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Abstract. At Crypto 2021, May presented an algorithm solving the
ternary Learning-With-Error problem, where the solution is a ternary
vector s ∈ {0,±1}n with a known number of (+1) and (−1) entries. This
attack significantly improved the time complexity of S0.5 from previously
known algorithms to S0.25, where S is the size of the key space. Therefore,
May exploited that using more representations, i.e., allowing ternary
interim results with additional (+1) and (−1) entries, reduces the overall
time complexity.
Later, van Hoof et al. (PQCrypto 2021) combined May’s algorithm with
quantum walks to a new attack that performs in time S0.19. However,
this quantum attack requires an exponential amount of qubits. This work
investigates whether the ternary LWE problem can also be solved using
only O(n) qubits. Therefore, we look closely into Dicke states, which
are an equal superposition over all binary vectors with a fixed Hamming
weight. Generalizing Dicke states to ternary vectors makes these states
applicable to the ternary LWE problem.
Bärtschi and Eidenbenz (FCT 2019) proposed a quantum circuit to pre-
pare binary Dicke states deterministically in linear time O(n). Their
procedure benefits from the inductive structure of Dicke states, i.e., that
a Dicke state of a particular dimension can be built from Dicke states of
lower dimensions. Our work proves that this inductive structure is also
present in generalized Dicke states with an underlying set other than
{0, 1}n. Utilizing this structure, we introduce a new algorithm that de-
terministically prepares generalized Dicke states in linear time, for which
we also provide an implementation in Qiskit.
Finally, we apply our generalized Dicke states to the ternary LWE prob-
lem, and construct an algorithm that requires O(n) qubits and classical
memory space up to S0.22. We achieve S0.379 as best obtainable time
complexity.
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1 Introduction

Regev [42] introduced the Learning-With-Error (LWE) problem, which consists
of a matrix A ∈ Zm×n

q and a vector of the form b := As − e ∈ Zm
q , where

q = poly(n) is an integer, and asks for the unknown vectors s ∈ Zn
q and e ∈ Zm

q .
The vector e is the error vector typically sampled from a discrete Gaussian
distribution (centered around 0) and has a small max-norm. Thus, the LWE
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problem asks for a solution s of a system of noisy and linear equations (and
e = As− b can be easily computed when the solution s is found).

Moreover, Regev proposed a public-key encryption scheme using LWE with
(A, b) as the public and (s, e) as the private key. Several works [7,42,39] proved
the scheme secure under presumably hard lattice problems. In 2017, the post-
quantum secure digital signature scheme CRYSTALS-Dilithium [22] was submit-
ted to the NIST PQC competition and raised the attention of Regev’s problem
because Dilithium’s security is based on LWE. This scheme is one of the rea-
sons why studies about the hardness of LWE are so crucial, especially since NIST
selected CRYSTALS-Dilithium in 2022 to become one of the post-quantum cryp-
tographic signature standards [33].

Like May [35], we restrict ourselves to quadratic matrices A ∈ Zn×n
q and

ternary secret keys s, e ∈ T n := {0,±1}n, because these parameters are typi-
cally used in cryptosystems due to several significant advantages, including more
compact keys. Also, the key generation becomes simpler and more efficient us-
ing discrete Gaussian sampling only for ternary vectors since in general Gaussian
sampling is complicated and error-prone. Moreover, ternary keys allow defining
encryption systems that always decrypt correctly—e.g, NTRU [13] and NTRU
Prime [4,5]. These are two of the round-3 finalists in the NIST PQC compe-
tition, which—although they did not become the new standard—are still used
in practice (e.g., NTRU Prime in OpenSSH [37]). Beside that, there are several
signature schemes based on LWE which use ternary keys, e.g., GLP [25], BLISS
[20,21], and GLYPH [17].

The Meet-in-the-Middle (MitM) attack on ternary LWE, which we consider
in this work, goes back to Odlyzko’s (fully classical) MitM attack [27], in which
the adversary tries to extract the secret key of an NTRU system. Cheon et al.
[14] have shown that it can easily adapted to the LWE problem. This MitM
attack noticeably improves the asymptotic time complexity from S0.5 (Odlyzko)
to S0.24 (Kirshanova and May [35,31]), where S is the size of the key space.

Furthermore, van Hoof et al. [45] showed how to use a quantum computer
to successfully reduce the time complexity of the MitM attack to S0.19. This
quantum algorithm tackles the LWE problem with quantum walks [2] in the
QRAQM model, i.e., quantum memory with quantum random access. However,
since these quantum walks require an exponential amount of qubits, we are mo-
tivated to consider the problem in other memory models with a limited number
of qubits. Van Hoof et al. [45] also presented an algorithm requiring polynomial-
sized classical memory and O(n) qubits that have a time complexity in the range
of [S0.510,S0.558].

Our work pursue another approach [26] and propose a new algorithm that
works with exponential-sized classical space and O(n) qubits. This memory-
setting has not been considered for the ternary LWE problem so far. Therefore,
we combine May’s classical algorithm [35] with the algorithm of Chailloux et al.
[11] (CNS algorithm) which applies Amplitude Amplification [8] as a generaliza-
tion of Grover’s search [24] in a clever way. This algorithm needs adjustments
for our new attack, which requires the preparation of “generalized” Dicke states.
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1.1 Generalizing and Preparing Dicke States

As a family of highly entangled states, the so-called Dicke states [19] are well
known in quantum physics, but these states also receive attention in other areas,
e.g., quantum game theory [38], quantum adiabatic evolution [16], and quantum
cryptography [15,40]. Dicke States are defined as an equal superposition over
binary vectors x ∈ {0, 1}n with a fixed but arbitrary Hamming weight, i.e., the
number of non-zero entries wt(x) :=

∑
xi ̸=0 1.

Different solutions exist for preparing binary Dicke states, including proba-
bilistic algorithms. Kaye et al. [30] proposed an algorithm with success proba-
bility at least 1 − ε, and Childs et al. [16] described an algorithm with success
probability Ω(1/

√
n). Both algorithms require a circuit of depth and size su-

perlinear in n. Improving over this, Bärtschi and Eidenbenz [3,10] showed how
binary Dicke states can be prepared deterministically in linear time (see Fig. 1).
Later on, their algorithm was experimentally evaluated and optimized in terms
of CNOT gate counts [36,1].

Nepomechie and Raveh [41] considered non-binary (or d-ary, d ≥ 2) Dicke
states in the qudit-setting, d ≥ 1, i.e., in comparison to bits we consider dits
which can take any value between 0 and d− 1. Unfortunately, qudits (or qutrits,
which we need for ternary vectors) are much harder to control in a quantum
device and to scale for increasing d. On the one hand, there are researchers
[32,43,34] working on making qudits practical, including Ringbauer et al. [43]
who recently proposed a quantum processor with trapped ions that supports
qudits with d = 8 levels. On the other hand, current efforts are mostly concen-
trated on qubit-based systems (e.g., Google, IBM, Atom Computing). Therefore,
it is advantageous to have a solution that uses qubits. Nevertheless, in the cur-
rent literature, no algorithms prepare these generalized Dicke states based on
qubits.

Bärtschi and Eidenbenz [3] [this work]
Circuit Depth O(n) O(n)
Circuit Size O(nk) O(nk)
Applicability binary Dicke states d-ary Dicke states, d ≥ 2

Fig. 1: Comparison of the Bärtschi and Eidenbenz (BE) circuit with our new algorithm,
where n is the vector length and k is the Hamming weight.

Our first contribution. This paper shows—as its first contribution—how to
generalize Dicke states to non-binary vectors in the qubit setting and how to
prepare these states on a quantum computer in linear time. Additionally, we
provide an implementation in Qiskit, which generates a quantum circuit to pre-
pare generalized Dicke states 1. An example of a circuit generating 4-ary Dicke
states with n = k = 4 in Quirk [23] can be found here.

1 Accessible via https://github.com/bj-benedikt/Generalized-Dicke-States.

https://algassert.com/quirk#circuit={%22cols%22:[[1,1,%22X%22,1,%22X%22,1,%22X%22,%22X%22],[1,1,1,1,1,1,1,1,%22~jrlp%22],[1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~7h3f%22],[1,1,1,1,1,%22Swap%22,1,%22Swap%22,%22%E2%97%A6%22],[1,1,1,1,%22Swap%22,1,%22Swap%22,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~ok6s%22],[1,1,1,%22Swap%22,1,1,1,%22Swap%22,1,%22%E2%97%A6%22],[1,1,%22Swap%22,1,1,1,%22Swap%22,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,%22Measure%22],[1,%22Swap%22,1,1,1,1,1,%22Swap%22,1,1,%22%E2%97%A6%22],[%22Swap%22,1,1,1,1,1,%22Swap%22,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,1,1,%22~7h3f%22],[1,1,1,1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~ok6s%22],[1,1,1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,%22%E2%97%A6%22],[1,1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,%22Swap%22,1,1,1,%22Swap%22,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Swap%22,1,1,1,%22Swap%22,1,1,1,1,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,1,1,1,1,%22~ok6s%22],[1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Chance8%22,1,1,1,1,1,1,1,1,1,1,1,1,%22Measure%22]],%22gates%22:[{%22id%22:%22~ok6s%22,%22name%22:%22%E2%88%9A1/2%22,%22matrix%22:%22{{%E2%88%9A%C2%BD,-%E2%88%9A%C2%BD},{%E2%88%9A%C2%BD,%E2%88%9A%C2%BD}}%22},{%22id%22:%22~7h3f%22,%22name%22:%22%E2%88%9A2/3%22,%22matrix%22:%22{{%E2%88%9A%E2%85%94,-%E2%88%9A%E2%85%93},{%E2%88%9A%E2%85%93,%E2%88%9A%E2%85%94}}%22},{%22id%22:%22~jrlp%22,%22name%22:%22%E2%88%9A3/4%22,%22matrix%22:%22{{%E2%88%9A%C2%BE,-%C2%BD},{%C2%BD,%E2%88%9A%C2%BE}}%22}]}
https://github.com/bj-benedikt/Generalized-Dicke-States
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1.2 Applying Generalized Dicke States

Having generalized Dicke states and a circuit to prepare them introduced, the
second part of the paper focuses on two selected applications—the Subset-Sum
problem (SSP) and the ternary LWE problem. However, these states are valuable
for solving many different combinatorial problems, and could become an essential
tool in cryptography. E.g., Perriello et al. [40] and Chevignard et al. [15] showed
that binary Dicke states are useful in code-based cryptography.

Our second contribution. We prove that ternary Dicke states are helpful in
solving the SSP. In particular, we find a missing piece in quantum algorithms of
[26,6] and complete them without changing their time and memory complexities.

The SSP is defined as follows: Find a solution s ∈ {0, 1}n with Hamming
weight wt(s) = n

2 for a given vector a ∈ Zn
2n and a target t ∈ Z2n such that

⟨a, s⟩ = t mod 2n. Note that a and t are well-defined in that at least one solution
exists. A common way to solve the SSP is via a MitM attack, i.e., define the
solution as s := s1 + s2, rewrite the equation as

⟨a, s1⟩ = t− ⟨a, s2⟩ mod 2n (1)

and search for (s1, s2) such that both sides of the equation meet-in-the-middle.
One can use the CNS algorithm [11] to find such a pair quantumly. The

tricky part of solving SSP using Amplitude Amplification [8] is to come up with
a good definition of the domain for both sides of equation 1. One way to do
so, is to define the domains of s1 and s2 as binary vectors of length n with
Hamming weight n

4 and then search for a solution s ∈ {0, 1}n with wt(s) = n
2 .

The algorithm then takes the equal superposition of the domain, which is a
binary Dicke state, as the initial state.

The algorithms presented in [26,6] solve the SSP by using richer forms of
representation, reducing the time complexity in the process. Howgrave-Graham
and Joux first introduced this so-called representation technique [28]. Using this
technique, we search for ternary interim result vectors via Amplitude Amplifi-
cation. However, the algorithm requires a ternary Dicke state as its initial state.
Unfortunately, they [26,6] leave how to set up this initial state as an open ques-
tion. Furthermore, they assume that this initial state can be set up with O(n)
qubits and in time, which is negligible for the overall analysis. Our algorithm to
prepare generalized Dicke states finally proves their assumption and completes
the algorithm in [26,6].

