
Blind Signatures from Cryptographic Group
Actions

Dung Hoang Duong1, Xuan Thanh Khuc1, Youming Qiao2, Willy Susilo1, and
Chuanqi Zhang2

1 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Australia.

{hduong,xtkhuc,wsusilo}@uow.edu.au
2 Centre for Quantum Software and Information, School of Computer Science,

Faculty of Engineering and Information Technology, University of Technology Sydney,
Australia.

{Youming.Qiao,Chuanqi.Zhang}@uts.edu.au

Abstract. We provide a generic construction of blind signatures from
cryptographic group actions following the framework of the blind signa-
ture CSI-Otter introduced by Katsumata et al. (CRYPTO’23) in the con-
text of isogeny (commutative group action). We adapt and modify that
framework to make it work even for non-commutative group actions. As
a result, we obtain a blind signature from abstract group actions which
are proven to be secure in the random oracle model. We also propose an
instantiation based on a variant of linear code equivalence, interpreted
as a symmetric group action.

Keywords: blind signature · group actions · square root

1 Introduction

Blind signature, introduced by Chaum [26] in 1982, is an interactive protocol
between a signer, who holds a secret key, and a user, who holds a message, to
jointly create a signature on a message in such a way that the message is oblivious
to the signer at the signing time. Blind signatures have found many applications
such as in e-cash [26, 28], in e-voting [27, 49], and in blockchains [23, 41, 64],
and much more; see [37] and references therein for a rich list of applications and
references.

One approach to construct a blind signature is to design a Schnorr-like sigma
protocol [29] (or identification scheme) which has module structures [39] enabling
the randomization of the interaction. The Schnorr blind signature was general-
ized by Pointcheval and Stern [57] and Abe and Okamoto [2]. The security proof
of Abe and Okamoto contained a bug that has recently been fixed by Kastner,
Loss and Xu [44] who provided a generic proof for Abe-Okamoto style blind sig-
nature. At CRYPTO’23, Katsumata et al. [46] proposed the first isogeny-based
blind signature in the context of cryptographic group actions, called CSI-Otter,
inspired by the Abe-Okamoto’s construction in which Katsumata et al. utilized

the quadratic twist of an elliptic curve in a clever way to endow isogenies with
richer structure than abstract group actions, but still weaker than module struc-
tures, that enables the blindness. The security proof is hence followed from the
framework by Kastner et al. [44].

Cryptographic group actions were first introduced by Brassard and Yung [21]
in the context of one-way group actions. It was then considered independently
by Couveignes [31] in the context of hard homogeneous spaces and by Rostov-
sev and Stolbunov [59] in the context of isogeneous elliptic curves. This line
of research was largely ignored until the proposal of CSIDH by Castryck et
al. [24] in which the authors considered supersingular elliptic curves defined
over a large prime field, rather than to ordinary elliptic curves as in the previous
work of Couveignes [31] and Rostovsev-Stolbunov [59], on which most of efficient
isogeny-based constructions are based, such as CSI-FiSh signature [14], thresh-
old signature [36], ring signatures [13], group signature [12] and blind signature
CSI-Otter [46].

In the context of non-commutative group actions, there have been several
proposals that submitted to NIST’s recent call for additional post-quantum sig-
natures3, including MEDS [30], LESS [16], and ALTEQ [62], whose underlying
groups are either general linear group GL(n, q) (for the cases of MEDS and AL-
TEQ) or monomial matrix group Mon(n, q) (for the case of LESS). There have
been several analogous cryptographic constructions to the case of isogenies in this
context, such as (inefficient) threshold signature [8] and ring signatures [7, 17].
However, due to the non-commutativity of the underlying groups, the crypto-
graphic constructions in this setting are still limited. For example, public key
encryptions based on non-commutative group actions are only recently shown
with quantum ciphertexts [42].

Even though non-commutative group action constructions are less efficient
than the isogeny counterparts in terms of key/signature sizes, those schemes
however enjoy the efficiency in terms of implementation. Furthermore, actions by
“highly non-commutative” groups, such as symmetric and general linear groups,
enjoy the property that most known quantum algorithmic techniques do not work
for hidden subgroup problems for such groups [38]. These make non-commutative
group actions an appealing candidate for post-quantum cryptography, so it is
desirable to develop more advanced cryptographic schemes to increase crypto-
graphic functionalities based on them. In particular, it brings to us the following
question:

Can we construct a blind signature from non-commutative group actions?

1.1 Our Contribution

In this paper, we provide an affirmative answer to the above question. Our
contribution in this paper is two-fold and can be summarized as follows.

3 https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

2

https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

– We provide a framework to construct a Schnorr-type blind signature from
abstract group actions. Our framework follows closely with the construc-
tion of CSI-Otter [46] with modifications to adjust for the case of generic
groups. In particular, because we do not have twists as in the case of elliptic
curves, we need to double the public key, compared to that of CSI-Otter, in
such a way that the additional public key element plays a twist role in our
context; see Section 1.2 for more detail. Because our focus is generic (e.g.,
non-commutative) groups, in order to make the protocol work, some ran-
domnesses generating commitments need to be in the same conjugacy class.
Another contribution in this fold is a zero-knowledge proof for well-formed
public key. In contrast to the case of isogenies, one can easily verify that the
public key is valid, i.e., the public key is indeed a valid supersingular elliptic
curve. In our setting, we need a zero-knowledge protocol allowing one to
validate the public key.

– We provide an efficient instantiation from non-commutative group actions4.
In order to provide an instantiation for non-commutative group actions, we
require several conditions for the underlying group. If the group is non-
commutative, in order to ensure the soundness of our protocol, we need a
group with an efficient square-root algorithm. This is because in our protocol,
given two accepted transcripts with the same commitment, an extractor
can obtain only g2, where g is the secret key. Hence we need an efficient
algorithm to compute g given g2 in the group. In order to enable an efficient
instantiation inherited from existing efficient schemes, we proposed a variant
of LESS that instead of having monomial matrix Mon(n, q) action as in LESS,
we have a permutation group action which fulfils our purpose; see details in
Section 1.2.

1.2 Technique Overview

In this section, we present in detail our contributions. We will first describe the
core in the construction of CSI-Otter [46] on which our framework is based. We
then present a variant of linear code equivalence problem in LESS from which
we provide an instantiation for a blind signature following our framework.

Construction Framework. In CSI-Otter [46], the authors consider the CSIDH
group action ∗ : G×E → E where G is an ideal class group and E is a set of elliptic
curves. It can be assumed that the structure of G is known and we can express
G as G = ⟨g⟩ ∼= ZN for some positive integer N ∈ N and generator g ∈ G [14].
In isogeny settings, an elliptic curve E0 ∈ E is fixed and the public key is of the
form A = [ga] ∗ E0 for a random a ←$ ZN , and the first-sender message (i.e.,
commitment) is computed similarly as Y = [gy] ∗ E0 for a random y ←$ ZN .
In order to enable a Schnorr-type blind signature, the normal procedure for the
user in blinding the message M would be: (i) randomize the commitment, which
4 We note that our framework can be instantiated for generic groups, both commuta-

tive and non-commutative.

3

can be done by computing [gz] ∗Y for z ←$ ZN ; (ii) randomize the public key A
and public parameter E0, which can be done by computing [gb] ∗A and [gd] ∗E0
for d, b ←$ ZN ; (iii) associate [gz] ∗ Y , [gb] ∗ A and [gd] ∗ E0 into one element,
say X; (iv) compute the hash value c = H(X∥M); and lastly (v) use z, d, b to
randomize c to obtain a randomized challenge c′ and send to the signer. In the
discrete logarithm setting [29], all steps (i)–(v) can be done easily, especially
step (iii) since [gz] ∗ Y , [gb] ∗A and [gd] ∗E0 are all group elements on which we
can do operation to create a group element X. However, it is not the case for
isogeny setting since [gz] ∗ Y , [gb] ∗A and [gd] ∗E0 are all elliptic curves and we
do not have operations on elliptic curves.

In order to overcome that problem, Katsumata et al. [46] has cleverly used
quadratic twist in elliptic curves. Briefly speaking, given A = [ga] ∗ E0 for an
unknown a ∈ Z, every one can easily compute its quadratic twist [g−a] ∗ E0,
which was denoted by A−1 in [46]. Now step (i)–(iii) above can be done together
in [46] as follows: choose (d, z)←$ {−1, 1} × ZN and set X := [gz] ∗ Y d. For the
proof to work, following the proof by Kastner-Loss-Xu [44] for Abe-Okamoto
blind signature [2], Katsumata et al. [46] modified the above idea to use the OR
composition of the underlying sigma protocol. Specifically, CSI-Otter uses two
public key A0 = [ga] ∗E0, A1 = [gb] ∗E0 where a, b←$ ZN , and the secret key is
one of the a0 or a1; see [46] for the details.

Since quadratic twists exist only in the isogeny setting, in order to enable
such a CSI-Otter-like construction for abstract group actions, what we do is to
double the public key. To be more precise, consider a group G acting on a set S
by ∗ : G × S → S and fix an element E0 ∈ S.5 Our public key will consist of
A

(c)
b = gc

b ∗ E0 for b ∈ {0, 1}, c ∈ {−1, 1} and the secret key is either g0 ∈ G or
g1 ∈ G. Here A

(−1)
b will play the role for quadratic twists of A

(1)
b as in the case

of CSI-Otter. We also construct a protocol for an OR relation (cf. Figure 3) as
in CSI-Otter as the underlying sigma protocol for the blind signature. Our blind
signature follows the same route as in CSI-Otter but with modifications; see
Section 4 for the detail. We highlight below two note-worthy differences between
our scheme with CSI-Otter:

– Firstly, in our scheme, one of the responses is of the form r = hg−1
δ ∈ G

where gδ with δ ∈ {0, 1} is the secret key. For the verification, we need to
compute the action on A

(−1)
δ = g−1

δ ∗ E0 and expect the outcome to be one
of the commitment Y := h−1 ∗ E0.
In this case, if we use r−1 = gδh−1 then we need g and h−1 commute.
However, requiring h−1 to commute with g would break the HVZK property
of the underlying sigma protocol.
Therefore, instead of having one response hg−1

δ , we send two responses hg−1
δ

and h−1gδ. Note that it happens that (hg−1
δ)−1 and h−1gδ are in the same

conjugacy class6. This turns out to be useful in restoring HVZK.
5 We use the same notation as in CSI-Otter to make readers easily follow the flows of

the construction.
6 That is, h−1(hg−1

δ)−1h = h−1gδ.

4

– Secondly, in order to ensure the soundness of the underlying sigma protocol
in our scheme, the extractor can obtain, from two given accepted transcripts
with the same commitment, the square g2

δ of the secret key gδ. Hence, we
need an efficient square-root algorithm in the group G to compute gδ from
g2

δ .

Another contribution is a zero-knowledge protocol to validate the public key.
In contrast to the case of isogeny-based cryptography in which everyone can
easily validate the public key – a valid supersingular elliptic curve, it is not the
case for abstract group actions. Our protocol is presented in Fig. 1.

Instantiation. As mentioned above, to instantiate our blind signatures with
non-commutative group actions, we require the corresponding group G to satisfy
the following:

– Given g2, there exists an efficient algorithm to compute g.
– Reusing g ∈ G twice still gives a secure protocol (see Definition 4 for a more

precise requirement).

To identify a non-commutative group action satisfying the above seems a
tricky business.

For MEDS and ALTEQ, the underlying group is GL(n, q). For GL(n, q), the
matrix square-root problem was addressed in [10], but the algorithm there re-
quires going to an extension field. It is an interesting problem to devise a matrix
square root algorithm without going to the extension field. This seems to be
the only bottleneck for using the group actions underlying MEDS and ALTEQ,
because the IGAP for these actions seem still hard.

For LESS, the underlying group is the monomial group Mon(n, q), consisting
of matrices in GL(n, q) with each row and each column having exactly one non-
zero entry. While square root can be efficiently done in this group, reusing group
elements there is risky, and for certain parameters, using the same group element
twice can result in an insecure protocol [22].

To address the above issues, we interpret the monomial code equivalence
problem as a group action of the symmetric group. This is made possible by a
canonical form algorithm (Section 5.3). In contrast to LESS, where the group
action is by the monomial group, our group actions avoid the attacks on reusing
group elements as in [22] (Section 5.1). We further show that by selecting a
family of permutations that satisfy the square-root requirement (Section 5.2).

1.3 Related Work

Most of the existing post-quantum blind signatures are constructed from lattices.
The first post-quantum blind signature was proposed by Rückert [60] following
the design paradigm by Pointcheval and Stern [57]. However, Hauck et al. [40]
dicovered a flaw in Rückert’s security argument which results in many blind
signatures [5, 20, 51, 53] following the design and security arguments of Rück-
ert [60] being insecure. Hauck et al. [40] also introduced a new blind signature

5

from linear hash functions [39] but it is impractical. Lyubashevsky et al. [52], del
Pino-Katsumata [56], and Agrawal et al. [3] respectively proposed efficient two
round lattice-based blind signatures, which was further improved by Beullens et
al. [15] with a two round blind signature from standard lattice problems with
signature size around 22 KB.

In another context, Petzoldt et al. [54] constructed a blind signature from
multivariate quadratic equations. However, it has been recently broken by Beul-
lens [11]. Blazy et al. [19] proposed a blind signature from codes but it had a
flaw in the security proof, which was later fixed [18].

Recently, Katsumata et al. [46] proposed the first construction of a blind
signature from isogenies with the signature size of around 8 KB for the basic
scheme and 4 KB for the optimized version. In this paper, we generalize that
result to abstract group actions.

Concurrent work. Recently, Kuchta, LeGrow and Persichetti proposed a con-
struction of blind signatures from matrix code equivalence [50]. In [50], the
framework also follows that in [46], with a focus on matrix code equivalence.
To resolve issues caused by non-commutativity, the authors of [50] make use of
the actions of both A and its inverse transpose A−T for an invertible matrix A,
and require A to be (anti)symmetric. The security of the scheme relies on the
hardness assumption of the Modified Inverse Matrix Code Equivalence Problem
(MIMCE), a computational version of Inverse Matrix Code Equivalence Problem
(IMCE). IMCE was recently attacked in [22], and this attack was not discussed
in [50].

In contrast, our framework is applicable for general (non-commutative) group
actions, with security based on assumptions such as in Definition 16. One re-
quirement for instantiating our scheme is the reuse of secret keys, which leads
us to propose the use of symmetric group action to equivalence classes of linear
codes under the action of general linear group and diagonal group. This view-
point helps to thwart the attack of reusing keys as in [22]; see Section 5 for the
details.

