
Provably Secure Approximate Computation Protocols
from CKKS

Intak Hwang1 , Yisol Hwang1 , Miran Kim2 , Dongwon Lee1 , and Yongsoo Song1

1 Seoul National University
{intak.hwang, yisol.hwang, dongwonlee95, y.song}@snu.ac.kr

2 Hanyang University, Republic of Korea
miran@hanyang.ac.kr

Abstract. Secure multi-party computation (MPC) enables collaborative, privacy-preserving com-
putation over private inputs. Advances in homomorphic encryption (HE), particularly the CKKS
scheme, have made secure computation practical, making it well-suited for real-world applications
involving approximate computations. However, the inherent approximation errors in CKKS present
significant challenges in developing MPC protocols.
This paper investigates the problem of secure approximate MPC from CKKS. We first analyze
CKKS-based protocols in two-party setting. When only one party holds a private input and the
other party acts as an evaluator, a simple protocol with the noise smudging technique on the
encryptor’s side achieves security in the standard manner. When both parties have private inputs,
we demonstrate that the protocol incorporating independent errors from each party achieves a
relaxed standard security notion, referred to as a liberal security. Nevertheless, such a protocol fails
to satisfy the standard security definition. To address this limitation, we propose a novel protocol
that employs a distributed sampling approach to generate smudging noise in a secure manner, which
satisfies the standard security definition.
Finally, we extend the two-party protocols to the multi-party setting. Since the existing threshold
CKKS-based MPC protocol only satisfies the liberal security, we present a novel multi-party protocol
achieving the standard security by applying multi-party distributed sampling of a smudging error.
For all the proposed protocols, we formally define the functionalities and provide rigorous security
analysis within the simulation-based security framework. To the best of our knowledge, this is the
first work to explicitly define the functionality of CKKS-based approximate MPC and achieve formal
security guarantees.

Keywords: Secure Approximations, Homomorphic Encryption, Multi-party Computation, CKKS

1 Introduction

Homomorphic Encryption (HE) is a cryptographic scheme that allows computations to be performed
directly on encrypted data without requiring decryption. It has emerged as one of the privacy-enhancing
techniques due to its simplicity, versatility, and communication-efficiency. This capability enables secure
outsourcing of computation, allowing clients to leverage the computational resources of an untrusted third
party while preserving data privacy.

In a typical two-party HE-based protocol, the client acts as the key owner, while the server as the eval-
uator. This framework can be applied to any two-party computation tasks, such as genomic analysis [20],
secure inference [15, 21] and privacy-preserving machine learning [26]. In the multi-party setting, HE-
based protocols have been widely adopted across various domains, including privacy-preserving federated
learning [13,18,30].

Among various HE schemes, the CKKS scheme [8] has garnered significant attention due to its support
for fixed-point arithmetic in an approximate manner, making it particularly suitable for privacy-preserving
computations involving real-number operations. However, an inherent characteristic of CKKS poses major
challenges in constructing CKKS-based secure multi-party computation (MPC) protocols for approximate
computation. Specifically, in CKKS, the error from approximate computation is entangled with the error
introduced for security. So, it is not straightforward to apply cryptographic techniques such as circuit

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

2 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

privacy or noise smudging [10, 19, 31, 33, 35], which are commonly used in MPC protocols based on
traditional exact HE schemes. Since these techniques can change plaintext values, they can directly
impact the functionality of the protocol, making it non-trivial to define functionalities and address security
concerns that do not arise in other HE schemes.

Most of all, the security of an underlying HE scheme is typically analyzed in terms of indistinguishability-
based security notion (e.g., indistinguishability under chosen plaintext attacks or its stronger notion with
a decryption oracle [27]). However, achieving security in approximate MPC protocols requires us to inves-
tigate simulation-based security framework beyond the indistinguishability security notion. As a result, to
the best of our knowledge, there is no existing work to explicitly define the functionality of CKKS-based
approximate MPC protocols or provide a formal security analysis.

1.1 Our Contribution

In this paper, we investigate various approximate MPC protocols, formally demonstrate their functionali-
ties, and analyze security guarantees and limitations. Specifically, we are focus on CKKS-based protocols
that compute a public circuit C on private inputs xi and return an approximate result ẑ of the exact
computation z = C(x1, . . . , xn) to all (or a designated subset of) parties.

At a high level, we consider two main scenarios: (1) a client-server asymmetric two-party computation
(2PC) model and (2) symmetric MPC among multiple parties. From a security perspective, we explore
both the standard MPC security definition [16] and a weaker notion called liberal security [12]. More
specifically, under the standard definition, the simulator must reconstruct the view of an adversary A using
only its input (xi)i∈A and output ẑ. In contrast, under the liberal definition, the simulator is additionally
provided with the exact output value z = C(x1, . . . , xn). Roughly speaking, the liberal definition implies
that the adversary learns no more than z beyond its intended output ẑ from the protocol, making it a
weaker security notion than the standard definition. However, in certain use cases, this weaker definition
enables more efficient protocols while still providing sufficient security guarantees. For further details, see
Section 3.

Within the 2PC setting, we further distinguish between simple and general cases. In this scenario,
only the client holds a private input, while the server acts solely as an evaluator of a public circuit. We
demonstrate that a secure protocol satisfying standard security can be constructed using a simple noise
smudging technique applied on the client side. While this approach provides a straightforward solution,
its functionality is limited to evaluating a public circuit that the client could, in principle, compute alone.
As a result, this case is theoretically less interesting and offers limited practical implications.

In the general case, both the client and the server hold private inputs and security considerations
become significantly more challenging. For this case, we propose two protocols. In the first protocol, each
party independently applies noise smudging. This approach is more efficient but only satisfies the liberal
security definition. To achieve standard security, we introduce a second protocol that incorporates an
additional distributed smudging sampling process.

Similarly, in the multi-party setting, we show that the approach where each party adds a smudging
error during decryption and merges the results only satisfies the liberal security definition but does not
achieve standard security. However, by utilizing distributed smudging error sampling, we demonstrate
that it is possible to construct an MPC protocol that satisfies standard security.

Finally, for all the proposed protocols, we explicitly define their functionalities and provide formal
security proofs to rigorously establish their correctness and security guarantees.

1.2 Technical Overview

Below we present our main ideas and results in more detailed level, and provide a road-map.

Section 4: Two-Party Computation. We mainly propose three protocols for different scenarios and
security notions.

1. Section 4.1: Simple case - standard security
When only the client holds a private input, we demonstrate a secure protocol satisfying standard

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 3

security. On receiving the resulting ciphertext from the server after homomorphic evaluation, the
client decrypts it and adds a smudging error which is much larger than the (unknown) error induced
from approximate operations of CKKS. Then, the client may or may not share the output with the
server. Notably, this scenario is closely related to recent studies on IND-CPAD attacks [27] and their
mitigation strategies [28].

2. Section 4.2: General case - liberal security
When both the client and the server have private inputs, using noise smudging on the client side or
ciphertext randomization on the server side (which involves adding a random encryption of zero with
a smudging error) alone is insufficient to achieve a secure protocol. However, we demonstrate that
by integrating both techniques, it is possible to construct an efficient protocol satisfying the liberal
security. However, this protocol does not achieve the standard security.

3. Section 4.3: General case - standard security
We discuss why the previous protocol fails to satisfy standard security and conclude that if one party
gains too much (a non-negligible amount of) information about the smudging error, constructing
a simulator for this party’s view becomes infeasible. To overcome this issue, we introduce an addi-
tional distributed smudging error sampling functionality. This functionality samples an error from
the smudging distribution, generates a random additive share of the error, and distributes one share
to each party. In the actual protocol, after performing homomorphic evaluation, the server adds its
share, while the client adds its own share and decrypts the result, obtaining an approximation with
the smudging error added. Since both parties gain no knowledge of the smudging error, the proto-
col satisfies stronger security requirements. Furthermore, we demonstrate that the functionality of
distributed smudging error sampling can be implemented efficiently using oblivious transfer.

Section 5: Multi-Party Computation. In the multi-party setting where all parties act in a symmetric
manner, we present two protocols for different security notions.

1. Section 5.1: Liberal security
Several studies have explored the construction of multi-party protocols using CKKS, following a
similar distributed decryption approach in which each party independently samples a smudging error,
adds it to its partial decryption, and then merges the results. However, to the best of our knowledge,
no prior work has formally defined the functionality of these protocols or provided a rigorous security
proof. In this work, we formally define their functionality and demonstrate that they satisfy liberal
security.

2. Section 5.2: Standard security
Similar to the 2PC case, the above MPC protocol does not satisfy the standard security notion.
However, we show that by incorporating multi-party distributed sampling of a smudging error, the
protocol can be also modified to achieve standard security.

1.3 Related Works

In a standard HE-based 2PC protocol, there are two entities: the client who acts as the encryptor and
decryptor, and the server who serves as the evaluator. To mitigate threats to client privacy, the noise
smudging (flooding) technique [14,35] has been employed to ensure that a semi-honest adversary cannot
obtain any secret information from a result ciphertext. In the context of approximate HE schemes, a sim-
ilar approach to noise smudging is used, where a calibrated amount of noise is added to accommodate the
worst-case error growth during homomorphic computation [28]. Meanwhile, several studies have explored
circuit privacy and sanitization techniques to ensure the privacy of evaluator (e.g., [2,11,14,23]). A com-
mon approach is to randomize the resulting ciphertext after homomorphic evaluation, thereby eliminating
any unnecessary information except for the underlying plaintext. However, a direct application of this
approach to a CKKS-based protocol does not guarantee security, as it remains vulnerable to key-recovery
attacks [27]. To the best of our knowledge, there is no existing work to address the privacy of both the
client and the server, and it is not clear how to construct a secure 2PC protocol based on approximate
HE schemes using these cryptographic techniques.

