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Abstract. Differential cryptanalysis is a powerful technique for attacking block ciphers,
wherein the Markov cipher assumption and stochastic hypothesis are commonly em-
ployed to simplify the search and probability estimation of differential trails. However,
these assumptions often neglect inherent algebraic constraints, potentially result-
ing in invalid trails and inaccurate probability estimates. Some studies identified
violations of these assumptions and explored how they impose constraints on key
material, but they have not yet fully captured all relevant ones. This study pro-
poses Trail-Estimator, an automated verifier for differential trails on block ciphers,
consisting of two parts: a constraint detector Cons-Collector and a solving tool
Cons-Solver. We first establish the fundamental principles that will allow us to
systematically identify all constraint subsets within a differential trail, upon which
Cons-Collector is built. Then, Cons-Solver utilizes specialized preprocessing tech-
niques to efficiently solve the detected constraint subsets, thereby determining the
key space and providing a comprehensive probability distribution of differential trails.
To validate its effectiveness, Trail-Estimator is applied to verify 14 differential
trails for the SKINNY, LBLOCK, and TWINE block ciphers. Experimental results show
that Trail-Estimator consistently identifies previously undetected constraints for
SKINNY and discovers constraints for the first time for LBLOCK and TWINE. Notably, it
is the first tool to discover long nonlinear constraints extending beyond five rounds in
these ciphers. Furthermore, Trail-Estimator’s accuracy is validated by experiments
showing its predictions closely match the real probability distribution of short-round
differential trails.
Keywords: Block ciphers · Differential cryptanalysis · Constraint detection ·
Probability estimation

1 Introduction
Differential cryptanalysis is a powerful statistical technique for analyzing symmetric-
key ciphers, relying on differential trails as distinguishers [BS90]. Over the decades,
cryptanalysts have sought to identify the most effective distinguishers, either in terms of
the highest probability or as components of key-recovery attacks. However, a significant
limitation of the conventional approach to identifying differential trails is its dependence
on assumptions, namely the Markov cipher assumption and the hypothesis of stochastic
equivalence [LMM91]. Despite numerous efforts to highlight the importance of these
assumptions, they have not gained widespread adoption, primarily due to the lack of a
systematic approach to handling them and verifying their validity.

Biryukov and Wagner [BW99] investigated these dependencies in SPN-based designs,
demonstrating that non-Markov effects can either weaken or strengthen differential attacks
depending on the cipher structure. In [KM04], Knudsen and Mathiassen experimentally
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analyzed the impact of simple and complex key schedules, finding that the probabilities of
the best differentials in ciphers with simple key schedules do not always converge toward
a uniform distribution as the number of rounds increases. Given the trend in modern
cipher design favoring simple round functions and key schedules, it is unsurprising that
conventional assumptions are becoming increasingly inadequate. Murphy et al. [MR02] fur-
ther showed that certain key-dependent transformations introduce statistical dependencies,
violating the Markov assumption.

Daemen and Rijmen [DR07] examined the probability distribution of differential
characteristics across different keys, introducing the concept of plateau characteristics.
Their findings demonstrated that for AES, all two-round characteristics exhibit plateau
behavior. Further work by Dunkelman et al. [DKS10] revealed that ciphers with key-
dependent S-boxes could exhibit unpredictable differential properties, thereby reducing
the effectiveness of differential cryptanalysis.

In recent years, several studies have attempted to address these issues from both
theoretical and practical perspectives. Leurent [Leu12] investigated differential attacks on
ARX constructions and introduced a tool for deriving multi-bit conditions and detecting
inconsistencies. Sun et al. [SWW18] analyzed the dependencies between differential
trails and key scheduling, deriving new key constraints for LED64 and Midori64. Liu et
al. [LIM20] demonstrated that certain differential trails in the Gimli permutation were
infeasible and developed a Mixed-Integer Linear Programming model that accounts for
differential and value transitions. Beyne and Rijmen [BR22] approached the problem
from a theoretical perspective, proposing the concept of quasidifferential trails, which
is analogous to their counterparts, linear trails, that explicitly considers the (fixed) key.
Peyrin and Tan [PT22] developed a method for detecting linear and nonlinear constraints
in differential trails for SKINNY and GIFT-64, invalidating several previously accepted
paths. Sun [Sun24] extended this approach by introducing linearized nonlinear constraints,
which extract linear relationships between the input and output bits of an S-box. More
recently, Nageler et al. [NGJE25] proposed an SAT-based approach to estimate the average
probability of a differential trail across all keys. Their method also provides upper bounds
on key space size and derives necessary key constraints.

Despite significant progress in verifying differential trails, existing methods still have
notable limitations. While the detection framework in [PT22] identifies key-dependent
constraints, it fails to capture certain nonlinear dependencies, leading to inaccuracies in
probability estimation. Sun [Sun24] improves upon this by linearizing some nonlinear
constraints; however, this approach can only help to resolve some of the problems. The SAT-
based technique in [NGJE25] provides probabilistic estimates but does not fully account
for key-dependent constraints, which can significantly affect probability calculations.

Our Contributions. In this paper, we propose Trail-Estimator, a novel framework
for identifying and analyzing constraints within differential trails that can be applied
to all word-oriented block ciphers. Our framework comprises two core functionalities:
Cons-Collector and Cons-Solver. Cons-Collector propagates constraints through
both linear and nonlinear equations, capturing comprehensive dependency relationships
between variables. We provide a proof establishing a principle for identifying all equation
structures that contribute to effective key constraints and introduce an efficient detection
method. By leveraging this approach, Cons-Collector identifies all possible constraints in
a differential trail, including previously unaccounted constraints. The identified constraints
are subsequently processed by Cons-Solver, a solver equipped with optimization techniques
that significantly reduce the computational complexity of constraint solving.

We apply our framework to differential trails of SKINNY, LBLOCK, and TWINE. Compared
to previous analyses of SKINNY, we demonstrate that these additional constraints, previously
overlooked, further impact the probability distribution. A summary of our results is
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presented in Table 1 and Table 2, highlighting the differences in the number of identified
constraints and the updated probability distributions for the evaluated trails.

Table 1: Results comparison between Trail-Estimator and previous works. We note that
no long nonlinear constraint could be found by any previous work, while they can find all
linear constraints.

Cipher R
#Short NLC #Long NLC #LC Trail SourceSec. 5 [PT22] [Sun24] [NGJE25] Orig.(Solv.) Merg.

7 2 0 0 - 4 (1) 1 3 Table 6 [DDH+21]
10 0 0 0 - 4 (0) 1 3 Table 7 [DDH+21]
13 0 0 0 - 7 (0) 1 2 Table 8 [DDH+21]
15 1 1 1 * 5 (0) 1 2 Table 9 [DDH+21]

SKINNY
14 4 3 - - 14 (0) 1 13 Table 10 [DDH+21]
16 6 4 - - 16 (0) 1 13 Table 11 [DDH+21]
17 13 - - * 5 (0) 1 13 Table 12 [DDH+21]
8 0 0 - - 0 0 1 Table 16 [QDW+21]
10 0 0 - - 4 (0) 1 3 Table 7 [PT22]
11 6 - 1 - 7 (0) 1 7 Figure 2 [ZZ18]

LBLOCK
4 1 - - - 0 0 0 Table 9 Appendix F
16 2 - - - 9 (2) 1 8 Table 14 [ZZDX19]

TWINE
9 0 - - - 3 (3) 3 0 Table 12 Appendix G
15 2 - - - 8 (3) 1 6 Table 16 [ZZDX19]

R: the round number of the differential trail; #Short NLC (resp. #Long NLC): the number of nonlinear
constraints on key values, which spanned ≤ 5 rounds (resp. more than five rounds); Orig.: the original number
of long nonlinear constraints before merging; Merg.: the number of nonlinear constraints after merging the
related constraints; Solv.: the number of solvable long nonlinear constraints before merging; #LC: the number of
linear constraints identified on the key values.

Outline. Section 2 provides an overview of the background and related works. Section 3
introduces the Cons-Collector functionality of Trail-Estimator, which includes the
detection principles and propagation rules. Section 4 presents Cons-Solver, which includes
the optimization techniques and the method we use to derive the probability distribution.
In Section 5, we show the results on SKINNY-64, SKINNY-128, LBLOCK and TWINE block
ciphers when applying Trail-Estimator to them. Finally, we conclude and discuss our
work in Section 6.

2 Preliminaries
2.1 Differential Cryptanalysis
Differential cryptanalysis [BS90] is the study of how differences in the plaintexts affect
differences in ciphertexts as they propagate through a cipher. The main essence of
differential cryptanalysis is caputred in the definition of the so-called differential trails.

Definition 1 (1-round differential trail [BS90]). Given a vectorial Boolean function
F : {0, 1}n → {0, 1}n, a one-round differential trail of F is defined as a pair (∆in, ∆out),
where ∆in and ∆out denote the n-bit input and output differences of F . The probability
can be computed as follows: P (∆in → ∆out) = #{F (x)⊕F (x⊕∆in)=∆out,∀ x ∈Fn

2 }
2n .

While this definition captures what we truly look out for in a cipher, modern ciphers
are usually too complex for it to be practically useful. Fortunately, the modern ciphers
can be decomposed into multiple round functions, allowing us to trace input and output
differences throughout these simpler functions.

Definition 2 (r-round differential trail [BS90]). Consider the composition of multiple
vectorial Boolean functions F = Fr−1 ◦ Fr−2 ◦ ... ◦ F0, an r-round differential trail of F
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Table 2: The analysis of SKINNY, LBLOCK and TWINE differential trails with
Trail-Estimator.