1.4 Discussion about ROS-related Attacks

A blind signature is required to satisfy two security properties: blindness and
one-more unforgeability. Briefly speaking, blindness means that the signer is
unable to know the message that he/she signs (message is blinded), and one-more
unforgeability means that the malicious user cannot output l + 1 or more valid
signatures after finishing l signing sessions with the signer; see Section 2.4 for
the formal definition. In particular, if we allow a malicious user to concurrently
open l signing sessions, i.e., open l signing queries in parallel, we use the term
l-concurrent unforgeability; otherwise we use the term sequential unforgeability.

In [61], Schnorr introduced the Random inhomogeneous in an Overdeter-
mined Solvable system of linear equations (a.k.a. ROSl) problem in dimension l
and showed that an algorithm for ROSl can be used to break the l-concurrent

6

unforgeability of the Schnorr signature. Recently, Benhamouda et al. [9] pro-
posed a polynomial time algorithm for ROSl with l = poly(λ) where λ is the
security parameter, which hence breaks the Schnorr blind signature: for l = 128,
it only takes time roundly 232 hash computations to break unforgeability. An
implication of Benhamouda et al. [9] is that a Schnorr-type blind signature is
not concurrently unforgeable for l larger than polylogarithmic in the security
parameter. Because the lack of algebraic structures in isogeny setting, it is un-
clear yet how to apply the attack by Benhamouda et al. [9] to CSI-Otter as left
open in [46].

Recently, Katsumata et al. [47] and Do et al. [33] independently solve that
open problem by proposing a polynomial time attack against the l-concurrent
unforgeability of Schnorr-type blind signatures. In [47], Katsumata et al. pro-
posed a parallel ROS problem and proved that it is solvable in polynomial time
for appropriate parameters. As a consequence, they are able to break the l-
concurrent unforgeability of CSI-Otter for l = poly(λ): for l = 4, it takes only in
time roundly 234 hash computations. in [33], Do et al. proposed a generic attack
that does not require any algebraic structures and can be applicable to all blind
signatures built from a sigma protocol with small challenge space. In particular,
if the underlying sigma protocol’s challenge space is C and the protocol needs to
repeat k times to attain the required security level, then Do et al.’s attack [33]
can break the l-concurrent unforgeability (for l ≥ k) of the corresponding blind
signature in time O(k · |C|). So for CSI-Otter with k = 128 and |C| = 2, Do et
al.’s attack can break the concurrent unforgeability after 128 concurrent signing
sessions for the basic attack and with only 8 sessions in the optimized attack. Do
et al. [33] also introduced some countermeasures, such as double the k (from 128
to 256) or using other techniques from [25, 48], but also mentioned that those
will result in inefficient schemes compared to existing lattice ones. Katsumata
et al. [47] suggested considering other techniques [1, 45, 63] used in classical
settings, which is an interesting open problem.

Our proposed blind signature in this paper follows the same framework
of CSI-Otter, and hence it is vulnerable to Do et al.’s attack [33]. We suspect
that the attack by Katsumata et al. [47] may be applicable. We will leave it as a
future work to explicitly investigate the attack by Katsumata et al. [47] against
our scheme. Our paper shows the feasibility of a CSI-Otter-like blind signature
construction for abstract group actions, and a fix for CSI-Otter, as suggested
by Katsumata et al. [47], probably also yield a fix for our scheme against those
attacks, which will leave as a future investigation.

2 Preliminaries

2.1 Notations

For a prime power q, let Fq be the field consisting of q elements. Denote by Fn
q

the linear space of length-n row vectors over Fq. Denote by Mat(m × n, q) the
linear space of m× n matrices over Fq, and Mat(n, q) := Mat(n× n, q).

7

We use GL(n, q) to denote the group of n×n invertible matrices over Fq, and
D(n, q) to denote the group of n × n invertible diagonal matrices over Fq. The
symmetric group on {1, . . . , n} is denoted by Sn. By encoding each σ ∈ Sn as a
n× n permutation matrix over Fq, we can embed Sn as a subgroup of GL(n, q).
A matrix in Mat(n, q) is said to be monomial, if it is the product between a
diagonal and a permutation matrix. The group of monomial matrices is denoted
by Mon(n, q).

For a positive integer k, we denote [k] to be the set {1, . . . , k}. For a vector
−→
h ,

denote by hi the i-th entry of
−→
h . We will also denote a vector by bold character,

e.g., h. For a finite set S, we write x ←$ S to denote x is sampled randomly
from S. We use ⊙ to denote the component-wise multiplication of vectors in
R. In particular, for c ∈ R and vectors a = (a1, · · · , ak), b = (b1, . . . , bk), we
write c⊙ a for (ca1, . . . , cak) and a ⊙ b = (a1b1, . . . , akbk). We also extend this
component-wise notation for exponentiation, e.g., we write ac for (ac

1, . . . , ac
k),

ab for (ab1
1 , . . . , abk

k), and for group action, e.g., we write the action of vector a
on s ∈ Sk as a ∗ s for (a1 ∗ s1, . . . , ak ∗ sk) (here ∗ indicates the action operation
- see Section 2.3 for group action definition).

Let G be a group. For g ∈ G, we denote by gG the conjugacy class of g in
G, that is gG := {t−1gt : t ∈ G}, and extend it component-wise to vectors as
above, e.g., for a vector g = (g1, . . . , gn) ∈ Gn, gGn will stand for (gG

1 , . . . , gG
n).

2.2 Sigma Protocols
Definition 1 (Sigma Protocol). A sigma protocol for an NP relation R ⊆
{0, 1}∗×{0, 1}∗ is a public-coin three-move interactive protocol between a prover
P = (P1,P2) and a verifier V as the following.

– The prover on input a statement X and a witness W such that (X, W) ∈ R,
runs (com, state)← P1(X, W) and sents a commitment com to the verifier.

– The verifier samples a random challenge ch ←$ C from the challenge space
C and sends ch to the prover.

– Upon receiving the challenge ch, the prover P2 generates a response rsp and
sents rsp to the verifier.

– The verifier runs V(X, com, ch, rsp) and outputs 1 to indicate acceptance, and
0 otherwise.
A sigma protocol must satisfy correctness, honest-verifier zero-knowledge

(HVZK), and special soundness defined as the following.
Correctness. It is required that if the prover P and the verifier V follow the

sigma protocol honestly, then the verifier would output 1 with probability 1.
Honest Verifier Zero-Knowledge (HVZK). There exists a PPT simulator

Sim that given a statement X, a challenge ch ∈ C, outputs a valid transcipt
(com, ch, rsp) that is indistinguishable from a real transcript.

Special Soundness. There exists a determinsitic polynomial time extractor
Ext that given two accepted transcripts (com, ch, rsp) and (com, ch′, rsp′) with
the same commitment com and different challenges ch ̸= ch′, outputs W such
that (X, W) ∈ R.

8

We also provide a definition for a hard instance generator for the NP relation
R as follows.

Definition 2 (Hard Instance Generator). An NP relation R is associated
with an instance generator (IG) if IG, given as input the security parameter 1n,
outputs a statement-witness pair (X, W) ∈ R. Moreover, we say that the instance
generator is hard if the following holds for any PPT adversary A:

Pr[(X, W)← IG(1n), W′ ← A(X) : (X, W′) ∈ R] = negl(n).

2.3 Cryptographic Group Actions

Let G be a group and S a set. An action of G on S is a map ∗ : G × S → S
satisfying the following properties: (i) id ∗ s = s for all s ∈ S and the identity
element id ∈ G; and (ii) g ∗ (h ∗ s) = gh ∗ s for all g, h ∈ G and s ∈ S. A group
action is said to be [4]:

– transitive if for all s, t ∈ S, there exists g ∈ G such that g ∗ s = t;
– faithful if there does not exist g ∈ G \ {id} such that g ∗ s = s for all s ∈ S,

i.e., if g ∗ s = s for all s ∈ S then g = id;
– free if whenever there exists s ∈ S such that g ∗ s = s then g = id; and
– regular if it is free and transitive.

Given a group action ∗ of G on S, the orbit of an element s ∈ S is defined
as Orb(s) := {g ∗ s : ∀g ∈ G}. Note that if the group action is transitive then
Orb(s) = G. The stabilizer of s is defined by Stab(s) := {g ∈ G : g ∗ s = s)}
which is a subgroup of G. The Orbit-Stabilizer theorem says that, if G is finite
then |G| = |Stab(s)| · |Orb(s)|.

In this paper we shall mostly consider finite groups acting on finite sets.
To use group actions in algorithms, we assume that group and set elements
have natural encodings, as well as group operations, group actions, and random
samplings of group and set elements can be efficiently computed; see [4, 21, 43]
for more details and certain variations. In particular, we assume that uniform
random samplings from the group G and the set S are efficient. As a consequence,
given g ∈ G, we can efficiently sample from the conjugacy class gG, by randomly
sampling h ∈ G and computing gh = hgh−1.

A group action is one-way, if for a random s, the function fs : G→ S defined
by fs(g) := g ∗ s is one-way. The one-way assumption is formulated as the Group
Action Inverse Problem (GAIP) defined in the following.

Definition 3 (GAIP). Given a group action ∗ : G× S → S, uniformly random
s ∈ S, and uniformly random t ∈ Orb(s), find g ∈ G such that g ∗ s = t.

Here we restrict to the case of transitive group actions, as in the isogeny-
based setting [24, 31, 35], or we can restrict the element g to be in the orbit
Orb(s) of s as in the case of non-commutative group actions [16, 30, 62].

For the purpose of our paper, we define what we call the Inverse Group Action
Problem (IGAP), as follows.

9

Definition 4 (IGAP). Given a group action ∗ : G×S → S, uniformly random
s ∈ S, and a pair (g ∗ s, g−1 ∗ s), find g.

IGAP was called Inverse Linear Code Equivalence (ILCE) problem [7] in the
context of linear code equivalence underlying LESS, and Inverse Matrix Code
Equivalence (IMCE) problem [30] in the context of matrix code equivalence un-
derlying MEDS. In a recent work, Budroni et al. [22] introduced an efficient
algorithm for ILCE, but it is unclear yet the impact for IMCE or IGAP for the
case of alternating trilinear forms underlying ALTEQ [62].

In this paper, we provide a generic framework of a blind signature for abstract
group actions. For the framework to work, an instantiated group G needs to
satisfy the following assumptions.

Assumption 1 (Square-Root Assumption). Given g2, there exists an efficient
algorithm to output g.

Asssumption 1 is necessary for proving the soundness of the underlying pro-
tocol. In fact, in such a proof, given two accepted transcripts with the same
commitment, our extractor can only output g2, where g is a secret key. Hence
we need an efficient algorithm to compute g from g2.

Note that g2 may have several square-roots, namely there exist g and g′ such
that g2 = g′2. There are two possible workarounds for this. The first one is to
require the square-root algorithm to output all square-roots. The second one is
to restrict to those group elements with unique square-roots, and this is indeed
achievable for our instantiation (see Remark 2).

It is noted that commutative groups trivially satisfy Assumption 1. For the
case of non-commutative groups, some discussions on some groups supporting
MEDS, ALTEQ, and LESS can be found at the end of Section 1.2.

2.4 Blind Signatures

We follow [2, 44, 45, 46] to define a three-move blind signature.

Definition 5 (Blind Signature). A three-move blind signature BS with effi-
cient decidable public key space PK consists of the following PPT algorithms.

BS.KGen(1n)→ (pk, sk): On input the security parameter 1n, the key generation
algorithm outputs a pair of public and secret keys (pk, sk).

BS.S = (BS.S1, BS.S2): The signer consists of two phases:
BS.S1(sk) → (stateS , ρS,1): On input the secret key, outputs an internal

signer state stateS and the first-sender message ρS,1.
BS.S2(stateS , ρU)→ ρS,2: On input the signer state stateS and a user mes-

sage ρU , outputs a second-sender message ρS,2.
BS.U = (BS.U1, BS.U2): The user consists of two phases:

BS.U1(pk, M, ρS,1) → (stateU , ρU): On input the public key pk, a mes-
sage M and the first-sender message ρS,1, outputs an internal user state
stateU and a user message ρU .

10

BS.U2(stateU , ρS,2): On input a user state stateU and a second-signer mes-
sage ρS,2, outputs a signature σ

BS.Verify(pk, M, σ): On input the public key pk, a message M and a signature
σ, it outputs 1 to indicate the signature is valid, and 0 otherwise.

We require that a blind signature be complete, blind against the malicious
signer, and satisfy one-more unforgeability, as defined below.

Definition 6 (Correctness). A three-move blind signature scheme BS is cor-
rect if for all public and secret key pair (pk, sk)← BS.KGen(1n), we have

Pr

BS.Verify(pk, M, σ) = 1

∣∣∣∣∣∣∣∣
(stateS , ρS,1)← BS.S1(sk)

(stateU , ρU)← BS.U1(pk, M, ρS,1)
ρS,2 ← BS.S2(stateS , ρU)
σ ← BS.U2(stateU , ρS,2)

 = 1.

Definition 7 (Blindness under Chosen Keys). For a blind signature BS,
define the blindness game BlindBS with an adversary A (playing the signer) as
follows.

Setup. The challenger samples a bit coin←$ {0, 1} and runs A on input 1n.
Online Phase. A outputs two message M∗

0 and M∗
1 , a public key pk ∈ PK, the

game checks if pk is valid and if so, it assigns (M0, M1) = (M∗
coin, M∗

1−coin).
If pk is not valid, the game aborts and outputs 0. The adversary A is given
access to oracles U1, U2 which behave as follows.
Oracle U1. On input b ∈ {0, 1} and a first-signer message ρS,1,b, if the

session b is not yet open, the oracle marks session b as open and gener-
ates a state and a challenge as (stateU,b, ρU,b)←$ BS.U1(pk, Mb, ρS,1). It
returns ρU,b to A.

Oracle U2. On input b ∈ {0, 1} and a second-signer message ρS,2,b, if the
session b is opened, the oracle creates a signature σb ← BS.U2(stateU,b, ρS,2,b).
It marks session b as closed. Oracle U2 does not output anything.

Output Determination. When both sessions are closed and for b ∈ {0, 1} we
have that BS.Verify(pk, Mb, σb) = 1, the oracle returns the two signatures
(σcoin, σ1−coin) to A, where note that σcoin (resp. σ1−coin) is a valid signature
for M∗

0 (resp. M∗
1) regardless of the choice of coin. A outputs a guess coin∗

for coin. We say that A wins if coin∗ = coin.

We say that BS is blind under chosen keys if the probability that A wins is
negligible.

Definition 8 (One-More Unforgeability). For a blind signature BS and
l ∈ N, we define l-one-more unforgeability via the following game between a
challenger and an adversary A:

Setup. The challenger samples (pk, sk) ← BS.KGen(1n) and runs A on input
pk. It initializes lclosed = 0 and openedsid = false for all sid ∈ N.

Online Phase. A is given access to two oracle S1 and S2 as follows.

11

Oracle S1: The oracle samples a fresh session identifier sid. It sets openedsid ←
true and generates (stateS,sid, ρS,1) ← BS.S1(sk). It then returns sid and
the first-sender message ρS,1 to A.

