmetric key distribution as a building block,
there exist other cryptographic schemes based on asymmetric key distribution. Yin et
al. [40] presented a quantum digital signature (QDS) that achieves high efficiency and
information theoretical security. Debnath et al. [13, 14] presented a feasible and efficient
quantum private set intersection protocol by employing the the asymmetric key distribu-
tion. Moreover, Li et al. [25] proposed a QDS using asymmetric key distribution and
universal hash function to improve the signature rate and ensure unconditional security by
directly signing the hash value of a long message. Similarly, the proposed qOT based on
quantum asymmetric key distribution is also an efficient quantum oblivious transfer proto-
col. Symmetric private information retrieval (SPIR) is a privacy preserving database query
protocol where a user can gain specific data according to his query. The security of SPIR
is that user’s query remains private and user can’t obtain any additional information from
the database. Kon et al. [23] described a SPIR protocol using quantum key distribution
(QKD) that achieves security against external eavesdropper where the security of SPIR
depends on the security of QKD as like the proposed qOT.

5 Security Analysis

An OT protocol requires satisfying the following security properties:

• Receiver’s privacy: Sender knows nothing about which message receiver wants to
get i.e., sender is not aware about the choice bit b.

• Sender’s privacy: Receiver remains oblivious about the message m1−b.

The aforementioned security properties of qOT are now discussed in detail below:

5.1 Receiver’s privacy

Theorem 1. Sender knows nothing about which message receiver wants to get i.e., sender
is not aware about the choice bit b.

12



Proof. A dishonest sender may try to find the receiver’s choice message that he wishes
to obtain at the end of the qOT protocol. Therefore, during the communication, sender
will try to gain the choice bit b of the receiver. During the execution of qOT, sender
only gets the random permutation π on the set {1, 2, . . . , 3n} from receiver. Although the
construction of π is prepared according to the choice bit b, receiver generates π randomly
on the set {1, 2, . . . , 3n}. Therefore, it is not possible to predict b by only seeing π directly.
To know the choice bit b, sender may try to find out the position of conclusive bits of
receiver during the asymmetric key distribution. The conclusive bit’s positions of receiver
together with the permutation π helps sender to observe exactly where those positions
map. If the mapping positions belong to {1, 2, . . . , n} (or {n + 1, n + 2, . . . , 2n}), sender
ensures that the choice bit is 0 (or 1). Sender can obtain the position of the receiver’s
conclusive bits with an optimal probability as follows:
Sender can send |0′′⟩ (|1′′⟩) and declares 1(0) during the asymmetric key distribution (in
step 3), where

∣∣0′′〉 = cos
θ

2
|0⟩+ sin

θ

2
|1⟩ ;

∣∣1′′〉 = sin
θ

2
|0⟩ − cos

θ

2
|1⟩

In this way, Sender knows that receiver will get the conclusive qubits with probability
pcon = cos2 θ

2 ≈ 1 for a small θ. Therefore, a smaller θ gives a higher probability of sender’s
prediction about the conclusive bits of receiver (refer Gao et al. [18]). In this attack,
sender can know the query address of receiver with a high probability but will lose the
information about the conclusive bit (refer Jacobi et al. [21]). Thus, sender can’t have
the advantage of having receiver’s query address and providing the correct answer to the
query simultaneously assured by the no-signaling principle. The security properties of the
asymmetric key distribution of [18] guarantee that sender can’t simultaneously obtain the
query address and the associated bit deterministically. Therefore, sender is oblivious about
b and receiver’s privacy is preserved.

5.2 Sender’s privacy

Theorem 2. Receiver remains oblivious about the message m1−b.

Proof. Suppose, b is the choice bit of receiver. Then, at the end of the qOT protocol,
receiver obtains mb. However, a dishonest receiver may wish to know partial information
about the other message, i.e., he wants to obtain some information of m1−b. To get
information about m1−b, receiver can do quantum memory attack to obtain more bits of
the raw key Sf

1 during asymmetric key distribution. Consequently, the rearranged key S
has more than n bits where n is the number of receiver’s conclusive bits. In that case,
S contains some of the bits of K1−b other than Kb. Hence, H(S) contains some partial
information about key k1−b = H(K1−b) andm′

1−b

⊕
H(S) gives partial information ofm1−b
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to receiver. Thus, those bits will help receiver to know information about the messagem1−b.
To perform the memory attack, the receiver can store the qubits received from sender and
perform individual measurements (unambiguous state discrimination (USD) measurement
[20, 33]) after sender’s declaration (during asymmetric key distribution in step 3).