Cipher R Stated Prob. Reduced Prob. by Trail SourceKey Space Trail-Estimator

7 2−52 2−7.3 2−49 − 2−42.4 Table 6 [DDH+21]
10 2−46 0 - Table 7 [DDH+21]
13 2−55 2−4 2−51 Table 8 [DDH+21]
15 2−54 2−6.2 2−48 − 2−47 Table 9 [DDH+21]

SKINNY
14 2−120 2−10.4 2−119.9 − 2−115.7 Table 10 [DDH+21]
16 2−127.6 2−11.1 2−128.2 − 2−108.2 Table 11 [DDH+21]
17 2−110 0 - Table 12 [DDH+21]
8 2−19 − 2−17 2−2/2−3 2−16 − 2−15 Table 16 [QDW+21]
10 2−42 1 2−42 Table 7 [PT22]
11 2−147 0 - Figure 2 [ZZ18]

LBLOCK
4 2−18 1 2−18 Table 9 Appendix F
16 2−72 2−1 2−72.7 − 2−69.9 Table 14 [ZZDX19]

TWINE
9 2−28 2−0.19 2−31.9 − 2−25.1 Table 12 Appendix G
15 2−68 2−4.7 2−67 − 2−61.3 Table 16 [ZZDX19]

Stated Prob.: the probability reported by the original authors; Reduced Key Space: the proportion of the
estimated valid key space for the differential trail; Prob. by Trail-Estimator: the probability estimation of
differential trails within valid key space, given by Trail-Estimator;

is denoted as a tuple ∆⃗ = (∆in = ∆0, ∆1, ..., ∆r = ∆out), where ∆i is the n-bit output
difference of Fi−1 ◦ ... ◦ F0 (0 ≤ i ≤ r).

However, calculating the exact probability of an r-round differential trail is not an easy
task, thus, cryptographers have to rely on the Markov cipher assumption.

Definition 3 (Markov cipher [LMM91]). An iterated cipher with the round function
Y = C(X, k) is said to be a Markov cipher if there exists a group operation ⊗ for defining
differences such that, for any nonzero choices of ∆in and ∆out, the probability

P (∆Y = ∆out | ∆X = ∆in, X = γ) = P (∆Y = ∆out | ∆X = ∆in),

when the subkey k is uniformly random.

In other words, the probability of a difference transition from ∆in to ∆out is independent
of the value of X.

Here, we will also introduce the hypothesis of stochastic equivalence. Under this
hypothesis, the probability of a differential trail remains approximately the same across all
key values.

Definition 4 (Hypothesis of Stochastic Equivalence [LMM91]). For an r-round differential
trail (∆in = ∆0, ∆1, ..., ∆r = ∆out):

P (∆r = pr|∆0 = p0) ≈ P (∆r = pr|∆0 = p0, k1 = β1, · · · , kr = βr),

for almost all subkey values (k1 = β1, · · · , kr = βr) where ki is the subkey of round i
within the cipher C.

Definition 5 (XDDT and YDDT [PT22]). The difference distribution table (DDT) is a tool
that represents the distribution of all possible input and output difference pairs for a
Boolean function F . However, DDT only captures the information of the difference and
not the state. To retain the information of the state, we define XDDT (resp. YDDT) to be the
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set containing all the valid input (resp. output) values that allow the differential transition
∆in → ∆out to happen:

XDDT(∆in, ∆out) := {x|F (x) ⊕ F (x ⊕ ∆in) = ∆out, x ∈ Fn
2 },

YDDT(∆in, ∆out) := {F (x)|F (x) ⊕ F (x ⊕ ∆in) = ∆out, x ∈ Fn
2 }.

2.2 Constraint Detection Method
In [PT22], the authors introduced a novel framework to identify potential constraints on
key variables within a cipher. They start from the constrained inputs xi and outputs yi of
active S-boxes in the differential trail T , which are called half constraints since they cannot
impose constraints on the key variables by themselves. Instead, they require pairing with
another half constraint to establish a complete constraint on the key variables.

Consider the r-th round of an arbitrary block cipher. It can usually be divided into
three main components: a nonlinear layer Sr, a linear layer Lr, and a key addition layer
(in that order). In an SPN cipher like SKINNY [BJK+16], we can denote the input variables
of the round (also the input of Sr) as Xr = {xr

0, xr
1, · · · , xr

t } and the corresponding
output variables of Sr as Y r = {yr

0, yr
1, · · · , yr

t }. The set of round keys is denoted as
Kr = {kr

0, kr
1, · · · , kr

q}. If xr+1
i and all the related yr

i are constrained, then there is a full
constraint on Kr. We will illustrate the concept below.

S L S L S L

Figure 1: The formation of linear constraint (blue line) and nonlinear constraint (red line)

According to Figure 1, the linear constraint is formed by several half constraints within
a single round, whereas nonlinear constraints are formed by one half constraint on xr

i and
another half constraint on yr

i .

Linear constraint. Linear constraints do not involve the nonlinear function S(·) and
are derived from several value restrictions within a single cipher round. As illustrated
in Figure 1, the linear constraint is formed by two value-restricted variable L−1(xr

i ) and
yr−1

i . This implies that the corresponding key variable set kr−1
i must satisfy the relation

kr−1
i = yr−1

i ⊕ L−1(xr
i ).

Nonlinear constraint. Nonlinear constraints arise from the combination of half constraints
across multiple rounds. In this example, three half constraints impose value restrictions
on xr

i and yr
i . Meanwhile, the nonlinear layer S enforces the condition S(xr

i ) = yr
i , which

implies that S(L(yr−1
i ⊕kr−1

i )) = L−1(xr+1
i )⊕kr

i . Consequently, a constraint is established
on kr

i and kr−1
i , as all non-key variables involved are restricted by half constraints. Another

important feature of nonlinear constraints is that they involve constraints from several
different rounds and therefore have an impact that propagates across multiple rounds.

Based on these possible constraints, the authors proposed an algorithm to automatically
search for constraints within a differential trail. However, this method does not consider
all possible relationships between all the variables, and thus, it is unable to capture some
more complicated constraints.
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3 The Cons-Collector Constraint Detection Framework
In this section, we introduce Cons-Collector, a framework for identifying all the con-
straints on key in a differential trail of a block cipher, giving an accurate analysis of the
possible key space and probability distribution of the differential trails.

3.1 Notations
Our detection framework is general and applies to a wide range of block ciphers. This
section specifies the notations we will use to describe it. We classically view an iterative
block cipher as a succession of linear and nonlinear layers (denoted L and S respectively),
which we will represent as a system of linear and nonlinear equations.

Formally, an R-round iterative block cipher is expressed as:{
Y r = S(Xr),
Xr+1 = L(Y r, Kr), 0 ≤ r < R,

where Xr and Y r denote the input and output of S in the r-th round respectively and
Kr denotes the r-th round key (X0 and XR stand for the input and output of the cipher
respectively).

Since the size of each internal state variable Xr, Y r and Kr is usually quite large,
directly exploring their relationships can be challenging. Therefore, we further decompose
these large internal state variables into smaller cells when possible, facilitating a more
tractable representation:

Xr = (xr
0, xr

1, · · · , xr
m−1), Y r = (yr

0, yr
1, · · · , yr

m−1), Kr = (kr
0, kr

1, · · · , kr
m−1).

When the structure of S is composed of m functions independently operating on each
xr

i , yr
i (by a slight abuse of notation we denote them S as well), and assuming that the

key material is incorporated during the linear layer, this fine-grained representation will
later reduce the complexity of solving the system of equations. The choice of m is usually
very natural as in most cases it would typically be the number of parallel S-boxes in S.
The original system now becomes (see Figure 2):

E =
{

yr
i = S(xr

i ), 0 ≤ i < m

(xr+1
0 , · · · , xr+1

m−1) = L(yr
0, · · · , yr

m−1, kr
0, · · · , kr

m−1), 0 ≤ r < R,
(1)

Xr

S

S

...
S

L Xr+1

xr
0

xr
1

xr
m−1

yr
0

yr
1

yr
m−1

xr+1
0

xr+1
1

xr+1
m−1

Kr = (kr
0 , kr

1 , ..., kr
m−1)

Figure 2: General notation of a round function

Note that this representation encompasses most SPN and Feistel ciphers. For word-wise
ciphers, e.g., SKINNY-64, this representation is very natural: the 64-bit state is partitioned
into 16 nibbles and all the operations in the round function are performed at the nibble
level. For such ciphers, the computational complexity for the solving part of our framework
will usually be lower. For bit-wise ciphers, e.g., GIFT-64 [BPP+17], the input cannot be
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further partitioned into smaller variables due to the bit-level operations in the linear layer.
If the input is divided into 16 cells (matching the size of the S-boxes), we will not be able
to capture all the relationships imposed by the linear layer. Conversely, if the input is
expressed at the bit level with 64 Boolean variables, the nonlinear layer becomes difficult
to generalize in the form y = S(x). Hence, the entire input would have to be treated as a
single cell with size equal to 64, thus increasing the solving part complexity within our
framework.

Regardless of this distinction, the efficiency of the solving part of the framework will
also depend on the number of variables and their sizes, as well as on the algebraic structure
of the cipher.

3.2 Propagation rules
The idea of Cons-Collector is to generate a collection of constraints on the values of
the internal states and round keys, imposed by the differential trail, and then study the
dependency relationships. We introduce here the propagation rules our framework will use
on these value constraints. Before proceeding, we first present several necessary definitions.

Definition 6 (Free Variable). In a block cipher, an n-bit variable z that is not a key
variable, is a free variable if its probability distribution is uniform i.e., P (z = zi) = 1

2n ,
with no constraints imposed on z.

Definition 7 (Constrained Variable). An n-bit variable z is a constrained variable (denoted
as [z]) if the probability distribution is affected by at least one constraint.

Definition 8 (Constraint Subset). Given a differential trail, a constraint subset E is
a subset of equations derived from the algebraic structure of a cipher, which impose
constraints on key variables.

In a differential trail, the input and output variables of all active S-boxes are all
considered constrained variables as they must satisfy the prescribed nonzero input and
output differences. As these constraints propagate through both the linear and nonlinear
equations, they gradually influence the other variables, which may or may not eventually
lead to a reduction in the valid key space. We now list these propagation rules.

Propagation via linear equations. Each linear equation in E encapsulates multiple
dependency relationships among the variables, offering different pathways for constraint
propagation. Consider the linear equation: x1 ⊕ y1 ⊕ k1 = 0, from which we can derive
the following dependencies:

(x1, y1) ↔ k1, (x1, k1) ↔ y1, (y1, k1) ↔ x1,

where ↔ denotes a dependency relation. These dependencies form pathways or rules of
how constraints can propagate through linear equations. For example, if x1 ⊕ y1 is a
constrained variable, the dependency allows the constraint to propagate to k1. Conversely,
if k1 is constrained, it will propagates and introduce a constraint on the pair (x1, y1).