Oracle S2: On input a user message ρU and a session identifier sid, if
lclosed ≥ l or openedsid = false, then it returns ⊥. Otherwise, it incre-
ments lclosed and openedsid = false. It then computes the second-signer
message ρS,2 ← BS.S2(stateS,sid, ρU) and returns ρS,2 to A.

Output Determination. When A outputs distinct tuples of message-signature
pairs (M1, σ1), . . . , (Mk, σk), we say that A wins if k ≥ lclosed + 1 and for all
i ∈ [k], BS.Verify(pk, Mi, σi) = 1.

We say that the blind signature BS is l-one-more unforgeable if the probability
that A wins is negligible.

2.5 Proof Techniques for Blind Signatures

In this section, we briefly present the key idea in proving one-more unforgeability
for Schnorr-type signatures from [46], which extracts from the recent work of
Kastner, Loss and Xu [44] for the proof of the Abe-Okamoto blind signature [2].
We refer the readers for [46] and references therein for the detailed information.
In what follows, we present only key definitions and theorems needed.

Preparation. We assume that the adversary A against the l-one-more unforge-
ability game makes only l + 1 distinct hash queries to the random oracle. In
addition, we further assume that the underlying sigma protocol is for the NP
OR-relation, i.e., the prover convinces the verifier that he knows one of the two
witnesses either W1 for statement X1 or W2 for statement X2. We also assume
that the user-message ρU queried to the signing algorithm BS.S2 satisfies that
ρU ∈ C, where C is the challenge space of the underlying sigma protocol.

Definition 9 (Instances). Assume that the public key of a Schnorr-type blind
signature has exactly two corresponding secret keys sk0 = (0, W0) and sk1 =
(1, W1). A 0-side (resp. 1-side) instance consists of sk0 (resp. sk1) and the ran-
domness used by the honest signer algorithm when the secret key is fixed to be
sk0 (resp. sk1).

Let
−→
h be the vector of responses returned by the random oracle. Note that by

the above assumption, |
−→
h | = l +1. Let rand be the randomness used by the one-

more unforgeability adversary. A wrapper W is a deterministic algorithm that
takes as input (I, rand,

−→
h) where I is an instance. W will invoke the signer and

the adversary on input I and rand, and use
−→
h to answer for hash queries by the

adversary. We defineW(I, rand,
−→
h) to output ⊥ if the adversary aborts or fails to

win the one-more unforgeability game. Otherwise, W(I, rand,
−→
h) outputs what-

ever the adversary outputs. Denote by Succ = {(I, rand,
−→
h)|W(I, rand,

−→
h) ̸=⊥}

the set of all successful tuples.

12

Definition 10 (Successful Forking [45]). Two successful tuple (I, rand,
−→
h)

and (I, rand,
−→
h ′) are said to fork from each other at index i ∈ [l + 1] if

−→
h [i−1] =

−→
h ′

[i−1] but hi ̸= h′
i. We denote the set of hash vector pairs (hi, h′

i) such that
(I, rand,

−→
h), (I, rand,

−→
h) ∈ Succ fork at index i as Fi(I, rand).

Definition 11 (Transcripts [45]). Consider the wrapper W running on input
(I, rand,

−→
h). The query transcript, denoted by −→e (I, rand,

−→
h), is the vector of

user message ρU queries made to the signing algorithm BS.S2 (simulated by
W by the adversary. The full transcript, denoted by trans(I, rand,

−→
h), is the

transcript produced between the signer and the adversary.

Definition 12 (Partners [45]). Two successful tuples (I, rand,
−→
h), (I, rand,

−→
h ′)

are called partners at index i ∈ [l + 1] if the following hold:

– (I, rand,
−→
h) and (I, rand,

−→
h ′) fork at index i; and

– −→e (I, rand,
−→
h) = −→e (I, rand,

−→
h ′).

We denote by prti(I, rand) the set of (
−→
h ,
−→
h ′) such that (I, rand,

−→
h) and (I, rand,

−→
h ′)

are partners at index i.

Definition 13 (Triangles [45]). A triangle at index i ∈ [l + 1] with respect
to I, rand is a tuple of three successful tuples in the following set:

△i(I, rand) =

(I, rand,

−→
h)

(I, rand,
−→
h ′)

(I, rand,
−→
h ′′)

∣∣∣∣∣∣∣
(
−→
h ,
−→
h ′) ∈ prti(I, rand)

(
−→
h ,
−→
h ′′) ∈ Fi(I, rand)

(
−→
h ′,
−→
h ′′) ∈ Fi(I, rand)

For a triangle ((I, rand,

−→
h), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ △i(I, rand), we call

the pair ((I, rand,
−→
h), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h), (I, rand,

−→
h ′′) and

((I, rand,
−→
h ′), (I, rand,

−→
h ′′)) the sides.

Definition 14 (Mapping Instances via Transcript [45, 46]). For a suc-
cessful tuple (I, rand,

−→
h) ∈ Succ, we define Φrand,

−→
h

(I) as a function that maps a
0-side instance I (resp. 1-side instance I) to a 1-side instance I′ (resp. 0-side
instance I′).

Finally, we define the witness extractor used by the reduction. It was first
defined by Kastner, Loss and Xu [45] and later generalized by Katsumata et
al. [46]. For the purpose of the paper, we present a variant in the following
definition.

Definition 15 (Witness Extraction). Fix I, rand and let
−→
h ,
−→
h ′ ∈ Fi(I, rand)

for some i ∈ [l + 1]. Moreover, denote by σ, σ′ the signatures corresponding to hi

and h′
i respectively. Deterministic algorithms (Ext0, Ext1) are called witness ex-

tractors for a function f of (Ext0(σ, σ′), Ext1(σ, σ′)) ∈ {(f(sk0),⊥), (⊥, f(sk1)),

13

(f(sk0), f(sk1))}7. For b ∈ {0, 1}, we say that the b-side witness can be ex-
tracted from (I, rand,

−→
h) and (I, rand,

−→
h ′) at index i ∈ [l + 1] for a function f if

Extb(σ, σ′) outputs f(skb).

Remark 1. In this paper, we consider only functions f whose inversion is ef-
ficiently computable, i.e., given f(x), it is easy to compute x. In fact, in our
instantiations and constructions, we consider square function (f(x) = x2) and
group G such that computing x from x2 is easy. Hence, our witness extractors,
in fact, can extract the witness sk0 or sk1.

We are now ready to describe the idea by Kastner, Loss and Xu [45] for
the one-more unforgeability proof of Schnorr-type blind signatures, which was
adapted by Katsumata et al. [46] in the case of CSI-Otter.

First of all, if the map Φrand,
−→
h

is a bijection that preserves transcripts for
any rand and

−→
h , then it maps a partner tuple with b-side instance to another

partner tuple with (1− b)-side instance for the same rand and
−→
h ([45, Corollary

1 and Lemma 3]). This implies that the extracted witness from a partner tuple
is independent of the reduction’s secret key. Hence, what Kastner, Loss and
Xu [45] suggested is to use the sides of triangle, rather than the base, to extract
a witness with the observation that if a b-site witness can be extracted from the
base of a triangle then it can also be extracted from at least one of two sides of
the triangle. The reduction then starts with having a b-side witness that hits a
corner of the base of a triangle in the first run, then hits the top of the triangle
such that it creates side with a (1− b)-side witness with probability about 1

2 .
The results by Kastner, Loss and Xu [45] are summarized in the following

Lemmas. Lemma 1 shows that the blind signature is perfectly witness indistin-
guishable, while Lemma 2 states that if a witness can be extracted from a base
of a triangle, then the same witness can be extracted from at least one of its
sides.

Lemma 1 ([45, Lemma 2]). Fix rand and
−→
h . For all tuples (I, rand,

−→
h) ∈

Succ, Φrand,
−→
h

is a self-inverse bijection and trans(I, rand,
−→
h) = trans(Φrand,

−→
h

(I), rand,
−→
h).

Lemma 2 ([45, Corollary 3]). Fix I, rand and let (
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand),

for some i ∈ [l + 1]. If the 0-side (1-side) witness can be extracted from the base
(I, rand,

−→
h), (I, rand,

−→
h ′) of the triangle at index i, then one can also extract the

0-side (1-side) witness from at least one of the sides (I, rand,
−→
h), (I, rand,

−→
h ′′)

or (I, rand,
−→
h ′), (I, rand,

−→
h ′′) at index i.

For the proof of the one-more unforgeability, what we need to do is to make
sure our constructions (e.g., Φrand,

−→
h

, instances) satisfy those Lemmas, which is
stated as follows.
7 In our paper, f is either the identity function (for commutative group actions) or a

square function (for non-commutative group actions).

14

Theorem 1 ([45, Theorem 1], [46, Theorem 3.12]). Let the blind Schnorr-
type signature BS be as defined in the preparation at the beginning of this Section.
Assume that the public key consists of two instances of the NP relation generated
by the hard instance generator IG and the underlying sigma protocol has challenge
space C. If Lemma 1 and Lemma 2 hold, then for all l ∈ N, if there exist an
adversary A that makes Q hash queries to the random oracle and breaks the
l-one-more unforgeability of BS with advantage ϵA ≥ C1

|C|
(

Q
l+1

)
, then there exists

an efficient algorithm B that breaks the hard instance generator with advantage
ϵB ≥ C2 · ϵ2

A

(Q
l+1)2·(l+1)3

for some universal positive constants C1 and C2.

3 Base Sigma Protocols

3.1 Sigma Protocol for Validating Public Key

In contrast to the isogeny setting in CSI-Otter [46] in which checking that a
public key (even generated by malicious adversary) is a valid elliptic curve can
be done efficiently, it is not the case for generic cryptographic group actions.
In this section, we present a base sigma protocol for validating the public key,
i.e., in such a protocol, we prove that the public key is well-formed. To be more
precise, we provide a sigma protocol for the following relation:

R = {(X = (A(1), A(−1)), W = g)|A(b) = gb ∗ E, ∀b ∈ {−1, 1}}. (1)

Here we consider a group G acting on the set S and fix an element E ∈ S.
The protocol is defined as in Fig. 1. It is a variant of the GMW-type protocol for
generic group actions (see for example [17]).

Correctness. It is a routine to check the correctness of the protocol. Assume
that the prover P and the verifier V honestly follow the protocol. For c = 0
then r = h, and hence r ∗ E = h ∗ E = Y (1), r−1 ∗ E = h−1 ∗ E = Y (−1), and
r ∗ A(−1) = h ∗ A(−1) = A as desired. For the case c = 1 then r = hg−1, and
hence r∗A(1) = hg−1∗A(1) = h∗E = Y (1), and r∗E = hg−1∗E = h∗A(−1) = A
as desired.

Special Soundness. Let’s consider two accepted transcripts (Y (1), Y (−1), A, c, r)
and (Y (1), Y (−1), A, c′, r′) with c ̸= c′. Without loss of generality, we can assume
that c = 0 and c′ = 1. Then, since both transcripts are accepted, we have

r ∗ E = Y (1) = r′ ∗A(1)

r ∗A(−1) = A = r′ ∗ E

which imply that r′−1
r ∗ E = A(1) and r−1r′ ∗ E = A(−1). Hence if we set

g := r′−1
r then g ∗E = A(1) and g−1 ∗E = A(−1). It follows that g is a witness

for relation R in Equation (1).

15

P(X = (A(1), A(−1)), W = g) V(X = (A(1), A(−1))

h←$ G

Y (1) = h ∗ E, Y (−1) = h−1 ∗ E

A := h ∗A(−1) (Y (1), Y (−1), A)

c c←$ {0, 1}

c = 0 : r = h

c = 1 : r = hg−1

r if c = 0 check whether

rb ∗ E = Y (b) ∀ b ∈ {−1, 1}

∧ r ∗A(−1) = A

if c = 1 check whether

r ∗A(1) = Y (1) ∧ r ∗ E = A

Fig. 1: Sigma Protocol for Validating Public Key

Honest Verifier Zero-knowledge (HVZK). Given a statement X = (A(1), A(−1))
and a challenge c ∈ {0, 1}. The simulator Sim works as follows:

– If c = 0, sample r ∈ G, and define Y (b) := rb ∗ E for b ∈ {−1, 1} and
A := r ∗A(−1).

– If c = 1, sample r ∈ G, and define Y (1) := r ∗ A(1), A := r ∗ E and samples
Y (−1) from the orbit of E.

It is now clear that the simulated transcript ((Y (1), Y (−1)), A, c, r) is accepted by
the verifier. Furthermore, for the case of c = 0, it is straightforward to see that
the simulated and real transcripts are indistinguishable; for the case of c = 1,
Y (−1) requires special attention. In the simulated transcript, Y (−1) is sampled
randomly from the orbit of E; while in the real transcript, Y (−1) = h−1 ∗ E
is subject to other commitments Y (1) = h ∗ E and A = hg−1 ∗ E as defined
in Fig. 1. Also, the statements A(1) = g ∗E and A(−1) = g−1 ∗E are public. The
relationship between these elements is illustrated in Fig. 2. Therefore, we need to
assume the hardness of the following problem of group action strong decisional
Diffie-Hellman (GASDDH), in analogy to the strong decisional Diffie-Hellman
assumption in [55, Assumption 2].

Definition 16 (GASDDH). Given a group action α : G × S → S and s ∈ S,
distinguish the distributions between (s, α(g, s), α(g−1, s), α(h, s), α(hg−1, s),
α(h−1, s)) and (s, α(g, s), α(g−1, s), α(h, s), α(hg−1, s), α(f, s)) for uniformly
random g, h, f ∈ G.

16

If no PPT adversary can distinguish the two distributions above, then the
simulated and real transcripts for c = 1 are clearly indistinguishable as well. In
particular, this problem is at least as hard as the following problem of group
action inverse decisional Diffie-Hellman (GAIDDH), in analogy to the inverse
decisional Diffie-Hellman assumption first studied in [55].

Definition 17 (GAIDDH). Given a group action α : G × S → S and s ∈
S, distinguish the distributions between (s, α(h, s), α(h−1, s)) and (s, α(h, s),
α(f, s)) for uniformly random h, f ∈ G.

We claim that the problem of GAIDDH reduces to the problem of GASDDH.
Indeed, suppose we have a PPT algorithm to solve GASDDH, then given a group
action α : G × S → S, s ∈ S, and two distributions (s, α(h, s), α(h−1, s)) and
(s, α(h, s), α(f, s)) for some uniformly random h, f ∈ G, we can treat it as
an instance applicable to the algorithm for GASDDH by taking g = id = g−1,
where id is the identity element in G. It follows that GAIDDH can also be solved
efficiently in this case.

E

A(−1) A(1)

A

Y (−1) Y (1)

gg

h

h h

r

r

Fig. 2: The relationship between the elements defined in Fig. 1. The group actions
on the arrows act on the starting points, producing the endpoints. The dashed
arrows only work in the case of c = 1, i.e., for r = hg−1.