4 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

While the standard (single-key) CKKS scheme supports homomorphic operations only between ci-
phertexts encrypted under the same key, several variants have been proposed to extend CKKS for MPC,
including threshold CKKS [1,33,34], multi-key CKKS [6,22], and multi-group CKKS [24]. Furthermore,
several studies [13,33,34] have explored privacy-preserving MPC over approximate values using the thresh-
old CKKS scheme. In the threshold setting, decryption is carried out in a distributed manner, where each
key owner publishes a partial decryption result of the evaluated ciphertexts. In all previous works, each
party introduces independent auxiliary noise into its partial decryption to prevent noise leakage. However,
none of these studies explicitly define the functionality of the MPC protocol or provide a formal security
proof - a gap that will be discussed in Section 5.

2 Preliminaries

2.1 Notations

We use bold lower-case letters to denote column vectors. Given an integer n ∈ N, we denote by [n] the set
{i ∈ N | 1 ≤ i ≤ n}. Let n be a power of two and q be an integer. We denote by R = Z[X]/(Xn + 1) the
ring of integers of the 2n-th cyclotomic field and Rq = Zq[X]/(Xn + 1) the residue ring of R modulo q.
We denote sampling x from the distribution D by x← D. For distributions D1 and D2 over a countable
set S (e.g. Zn), the statistical distance between D1 and D2 is defined as 1

2 ·
∑

x∈S |D1(x)−D2(x)| ∈ [0, 1].
We denote the uniform distribution over S by U(S) when S is finite. For a vector x in Rn or Cn and for
p ∈ [1,∞], we define the ℓp norm as ∥x∥p = (

∑
i∈[n] |xi|p)1/p when p <∞ and ∥x∥∞ = maxi∈[n]{xi}. We

also define a smudging distribution as follows.

Definition 1. Let E > 0 be a constant. A distribution D over R is called a E-smudging distribution if
D and e+D are statistically indistinguishable for any e ∈ R such that ∥e∥ ≤ E.

2.2 The CKKS Scheme

HE is an encryption scheme that enables certain operations to be performed on encrypted data without
decryption. Since Gentry’s breakthrough [14], various HE schemes based on the (Ring) Learning with
Errors (LWE/RLWE) assumption have been proposed, including BGV [5], BFV [3, 4], CKKS [8], and
THE [9]. Among these, the CKKS scheme has received significant attention due to its support of fixed-
point arithmetic in an approximate manner. In CKKS, the message space and the plaintext spaces are
defined as CN/2 and R = Z[X]/(XN+1) for a power-of-two N , respectively. This structure allows multiple
values to be encrypted into a single ciphertext, enabling efficient computations in a Single Instruction
Multiple Data (SIMD) manner.

• CKKS.Setup(1λ): Set the ring degree N , the special modulus P and the ciphertext modulus Q, the key
distribution χ over R, and the error parameter σ. Choose a gadget decomposition h : RQ → Rℓ with a
gadget vector g ∈ Rℓ

Q. Output the parameter set pp = (N,P,Q, χ, σ, h,g).

• CKKS.KeyGen(pp): Sample s ← χ, a $← RQ and e ← Dσ. Set the secret and public keys as sk = s and

pk = (b, a) ∈ R2
Q where b = −s · a + e (mod Q). Sample k1

$← Rℓ
Q and e ← Dℓ

σ, and set the evaluation
key as evk = (k0,k1) ∈ Rℓ×2

Q where k0 = −s · k1 + e+ s2 · g (mod Q). Return sk, pk and evk.

• CKKS.Encode(∆;m): Given a scaling factor ∆ and a message vector m = (m1, . . . ,mN/2) ∈ CN/2, return
a plaintext µ = ⌊∆ · p⌉ ∈ R where p ∈ R[X]/(XN

+ 1) is a real polynomial such that p(ζi) = mi and p(ζi) = mi for 1 ≤ i ≤ N/2.

• CKKS.Decode(∆;µ): Given µ ∈ R, return m =
(

µ(ζ1)
∆ , . . . ,

µ(ζN/2)

∆

)
.

• CKKS.Enc(pk;µ): Sample w ← χ and e0, e1 ← Dσ. Given an encoding µ ∈ R, output the ciphertext
ct = w · pk+ (µ+ e0, e1) (mod Q).

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 5

• CKKS.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
Q, output ctadd = ct+ ct′ (mod Q).

• CKKS.Mult(evk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

Q and the relinearization
key evk ∈ Rℓ

PQ, let (d0, d1, d2) such that d0 = c0c
′
0 (mod Q), d1 = c0c

′
1 + c′0c1 (mod Q), and d2 = c1c

′
1

(mod Q). Output the ciphertext

ctmul = (d0, d1) + (⌊⟨h(d2),k0⟩ /P ⌉ , ⌊⟨h(d2),k1⟩ /P ⌉) (mod Q).

• CKKS.Rescale(∆; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q, return ct′ = (

⌊
∆−1c0

⌉
,
⌊
∆−1c1

⌉
) ∈ R2

Q′ ,
where Q′ = Q/∆.

• CKKS.Dec(sk; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q and associated secret key sk = s, return

µ = c0 + c1 · s (mod Q).
For simplicity, we assume that the public key also includes the evaluation key throughout the paper.

Throughout the paper, we denote qout as an ciphertext modulus of the output ciphertext.

Correctness. The correctness of approximate HE schemes such as CKKS, can be defined as that the
error in the evaluated ciphertext can be efficiently bounded depending on the evaluation circuit and the
bounds of the input messages. We can formalize it as follows.

Definition 2 (Approximate Correctness). Let Π be an HE scheme with a message spaceM and L be
a space of circuits. For a subset of circuits with k input wires Lk ⊆ L, let Estimate : ∪k∈NLk×Rk

≥0 → R≥0

be an efficiently computable function, denoted as an error estimator of Π. We say that (Π,Estimate)
satisfies approximate correctness if for all k ∈ N, for all C ∈ Lk, for all (sk, pk) ← KeyGen(1λ), if cti is
an encryption of the message mi such that ∥mi∥∞ ≤ Bi (for i ≤ k), then

∥Decsk(Evalpk(C, ct1, . . . , ctk))− C(m1, . . . ,mk)∥∞ ≤ Estimate(C, {Bi}i≤k).

Security. We first recall the standard security notion of indistinguishability under chosen plaintext attack
(IND-CPA) for HE schemes. The IND-CPA security implies that an adversary cannot distinguish between
encryptions of different messages, even after seeing encryptions of chosen plaintexts.

Definition 3 (IND-CPA Security). Let Π = (KeyGen, Enc, Dec, Eval) be an HE scheme. The IND-CPA
game is defined as an indistinguishability game parameterized by distribution ensembles {Eb

θ}θ for b = 0 or
1, as described in Alg. 1. We say that the HE scheme Π is IND-CPA secure, if any probabilistic polynomial-
time adversary A has a negligible advantage AdvIND-CPA(A) against IND-CPA security defined as:

|2 · Pr[b = b′|b $← {0, 1}, b′ ← A(pk, Enc(b)]| − 1.

In the context of HE, IND-CPA security is typically guaranteed by the hardness of the LWE [36]
and Ring-LWE [32] problems. Li and Micciancio [27] demonstrated that the traditional formulation of
IND-CPA security does not adequately capture the security of approximate encryption schemes, including
the CKKS scheme, especially in scenarios where the decryption results are shared with external parties.
To address this, they introduced a new security model called IND-CPAD security, which provides the
adversary A with access to a decryption oracle that decrypts ciphertexts derived from encryption and
evaluation of messages of A’ choice. This is formally defined by granting the adversary access to three
types of oracles: encryption (Eb

pk), evaluation (Hb
evk), and decryption (Db

pk), as described in Alg. 1. Note
that decryption queries are restricted on ciphertexts generated by the encryption and evaluation oracle,
ensuring that only properly formed ciphertexts are decrypted. The definition of the IND-CPAD security
is described in Def. 4.

Definition 4 (IND-CPAD Security [27]). Let Π = (KeyGen, Enc, Dec, Eval) be an HE scheme. The
IND-CPAD game is defined as an indistinguishability game parameterized by distribution ensembles {Eb

θ, H
b
θ , D

b
θ}θ

for b = 0 or 1 of Alg. 1. We say that the HE scheme Π is IND-CPAD secure, if any probabilistic polynomial-
time adversary A has a negligible advantage AdvIND-CPA(A) against IND-CPAD security defined as:

|2 · Pr[b = b′|b $← {0, 1}, b′ ← A(pk, Enc(b))]| − 1.

6 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

Algorithm 1 Oracles for the IND-CPAD game.

Initialize
(sk, pk)← KeyGen(1λ)

global state
S ← ∅
i← 0

Encryption oracle Eb
pk(m0,m1) :=

ct← Encpk(mb)
S[i]← (m0,m1, ct)
i← i+ 1
return ct, i

Evaluation oracle Hb
evk(g,JJJ = (ji, . . . , jk), S) :=

ct← Evalevk(g, S[j1].ct, . . . , S[jk].ct)
g0 ← g(S[j1].m0, . . . , S[jk].m0)
g1 ← g(S[j1].m1, . . . , S[jk].m1)
S[i]← (g0, g1, ct)
i← i+ 1
return ct, i

Decryption oracle Db
sk(j) :=

if S[j].m0 = S[j].m1

return Decsk(S[j].ct)
else

return ⊥

Recent studies have explored the notion of IND-CPAD security. Li et al. [28] present a method for
transforming an IND-CPA secure approximate HE scheme into an HE scheme that achieves IND-CPAD

security. Similar to the noise smudging technique, they propose adding a specific amount of noise, tailored
to the worst-case error growth during homomorphic computation. Guo et al. [17] introduce new key-
recovery attacks on approximate HE schemes that employ noise-smudging countermeasures based on non-
worst-case noise estimation. Recently, Cheon et al. [7] extend key-recovery attacks beyond approximate
HE schemes to exact HE schemes. Their attack is based on the imperfect correctness of decryption in
real-world implementations of exact HE schemes.

Threshold CKKS. While the standard (single-key) CKKS scheme supports homomorphic operations
only between ciphertexts encrypted under the same key, several variants of CKKS for multiple parties
have emerged, such as threshold CKKS [1,33,34], multi-key CKKS [6,35], and multi-group CKKS [24].