Propagation via nonlinear equations. For the nonlinear equations of the form y = S(x),
any constraint on x directly imposes a constraint on y since y is entirely determined by x,
and vice versa. Therefore, the equation itself serves as a propagation pathway, denoted as:

y = S(x) ↔ x,

which indicates the direct dependency between x and S(x). In our framework, S(x) is
treated as if it is x when we propagate through the constraints. One notable mention is
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the distribution of S(x) ⊕ x for different ciphers. If we look at the probability distribution
of this term for a single S-box for SKINNY, LBLOCK and TWINE, it is actually non-uniform.
Therefore, even in the case where neither x or S(x) are constrained, the term x ⊕ S(x) is
actually constrained.

Propagation via summation of equations. When equations involve both constrained
and free variables, analyzing them individually may not impose direct constraints on
key variables. However, summing up these equations may eliminate free variables and
potentially introduce constraints on key variables. For example, consider the following
system of linear equations: {

[x0] ⊕ y0 ⊕ k0 = 0,

[x1] ⊕ y0 ⊕ k1 = 0.

Individually, the two equations above do not impose direct constraints on k0 and k1 as
y0 is a free variable. However, summing them eliminates y0 and introduces a compound
dependency, causing the following constraint:

[x0] ⊕ [x1] ⊕ k0 ⊕ k1 = 0.

Given that x0 and x1 are constrained variables, the term x0 ⊕ x1 may either remain
constrained or become a free variable, depending on their specific values. This distinction
directly influences the constraints imposed on k0 ⊕ k1. For example, if x0 = x1 ∈
{1, 3, 8, 10}, it imposes an effective constraint on keys: k0 ⊕ k1 ∈ {0, 2, 9, 11}. Conversely,
if x0 ∈ {1, 3, 8, 10} and x1 ∈ {2, 3, 6, 7}, then x0 ⊕ x1 spans all possible values from 0 to
15, making it a free variable and imposing no restriction on k0 ⊕ k1. The same technique
can be applied to the case of nonlinear equations as well. Consider the following system:

y1 = S(x1), y1 ⊕ k1 = 0, x1 ⊕ k2 = 0.

Summing all the equations in the above system yields the following:

k1 = y1 = S(x1) = S(k2),

which establishes a constraint propagation pathway between k1 and k2 and restricts the
pair (k1, k2) to a specific set of 2ω possible outcomes, denoted as (k1, k2) ∈ {(S(i), i) | 0 ≤
i < 2ω − 1}. This illustrates how constraints can arise even without any initial constrained
variables.

In practice, only a small subset of dependency pathways effectively propagate constraints
to key variables. Thus, instead of analyzing all dependencies in E , it is sufficient to identify
the specific subset of equations, referred to as constraint subsets, that directly impose
restrictions on key variables. The challenge lies in systematically detecting all such
constraint subsets and efficiently identifying all linear and nonlinear constraints on key
variables.

3.3 Principles of Constraint Detection
Before proceeding, we first give the definition of a minimal constraint subset.

Definition 9 (Minimal Constraint Subset). Given a differential trail, a minimal constraint
subset Emin is a constraint subset which does not contain any smaller constraint subset
inside.
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Identifying minimal constraint subsets. In this work, Cons-Collector aims to detect
all minimal constraint subsets within the differential trails. One of the main principles in
identifying such constraints is to eliminate all free variables involved by summing up the
equations. Since free variables in a constraint subset do not affect the distribution of the
associated key variables, meaningful constraints can only be imposed by either propagating
some value restrictions to these free variables or eliminating them through summation.
After eliminating all free variables, the resulting equation will only consist of constrained
variables (either the set of initial constrained variables or the non-uniform constrained
variable S(x) ⊕ x), thereby forming a restriction on key variables. However, whether the
resulting summed equation imposes a constraint on the relevant key values still depends
on the specific values of all the constrained variables. We call potential constraint subset
such a system of equations whose summation can remove all free variables. To formalize
this idea, we introduce the following corollary:

Corollary 1. An equation subset, E = {e1, e2, · · · , ev}, forms a potential minimal con-
straint subset on the relevant key variables {kj} if and only if

v∑
i=1

ei =
∑

j

kj ⊕
∑

u

(S(xu) ⊕ xu) ⊕
∑

h

vh = 0, (2)

while for any equation subset E′ ⊂ E, Equation (2) does not hold. According to Equation (1),
ei either takes form of yu = S(xu) or xu ⊕ L(y0, · · · , ym−1, k0, · · · , km−1) = 0; S refers to
the nonlinear function of the cipher; and vh refers to constrained variables.

Proof. Sufficiency (⇒): Consider an equation set E derived from the algebraic structure
of a cipher, which consists of nonlinear and linear equations ei. Assume there is an equation
set E, such that Equation (2) does not hold for E and any other equation subset E′ ⊂ E,
and E can still be a minimal constraint on key variables {k0, k1, · · · , kJ}, where nonlinear
equations are all of the form: yu = S(xu). Therefore, for E we have:∑

i

ei =
∑

j

kj ⊕
∑

u

(S(xu) ⊕ xm) ⊕
∑

h

vh ⊕ F = 0,

Here, F is a free variable; otherwise, it is constrained and can be included in
∑

vh. Then
we get: ∑

kj =
∑

u

(S(xu) ⊕ xu) ⊕
∑

h

vh ⊕ F = F ′.

Moreover, F ′ is also a free variable because the XOR operation between a free variable F
and any other variables always results in a free variable F ′. Consequently, no constraints
are imposed on the key, leading to a contradiction. Thus, the sufficiency is proven.
Necessity (⇐): We first prove the equation set E is a potential constraint on keys.
Assume one equation set E satisfies Equation (2). Thereby, we have:∑

kj =
∑

u

(S(xu) ⊕ xu) ⊕
∑

h

vh,

all components on the right-hand side are constrained variables, as both S(xu) ⊕ xu and
vh are constrained. Consequently, this equation could potentially impose value restrictions
on the key variables {k0, k1, · · · , kJ}. Therefore, E is a constraint;

Then, we prove equation set E is a minimal constraint. As no other subset E′ ⊂ E
satisfies Equation (2), which means no other subset inside E is a constraint on key.
Therefore, E is the minimal constraint on key, and the necessity is proved.
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Notably, based on this corollary, Cons-Collector framework searches for all minimal
nonlinear and linear constraint subsets within the algebraic structure. For example,
consider the nonlinear constraint Eexp found in [PT22]:

x1 ⊕ k3 = 0, y1 ⊕ k1 = 0,

y1 ⊕ k2 = 0, y1 = S(x1).

This nonlinear constraint is not a minimal constraint subset, as a smaller equation
subset inside it, {x1 ⊕ k3 = 0, y1 ⊕ k1 = 0, y1 = S(x1)}, is also a constraint subset.
Instead, Cons-Collector framework will detect two minimal nonlinear constraints, which
are equivalent to Eexp:

Eexp1 : x1 ⊕ k3 = 0, y1 ⊕ k1 = 0, y1 = S(x1);
Eexp2 : x1 ⊕ k3 = 0, y1 ⊕ k2 = 0, y1 = S(x1).

The comparison between minimal nonlinear constraints and the constraint Eexp is shown
in Figure 3. Rather than searching for the entire tree-structure of nonlinear constraints,
Cons-Collector identifies all minimal components within the tree structure, which can
later be combined to construct larger constraints.

k3 x1 y1

k2

k1

(a) Structure for nonlinear constraint Eexp

k3 x1 y1

k3 x1 y1

k2

k1

(b) Structure for minimal nonlinear constraints Eexp1
and Eexp2

Figure 3: Comparison between minimal and common constraint subset.

Detecting minimal linear and nonlinear constraints enables the framework to systemat-
ically capture all possible constraints within the trail by transforming the problem into a
search for linearly dependent vectors within a matrix.

Constructing the constraint subset. We introduce a binary matrix product representation
for E , which captures the constraint propagation pathways between variables. Using
Gaussian elimination, we can identify linearly dependent equations efficiently.

As discussed in Section 3.2, the nonlinear equation y = S(x) is regarded as a constraint
propagation pathway and x ⊕ S(x) is a constrained variable. To express this feature, we
simply denote S(x) ↔ x as x ⊕ S(x) = 0, which means the summation of S(x) and x is
a constrained variable. Therefore, following the notation in Section 3.1, the m nonlinear
equations in Equation (1) can be expressed in the following matrix product form:

ar
0 0 · · · 0 ar

0 0 · · · 0
0 ar

1 · · · 0 0 ar
1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · ar
m−1 0 0 · · · ar

m−1

 ·
(
Xr, Y r

)T = 0,

︸ ︷︷ ︸
Ar

︸ ︷︷ ︸
Ar

where ar
i ∈ {0, 1}, 0 ≤ i < m. The matrix (Ar Ar) captures the dependency relation-

ships between variables in the constraint propagation pathways xr
i ↔ yr

i . According to
Corollary 1, constrained variables do not need to be eliminated, so their coefficients in the
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matrix are set to 0. Specifically, ar
i = 0 if and only if xr

i or yr
i is a constrained variable

(e.g., the corresponding S-box is active), and ar
i = 1 otherwise.

For the m linear equations in Equation (1), each can be expressed as: cr
i · xr+1

i =
(
⊕m−1

j=0 br
i,j · yr

j ) ⊕ (
⊕m−1

j=0 dr
i,j · kr

j ), where 0 ≤ i < m. These equations can be rewritten in
the following matrix form:


br

0,0 · · · br
0,m−1 cr

0 0 · · · 0 dr
0,0 · · · dr

0,m−1
br

1,0 · · · br
1,m−1 0 cr

1 · · · 0 dr
1,0 · · · dr

1,m−1
...

. . .
...

...
...

. . .
...

...
. . .

...
br

m−1,0 · · · br
m−1,m−1 0 0 · · · cr

m−1 dr
m−1,0 · · · dr

m−1,m−1

 ·
(
Y r, Xr+1, Kr

)T = 0,

︸ ︷︷ ︸
Br

︸ ︷︷ ︸
Cr

︸ ︷︷ ︸
Dr

where the parameters br
i,j , cr

i , dr
i,j ∈ {0, 1}, are determined based on the specific linear

function, 0 ≤ i, j < m. Similarly, if a variable is a constrained variable, its corresponding
coefficient is set to 0. Finally, the complete algebraic system in Equation (1) can be
represented in matrix product form as:


A0 A0 0 0 0 · · · 0 0 0
0 B0 C0 0 0 · · · 0 0 D0

0 0 A1 A1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · BR−1 CR−1 DR−1

 ·
(
X0, Y 0, X1, K0 · · · , Y R−1, XR, KR−1)T = 0,

︸ ︷︷ ︸
M

where the coefficient matrix, denoted as M , represents the constraint propagation pathways
of all linear and nonlinear functions.