3.2 Base Sigma Protocol for an OR relation

We present the generic version of the sigma protocol in [46] to prove that the
prover knows at least one of the two secrets corresponding to the public state-
ment X = (A(1)

0 , A
(−1)
0 , A

(1)
1 , A

(−1)
1), where A

(c)
b = gc

b ∗ E with b ∈ {0, 1} and
c ∈ {−1, 1}. The sigma protocol is described in Fig. 3 in which we follow [46]
to remove 0 from the challenge space, i.e., our challenge space is now {−1, 1}n

where n is the security parameter.

17

P(X, W = (δ, gδ)) V(X)

hδ ←$ Gn

Yδ = hδ ∗ E

(c1−δ, r1−δ)←$ {−1, 1}n ×Gn

Y1−δ = r1−δ ∗A
(c1−δ)
1−δ

(Y0, Y1)

c c←$ {−1, 1}n

cδ = c⊙ c1−δ

rδ = hδg
−cδ
δ

(r0, r1, c0, c1) Accept if c = c0 ⊙ c1 and

∀b ∈ {0, 1} rb ∗A
(cb)
b = Yb

Fig. 3: Base OR Sigma Protocol underlying our Blind Signature

Correctness. It is easy to verify the correctness of the protocol. We need to prove
that if the Prover P and Verifier V follow the protocol honestly then the verifier
V will accept, i.e., we need to verify that rb ∗A

(cb)
b = Yb ∀b ∈ {0, 1} (c = c0⊙c1

is obvious). It is clear for the case b = 1− δ. For b = δ we have rδ = hδ ⊙ g−cδ

δ

and hence

rδ ∗A
(cδ)
δ = hδ ⊙ g−cδ

δ ∗ (gcδ

δ ∗ E) = hδ ∗ E = Yδ

as desired.

Honest Verifier Zero-knowledge (HVZK). Given a challenge c ∈ {−1, 1}n, a
simulator Sim first samples c0, c1 ←$ {−1, 1}n subject to c = c0 ⊙ c1 and
(r0, r1)←$ G2n. Then Sim defines Yb = rb ∗A

(cb)
b for b ∈ {0, 1} and outputs the

simulated transcript ((Y0, Y1), c, (r0, r1, c0, c1)) which is indistinguishable from
the true transcripts.

Special Soundness. Now, let us consider two accepted transcripts ((Y0, Y1), c, (r0, r1,
c0, c1)) and ((Y0, Y1), c′, (r′

0, r′
1, c′

0, c′
1)) with c ̸= c′. Without loss of generality,

we assume c0 ̸= c′
0, and so there exists an index i ∈ [n] such that c0,i ̸= c′

0,i.
Then we can obtain g

c0,i−c′
0,i

0 = r−1
0,i r′

0,i. In fact, since two transcripts are valid,

we have r0,i ∗ A
(c0,i)
0 = Y0,i = r′

0,i ∗ A
(c′

0,i)
0 or r0,ig

c0,i

0 ∗ E = r′
0,ig

c′
0,i

0 ∗ E which
implies that g

c0,i−c′
0,i

0 = r−1
0,i r′

0,i. Since c0,i, c′
0,i ∈ {−1, 1}, we obtain g2

0 from
r0,i and r′

0,i. Since we assume that our group G allows an efficient square-root
algorithm, it follows that we can obtain g0 from g2

0 .

18

4 Our Blind Signature

4.1 Description of our Blind Signature

In this section, we present the description of our blind signature for generic group
actions following the framework of Katsumata et al. [46]. We consider a group
G acting on a set S and fix an element E ∈ S. We also consider the group G in
which computing square-roots is efficient. Let H : {0, 1}∗ → {−1, 1}n be a hash
function modelled as a random oracle in the security proof. The blind signature
BS consists of the following algorithms, which are summarized in Fig. 4.

BS.KGen(1n) : On input the security parameter 1n, it samples a bit δ ∈ {0, 1},
(g0, g1) ∈ G2 and computes A

(c)
b = gc

b ∗ E for b ∈ {0, 1} and c ∈ {−1, 1}. It
outputs a public key pk = (A(1)

0 , A
(−1)
0 , A

(1)
1 , A

(−1)
1) and a secret key sk =

(δ, gδ).
BS.S1(sk): On input the secret key sk = (δ, gδ), the signer first samples hδ ←$

Gn, and sets Y(c)
δ = hc

δ ∗E for c ∈ {−1, 1}. Then it samples (c∗
1−δ, r∗(1)

1−δ)←$

{−1, 1}n ×Gn, r∗(−1)
1−δ ←$ (r∗(1)

1−δ)Gn 8 and computes Y(c)
1−δ = r∗(c)

1−δ ∗A
(c⊙c∗

1−δ)
1−δ

for c ∈ {−1, 1}. It outputs the signer state stateS = (hδ, c∗
1−δ, r∗(1)

1−δ , r∗(−1)
1−δ)

and the first-sender message ρS,1 = (Y(1)
0 , Y(−1)

0 , Y(1)
1 , Y(−1)

1).
BS.U1(pk, M, ρS,1) : On input the public key pk = (A(1)

0 , A
(−1)
0 , A

(1)
1 , A

(−1)
1), a

message M , and the first-sender message ρS,1 = (Y(1)
0 , Y(−1)

0 , Y(1)
1 , Y(−1)

1),
it samples, for b ∈ {0, 1}, (db, zb)←$ {−1, 1}n×Gn and sets Zb = zb ∗Y(db)

b .
Then it computes c = H(Z0∥Z1∥M) and sets c∗ = c⊙ d0 ⊙ d1 ∈ {−1, 1}n.
It outputs the internal user state stateU = (db, zb)b∈{0,1} and a user message
ρU = c∗.

BS.S2(stateS , ρU) : On input the internal state ρS = (hδ, c∗
1−δ, r∗(1)

1−δ , r∗(−1)
1−δ)

and a user message ρU = c∗, it computes c∗
δ = c∗ ⊙ c∗

1−δ ∈ {−1, 1}n and
r∗(c)

δ = hc
δg

−c⊙c∗
δ

δ , for c ∈ {−1, 1}. It outputs the second-sender message
ρS,2 = (c∗

b , r∗(1)
b , r∗(−1)

b)b∈{0,1}.
BS.U2(stateU , ρS,2) : On input the internal user state stateU = (db, zb)b∈{0,1}

and ρS,2 = (c∗
b , r∗(1)

b , r∗(−1)
b)b∈{0,1}, it sets cb = c∗

b ⊙db, r(db)
b = zb(r∗(db)

b) for
b ∈ {0, 1}. Then it checks if

c0 ⊙ c1 = H(r(d0)
0 ∗A(c0)

0 ∥r(d1)
1 ∗A

(c1)
1 ∥M). (2)

If it holds then it outputs a signature σ = (cb, r(1)
b , r(−1)

b)b∈{0,1}.
BS.Verify(pk, M, σ) : On input the public key pk = (A(1)

0 , A
(−1)
0 , A

(1)
1 , A

(−1)
1),

a message M and a signature σ = (cb, r(1)
b , r(−1)

b)b∈{0,1}, it outputs 1 if the
equation (2) holds, and 0 otherwise.

8 i.e., each component in r∗(−1)
1−δ is sampled from the conjugacy class of the correspond-

ing component in r∗(1)
1−δ .

19

BS.KGen(1n)

101 : δ ←$ {0, 1}
102 : (g0, g1)←$ G2

103 : (A(1)
0 , A

(−1)
0)← (g0 ∗ E, g−1

0 ∗ E)

104 : (A(1)
1 , A

(−1)
1)← (g1 ∗ E, g−1

1 ∗ E)

105 : return pk = (A(1)
0 , A

(−1)
0 , A

(1)
1 , A

(−1)
1)

106 : sk = (δ, gδ)
BS.S1(sk)

201 : parse (δ, gδ)← sk
202 : hδ ←$ Gn

203 : Y(1)
δ ← hδ ∗ E, Y(−1)

δ ← h−1
δ ∗ E

204 : (c∗
1−δ, r∗(1)

1−δ)←$ {−1, 1}n ×Gn

205 : r∗(−1)
1−δ ←$ (r∗(1)

1−δ)Gn

206 : Y(1)
1−δ ← r∗(1)

1−δ ∗A
(c∗

1−δ
)

1−δ

207 : Y(−1)
1−δ ← r∗(−1)

1−δ ∗A
(−c∗

1−δ
)

1−δ

208 : stateS ← (hδ, c∗
1−δ, r∗(1)

1−δ , r∗(−1)
1−δ)

209 : ρS,1 = (Y(1)
0 , Y(−1)

0 , Y(1)
1 , Y(−1)

1)
210 : return (stateS , ρS,1)
BS.U1(pk, M, ρS,1)

301 : parse (Y(1)
0 , Y(−1)

0 , Y(1)
1 , Y(−1)

1)← ρS,1

302 : for b ∈ {0, 1}
303 : (db, zb)←$ {−1, 1}n ×Gn

304 : Zb ← zb ∗Y(db)
b

305 : c← H(Z0∥Z1∥M)
306 : c∗ ← c⊙ d0 ⊙ d1 ∈ {−1, 1}n

307 : stateU ← (db, zb)b∈{0,1}

308 : return (stateU , ρU = c∗)

BS.S2(stateS , ρU)

401 : parse (hδ, c∗
1−δ, r∗(1)

1−δ , r∗(−1)
1−δ)← stateS

402 : parse c∗ ← ρU

403 : c∗
δ ← c∗ ⊙ c∗

1−δ ∈ {−1, 1}n

404 : r∗(1)
δ ← hδg

−c∗
δ

δ

405 : r∗(−1)
δ ← h−1

δ g
c∗

δ
δ

406 : return ρS,2 = (c∗
b , r∗(1)

b , r∗(−1)
b)b∈{0,1}

BS.U2(stateU , ρS,2)

501 : parse (db, zb)b∈{0,1} ← stateU

502 : parse (c∗
b , r∗(1)

b , r∗(−1)
b)b∈{0,1} ← ρS,2

503 : for b ∈ {0, 1}
504 : cb ← c∗

b ⊙ db

505 : r(db)
b ← zb(r∗(db)

b)

506 : c′ ← H(r(d0)
0 ∗A

(c0)
0 ∥r(d1)

1 ∗A
(c1)
1 ∥M)

507 : if c0 ⊙ c1 = c′

508 : return σ = (cb, r(1)
b , r(−1)

b)b∈{0,1}

509 : return σ =⊥
BS.Verify(pk, M, σ)

601 : parse (cb, rb)b∈{0,1} ← σ

602 : for d0, d1 ∈ {−1, 1}n

603 : c′ ← H(r(d0)
0 ∗A

(c0)
0 ∥r(d1)

1 ∗A
(c1)
1 ∥M)

604 : if c0 ⊙ c1 = c′

605 : return 1
606 : return 0

Fig. 4: Blind Signature from Cryptographic Group Actions

20

4.2 Correctness and Blindness

Correctness. We need to verify the equation (2), i.e.,

c0 ⊙ c1 = H(r(d0)
0 ∗A(c0)

0 ∥r(d1)
1 ∗A

(c1)
1 ∥M).

holds for some d0, d1 ∈ {−1, 1}n if both the signer and user follow the protocol
honestly. First of all, it is easy to check that Y(c)

b = (r∗(c)
b)∗A(c⊙c∗

b)
b for b ∈ {0, 1}

and c, c∗
b ∈ {−1, 1}n. This is obvious from the protocol (lines 206-207) for the

case b = 1− δ. For b = δ, we have that

Y(c)
δ = hc

δ ∗ E = hc
δg

−c⊙c∗
b

δ ∗A
(c⊙c∗

b)
δ = (r∗(c)

δ) ∗A
(c⊙c∗

b)
δ

where the second equation follows from the key generation procedure (BS.KGen(1n)),
the third equation follows from lines 404-405 in Fig. 4.

Now for b ∈ {0, 1} and cb ∈ {−1, 1}n, by substituting cb = c∗
b ⊙ db and

r(db)
b = zb(r∗(db)

b) we have

r(db)
b ∗A

(cb)
b = zb(r∗(db)

b) ∗A
(db⊙c∗

b)
b = zb ∗ (r∗(db)

b ∗A
(db⊙c∗

b)
b)

= zb ∗Y(db)
b = Zb.

Finally, c = c∗⊙d0⊙d1 = c∗
0⊙c∗

1⊙d0⊙d1 = c0⊙c1, where c = H(Z0∥Z1∥M),
we have that c0 ⊙ c1 = H(r(d0)

0 ∗A
(c0)
0 ∥r(d1)

1 ∗A
(c1)
1 ∥M) as desired.

Theorem 2 (Blindness). The blind signature scheme in Fig. 4 is blind, with
overwhelming probability, under chosen keys.

Proof. The proof is similar to that of CSI-Otter [46]: we will show that for any
valid public key pk, and first and second signer message ρS,1, ρS,2, and valid
signature σ, there exists a unique and pairwise distinct user state stateU , with
overwhelming probability, that could have generated σ. First, the validity of the
public key can be efficiently verified using the protocol in Fig. 1.

Fix now sk (and hence pk), ρS,1 = (Y(c)
0 , Y(c)

1)c∈{−1,1}, ρS,2 = (c∗
b , r∗(1)

b , r∗(−1)
b)b∈{0,1},

a valid signature σ = (cb, r(1)
b , r(−1)

b)b∈{0,1}. We define the user state stateU =
(db, zb)b∈{0,1} as db = cb⊙c∗

b and zb = r(db)
b r∗(−db)

b for b ∈ {0, 1}. Similar to the
proof of correctness, we have for b ∈ {0, 1}:

Zb := zb ∗ (Yb)(db) = r(db)
b r∗(−db)

b ∗ (r∗(db)
b ∗A

(db⊙c∗
b)

b) = r(db)
b ∗A

(cb)
b .

In addition, since σ is a valid signature, we have

c0 ⊙ c1 = H(r(d0)
0 ∗A

(c0)
0 ∥r(d1)

1 ∗A
(c1)
1 ∥M) = H(Z0∥Z1∥M).

Therefore, the defined stateU is exactly the user state in generating the sig-
nature σ. Moreover, for any choice of ρS,2 and any σ ̸= σ′, it is clear that
the corresponding user states stateU and state′

U are distinct with overwhelming

21

probability. In fact, an adversary can guess d0, d1 picked by the user as follows.
First, it randomly chooses d0, d1 and changes the way it generates a signature
in line 406 by returning random r(−d0)

0 and r(−d1)
1 , hence a different choice of

ρS,2. Note that these values are never used by the user in BS.U2. Thus, the user
will return a valid signature in line 508 if the guess is correct. Otherwise, the
check in line 507 will fail and the user will return ⊥ in line 509. It occurs with
probability 1/4n, which is negligible for n at the security level. This completes
the proof.