Our third contribution. We present an algorithm that solves ternary LWE
with O(n) qubits using ternary Dicke states. Our algorithm combines May’s al-
gorithm [35] with quantum techniques for the SSP [26,6], and uses our quantum
circuit for the preparation of a ternary Dicke state.
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The resulting algorithm is faster than van Hoof et al.’s memory-efficient
version [45] (range [S0.510,S0.558]) and has S0.379 as the best obtainable time
complexity. Accordingly, it is less efficient than van Hoof et al.’s [45] quantum
(S0.19) and May’s [35] classical (S0.24) MitM attack (see Fig. 2). Nevertheless,
our new algorithm is the fastest possible attack in a setting, where only O(n)
qubits and classical memory up to S0.22 are available. This is because our al-
gorithm is the only algorithm suitable for this memory requirement, closing a
significant gap in currently available algorithms.

Furthermore, our algorithm allows the adversary to configure the trade-off
of classical memory and computational time. This kind of flexibility can not be
found for classical algorithms and can only be achieved with O(n) qubits by our
new algorithm. Note that we do not provide an implementation of our algorithm
since there is none of May’s classical attack.

Fig. 2: Time-memory trade-off of our algorithm compared to May’s purely classical
MitM attack [35] and van Hoof et al.’s memory-efficient variant [45] which uses O(n)
qubits. Obviously, our algorithm is the best option for classical memory requirements
in the range of [S0,S0.22].

2 Generalizing Dicke States

We start with the generalization of Dicke states to non-binary vectors in the
qubit-setting—commonly these states are defined as follows:

Definition 1 (Dicke States). A Dicke state |Dn
ℓ ⟩, ℓ ≤ n, is the equal superpo-

sition of all n-qubit states |x⟩ with Hamming weight wt(x) = ℓ, i.e.,

|Dn
ℓ ⟩ =

(
n

ℓ

)−1/2 ∑
x∈{0,1}n,
wt(x)=ℓ

|x⟩ .

If we want to lift this definition to the non-binary setting, we need to take
care of two things. First, the number of qubits of a vector component must
be increased. For considering ternary Dicke states (x ∈ {0, 1, 2}n) we require
q = ⌈log2 3⌉ = 2 qubits per component and n · q qubits to represent an n-
dimensional ternary vector. In general, for d-ary Dicke states we need ⌈log2 d⌉
qubits per component and n · ⌈log2 d⌉ qubits for n-dimensional d-ary vectors.
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Second, we need to calculate the new amplitude. For binary Dicke states, the
amplitude is

(
n
ℓ

)−1/2, where
(
n
ℓ

)
is the number of n-dimensional binary vectors

with Hamming weight ℓ. In the non-binary setting, the number of all possibilities
can be computed with multinomial coefficients (instead of binomial coefficients):

Definition 2 (Multinomial Coefficients). For positive integers n, n1, . . . , nk ∈ N,
k ∈ N, such that n = n1 + . . .+ nk, the multinomial coefficient is(

n
n1, . . . , nk

)
:=

(
n
n1

)
·
(
n− n1

n2

)
· . . . ·

(
n−

∑
i<k ni

nk

)
and corresponds to the number of combinations of assigning n distinct objects to
k distinct buckets such that bucket i contains ni objects. As a shorthand notation,

we write
(

n
n1, . . . , nk−1, ·

)
, where · represents the missing argument n−

∑
i ni.

Having multinomial coefficients introduced, we define generalized non-binary
Dicke states based on qubits (note for q = 1, our new definition coincides with
Def. 1):

Definition 3 (Generalized (Qubit-)Dicke States). A generalized Dicke state
|Dq·n

ℓ1, . . . , ℓ2q−1
⟩,
∑

i≥1 ℓi ≤ n, is the equal superposition of all n · q-qubit states |x⟩ =
|x1⟩ . . . |xn⟩, where each of the registers |xj⟩ consists of q qubits and ℓi of them
are equal to |i⟩ := |iq⟩, i ∈ {0, . . . , 2q − 1} with (·)q as the binary representation
in q bits, i.e.,

|Dq·n
ℓ1, . . . , ℓ2q−1

⟩ =
(

n

ℓ1, . . . , ℓ2q−1, ·

)−1/2 ∑
x∈{0,...,2q−1}n,

ℓi entries equal to i

|x⟩ .

For simplicity, we denote wt :=
∑

i≥1 ℓi as the number of non-zero entries.

Bärtschi and Eidenbenz’ [3] algorithm prepares binary Dicke states, by ex-
ploiting the fact that these states have an inductive structure. However, it turns
out that the generalized Dicke states preserve the inductive structure for q > 1,
as it is proven in the following lemma. For q = 1, this lemma corresponds to
Lemma 1 in [3].

Lemma 4. Generalized Dicke states have the inductive sum form

|Dq·n
ℓ1, . . . , ℓ2q−1

⟩ =
√

ℓ0
n
|Dq·(n−1)

ℓ1, . . . , ℓ2q−1
⟩ ⊗ |0⟩+

√
ℓj1
n
|Dq·(n−1)

. . . , ℓj1 − 1, . . . ⟩ ⊗ |j1⟩

+ . . .+

√
ℓjm
n
|Dq·(n−1)

. . . , ℓjm − 1, . . . ⟩ ⊗ |jm⟩ ,

where wt ≤ n, ℓ0 := n−wt, {j1, . . . , jm} ⊂ {1, . . . , 2q − 1}, m ∈ N0, denotes the
indices with ℓji ̸= 0, i ∈ {1, . . . ,m}, in ascending order. Note that the equation
above only applies for ℓ0,m > 0. Otherwise, the first resp. the last part vanishes.
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Proof. First assume ℓ0,m > 0. We then use Definition 3 of generalized Dicke
states to rewrite (with j0 := 0):

|Dq·n
ℓ1, . . . , ℓ2q−1

⟩ =
(

n
ℓ1,...,ℓ2q−1,·

)−1/2 ∑
x∈{0,...,2q−1}n,

ℓk entries equal to k

|x⟩

=
(

n
ℓ1,...,ℓ2q−1,·

)−1/2 m∑
i=0

∑
x∈{0,...,2q−1}n−1,

ℓk entries equal to k for k ̸=ji,
(ℓji−1) entries equal to ji

|x⟩ ⊗ |ji⟩

=

√
( n−1
ℓ1,...,ℓ2q−1,·)

( n
ℓ1,...,ℓ2q−1,·)

|Dq·(n−1)
ℓ1, . . . , ℓ2q−1

⟩ ⊗ |0⟩+
m∑
i=1

√
( n−1
...,ℓji

−1,...,·)

( n
ℓ1,...,ℓ2q−1,·)

|Dq·(n−1)
. . . , ℓji − 1, . . . ⟩ ⊗ |ji⟩ .

If ℓ0 = 0, the first term vanishes; if m = 0, the sum has no summands. The claim
follows in both cases since(

n−1
ℓ1,...,ℓ2q−1,ℓ0−1

)(
n

ℓ1,...,ℓ2q−1,ℓ0

) =

(
n−1
ℓ1

)(
n−1−ℓ1

ℓ2

)
. . .
(
n−1−ℓ1−···−ℓ2q−2

ℓ2q−1

)(
ℓ0−1
ℓ0−1

)(
n
ℓ1

)(
n−ℓ1
ℓ2

)
. . .
(
n−ℓ1−···−ℓ2q−2

ℓ2q−1

)(
ℓ0
ℓ0

)
=

(n− 1)!

ℓ1! · . . . · ℓ2q−1! · (n− 1− wt)!
· ℓ1! · . . . · ℓ2

q−1! · (n− wt)!
n!

=
n− wt

n
=

ℓ0
n

and(
n−1

...,ℓj−1,...,ℓ0

)(
n

ℓ1,...,ℓ2q−1,ℓ0

) =

(
n−1
ℓ1

)
. . .
(
n−1−ℓ1−...−ℓj−1

ℓj−1

)(
n−1−ℓ1−...−(ℓj−1)

ℓj+1

)
. . .
(
n−ℓ1−...−ℓ2q−2

ℓ2q−1

)(
n
ℓ1

)
. . .
(
n−1−ℓ1−...−ℓj−1

ℓj

)(
n−ℓ1−...−ℓj

ℓj+1

)
. . .
(
n−ℓ1−···−ℓ2q−2

ℓ2q−1

)
=

(n− 1)!(n− 1− ℓ1 − . . .− (ℓj − 1))!

ℓ1! · ℓ2! · . . . · (ℓj − 1)!
· ℓ1! · ℓ2! · . . . · ℓj !
n!(n− ℓ1 − . . .− ℓj)!

=
ℓj
n
.

3 Preparing Generalized Dicke States

Aiming for a new quantum circuit which prepares generalized Dicke states for
q ≥ 1, we start with defining the desired unitaries, which prepare these gen-
eralized Dicke states for a sorted initial state. Hereby, we follow the notation
of Bärtschi and Eidenbenz [3] but with a slight modification that we use |∗⟩
as a placeholder for ancilla qubits. These ancilla qubits |∗⟩ may change after
evaluations of unitaries, even if the symbol |∗⟩ does not.

Definition 5. We denote any unitary satisfying the following equation for all
ℓ1, . . . , ℓ2q−1 with wt :=

∑
i≥1 ℓi ≤ k by Uq · n, k, k ≤ n:

Uq · n, k |0⟩⊗ℓ0 |1⟩⊗ℓ1 . . . |2q − 1⟩⊗ℓ2q−1 |∗⟩ = |Dq·n
ℓ1, . . . , ℓ2q−1

⟩ |∗⟩ ,

where ℓ0 := n− wt is defined as the number of zero entries.
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Given the inductive structure of generalized Dicke states (see Lemma 4), it
follows that iterating the two steps—splitting the superposition into m+1 parts,
and shifting a register |ji⟩ for each i ∈ {0, . . . ,m} to the rightmost position—
prepares these states.

In the notation of [3] we call a unitary implementing this transformation a
Split & Cyclic Shift (SCS) unitary and define it as follows:

Definition 6. We denote any unitary satisfying the following equation for all
ℓ1, . . . , ℓ2q−1 with wt ≤ k, ℓ0 := n − wt and {j1, . . . , jm} ⊂ {1, . . . , 2q − 1},
m ∈ N0, the indices with ℓji ̸= 0, i ∈ {1, . . . ,m}, in ascending order by SCSq · n, k,
k ≤ n:

SCSq · n, k : |0⟩⊗ℓ0 |j1⟩⊗ℓj1 |j2⟩⊗ℓj2 . . . |jm⟩⊗ℓjm |∗⟩

7→
√

ℓj1
n
|0⟩⊗ℓ0 |j1⟩⊗ℓj1−1 |j2⟩⊗ℓj2 . . . |jm⟩⊗ℓjm |j1⟩ |∗⟩

+ · · ·+
√

ℓjm
n
|0⟩⊗ℓ0 |j1⟩⊗ℓj1 |j2⟩⊗ℓj2 . . . |jm⟩⊗ℓjm |∗⟩

+

√
ℓ0
n
|0⟩⊗ℓ0−1 |j1⟩⊗ℓj1 |j2⟩⊗ℓj2 . . . |jm⟩⊗ℓjm |0⟩ |∗⟩ .

Note that the last term only occurs if ℓ0 > 0.

The unitary SCSq · n, k can be designed to only act on the last q ·(k+1) qubits,
because this part—due to the sortedness of the input registers—contains each
of the registers |0⟩ and |ji⟩, i ∈ {1, . . . ,m}, at least once.

3.1 Construction of Uq · n, k

Following the approach of Bärtschi and Eidenbenz [3], we use the SCS unitaries
to construct Uq · n, k inductively:

Lemma 7. The following construction of Uq · n, k, k ≤ n, satisfies Definition 5:

Uq · n, k :=

k∏
ℓ=2

(SCSq · ℓ, (ℓ− 1)⊗Id⊗q·(n−ℓ)) ·
n∏

ℓ=k+1

(Id⊗q·(ℓ−k−1)⊗SCSq · ℓ, k⊗Id⊗q·(n−ℓ)).

Proof. We show by induction over n that for all ℓ1, . . . , ℓ2q−1 with wt ≤ k we
have

Uq · n, k |0⟩⊗ℓ0 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm = |Dq·n
ℓ1, . . . , ℓ2q−1

⟩ ,
where ℓ0 := n − wt and {j1, . . . , jm} ⊂ {1, . . . , 2q − 1}, m ∈ N0, are the indices
with ℓji ̸= 0, i ∈ {1, . . . ,m}, in ascending order.