Identifying constraint subsets that satisfy Corollary 1 is equivalent to searching for
linearly dependent vector subsets within the matrix M with all coefficients of keys: Dr = 0⃗,
as Cons-Collector searches for constraints on Kr and only focuses on the relation between
x and y variables. Therefore, Gaussian eliminationcan be applied to efficiently detect
these linearly dependent subsets. The Gaussian elimination-based detection algorithm
of Cons-Collector, presented in Algorithm 1 in Appendix A, enables the automatic
detection and retrieval of all potential constraint subsets.

To summarize, by applying Corollary 1 and Algorithm 1, Cons-Collector systemati-
cally identifies potential linear and nonlinear constraints within the equation system E .
This process reveals key-variable dependencies by eliminating free variables and utilizing
constraint propagation pathways. As a result, Cons-Collector effectively detects all
potential constraints on key variables.

3.4 Uncovering new dependencies
Previous research [PT22] has extensively studied linear constraints, which can be efficiently
detected in our framework Cons-Collector. In contrast, detecting nonlinear constraints
is significantly more challenging due to the complex interactions introduced by nonlinear
layers, which cannot be directly represented like linear constraints. Our proposed detection
framework leverages constraint propagation pathways to systematically capture dependen-
cies imposed by nonlinear layers, uncovering previously unidentified constraints on key and
addressing gaps left by prior research. To demonstrate the effectiveness of our framework,
we present three examples illustrating some undiscovered dependencies.

Example 1. Consider the following system of equations involving the free variables x1,
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x1 k1, y2 0

y1

k2

(a) Dependencies in Example 1

x1 x2, k2

y1

x2, k1

(b) Dependencies in Example 2

x1, x2 k2

y3, y4 k1y1, y2

x3, x4k3

(c) Dependencies in Example 3

Figure 4: An illustration of the propagation pathways that were undiscovered.

y1, y2, and key variables k1 and k2:
y1 = S(x1),
y1 ⊕ k2 = 0,

y2 ⊕ k1 = 0,

y2 ⊕ x1 ⊕ k1 = 0.

Note that in this example, all of the non-key variables are free and the only S-box involved
is inactive. However, based on this system of equation, one can still conclusively determine
that k2 = S(0). The propagation pathway of constraints is shown in Figure 4a. The
constraint propagates from knowing the value of x1 to y1 which ultimately imposes a
restriction on k2.

Example 2. Consider the following system of equations involving the free variables x1,
y1, x2, and key variables k1 and k2:

y1 = S(x1),
y1 ⊕ x2 ⊕ k1 = 0,

x1 ⊕ x2 ⊕ k2 = 0.

Again, one can derive the relationship between k1 and k2: k1 = S(x2 ⊕ k2) ⊕ x2 by
simplifying the system. This allows us to analyze the non-uniform probability distribution
of the key pair (k1, k2). The propagation pathway is illustrated in Figure 4b.

This example demonstrates how the non-uniformity of S(x) ⊕ x can introduce effective
constraints on key variables, even when all input variables are free. In our framework,
Cons-Collector managed to identify this type of pathway as a constraint, as it imposes a
potential constraint on the pair (k1, k2).

Example 3. Consider the following equation set, where all variables are free variables:
yi = S(xi), (0 < i ≤ 4),
y1 ⊕ y2 ⊕ x3 ⊕ x4 ⊕ k1 = 0,

x1 ⊕ x2 ⊕ k2 = 0,

y3 ⊕ y4 ⊕ k3 = 0.

In the above equations, if k2 = 0, then y1 ⊕ y2 = S(x1) ⊕ S(x2) = 0. Consequently, the
second equation can be simplified as: x3 ⊕ x4 ⊕ k1 = 0. By setting k1 = 0, it follows that
x3 ⊕ x4 = 0, which leads to y3 ⊕ y4 = 0 = k3. As a result, when k2 = 0 and k1 = 0, it also
determines that k3 = 0. Therefore, this system of equations imposes a nonlinear constraint
on key variables (k1, k2, k3). This example demonstrates again that, even if all variables
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are free variables, as long as they are linked to each other within the same equation set,
the equations can still impose potential constraints on key. The propagation pathway is
illustrated in Figure 4c. If certain restrictions are placed on k1 and k2, the constraints
propagate from (x1, x2) to (y1, y2), then to (y3, y4), subsequently reaching (x3, x4), and
ultimately imposing a constraint on k3.

4 Cons-Solver: An Automated Predictor for Probability
Distribution

This section introduces Cons-Solver, an automated solving tool that parses the constraint
subsets identified by Cons-Collector and computes a probability distribution that is close
to the true distribution for the differential trail.

4.1 Probability Computation
Typically, Cons-Collector detects multiple subsets E0,E1, · · · , Ev within a differential
trail. However, these subsets are not necessarily independent. Thus, we would have to
consider all of them at once. We will denote that solution space of the equations as
S = Sol(E0 ∪E1 · · ·∪Ev). Next, we will introduce two methods to calculate the probability
distribution of differential trails.

An accurate method for probability calculation. When the number of variables and/or
equations is not too large, we can enumerate all the possible solutions for E0 ∪ E1 · · · ∪ Ev

and compute the frequency of the relevant key variables, Fk⃗ as well as the solution space
S. Finally, the probability of the differential trail T under a specific key assignment k⃗ can
be computed as:

PT |⃗k = P0 ·
Fk⃗

|S|
· 2|k|,

where 2|k| denotes the size of the involved key k and P0 is the original estimated probability
of T under the Markov assumption.

An estimate method for probability calculation. When the number of equations in
E0 ∪E1 · · ·∪Ev is too large, computing the exact solution set is impractical due to excessive
time and memory requirements. Therefore, in this case, we can turn to estimation via
sampling. We randomly generate a set of samples for the involved variables. More
specifically, we generate 2m1 values for the variables x (with corresponding y = S(x)
values determined accordingly) and 2m2 values for the relevant keys. This results in a
total of 2m1+m2 samples. In our experiments, we set m1 = 34 and m2 = 10 to balance
computational efficiency and statistical accuracy.

Similar to the computation above, we can estimate the probability distribution of T
under a given key assignment k⃗ by estimating the frequency F ′

k⃗
and the solution space S′:

PT |⃗k = P0 ·
F ′

k⃗

|S′|
· 2|k|,

However, as the size of the constraint subset increases, this sampling method will still
be inefficient if we want to obtain an accurate profile. Thus, to enhance its efficiency, we
incorporated a pre-processing phase.
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4.2 Pre-processing the Constraint Subsets
This section introduces three preprocessing techniques to optimize the processing of
identified constraint subsets, reducing the computational complexity of solving equations.

Merging equations and eliminating redundant variables. For linear equations within the
same linear layer, some contain free variables that do not appear in any nonlinear equations.
These free variables can be eliminated by summing up the corresponding linear equations
and generating a new linear equation that does not contain these irrelevant variables
without altering the constraints that affect the key. For example, consider the constraint
subset E3 in Table 5. The equations y0

1 ⊕ x1
5 ⊕ k1 = 0 and y0

1 ⊕ [y0
11] ⊕ [x1

13] ⊕ k1 = 0 belong
to the same linear layer in the first round, and y0

1 is a completely free variable, independent
of any other variables in E3. Therefore, summing these two equations produces a simplified
equation x1

5 ⊕ [y0
11] ⊕ [x1

13] = 0, which eliminates y0
1 and k1. However, if y0

1 = S(x0
1) is also

included in the constraint E3, these two linear equations cannot be combined. This is
because the nonlinear relationship between x0

1 and y0
1 could propagate the dependencies,

influencing the probability distribution of k1. The constraint subsets E1 and E2 in Table 5
do not contain such free variables that can be eliminated and therefore remain unchanged.
This process reduces system complexity by eliminating redundant variables that do not
introduce new information.

Grouping subsets and eliminating duplicate equations. We also applied a grouping
strategy to speed up the solving process. The subsets involving the same key variables are
merged into a single set, and duplicated equations are eliminated. Meanwhile, equations
that are independent of each other are handled separately. For example, the constraint
subsets E1 and E2 in Table 5 are closely related with each other, thus, they are combined
into a single set. In contrast, the equations in E3 remain independent of those in E1 and E2.
Therefore, Cons-Solver organizes the three constraint sets into two groups: E1 ∪E2 and E3.
The global solution set is then obtained by independently solving the equations in each group
and combining their solutions, leading to |Sol(E1 ∪ E2 ∪ E3)| = |Sol(E1 ∪ E2)| × |Sol(E3)|.
This grouping improves efficiency by reducing the complexity of solving a large system,
allowing each subset to be processed separately.

Merging multiple constrained variables into a single variable. For each equation, we
merge the constrained variables into a new auxiliary variable and analyze if remains
constrained. If this auxiliary variable is still constrained, the constraint set remains
effective. However, if it becomes a free variable, the entire set will not impose restrictions
on key variables and, therefore, has no impact on the probability distribution of the
differential trail. By doing so, we can reduce the number of variables. For example, in the
equations of E1 in Table 5, the constrained variables y0

4 and y0
11 are combined as y0

4 ⊕ y0
11.

It is possible that y0
4 ⊕ y0

11 becomes a free variable, even though both y0
4 and y0

11 are
constrained variables, making the entire constraint ineffective. This process eliminates
redundant constraints, ensuring that only meaningful constraints are retained. If it remains
a constrained variable, the constraint is simplified by reducing the number of involved
variables.

5 Experimental Results
In this section, we used Trail-Estimator to analyze differential trails of SKINNY-64,
SKINNY-128, TWINE, and LBLOCK. For each targeted differential trail, Cons-Collector
detected all linear and nonlinear constraints, while Cons-Solver computed the proba-
bility distribution. The detailed number of constraints identified and a comparison to
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previous works are summarized in Table 1, highlighting that our tool identifies more
nonlinear constraints than previous works. The probability distributions obtained from
the constraints are presented in Table 2. To validate the accuracy of Trail-Estimator,
we conducted experiments to obtain the experimental probability distribution of some
short-round differential trails to compare with Trail-Estimator’s predictions.