As a typical example, we describe a threshold CKKS scheme, especially n-out-of-n threshold scheme,
for the simplicity. In (n-out-of-n) threshold CKKS, multiple parties collaboratively generate a shared
public key and receive additive share of the shared secret key as illustrated in Fig. 1. Homomorphic
operations are performed in the same manner as in the single-key CKKS scheme using the shared public
key while a decryption is carried out in a distributed manner. By incorporating techniques such as
Shamir’s secret sharing or short secret sharing, the scheme can employs a t-out-of-n access structure,
allowing any subset of at least t parties to reconstruct the secret key and decrypt the ciphertext.

Functionality FThKeyGen

Setup:
Let pp be a public parameter for CKKS.

1. Generate (sk, pk)← KeyGen(1λ).
2. For 1 ≤ i ≤ n− 1, sample ski

$← Rq.
3. Let skn := sk−

∑n−1
i=1 ski (mod q).

4. Output (ski, pk) to Pi for 1 ≤ i ≤ n.

Fig. 1. Functionality of distributed (threshold) key generation

3 Secure Multi-party Computation of Approximations

Secure MPC protocol enables multiple parties to jointly evaluate a computational circuit over their
respective inputs while ensuring that no information about individual inputs is revealed to any other party.

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 7

These protocols have been widely applied in various domains, including privacy-preserving federated
learning [13, 18, 30]. In many such applications, approximate arithmetic is often employed instead of
exact arithmetic over discrete data. As a result, the development of secure protocols for approximate
computation in multi-party settings has emerged as a significant research challenge. To formally define
the security of these MPC protocols, the simulation-based security model ensures that any information a
corrupted party obtains during protocol execution can be efficiently simulated in an ideal model, wherein
a trusted third party performs the computation. Consequently, this security guarantee ensures that an
adversary gains no additional advantage beyond what would be possible in the ideal setting. The work
of [12] not only formalized the standard definition of general MPC, as established in many studies [16,29],
but also introduced a more relaxed security definition tailored for approximate secure computation. In
the following sections, we present these definitions in detail and highlight the distinctions between them.

3.1 Standard Definition

We designate some notations to define a secure MPC. Let n be a number of parties and let f : ({0, 1}∗)n →
({0, 1}∗)n be a (n-ary) probabilistic polynomial-time functionality. We denote xxx = (x1, . . . , xn) and
f(xxx) = (f1, . . . , fn), where xi and fi correspond to the party Pi. Although a single party may have multiple
inputs, throughout the paper, we assume that each party Pi has only one input xi for simplicity. For a MPC
protocol Π to compute the functionality f on input xxx, the view of Pi is denoted by viewΠ

i (xxx) and defined
as the tuple of its input, randomness, and all messages received from other parties. We denote the output
of Pi from the execution of Π on input xxx by outputΠi (xxx), and outputΠ(xxx) = (outputΠ1 (xxx), . . . , outputΠn (xxx)).
We assume that the protocol proceeds in synchronous rounds, where in each round, each party sends a
message based on its input, random input, and previously received messages. At the end of each round,
parties may terminate and output some value based on their entire view, including their input, random
input, and received messages. The definition of the secure MPC is as follows.

Definition 5 (Secure Multi-party Computation [16]). Let Π be an n-party protocol for computing
a functionality f = (f1, . . . , fn). For a set of indices I ⊆ {1, . . . , n}, we denote fI(xxx) = (fi(xxx))i∈I

and viewΠ
I (xxx) = (viewΠ

i (xxx))i∈I . We say that Π securely computes f under the presence of semi-honest
adversaries if there exists probabilistic polynomial-time algorithms SimΠ such that for every I ⊆ {1, . . . , n}
and xxx, the following holds.

{SimΠ(I, (xi)i∈I , fI(xxx)), f(xxx)} ≈c {viewΠ
I (xxx), outputΠ(xxx)}.

The above privacy requirement asserts that the joint distribution of the simulator’s output and the
functionality’s output should be indistinguishable from the view of the corrupted party and the out-
puts of parties. This requirement is particularly meaningful when the functionality is probabilistic, as it
guarantees that the adversary does not obtain any additional information about the output.

3.2 Liberal Definition

Freigenbaum et al. [12] introduces a liberal security definition for secure approximations by extending
the standard definition of secure computation. To formulate the definition of secure approximation, they
first propose the notion of functional privacy for a target (deterministic) function. Informally, we say that
f̂ is a (possibly randomized) functionally private approximation of f if the output of f̂ does not reveal
more information about its input than f . To be precise, f̂ is functionally private with respect to f if
there exists a probabilistic polynomial-time sampling algorithm S such that the distribution S(f(xxx)) is
indistinguishable from f̂(xxx) for every input xxx. According to [12], a protocol for f is a secure approximation
protocol if it securely computes f̂ , where f̂ is functionally private with respect to f .

Intuitively, their liberal definition of secure approximations ensures that no additional information is
revealed during computation. This definition requires not only that computing the approximate output
does not reveal more about other party’s inputs and outputs than the approximate output but also that
the approximate output does not reveal more information about other party’s inputs and outputs than the

8 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

exact output does. More formally, there exist probabilistic polynomial-time algorithms that can simulate
the joint distribution of the corrupted party’s view and the uncorrupted party’s output. Although this
definition is formulated for the special case of 2PC, it can be simply extended to the multi-party setting,
as described in Def. 6.

Definition 6 (Secure Multi-party Approximation: Liberal Definition [12]). Let f be a deter-
ministic functionality and f̂ = (f̂1, . . . , f̂n) be a functionally private approximation of f = (f1, . . . , fn).
Let X be the set of all valid inputs xxx = (x1, . . . , xn). For a set of indices I ⊆ {1, . . . , n}, we denote
f̂I(xxx) = (f̂i(xxx))i∈I and viewΠ

I (xxx) = (viewΠ
i (xxx))i∈I . We say that a protocol Π securely computes f̂ under

the presence of semi-honest adversaries if there exist probabilistic polynomial-time algorithms SimΠ such
that for every I ⊆ {1, . . . , n} and xxx, the following holds.

{(SimΠ(I, (xi)i∈I , fI(xxx), f̂I(xxx)), f̂J(xxx))} ≈c {(viewΠ
I (xxx), outputΠJ (xxx))},

where J = {1, . . . , n}\I, f̂J(xxx) = (f̂j(xxx))j∈J , and outputΠJ (xxx) = (outputΠj (xxx))j∈J .

Unlike the standard security definition, the liberal security definition allows the adversary in the ideal
world to interact with a trusted third party that computes the exact value of the function f . In contrast,
the standard definition restricts the adversary to obtaining only a functionally private approximation
f̂ . This distinction implies that, under the liberal security definition, the adversary cannot gain any
additional information beyond the exact deterministic output of f . For a more detailed discussion, we
refer to [12].

4 Secure Approximate Two-party Computation from CKKS

In recent years, HE has emerged as one of the most promising technologies for enabling secure computa-
tion, thanks to its conceptual simplicity, versatility, and significant recent advancements in performance.
In particular, extensive research has focused on designing secure MPC protocols using exact HE tech-
niques (e.g., [10, 19,31,33,35]).

On the other hand, the CKKS scheme is an HE scheme specifically designed for efficient approximate
computations and has been widely adopted in various applications, including privacy-preserving machine
learning. However, CKKS possesses a unique characteristic due to its inherent design, in which the noise
introduced by the scheme is treated as part of the plaintext. Unfortunately, this property makes it
significantly more challenging to accurately define functionalities and introduces security concerns that
do not arise in other HE schemes. Consequently, only a few studies (e.g., [13, 25]) have explored the
construction of MPC protocols for approximate computation. Moreover, to the best of our knowledge, all
existing works either fail to explicitly define the functionality or lack formal security proofs.

From a more technical perspective, when constructing MPC protocols using traditional exact HE
schemes [4,5], various techniques, such as noise smudging, are employed to enhance security. However, it
remains unclear whether these techniques can be directly applied to protocols based on CKKS. Further-
more, security-enhancing techniques may change plaintext values, ultimately affecting the functionality
of the protocol. As a result, CKKS-based protocols face the unique challenge of ensuring both correctness
and security concerns simultaneously.

The ultimate goal of this work is to classify CKKS-based multi-party protocols, formally describe
their functionalities and study their security guarantees. In this section, we begin by exploring a primary
application scenario of HE in constructing asymmetric 2PC protocols between a client and a server, where
the client acts as the key owner and the server as the evaluator.

In Section 4.1, we focus on the simplest case in which only the client has a private input. Sections
4.2 and 4.3 will cover a more general scenario, each considering liberal and standard security notions,
respectively.

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 9

4.1 Construction of Simple 2PC of Approximations

We begin with a simple scenario in which only the client has private input x, while the server behaves as
an evaluator of a public circuit C. At the end of the protocol, the client obtains an approximate value
of C(x), while the server learns nothing. Or, the client may share the result with the server so that both
parties have the same output. The ideal functionality is described in Fig. 2.

Functionality FSimpApp2PC (or F ′
SimpApp2PC)

Setup:
Let C be an evaluation circuit and D be an error distribution. The functionality receives x from P1 (the
client) but nothing from P2 (the server).

1. Compute z := C(x).
2. Sample e← D and let ẑ := z + e.
3. Output ẑ to both P1 and P2 (or only to P1).

Fig. 2. Functionality of simple 2PC of approximations

Our construction for the simple 2PC case has limited practical applicability to real-world scenarios,
as the client can perform the computation on their own data in plaintext. Nevertheless, we note that it
still has practical applications, such as Private information retrieval (PIR).

In the following, we demonstrate a folklore that the functionality FSimpApp2PC (or F ′
SimpApp2PC) can

be realized from an approximate HE such as CKKS for sufficiently large error distribution D. To be
precise, the standard HE-based 2PC protocol, where the client and server act as a key owner and an
evaluator, respectively, can securely realize the desired functionality using the noise smudging technique.
Fig. 3 illustrates the protocol ΠSimpApp2PC (or Π ′

SimpApp2PC) to achieve the desired functionality.