4.3 Proof for One-More Unforgeability

We will now follow the sufficient conditions described in Section 2.5 for the proof.
We first need to define instances, the map Φrand,

−→
h

, and the witness extractors
(Ext0, Ext1). Then we will show that with our definitions, Lemma 1 and Lemma 2
hold.

In what follows, we denote by −→X the vector (X(1), . . . , X(l)) and endow −→X
with the same operations defined for X(k) by operating component wise. Re-
call that rand is the adversary’s randomness, and

−→
h = (c(1), . . . , c(l)) is the

random’s oracle response vector conditioned on the adversary making only l

random oracle queries. Furthermore, once (I, rand,
−→
h) is fixed, the query tran-

script −→e (I, rand,
−→
h) is defined, which is the vector of user message ρU queries

made to the signing algorithm BS.S2, denoted by c∗.

Preparation: Instances. We now first define 0-instance I0 and 1-instance I1.
We assume that the adversary makes l signing queries in total. Recall that
instance I0 (resp. I1) will consist of the secret key sk0 = g0 (resp. sk1 = g1)
and the randomness used by the honest signer algorithm when the secret key is
fixed to sk0 = g0 (resp. sk1 = g1).

A 0-side instance I0 = (0, g0, A
(1)
1 , A

(−1)
1 , h0, c∗

1, r∗(1)
1 , r∗(−1)

1) is defined as fol-
lows.

– (0, g0): The secret key sk0 when δ = 0.
– A

(1)
1 , A

(−1)
1 : The part of the public key pk = (A(c)

0 , A
(c)
1)c∈{−1,1} whose secret

key is unknown.
– (h0)(k): The randomness of the commitment (Y0)(k) in the k-th (k ∈ [l]) first-

sender message when δ = 0 such that (Y(c)
0)(k) = (hc

0)(k) ∗E for c ∈ {−1, 1}.
– (c∗

1)(k): The simulated challenge in the k-th (k ∈ [l]) first-sender message
when δ = 0.

– ((r∗(1)
1)(k), (r∗(−1)

1)(k)): The randomnesses in generating the commitment
(Y(c)

1)(k) in the k-th (k ∈ [l]) first-sender message when δ = 0 such that
(Y(c)

1)(k) = (r∗(c)
1)(k) ∗A

(c·(c∗
1)(k))

1 for c ∈ {−1, 1}.

A 1-side instance I1 = (1, g1, A
(1)
0 , A

(−1)
0 , h1, c∗

0, r∗(1)
0 , r∗(−1)

0) is defined as fol-
lows.

22

– (1, g1): The secret key sk1 when δ = 1.
– A

(1)
0 , A

(−1)
0 : The part of the public key pk = (A(c)

0 , A
(c)
1)c∈{−1,1} whose secret

key is unknown.
– (h1)(k): The randomness of the commitment (Y(c)

1)(k) in the k-th (k ∈ [l])
first-sender message when δ = 1 such that (Y(c)

1)(k) = (hc
1)(k) ∗ E for c ∈

{−1, 1}.
– (c∗

0)(k): The simulated challenge in the k-th (k ∈ [l]) first-sender message
when δ = 1.

– ((r∗(1)
0)(k), (r∗(−1)

0)(k)): The randomness in generating the commitment (Y(c)
0)(k)

in the k-th (k ∈ [l]) first-sender message when δ = 1 such that (Y(c)
0)(k) =

(r∗(c)
0)(k) ∗A

(c·(c∗
0)(k))

0 .

Preparation: Map Φrand,
−→
h

. We define the map Φrand,
−→
h

that maps a 0-side
instance I0 into a 1-side instance I1 and vice versa as follows.

– A 0-side instance I0 = (0, g0, A
(1)
1 , A

(−1)
1 , h0, c∗

1, r∗(1)
1 , r∗(−1)

1) into a 1-side
instance I1 such that

I1 = (1, g1, A
(1)
0 = g0 ∗ E, A

(−1)
0 = g−1

0 ∗ E,

h1 = r∗(1)
1 g

c∗
1

1 , c∗
0 = c∗ ⊙ c∗

1, r∗(c)
0 = hc

0g
−c⊙c∗

0
0)

where c ∈ {−1, 1}, g1 is such that g1 ∗ E = A
(1)
1 , g−1

1 ∗ E = A
(−1)
1 , and

c∗ = −→e (I0, rand,
−→
h).

– A 1-side instance I1 = (1, g1, A
(1)
0 , A

(−1)
0 , h1, c∗

0, r∗(1)
0 , r∗(−1)

0) into a 0-side
instance I0 such that

I0 = (0, g0, A
(1)
1 = g1 ∗ E, A

(−1)
1 = g−1

1 ∗ E,

h0 = r∗(1)
0 g

c∗
0

0 , c∗
1 = c∗ ⊙ c∗

0, r∗(c)
1 = hc

1g
−c⊙c∗

1
1)

where c ∈ {−1, 1}, g0 is such that g0 ∗ E = A
(1)
0 , g−1

0 ∗ E = A
(−1)
0 , and

c∗ = −→e (I1, rand,
−→
h).

Lemma 3. Lemma 1 holds for our definition of the map Φrand,
−→
h

.

Proof. Since the proof for 0-side instance I0 and that of 1-side instance I1 are
similar, we present only for the case of 0-side instance I0. For any rand,

−→
h ,

consider the query transcript −→e (I0, rand,
−→
h) = c∗. Since the underlying sigma

protocol is HVZKand hence perfectly witness indistinguishable (see Section 3.2,
for each k ∈ [l] and c(k), there is a set of randomness, defined by Φrand,

−→
h

(I0),
that the signer with secret key (1, g1) (i.e., a 1-side witness) could have used to
produce the same view to the adversary. Therefore we have trans(I0, rand,

−→
h) =

trans(Φrand,
−→
h

(I0), rand,
−→
h). In addition, it is easy to check from the above defini-

tion of Φrand,
−→
h

that Φrand,
−→
h

(Φrand,
−→
h

(I0)) = I0. Hence Φrand,
−→
h

is a self-bijection.
This concludes the proof.

23

Preparation: Witness Extractors (Ext0, Ext1). Fix I, rand and let (
−→
h ,
−→
h ′) ∈

Fi(I, rand) for some index i ∈ [l + 1]. Denote by σ = (cb, rb)b∈{0,1} and σ′ =
(c′

b, r′
b)b∈{0,1} the signatures corresponding to c(i) and c′(i), where c(i) (resp. c′(i))

is the i-th entry of
−→
h (resp.

−→
h ′). It follows from the protocol that c(i) = c0⊙ c1

and c′(i) = c′
0 ⊙ c′

1. We define the witness extractors (Ext0, Ext1) as in Fig. 5.

Ext0(σ, σ′)

1 : if ∃t ∈ [n] s.t. c0,t ̸= c′
0,t

2 : return g2
0 as either r−1

0,t r′
0,t

3 : or (r′
0,t)−1r0,t

4 : return ⊥

Ext1(σ, σ′)

1 : if ∃t ∈ [n] s.t. c1,t ̸= c′
1,t

2 : return g2
1 as either r−1

1,t r′
1,t

3 : or (r′
1,t)−1r1,t

4 : return ⊥

Fig. 5: Witness Extractors

Lemma 4. Under the Assumption 1, the witness extractors (Ext0, Ext1) defined
in Fig. 5 satisfy the definition in Definition 15.

Proof. The proof is similar to that of [46, Lemma 4.3]. By the definition of
Fi(I, rand), we have (I, rand,

−→
h), (I, rand,

−→
h ′) ∈ Succ and c(i) ̸= c′(i). Since

(I, rand,
−→
h), (I, rand,

−→
h ′) ∈ Succ, two signatures σ, σ′ are valid, i.e.,

c(i) = c0 ⊙ c1 = H(r(d0)
0 ∗A

(c0)
0 ∥r(d1)

1 ∗A
(c1)
1 ∥M)

and
c′(i) = c′

0 ⊙ c′
1 = H(r′

0
(d′

0) ∗A
(c0)
0 ∥r′

1
(d′

1) ∗A
(c1)
1 ∥M ′).

Since
−→
h and

−→
h ′ agree up to the i-th index and the challenge and adversary’s

randomness are fixed, the input to the hash functions are the same, i.e.,

r(db)
b ∗A

(cb)
b = r′

b
(d′

b) ∗A
(c′

b)
b for b ∈ {0, 1} ∧M = M ′.

Since c(i) ̸= c′(i), we must have either c0 ̸= c′
0 or c1 ̸= c′

1. By the soundness of
the underlying sigma protocol in Section 3.2, one of the witness extractors Ext0
or Ext1 always outputs either g2

0 or g2
1 from which a valid secret key (g0 or g1)

can be easily computed (by Assumption 1). The proof follows.

Lemma 5. Lemma 2 holds for our definition of the witness extractors (Ext0, Ext1).

Proof. We consider the 0-side case; the 1-side case is done similarly. We prove by
contradiction (following that of [46, Lemma 4.5]). Assume that the 0-side witness
can be extracted from the base (I0, rand,

−→
h), (I0, rand,

−→
h ′) at index i, but cannot

be extracted from either of the sides (I0, rand,
−→
h ′), (I0, rand,

−→
h ′′) or (I0, rand,

−→
h),

24

(I0, rand,
−→
h ′′). By Lemma 4, the assumption holds if and only if c0 = c′′

0 and
c′

0 = c′′
0 , which implies that c0 = c′

0. This again follows from Lemma 4 that the
0-side witness cannot be extracted from (I0, rand,

−→
h), (I0, rand,

−→
h ′), which is a

contradiction. This completes the proof.

Our main theorem is stated as follows.

Theorem 3. Under Assumption 1 and the hardness of IGAP problem, the blind
signature defined in Fig. 4 satisfies the one-more unforgeability property. Con-
cretely, for l ∈ N, if there exist an adversary A that makes Q hash queries to
the random oracle and breaks the l-one-more unforgeability of BS with advan-
tage ϵA ≥ C1

|C|
(

Q
l+1

)
, then there exists an efficient algorithm B that breaks the

IGAP problem with advantage ϵB ≥ C2 · ϵ2
A

(Q
l+1)2·(l+1)3

for some universal positive
constants C1 and C2.

Proof. We define the hard instance generator IG to output a IGAP problem
instance. Now the proof follows from Lemma 3, Lemma 5 and Theorem 1.

5 Instantiation based on Monomial Code Equivalence

In this section, we present a concrete blind signature protocol based on monomial
code equivalence following the framework in Fig. 4.

5.1 Monomial Code Equivalence

A linear code over Fq is a subspace of Fn
q . An m-dimensional code in Fn

q is
represented by C ∈ Mat(m × n, q), whose rows form a basis of the code. The
monomial code equivalence problem is the following.

Problem 1 (Monomial code equivalence). For n ∈ N, let m ∈ [n]. Let C, C ′ ∈
Mat(m × n, q) be of rank m. Decide if there exist A ∈ GL(m, q), D ∈ D(n, q),
and P ∈ Sn, such that ACDP = C ′. If yes, compute such A, D, and P .

Equivalently, we can formulate monomial code equivalence as asking if there
exist A ∈ GL(m, q) and M ∈ Mon(n, q), such that ACM = C ′. By writing
M ∈ Mon(n, q) as DP where D ∈ D(n, q) and P ∈ Sn, we can define a symmetric
group action as below.

Monomial code equivalence as a symmetric group action. Let C, C ′ ∈ Mat(m×
n, q). In Definition 1, three matrices, A ∈ GL(m, q), D ∈ D(n, q), and P ∈ Sn,
are used to define equivalence between C and C ′. As a result, there is more than
one way to interpret the group action behind monomial code equivalence.

The first, most straightforward, way is to consider the action of the group
GL(m, q)× (D(n, q) ⋊ Sn) = GL(m, q)×Mon(n, q)9 on the set Mat(m× n, q).
9 Here ⋊ denotes semidirect product of groups.

25

The second approach is to consider the monomial group Mon(n, q) acting
on the set of m-dimensional codes in Fn

q . This is the natural action from the
viewpoint of coding theory, as seen in [16, 22, 32].

We take the third approach by formulating it as the symmetric group Sn

acting on a set S. This set S is the set of equivalence classes of m-dimensional
codes in Fn

q under scalar multiplications on the coordinates. Note that this is
actually in line with the second approach, where m-dimensional codes in Fn

q

are actually the set of equivalence classes of the set of invertible matrices in
Mat(m× n, q) under left multiplying A ∈ GL(m, q).

Let us examine this set S in more detail. Recall that m ∈ [n]. For C1, C2 ∈
Mat(m × n, q), we define an equivalence relation ∼ as C1 ∼ C2 if and only if
there exists some A ∈ GL(m, q) and D ∈ D(n, q) such that C1 = AC2D. Note
that this equivalence relation partitions Mat(m × n, q) into orbits of Mat(m ×
n, q) under the action of GL(m, q) × D(n, q). Denote by [C]∼ := {ACD : A ∈
GL(m, q), D ∈ D(n, q)} the equivalence class determined by∼ and corresponding
to C ∈ Mat(m × n, q). Let Mat(m × n, q)/∼ = {[C]∼ : C ∈ Mat(m × n, q)} be
the set of equivalence classes under ∼. This is the set S to be acted on.

We wish to define an action of Sn on Mat(m × n, q)/∼. For P ∈ Sn, since
[C]∼ := {ACD : A ∈ GL(m, q), D ∈ D(n, q)} is a set of matrices, a natural
map is to send [C]∼ to [C]∼P := {ACDP : A ∈ GL(m, q), D ∈ D(n, q)}. For
Sn to act on Mat(m × n, q)/∼, we need to show that [C]∼P is an element in
Mat(m× n, q)/∼ by the following proposition.

Proposition 1. Let [C]∼ ∈ Mat(m× n, q)/∼, P ∈ Sn, and [C]∼P be as above.
Then [C]∼P = [CP]∼.

Proof. Recall that C ∈ Mat(m × n, q). Let A ∈ GL(m, q), and D ∈ D(n, q).
Note that for any P ∈ Sn, we have D(n, q) = P −1 D(n, q)P = {P −1DP : D ∈
D(n, q)}. This is because one can verify that P −1DP is a diagonal matrix with
ith diagonal entry being the P (i)th entry of D. Therefore, [C]∼P := {ACDP :
A ∈ GL(m, q), D ∈ D(n, q)} = {ACPP −1DP : A ∈ GL(m, q), D ∈ D(n, q)} =
{ACPD′ : A ∈ GL(m, q), D′ ∈ D(n, q)} = [CP]∼.