Initial Case: The claim is obvious for n = 1 (and k = 1). For n = 2 the
unitary is Uq · 2, 2 = SCSq · 2, 1 for k = 2 and Uq · 2, 1 = SCSq · 2, 1 for k = 1. For
i, j ∈ {0, . . . , 2q − 1} with i ≤ j we get

SCSq · 2, 1 |i⟩ |j⟩ 7→

{
1√
2
(|i⟩ |j⟩+ |j⟩ |i⟩), if i ̸= j,√
2
2 |i⟩ |j⟩ , otherwise.
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Hypothesis: Uq · (n− 1), k fulfills Def. 5 for arbitrary, but fixed, n, k ∈ N, k ≤ n.

Step: First Case: Uq · (n− 1), k → Uq · n, k if k < n.
Assuming Uq · (n− 1), k fulfills the hypothesis, we show in two steps that

Uq · n, k |0⟩⊗ℓ0 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm = |Dq·n
ℓ1, . . . , ℓ2q−1

⟩

for all ℓ1, . . . , ℓ2q−1 with wt ≤ k < n. First, by Def. 6 we have

(Id⊗q·(n−k−1) ⊗ SCSq · n, k) |0⟩⊗ℓ0 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm

= |0⟩⊗n−k−1 ⊗

(√
ℓj1
n
|0⟩⊗ℓ0−(n−k−1) |j1⟩⊗ℓj1−1

. . . |jm⟩⊗ℓjm |j1⟩

+ . . .+

√
ℓjm
n
|0⟩⊗ℓ0−(n−k−1) |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm

+

√
ℓ0
n
|0⟩⊗ℓ0−(n−k−1)−1 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm |0⟩

)
=: |tmp⟩ .

By induction hypothesis and Lemma 4:

(Uq · (n− 1), k ⊗ Id⊗q) |tmp⟩ =
√

ℓj1
n
|Dq·(n−1)

. . . , ℓj1 − 1, . . . ⟩ |j1⟩+ . . .

+

√
ℓjm
n
|Dq·(n−1)

. . . , ℓjm − 1, . . . ⟩ |jm⟩+
√

ℓ0
n
|Dq·(n−1)

ℓ1, . . . , ℓ2q−1
⟩ |0⟩ = |Dq·n

ℓ1, . . . , ℓ2q−1
⟩ .

Second Case: Uq · (k − 1), (k − 1) → Uq · k, k.
Assuming Uq · (k − 1), (k − 1) fulfills the hypothesis, we show that

Uq · k, k |0⟩⊗ℓ0 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm = |Dq·k
ℓ1, . . . , ℓ2q−1

⟩

for all ℓ1, . . . , ℓ2q−1 with wt ≤ k. This follows by hypothesis and Lemma 4:

(Uq · (k − 1), (k − 1) ⊗ Id⊗q) · SCSq · k, (k − 1) |0⟩⊗ℓ0 |j1⟩⊗ℓj1 . . . |jm⟩⊗ℓjm

= (Uq · (k − 1), (k − 1) ⊗ Id⊗q)

(
m∑
i=1

√
ℓji
n |0⟩

⊗ℓ0 . . . |ji⟩⊗ℓji−1
. . . |jm⟩⊗ℓjm |ji⟩

+
√

ℓ0
n |0⟩

⊗ℓ0−1 |j1⟩⊗ℓj1 |j2⟩⊗ℓj2 . . . |jm⟩⊗ℓjm |0⟩
)
= |Dq·k

ℓ1, . . . , ℓ2q−1
⟩ .

Hence, we get the following inductive formulas

Uq · n, k =


Id⊗q, if n = k = 1,

(Uq · (k − 1), (k − 1) ⊗ Id⊗q) · SCSq · k, (k − 1), if n = k > 1,

(Uq · (n− 1), k ⊗ Id⊗q) · (Id⊗q·(n−k−1) ⊗ SCSq · n, k), if n > k.
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3.2 Construction of SCSq · n, k

According to Lemma 7, the preparation of generalized Dicke states only requires
a construction of the SCS unitaries. Unfortunately, we can not generalize the
construction by Bärtschi and Eidenbenz [3], BE-construction, of SCS1 · n, k, k < n,
can not be generalized easily. This has two main reasons. To explain them, we
revisit the BE-construction which makes use of the following gate:

Definition 8 (Rotation Gate). By
√
i/n , i ∈ N, we denote the Y -rotation

Ry (2θ) =

(
cos θ − sin θ
sin θ cos θ

)
around angle θ := cos−1

√
i
n . This unitary maps |0⟩ 7→

√
i
n |0⟩+

√
n−i
n |1⟩.

The BE-construction proceeds as follows (see Fig. 3): nothing happens if the
last qubit (at position n) is |0⟩ because then all other qubits are |0⟩ as well
since the vector is sorted and the controlled condition of the XORs and rotation√

1/n is false.

q=1

q=1

n− 1
√

1/n

n . . .

q=1

q=1

q=1

n− ℓ
√

ℓ/n

n− ℓ+ 1

n

Fig. 3: Building blocks of the BE-construction for preparing binary Dicke states.

Otherwise, the algorithm searches the qubits above until it finds the first
qubit equal to |0⟩. Assume this happens after ℓ qubits. Then, the controlled

condition of the XORs is false, whereas the condition of the rotation
√
ℓ/n is

fulfilled. This rotation
√

ℓ/n together with the following controlled-XOR swap
the last qubit (which is equal to |1⟩) with the first qubit equal to |0⟩ (at position
n− ℓ) with the correct amplitude (

√
ℓ/n). Since the vector was sorted initially,

the qubits at position 1 to n− ℓ− 1 are equal to |0⟩, and the vector stays sorted
at position 1 to n− 1 after the swap.

Two problems occur if we use the BE construction for q > 1.
First Problem: We change nothing if the last register is |0⟩. So assume the

last register is |i⟩ ≠ |0⟩. Similar to the procedure above, we would search the
registers until we find a register ̸= |i⟩. Assume this happens after ℓ registers. In
case the next register is equal to |0⟩, it is as easy as in case q = 1 because we
know that the remaining n− ℓ registers are equal to |0⟩ and we know the correct
amplitude. Then:

SCSq · n, ℓ :|0⟩⊗n−ℓ |i⟩⊗ℓ 7→
√

n−ℓ
n |0⟩

⊗n−ℓ−1 |i⟩⊗ℓ |0⟩+
√

ℓ
n |0⟩

⊗n−ℓ |i⟩⊗ℓ
.
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In case the first register ̸= |i⟩ is equal to |j⟩ ≠ |0⟩ finding the correct amplitude
is more complicated since this value depends on ℓj , the number of occurrences
of |j⟩ in the complete vector, i.e.,

SCSq · n, ℓ+ ℓj + . . . :|. . .⟩ |j⟩⊗ℓj |i⟩⊗ℓ 7→
√

ℓj
n |. . .⟩ |j⟩

⊗ℓj−1 |i⟩⊗ℓ |j⟩+ . . .

This means we need to search more registers to learn ℓj and save the first reg-
ister’s position equal to |j⟩ (at position n − ℓ) for the swap. The new vector is
no longer sorted if we do not save the position and swap with another register
equal to |j⟩. Furthermore, if the next register ̸= |j⟩ is non-zero, we face the same
problem again.

Second Problem: Our target state is a superposition of vectors, where each
occurring value is once at the last position of the vector, and everything else is
unchanged. Therefore, we must ensure that no value is missed and that the upper
n−1 qubits remain sorted. This requires tracking the parts we swapped and the
corresponding amplitudes. This new challenge comes with the fact that there
may be more than one swap for each SCS unitary.

To summarize, it is more challenging to construct SCS unitaries for q > 1
since we need to learn all the number of occurrences ℓ1, . . . , ℓ2q−1 and remember
all swaps. We solve these issues by swapping all k + 1 entries and using ancilla
qubits to manage the swaps. For illustration purpose, we consider the following
example.

Example 9. Consider the initial state |x⟩ := |01123⟩ for preparing the general-
ized Dicke state |D2·5

ℓ1 = 2, ℓ2 = 1, ℓ3 = 1⟩. By the execution of SCS2 · 5, 4 |x⟩ we target—after
measurement of possibly used ancilla qubits—the state:√

1
5 |1123⟩ |0⟩+

√
2
5 |0123⟩ |1⟩+

√
1
5 |0113⟩ |2⟩+

√
1
5 |0112⟩ |3⟩ .

We prepare this target state by swapping the last qubit with the second-last qubit,
then the last with the third-last, and so on, until we swap with a qubit equal to
|0⟩. All these swaps happen with an amplitude, which we will specify in the next
step.

Note that we only swap in the part where we swapped previously. Otherwise,
there is no guarantee that the state remains sorted, e.g., when we swap the last
and the third-last qubit of |x⟩:

|01123⟩ swap−→
√
1− p |0112⟩ |3⟩+√p |0132⟩︸ ︷︷ ︸

unsorted

|1⟩ .

This procedure transforms the initial state |x⟩ as follows (we denote the proba-
bility of swap i by pi):

|01123⟩ |∗⟩swap−→
√
1− p1 |0112⟩ |3⟩︸ ︷︷ ︸

no swap

|∗⟩+√p1 |0113⟩ |2⟩︸ ︷︷ ︸
swap

|∗⟩

swap−→
√
1− p1 |0112⟩ |3⟩ |∗⟩+

√
p1

√1− p2 |0113⟩ |2⟩︸ ︷︷ ︸
no swap

|∗⟩+√p2 |0123⟩ |1⟩︸ ︷︷ ︸
swap

|∗⟩


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swap−→
√
1− p1 |0112⟩ |3⟩ |∗⟩+

√
p1(1− p2) |0113⟩ |2⟩ |∗⟩

+
√
p1p2

√1− p3 |0123⟩ |1⟩︸ ︷︷ ︸
no swap

|∗⟩+√p3 |0123⟩ |1⟩︸ ︷︷ ︸
swap

|∗⟩


swap−→

√
1− p1 |0112⟩ |3⟩ |∗⟩+

√
p1(1− p2) |0113⟩ |2⟩ |∗⟩+

√
p1p2(1− p3) |0123⟩ |1⟩ |∗⟩

+
√
p1p2p3

(√
(1− p4) |00123⟩ |1⟩ |∗⟩+

√
p4 |01123⟩ |0⟩ |∗⟩

)
.

The ancilla register |∗⟩ is needed for managing the swaps, especially regarding
their probabilities. For each probability, one ancilla qubit is needed, so k qubits
in total for SCSq · n, k.

Note that the ancilla register is changed after a swap, even if we write the
ancilla register as |∗⟩ again. Therefore we can not summarize any of the terms
since their ancilla register are in different states. Moreover, these ancilla registers
are entangled with the other registers, so reusing them among the SCS unitaries
is impossible. Therefore we measure these ancilla qubits as soon as we do not
need them anymore in order to free resources, which brings us to the state:

√
p1p2p3p4 |01123⟩ |0⟩+

√
p1(1− p2) |0113⟩ |2⟩+

√
1− p1 |0112⟩ |3⟩

+

√
(
√

p1p2(1− p3))2 + (
√

p1p2p3(1− p4))2︸ ︷︷ ︸
=
√

p1p2(1−p3p4)

|0123⟩ |1⟩.

A comparison with the target state implies p1 = 4/5, p2 = 3/4 and p3p4 = 1/3.
The same calculation for the initial state |01233⟩ gives us p3 = 2/3 and p4 = 1/2.
In general, we can compute the probabilities with the formula pi = (n−1−i)/(n−
i), i ∈ {1, . . . , n− 1}.

Generalizing the Example 9 gives us the algorithm PrepareAncAndSwap (see
Fig. 4) which constructs the SCS unitaries.

Theorem 10. PrepareAncAndSwap prepares any generalized Dicke state |Dq·n
ℓ1, . . . , ℓ2q−1

⟩.

Proof sketch. Due to Lemma 7 it is sufficient to prove that any SCSq · n, k can
be constructed by PrepareAncAndSwap. Such a circuit is shown in Fig. 5. The
correctness of the implementation can be shown by a calculation similar to Ex-
ample 9 for two reasons.