Protocol ΠSimpApp2PC (or Π ′
SimpApp2PC)

1. P1 generates a key pair (sk, pk)← KeyGen(1λ) and ctin ← Encpk(x). Then P1 sends (pk, ctin) to P2.
2. P2 computes ctout ← Evalpk(C, ctin) and sends ctout to P1.
3. P1 decrypts z′ := Decsk(ctout), samples e← D, and computes ẑ := z′ + e.
4. In ΠSimpApp2PC, P1 sends ẑ to P2, and both parties output ẑ.

In Π ′
SimpApp2PC, P1 outputs ẑ while P2 outputs nothing.

Fig. 3. Simple 2PC protocols of approximations

Theorem 1. Let CKKS = (Setup, KeyGen, Enc, Dec, Eval) be a CKKS scheme with respect to an error
estimator Estimate. For a plaintext x and a circuit C, suppose that ∥x∥∞ ≤ B for some B > 0 and let
E := Estimate(C,B). If CKKS is IND-CPA secure and D is an E-smudging distribution, then the 2PC
protocol ΠSimpApp2PC (or Π ′

SimpApp2PC) securely realizes the functionality FSimpApp2PC (or F ′
SimpApp2PC,

respectively).

Proof. Let us first show the correctness of Π ′
SimpApp2PC. Let z := C(x) and let z′ := Decsk(ctout) be the

decryption of the resulting ciphertext. By the definition of the function Estimate, we have z′ = z + eout
for some eout ∈ R such that ∥eout∥∞ ≤ E. Thus, the distribution of the output ẑ = z′ + e = z+ (eout + e)
with e← D is statistically indistinguishable from the distribution of the output z+ e in the functionality
F ′

SimpApp2PC, since D is an E-smudging distribution. The correctness of ΠSimpApp2PC can be shown in a
similar way.

10 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

To prove the security of Π ′
SimpApp2PC, we first consider a corrupted client P1. The simulator Sim1SimpApp2PC(x, ẑ)

for P1’s view is illustrated in Fig. 4. It follows the real protocol Π ′
SimpApp2PC up to the point where it com-

putes z′ by decrypting ctout, but the only difference is that the smudging error is computed as e = ẑ− z′,
instead of sampling it from D.

Simulator Sim1SimpApp2PC(x, ẑ)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(x).
2. Compute ctout ← Evalpk(C, ctin).
3. Compute z′ := Decsk(ctout) and e := ẑ − z′.
4. Output (x, sk, pk, ctin, ctout, e).

Fig. 4. Simulator for an adversarial client in protocol Π ′
SimpApp2PC

As mentioned in the correctness proof, the decrypted result z′ = Decsk(ctout) in the real protocol
is z′ = z + eout for some ∥eout∥∞ ≤ E, and the output can be written as ẑ = z′ + e = z + eout + e.
Therefore, the simulator Sim1SimpApp2PC(x, ẑ) satisfies the desired condition under the assumption that D
is an E-smudging distribution:

{(viewΠ′
SimpApp2PC

1 (x), outputΠ
′
SimpApp2PC(x))}

≡{((x, sk, pk, ctin, ctout, e), (z′ + e,⊥)) | e← D}
≈s{((x, sk, pk, ctin, ctout, e− eout), (z

′ + e− eout,⊥)) | eout := z′ − z, e← D}
≡{((x, sk, pk, ctin, ctout, (z + e)− z′), (z + e,⊥)) | e← D}
≡{(Sim1SimpApp2PC(x, ẑ), (ẑ,⊥)) | (ẑ,⊥)← F ′

SimpApp2PC(x)},

where (sk, pk) ← KeyGen(1λ), ctin ← Encpk(x), ctout ← Evalpk(C, ctin), z = C(x), and z′ = Decsk(ctout).
The same simulator can be used to prove the security of ΠSimpApp2PC since P1’s view is identical in both
protocols.

Next, we construct the simulators Sim2SimpApp2PC(ẑ) and Sim2
′
SimpApp2PC(⊥) to simulate P2’s view in

ΠSimpApp2PC and Π ′
SimpApp2PC, respectively. Sim2′SimpApp2PC(⊥) is described in Fig. 5. Then, we have:

{(viewΠ′
SimpApp2PC

2 (x), outputΠ
′
SimpApp2PC(x))}

≡{((pk, ctin), (z′ + e,⊥)) | ctin ← Encpk(x), ctout ← Evalpk(C, ctin), z
′ := Decsk(ctout), e← D}

≈s{((pk, ctin), (z + e,⊥)) | ctin ← Encpk(x), z := C(x), e← D }
≈c{((pk, ctin), (z + e,⊥)) | ctin ← Encpk(0), z := C(x), e← D }

≡{(Sim2′SimpApp2PC(⊥), (ẑ,⊥)) | (ẑ,⊥)← F ′
SimpApp2PC(x)},

as desired. The first statistical indistinguishability follows from the assumption that D is an E-smudging
distribution, while the second computational indistinguishability follows from the IND-CPA security of the
CKKS scheme. In the protocol ΠSimpApp2PC, we define Sim2SimpApp2PC(ẑ) similarly to Sim2′SimpApp2PC(⊥),
except that it appends ẑ to its simulated view. Then, it can be shown similarly that {(viewΠSimpApp2PC

2 (x), outputΠSimpApp2PC(x))}
is computationally indistinguishable from {(Sim2SimpApp2PC(ẑ), ẑ) | ẑ ← FSimpApp2PC(x)}. ⊓⊔

4.2 Construction of General 2PC of Approximations: Liberal Security

From this subsection, we further study the general functionality that approximately computes a circuit
over private inputs of both parties, which is more theoretically significant and practically useful. Although
the protocol ΠSimpApp2PC securely computes the evaluation circuit C, its practical applicability is limited

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 11

Simulator Sim2′SimpApp2PC(⊥)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(0).
2. Output (pk, ctin).

Fig. 5. Simulator for an adversarial server in protocol ΠSimpApp2PC

in real-world scenarios. In particular, if the client’s input is private but they are capable of local compu-
tation, they may prefer to evaluate the circuit on their own data in plaintext rather than outsourcing the
computation to the server. To address this scenario, we consider a more general setting where both the
client and the server provide their own inputs. In this setting, the server’s input is typically processed
in plaintext for computational efficiency. Consequently, the resulting ciphertext depends on the client’s
input ciphertext, the evaluation circuit, and the server’s plaintext input. The client can either keep its
output value ẑ to itself or send it to the server.

Insecure example protocols. We first examine some naive approaches (Fig. 6) and explain why they
fail to satisfy the security requirements. The two protocols, Π1 and Π2, follow almost the same pipeline,
and we note that they provide identical functionality of approximately computing C(x, y) with an error
sampled from a smudging distribution D.

Protocol Π1

1. P1 generates a key pair (sk, pk)← KeyGen(1λ) and encrypts ctin ← Encpk(x). P1 sends (pk, ctin) to P2.
2. P2 computes ctout ← Evalpk(C, ctin, y), and sends it to P1.
3. P1 decrypts z′ := Decsk(ctout), samples e← D, and computes ẑ := z′ + e.
4. P1 sends ẑ to P2, and both parties output ẑ.

Protocol Π2

1. P1 generates a key pair (sk, pk)← KeyGen(1λ) and encrypts ctin ← Encpk(x). P1 sends (pk, ctin) to P2.
2. P2 computes ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0), and samples e ← D. P2 computes ct′out :=

ctout + ctzero + (e, 0), and sends it to P1.
3. P1 computes ẑ := Decsk(ct

′
out) and sends it to P2. Both parties output ẑ.

Fig. 6. Insecure approximate 2PC protocols

Unfortunately, these candidate protocols are insecure (even with respect to the liberal security notion)
for different reasons. In the first example Π1, a smudging error e is sampled and added to the decrypted
value by P1. This approach may enhance the security of the protocol against an adversarial server because
the final output ẑ leaks no information about the approximate error z′−z derived from CKKS due to the
smudging error e. We remark that this technique has been introduced as a mitigation strategy against
some attacks on the IND-CPAD security of CKKS [28]. However, Π1 is insecure as the privacy of P2’s
input y is not guaranteed. That is, P1 might be able to learn much information about y (beyond the
desired functionality) from the output ciphertext ctout.

On the other hand, there have been several studies on circuit privacy or sanitization (e.g., [2,11,14,23])
of HE schemes to achieve this privacy requirement for the evaluator. A simple solution is to randomize
the resulting ciphertext after homomorphic evaluation (for example, by adding an encryption of zero
with a large error as in Π2), thereby washing out any unnecessary information except the underlying
plaintext. However, Π2 is insecure since it is vulnerable to a key-recovery attack of [27], that is, P2 can
easily compute the secret key sk from the ciphertext ct′out and its decryption ẑ.

12 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

Our construction (liberal security). We observed that each security-enhancing technique provides
only one-sided security rather than ensuring the security of the entire protocol. To address the security
vulnerabilities in previous protocols, we propose a new approach that incorporates both noise smudging
and ciphertext randomization techniques. Below, we present an ideal functionality FLibApp2PC (Fig. 7)
and a concrete protocol ΠLibApp2PC to realize the functionality (Fig. 8). In the following, we show the
correctness and liberal security of this protocol.

Functionality FLibApp2PC

Setup:
Let C be an evaluation circuit and D be an error distribution. The functionality receives x from P1 (the
client) and y from P2 (the server).

1. Compute z := C(x, y).
2. Sample e1, e2 ← D and let ẑ := z + e1 + e2.
3. Output ẑ to both P1 and P2.

Fig. 7. Functionality of a general approximate 2PC protocol for liberal security

Protocol ΠLibApp2PC

1. P1 generates a key pair (sk, pk)← KeyGen(1λ) and encrypts ctin ← Encpk(x). P1 sends (pk, ctin) to P2.
2. P2 computes ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0), and samples e2 ← D. P2 computes ct′out :=

ctout + ctzero + (e2, 0), and sends it to P1.
3. P1 samples e1 ← D and computes ẑ := Decsk(ct

′
out)+ e1. P1 sends ẑ to P2, and both parties output ẑ.