This ensures that the map α : Sn×Mat(m× n, q)/∼ → Mat(m× n, q)/∼ by
P ∈ Sn sending [C]∼ to [C]∼P = [CP]∼ is a well-defined group action. Now, we
can translate Fig. 4 into the setting of group action α. By Proposition 1, starting
from the public key that consists of four equivalence classes, A

(1)
0 = [Eg0]∼,

A
(−1)
0 = [Eg−1

0]∼, A
(1)
1 = [Eg1]∼, and A

(−1)
1 = [Eg−1

1]∼, it is straightforward to
verify Z0 ∼ r0 ∗A

(c0)
0 and Z1 ∼ r1 ∗A

(c1)
1

10 for all hδ ←$ Gn.

Comparison with LESS. The formulation of our instantiation mainly consists of
two parts: one is about establishing the setting of group G, where we utilize the
symmetric group because the computation of both the conjugacy class and the
square-roots (in certain family) is efficient; the other is about hiding the elements
10 For (s1, . . . , sn), (s′

1, . . . , s′
n) ∈ Sn, we say (s1, . . . , sn) ∼ (s′

1, . . . , s′
n), if si ∼ s′

i for
each i ∈ [n].

26

of the acted set S within an equivalence class, because the single symmetric
group actions are not secure enough. In a comparable setting, some recent papers
[22, 32] have addressed the following relaxed monomial code equivalence problem
with multiple samples.

Problem 2 (Inverse linear code equivalence (ILCE)). For n ∈ N, let m ∈ [n].
Let {C0, C1, C2} ⊆ Mat(m × n, q). Decide if there exist A ∈ GL(m, q) and
M ∈ Mon(n, q), such that C1 = AC0M and C2 = A−1C0M−1. If yes, compute
such a monomial matrix M .

From the group action viewpoint, this problem corresponds to reusing mono-
mial group actions (compared to our symmetric group actions) and there is
only a single general linear group GL(m, q) acting on the left of the gener-
ator matrices (compared to our equivalence classes under a composite group
GL(m, q)×D(n, q)) used to hide secret information during communication. This
leaves a potential breakthrough point that can be leveraged to tackle Problem 2:
Upon converting the known generator matrices of linear codes into their system-
atic forms, the effect of the left group actions can be somehow eliminated by
introducing the parity-check matrices that serve for the construction of a ho-
mogeneous linear system involving the monomial matrix as the only variable
matrix. Therefore, since the number of equations increases with the number of
samples very quickly while the number of variables always remains the same,
[22] is able to give a heuristic algorithm to find such a monomial matrix by first
converting ILCE problem to the general monomial code equivalence problem with
two samples.

However, this cannot apply to our case directly. The reason is that in an
equivalence class, the way to scale the columns of the generator matrices can
vary, so treating these scalars as variables and combining them with the com-
mon permutation as another variable matrix would make a quadratic equation
system instead of a linear system. Besides, the algorithm in [22] for solving
2-sample monomial code equivalence relies on the structure of a homogeneous
linear system. Specifically, it checks whether an entry of the variable monomial
matrix can be non-zero or not, one by one; in each case, the algorithm sets the
entry to 1 and then conducts the check, despite the fact that a monomial matrix
could have any value on the non-zero position in general. This is because the
solutions to the homogeneous linear system should be multiples of a monomial
matrix, allowing us to normalize any entry to 1 while staying within the solution
set, and avoiding the need to account for the values of scalar variables. Again,
since the scalars for the commitment and keys keep updating in our protocol,
their values must be considered and cannot simply be set to 1. These two essen-
tial gaps differentiate our use of monomial code equivalence from the one broken
in LESS.

27

5.2 Square-root Computation Algorithm

To achieve the soundness of the underlying sigma protocol for our blind sig-
nature, we need an algorithm to efficiently compute a certain square-root of
g2

δ ∈ Sn.

Proposition 2. There is a polynomial-time square-root algorithm that inputs
σ ∈ Sn and outputs a square-root of σ if it exists.

Proof. We first give a constructive proof to show that any σ ∈ Sn can be effi-
ciently decomposed into a finite product of disjoint cycles. Let p1 ∈ [n] be the
smallest element such that σ(p1) = p2 ̸= p1. Now we can denote σ(p2) = p3 ̸= p2,
as p2 has been occupied. It follows that we must end up with some pk such that
σ(pk) = p1, which yields a k-cycle (p1, . . . , pk). Then we let q1 ∈ [n] be the small-
est element such that σ(q1) = q2 /∈ {p1, . . . , pk, q1} and repeat the procedure to
get another cycle. Since n is finite, this will result in a finite product of disjoint
cycles eventually.

Suppose there exists one square-root of σ, say g2 = σ. Applying the disjoint-
cycle decomposition to g, we can denote g = g1 ◦ · · · ◦ gℓ where gi is a disjoint
cycle for all i ∈ [ℓ]. Note that disjoint cycles always commute, which implies that
σ can be represented by g2

1 ◦ · · · ◦ g2
ℓ . Thus, it suffices to find a square-root of an

arbitrary cycle square g2
i .

Let gi = (p1, . . . , pk) be a k-cycle. We see that if k is odd, then g2
i =

(p1, p3, . . . , pk−2, pk) is still a k-cycle. If k is even, then g2
i = (p1, p3, . . . , pk−1) ◦

(p2, p4, . . . , pk), which consists of two disjoint cycles. These are the only two
types for each g2

i , which can be distinguished by employing the efficient disjoint-
cycle decomposition. Finally, we give a specific construction of the square-root
in either case:

– If g2
i = (j1, . . . , jk), then√

g2
i =

(
j1, j k+3

2
, j2, j k+5

2
, . . . , j k−1

2
, j k+k

2
, j k+1

2

)
.

– If g2
i = (j1, . . . , jk) ◦ (j′

1, . . . , j′
k), then

√
g2

i has several possibilities, namely
(j1, j′

1, . . . , jk, j′
k), (j1, j′

2, j2, j′
3, . . . , jk, j′

1), . . . , (j1, j′
k, j2, j′

1, . . . , jk, j′
k−1).

It can be easily verified that g2
i = (

√
g2

i)2 for all i ∈ [ℓ], and thereby σ = g2 =
(
√

g2
1 ◦ · · · ◦

√
g2

ℓ)2.

Remark 2. By the proof of Proposition 2, we note that if g is a full cycle in
Sn with n odd, then g has a unique square-root. To avoid the complication of
multiple square-roots, in the instantiation of the blind signature, the signer needs
to set n to be odd, and sample a full-cycle permutation from Sn. The probability
of sampling a full-cycle permutation is 1/n, simply because there are (n − 1)!
full-cycle permutations in Sn. The signer then needs to sample r∗(1)

1−δ from the set
of full-cycle permutations, in order not to lead δ.

28

We further note that the monomial code equivalence problem would not be
easier if the underlying permutation is a full cycle. Indeed, we can reduce from
general permutations to full cycles by a random reduction: if C1 and C2 are
related by a permutation Q, we can apply a random permutation R to C2 to get
C3, so with probability 1/n, C1 and C3 are related by a full cycle.

5.3 Canonical Form Algorithm

When blinding the message concatenated with the set elements (e.g., Z0, Z1 ∈
Sn) under a hash function H as in Fig. 4, it is less practical to feed the entire
equivalence class into H. By contrast, we can efficiently compute the canonical
forms that can uniquely represent the underlying equivalence classes. Specifi-
cally, for an authentic signature and b ∈ {0, 1}, the signer and the user each hold
Zb and rb ∗ A

(cb)
b in the same equivalence class. To ensure the resulting hash

values c and c′ to be the same, the user (and other verifiers) need to perform
a canonical form algorithm for these equivalence classes. Canonical forms are a
well-studied topic for graphs and matrix tuples [6, 58]. Given a group G acting
on a set S, a canonical form algorithm for this group action takes s ∈ S and out-
puts s∗ ∈ Orb(s) := {g ∗ s : ∀g ∈ G}. Furthermore, for another s′ ∈ Orb(s), the
algorithm should output the same s∗. In our case, G and S can be interpreted
as GL(m, q)×D(n, q) and Mat(m×n, q), respectively. To this end, we establish
the following proposition.

Proposition 3. There is a polynomial-time canonical form algorithm for the
action of GL(m, q)×D(n, q) on Mat(m× n, q).

Proof. Let A, B ∈ Mat(m×n, q). Denote by r(A), r(B) the reduced row echelon
form of A, B, respectively. We claim that there exists T ∈ GL(m, q) and D ∈
D(n, q) such that A = TBD if and only if there exists D1 ∈ D(m, q) and D2 ∈
D(n, q) such that r(A) = D1r(B)D2.

The if direction is straightforward. By the definition of the reduced row
echelon form, we can find S1, S2 ∈ GL(m, q) such that r(A) = S1A and r(B) =
S2B. Then r(A) = D1r(B)D2 for some D1 ∈ D(m, q) and D2 ∈ D(n, q) implies
that A = S−1

1 D1S2BD2, where S−1
1 D1S2 ∈ GL(m, q) and D2 ∈ D(n, q).

For the only if direction, given A = TBD for some T ∈ GL(m, q) and D ∈
D(n, q), we first consider the form of r(B)D = S2BD for S2 ∈ GL(m, q). Note
that D ∈ D(n, q) is just doing the column scaling and not changing the pattern
of non-zero entries in r(B), it follows that r(B)D is already in a row echelon
form of S2BD. To further make it to be the reduced row echelon form r(S2BD),
the only thing is to scale the leading non-zero entry of each row to 1, which can
be done by left-multiplying a diagonal matrix, say D′ ∈ D(m, q). Thus, we have
that D′r(B)D = r(S2BD) = r(BD) = r(TBD) = r(A) for some D′ ∈ D(m, q)
and D ∈ D(n, q).

Since the reduced row echelon form can be uniquely and efficiently com-
puted by Gaussian elimination in time O(m2n), this shows a polynomial-time
reduction from finding a canonical form for the action of GL(m, q)×D(n, q) on

29

Mat(m× n, q) to finding a canonical form for the action of D(m, q)×D(n, q) on
Mat(m×n, q). Such questions have been studied in e.g. [34]. Formally, we prove
the following.

Proposition 4. There is a polynomial-time canonical form algorithm for the
left-right action of D(m, q)×D(n, q) on Mat(m× n, q).

The detailed algorithmic proof for Proposition 4 is provided in Appendix A.
Since the reduced row echelon forms are canonical, we can apply the canonical
form algorithm for the left-right action of D(m, q) × D(n, q) on the reduced
row echelon form of any A ∈ Mat(m × n, q) to obtain a canonical form for the
left-right action of GL(m, q)× D(n, q) in a total running time of O(m2n). This
concludes the proof.

6 Conclusion

In this paper, we present a framework, following [46], for designing a blind sig-
nature from abstract group actions. We prove that our scheme is secure in the
random oracle model. We also provide an instantiation from a variant of linear
code equivalence, with an intensive treatment, that can avoid the attack by [22].
As discussed in Section 1.4, our scheme, as similar to CSI-Otter [46], is vulnera-
ble to Do et al.’s attack [33] and possibly also to Katsumata et al.’s attack [47]
against CSI-Otter. A consequence of this is, recommended by Do et al. [33], to
use our blind signatures sequentially, not concurrently. An interesting question
is to investigate whether Katsumata et al.’s attack [47] can be applicable to our
framework for abstract group actions, and particularly to our instantiation. An-
other interesting question, raised by Katsumata et al. in [47] is enable a group
action-based blind signature construction from those [1, 44, 63] that can thwart
the ROS-related attacks.

We suspect that our framework can be extended to a partially blind signature,
as in [46]. In fact, in the Appendix B, we show that we can design a 2-out-of-3
sigma protocol from abstract group actions, the base protocol for constructing
the partially isogeny-based blind signature in [46]. We will leave it as a future
work to show the possibility/impossibility of such a construction.

30

Bibliography

[1] Abe, M.: A secure three-move blind signature scheme for polynomially
many signatures. In: Pfitzmann, B. (ed.) Advances in Cryptology - EU-
ROCRYPT 2001, International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001,
Proceeding. Lecture Notes in Computer Science, vol. 2045, pp. 136–
151. Springer (2001). https://doi.org/10.1007/3-540-44987-6_9, https://
doi.org/10.1007/3-540-44987-6_9

[2] Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bel-
lare, M. (ed.) Advances in Cryptology - CRYPTO 2000, 20th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1880,
pp. 271–286. Springer (2000). https://doi.org/10.1007/3-540-44598-6_17,
https://doi.org/10.1007/3-540-44598-6_17

[3] Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Practical, round-optimal
lattice-based blind signatures. In: Yin, H., Stavrou, A., Cremers, C., Shi,
E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, Novem-
ber 7-11, 2022. pp. 39–53. ACM (2022). https://doi.org/10.1145/3548606.
3560650, https://doi.org/10.1145/3548606.3560650

[4] Alamati, N., Feo, L.D., Montgomery, H., Patranabis, S.: Cryptographic
group actions and applications. In: Moriai, S., Wang, H. (eds.) Advances
in Cryptology - ASIACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Dae-
jeon, South Korea, December 7-11, 2020, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 12492, pp. 411–439. Springer (2020).
https://doi.org/10.1007/978-3-030-64834-3_14

[5] Alkadri, N.A., Bansarkhani, R.E., Buchmann, J.: BLAZE: practical lattice-
based blind signatures for privacy-preserving applications. In: Bonneau,
J., Heninger, N. (eds.) Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February
10-14, 2020 Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 12059, pp. 484–502. Springer (2020). https://doi.org/10.1007/
978-3-030-51280-4_26, https://doi.org/10.1007/978-3-030-51280-4_26

[6] Babai, L.: Canonical form for graphs in quasipolynomial time: preliminary
report. In: Charikar, M., Cohen, E. (eds.) Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019. pp. 1237–1246. ACM (2019). https://doi.org/
10.1145/3313276.3316356

[7] Barenghi, A., Biasse, J., Ngo, T., Persichetti, E., Santini, P.: Ad-
vanced signature functionalities from the code equivalence problem.
Int. J. Comput. Math. Comput. Syst. Theory 7(2), 112–128 (2022).