– The swaps have the correct amplitude since each anc[i], i ∈ {1, . . . , k}, is
equal to |0⟩ with probability p1 · p2 · . . . · pi.

– We only swapped in the part of the state that was swapped previously. If
anc[i] = 1 we neither swap in step i - according to line 4 and 7 - nor in
step i+ 1 since - due to the construction in line 6 and 7 - it is ensured that
anc[i : i+ 1] = 11.

Remark 11. Since we swap every component, we can weaken Definition 5 of
the unitary Uq · n, k—we prepare a generalized Dicke state |Dq·n

ℓ1, . . . , ℓ2q−1
⟩ if the initial

state is not sorted but has some structure:
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PrepareAncAndSwap(n, k, q, qr, anc):

1 : Require: anc contains k qubits initialized as |0⟩
2 : Require: qr contains k + 1 registers with q qubits each

3 : Apply
√

(n− 1)/n on anc[1]

4 : Swap qr[k + 1] and qr[k] controlled by (anc[1] == 0)

5 : for i ∈ {2, . . . , k} :

6 : Apply NOT-gate on anc[i] controlled by (anc[i− 1] == 1)

7 : Apply
√

(n− 1− i)/(n− i) on anc[i] controlled by (anc[i− 1] == 0)

8 : Swap qr[k + 1] and qr[k + 1− i] controlled by (anc[i] == 0)

9 : Measure anc[i− 1] and, if (i == k), measure anc[k]

Fig. 4: Algorithm to prepare the generalized Dicke States. See also our Qiskit imple-
mentation which can be found in the supplementary material.

Let be c ∈ {0, . . . , 2q − 1} and ℓc the occurrence of value c. The unitary
Uq · n, n− ℓc prepares |Dq·n

ℓ1, . . . , ℓ2q−1
⟩ if the non-c entries are at the end of the initial

state and separated from the c entries which are at the beginning, i.e., qr[i] = |c⟩
for all i ∈ {1, . . . , ℓc} and qr[i] ̸= |c⟩ for all i ∈ {ℓc + 1, . . . , n}.

Theorem 12. Generalized Dicke states |Dq·n
ℓ1, . . . , ℓ2q−1

⟩ can be prepared with a circuit
of size O(min{k, n− ℓ1, . . . , n− ℓ2q−1} · n) and depth O(n) using at most (k+1)
ancilla qubits at the same time.

Proof. Circuit size: We start the proof by showing that the circuit for preparing
the generalized Dicke state |Dq·n

ℓ1, . . . , ℓ2q−1
⟩ has size O(k · n) where k =

∑
i≥1 ℓi. Then

it immediately follows from Rem. 11 that |Dq·n
ℓ1, . . . , ℓ2q−1

⟩ can be prepared using a
circuit of size O(min{k, n− ℓ1, . . . , n− ℓ2q−1} · n).

To determine the circuit size, we need to count the required gates to construct
Uq · n, k as in Theorem 10. The unitary Uq · n, k consists of the gates SCSq · i, k with
i = k + 1, . . . , n and SCSq · (i+ 1), i with i = 1, . . . , k − 1. In general, the unitary
SCSq · (·), k contains (k + 1) controlled-swaps, each of which can be implemented
with one CCNOT, two CNOT gates, and k ancilla qubits which in turn requires
one rotation, (k − 1) CNOT gates, and (k − 1) controlled-rotations.

Hence, for the implementation of Uq · n, k we needO(k · n) CCNOTs andO(k · n)
CNOTs, as well as (n − 1) rotations, O(k · n) CNOTs, and O(k · n) controlled-
rotations for the ancilla qubits.

Circuit depth: Note that the structure of the swaps (line 4 and 8) of SCSq · n, k is
shaped like a stair of width k and height (k+1), where the bottom line interacts
with the bottom qubit. These stairs from different SCS unitaries can be “pushed”
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together, such that the combined stairs of SCSq · n, k and SCSq · (n− 1), k have a width
of (k + 2), whereas (k + 1) is the width of the combined stairs of SCSq · (k + 1), k

and SCSq · k, (k − 1). Hence, the union of all stairs has a width of (2n − 3). The
ancilla qubits in anc are measured at the latest when all swaps are completed.
Accordingly, the circuit has a linear depth of (2n− 2).

Ancilla qubits: The SCSq · n, k unitary requires k qubits so that the overall
number of needed ancilla qubit of Uq · n, k is (n − k) · k +

∑k−1
i=1 i = O(k · n).

However, we can prepare them successively and measure them as soon as they
are no longer needed (line 9). Each ancilla qubit controls a swap and is needed
to prepare the (if required) next ancilla qubit. When both are done, the ancilla
qubit can be measured. Accordingly, each SCS unitary hold at most two ancilla
qubits. Since we push the SCS stairs together where each of the stairs has at
most height (k+ 1), we consider at most ⌈k2 ⌉ stairs simultaneously at any time.
Hence, at most 2 · ⌈k2 ⌉ ≤ k + 1 ancilla qubits are required simultaneously.

. . .

. . .

. . .

. . .

. . .

. . .

q

q

q

q

qr1

qr2

. . .

qrk

qrk+1

anc1
√

n−1
n

anc2
√

n−2
n−1

. . .. . .

anck−1

anck
√

n−k
n−(k−1)

Fig. 5: Circuit for SCSq · n, k applied on the registers qr[1 . . . k+1] and anc[1 . . . k]. The
wave bar symbolizes the registers in between. An example with q = 2 and n = k = 4
in Quirk [23] can be found here.

https://algassert.com/quirk#circuit={%22cols%22:[[1,1,%22X%22,1,%22X%22,1,%22X%22,%22X%22],[1,1,1,1,1,1,1,1,%22~jrlp%22],[1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~7h3f%22],[1,1,1,1,1,%22Swap%22,1,%22Swap%22,%22%E2%97%A6%22],[1,1,1,1,%22Swap%22,1,%22Swap%22,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~ok6s%22],[1,1,1,%22Swap%22,1,1,1,%22Swap%22,1,%22%E2%97%A6%22],[1,1,%22Swap%22,1,1,1,%22Swap%22,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,%22Measure%22],[1,%22Swap%22,1,1,1,1,1,%22Swap%22,1,1,%22%E2%97%A6%22],[%22Swap%22,1,1,1,1,1,%22Swap%22,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,1,1,%22~7h3f%22],[1,1,1,1,1,1,1,1,1,1,1,%22%E2%80%A2%22,%22X%22],[1,1,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22,%22~ok6s%22],[1,1,1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,%22%E2%97%A6%22],[1,1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,%22Swap%22,1,1,1,%22Swap%22,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Swap%22,1,1,1,%22Swap%22,1,1,1,1,1,1,1,%22%E2%97%A6%22],[1,1,1,1,1,1,1,1,1,1,1,1,%22Measure%22],[1,1,1,1,1,1,1,1,1,1,1,1,1,%22~ok6s%22],[1,%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Swap%22,1,%22Swap%22,1,1,1,1,1,1,1,1,1,1,%22%E2%97%A6%22],[%22Chance8%22,1,1,1,1,1,1,1,1,1,1,1,1,%22Measure%22]],%22gates%22:[{%22id%22:%22~ok6s%22,%22name%22:%22%E2%88%9A1/2%22,%22matrix%22:%22{{%E2%88%9A%C2%BD,-%E2%88%9A%C2%BD},{%E2%88%9A%C2%BD,%E2%88%9A%C2%BD}}%22},{%22id%22:%22~7h3f%22,%22name%22:%22%E2%88%9A2/3%22,%22matrix%22:%22{{%E2%88%9A%E2%85%94,-%E2%88%9A%E2%85%93},{%E2%88%9A%E2%85%93,%E2%88%9A%E2%85%94}}%22},{%22id%22:%22~jrlp%22,%22name%22:%22%E2%88%9A3/4%22,%22matrix%22:%22{{%E2%88%9A%C2%BE,-%C2%BD},{%C2%BD,%E2%88%9A%C2%BE}}%22}]}
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4 Reducing the Number of Qubits in LWE

Having Thm. 12 which prepares generalized Dicke states, we finally focus on ap-
plications. First, our new circuit can be used to solve SSP, and hereby completes
the quantum attacks on SSP in [26,6]. To explain this we revisit the MitM attack
on the SSP which searches for a pair (s1, s2) such that s := s1 + s2 is a solution
of ⟨a, s⟩ = t mod 2n for given a and t and has Hamming weight wt(s) = n

2 .
This identity allows us to rewrite the equation to ⟨a, s1⟩ = t−⟨a, s2⟩ mod 2n,

so that we successfully transform the SSP to a problem of finding claws of
functions f1(s) := ⟨a, s⟩ mod 2n and f2(s) := t − ⟨a, s⟩ mod 2n, i.e., finding
a pair (s1, s2) such that f1(s1) = f2(s2). This claw search is done via the CNS
algorithm which was introduced by Chailloux et al. [11] as an alternative to the
BHT algorithm [9] with a reduced number of needed qubits to find collisions.

Let S1,S2 be the domain of f1 and f2 respectively. Essentially both algo-
rithms generate a list L = {(s, f1(s))|s ∈ S∗}, where S∗ ⊂ S1, and use Am-
plitude Amplification [8] to find a L-suitable element s2 ∈ S2, i.e., there exists
s1 ∈ S1 such that (s1, ∗) ∈ L and (s1, s2) is a claw.

The BHT algorithm stores the list L in qubits, whereas the CNS algorithm re-
alizes it classically and makes classical queries to access list L. According to these
differences, both algorithms have varying time and (classical / quantum) mem-
ory requirements. The CNS algorithm saves qubits—only O(n) (vs. O

(
2n/3

)
)

qubits are needed—at the cost of time (O
(
22n/5

)
vs. O

(
2n/3

)
) and classical

memory (O
(
2n/5

)
vs. none). Nonetheless, it is more efficient than purely clas-

sical algorithms with a time complexity of O
(
2n/2

)
. This shows that even the

usage of a few qubits is rewarding. However, the CNS algorithm for collisions
can be generalized straight-forwardly to an algorithm for claws [26]:

Algorithm 13 (CNS Algorithm [11]). Let be fi : Si → {0, 1}n, |Si| ≤ 2n and
i ∈ {1, 2}, two random and efficiently computable (i.e., Tfi = poly(n)) functions,
and C := {(s1, s2) ∈ S1 × S2|f1(s1) = f2(s2)} the set of claws of size R := |C|.
Given parameters r,l the next steps eventually output a claw (s1, s2) ∈ C:

(1) Generate a sorted list L := {(s1, f1(s1))|πr(f1(s1)) = 0} containing 2l can-
didates for s1, where πr(·) denotes the projection on the first r components.
Let T1 be this step’s time complexity, which requires O

(
2l
)

classical memory.
(2) Setup A: Prepare an equal superposition of S2 (in time TS2

using MS2

qubits). Apply Grover’s search [24] on the resulting state to create an equal
superposition of S∗2 := {s2 ∈ S2|πr(f2(s2) = 0)}.
This step uses O(log2 |S2|) +MS2

= O(n) +MS2
qubits and can be done in

Tsetup = O
(
Tf2 ·

√
Ps2∈S2

[
s2 ∈ S∗2

]−1
)
+ TS2

.

(3) Set-Membership Oracle OfL : The quantum unitary of fL : S2 → {0, 1} which
outputs 1 for L-suitable elements s2 ∈ S2 can be implemented using O(n)
qubits within time TfL = O

(
TfL · 2l

)
= O

(
n · 2l

)
.



16 Barbara Jiabao Benedikt

(4) Amplitude Amplification: Use Setup A (from (2)) and Oracle function OfL

(from (3)). Then, the algorithm eventually outputs s2 ∈ S2 with fL(s2) = 1

in T2 = O
(
(Tsetup + TS2 + TfL) ·

√
Ps2∈S∗

2

[
fL(s2) = 1

]−1
)

.

(5) Search for s1 ∈ L such that f1(s1) = f2(s2). This can be done in O(1) since
L is sorted.

We choose the parameters as follows:

r is the number of matched components (πr(f1(s1)) = πr(f2(s2)) = 0). We
require r ≤ logR to ensure that there exists at least one (out of R) claw
(s1, s2) ∈ C with πr(f1(s1)) = 0.

l determines the list size |L| = 2l. We require 2l ≥ |S1|/R to ensure that there
exists a L-suitable s2 ∈ S∗2 . The probability that there exists a s2 ∈ S∗2 for
a fixed s1 ∈ S1 with (s1, s2) ∈ C is R/|S1|, since the functions f1, f2 are
assumed to be random.