Fig. 8. Our approximate 2PC protocol for liberal security

Theorem 2. Let CKKS = (Setup, KeyGen, Enc, Dec, Eval) be a CKKS scheme with respect to an error
estimator Estimate. For plaintexts x, y and a circuit C, suppose that ∥x∥∞ ≤ B1 and ∥y∥∞ ≤ B2 for some
B1, B2 > 0. Let E0 > 0 be an upper bound of public-key encryption error, i.e., Pr[∥Decsk(Encpk(0))∥∞ ≤
B0] with an overwhelming probability. Let E := Estimate(C,B1, B2)+E0. If CKKS is IND-CPA secure and
D is an E-smudging distribution, then the 2PC protocol ΠLibApp2PC securely realizes the functionality
FLibApp2PC in the liberal sense.

Proof. We first show the correctness of ΠLibApp2PC. Let z := C(x, y) and denote z′ := Decsk(ctout+ctzero)
in the protocol. From the error estimator Estimate, we have z′ = z + eout for some eout ∈ R such that
∥eout∥∞ ≤ Estimate(C,B1, B2) + E0 = E. Then, the output ẑ can be written as:

ẑ = Decsk(ctout + ctzero) + e1 + e2 = z + eout + e1 + e2,

for some e1, e2 ← D. Thus, the distribution of this output ẑ is statistically indistinguishable from the
distribution of the output z + e1 + e2 of the functionality FGenApp2PC, since D is an E-smudging distri-
bution.

To prove the liberal security of ΠLibApp2PC, we first consider a corrupted client P1. The simulator
Sim1LibApp2PC(x, z, ẑ) for P1’s view is illustrated in Fig. 9. A key idea is to split the total error e = ẑ − z
into two separate error terms e1 and e2 by sampling them from the conditional distribution of D × D

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 13

Simulator Sim1LibApp2PC(x, z, ẑ)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(x).
2. Let e := ẑ − z and sample (e1, e2)← {(e1, e2)← D ×D | e1 + e2 = e}.
3. Sample aout

$← Rqout and let ct′out := (bout := aouts+ z + e2, aout).
4. Output (x, sk, pk, ctin, ct

′
out, e1).

Fig. 9. Simulator for an adversarial client in protocol ΠLibApp2PC.

given e1 + e2 = e. Then, it holds that:

{(viewΠLibApp2PC

1 (x, y), output
ΠLibApp2PC

2 (x, y))}
≡{(. . . , ct′out = ctout + ctzero + (e2, 0), e1, z

′ + e1 + e2) |
e1, e2 ← D, ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0), z

′ = Decsk(ctout + ctzero)}
≈s{(. . . , ct′out = ctout + ctzero + (e2 − eout, 0), e1, z

′ + e1 + e2 − eout) |
e1, e2 ← D, ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0), z

′ = Decsk(ctout + ctzero)}
≡{(. . . , ct′out = ((aout + azero)s+ z + e1 + e2, aout + azero), e1, z + e1 + e2) |

e1, e2 ← D, ctout = (bout, aout)← Evalpk(C, ctin, y), ctzero = (bzero, azero)← Encpk(0)}

≈c{(. . . , ct′out = (as+ z + e1 + e2, a), e1, z + e1 + e2) | e1, e2 ← D, a
$← Rqout}

≡{(Sim1LibApp2PC(x, z, ẑ), ẑ) | ẑ ← FLibApp2PC(x)},

where · · · = (x, sk, pk, ctin) with (sk, pk) ← KeyGen(1λ) and ctin ← Encpk(x) in all equations. The first
statistical indistinguishability follows from the assumption that D is an E-smudging distribution, while
the second computational indistinguishability is derived from the fact that azero obtained from ctzero =
(bzero, azero) ← Encpk(0) is indistinguishable from a uniform distribution over Rqout under the RLWE
assumption.

Simulator Sim2LibApp2PC(y, z, ẑ)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(0).
2. Compute ctzero ← Encpk(0).
3. Compute e := ẑ − z and samples (e1, e2)← {(e1, e2)← D ×D | e1 + e2 = e}.
4. Output (y, pk, ctin, ctzero, e2).

Fig. 10. Simulator for an adversarial server in protocol ΠLibApp2PC.

Next, we construct Sim2LibApp2PC(y, z, ẑ) that simulates P2’s view in the protocol in Fig. 10. Similar
to the previous case, it also splits the final error e = ẑ − z into two factors e1 and e2, and uses e2 in the
simulation. We have:

{viewΠLibApp2PC

2 (x, y), output
ΠLibApp2PC

1 (x, y)}
≡{(y, pk, ctin, ctzero, e2, ẑ) | e1, e2 ← D, ctin ← Encpk(x), ctout ← Evalpk(C, ctin, y),

ctzero ← Encpk(0), ct
′
out = ctout + ctzero + (e2, 0), z

′ := Decsk(ct
′
out), ẑ = z′ + e1 + e2}

≈s{(y, pk, ctin, ctzero, e2, ẑ) | e1, e2 ← D, ctin ← Encpk(x), ctzero ← Encpk(0), ẑ = z + e1 + e2}
≈c{(y, pk, ctin, ctzero, e2, ẑ) | e1, e2 ← D, ctin ← Encpk(0), ctzero ← Encpk(0), ẑ = z + e1 + e2}
≡{(Sim2LibApp2PC(y, z, ẑ), ẑ) | ẑ ← FLibApp2PC(x)}.

The first statistical indistinguishability follows from the assumption that D is E-smudging, while the
subsequent computational indistinguishability is derived from the IND-CPA security of CKKS. ⊓⊔

14 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

4.3 Construction of General 2PC of Approximations: Standard Security

Although the liberal definition provides a meaningful security guarantee in certain use cases, it remain
necessary to construct a secure approximation protocol that satisfies the standard definition for several
reasons. The standard definition of secure approximation is built on the standard notion of exact secure
computation as a black-box, making it applicable to any security frameworks and applications. Further-
more, the liberal definition has a key limitation: an ideal-process adversary is allowed to interact with a
trusted party that computes the exact value of the target function. In contrast, the standard definition
provides the adversary only with an approximate result, so it can apply even when the exact computa-
tion of the target function is intractable - such as in approximate HE schemes. The standard definition
also provides an additional advantage in the context of protocols based on approximate HE schemes,
particularly in relation to ciphertext noise, which will be discussed later.

Insecurity of the previous protocol under the standard definition. In Section 4.2, we presented an
approximate 2PC protocol ΠLibApp2PC that is secure in the liberal manner. Unfortunately, this protocol
does not achieve the standard security notion (Def. 5) since it is infeasible to construct valid simulators
not receiving z = C(x, y) as input.

For example, suppose that we aim to simulate the P1’s view using only x and ẑ ← FLibApp2PC.
Then, the simulator should be able to sample e1 such that the distribution of (e1, ẑ) is statistically
indistinguishable from that of (e1, z + e1 + e2), where e1, e2 ← D. If possible, the simulator may also
compute z+ e2, which provides a better approximation of z than ẑ = z+ e1 + e2. However, in general, it
is impossible to derive a more precise approximation of z from a less accurate value. One might consider
modifying the protocol so that P1 and P2 sample errors from different distributions. However, in such
a case, the protocol remains secure for at most one party, specifically the one whose smudging error
distribution is exponentially larger than that of the other.

Our construction (Standard Security). We introduce a novel approach to constructing a secure
approximation computation protocol in the standard sense. A key insight from our analysis is that the
protocol is unlikely to be secure if one party gains substantial (non-negligible) knowledge about the
smudging error, as it is infeasible to design a simulator that extracts such information from the final
output.

In a nutshell, we modify the ciphertext randomization procedure to prevent any information leakage
about the smudging error. Instead of each party sampling its own error independently, they generate the
smudging error in a distributed manner. As a result, neither party gains any partial knowledge of the
error, ensuring security while allowing them to compute only the final output. To achieve this, we propose
a distributed smudging error sampling that generates an additive share of a smudging error. The ideal
functionality is illustrated in Fig. 11.

Functionality FDistSamp

Setup:
Let D be a smudging error distribution over R and qout denote the modulus of output ciphertext.

1. Sample e← D.
2. Sample r1

$← Rqout and compute r2 := −r1 + e (mod qout).
3. Output ri to Pi for i = 1, 2.

Fig. 11. Functionality of the distributed sampling for two parties

The distributed sampling scheme generates an additional share for two parties, ensuring that each
share ri is statistically indistinguishable from a uniformly sampled element from Rqout . Below we describe
ideal functionalities FGenApp2PC and F ′

GenApp2PC for approximate computation in Fig. 12, and our 2PC
protocols ΠGenApp2PC and Π ′

GenApp2PC in Fig. 13 which securely realize these functionalities.
Due to the functionality of distributed sampling, each ri in Pi’s view is no longer correlated with the

smudging error e ← D. Recall that in the previously proposed liberally secure protocol ΠLibApp2PC, the

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 15

Functionality FGenApp2PC (or F ′
GenApp2PC)

Setup:
Let C be an evaluation circuit and D be an error distribution. The functionality receives x from P1 (the
client) and y from P2 (the server).

1. Compute z := C(x, y).
2. Sample e← D and let ẑ := z + e.
3. Output ẑ to both P1 and P2 (or only to P1).

Fig. 12. Functionality of a general approximate 2PC

Protocol ΠGenApp2PC (or Π ′
GenApp2PC)

1. P1 generates a key pair (sk, pk)← KeyGen(1λ) and ctin ← Encpk(x). P1 sends (pk, ctin) to P2.
2. P1 and P2 call F2−DistSamp and each party Pi obtains ri for i = 1, 2.
3. P2 computes ctout ← Evalpk(C, ctin, y) and ctzero ← Encpk(0). P2 computes ct′out := ctout + ctzero +

(r2, 0), and sends it to P1.
4. P1 computes ẑ := Decsk(ct

′
out + (r1, 0)).

5. In ΠGenApp2PC, P1 sends ẑ to P2. Both P1 and P2 output ẑ.
In Π ′

GenApp2PC, P1 outputs ẑ while P2 outputs nothing.