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356

https://doi.org/10.1080/23799927.2022.2048206, https://doi.org/10.1080/
23799927.2022.2048206

[8] Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the
GRASS: threshold group action signature schemes. In: Oswald, E. (ed.)
Topics in Cryptology - CT-RSA 2024 - Cryptographers’ Track at the
RSA Conference 2024, San Francisco, CA, USA, May 6-9, 2024, Pro-
ceedings. Lecture Notes in Computer Science, vol. 14643, pp. 460–489.
Springer (2024). https://doi.org/10.1007/978-3-031-58868-6_18, https://
doi.org/10.1007/978-3-031-58868-6_18

[9] Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the
(in)security of ROS. In: Canteaut, A., Standaert, F. (eds.) Advances in
Cryptology - EUROCRYPT 2021 - 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, October 17-21, 2021, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12696, pp. 33–53. Springer (2021). https://doi.org/10.1007/
978-3-030-77870-5_2, https://doi.org/10.1007/978-3-030-77870-5_2

[10] Berthomieu, J., Faugere, J.C., Perret, L.: Polynomial-time algorithms for
quadratic isomorphism of polynomials: The regular case. Journal of Com-
plexity 31(4), 590–616 (2015)

[11] Beullens, W.: Multivariate blind signatures revisited. IACR Cryptol. ePrint
Arch. p. 720 (2024), https://eprint.iacr.org/2024/720

[12] Beullens, W., Dobson, S., Katsumata, S., Lai, Y., Pintore, F.: Group sig-
natures and more from isogenies and lattices: Generic, simple, and effi-
cient. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology
- EUROCRYPT 2022 - 41st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 - June 3, 2022, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13276, pp. 95–126. Springer (2022). https://doi.org/10.1007/
978-3-031-07085-3_4

[13] Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12492, pp. 464–492. Springer
(2020). https://doi.org/10.1007/978-3-030-64834-3_16

[14] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny
based signatures through class group computations. In: Advances in Cryp-
tology - ASIACRYPT 2019. Lecture Notes in Computer Science, vol. 11921,
pp. 227–247. Springer (2019). https://doi.org/10.1007/978-3-030-34578-5_
9

[15] Beullens, W., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Lattice-based
blind signatures: Short, efficient, and round-optimal. In: Meng, W.,
Jensen, C.D., Cremers, C., Kirda, E. (eds.) Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30, 2023. pp. 16–29.

32

https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-031-58868-6_18
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://eprint.iacr.org/2024/720
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9

ACM (2023). https://doi.org/10.1145/3576915.3616613, https://doi.org/
10.1145/3576915.3616613

[16] Biasse, J., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) Progress
in Cryptology - AFRICACRYPT 2020 - 12th International Conference on
Cryptology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings. Lecture
Notes in Computer Science, vol. 12174, pp. 45–65. Springer (2020). https:
//doi.org/10.1007/978-3-030-51938-4_3

[17] Bläser, M., Chen, Z., Duong, D.H., Joux, A., Nguyen, T.N., Plantard,
T., Qiao, Y., Susilo, W., Tang, G.: On digital signatures based on group
actions: QROM security and ring signatures. In: Saarinen, M.O., Smith-
Tone, D. (eds.) Post-Quantum Cryptography - 15th International Work-
shop, PQCrypto 2024, Oxford, UK, June 12-14, 2024, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 14771, pp. 227–261. Springer
(2024). https://doi.org/10.1007/978-3-031-62743-9_8

[18] Blazy, O., Gaborit, P., Mac, D.T.: A correction to a code-based blind sig-
nature scheme. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds.) Code-Based
Cryptography - 9th International Workshop, CBCrypto 2021, Munich, Ger-
many, June 21-22, 2021 Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 13150, pp. 84–94. Springer (2021). https://doi.org/10.
1007/978-3-030-98365-9_5, https://doi.org/10.1007/978-3-030-98365-9_5

[19] Blazy, O., Gaborit, P., Schrek, J., Sendrier, N.: A code-based blind signa-
ture. In: 2017 IEEE International Symposium on Information Theory, ISIT
2017, Aachen, Germany, June 25-30, 2017. pp. 2718–2722. IEEE (2017).
https://doi.org/10.1109/ISIT.2017.8007023, https://doi.org/10.1109/ISIT.
2017.8007023

[20] Bouaziz-Ermann, S., Canard, S., Eberhart, G., Kaim, G., Roux-Langlois,
A., Traoré, J.: Lattice-based (partially) blind signature without restart.
IACR Cryptol. ePrint Arch. p. 260 (2020), https://eprint.iacr.org/2020/260

[21] Brassard, G., Yung, M.: One-way group actions. In: Advances in Cryp-
tology - CRYPTO 1990. pp. 94–107 (1990). https://doi.org/10.1007/
3-540-38424-3_7

[22] Budroni, A., Chi-Domínguez, J., D’Alconzo, G., Scala, A.J.D., Kulka-
rni, M.: Don’t use it twice! solving relaxed linear equivalence problems
15491, 35–65 (2024). https://doi.org/10.1007/978-981-96-0944-4_2, https:
//doi.org/10.1007/978-981-96-0944-4_2

[23] Buser, M., Dowsley, R., Esgin, M.F., Gritti, C., Kermanshahi, S.K., Kuchta,
V., LeGrow, J.T., Liu, J.K., Phan, R.C., Sakzad, A., Steinfeld, R., Yu,
J.: A survey on exotic signatures for post-quantum blockchain: Challenges
and research directions. ACM Comput. Surv. 55(12), 251:1–251:32 (2023).
https://doi.org/10.1145/3572771, https://doi.org/10.1145/3572771

[24] Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an
efficient post-quantum commutative group action. In: International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity (ASIACRYPT). pp. 395–427. Springer (2018). https://doi.org/10.1007/
978-3-030-03332-3_15

33

https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1145/3576915.3616613
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-031-62743-9_8
https://doi.org/10.1007/978-3-031-62743-9_8
https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1109/ISIT.2017.8007023
https://doi.org/10.1109/ISIT.2017.8007023
https://doi.org/10.1109/ISIT.2017.8007023
https://doi.org/10.1109/ISIT.2017.8007023
https://eprint.iacr.org/2020/260
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/978-981-96-0944-4_2
https://doi.org/10.1007/978-981-96-0944-4_2
https://doi.org/10.1007/978-981-96-0944-4_2
https://doi.org/10.1007/978-981-96-0944-4_2
https://doi.org/10.1145/3572771
https://doi.org/10.1145/3572771
https://doi.org/10.1145/3572771
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

[25] Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner,
B.: Pi-cut-choo and friends: Compact blind signatures via parallel instance
cut-and-choose and more. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 13509, pp. 3–
31. Springer (2022). https://doi.org/10.1007/978-3-031-15982-4_1, https:
//doi.org/10.1007/978-3-031-15982-4_1

[26] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology: Proceedings
of CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982.
pp. 199–203. Plenum Press, New York (1982). https://doi.org/10.1007/
978-1-4757-0602-4_18, https://doi.org/10.1007/978-1-4757-0602-4_18

[27] Chaum, D.: Elections with unconditionally-secret ballots and disruption
equivalent to breaking RSA. In: Günther, C.G. (ed.) Advances in Cryp-
tology - EUROCRYPT ’88, Workshop on the Theory and Application
of of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988,
Proceedings. Lecture Notes in Computer Science, vol. 330, pp. 177–182.
Springer (1988). https://doi.org/10.1007/3-540-45961-8_15, https://doi.
org/10.1007/3-540-45961-8_15

[28] Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Gold-
wasser, S. (ed.) Advances in Cryptology - CRYPTO ’88, 8th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
21-25, 1988, Proceedings. Lecture Notes in Computer Science, vol. 403,
pp. 319–327. Springer (1988). https://doi.org/10.1007/0-387-34799-2_25,
https://doi.org/10.1007/0-387-34799-2_25

[29] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 16-
20, 1992, Proceedings. Lecture Notes in Computer Science, vol. 740, pp.
89–105. Springer (1992). https://doi.org/10.1007/3-540-48071-4_7, https:
//doi.org/10.1007/3-540-48071-4_7

[30] Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders,
K., Samardjiska, S., Trimoska, M.: Take your meds: Digital signatures from
matrix code equivalence. In: Progress in Cryptology - AFRICACRYPT 2023
(2023). https://doi.org/10.1007/978-3-031-37679-5_2

[31] Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint
Archive (2006), http://eprint.iacr.org/2006/291

[32] D’Alconzo, G., Di Scala, A.J.: Representations of group actions and their ap-
plications in cryptography. Finite Fields and Their Applications 99, 102476
(2024). https://doi.org/10.1016/j.ffa.2024.102476

[33] Do, K., Hanzlik, L., Paracucchi, E.: M&m’s: Mix and match attacks
on schnorr-type blind signatures with repetition. In: Joye, M., Lean-
der, G. (eds.) Advances in Cryptology - EUROCRYPT 2024 - 43rd An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings,

34

https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
http://eprint.iacr.org/2006/291
https://doi.org/10.1016/j.ffa.2024.102476
https://doi.org/10.1016/j.ffa.2024.102476

Part VI. Lecture Notes in Computer Science, vol. 14656, pp. 363–387.
Springer (2024). https://doi.org/10.1007/978-3-031-58751-1_13, https://
doi.org/10.1007/978-3-031-58751-1_13

[34] Engel, G.M., Schneider, H.: Algorithms for testing the diagonal similar-
ity of matrices and related problems. SIAM Journal on Algebraic Discrete
Methods 3(4), 429–438 (1982). https://doi.org/10.1137/0603044

[35] Feo, L.D., Galbraith, S.D.: Seasign: Compact isogeny signatures from class
group actions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. Lecture Notes in Computer Science, vol. 11478, pp.
759–789. Springer (2019). https://doi.org/10.1007/978-3-030-17659-4_26

[36] Feo, L.D., Meyer, M.: Threshold schemes from isogeny assumptions. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryp-
tography - PKC 2020 - 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp.
187–212. Springer (2020). https://doi.org/10.1007/978-3-030-45388-6_7

[37] Fuchsbauer, G., Wolf, M.: Concurrently secure blind schnorr signatures.
In: Joye, M., Leander, G. (eds.) Advances in Cryptology - EUROCRYPT
2024 - 43rd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 14652, pp.
124–160. Springer (2024). https://doi.org/10.1007/978-3-031-58723-8_5,
https://doi.org/10.1007/978-3-031-58723-8_5

[38] Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of
quantum coset states for graph isomorphism. J. ACM 57(6), 34:1–34:33
(Nov 2010). https://doi.org/10.1145/1857914.1857918

[39] Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from
identification schemes. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Ger-
many, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11478, pp. 345–375. Springer (2019). https://doi.org/10.1007/
978-3-030-17659-4_12, https://doi.org/10.1007/978-3-030-17659-4_12

[40] Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signa-
tures, revisited. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryp-
tology - CRYPTO 2020 - 40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp.
500–529. Springer (2020). https://doi.org/10.1007/978-3-030-56880-1_18,
https://doi.org/10.1007/978-3-030-56880-1_18

[41] Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: Anony-
mous on-blockchain and off-blockchain bitcoin transactions. In: Clark, J.,
Meiklejohn, S., Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K.
(eds.) Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados,
February 26, 2016, Revised Selected Papers. Lecture Notes in Computer

35

https://doi.org/10.1007/978-3-031-58751-1_13
https://doi.org/10.1007/978-3-031-58751-1_13
https://doi.org/10.1007/978-3-031-58751-1_13
https://doi.org/10.1007/978-3-031-58751-1_13
https://doi.org/10.1137/0603044
https://doi.org/10.1137/0603044
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1145/1857914.1857918
https://doi.org/10.1145/1857914.1857918
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18

Science, vol. 9604, pp. 43–60. Springer (2016). https://doi.org/10.1007/
978-3-662-53357-4_4, https://doi.org/10.1007/978-3-662-53357-4_4

[42] Hhan, M., Morimae, T., Yamakawa, T.: From the hardness of detect-
ing superpositions to cryptography: Quantum public key encryption and
commitments. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 639–667. Springer (2023).
https://doi.org/10.1007/978-3-031-30545-0_22

[43] Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors:
A candidate for post-quantum cryptography. Cryptology ePrint Archive,
Report 2019/687 (2019), https://eprint.iacr.org/2019/687

[44] Kastner, J., Loss, J., Xu, J.: On Pairing-Free Blind Signature Schemes in
the Algebraic Group Model. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) Public-Key Cryptography - PKC 2022 - 25th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Virtual
Event, March 8-11, 2022, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13178, pp. 468–497. Springer (2022). https://doi.org/10.1007/
978-3-030-97131-1_16, https://doi.org/10.1007/978-3-030-97131-1_16

[45] Kastner, J., Loss, J., Xu, J.: The Abe-Okamoto Partially Blind Signature
Scheme Revisited. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology
- ASIACRYPT 2022 - 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, De-
cember 5-9, 2022, Proceedings, Part IV. Lecture Notes in Computer Sci-
ence, vol. 13794, pp. 279–309. Springer (2022). https://doi.org/10.1007/
978-3-031-22972-5_10, https://doi.org/10.1007/978-3-031-22972-5_10

[46] Katsumata, S., Lai, Y., LeGrow, J.T., Qin, L.: CSI-Otter: Isogeny-Based
(Partially) Blind Signatures from the Class Group Action with a Twist. In:
Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO
2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III. Lec-
ture Notes in Computer Science, vol. 14083, pp. 729–761. Springer (2023).
https://doi.org/10.1007/978-3-031-38548-3_24

[47] Katsumata, S., Lai, Y., Reichle, M.: Breaking parallel ROS: implication for
isogeny and lattice-based blind signatures. In: Tang, Q., Teague, V. (eds.)
Public-Key Cryptography - PKC 2024 - 27th IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Sydney, NSW,
Australia, April 15-17, 2024, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 14601, pp. 319–351. Springer (2024). https://doi.org/10.
1007/978-3-031-57718-5_11, https://doi.org/10.1007/978-3-031-57718-5_
11

[48] Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature
schemes. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology - ASI-
ACRYPT 2021 - 27th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Singapore, December 6-10,
2021, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13093,
pp. 468–492. Springer (2021). https://doi.org/10.1007/978-3-030-92068-5_
16, https://doi.org/10.1007/978-3-030-92068-5_16

36

https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-031-30545-0_22
https://doi.org/10.1007/978-3-031-30545-0_22
https://eprint.iacr.org/2019/687
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-38548-3_24
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-031-57718-5_11
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16

[49] Kucharczyk, M.: Blind signatures in electronic voting systems. In: Kwiecien,
A., Gaj, P., Stera, P. (eds.) Computer Networks - 17th Conference,
CN 2010, Ustroń, Poland, June 15-19, 2010. Proceedings. Communi-
cations in Computer and Information Science, vol. 79, pp. 349–358.
Springer (2010). https://doi.org/10.1007/978-3-642-13861-4_37, https://
doi.org/10.1007/978-3-642-13861-4_37

[50] Kuchta, V., LeGrow, J.T., Persichetti, E.: Post-quantum blind signatures
from matrix code equivalence. IACR Cryptol. ePrint Arch. p. 274 (2025),
https://eprint.iacr.org/2025/274

[51] Le, H.Q., Susilo, W., Khuc, T.X., Bui, M.K., Duong, D.H.: A blind signature
from module latices. In: 2019 IEEE Conference on Dependable and Secure
Computing, DSC 2019, Hangzhou, China, November 18-20, 2019. pp. 1–
8. IEEE (2019). https://doi.org/10.1109/DSC47296.2019.8937613, https://
doi.org/10.1109/DSC47296.2019.8937613