Thus, we get a total runtime of max{T1, T2} using O
(
2l
)

classical memory and
O(n) +MS2 qubits.

Step (4) uses Brassard et al.’s Amplitude Amplification [8] that is a general-
ization of Grover’s search [24] which applies the concept of amplifying the ampli-
tude of a particular subspace. In each iteration, the amplitude increases so that
the algorithm outputs an element of this particular subspace with overwhelm-
ing probability by measurement after enough repetitions. The main difference in
contrast to Grover’s search [24] is that one may start with another search space
than the entire set.

Originally, Amplitude Amplification is only stated for binary input functions
f : {0, 1}n → {0, 1}. However, any (arbitrary but finite) set S can be embedded
in a set of long enough binary strings so that the algorithm can be formulated
more generally:

Algorithm 14 (Amplitude Amplification, [8]). Let f : S → {0, 1} be a function
and X ⊂ S a subset (the search space). The algorithm has given:

– Setup A: Produces an equal superposition of X in time Tsetup.
– Oracle function Of : The quantum unitary of function f with runtime Tf .

Then the algorithm outputs element s ∈ X such that f(s) = 1 in time

T = O
(
max{Tsetup, Tf} · Ps∈X

[
f(s) = 1

]−1/2
)
.

Let us go back to Helm and May’s algorithm [26]. In the notation of Alg. 13
they chose f1(s) := ⟨a, s⟩ mod 2n , f2(s) := t− ⟨a, s⟩ mod 2n, and

S1 = S2 =
{
s ∈ {0,±1}n| s has (n2 + a) many (+1) and (a) many (−1) entries

}
,

where a is the number of additional (−1) entries. Step (2) requires an equal
superposition of S2. This state is the generalized Dicke state |D2·n

n
2 + a, a, 0⟩ where
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we identify the underlying set {0, 1, 2, 3}n—as it is defined in Def. 3—with
{0, 1,−1, ∗}n (∗ arbitrary). However, Helm and May [26] just assumed that this
Dicke state can be prepared in negligible time compared to the other terms.
Luckily this assumption turns out to be true since Thm. 12 implies MS2

= n
2 +1

and TS2
= O(n).

4.1 From SSP to LWE

Let us consider a ternary LWE-based scheme, where the public key is a tuple
(A, b) ∈ Zn×n

q ×Zn
q , consisting of a matrix A and a vector b, such that As = b+e

mod q for some secret vectors s, e ∈ T n := {0,±1}n, where q = poly(n) is an
integer. Furthermore, we focus on the LWE problem with ternary LWE keys
where the vector s has a fixed (Hamming) weight w =

∑
si ̸=0 1 and has as many

(+1) entries as (−1) entries. We denote

T n(w/2) := {s ∈ T n|s has w/2 many (+1) and (−1) entries each}

as the set of n-dimensional ternary weight-w vectors.
The choice of n, q, and w varies from scheme to scheme. For q, we require

a lower bound q = Ω(n) (as in all modern NTRU-type systems), which has
the advantage that decryption errors are eliminated. For w, we define the rela-
tive weight ω := w/n. This parameter ω simplifies the comparison of different
schemes. Security analyses of NTRU [13,5] yield an optimal relative weight in
the range ω ∈ [1/3, 2/3]. Inspired by NTRU and NTRU Prime, we will analyze
our quantum algorithm using the values ω ∈ {0.375, 0.441, 0.5, 0.621, 0.668}.

Multinomial coefficients (Def. 2) enable to determine the size of the key
space |T n(ωn/2)| =

(
n

ωn/2,ωn/2,·
)

for fixed n and ω. The following lemma can
approximate this number, but therefore we first define the Shannon entropy [44]:

Definition 15 (Shannon Entropy). Let c1, . . . , ck ∈ R>0, k ∈ N, be positive real
numbers with

∑k
i=1 ci = 1. Then the Shannon entropy is defined as follows

H(c1, . . . , ck) := −
k∑

i=1

ci · log2(ci).

As a shorthand notation we write H(c1, . . . , ck−1, ·) instead, where (·) represents
the missing argument 1− c1 − . . .− ck−1.

Lemma 16 (Lemma 2.2 in [18]). Let D = {d1, . . . , dk} ⊂ Zq be a set of digits
and s ∈ Zn

q a vector having exactly (cin) many (di) entries, where
∑k

i=1 ci = 1
and ci > 0 for all i ∈ {1, . . . , k}. Then

H(c1, . . . , ck) · n− ln

(
n+ k − 1
k − 1

)
≤ ln

(
n

c1n, . . . , ckn

)
≤ H(c1, . . . , ck) · n.

In particular this implies
(

n
c1n, . . . , ckn

)
= Θ

(
2H(c1,...,ck−1,·)n

)
.
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Hence, there asymptotically are 2H(ω/2,ω/2,·)n many n-dimensional ternary
weight-ωn vectors. Through we mostly consider multinomial coefficients with
k = 3 and c1 = c2, we also write H3(c), c ∈ [0, 1/2), as a short form of H(c, c, ·).

At Crypto 2021, May [35] proposed an algorithm that finds the correct key
within the S = 2H3(ω/2)n possibilities with time complexity S0.25. Later on, van
Hoof et al. [45] combine the REP-1 algorithm with quantum walks [2], which
results in a very time-efficient quantum MitM attack with an asymptotic time
complexity of S0.19. However, in regards to memory complexities the classical
algorithm [35] needs an exponential-sized classical memory, whereas the quantum
algorithm [45] requires, in addition to the same amount of classical space, also
an exponential number of qubits.

Van Hoof et al. recognize this weak spot and introduce a memory-efficient
quantum version that works in the regime of polynomial classical and quan-
tum memory having a time complexity in the range of [S0.514,S0.558] for ω ∈
[0.375, 0.668]. However, so far, no one has considered the scenario of exponential-
sized classical memory and polynomial number of qubits, which seems to be a
very realistic setting for the coming decades. Classical memory becomes cheaper,
and if we assume an adversary who is only restricted to the currently available
resources, then she is practically only limited in the number of obtainable qubits
(currently, the biggest quantum processor has 1,121 qubits [29]). So, this is pre-
cisely the setting for which we construct our algorithm which compensates for
the lack of qubits by using additional classical memory.

Therefore we start to explain May’s [35] (classical) algorithm, go over to re-
visit and adjust the CNS algorithm [11], and then present our new qubit efficient
algorithm.

4.2 May’s Classical Attack

The MitM attack on LWE keys is an algorithm that extracts the secret key s
and e for given (A, b). Note that this task is equivalent to finding a vector s ∈ T n

such that (As, b) is 1-close, i.e., a pair (As, b) such that ||(As−b) mod q||∞ = 1.
Given the key s, we easily compute the error vector e = As− b mod q.

The essential idea of the MitM attack is to split the ternary key s ∈ T n(w/2)
into two parts s = s1 + s2 with s1, s2 ∈ T n and search for 1-close pair (As1, b−
As2). This can be done by computing As1 and b−As2 for proper candidates of
s1, s2. The algorithm succeeds when a match is found, where the corresponding
values of s1 and s2 build a 1-close pair (As1, b−As2).

Odlyzko [27] proposed to choose candidates for s1, s2 based on a locality-
sensitive hash function. Indeed, this hash function still plays a role in May’s
attack [35] and is used to assign a binary hash label of As1 resp. b−As2 for all
candidates s1, s2 under the so-called Odlyzko’s hash function:

ℓ : Zn
q → {0, 1, {0, 1}}n,

x = (xi) 7→

ℓ(x)i =

0, if 0 ≤ xi < ⌊q/2⌋ − 1
1, if⌊q/2⌋ ≤ xi < q − 1
{0, 1}, otherwise


 .
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Essentially, this hash function maps each component to its most significant bit.
The idea is to construct a function that maps 1-close pairs to the same hash
value and distant pairs to different hash values. Since 1-close pairs can cause a
label flip in Odlyzko’s hash function, we assign both labels {0, 1} to the border
values ⌊q/2⌋ − 1 and q − 1.

May [35] used the representation technique [28] in his attack in a similar way
as for the SSP. In the so-called REP-0 representation, each non-zero entry of
s = s1 + s2 ∈ T n(w/2) is assigned to either s1 or s2. Since both search spaces
of s1 and s2 should have the same size to balance the workload for s1 and s2,
we split the non-zero entries equally between the two components and search for
s1, s2 ∈ T n(w/4).

In contrast, the REP-1 representation also allows each 0 to be presented as
0 + 0 or ±1 ∓ 1. Let a be the number and α := a/n the relative number of
additional (+1) and (−1) entries. Hence, we want to represent s by s1, s2 ∈
T n(w/4 + a). This increases the number of representations:

Proposition 17. Let s ∈ T n(w/2) be the secret key and a the number of addi-
tional (+1) and (−1) entries, then there are

R(0) :=

(
w/2

w/4

)2

=

(
w/2

w/4, w/4

)2

≈ 2ωn

many REP-0 representations (with s1, s2 ∈ T n(w/4)) and

R(1) :=

(
w/2

w/4

)2

·
(
n− w

a, a, ·

)
=

(
w/2

w/4, w/4

)2

·
(

n− w
α

1−ω · (n− w), α
1−ω · (n− w), ·

)
≈ 2(ω+(1−ω)·H3( α

1−ω ))·n

many REP-1 representations (with s1, s2 ∈ T n(w/4 + a)). Hence, there are
strictly more REP-1 than REP-0 representations.

Proof. Follows from Lemma 16.

Fig. 6: This figure (from [35]) shows a REP-0 search tree. The
darker areas indicate the matching components of list elements,
e.g., each s ∈ L

(1)
1 fulfills πr(As+ e1) = t.

May’s MitM at-
tack [35] builds
a binary search
tree out of lists,
where the left resp.
the right subtree is
used to find candi-
dates for s1 resp.
s2 (see Fig. 6). The
algorithm starts by
generating the leaf
lists and construct-
ing the tree bottom-
up (from leaf level
d to root level 0).
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In each level d′ ≥ 2 we merge two neighbored lists L
(d′)
i and L

(d′)
i+1, where

i ∈ {1, 3, . . . , 2d′ − 1} odd, by computing all possible sums s(d
′−1) := s

(d′)
i + s

(d′)
i+1

and applying the so-called Match-and-Filter approach. We require that As(d
′−1)

(or b−As(d
′−1)) matches with a target vector t ∈ Zr(d

′−1)

q on r(d
′−1) ∈ {1, . . . , n}

components (see Fig. 6) and filter for the correct (Hamming) weights. The re-
sulting list contains the remaining sums. This allows to consider only the residual
n−r(d

′−1) components in the next levels, because we have πr(d′−1)(As(d
′−1)) = t

(or πr(d′−1)(b−As(d
′−1)) = t) for all elements s(d

′−1) on level d′ − 1.
However, this matching condition is too strict since we only require 1-closeness

in each component. May solves this issue by guessing the error vectors e1 ∈
T r(d

′−1)/2 × 0r
(d′−1)/2 and e2 ∈ 0r

(d′−1)/2 × T r(d
′−1)/2 on these components and

using πr(d′−1)(As1 + e1) (or πr(d′−1)(b − As2 + e2)) to match on t. May chooses
multiple targets t ←$ Zr(d

′−1)

q , d′ ∈ {2, . . . , d}, uniformly at random for the dif-
ferent levels and subtrees, but indeed this makes the algorithm for search trees
with depth d > 2 complex and incomprehensible. For the sake of simplicity, we
use t = 0 at any point in the tree.

Assume we merged the lists on all levels d′ ≥ 2 and attained to level 1. Then,
it only remains to merge both level-1 lists to get the root list which contains
pairs (s1, s2) ∈ (T n(w/4))2 such that s = s1 + s2 ∈ T n(w/2) is the sought LWE
key. For this step, we use Odlyzko’s hash function.

First, we compute the Odlyzko-label ℓ(As(1)) (or ℓ(b − As(1))) for all level-
1 elements and then compare only those sums, where both summands have
matching labels. According to this procedure, we get pairs (s1, s2) such that
(As1, b−As2) is 1-close. Finally, we only need to filter for pairs, where the sum
s1 + s2 has the correct weight and A(s1 + s2)− b mod q ∈ T n is ternary.