Fig. 13. General approximate 2PC protocols

output is of the form ẑ = z′ + e1 + e2, where ei ← D is sampled from Pi for i = 1, 2. Consequently, each
party could compute a better approximation z′ + e1 (or z′ + e2), than what the ideal functionality pro-
vides. In contrast, in the ΠGenApp2PC protocol, two parties collaboratively sample and add the smudging
error e to the resulting ciphertext, ensuring that both parties obtain only the final output ẑ = z′ + e
without knowing further knowledge of z. This key distinction guarantees that the protocol ΠGenApp2PC
(or Π ′

GenApp2PC) achieves the security in the standard sense.

Theorem 3. Let CKKS = (Setup, KeyGen, Enc, Dec, Eval) be a CKKS scheme with respect to an error
estimator Estimate. For plaintexts x, y and a circuit C, suppose that ∥x∥∞ ≤ B1 and ∥y∥∞ ≤ B2 for some
B1, B2 > 0. Let E0 > 0 be an upper bound of public-key encryption error, i.e., Pr[∥Decsk(Encpk(0))∥∞ ≤
B0] with an overwhelming probability. Let E := Estimate(C,B1, B2)+B0. If CKKS is IND-CPA secure and
D is an E-smudging distribution, then the 2PC protocol ΠGenApp2PC (or Π ′

GenApp2PC) securely realizes
the functionality FGenApp2PC (or F ′

GenApp2PC, respectively) in the FDistSamp-hybrid model.

Proof. We first show the correctness of our protocols. Let z := C(x, y) and z′ := Decsk(ctout+ctzero). From
the definition of error estimator Estimate, we have z′ = z+ eout for some eout ∈ R such that ∥eout∥∞ ≤ E.
Therefore, the output can be written as

ẑ = Decsk(ct
′
out + (r1, 0)) = Decsk(ctout + ctzero + (r2, 0) + (r1, 0)) = z + eout + e

for some e ← D. Thus, the output distribution is statistically indistinguishable from the distribution of
the output z + e of the functionality FGenApp2PC since D is an E-smudging distribution.

To prove the security of Π ′
GenApp2PC, we first consider a corrupted client P1. The simulator Sim1GenApp2PC(x, ẑ)

for P1’s view is illustrated in Fig. 14. As mentioned in the correctness proof, the decrypted result
z′ := Decsk(ctout + ctzero) in the real protocol is z′ = z + eout with ∥eout∥∞ ≤ E, and the output can

16 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

Simulator Sim1GenApp2PC(x, ẑ)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(x).
2. Sample r1

$← Rqout and let u′ := ẑ − r1.
3. Sample aout

$← Rqout and let ct′out := (bout := aouts+ u′, aout).
4. Output (x, r1, sk, pk, ctin, ct

′
out).

Fig. 14. Simulator for an adversarial client in protocol ΠGenApp2PC.

Simulator Sim2′GenApp2PC(y, ẑ)

1. Generate (sk, pk)← KeyGen(1λ) and ctin ← Encpk(0).
2. Sample r2 ← Rq.
3. Output (y, r2, pk, ctin).

Fig. 15. Simulator for an adversarial server in protocol ΠGenApp2PC.

be written as ẑ = z′ + e = z + eout + e. Therefore, we have:

{(viewΠGenApp2PC
1 (x, y), outputΠGenApp2PC(x, y)}

≡{(x, r1, sk, pk, ctin, ct′out := ctout + ctzero + (r2, 0)), (z + eout + e,⊥)) |
(r1, r2)← FDistSamp, ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0), e← r1 + r2}

≈s{(x, r1, sk, pk, ctin, ct′out := ctout + ctzero + (e− eout − r1, 0)), (z + eout + e− eout,⊥) |
(r1, r2)← FDistSamp, ctout ← Evalpk(C, ctin, y), ctzero ← Encpk(0)}

≡{(x, r1, sk, pk, ctin, ct′out = ((aout + azero)s+ z + e− r1, aout + azero), (z + e,⊥) |
(r1, r2)← FDistSamp, ctout = (bout, aout)← Evalpk(C, ctin, y), ctzero = (bzero, azero)← Encpk(0)}

≈c{(x, r1, sk, pk, ctin, ct′out = (as+ z + e− r1, a), (z + e,⊥) | (r1, r2)← FDistSamp, a
$← Rqout}

≡{(Sim1GenApp2PC(x, ẑ), (ẑ,⊥)) | (ẑ,⊥)← F ′
GenApp2PC(x)},

where (sk, pk) ← KeyGen(1λ), ctin ← Encpk(x), and z = C(x, y). The first statistical indistinguishability
follows from the assumption that D is an E-smudging distribution, while the second computational indis-
tinguishability is derived from the fact that the distribution of azero obtained from ctzero = (bzero, azero)←
Encpk(0) is indistinguishable from a uniform distribution over Rqout under the RLWE assumption. The
same simulator can be used to prove the security of ΠGenApp2PC since P1’s view is identical in both
protocols.

Next, we construct the simulator Sim2′GenApp2PC(y, ẑ) to simulate P2’s view in the protocol Π ′
GenApp2PC,

as shown in in Fig. 15. Then, we have:

{viewΠ′
GenApp2PC

2 (x, y), outputΠ
′
GenApp2PC(x, y)}

≡{(y, r2, pk, ctin), (z + eout + e,⊥) | (r1, r2)← FDistSamp, ctin ← Encpk(x)}

≈s{(y, r2, pk, ctin), (z + eout + e,⊥) | r2
$← Rqout , ctin ← Encpk(x)}

≈s{(y, r2, pk, ctin), (z + e,⊥) | r2
$← Rqout , ctin ← Encpk(x), e← D}

≈c{(y, r2, pk, ctin), (z + e,⊥) | r2
$← Rqout , ctin ← Encpk(0)}

≡{(Sim2′GenApp2PC(y, ẑ), (ẑ,⊥)) | (ẑ,⊥)← F ′
GenApp2PC(x)}.

The first statistical indistinguishability follows from the distributed sampling functionality, while the
second follows from the assumption that D is an E-smudging distribution. The final computational indis-
tinguishability is ensured by the IND-CPA security of CKKS. In ΠGenApp2PC, we define Sim2GenApp2PC(y, ẑ)

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 17

similarly to Sim2
′
GenApp2PC(y), except that it appends ẑ to its simulated view. Then, it can be shown in a

similar manner that the joint distribution of the server’s view and output {(viewΠGenApp2PC
2 (x, y), outputΠGenApp2PC(x, y))}

is computationally indistinguishable from the distribution {(Sim2GenApp2PC(y, ẑ), (ẑ, ẑ)) | (ẑ, ẑ)← FSimpApp2PC(x)}.
⊓⊔

Two-party Distributed Sampling Protocol. Our protocols achieve standard security by employing a
distributed sampling functionality. In this discussion, we demonstrate that this functionality can be imple-
mented efficiently without significant performance overhead. Specifically, we present an example protocol
that distributively samples a smudging error from a uniform distribution over the interval [−2k−1, 2k) for
some integer k.

To begin with, two parties, P1 and P2 can generate an additive share of a random bit using a 1-out-of-2
Oblivious Transfer (OT) protocol as follows:

1. P1 samples r1
$←− Zq and a bit b← ${0, 1}, and computes (m0,m1) = (b− r1, 1− b− r1) (mod q)

2. P2 chooses a selection bit σ
$←− {0, 1}.

3. The parties an OT protocols on inputs (m0,m1) for P1 and σ for P2, so that P2 receives mσ.

Then, it can be shown that the resulting values (r1, r2 := mσ) form a random additive share of a random
bit, thus realizing the functionality of distributed sampling for U({0, 1}).

To extend this to larger values, P1 and P2 execute the protocol k times to obtain shares (r1,i, r2,i) of
random bits for 0 ≤ i ≤ k− 1. They then locally compute r1 =

∑k−1
i=0 2ir1,i and r2 :=

∑k−1
i=0 2ir2,i− 2k−1,

respectively. These values (r1, r2) form a random share of an error e uniformly sampled from [−2k−1, 2k−1).
Finally, this method can be naturally extended to sample a smudging error over R in a distributed

manner, where each coefficient is uniformly distributed over [−2k−1, 2k−1). The round complexity of this
protocol remains constant, as all instances can be generated in parallel. Furthermore, the distributed
sampling protocol can be pre-processed in an offline phase or executed simultaneously with ΠGenApp2PC
(or Π ′

GenApp2PC). Note that we can easily extend this construction to the n-party case.

5 Secure Approximate Multi-party Computation from CKKS

Variants of the standard (single-key) CKKS scheme have been proposed to support multi-party com-
putation, including threshold CKKS [1, 33, 34], multi-key CKKS [6, 22], and multi-group CKKS [24]. In
particular, various studies [13, 33, 34] have explored privacy-preserving MPC protocol over approximate
values using the threshold CKKS scheme. Contrary to the two-party setting, threshold HE schemes in-
volve multiple entities, each holding an individual secret keys. To decrypt the result ciphertext, each
key owner publishes a partial decryption result of the evaluated ciphertext, which is then aggregated to
reconstruct the final result. During this process, each party incorporates auxiliary noise into its partial
decryption to mitigate potential information leakage.

The protocol ensures symmetry among all parties, allowing any participant to perform ciphertext
evaluation. the functionality of approximate MPC outputs ẑ to all participating parties. However, similar
to the 2PC protocol, where the server may or may not receive the computed result, certain parties in an
MPC protocol may not obtain the output. This scenario can be formally represented using a set of indices
I ⊆ [n], where only the parties {Pi}i∈I take the decryption result. Nevertheless, in this section, we focus
on the case in which all parties obtain the output. The proposed approach can be simply extended to
scenarios where the computation result is shared with only a subset of participants.

In Section 5.1, we demonstrate that CKKS-based MPC protocols using this noise smudging technique
are secure under the liberal MPC security notion. However, as discussed in Section 4.3, even if all parties
introduce larger noise to their partial decryptions, this approach does not satisfy the standard security
guarantees required for MPC. To overcome this limitation, in Section 5.2, we extend the secure approx-
imate 2PC protocol to a multi-party setting by integrating a distributed sampling scheme for multiple
parties, thereby ensuring stronger and more formal security guarantees.