5.1 Application to SKINNY

SKINNY is a lightweight block cipher family introduced by Beierle et al. [BJK+16], featuring
a tweakable SPN-based structure. We applied Trail-Estimator to a total of 11 differential
trails from the SKINNY family of ciphers. We obtained these from various sources [ZZ18,
DDH+21, PT22, QDW+21]. For every single trail, Trail-Estimator detected more
nonlinear constraints than all the previous works and managed to obtain a more precise
estimation of the probability distribution. The detailed probability distributions derived
from these constraints are presented in Table 3.

Table 3: Experimental results for SKINNY

Version Rds Reduced Stated Probability Distribution Sourcekey space prob. Percentage of prob.

64-64

7 2−7.3 52 49-47.01 47-46.01 46-45.01 45-44.01 44-42.42 Table 6
9.76% 31.38% 36.46% 18.18% 4.12% [DDH+21]

10 0 46 — Table 7
[DDH+21]

10 1 42 42 Table 7
100% [PT22]

64-128
13 2−4 55 51 Table 8

100% [DDH+21]

8 1 17-19 15 or 16 Table 16
100% [QDW+21]

64-192
15 2−6.2 54 48 47 Table 9

85.71% 14.28% [DDH+21]

11 0 147 — Figure 2
[ZZ18]

128-128 14 2−10.4 120 119.9-118.9 118.8-117.8 117.7-116.7 116.6-115.71 Table 10
6.66% 27.92% 42.29% 23.12% [DDH+21]

128-256 16 2−11.1 127.6 128.2-125.2 125.1-122.1 122.0-117.0 116.9-113.9 113.8-108.2 Table 11
9.30% 31.30% 35.67% 17.95% 5.78% [DDH+21]

128-384 17 0 110 — Table 12
[DDH+21]

Stated Prob.: the −log2 probability reported in the original papers; Reduced key Space: refers to the proportion
of the estimated valid key space for the differential trail.

Results summary. These trails have been analyzed before in previous work, so we will use
the rest of this subsection to highlight the difference with previous works. For instance, in
the case of the differential trail from Table 10 of [DDH+21], Trail-Estimator identified
six solvable nonlinear constraints, including one new nonlinear constraint, as detailed in
Appendix H.5. In the case of Table 11 of [DDH+21], we found two new solvable nonlinear
constraints (see Appendix H.6). The predicted probability distribution of the differential
trails can be found in Figure 5. We observed that as the complexity of the constraints
increases, the resulting probability distribution approaches a Gaussian-like distribution.
Additionally, for SKINNY-64 TK1, TK2, and TK3 differential trails, we incorporated key
scheduling into the solving phase. Due to the substantial size of the nonlinear constraints,
only one remains solvable within 15-round SKINNY-64-192 trail. For SKINNY-64 TK2 and
TK3, our results are consistent with those reported in [PT22]; however, we identify additional
nonlinear constraints by considering the TK2 scheduling. For 16-round SKINNY-128 -256
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trail [DDH+21], when we incorporated key scheduling into solving, the complexity increase
drastically and only linear constraints and three nonlinear constraints remain solvable
in this case. For the infeasible SKINNY -128-384 trail, we considered TK3 scheduling
and provided all detected constraints on three tweakeys. Based on solvable constraints,
Trail-Estimator provided a comprehensive prediction of the probability distribution for
SKINNY-128 differential trails of Table 10 and Table 11 in [DDH+21] for the first time, as
shown in Figure 5.

(a) 14-round SKINNY-128 trail [DDH+21] (b) 16-round SKINNY-128 trail [DDH+21]

Figure 5: Predicted probability distribution of SKINNY-128 differential trails

Comparison with previous works. We compare our results for SKINNY with previous
studies and find that Trail-Estimator consistently identifies more nonlinear constraints.
In particular, Trail-Estimator discovered a significant number of nonlinear constraints
that span over five or more rounds within a differential trail. Some of these extended
nonlinear constraints span up to 14 rounds, which have not reported before. As discussed in
Section 3.2, detecting all constraints requires considering all possible constraint propagation
pathways between variables. However, previous works more or less overlooked some
relationship between variables. The detection framework in [PT22] detects half-constraints,
which represent only a small portion of the relationships between constrained variables
and free variables.

The work in [Sun24] focuses on the linear relationships between the input and out-
put bits of S-boxes. For the 3rd-5th rounds of the 11-round differential trail in [ZZ18],
it identifies one linearized nonlinear constraints, which captures only certain linear re-
lationships between specific bits while overlooking nonlinear dependencies in the trail.
In contrast, Trail-Estimator identifies 2 different nonlinear constraints, as shown in
Appendix H. Additionally, in SKINNY-128, some XDDT and YDDT of active cells do not form
affine subspaces, making them inexpressible through linearized equations and thus ignored
in [Sun24]. In [NGJE25], an SAT-based tool is introduced that utilizes SAT solvers and
model counting to estimate the average probability of differential trails and the size of
valid key spaces. In their case, they identified the 17-round SKINNY-128 trail from Table
12 of [DDH+21] as feasible but we managed to identify a constraint subset E8(details are
in Appendix H.7) which rendered this differential trail infeasible.

Results verification. We extracted the first three rounds of the differential trail from
Table 7 of [DDH+21] and denoted it as TS0. We chose this particular segment to verify as
it contains a short nonlinear constraint that was not detected by previous work. This extra
constraint is shown in Appendix H.2. The probability for this differential trail under the
Markov cipher assumption is 2−32. A step-by-step illustration of how Cons-Collector
finds the constraint subsets of TS0 is given in Appendix D. In Figure 6, we show the graph
of the probability distribution derived from experimentation (in red) and compare it with
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the predicted distribution in a Monte Carlo simulation. For the experiment, we generated
a total of 1000 random master keys and for each key, we generated 238 plaintext pairs.
We note that there is a slight discrepancy between the two distribution, roughly at key
number 670. We attribute this discrepancy to the small sample size of master keys.

Figure 6: Predicted (blue) and experimental (red) probability distribution of the SKINNY-64
trail TS0

5.2 Application to LBLOCK
LBLOCK is a lightweight block cipher that has the Feistel structure, proposed by Wu and
Zhang [WZ11]. We identified and applied Trail-Estimator to the optimal 16-round
differential trail of LBLOCK from Zhou’s paper [ZZDX19], denoted as TLBLOCK .

For the 16-round differential trail TLBLOCK , Trail-Estimator finds 8 linear and 11
nonlinear constraints and computes the predicted probability distribution. A graph of the
predicted probability distribution is shown in Figure 7. We remark that the distribution
closely follows a Gaussian distribution, with an average probability of 2−71 for the valid
key space, which is now reduced by half, instead of the original probability of 2−72 that
was stated in [ZZDX19], due to the effect of a linear constraint.

Figure 7: Predicted probability distribution of 16-round LBLOCK trail from [ZZDX19]

To validate the accuracy of probability predictions, both Trail-Estimator estimations
and experimental probability distribution experiments are conducted on two 4-round
differential trails, as shown in Figure 8. The first trail, denoted as TL0, is extracted from
the first four rounds of the optimal 16-round trail in [ZZDX19]. The second trail, denoted
as TL1, is derived by modifying the output difference of the 6th nibble of the final round
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in TL0. The details of two trails are presented in Table 9 and Table 10 in Appendix F,
respectively. For TL0 and TL1, Cons-Collector identifies the same nonlinear constraint,
as detailed in Appendix I.1. Since the active S-box patterns remain identical in both
trails, their nonlinear constraint structures are also the same, potentially influencing the
probability distributions of TL0 and TL1. However, due to the distinct output difference,
the constraints on the variable values differ accordingly. Consequently, the predicted
probability distributions of the two differential trails may be different.

For TL0, the calculation of Cons-Solver shows that the nonlinear constraint does not
affect the original probability distribution. According to Figure 8a, the experimental
probability distribution of the trail aligns with our estimated results, following a Gaussian
distribution with an average probability of approximately 2−18. For TL1, although it differs
from TL0 by only a single nibble, the constraint has a significantly different impact on
its probability distribution. According to Cons-Solver, TL1 has an average probability
of 2−19 for 50% of the keys, 2−18 for 25% of the keys, while the remaining 25% of the
keys are infeasible. As shown in Figure 8b, the predicted probability distribution from
Trail-Estimator closely aligns with the experimental probability distribution, except
for a slight discrepancy around key number 700, which is attributed to the effects of key
scheduling. As Trail-Estimator assumes that all round keys are mutually independent,
it might introduce some imprecisions. To validate this, we analyze LBLOCK with fully
independent round keys as well. As shown in Figure 11, the predicted and actual probability
distributions align closely, with only a gap less than 2% between them.

(a) Probability distribution of TL0 (b) Probability distribution of TL1

Figure 8: Predicted (blue) and experimental (red) probability distribution of 4-round trails
TL0 and TL1

In summary, for the differential trails of LBLOCK, our method not only identifies all
constraints on the key space but also provides the probability predictions closely aligning
with experimental distributions. Additionally, based on the results from TL0 and TL1, we
observe that nonlinear constraints with same structure could potentially influence the
probability distribution of trails differently.

5.3 Application to TWINE

TWINE is a lightweight block cipher proposed by Suzaki et al. [SMMK12], based on a Feistel
structure. In the experiment, Trail-Estimator is applied to two differential trails of
TWINE: an optimal 9-round trail discovered using the Mixed Integer Linear Programming
(MILP) solver (detailed in Table 12 in Appendix G) and an optimal 15-round differential
trail from Table 16 [ZZDX19]. This study is the first to perform differential trail verification
for TWINE.

For the 9-round differential trail in Table 12, denoted as TT W1 , Trail-Estimator
identified three nonlinear constraints but no linear constraint, as shown in Table 22, in
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Appendix J. All three nonlinear constraints are within a solvable range. The predicted
probability distribution for the trail is shown in Figure 9a. Under the Markov cipher
assumption, this trail has a probability of 2−28. Based on our predictions, the average
probability of the trail within valid key space is 2−27.5%, with a maximum of 2−25.14 and
the minimum is 2−31.85. Further, according to Cons-Solver, over 22% keys are invalid.
The overall effect of three nonlinear constraints is highly complex, and the final probability
distribution follows closely to the Gaussian distribution.