Note that projection πr(·) and Odlyzko’s hash function ℓ(·), which can be
seen as a projection to {0, 1}n have a similar role through the attack. Both
functions project elements to a smaller space, where match-and-filter is easier.

Algorithm 18 (REP-0 with d = 2, Thm. 1 in [35]). Let s ∈ T n(w/2) and
e ∈ T n be ternary LWE keys.

(1) Construct the level-2 lists L
(2)
i = T n/2(w/8) × 0n/2 and L

(2)
i+1 = 0n/2 ×

T n/2(w/8), i = 1, 3, of size

|T n/2(w/8)| =
(

n/2
w/8, w/8, ·

)
≈ 2H3(w/4)n/2.

(2) Let be r := ⌊logq(R(0))⌋. Then guess the error vectors e1 ∈ T r/2 × 0r/2 and
e2 ∈ 0r/2 × T r/2, and construct the L(1) ⊂ T n(w/4)× Zn

q lists

L
(1)
1 = {(s(1)1 = s

(2)
1 + s

(2)
2 , As

(1)
1 )|πr(As

(1)
1 + e1) = 0 mod q, s

(2)
1 ∈ L

(2)
1 , s

(2)
2 ∈ L

(2)
2 },

L
(1)
2 = {(s(1)2 = s

(2)
3 + s

(2)
4 , b−As

(1)
2 )|πr(b−As

(1)
2 + e2) = 0 mod q, s

(2)
3 ∈ L

(2)
3 , s

(2)
4 ∈ L

(2)
4 }.

By the choice of parameter r, we expect that these lists contain at least one
(out of the R(0)) REP-0 representations (s1, s2) of s. Both lists have an
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expected size of

|L(1)| = |T n(w/4)|
qr ≥ |T n(w/4)|

R(0) =

(
n

w/4, w/4, ·

)(
w/2
w/4

)−2

≈ 2(H3(ω/4)−ω)n.

Then construct the list via the Match-and-Filter-Approach: search for all
candidates (s

(2)
1 , s

(2)
2 ) matching to 0 on the first r coordinates and filter for

the correct weight. Note that in this case, no filtering is required since all
level-1 elements have the correct weight by construction of the level-2 lists.

(3) Construct the list L(0) with entries (s
(1)
1 , s

(1)
2 ) ∈ L

(1)
1 × L

(1)
2 such that L(0)

contains a LWE key s(0) := s
(1)
1 + s

(1)
2 .

Search for all pairs (s
(1)
1 , s

(1)
2 ) ∈ L

(1)
1 ×L

(1)
2 with matching Odlyzko label and

check whether these pairs additionally fulfill s(0) := s
(1)
1 + s

(1)
2 ∈ T n(w/2)

and As(0) − b mod q ∈ T n. If yes, add s(0) to L(0) and return L(0).

Following the steps (1) to (3), the secret key s can be found with asymptotic
time and classical space complexity 2O(max{H3(ω/4)/2,H3(ω/4)−ω}n), where the first
term in the exponent comes from |L(2)| and the second from |L(1)|.

Remark 19. Notice that May’s classical algorithm [35] demands possibly mul-
tiple runs until the error vectors e1, e2 are guessed correctly. For each e1 resp. e2
we can construct and store the corresponding list L

(1)
1 resp. L(1)

2 , so these lists
only need to be computed once.

Thus, we have an expected guessing complexity of

Tguess = 3r/2 = 2O(n/ logn),

since q = Ω(n) implies r = log2 R(0)

log2 q = O(n/ log n). Nevertheless, the time com-
plexity of Alg. 18 is fully dominated by Tlist which is the complexity of construct-
ing the lists L(2), L(1), L(0) and the guessing complexity Tguess can be neglect in
the overall analysis.

The needed (asymptotic) time and space is in a range of Tlist ∈ [S0.371,S0.395]
for different choices of ω ∈ [0.375, 0.668], where S = |T n(w/2)| = 2H3(w/2)n is
the size of the key space. For ω ≤ 0.578 the time to construct L(1)-lists is the
dominating part, for ω > 0.578 the to construct L(2)-lists.

Towards REP-1. In comparison to REP-0, we consider depth-d search trees
with d ≥ 2 for REP-1. This enables to start with smaller lists on the lowest level
and to use more additional (±1) entries on the highest level (see Fig. 8), which
reduces all in all the needed amount of time and space.

Level 0 contains the root list L(0), a subset of T n(w/2). On level i ∈ {1, . . . , d−
1}, we have lists L(i) ⊂ T n(w(i)) with (a(i−1)) additional (±1) entries, where
w(i) := w(i−1)/2 + a(i−1), for i ≥ 1, w(0) := w/2, and ω(i) := w(i)/n denotes the
corresponding relative weight. The lists L(d) on the lowest level are of the form
T n/2(w(d−1)/2)× 0n/2 or vice versa.
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Algorithm 20 (REP-1 [35]). Let s ∈ T n(w/2) and e ∈ T n be ternary LWE
key, d ≥ 2 the depth of the search tree and a(0), a(1), . . . , a(d−2) be the numbers
of additional (+1) and (−1) entries in the different levels.

(1) Construct the level-d lists L(d) of size |T n/2(w(d−1)/2)| ≈ 2H3(w(d−1))n/2.
(2) Let be r := r(1) := ⌊logq(R(1))⌋, where

R(1) =

(
w(0)

w(0)/2

)2

·
(
n− 2w(0)

a(0), a(0), ·

)
≈ 2

(
2ω(0)+(1−2ω(0))H3( α(0)

1−2ω(0)
)
)
n

is the number of REP-1 representation of (s1, s2) ∈ L
(1)
1 × L

(1)
2 . Then guess

the error vectors e1 ∈ T r/2 × 0r/2 and e2 ∈ 0r/2 × T r/2.
(3) Construct the level-i lists L(i) for i = d− 1, . . . , 1 via the Match-and-Filter-

Approach: search for elements matching to 0 on the first r(i) := ⌊logq(R(i))⌋

coordinates, where R(i) ≈ 2

(
2ω(i−1)+(1−2ω(i−1))H3( α(i−1)

1−2ω(i−1)
)
)
n, and filter for

the correct weight.
(4) Use Odlyzko’s hash function to construct L(0).

Fig. 7: This figure (from [35]) shows a REP-1 search tree with depth d = 4, and
ε(i) := a(i−1). The darker areas indicate the matching components of list elements.

Time and Space Analysis of Alg. 20. Let be i ∈ {0, . . . , d − 1}, r(0) := n and
r(4) := 0. Since elements of L(i+1) already match on r(i+1) coordinates, we only
consider the remaining r(i)− r(i+1) coordinates for constructing the L(i) lists on
the next level. This can be done in the expected time

T (i) := |L(i+1)|2/qr
(i)−r(i+1)

.
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Note that the list size |L(i)| ≤ T (i) can be smaller since we need to filter for the
pairs (s(i+1)

1 , s
(i+1)
2 ) with correct weight s(i+1)

1 +s
(i+1)
2 ∈ T n(w(i)). The expected

size of these lists is

|L(i)| = |T
n(w(i))|
R(i)

≈ 2

(
H3(ω(i))−2ω(i−1)−(1−2ω(i−1))H3( α(i−1)

1−2ω(i−1)
)
)
n
.

All together, we find a solution in asymptotic time T = max{T (0), . . . , T (d−1)}
with classical memory complexity M = max{|L(1)|, . . . , |L(d)|}.

May [35] pointed out that (heuristically) α(3) = . . . = α(d−2) = 0 holds for
any d ≥ 5 and ω ∈ [0.3, 0.668], and concluded that d ≥ 5 does not give further
improvements. Therefore, we only analyze the attack using depth-4 search trees.

In the analysis of REP-1 we list the optimizing parameter α(0), α(1), α(2) by
following two different strategies. On the one hand, we use these parameters
to minimize the time complexity (first row in Fig. 8); on the other hand, to
minimize the product of space and time complexity (second row in Fig. 8).

ω logS(Time) logS(Space) α(0) α(1) α(2)

0.375 0.241 0.274 0.071 0.036 0.011
0.245 0.234 0.054 0.025 0.007

0.441 0.235 0.288 0.084 0.042 0.015
0.239 0.233 0.058 0.026 0.007

0.5 0.234 0.275 0.082 0.039 0.013
0.239 0.231 0.058 0.026 0.007

0.621 0.246 0.249 0.073 0.029 0.007
0.249 0.237 0.058 0.025 0.006

0.668 0.257 0.246 0.073 0.029 0.007
0.259 0.242 0.058 0.025 0.006

Fig. 8: Asymptotics of REP-1, for d = 4. The parameters α(0), α(1), α(2) are chosen to
minimize the time (T ) complexity in the first line and the space-time (ST ) complexity
in the second line.

In general, the MitM attack using REP-1 gains a time complexity in the range
of [S0.234,S0.259] independent of the chosen strategy for values ω ∈ [0.375, 0.668].
This is a significant improvement compared to the best time of S0.371 we achieved
with REP-0.

4.3 CNS Algorithm - Revisited and Adapted

Remember we introduced the CNS algorithm (Alg. 13) as an algorithm to find
claws. However, the LWE problem is about solving a perturbed system, so the
algorithm is required to find an 1-close claw of the functions

f1 : s1 7→ As1 mod q and f2 : s2 7→ b−As2 mod q.
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Then, at first sight, we have two technical issues—the functions f1, f2 have a
non-binary range and are not random. However, this is not really a problem.
It suffice to require that f1, f2 are quantum-accessible, and that there exists an
1-close claw (s1, s2) such that πr(f1(s1)) = 0 for a properly chosen r ∈ N. Then,
the CNS algorithm can be applied because all needed applications of Amplitude
Amplification are legitimate.

The first step is to redefine the set C such that it contains 1-close claws, i.e.,

CLWE := {(s1, s2) ∈ S1 × S2|(f1(s1), f2(s2)) is 1-close},

with domains (where n, q, w, a are chosen properly)

S1 = S2 =

{
T n(w/4), if we use REP-0,
T n(w/4 + a), if we use REP-1.

The second step is to ensure, that there exists a pair (s1, s2) ∈ CLWE with
πr(f1(s1)) = 0. Matrix A and vector b are chosen as the public key, so by
construction there exists the corresponding private key (s, e), and CLWE ̸= ∅ is
not empty. Furthermore all elements in the range have roughly the same number
of preimages under the functions f1, f2 because of the randomness of matrix A,
so we can assume that there is pair (s1, s2) ∈ CLWE with πr(f1(s1)) = 0—if r is
chosen properly. The search requires O(n) qubits since |Si| ≤ 2n, i = 1, 2, n ∈ N,
and

O(log2 |S1|) =
{
O(H3(ω/4)n) , if we use REP-0
O(H3(ω/4 + a)n) , if we use REP-1

}
= O(n).

To ensure that we can apply the CNS algorithm to f1, f2 and CLWE , it only
remains to define appropriate setup A and oracle O. For constructing A, we use
our circuit (Thm. 12) to prepare a ternary Dicke state since S1 is a ternary set
with a fixed number of (±1) entries. However, to build a concrete oracle O we first
need to define the oracle function, which depends on the set of “interesting pairs”
C (in our case CLWE). In any case, the function fC : S2 → {0, 1} is appropriate
as oracle function which outputs 1 for L-suitable elements s2 ∈ S2:

fC(s2) = 1 :⇐⇒ ∃(s1, ∗) ∈ L : (s1, s2) ∈ C.

Note that in the case of the claw finding problem, the function fC is equivalent
to the set-membership function (fL) in Alg. 13. In our case, we have

(s1, s2) ∈ CLWE ⇐⇒ (f1(s1), f2(s2)) is 1-close
⇐⇒ ∃e ∈ T n : f1(s1) = f2(s2) + e.

So, we can define the function fCLWE as follows:

fCLWE(s2) = 1 :⇐⇒ ∃e ∈ T n : (∗, f2(s2) + e) ∈ L.
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Thus, the new 1-closeness oracle function fCLWE is similar to the set-membership
oracle with weaker interpretation of “membership”—small errors of (±1) are al-
lowed. Notice that the 1-closeness oracle has another advantage. In the classical
setting, we depended on multiple runs of the attack until the error vector was
guessed correctly (see Rem. 19). However, using fCLWE finds e and s2 simultane-
ously without extra effort.