18 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

5.1 Construction of MPC of Approximations: Liberal Security

Recent works [33,34] utilize the threshold CKKS scheme to construct a secure approximate MPC protocol.
In the protocol, all participated parties incorporate smudging noise to their partial decryptions to prevent
the attacks on the IND-CPAD security. However, existing works lacks rigorous security proof or formal
functionality explanation. Since the noise smudging technique enhances the security of the participated
party and each party integrate an auxiliary smudging noise to the partial decryption in existing protocols,
they achieve liberal MPC security notion, but not a standard MPC security, as similar to Sec. 4.2. In
this section, we provide a formal security proof that the existing MPC protocols adopting the threshold
CKKS scheme satisfies liberal definition of secure MPC protocol.

In CKKS-based MPC protocol, all participating parties collaboratively generate a shared public key
and construct additive shares of the secret key during the key generation phase, as described in Fig. 1.
Subsequently, each party encrypts its input and broadcasts the corresponding ciphertext. Upon receiving
ciphertexts from other parties, all parties evaluate the circuit and obtain an encrypted result. When
parties decrypt the result ciphertext, each party computes a partial decryption and adds an extra noise
which is sampled from the smudging distribution. We present an ideal functionality FLibAppMPC (Fig. 16)
of this scenario and provide a concrete protocol ΠLibAppMPC to realize the functionality (Fig. 17).

Functionality FLibAppMPC

Setup:
Let C be an evaluation circuit and D be an error distribution. The functionality receives xi from n parties
Pi (1 ≤ i ≤ n).

1. Compute z = C(x1, . . . , xn).
2. For 1 ≤ i ≤ n, sample ei ← D and let ẑ := z +

∑n
i=1 ei.

3. Output ẑ to all parties.

Fig. 16. Functionality of the MPC protocol of approximations for liberal security

Protocol ΠLibAppMPC

1. All parties call FThKeyGen. Each party Pi obtains (ski, pk).
2. Each party Pi encrypts cti ← Encpk(xi) and broadcasts it.
3. All parties compute ctout := (bout, aout)← Evalpk(C, ct1, . . . , ctn).
4. Each party Pi samples ei ← D, computes u′

i = aout · si + ei (mod qout) and broadcasts it.
5. All parties compute and output ẑ = bout +

∑n
i=1 u

′
i (mod qout).

Fig. 17. A secure approximate MPC protocol for evaluating a circuit C.

In the following, we prove the correctness and liberal security of this protocol.

Theorem 4. Let CKKS = (Setup, KeyGen, Enc, Dec, Eval) be a CKKS scheme with respect to an error
estimator Estimate. For plaintexts x’s and a circuit C, suppose that ∥xi∥∞ ≤ Bi for some Bi > 0 and
let E := Estimate(C, {Bi}i≤n). If CKKS is IND-CPA secure and D is an E-smudging distribution, then
the MPC protocol ΠLibAppMPC securely realizes the functionality FLibAppMPC in the liberal sense in the
FSecretSharing-hybrid model.

Proof. We first show the correctness of ΠLibAppMPC. Let z := C(x1, . . . , xn) and z′ := Decsk(ctout) :=
bout +

∑n
i=1 aout · si. From the error estimator Estimate, we have z′ = z+ eout for some eout ∈ R such that

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 19

Simulator SimALibAppMPC((xi)i∈A, z, ẑ)

1. Emulating FThKeyGen, generate key pairs (ski, pk) for each i ∈ [n].
2. Encrypt cti ← Encpk(xi) for i ∈ A.
3. Generate cth ← Encpk(0).
4. Compute ctout := (bout, aout)← Evalpk(C, ct1, . . . , ctn).
5. Compute e := ẑ − z and sample (ei)i∈[n] ← {(ei)i∈[n] ← Dn |

∑n
i=1 ei = e}.

6. Compute u′
i := aout · si + ei for i ∈ A.

7. Set u′
h := ẑ − bout −

∑
i∈A u′

i .
8. Output ((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout, u

′
h).

Fig. 18. Simulator for an adversarial client in protocol ΠMPC
C .

∥eout∥∞ ≤ E. By the linearity of the decryption process, the output can be represented as follows:

ẑ = bout +

n∑
i=1

u′
i = bout +

n∑
i=1

(aout · si + ei) (mod qout)

= z′ + e = z + eout + e,

for some e ← D. Since D is an E-smudging distribution, we can conclude that the distribution of
the protocol’s output is statistically indistinguishable from the distribution of the output z + e in the
functionality FAppMPC.

To prove the security of ΠLibAppMPC, we assume the case where adversary corrupting exactly n − 1
parties. We denote a party Ph be the only honest party and A := [n]\{h} be the set of adversarial parties’
indices. The simulator SimALibAppMPC((xi)i∈A, z, ẑ) for A’s view is illustrated in Fig. 18. A key idea is to
construct the honest party’s partial decryption u′

h using the adversarial parties’ partial decryptions to
maintain the consistency. i.e., computing u′

h = ẑ − bout −
∑

i∈A u′
i. Then, we have:

{(viewΠLibAppMPC
A (xxx), outputΠLibAppMPC(xxx)}

≡{(xi, ei, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), u
′
h, z + eout + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]), u′
i := aoutsi + ei(i ∈ [n])}

≡{(xi, ei, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), u
′
h, z + eout + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]),

u′
i := aoutsi + ei(i ∈ A), u′

h := z + eout + e− bout −
∑
i∈A

u′
i}

≈s{(xi, ei, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), u
′
h, z + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]),

u′
i := aoutsi + ei(i ∈ A), u′

h := z + e− bout −
∑
i∈A

u′
i}

≈c{(xi, ei, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), u
′
h, z + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ A), cth ← Encpk(0),

u′
i := aoutsi + ei(i ∈ A), u′

h := z + e− bout −
∑
i∈A

u′
i}

≡{(SimALibAppMPC((xi)i∈A, z, ẑ), ẑ) | ẑ ← FAppMPC},

where ski = si(i ∈ [n]), ctout ← Evalpk(C, ct1, . . . , ctn), and ei ← D(i ∈ [n]). We omit (mod qout) while
computing u′

i’s for better readability. The second equivalence comes from z+ eout+ e = bout+
∑n

i=1 u
′
i, as

mentioned in the correctness proof. The next statistical indistinguishability follows from the assumption
that D is an E-smudging distribution, and the last computational indistinguishability follows from the
IND-CPA security of CKKS. ⊓⊔

20 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

5.2 Construction of MPC of Approximations: Standard Security

As discussed earlier, the protocol ΠLibAppMPC is insecure under the standard MPC security definition,
as it is infeasible to valid simulators without access to the exact computation result. Therefore, it has
a limitation that the ideal-process adversary has to obtain the exact value of the evaluated circuit. To
overcome this limitation, we employ a distributed sampling approach, similar to the technique described
in Section 4.3, to generate smudging noise in a distributed manner. The functionality of the distributed
sampling algorithm for n parties, which produces additive shares of a smudging error, is illustrated
in Fig. 19. Through this distributed sampling protocol, each party obtains an additive share ri of the
smudging noise e, which is incorporated into the partial decryption process during the decryption phase.
This ensures that no participating party can obtain any partial information about the ciphertext except
the final output of the protocol. Consequently, an approximate MPC protocol incorporating a distributed
smudging error sampling mechanism satisfies the standard MPC security definition. The formal definitions
of the functionality and the approximate MPC protocol in this setting are provided in Fig. 20 and Fig. 21,
respectively.

Functionality Fn-DistSamp

Setup:
Let D be a smudging error distribution over R.

1. Sample e← D.
2. Sample ri

$← Rqout for 1 ≤ i ≤ n− 1, and let rn := e−
∑n−1

i=1 ri (mod qout).
3. Output ri to party Pi for 1 ≤ i ≤ n.

Fig. 19. Functionality of the distributed sampling for multiple parties

Functionality FAppMPC

Setup:
Let C be an evaluation circuit and D be an error distribution. The functionality receives xi from n parties
Pi (1 ≤ i ≤ n).

1. Compute z ← C(x1, . . . , xn).
2. Sample e← D and let ẑ := z + e.
3. Output ẑ to all parties.

Fig. 20. Functionality of the MPC protocol of approximations

Protocol ΠAppMPC

1. All parties call FThKeyGen. Each party Pi obtains (ski, pk).
2. Each party Pi encrypts cti ← Encpk(xi) and broadcasts it.
3. The parties call Fn-DistSamp and each party Pi receives ri ∈ Rqout .
4. All parties compute ctout := (bout, aout)← Evalpk(C, ct1, . . . , ctn).
5. Each party Pi computes u′

i = aout · si + ri (mod qout) and broadcasts it.
6. All parties compute and output ẑ = bout +

∑n
i=1 u

′
i (mod qout).

Fig. 21. A secure approximate MPC protocol for evaluating a circuit C.

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 21

Simulator SimAAppMPC((xi)i∈A, ẑ)

1. Emulating FThKeyGen, generate key pairs (ski, pk) for each i ∈ [n].
2. Generate cti ← Encpk(0) for all i ∈ H.
3. Encrypt cti ← Encpk(xi) for all i ∈ A.
4. Compute ctout := (bout, aout)← Evalpk(C, ct1, . . . , ctn).
5. Sample ri

$← Rqout and u′
i := aout · si + ri for all i ∈ A.

6. Sample u′
i

$← Rqout for all i ∈ H\{h}.
7. Set u′

h := ẑ − bout −
∑

i∈[n]\{h} u
′
i (mod qout) .

8. Output ((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout, (u
′
i)i∈H).

Fig. 22. Simulator for an adversarial client in protocol ΠMPC
C .

Now, we show that the approximate MPC protocol ΠAppMPC is secure in the FSecretSharing-hybrid
model.