For the 15-round differential trail ([ZZDX19]), denoted as TT W2 , Trail-Estimator
identified 10 nonlinear constraints and 6 linear constraints. However, only 4 of the nonlinear
constraints are solvable 1, as shown in Table 23, Appendix J. Based on these 4 nonlinear
equations and all linear equations, the predicted probability distribution is shown in
Figure 9b. The 4 nonlinear constraints in TT W2 are simpler than those in TT W 1, resulting
in the probability distribution remains Gaussian-like but with greater discontinuities in
the curve. Additionally, based on our probability distribution, the average probability for
valid key space is 2−64 , which is 16 times higher than the probability stated in [ZZDX19].
This discrepancy is attributed to 4 linear constraints, each reducing the key space by half.
As a result, only less than 6% of keys are valid for trail TT W2 .

(a) Probability distribution of TT W 1 (b) Probability distribution of TT W2

Figure 9: The predicted probability distributions of two TWINE differential trails by
Trail-Estimator

6 Discussion and Conclusion
This paper introduced Trail-Estimator, an automated verification tool comprising
the Cons-Collector constraints detection framework and the Cons-Solver solving tool.
Cons-Collector systematically identifies all linear and nonlinear constraints on the key ma-
terial, while Cons-Solver solves these constraints to estimate the probability distribution
of differential trails.

Trail-Estimator was applied to analyze various differential trails of SKINNY-64,
SKINNY-128, LBLOCK, and TWINE block ciphers, achieving state-of-the-art results. It ef-
fectively found all linear and nonlinear constraints and computed the overall probability
distribution based on solvable constraints, with its estimations closely matching actual
measured distributions. Based on our experimental results, we provide the following
insights.

1. Certain linear constraints cause the valid subkey space to form an affine subspace,
leading to an increase in the average probability of the trail within valid key space.
On the other hand, nonlinear constraints introduce greater complexity into the key
distribution, generally altering the probability distribution of the trail. Additionally,

1We define 244 as the maximum alloted time complexity to be considered as “solvable”.
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as the number and complexity of constraints increase, the probability distribution
progressively resembles a Gaussian distribution.

2. Distinct differential trails with the same active S-box patterns can exhibit significantly
different probability distributions due to variations in difference values, which alter
variable ranges and impact probabilities, even with the same constraint structures.

3. For word-wise key schedule algorithms, incorporating them into our framework
ensures that probability predictions closely match actual values. Otherwise, we
observed that assuming independent round keys leads anyway to a tolerable error
compared to real values.

The advantage of Trail-Estimator compared to previous methods lies in its ability
to identify more nonlinear constraints, allowing for a more comprehensive estimation of
the probability distribution for differential trails. However, while Trail-Estimator is
capable of identifying all potential constraints within differential trails, it can only solve
the constraints within a solvable range. Its applicability declines when the input of the
cipher cannot be further divided into smaller cells (e.g., GIFT-64). In future work, we aim
to develop a more generic detection framework that can be applied to a wider range of
block ciphers. Additionally, we plan to enhance the calculation efficiency of Cons-Solver
by integrating new algorithms.
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A Gaussian Elimination-Based Algorithm for Constraint
Detection

Algorithm 1 Gauss-Collector algorithm
Input:

1: A M × N binary matrix MAT used to represent all linear equations in a block cipher;
Output:

2: A list which include the index of linear equations in the original linear matrix MAT ;
3:
4: Initialize M=MAT.size(); //row number of MAT
5: Initialize ROW_IND_MAT[M]=∅;
6: Initialize cur_row=1;
7: while cur_row < M do
8: while findP ivot(MAT, cur_row) <= findP ivot(MAT, cur_row − 1) do:
9: MAT [cur_row]⊕ = MAT [cur_row − 1]

10: ROW_IND_MAT [cur_row]⊕ = ROW_IND_MAT [cur_row − 1]
11: REF (MAT, ROW_IND_MAT, cur_row, N)
12: end while
13: cur_row++;
14: end while
15: return ROW_IND_MAT;

B The Non-Uniformity of Variable S(x) ⊕ x

In the following table, the uniformity of S(x)⊕x in different ciphers are shown. If S(x)⊕x
is uniform, then P (S(x) ⊕ x = c) = 1

2ω for any 0 ≤ c < 2ω, where ω is the size of variable
x. However, for SKINNY, LBLOCK and TWINE ciphers, #(S(x) ⊕ x) < 2ω always holds, which
means P (S(x) ⊕ x = c) = 0 for some c, thus S(x) ⊕ x is non-uniform and a constrained
variable according to Definition 7.

Table 4: Non-Uniformity of S(x) ⊕ x (0 ≤ x ≤ 2ω − 1) for ω-bit S-boxes of various ciphers
Cipher #(S(x) ⊕ x) Value of 2ω Uniformity of S(x) ⊕ x

SKINNY-64 12 16 Non-Uniform
SKINNY-128 178 256 Non-Uniform

LBLOCK ≤ 12 16 Non-Uniform
TWINE 14 16 Non-Uniform

C An Example of Preprocessing Phase of Cons-Solver

The following 3 nonlinear constraints are detected by Cons-Collector from the SKINNY-64
differential trail in Zhang’s paper [ZZ18], where the variables inside square brackets are
constrained variables.

In the preprocessing phase, the Cons-Solver first combine the linear equations, which
have no impact on any variables, within the same linear layers. Thereby, the first two
equations within nonlinear constraint E3 are XORed with each other. Then the nonlinear
constraint E1 and E2 are grouped together as they are related with each other.
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Table 5: Nonlinear constraint subsets of SKINNY-64 differential trail
Nonlinear Constraint E1 Nonlinear Constraint E2 Nonlinear Constraint E3

[y0
4 ] ⊕ [y0

11] ⊕ x1
9 ⊕ k4 = 0 [y0

4 ] ⊕ [y0
11] ⊕ x1

9 ⊕ k4 = 0 y0
1 ⊕ x1

5 ⊕ k1 = 0
[y1

3 ] ⊕ y1
9 ⊕ [x2

15] ⊕ k13 = 0 [y1
3 ] ⊕ y1

9 ⊕ [y1
12] ⊕ [x2

3] ⊕ k13 = 0 y0
1 ⊕ [y0

11] ⊕ [x1
13] ⊕ k1 = 0

S(x1
9) = y1

9 S(x1
9) = y1

9 y1
5 ⊕ [y1

8 ] ⊕ [x2
10] ⊕ k14 = 0

S(x1
5) = y1

5

As a result, the subsets are finally grouped as E1 ∪ E2 and E3, as shown in Table 6.

Table 6: Preprocessed constraint subsets from Table 5
Merged E1 ∪ E2 Independent E3

[y0
4 ⊕ y0

11] ⊕ x1
9 ⊕ k4 = 0 x1

5 ⊕ [y0
11 ⊕ x1

13] = 0
[y1

3 ⊕ x2
15] ⊕ y1

9 ⊕ k13 = 0 y1
5 ⊕ [y1

8 ⊕ x2
10] ⊕ k14 = 0

[y1
3 ⊕ y1

12 ⊕ x2
3] ⊕ y1

9 ⊕ k13 = 0 S(x1
5) = y1

5

S(x1
9) = y1

9

D Detailed Detection Process of SKINNY-64 Trail TS0

The following example demonstrates how Cons-Collector identifies constraints in a
differential trail. In this example, we focus on the first three rounds of a SKINNY-64
differential trail from Table 5 in [DDH+21], as depicted in Figure 10.

Figure 10: The first 3 rounds of SK differential characteristic from the Table 6 in [DDH+21],
cells with orange color are active S-boxes

The Cons-Collector first generalize the algebraic structure of SKINNY-64 cipher into
an equation system E . In the equation system E , consider the following Equation (3),
which is then transformed into a dependency equation set:

y0
3 ⊕ [y0

9 ] ⊕ [y0
12] ⊕ k3 = x1

3
y0

3 ⊕ [y0
9 ] ⊕ k3 = [x1

15]
y1

3 ⊕ [y1
9 ] ⊕ [x2

15] ⊕ k13 = 0
y1

3 = S(x1
3)

→


y0

3 ↔ [y0
9 ] ↔ [y0

12] ↔ k3 ↔ x1
3

y0
3 ↔ [y0

9 ] ↔ k3 ↔ [x1
15]

y1
3 ↔ [y1

9 ] ↔ [x2
15] ↔ k13

y1
3 ↔ x1

3,

(3)

The first three equations of the subset are extracted from the linear layers of 1st and
2nd rounds of the cipher. The fourth equation is the nonlinear function between x1

3 and
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y1
3 . This equation set satisfies the Corollary 1 in Section 3.4, and the combination result

of the dependency equations is k13 ↔ [y0
12] ↔ [y1

9 ] ↔ [x2
15], which forms a constraint on

key variables.
In the context of the Cons-Collector, all linear and nonlinear equations are converted

into a binary matrix M . Consequently, the Equation (3) can be reformulated into the
matrix product form:


1 1 1 1 0 0 0 1 0
1 1 0 0 1 0 0 1 0
0 0 0 0 0 1 1 0 1
0 0 0 1 0 1 0 0 0

 ·



y0
3

y0
9

y0
12

x1
3

x1
15

y1
3

y1
9

k3
k13


= M · (X⃗, Y⃗ , K⃗),

In M , all the coefficients of X⃗ and Y⃗ can be eliminated by XOR summation. This
process yields the final result: k13 = 0, indicating that the Equation (3) satisfies Corollary 1
and imposes a constraint on k13:

S([y0
12] ⊕ [x1

15]) ⊕ [y1
9 ] ⊕ [x2

15] ⊕ k13 = 0
where the variables in orange color are constrained variables produced by the active cells
in differential trail. Based on this constraint, the valid space of key variable k13 is:

k13 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13}.

E Differential Trails of SKINNY-64
In the verification experiment, the trail TS0 is the first 3-round extracted from trail in
Table 6 [DDH+21]. The differential trail is shown below:

Table 7: 3-round differential trail TS0 derived from Table 6 [DDH+21]
Round ∆Is ∆Os

0 0x0040444444404400 0x0020222222202200
1 0x0000002002002002 0x0000001001001001
2 0x0010000000000001 0x0080000000000008

F Differential Trails of LBLOCK
Trail TL0 is the first 4 round extracted from 16-round trail in Zhou’s paper [ZZDX19].While,
trail TL1 in Table 9 has the totally same structure as TL0, with only the 6-th output nibble
value different. The original 16-round trail is denoted as TBLOCK .