Moreover, any approach in the quantum setting that involves guessing, would
lead us to further problems. Having guessed wrongly, we will not find s2, and the
Amplitude Amplification will fail. Accordingly, we have an algorithm where the
reason for failure is not unique—was it a wrong guess or a measurement error?
This fact makes it difficult to decide how to react to failures.

Let us take a closer look into the set-membership oracle OfL of Alg. 13, and
adapt it to our purpose for constructing a 1-closeness oracle OfCLWE

afterward.
To construct OfL we use the following operations:

– Creation: Takes classical input x ∈ {0, 1}n and n qubits initialized at |0⟩.
Then it outputs |x⟩ in time n by constructing each qubit separately.

– Deletion: This is the inverse operation of Creation. It takes classical input x
and |x⟩. Then it outputs |0⟩.

Algorithm 21 (Set-Membership Oracle OfL , [11]). Let L = {xi}|L|
i=1 ⊂ {0, 1}n

be a list and fL : {0, 1}n → {0, 1} be the function, which outputs fL(x) = 1 iff’
x ∈ L is a member of list L. For computing OfL(|x⟩ |b⟩), b ∈ {0, 1}, start from
|ϕ1⟩ := |x⟩ |b⟩ on n+ 1 qubits. For i = 1, . . . , |L|, do:

(1) Get element xi from L and construct |xi⟩ using the Creation operator. Then
concatenate |xi⟩ with the current state |ϕi⟩.

(2) Apply:
|xi⟩ |ϕi⟩ = |xi⟩ |x⟩ |b⟩ 7→ |xi⟩ |x⟩ |b⊕ (δxi,x)⟩︸ ︷︷ ︸

:=|ϕi+1⟩

,

where δ is the Kronecker-Delta function, i.e., δxi,x = 1 iff’ xi = x.
(3) Discard the first register using the Deletion operator and keep |ϕi+1⟩ as the

remaining state.

Output the final state |ϕ|L|+1⟩ = |x⟩ |b⊕ fL(x)⟩ = OfL(|x⟩ |b⟩).

Time and Space Analysis. Step (1) is done in time n, and step (2) and (3) in
constant time. Each |xi⟩ resp. |ϕi⟩, i = 1, . . . , |L|, requires n resp. n+ 1 qubits.
Since we use Creation and Deletion alternately, we have at most one of each
register in parallel. So the oracle function OfL needs in total 2n+ 1 qubits and
performs in time n · |L|.

Note that the oracle OfL implements the function fL perfectly because of

fL(x) =

|L|⊕
i=1

δxi,x.
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For each i = 1, . . . , |L| the oracle compares the register |xi⟩ with |x⟩, what on the
circuit-level means that this is done with each qubit of the registers separately. So
δxi,x can be written as

∧n
j=1 δxi

(j),x(j) , where x
(j)
i resp. x(j) is the jth component

of the vector xi resp. x. Note that this is very close to the construction we need
for OfCLWE

—there we want to output 1, if the components match except for a
small ±1 error. This corresponds to the operation

δ±1
xi,x

:=

n∧
j=1

(δxi
(j)−1,x(j) ∨ δxi

(j),x(j) ∨ δxi
(j)+1,x(j)).

Thus, we can write the 1-closeness oracle function as fCLWE(x) =
⊕|L|

i=1 δ
±1
xi,x,

that leads us to:

Algorithm 22 (1-closeness oracle OfCLWE
). Follow the steps from Alg. 21, but

with δ±1
xi,x instead of δxi,x in step (2), we implement the 1-closeness oracle

OfCLWE
(|x⟩ |b⟩) = |x⟩ |b⊕ fCLWE(x)⟩ .

Time and Space Analysis. Replacing δxi,x by δ±1
xi,x only costs a constant factor

in the time complexity. Accordingly, the oracle function OfCLWE
requires O(n)

qubits and performs in time TfCLWE
:= 3 · n · |L| = O(n · |L|).

This algorithm allows to apply the CNS Algorithm to solve the ternary LWE
problem. Noteworthy, this type of adjustment of combining the CNS algorithm
with a 1-closeness oracle has not been done before. For instance, Helm and May
[26], who applied the CNS algorithm to the subset sum problem, do not need to
make such changes since the subset sum problem is considered an unperturbed
system. They use the set-membership oracle (see Alg. 21) as Chailloux et al. [11]
proposed.

4.4 Quantum LWE with O(n) Qubits

Finally, we combine May’s algorithm [35] and the CNS algorithm [12]—with a
setup that prepares a ternary Dicke state and an 1-closeness oracle. The idea is
to find the LWE key by applying the algorithm to CLWE, where f1, f2,S1,S2 are
defined as before. Therefore, we take the following approach:

(1) Construct a (sorted) list L of candidates for s1 and ensure that there exists
at least one element s ∈ L with (s, ∗) ∈ CLWE.

(2) Apply Amplitude Amplification using a setup A which produces a superpo-
sition of a set S∗2 ⊂ S2 containing candidates for s2 and OfCLWE

as oracle.
This step eventually outputs a L-suitable element s2 ∈ S∗2 .

(3) Find s1 ∈ L such that (s1, s2) ∈ CLWE.

Since step (3) is straightforward because L is sorted, it remains to define and
construct list L and set S∗2 . Having May’s REP-0 and REP-1 algorithm [35] in
mind, even this is not difficult, and we can set L := L

(1)
1 and S∗2 := L

(1)
2 . This

ensures that L
(1)
1 contains at least one element s1 with (s1, ∗) ∈ CLWE and list

L
(1)
2 contains a L

(1)
1 -suitable element s2.
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QREP-0. First, we show how to construct list L and, afterward, the setup
algorithm A. In the setting of unlimited classical memory and O(n) qubits, it is
a natural idea to use Amplitude Amplification for computing L as well. Indeed,
this algorithm is not advantageous for constructing big lists ([26] concluded the
same for SSP).

Therefore we reduce the size of list L by shrinking the search space of s1 by
changing the weights to L

(1)
1 ⊂ T n(cw/4) and L

(1)
2 ⊂ T n((2 − c)w/4), where

c ∈ [0, 1]. This changes the number of representations:

R(0)
c :=

(
w/2
cw/4

)2

=

(
w/2

cw/4, (2− c)w/4

)2

≈ 2H(c/2,·)ωn.

Let be c ∈ [0, 1] and r := ⌊logqR
(0)
c ⌋. Use REP-0 (Alg. 18) to construct

L := L
(1)
1 classically with weight cw/4 and 2l list elements. According to the

CNS algorithm we require at least

2l ≥ |T
n(cw/4)|
R(0)

c

≈ 2H3(cω/4)−H(c/2,·)ωn

elements, and according to Alg. 18 this is expected to be the case. This has the
time and (classical) space complexity

T1 = M1 = 2max{H3(cω/4)/2,H3(cω/4)−H(c/2,·)ω}n.

For the construction of setup A, which generates an equal superposition of
S∗2 ⊂ S2 := T n((2 − c)w/4), we first generate an equal superposition of S2—
using Thm. 10—which is the ternary Dicke State |D2·n

(2− c)w/4, (2− c)w/4, 0⟩. Therefore
we identify the underlying set {0, 1, 2, 3}n with {0, 1,−1, ∗}n (∗ arbitrary). This
requires linear time and O(n) qubits.

Notice that S∗2 is by construction expected to contain one L-suitable element.
Thus, by definition of the oracle function fCLWE there exists an error vector
e ∈ T n such that πr(f2(s) + e) = 0 mod q. Because of the regularity of f2, the
probability of an element s ∈ S2 being in S∗2 is p = (3/q)r. Hence, the setup
algorithm A has time complexity

Tsetup = O(n) +O
(
Tf2 · (q/3)r/2

)
= 2Õ(H(c/2,·)ωn/2),

where we use qr ≤ R(0)
c , and neglect the factor 3r/2 for the same reason as

classically (see Rem. 19). The resulting QREP-0 algorithm has space complexity
S = M1, and time complexity T = max{T1, T2}, where

T2 = O

 Tsetup + TfCLWE√
Ps2∈S∗

2
[fCLWE(s2) = 1]

 = O

 2Õ(H(c/2,·)ωn/2) + 2l√
Ps2∈S∗

2
[fCLWE(s2) = 1]


= 2Õ(max{H(c/2,·)ωn/2,H3(cω/4)−H(c/2,·)ωn}+(H3((2−c)ω/4)−H(2c,·)ω)n/2)
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is the total time of the adapted CNS algorithm. For calculating the probability,
we use the fact that L is expected to contain precisely one proper candidate for
s1. This implies, that there exists exactly one L-suitable s2 ∈ S∗2 , and

p := Ps2∈S∗
2
[fCLWE(s2) = 1]−1/2 = |S∗2 |1/2 =

√
|T n((2− c)w/4)|

(q/3)r

= 2Õ((H3((2−c)ω/4)−H(c/2,·)ω)n/2),

where we again use Rem. 19 to neglect the factor 3r/2.
The analysis shows, that the algorithm extracts the LWE key without using

classical memory in time S0.5 for any ω. On one hand, this is not very surprising
since this corresponds to the complexity of Grover’s search. On the other hand,
this already shows that QREP-0 achieves better results than van Hoof’s memory-
efficient versions [45], which has a runtime in the range of [S0.510,S0.558].

In general, a growing c increases the list size |L| and the number of repre-
sentations R(0)

c . Hence, we need more classical space, and the time complexities
Tsetup and TfCLWE

get larger, whereas the probability p decreases. However, there
exists a cmax ∈ [0, 1] for which the overhead for the 1-closeness oracle starts to
be too large, which results in worse time complexities. For c = cmax, we achieve
the best obtainable time and worst space complexity (see Fig. 9).

ω cmax logStime logSspace logS ST
REP-0:

logStime/ logSspace
REP-0:
logS ST

0.375 0.220 0.477 0.109 0.586 0.383 0.765
0.441 0.236 0.473 0.121 0.595 0.378 0.756
0.5 0.292 0.471 0.150 0.621 0.374 0.748

0.621 0.427 0.471 0.221 0.692 0.381 0.763
0.668 0.485 0.475 0.253 0.728 0.395 0.791

Fig. 9: Best obtainable time complexities for REP-0 and our QREP-0. Note that our
new algorithm QREP-0 achieves a better space-time complexity than REP-0 for all
c ∈ [0, cmax].

QREP-1. Our QREP-1 algorithm has—exactly as in the classical REP-1—
parameters α(3) = . . . = α(d−2) = 0 for any search tree of depth d ≥ 5 and for
any ω. Therefore, we use the REP-1 depth-4 search tree (see Alg. 20) to construct
the list L := L

(1)
1 ⊂ T n(cw/4+a(0)) classically, where c ∈ [0, 1] and a(0), a(1), a(2)

are the numbers of additional (+1) and (−1) entries. Then we use Thm. 12 to
setup an equal superposition of set S∗2 := L

(1)
2 ⊂ T n((2 − c)w/4 + a(0)), which

is a ternary Dicke state. Afterward, we proceed in the same way we did with
QREP-0.
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For the construction of lists L(i) ⊂ T n(w(i)), i ≥ 1, we almost use the same
weights as for REP-1:

w(i) =
w(i−1)

2
+ a(i−1) and w(0) = cw/2.

Accordingly all the numbers of representations R(i) on level i for i ≥ 2 stays the
same, except for i = 1. On level 1, we have different weights, and the number of
representations is

R(1)
c =

(
w/2
cw/4

)2

·
(

n− w
a(0), a(0), ·

)
≈ 2(H(c/2,·)ω+(1−ω)H3(α(0)

1−ω ))n.

Let be r := ⌊logqR
(1)
c ⌋. List L requires at least

2l ≥ |T
n(cw/4 + a(0))|
R(1)

c

≈ 2(H3(cω/4+α(0))−r̃)n

elements, where r̃ := log2R
(1)
c /n. This step has time and classical memory com-

plexity as in REP-1 (T = max{T (0), . . . , T (3)} and M = max{|L(1)|, . . . , |L(4)|}).
Adapting the analysis from QREP-0, we get:

Tsetup = O
(
Tf2 · (q/3)r/2

)
= 2Õ(r̃n/2),

TfCLWE
= O(n · |L|) = Õ

(
2(H3(cω/4+α(0))−r̃)n

)
,

p = Ps2∈S∗
2
[fCLWE(s2) = 1]−1/2 = |S∗2 |1/2 =

√
|T n((2− c)w/4 + a(0))|

(q/3)r

= 2Õ((H3((2−c)ω/4+α(0))−r̃)n/2).