The fidelity between two quantum states ρ1, ρ2 is denoted by F (ρ1, ρ2) which measures
the similarity between two quantum states. In USD measurement [20, 33], the probability
of successfully distinguishing the quantum state of the qubit is bounded by 1− F (ρ1, ρ2).
Therefore, the probability is PUSD = 1− ⟨0|0′⟩ = 1− cos θ which is negligible as compared

to the probability P = sin2 θ
2 for simple projective measurement, specially for a small θ

(refer Gao et al. [18]).
Receiver can do joint measurement on the k qubits where k is a security parameter

as discussed above (Gao protocol, step 5). In this process, receiver wants to determine
the final key’s bit value directly while he need not distinguish the individual bit value of
Kf . Receiver can follow the measurements (i) Helstrom’s minimal error probability mea-
surement [19, 17], and (ii) USD measurement. The trace distance between two quantum
states ρ1, ρ2 is denoted by D(ρ1, ρ2) and in Helstrom’s measurement, the probability of
getting the correct state between two equally likely quantum states ρ1, ρ2 is bounded by
Pg = 1

2 + 1
2D(ρ1, ρ2). Therefore, in Helstrom’s measurement,the probability that receiver

obtains the final key’s bit value is at most Pg = 1
2+

1
2 sin

k θ. In USD measurement, receiver
can unambiguously discriminate the two k-qubit mixed states corresponding to odd and
even parity where the success probability declines rapidly with k (refer Gao et al. [18],
Fig. 4). For a small θ, the protocol achieves a higher probability of security for this kind

of attack. In the proposed qOT, θ = sin−1(
√

2(n+κ)
3n+κ ) (where κ < n) can be made so small

by increasing the length of the raw key Kf . Therefore, the probability that the receiver
can get more than n bits of the initial key is negligible. Therefore, the rearranged key S
can’t contain more than n bits which ensure that receiver can’t get any partial information
about k1−b = H(K1−b) by evaluating H(S). Therefore, on getting (m′

0,m
′
1) receiver is

able to retrieve only one message according to the choice bit and does not get any partial
information about other messages. Therefore, the privacy of the sender is preserved.

6 Application to Information Disclosure

Secure information disclosure typically refers to the release or exposure of private or sen-
sitive information. Consider a scenario where a British agent say A is aware of some
sensitive intelligence information that can jeopardize the security of another country say
the USA. A is willing to disclose one of them to a USA’agent B. Although A agrees to let
B choose which secret he wants for some monetary value, she is not willing to allow him
to gain any information on more than one secret. qOT can be used as a building block
for designing a protocol for secure information disclosure. In particular, suppose, B has
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Figure 3: Communication flow of qOT in secure information disclosure

confirmed information that an attack will be made in say city X in month Y , but they are
not confirmed about the date, time and the master plan for this attack. B is aware that A
knows these information and wants to deal with B. A has two information “m0= the date
and time of attack ; m1= the master plan behind this attack.” A is ready to reveal one of
the information to B in demand of say 1 million dollars. We now show, how A and B can
interact with each other securely by employing qOT as a building block.

• Through the asymmetric key distribution of [18], A obtains a secret key Kf
1 and B

obtains Sf
1 .

• B chooses the permutation π and sends it to A. B computes S by applying π on Sf
1

and A computes K = π(Kf
1 ).

• A evaluates k0 = H(K0), k1 = H(K1). She then computes m′
0 = m0

⊕
k0,m

′
1 =

m1
⊕

k1 and sends (m′
0,m

′
1) to B.

• B computes m′
b

⊕
H(S) to get the desired encrypted message mb.

Due to the security properties of qOT, A can’t recognize which message is chosen.
Moreover, B is not able to know the other secret information. Thus, qOT helps both
parties to ensure honest completion of the deal with quantum security guarantees.

7 Conclusion

In this manuscript, the method used in [18] for distributing the secret key is utilized to de-
sign a secure quantum 1-out-of 2 OT, namely qOT. Our protocol is secure against quantum
computers as it is proposed on the basic fundamental concept of quantum mechanics. In
addition, qOT provides a long-term secure oblivious transfer protocol. qOT can be utilized
as a basis for building secure multiparty computation protocols in the quantum realm. It
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is efficient and simple as it doesn’t need any complicated oracle operators. qOT is practical
and can be implemented with the current quantum hardware technologies. Extending our
approach to design other variations of quantum OT(1-out-of-n QOT and k-out-of-n QOT)
is an interesting direction for further research. Additionally, once the parties have their
secret keys, obtained by quantum computation and quantum communication, they can
execute multiple OT functionality in the classical domain.
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