Table 9: 4-round differential trail of LBLOCK: TL0

Round ∆Is ∆Os

0 00040000 00020000
1 40400000 40200000
2 04420000 04650000
3 05060040 04020040
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Table 10: 4-round differential trail of LBLOCK: TL1

Round ∆Is ∆Os

0 00040000 00020000
1 40400000 40200000
2 04420000 04650000
3 05060040 06020040

Table 11: 16-round differential trail of LBLOCK from [ZZDX19]
Round ∆Is ∆Os

0 0x00424000 0x00218000
1 0x00040000 0x00020000
2 0x40400000 0x40200000
3 0x04420000 0x04650000
4 0x05060040 0x04020040
5 0x00000000 0x00000000
6 0x06004005 0x0100C00A
7 0x10000BC0 0xF0000260
8 0x00B02500 0x00A01C00
9 0x00000000 0x00000000
10 0xB0250000 0x20120000
11 0x02210000 0x02150000
12 0x000100B0 0x00010020
13 0x20000000 0xA0000000
14 0x01A0B000 0x0A102000
15 0xA0010000 0xE0050000

G Differential Trail of TWINE

Table 12 below shows the optimal 9-round differential trail for TWINE, generated using
MILP solver.

Table 12: 9-Round differential trail TT W 1 of TWINE with probability of 2−28

Round ∆Is ∆Os

0 00870007 00390009
1 0A090000 07080000
2 07000000 09000000
3 A0000000 70000000
4 00000000 00000000
5 000000A0 00000070
6 00000700 00000900
7 0900000A 08000007
8 00870007 00390009
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H Important Nonlinear and Linear Constraints in SKINNY
Trails

H.1 Infeasible Nonlinear and Linear Constraints of 3-round Trail from
Figure 2 [ZZ18]

In this part, two nonlinear constraint subsets and one linear constraint subset within
3-5 round of the 11 round-trail from Figure 2 [ZZ18] are listed. The prediction made by
Cons-Solver can be easily verified through simple calculations, as x2

15 = [0x8, 0xD], y1
12 =

[0x0, 0x8], x2
3 = [0x3, 0xE] and x2

15 ⊕ y1
12 ⊕ x2

3 = [0x3, 0xB, 0x6, 0xE] ̸= 0. Meanwhile,
Cons-Solver output Sol(E1 ∪ E2) = ∅, which means two nonlinear constraints together
make the trail infeasible as well.

Table 13: Infeasible nonlinear constraints and linear constraint within Figure 2 [ZZ18]
Nonlinear Constraint E1 Nonlinear Constraint E2 Linear Constraint E3

[y0
4 ] ⊕ [y0

11] ⊕ x1
9 ⊕ k4 = 0 [y0

4 ] ⊕ [y0
11] ⊕ x1

9 ⊕ k4 = 0 [x2
15] ⊕ [y1

12] ⊕ [x2
3] = 0

[y1
3 ] ⊕ y1

9 ⊕ [x2
15] ⊕ k13 = 0 [y1

3 ] ⊕ y1
9 ⊕ [y1

12] ⊕ [x2
3] + k13 = 0

S(x1
9) = y1

9 S(x1
9) = y1

9

H.2 Nonlinear Constraints found in first 3 rounds of Table 6 [DDH+21]
A new nonlinear constraint is detected in the first 3 rounds of the trail from Table
6 [DDH+21]. This trail is denoted as TS0.

Table 14: Nonlinear constraint within first 3 rounds of the trail in Table 6 [DDH+21]
Nonlinear Constraint E6

y0
3 ⊕ [y0

9 ] ⊕ [y0
12] ⊕ x1

3 ⊕ k3 = 0
y0

3 ⊕ [y0
9 ] ⊕ [x1

15] ⊕ k3 = 0
y1

3 ⊕ [y1
9 ] ⊕ [x2

15] ⊕ k13 = 0
S(x1

3) = y1
3

H.3 Other Solvable Nonlinear Constraints within Table 6 [DDH+21]
Besides the above nonlinear constraint E6, we find another two minimal nonlinear con-
straints which are solvable.

Table 15: Nonlinear constraints within Table 6 [DDH+21]
Nonlinear Constraint E4 Nonlinear Constraint E5

y0
3 ⊕ x1

7 ⊕ k3 = 0 y0
0 ⊕ [y0

10] ⊕ [y0
13] ⊕ x1

0 ⊕ k0 = 0
y0

3 ⊕ [y0
9 ] ⊕ [x1

15] ⊕ k3 = 0 y0
0 ⊕ [y0

10] ⊕ [x1
12] ⊕ k0 = 0

[y0
5 ] ⊕ [y0

8 ] ⊕ x1
10 ⊕ k5 = 0 y1

0 ⊕ x2
4 ⊕ k9 = 0

y1
7 ⊕ y1

10 ⊕ x2
8 ⊕ k11 = 0 [y1

6 ] ⊕ [y1
9 ] ⊕ x2

11 ⊕ k12 = 0
[y2

2 ] ⊕ y2
8 ⊕ [x3

14] ⊕ k0 = 0 y2
4 ⊕ y2

11 ⊕ x3
9 ⊕ k2 = 0

S(x1
7) = y1

7 [y3
6 ] ⊕ y3

9 ⊕ [x4
11] ⊕ k10 = 0

S(x1
10) = y1

10 S(x1
0) = y1

0

S(x2
8) = y2

8 S(x2
4) = y2

4

S(x2
11) = y2

11

S(x3
9) = y3

9
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H.4 Infeasible Linear Constraints of 10-round SKINNY-64 trail
In Table 16, a linear constraint that causes infeasibility in 10-round trail from Table
7 [DDH+21].

Table 16: Infeasible linear constraint within Table 7 [DDH+21]
Infeasible Linear Constraint
y0

0 + [y0
10] + [y0

13] + [x1
0] + k0 = 0

y0
0 + [x1

4] + k0 = 0

H.5 New Solvable Nonlinear Constraint in 14-round Trail
Trail-Estimator find a new nonlinear constraint which reduce the probability of the
differential trail, without imposing constraints on any keys. The constraint set value
restriction for constrained variable [y1

12] ⊕ [x2
3] and [x3

14] ⊕ [x3
2].

Table 17: Nonlinear constraint E7

Nonlinear Constraint E7

y1
3 ⊕ y1

9 ⊕ [y1
12] ⊕ [x2

3] ⊕ k13 = 0
y1

3 ⊕ y1
9 ⊕ x2

15 ⊕ k13 = 0
y2

2 ⊕ [y2
8 ] ⊕ y2

15 ⊕ [x3
2] ⊕ k0 = 0

y2
2 ⊕ [y2

8 ] ⊕ [x3
14] ⊕ k0 = 0

S(x2
15) = y2

15

H.6 New Solvable Nonlinear Constraints in 16-round SKINNY-128 Trail
Two new solvable nonlinear constraints are detected in 16-round SKINNY-128 trail, as
shown in Table 18.

Table 18: New solvable nonlinear constraints in Table 11 [DDH+21]
Nonlinear Constraint E8 Nonlinear Constraint E9

[y2
1 ] + y2

11 + [y2
14] + x3

1 + k2
1 = 0 y3

0 + y3
10 + [y3

13] + [x4
0] + k3

0 = 0
[y2

1 ] + y2
11 + [x3

13] + k2
1 = 0 y3

0 + y3
10 + x4

12 + k3
0 = 0

y3
1 + [y3

11] + [x4
13] + k3

1 = 0 [y4
3 ] + [y4

9 ] + y4
12 + [x5

3] + k4
3 = 0

S(x3
1) + y3

1 = 0 S(x4
12) + y4

12 = 0

H.7 Infeasible Linear Constraints of SKINNY-128 trail in Table 12 [DDH+21]
The 17-round trail in [DDH+21] is invalid due to the following two linear constraints on
subkey k2. Specifically, for the 6-th S-box in the first round of this trail, we obtain that
XDDT(0x32,0x92)=∅ (which we believe is a typo), thus it is an invalid trail.

Table 19: Infeasible linear constraint within Table 12 [DDH+21]
2 Infeasible Linear Constraints

[y0
2 ] ⊕ [y0

8 ] ⊕ [x1
14] ⊕ k2 = 0

[y0
2 ] ⊕ [x1

6] ⊕ k2 = 0
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I Solvable Nonlinear and Linear Constraints in LBLOCK

I.1 The Only Constraint in Trail TL0 and TL1

Since the active cell positions in TL0 and TL1 are all the same, so these two trails have the
same nonlinear constraint structure, while the value of constrained variable x3

6 is different,
which result in totally different probability distribution for these two trails.

Table 20: The only nonlinear constraint found in TL0 and TL1

Nonlinear Constraint EL0

[x0
4] ⊕ x1

12 ⊕ k0
4 = 0

x1
12 ⊕ y1

4 ⊕ [x2
6] ⊕ k1

6 = 0
x1

4 ⊕ x2
12 ⊕ k1

4 = 0
x2

12 ⊕ [y2
4 ] ⊕ [x3

6] ⊕ k2
6 = 0

S4(x1
4) = y1

4

I.2 Solvable Nonlinear and Linear Constraint of 16-round Trail from [ZZDX19]
Within the 16-round trail from [ZZDX19], Trail-Estimator found the following 5 solvable
nonlinear constraints, two of them are long nonlinear constraints spanning over 5 rounds,
shown in Table 21.