Theorem 5. Let CKKS = (Setup, KeyGen, Enc, Dec, Eval) be a CKKS scheme with respect to an error
estimator Estimate. For plaintexts xi’s and a circuit C, suppose that ∥xi∥∞ ≤ Bi for some Bi > 0 and
let E := Estimate(C, {Bi}i≤n). If CKKS is IND-CPA secure and D is an E-smudging distribution, then
the MPC protocol ΠAppMPC securely realizes the functionality FAppMPC in the FSecretSharing, Fn-DistSamp-
hybrid model in a standard sense.

Proof. We first guarantee the correctness of ΠAppMPC. Let z := C(x1, . . . , xn) and z′ := bout+
∑n

i=1 aout · si.
From the error estimator Estimate, we have z′ = z + eout for some eout ∈ R such that ∥eout∥∞ ≤ E. By
the linearity of the decryption process, the output can be represented as follows:

ẑ = bout +

n∑
i=1

u′
i = bout +

n∑
i=1

aout · si + ri (mod qout)

= z′ + e = z + eout + e

for some e ← D. Since D is an E-smudging distribution, we can conclude that the distribution of
the protocol’s output is statistically indistinguishable from the distribution of the output z + e in the
functionality FAppMPC.

To prove the security of ΠAppMPC, we first denote A ⊊ [n] and H = [n]\A as a set of indices corre-
sponding to the corrupted parties and honest parties, respectively. We construct a simulator SimAAppMPC((xi)i∈A, ẑ)
for the corrupted parties, as described in Fig. 22. A key idea is to construct the last honest party’s partial
decryption u′

h using the other u′
i’s to ensure consistency. Emulating Fn-DistSamp, the simulator samples ri

uniformly at random from Rqout and computes the partial decryption u′
i := aout · si+ ri for the adversarial

parties. For the honest parties, the simulator samples from uniform Rqout , except for the last honest party
Ph, which it computes u′

h = ẑ −
∑

i∈[n]\{h} u
′
i. Then, we have:

22 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

{(viewΠMPC
C

A (xxx), outputΠ
MPC
C (xxx)}

≡{((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), (u
′
i)i∈H , z + eout + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]),

(ri)i∈[n] ← Fn-DistSamp, u
′
i := aoutsi + ri (mod qout)(i ∈ [n])}

≡{((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), (u
′
i)i∈H , z + eout + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]),

(ri)i∈[n] ← Fn-DistSamp, u
′
i

$← Rqout(i ∈ H\{h}), u′
h := (z + eout + e)− bout −

∑
i∈[n]\{h}

u′
i}

≈s{((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), (u
′
i)i∈H , z + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ [n]),

(ri)i∈[n] ← Fn-DistSamp, u
′
i

$← Rqout(i ∈ H\{h}), u′
h := (z + e)− bout −

∑
i∈[n]\{h}

u′
i}

≈c{((xi, ri, ski)i∈A, pk, (cti)i∈[n], ctout := (bout, aout), (u
′
i)i∈H , z + e) |

((ski)i∈[n], pk)← FThKeyGen, cti ← Encpk(xi)(i ∈ A), cti ← Encpk(0)(i ∈ H),

(ri)i∈[n] ← Fn-DistSamp, u
′
i

$← Rqout(i ∈ H\{h}), u′
h := (z + e)− bout −

∑
i∈[n]\{h}

u′
i}

≡{(SimAAppMPC((xi)i∈A, ẑ), ẑ) | ẑ ← FAppMPC},

where ctout ← Evalpk(C, ct1, . . . , ctn) and u′
i := aoutsi + ri (mod qout) for i ∈ A. We omit (mod qout) for

u′
h for better readability. The second equivalence comes from z + eout + e = bout +

∑n
i=1 u

′
i (mod qout),

as mentioned in the correctness proof. The next statistical indistinguishability follows from the assump-
tion that D is an E-smudging distribution, and the computational indistinguishability follows from the
IND-CPA security of CKKS. ⊓⊔

We remark that our proposed construction offers an advantage over previous MPC protocols based
on the threshold HE schemes: the error in the final decryption result is lower compared to existing
approaches. In conventional noise smudging techniques, the accumulated decryption error increases with
the number of participating parties, as each party introduces its own independent error during the partial
decryption process. In contrast, our proposed construction ensures that the final decryption error remains
independent of the number of parties, thereby enhancing accuracy without compromising security.

It is worth noting that the proposed protocols operate under an n-out-of-n security model, where
all participating entities must disclose their partial decryptions to reconstruct the correct evaluation
result. However, this framework can be generalized to a t-out-of-n threshold setting by incorporating
secret-sharing techniques, such as Shamir’s secret sharing, to enable threshold decryption.

References

1. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M., Sahai, A.: Threshold cryptosystems
from threshold fully homomorphic encryption. In: Advances in Cryptology–CRYPTO 2018: 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38.
pp. 565–596. Springer (2018)

2. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: Fhe circuit privacy almost for free. In: Annual International
Cryptology Conference. pp. 62–89. Springer (2016)

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Annual
cryptology conference. pp. 868–886. Springer (2012)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Safavi-
Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. pp. 868–886. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2012)

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

Provably Secure Approximate Computation Protocols from CKKS 23

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

6. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 395–412 (2019)

7. Cheon, J.H., Choe, H., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against the ind-cpad security of exact
fhe schemes. In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. pp. 2505–2519 (2024)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic Encryption for Arithmetic of Approximate Numbers.
In: Proc. of the International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT 2017) (2017)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: international conference on the theory and application of cryptology and information
security. pp. 3–33. Springer (2016)

10. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic
encryption. In: Annual Cryptology Conference. pp. 643–662. Springer (2012)

11. Ducas, L., Stehlé, D.: Sanitization of fhe ciphertexts. In: Advances in Cryptology–EUROCRYPT 2016: 35th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part I 35. pp. 294–310. Springer (2016)

12. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation
of approximations. ACM transactions on Algorithms (TALG) 2(3), 435–472 (2006)

13. Froelicher, D., Cho, H., Edupalli, M., Sousa, J.S., Bossuat, J.P., Pyrgelis, A., Troncoso-Pastoriza, J.R., Berger,
B., Hubaux, J.P.: Scalable and privacy-preserving federated principal component analysis. In: 2023 IEEE
Symposium on Security and Privacy (SP). pp. 1908–1925. IEEE (2023)

14. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. of the Forty-First Annual ACM
Symposium on Theory of Computing (STOC 2009) (2009). https://doi.org/10.1145/1536414.1536440

15. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In: International conference on machine
learning. pp. 201–210. PMLR (2016)

16. Goldreich, O.: Foundations of Cryptography, Volume 2. Cambridge university press Cambridge (2004)
17. Guo, Q., Nabokov, D., Suvanto, E., Johansson, T.: Key recovery attacks on approximate homomorphic en-

cryption with non-worst-case noise flooding countermeasures. In: Usenix Security (2024)
18. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z.,

Cormode, G., Cummings, R., et al.: Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning 14(1–2), 1–210 (2021)

19. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making spdz great again. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 158–189. Springer (2018)

20. Kim, M., Harmanci, A.O., Bossuat, J.P., Carpov, S., Cheon, J.H., Chillotti, I., Cho, W., Froelicher, D., Gama,
N., Georgieva, M., et al.: Ultrafast homomorphic encryption models enable secure outsourcing of genotype
imputation. Cell systems 12(11), 1108–1120 (2021)

21. Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., Shams, S.: Secure human action recognition by encrypted
neural network inference. Nature communications 13(1), 4799 (2022)

22. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key homomorphic encryption from
homomorphic gadget decomposition. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. pp. 726–740 (2023)

23. Kluczniak, K., Santato, G.: On circuit private, multikey and threshold approximate homomorphic encryption.
Cryptology ePrint Archive, Paper 2023/301 (2023), https://eprint.iacr.org/2023/301

24. Kwak, H., Lee, D., Song, Y., Wagh, S.: A general framework of homomorphic encryption for multiple parties
with non-interactive key-aggregation. In: International Conference on Applied Cryptography and Network
Security. pp. 403–430. Springer (2024)

25. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo, D., Kim, Y.S., et al.:
Privacy-preserving machine learning with fully homomorphic encryption for deep neural network. iEEE Access
10, 30039–30054 (2022)

26. Lee, S., Lee, G., Kim, J.W., Shin, J., Lee, M.K.: HETAL: efficient privacy-preserving transfer learning with
homomorphic encryption. In: International Conference on Machine Learning. pp. 19010–19035. PMLR (2023)

27. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate numbers. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 648–677. Springer
(2021)

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/2023/301

24 Intak Hwang , Yisol Hwang , Miran Kim , Dongwon Lee , and Yongsoo Song

28. Li, B., Micciancio, D., Schultz-Wu, M., Sorrell, J.: Securing approximate homomorphic encryption using
differential privacy. In: Annual International Cryptology Conference. pp. 560–589. Springer (2022)

29. Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique. Tutorials on the Foundations of
Cryptography: Dedicated to Oded Goldreich pp. 277–346 (2017)

30. Liu, F., Zheng, Z., Shi, Y., Tong, Y., Zhang, Y.: A survey on federated learning: a perspective from multi-party
computation. Frontiers of Computer Science 18(1), 181336 (2024)

31. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on Theory of
computing. pp. 1219–1234 (2012)

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Advances
in Cryptology–EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 1–23. Springer (2010)

33. Mouchet, C., Bertrand, E., Hubaux, J.P.: An efficient threshold access-structure for rlwe-based multiparty
homomorphic encryption. Journal of Cryptology 36(2), 10 (2023)

34. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from
ring-learning-with-errors. Proceedings on Privacy Enhancing Technologies 2021(4), 291–311 (2021)

35. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 735–763. Springer (2016)

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM
(JACM) 56(6), 1–40 (2009)

https://orcid.org/0009-0005-3870-2096
https://orcid.org/0009-0008-8286-3067
https://orcid.org/0000-0003-3564-6090
https://orcid.org/0000-0002-2156-197\protect \protect \unhbox \voidb@x \hbox {X}
https://orcid.org/0000-0002-0496-9789

	Provably Secure Approximate Computation Protocols from CKKS