[52] Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Efficient lattice-based blind
signatures via gaussian one-time signatures. In: Hanaoka, G., Shikata,
J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022 - 25th
IACR International Conference on Practice and Theory of Public-Key
Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 13178, pp. 498–527. Springer
(2022). https://doi.org/10.1007/978-3-030-97131-1_17, https://doi.org/
10.1007/978-3-030-97131-1_17

[53] Papachristoudis, D., Hristu-Varsakelis, D., Baldimtsi, F., Stephanides, G.:
Leakage-resilient lattice-based partially blind signatures. IET Inf. Secur.
13(6), 670–684 (2019). https://doi.org/10.1049/IET-IFS.2019.0156, https:
//doi.org/10.1049/iet-ifs.2019.0156

[54] Petzoldt, A., Szepieniec, A., Mohamed, M.S.E.: A practical multivariate
blind signature scheme. In: Kiayias, A. (ed.) Financial Cryptography and
Data Security - 21st International Conference, FC 2017, Sliema, Malta,
April 3-7, 2017, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 10322, pp. 437–454. Springer (2017). https://doi.org/10.1007/
978-3-319-70972-7_25, https://doi.org/10.1007/978-3-319-70972-7_25

[55] Pfitzmann, B.P., Sadeghi, A.R.: Anonymous fingerprinting with direct
non-repudiation. In: Advances in Cryptology—ASIACRYPT 2000: 6th
International Conference on the Theory and Application of Cryptology
and Information Security Kyoto, Japan, December 3–7, 2000 Proceedings
6. pp. 401–414. Springer (2000). https://doi.org/https://doi.org/10.1007/
3-540-44448-3_31

[56] del Pino, R., Katsumata, S.: A new framework for more efficient
round-optimal lattice-based (partially) blind signature via trapdoor sam-
pling. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 13508, pp.
306–336. Springer (2022). https://doi.org/10.1007/978-3-031-15979-4_11,
https://doi.org/10.1007/978-3-031-15979-4_11

37

https://doi.org/10.1007/978-3-642-13861-4_37
https://doi.org/10.1007/978-3-642-13861-4_37
https://doi.org/10.1007/978-3-642-13861-4_37
https://doi.org/10.1007/978-3-642-13861-4_37
https://eprint.iacr.org/2025/274
https://doi.org/10.1109/DSC47296.2019.8937613
https://doi.org/10.1109/DSC47296.2019.8937613
https://doi.org/10.1109/DSC47296.2019.8937613
https://doi.org/10.1109/DSC47296.2019.8937613
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1049/IET-IFS.2019.0156
https://doi.org/10.1049/IET-IFS.2019.0156
https://doi.org/10.1049/iet-ifs.2019.0156
https://doi.org/10.1049/iet-ifs.2019.0156
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/10.1007/978-3-319-70972-7_25
https://doi.org/https://doi.org/10.1007/3-540-44448-3_31
https://doi.org/https://doi.org/10.1007/3-540-44448-3_31
https://doi.org/https://doi.org/10.1007/3-540-44448-3_31
https://doi.org/https://doi.org/10.1007/3-540-44448-3_31
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11

[57] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. Journal of cryptology 13(3), 361–396 (2000)

[58] Qiao, Y., Sun, X.: Canonical forms for matrix tuples in polynomial time.
In: 65th IEEE Symposium on Foundations of Computer Science (FOCS)
2024 (2024), arXiv:2409.12457. To appear.

[59] Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies.
IACR Cryptol. ePrint Arch. p. 145 (2006), http://eprint.iacr.org/2006/145

[60] Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singa-
pore, December 5-9, 2010. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 6477, pp. 413–430. Springer (2010). https://doi.org/10.1007/
978-3-642-17373-8_24, https://doi.org/10.1007/978-3-642-17373-8_24

[61] Schnorr, C.: Security of blind discrete log signatures against interactive at-
tacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) Information and Communi-
cations Security, Third International Conference, ICICS 2001, Xian, China,
November 13-16, 2001. Lecture Notes in Computer Science, vol. 2229,
pp. 1–12. Springer (2001). https://doi.org/10.1007/3-540-45600-7_1, https:
//doi.org/10.1007/3-540-45600-7_1

[62] Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practi-
cal post-quantum signature schemes from isomorphism problems of trilinear
forms. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology
- EUROCRYPT 2022 - 41st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 - June 3, 2022, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 13277, pp. 582–612. Springer (2022). https://doi.org/10.1007/
978-3-031-07082-2_21

[63] Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential
security. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 - June 3, 2022, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13276, pp. 782–811. Springer (2022). https://doi.org/10.1007/
978-3-031-07085-3_27, https://doi.org/10.1007/978-3-031-07085-3_27

[64] Yi, X., Lam, K.: A new blind ECDSA scheme for bitcoin transaction
anonymity. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D.,
Kirda, E., Liang, Z. (eds.) Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security, AsiaCCS 2019, Auckland, New
Zealand, July 09-12, 2019. pp. 613–620. ACM (2019). https://doi.org/10.
1145/3321705.3329816, https://doi.org/10.1145/3321705.3329816

A Proof of Proposition 4

Proposition 4. There is a polynomial-time canonical form algorithm for the
left-right action of D(m, q)×D(n, q) on Mat(m× n, q).

38

http://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816
https://doi.org/10.1145/3321705.3329816

Proof. We first collect basic notation. Let A ∈ Mat(m× n, q). For each i ∈ [m]
and j ∈ [n], denote by Rj ⊆ [m] the set of row indices of non-zero entries in
the jth column and by Ci ⊆ [n] the set of column indices of non-zero entries
in the ith row, both in increasing order. Besides, denote by R ⊆ [m] the set of
row indices marked as touched and by C ⊆ [n] the set of column indices marked
as touched, which will be initialized as empty sets and stay updated during the
algorithm. We also use Ai,j to denote the initial (i, j)th entry of A, use αi to
denote the ith diagonal entry of the left diagonal matrix acting on A, and use βj

to denote the jth diagonal entry of the right diagonal matrix acting on A. Our
goal is to systemically set a left-right action of D(m, q) × D(n, q) to transform
any given A into a canonical form.

∗ ∗ ∗ ∗ · · · A1,j · · · ∗
∗ ∗ ∗ ∗ · · · 0 · · · ∗
∗ ∗ ∗ ∗ · · · A3,j · · · ∗
...

...
...

...
. . .

...
. . .

...
Ai,1 Ai,2 0 Ai,4 · · · 0 · · · Ai,n

...
...

...
...

. . .
...

. . .
...

∗ ∗ ∗ ∗ · · · Am,j · · · ∗

 Ci

Rj

m× n

Fig. 6: Illustration of how the sets Ci and Rj are defined. Please note that they
consist of the row/column indices of those non-zero entries rather than the values.

Step 1. We start from the first non-zero row in A, say the i0th row. For each j ∈
Ci0 , we can set βj to scale the jth column such that βjAi0,j = 1. Simultaneously,
we mark each index appearing in the aforementioned procedure, and it turns out
that R := {i0} and C := Ci0 upon completing this step. Note that we won’t
rescale any column whose index already exists in C during the subsequent steps,
so βj will then be fixed by the equation and the (i0, j)th entry of A will be fixed
at 1 after the scaling of βj for all j ∈ Ci0 .

39

0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 Ai0,j0 0 · · · 0 Ai0,j1 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗

×βj1×βj0

m× n

j0, j1 ∈ Ci0

Fig. 7: Illustration of the column scaling in Step 1.

Step 2. Now we focus on the row indices of non-zero entries in each marked
column. Specifically, for each j ∈ C, we check whether there are any row indices
in Rj \R, i.e., the newly appearing row indices to be touched for the first time.
At each check, if such a row index exists, say i, we add it into R and set αi to
scale the ith row such that αiβjAi,j = 1 where βj was fixed in the previous step.
Note that once i added into R, we won’t rescale the ith row in the future steps,
so αi will then be fixed by this equation and (i, j)th entry of A will be fixed
at 1 after the scaling of αi. Upon completing the loop over C, if the size of R
increases, then go to Step 3, because in those newly marked rows, there could
be non-zero entries corresponding to some new column indices outside C; if the
size of R remains the same, then move on to Step 4.

40

0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0 1 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
∗ · · · ∗ βj0 Ai1,j0 ∗ · · · ∗ βj1 Ai1,j1 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗ βj1 Ai2,j1 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗

×αi1

×αi2

i1 ∈ Rj0 i2 ∈ Rj1

m× n

Fig. 8: Illustration of the row scaling in Step 2.

Step 3. In a manner similar to what we just did over C, we proceed to loop
over the newly updated row index set R. That is, for each i ∈ R, we check
whether there are any column indices in Ci \C, i.e., the newly appearing column
indices to be touched for the first time. At each check, if such a column index
exists, say j′, we add it into C and set βj′ to rescale the j′th column such that
αiβj′Ai,j′ = 1 where αi was fixed in the previous step. Note again that once j′

added into C, we won’t rescale the j′th column in the future steps, so βj′ will
then be fixed by this equation and the (i, j′)th entry of A will be fixed at 1 after
the scaling of βj′ . Upon completing the loop over R, if the size of C increases,
then go back to Step 2, because in those newly marked columns, there could be
non-zero entries corresponding to some new row indices outside R; if the size of
C remains the same, then move on to Step 4.

41

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0 1 0 · · · 0 1 0 · · · 0 0 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 αi1 Ai1,j2 0 · · · 0 1 0 · · · 0 αi1 Ai1,j1 0 · · · 0 0 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 αi2 Ai2,j2 0 · · · 0 0 0 · · · 0 1 0 · · · 0 αi2 Ai2,j3 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ ∗ ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ ∗ ∗ · · · ∗

×βj2 ×βj3

m× n

j2 ∈ Ci1

j3 ∈ Ci2

Fig. 9: Illustration of the column scaling in Step 3.

Step 4. After the first three steps, we would have touched and collected some
row indices in R and some column indices in C. Starting from a single non-zero
entry of A, it is possible to stop at some stage before covering all the indices, i.e.,
ending up with R×C ⊂ [m]× [n]. In this case, we can proceed to the next non-
zero row whose index is not in R, which would give us another starting point.
Then we can replace (i0, j0) in Step 1 with this new starting point and repeat
the first three steps. Additionally, we collect the row indices of all such starting
points into a set RS . Denote by R0 and C0 the sets of indices corresponding to
all-zero rows and all-zero columns, respectively. If R = [m] \R0, we move on to
Step 5. Note that our algorithm implies that R = [m] \R0 would also guarantee
C = [n] \ C0, because we went over each r ∈ R and non-repetitively added the
elements in each Cr to C. It is straightforward to see C = [n] \ C0 by the fact
that

⋃
r∈[m]\R0

Cr = [n] \ C0.

Step 5. Upon reaching this step, we would have fixed all diagonal entries of the
two diagonal matrices acting on A, except those corresponding to the indices of
all-zero rows/columns in R0 × C0 and the indices of the starting non-zero rows
in RS . For (i, j) ∈ R0×C0, it is free to set αi and βj since they are only scaling
all-zero rows/columns. For any i0 ∈ RS , it is clear that the non-zero entries in
the i0th row are all equal to 1 after the first four steps (according to Step 1),
motivating us to simply set αi0 = 1 to maintain this structure. This concludes
the algorithm, which runs in time O(mn).

42

Without loss of omitting the all-zero rows/columns, the algorithm described
above can give us a certain left-right action of D(m, q)×D(n, q) for any matrix
A ∈ Mat(m× n, q). Denote by c(A) the resulting form of A after our algorithm.
Now we prove that c(A) is a canonical form of A. It suffices to show that for
A, B ∈ Mat(m×n, q), there exist D1 ∈ D(m, q) and D2 ∈ D(n, q) such that B =
D1AD2 if and only if c(A) = c(B). The if direction is straightforward, because
our canonical algorithm can guarantee the left-right actions of D(m, q)×D(n, q)
for A and B, and the product of invertible diagonal matrices is still an invertible
diagonal matrix. For the only if direction, since the pattern of non-zero entries
shared by A and B must be the same, those entries to be scaled to 1 are also
located at the same positions in c(A) and c(B). The only difference lies in the
row/column scalars which depend on the values of entries. Suppose c(A) =
D′

1AD′
2 for some D′

1 ∈ D(m, q) and D′
2 ∈ D(n, q), then our algorithm implies

that c(B) = c(D1AD2) = D′
1D−1

1 (D1AD2)D−1
2 D′

2 = D′
1AD′

2 = c(A).

B Base Sigma Protocol for a 2-Out-of-3 Relation

We suspect that our framework can be extended to a partially blind signature, as
in [46]. In fact, In this section, we present an analogous base sigma protocol for
a 2-out-of-3 relation to the isogeny-based one in [46, Section 5.1]. This was the
first step in constructing the isogeny-based partially blind signature in [46]. Here,
we show that it is possible for such a sigma protocol for a 2-out-of-3 relation
in the abstract group action setting and hence it is potential for constructing a
partially blind signature from abstract group actions, which we will leave as a
future work.

A sigma protocol for a 2-out-of-3 relation is a sigma protocol in which the
prover knows at least two out of three secrets corresponding to the public state-
ment. Using the same notation as in Section 4, we fix a group action ∗ : G×S → S

and fix an element E ∈ S. Our public statement is X = (A(c)
k) with A

(c)
k = gc

k ∗E
where k ∈ {0, 1, 2} and c ∈ {−1, 1}. The secret g2 will be known by the signer
and user, so we assume that the prover always knows the secret g2 and proves
knowledge of one of g0 and g1 in our protocol which is depicted in Fig. 10. For
simplicity, we present the protocol for the challenge space {−1, 1} only. Here
we use [a]3 for a modulo 3 in Z3, and denote by [0 : 2] the set {0, 1, 2}. The
correctness, soundness and HVZK can be checked easily, so we omit them.

43

P(X, W = (δ, gδ, g2)) V(X)

For j ∈ {0, 1}
(hδ,j , h2,j)←$ G2

Yδ,j = hδ,j ∗ E

Y2,j = h2,j ∗ E

(c[1−δ+j]3 , r1−δ,j)←$ {−1, 1} ×G

Y1−δ,j = r1−δ,j ∗A
(c[1−δ+j]3)
1−δ

(Yk,j) k∈[0:2]
j∈{0,1}

c c←$ {−1, 1}

c[3−δ]3 = c⊙ c[1−δ]3 ⊙ c[2−δ]3]

For j ∈ {0, 1}

rδ,j = hδ,jg
−c[δ+j]3
δ

r2,j = h2,jg
−c[2+j]3
2

(rk,j) k∈[0:2]
j∈{0,1},(ck)k∈[0:2] Accept if c = c0 ⊙ c1 ⊙ c2 and

∀(k, j) ∈ [0 : 2]× {0, 1},

rk,j ∗A
(c[k+j]3)
k = Yk,j

Fig. 10: Base 2-Out-of-3 Sigma Protocol

44

	Blind Signatures from Cryptographic Group Actions