Table 21: Solvable nonlinear constraint subsets within TLBLOCK , which has impact on
the distribution of trail’s probability

Nonlinear Constraint EL1 Linear Constraint EL2 Nonlinear Constraint EL3

[x1
4] + x2

12 + k1
4 = 0 [x7

2] + x8
10 + k7

2 = 0 [x10
4 ] + x1112 + k104 = 0

x2
12 + y2

4 + [x3
6] + k2

6 = 0 x8
10 + [y8

5 ] + x9
4 + k8

4 = 0 x11
12 + [y114] + x12

6 + k11
6 = 0

x2
4 + x3

12 + k2
4 = 0 x9

4 + x10
12 + k9

4 = 0 [x11
5 ] + x12

1 3 + k11
5 = 0

x3
12 + [y3

4 ] + [x4
6] + k3

6 = 0 x10
12 + [y10

4 ] + [x11
6 ] + k10

6 = 0 x12
13 + y12

6 + [x13
7 ] + k12

7 = 0
S(x2

4) + y2
4 = 0 S(x12

6 ) = y12
6

Nonlinear Constraint EL4 Nonlinear Constraint EL5

[x7
7] + x8

15 + k7
7 = 0 [x2

5] + x3
13 + k2

5 = 0
x8

15 + [y8
3 ] + x9

1 + k8
1 = 0 [x2

7] + x3
15 + k2

7 = 0
x9

1 + x10
9 + k9

1 = 0 x3
15 + y3

3 + [x4
1] + k3

1 = 0
x10

9 + y10
2 + x11

3 + k10
3 = 0 x3

13 + [y3
6 ] + x4

7 + k3
7 = 0

x10
2 + x11

10 + k10
2 = 0 x3

3 + x4
11 + k3

3 = 0
[x10

7 ] + x11
1 5 + k10

7 = 0 x4
11 + y4

7 + x5
5 + k4

5 = 0
x11

1 5 + y11
3 + [x12

1 ] + k11
1 = 0 x5

5 + x6
13 + k5

5 = 0
x11

10 + [y11
5 ] + [x12

4 ] + k11
4 = 0 x6

13 + [y6
6 ] + [x7

7] + k6
7 = 0

S(x10
2 ) + y10

2 = 0 S(x3
3) + y3

3 = 0
S(x11

3 ) + y11
3 = 0 S(x4

7) + y4
7 = 0

J Solvable Nonlinear and Linear Constraints in TWINE

In Table 22 and Table 23, we show the solvable nonlinear minimal constraint subsets
identified in TWINE. For TT W 1, we identified 3 long constraints, all of which span across
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over 10 rounds. While in TT W 2, there are 4 nonlinear constraints and 4 linear constraints
which can be solved by Cons-Solver.

Table 22: Solvable nonlinear constraint subsets within TT W 1

Nonlinear Constraint Etw0 Nonlinear Constraint Etw1 Nonlinear Constraint Etw2

x2
2 ⊕ x3

1 ⊕ k2
1 = 0 [x1

2] ⊕ x2
1 ⊕ k1

1 = 0 x0
4 ⊕ x1

7 ⊕ k0
2 = 0

x3
1 ⊕ y3

0 ⊕ x4
0 ⊕ k4

0 = 0 [x1
6] ⊕ x2

3 ⊕ k1
3 = 0 x0

6 ⊕ x1
3 ⊕ k0

3 = 0
x4

0 ⊕ x5
5 ⊕ k4

0 = 0 [x2
0] ⊕ x3

5 ⊕ k2
0 = 0 x0

14 ⊕ x1
11 ⊕ k0

7 = 0
[x5

4] ⊕ x6
7 ⊕ k5

2 = 0 x2
1 ⊕ [y2

0 ] ⊕ x3
0 ⊕ k3

0 = 0 x1
3 ⊕ [y1

2 ] ⊕ [x2
4] ⊕ k2

2 = 0
x5

5 ⊕ [y5
4 ] ⊕ [x6

12] ⊕ k6
6 = 0 x2

3 ⊕ y2
2 ⊕ [x3

4] ⊕ k3
2 = 0 x1

7 ⊕ [y1
6 ] ⊕ [x2

8] ⊕ k2
4 = 0

[x6
6] ⊕ x7

3 ⊕ k6
3 = 0 x3

5 ⊕ [y3
4 ] ⊕ x4

12 ⊕ k4
6 = 0 x1

10 ⊕ x2
9 ⊕ k1

5 = 0
x6

7 ⊕ [y6
6 ] ⊕ x7

8 ⊕ k7
4 = 0 x4

12 ⊕ x5
15 ⊕ k4

6 = 0 x1
11 ⊕ y1

10 ⊕ x2
2 ⊕ k2

1 = 0
x6

10 ⊕ x7
9 ⊕ k6

5 = 0 x5
12 ⊕ x6

15 ⊕ k5
6 = 0 [x2

4] ⊕ x3
7 ⊕ k2

2 = 0
[x6

12] ⊕ x7
15 ⊕ k6

6 = 0 [x5
14] ⊕ x6

11 ⊕ k5
7 = 0 x2

9 ⊕ [y2
8 ] ⊕ [x3

6] ⊕ k3
3 = 0

x7
3 ⊕ [y7

2 ] ⊕ x8
4 ⊕ k8

2 = 0 x5
15 ⊕ [y5

14] ⊕ [x6
14] ⊕ k6

7 = 0 x3
7 ⊕ [y3

6 ] ⊕ x4
8 ⊕ k4

4 = 0
x7

9 ⊕ y7
8 ⊕ x8

6 ⊕ k8
3 = 0 x6

11 ⊕ y6
10 ⊕ [x7

2] ⊕ k7
1 = 0 x4

8 ⊕ x5
13 ⊕ k4

4 = 0
x7

15 ⊕ [y7
14] ⊕ x8

14 ⊕ k8
7 = 0 x6

15 ⊕ [y6
14] ⊕ [x7

14] ⊕ k7
7 = 0 x5

13 ⊕ y5
12 ⊕ x6

10 ⊕ k6
5 = 0

x11
10 ⊕ x12

9 ⊕ k11
5 = 0 [x10

0 ] ⊕ x11
5 ⊕ k10

0 = 0 x9
13 ⊕ y9

12 ⊕ x10
10 ⊕ k10

5 = 0
x12

3 ⊕ y12
2 ⊕ [x13

4 ] ⊕ k13
2 =0 x10

10 ⊕ x11
9 ⊕ k10

5 = 0 [x10
4 ] ⊕ x11

7 ⊕ k10
2 = 0

x12
12 ⊕ x13

15 ⊕ k12
6 = 0 x11

15 ⊕ y11
14 ⊕ x12

14 ⊕ k12
7 = 0 x10

11 ⊕ y10
10 ⊕ x11

2 ⊕ k11
1 = 0

yr
i = Si(xr

i ) x12
7 ⊕ y12

6 ⊕ [x13
8 ] ⊕ k13

4 = 0 yr
i = Si(xr

i )
yr

i = Si(xr
i )

K Probability Distribution of LBLOCK Differential Trails
The following figures show the impact of key scheduling on our estimation. A LBLOCK
cipher without key scheduling is made, and we ran two simulation experiments with it
to see the discrepancy between prediction and experiment probability distribution. In
Figure 11a, the prediction is lower than real probability around key number 750, while we
got opposite results in Figure 11b, which shows the discrepancy is caused by randomness
in master key selecting.

(a) Case 1 (b) Case 2

Figure 11: The predicted and real probability distribution of the 4-round trail TL1 of
LBLOCK without key scheduling
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Table 23: Solvable nonlinear constraint subsets within TT W 2

Nonlinear Cons Etw3 Nonlinear Cons Etw4 Nonlinear Cons Etw5

[x6
12] ⊕ x7

15 ⊕ k6
6 = 0 [x1

2] ⊕ x2
1 ⊕ k1

1 = 0 [x2
4] ⊕ x3

7 ⊕ k2
2 = 0

x7
15 ⊕ [y7

14] ⊕ x8
14 ⊕ k8

7 = 0 [x1
6] ⊕ x2

3 ⊕ k1
3 = 0 x3

7 ⊕ [y3
6 ] ⊕ x4

8 ⊕ k4
4 = 0

x8
14 ⊕ x9

11 ⊕ k8
7 = 0 x2

1 ⊕ [y2
0 ] ⊕ x3

0 ⊕ k3
0 = 0 x4

8 ⊕ x5
13 ⊕ k4

4 = 0
[x9

6] ⊕ x10
3 ⊕ k9

3 = 0 x2
2 ⊕ x3

1 ⊕ k2
1 = 0 x5

12 ⊕ x6
15 ⊕ k5

6 = 0
x9

10 ⊕ x10
9 ⊕ k9

5 = 0 x2
3 ⊕ y2

2 ⊕ [x3
4] ⊕ k3

2 = 0 x5
13 ⊕ y5

12 ⊕ x6
10 ⊕ k6

5 = 0
x9

11 ⊕ y9
10 ⊕ x10

2 ⊕ k101 = 0 x3
1 ⊕ y3

0 ⊕ x4
0 ⊕ k4

0 = 0 [x5
14] ⊕ x6

11 ⊕ k5
7 = 0

x10
3 ⊕ y10

2 ⊕ [x11
4 ] ⊕ k112 = 0 x4

0 ⊕ x5
5 ⊕ k4

0 = 0 x6
11 ⊕ y6

10 ⊕ [x7
2] ⊕ k7

1 = 0
x10

9 ⊕ [y10
8 ] ⊕ [x11

6 ] ⊕ k113 = 0 x5
5 ⊕ [y5

4 ] ⊕ [x6
12] ⊕ k6

6 = 0 x6
15 ⊕ [y6

14] ⊕ [x7
14] ⊕ k7

7 = 0
S(x9

10) ⊕ y9
10 = 0 S(x2

2) ⊕ y2
2 = 0 S(x5

12) ⊕ y5
12 = 0

S(x10
2 ) ⊕ y10

2 = 0 S(x3
0) ⊕ y3

0 = 0 S(x6
10) ⊕ y6

10 = 0
Nonlinear Cons Etw3 Linear Cons Etw4 Linear Cons Etw5

[x9
0] ⊕ x10

5 ⊕ k9
0 = 0 [x2

8] + x3
13 + k2

4 = 0 [x5
8] + x6

13 + k5
4 = 0

x10
5 ⊕ [y10

4 ] ⊕ x11
12 ⊕ k116 = 0 x3

13 + [y3
12] + x4

10 + k4
5 = 0 x6

13 + [y6
12] + [x7

10] + k7
5 = 0

[x10
8 ] ⊕ x11

13 ⊕ k104 = 0 x4
10 + x5

9 + k4
5 = 0

x11
13 ⊕ y11

12 ⊕ [x12
10] ⊕ k125 = 0 x5

9 + [y5
8 ] + [x6

6] + k6
3 = 0

S(x11
12) ⊕ y11

12 = 0
Linear Cons Etw6 Linear Cons Etw7

[x6
14] + x7

11 + k6
7 = 0 [x6

6] + x7
3 + k6

3 = 0
x7

11 + [y7
10] + x8

2 + k8
1 = 0 x7

3 + [y7
2 ] + x8

4 + k8
2 = 0

x8
2 + x9

1 + k8
1 = 0 x8

4 + x9
7 + k8

2 = 0
x9

1 + [y9
0 ] + [x10

0 ] + k10
0 = 0 x9

7 + [y9
6 ] + [x10

8 ] + k10
4 = 0
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