Thus, T2 = 2Õ(max{r̃n/2,(H3(cω/4+α(0))−r̃)n}+(H3((2−c)ω/4+α(0))−r̃)n/2).

ω cmax logStime logSspace logS ST
REP-0:

logStime/ logSspace
REP-0:
logS ST

0.375 1.315 0.381 0.242 0.623 0.383 0.765
0.441 1.273 0.379 0.217 0.596 0.378 0.756
0.5 1.330 0.379 0.213 0.592 0.374 0.748

0.621 1.315 0.388 0.203 0.591 0.381 0.763
0.668 1.400 0.397 0.208 0.605 0.395 0.791

Fig. 10: Best obtainable time complexities of our QREP-1 with c = cmax compared
with REP-0.

The analysis of QREP-1 points out, that the best obtainable time complexi-
ties are in the range of [S0.379,S0.397] (see Fig. 10). This is a significant improve-
ment compared to QREP-0, where we achieved time complexities in the range
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of [S0.471,S0.477]. For QREP-1, the parameter cmax is generally bigger than for
QREP-0. This is because the additional representations of s reduce the overhead
for the 1-closeness oracle so that we can use larger values for c until the overhead
starts to be too big. According to the resulting time-memory trade-offs, QREP-1
has useful instantiations for classical memory requirements up to S0.242 and can
therefore be applied flexibly.

Surprisingly, for QREP-1 we almost achieve the same time complexities as for
REP-0, while it is significantly more (classical) memory-efficient. For instance,
QREP-1 with ω = 0.375 runs in time S0.381 using S0.242 classical space, whereas
REP-0 has almost the same time complexity (S0.383) but requires S0.383 classical
memory.

Fig. 11: Time-memory trade-off of our algorithm compared to May’s purely classical
MitM attack [35] and van Hoof et al.’s memory-efficient variant [45] which uses O(n)
qubits. Obviously, our algorithm is the best option for classical memory requirements
in the range of [S0,S0.22]. The concrete complexity depends on the parameter ω.

Fig. 11 shows the time-memory trade-offs of QREP-1 for some ω-values and
compares it with the performance of REP-0, REP-1, QREP-0, van Hoof et al.’s
memory-efficient quantum algorithm [45] and van Hoof et al.’s quantum walks
algorithm [45]. Moreover, the figure shows that the algorithm QREP-1 closes a
previously existing gap. Until now, an adversary (with O(n) qubits) could not
perform better than S0.51 while having not enough classical memory for REP-0 or
REP-1 available. Since there is the common starting-point (S0,S0.5) of QREP-1
for all ω, all instantiations of our algorithm have a better time complexity than
S0.51.

Furthermore, our algorithm allows the adversary to reduce the time require-
ments by deploying more classical memory. Nevertheless, it can not beat the
time complexity of REP-1. So QREP-1 is a good solution for an adversary (in-
dependent of ω), if she has classical memory up to S0.22 available.
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S Supplementary Material
This Jupyter Notebook contains an algorithm to generate a circuit which prepares the generalized
Dicke states and an example of usage.

After Submissen we will publish this notebook on Git Hub.

S.1 Preparing Generalized Dicke States

[1]: import numpy as np
from qiskit import *
from qiskit.visualization import plot_distribution, state_visualization
from qiskit.circuit.library import RYGate
from qiskit.quantum_info import Statevector
from IPython.display import Latex

Now we start to introduce the different Gates and Unitaries as in the paper.

Rotation Gate (Definition 8)

input: 𝑛𝑢𝑚 - numerator, 𝑑𝑒𝑛 - denominator

output: rotation gate √𝑛𝑢𝑚/𝑑𝑒𝑛

[2]: def ry_gate(num, den):
return RYGate(2*np.arccos(np.sqrt(num/den)),label=str(num)+ '/'+str(den))

The unitary SCS (implemented as in Theorem 10 and stated in PrepareAncAndSwap)

input: 𝑛 - vector length, 𝑘 - Hamming weight, 𝑞 - number of qubits per vector component, circ -
quantum circuit, qr - quantum register, anc - ancilla qubits, qr𝑜𝑓𝑓𝑠𝑒𝑡 - clarifies on which registers
of qr the swap-algorithm should be applied, anc𝑜𝑓𝑓𝑠𝑒𝑡 - clarifies which ancilla qubits the swap-
algorithm should use, measurement - boolean that turns the measurement of anc on/off

output: 𝑆𝐶𝑆-unitary for the given parameters

Our implementation provides the boolean measurement to turn the measurement of anc on and
off. This is necessary for the analysis since some of qiskit’s functionalities insist on “unmeasured”
qubits.

[3]: def SCS(n,k,circ,qr,anc,cl_anc,qr_offset,anc_offset,q, measurement = True):
# Prepare the first ancilla qubit (Line 3 of PrepareAncAndSwap).
circ.append(ry_gate(n-1,n),[anc[anc_offset]])
for j in range(q):

circ.cswap(anc[anc_offset], qr[qr_offset + j], qr[qr_offset + j + 2],␣
↪ctrl_state='0')

for i in range(k-2):
# Prepare the next ancilla qubit (Line 6,7 of PrepareAncAndSwap).
circ.cx(anc[anc_offset + i],anc[anc_offset + i+1])
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circ.append(ry_gate(n-i-2,n-i-1).control(1,␣
↪ctrl_state='0'),[anc[anc_offset + i],anc[anc_offset +1+ i]])

for j in range(q):
# Next line corresponds to Line 4 of PrepareAncAndSwap
circ.cswap(anc[anc_offset +1 + i], qr[qr_offset + j], qr[qr_offset␣

↪+ j +2*(i + 1) + 2], ctrl_state='0')
if (measurement == True):

# Measure the "used" ancilla qubits (Line 9 of PrepareAncAndSwap)
circ.measure(anc[anc_offset + i], cl_anc[anc_offset + i])

if (measurement == True):
circ.measure(anc[anc_offset + k - 2], cl_anc[anc_offset + k - 2])

return circ

S.2 Example of Usage
In the following we show an example of usage, how to prepare a generalized 4-dimensional Dicke
state with 𝑞 = 2. Feel free to change the initial state by adjusting the parameter ℓ1, ℓ2 and ℓ3.

[4]: n = 4
k = 4
ell_1 = 2
ell_2 = 0
ell_3 = 1

if (k < ell_1 + ell_2 + ell_3):
print("You've chosen the wrong parameter!")
print("The Hamming weight of the vector is bigger than k!")

Hence we want to build an equal superposition over a set with ( 𝑛
ℓ1,ℓ2,ℓ3

) = ( 4
2,0,1) = 12 elements,

where each of the vectors has probability 1/12.

However, the number of required ancilla qubits needs to be known in advance for preparing the
Dicke state.

In proof of Theorem 12 we derived the formula: # Needed-Qubits = (𝑛 − 𝑘)𝑘 +
𝑘−1
∑
𝑖=1

𝑖.

input: 𝑛 - vector length, 𝑘 - Hamming weight

output: number of needed ancilla qubits of 𝑈𝑞⋅𝑛,𝑘

[5]: def number_anc(n,k):
result = (n-k)*(k)
for i in range(k):

result += i
return result

Prepare the initial state |𝑥⟩ according to the parameter ℓ1, ℓ2, ℓ3.



[6]: init = ''
for i in range(n - ell_1 - ell_2 - ell_3):

init += '00'
for i in range(ell_1):

init += '01'
for i in range(ell_2):

init += '10'
for i in range(ell_3):

init += '11'

Build the test circuit:

(1) Prepare the needed quantum register for the Dicke state qr and for the ancilla qubits anc,
as well as the corresponding classical register cl_qr and cl_anc for the measurement at the
end.

(2) Apply the unitary 𝒰2⋅4,4 = (𝑆𝐶𝑆𝑞⋅2,1 ⊗ 𝐼𝑑⊗4) ⋅ (𝑆𝐶𝑆𝑞⋅3,2 ⊗ 𝐼𝑑⊗2) ⋅ 𝑆𝐶𝑆𝑞⋅4,3 (Lemma 7) to
prepare the Dicke state |𝒟2⋅4

ℓ1,ℓ2,ℓ3
⟩.

Again, our test circuit provides a boolean parameter measurement to turn the measurement of qr
and anc on and off.

[7]: def build_circuit(measurement):
qr = QuantumRegister(2*n, 'qr')
anc = QuantumRegister(number_anc(n,k), 'anc')
# Classical register for measurements
cl_qr = ClassicalRegister(2*n, 'c-qr')
cl_anc = ClassicalRegister(number_anc(n,k), 'c-anc')
circ = QuantumCircuit(qr, anc, cl_qr, cl_anc)
# Intialize the register qr with init = |x>.
circ.initialize(init, qr[:])
# Set anc_offset
anc_offset=0
for i in range(n-1):

circ = SCS(n-i, np.minimum(k+1, n-i),circ, qr, anc, cl_anc, 2*i,␣
↪anc_offset, 2, measurement=measurement)

# Update anc_offset, and use "fresh" ancilla qubits in the next␣
↪iteration

anc_offset += np.minimum(k, n-1-i)
if (measurement == True):

for i in range(2*n):
circ.measure(qr[i],cl_qr[i])

return circ

S.2.1 Build the Circuit and Compute the Statevector

[8]: circ = build_circuit(measurement = False)



[9]: circ.draw('mpl', cregbundle = True, reverse_bits=False, scale=0.8, style = "bw")

[9]:

[10]: state = Statevector.from_int(0, 2**(2*n+number_anc(n,k)))
state = state.evolve(circ)
state_to_latex = state_visualization._state_to_latex_ket(state.data, max_size =␣

↪256)
Latex("$" + state_to_latex + "$")

[10]: √
6

12 |00000011010100⟩ +
√

6
12 |00010011010001⟩ +

√
6

12 |00011011010001⟩ +
√

6
12 |00011101010011⟩ +√

6
12 |01000011010100⟩ +

√
6

12 |01010011000101⟩ +
√

6
12 |01011011000101⟩ +

√
6

12 |01011101000111⟩ +√
6

12 |01100001011100⟩ +
√

6
12 |01110001001101⟩ +

√
6

12 |01111001001101⟩ +
√

6
12 |01111101000111⟩ +√

6
12 |10000001110100⟩ +

√
6

12 |10010001110001⟩ +
√

6
12 |10011001110001⟩ +

√
6

12 |10011101010011⟩ +√
6

12 |11000001110100⟩ +
√

6
12 |11010000110101⟩ +

√
6

12 |11011000110101⟩ +
√

6
12 |11011100010111⟩ +√

6
12 |11100001011100⟩ +

√
6

12 |11110000011101⟩ +
√

6
12 |11111000011101⟩ +

√
6

12 |11111100010111⟩
The result register contains the quantum register qr and anc so that we can ignore the first 6 qubits
in each term. We are only interested in the last 8 qubits which contains the Dicke state (in qr).
Each of the vectors - containing (ℓ𝑖) many 𝑖-entries, 𝑖 = 1, 2, 3 - is twice in the state, so each of this



vectors has - as expected - the amplitude √(
√

6
12 )2 + (

√
6

12 )2 =
√

12
12 = 1√

12 and the probability 1
12 .

S.2.2 Build the Circuit and Measure the Statevector
Note that the result of the experiment is not “perfect”, since we can not run the circuit infinitely
often.

[11]: circ = build_circuit(measurement = True)

[12]: circ.draw('mpl', cregbundle = True, reverse_bits=False, scale=0.8, fold = 32,␣
↪style = "bw")

[12]:

The following code snippet builds and measures the circuit 25,000 - times. Again, the result contains
the quantum register qr and anc and we only consider the last 8 qubits which contains the Dicke
state. Each of the vectors - containing (ℓ𝑖) many 𝑖-entries, 𝑖 = 1, 2, 3 - is twice in the histogram, so
each of this vectors has - as expected - the (quasi-)probability 1

12 ≈ 0.0833.

[13]: # shots - number of experiment repetitions:
job = execute(circ, backend=Aer.get_backend('qasm_simulator'), shots=25000)
result = job.result()
count = result.get_counts(circ)
plot_distribution(count, figsize=(8,2), bar_labels=False)

[13]:
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