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Abstract

The concept of anamorphic encryption, first formally introduced by Persiano et al. in their influential 2022 paper titled
“Anamorphic Encryption: Private Communication Against a Dictator,” enables embedding covert messages within ciphertexts. One
of the key distinctions between a ciphertext embedding a covert message and an original ciphertext, compared to an anamorphic
ciphertext, lies in the indistinguishability between the original ciphertext and the anamorphic ciphertext. This encryption procedure
has been defined based on a public-key cryptosystem. Initially, we present a quantum analogue of the classical anamorphic
encryption definition that is based on public-key encryption. Additionally, we introduce a definition of quantum anamorphic
encryption that relies on symmetric key encryption. Furthermore, we provide a detailed generalized construction of quantum
anamorphic symmetric key encryption within a general framework, which involves taking any two quantum density matrices of
any different dimensions and constructing a single quantum density matrix, which is the quantum anamorphic ciphertext containing
ciphertexts of both of them. Subsequently, we introduce a definition of computational anamorphic secret-sharing and extend the
work of Çakan et al. on computational quantum secret-sharing to computational quantum anamorphic secret-sharing, specifically
addressing scenarios with multiple messages, multiple keys, and a single share function. This proposed secret-sharing scheme
demonstrates impeccable security measures against quantum adversaries.

Index Terms

Anamorphic Encryption, Quantum Anamorphic Public-Key Encryption, Quantum Symmetric Key Encryption, Anamorphic
Secret Sharing, Computational Quantum Anamorphic Secret-Sharing.
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I. INTRODUCTION

W ITH the advent of quantum computing, the field of cryptography is experiencing an unprecedented paradigm shift
[1], [2]. Quantum communication systems have several crucial advantages compared to classical cryptographic and

communicational methods [3]. These advantages stem from the unique properties of quantum mechanics, enabling new
forms of security and computational capabilities that classical systems cannot provide [4]. Quantum communication offers
several advantages over classical communication systems, mainly in terms of its security and efficiency [5]. A key quantum
communication advantage is unconditional security, which is especially suitable for QKD applications that cannot be guaranteed
by any classical communication system [6]. The no-cloning theorem states that under quantum communication, it is not
possible to copy an unknown quantum state exactly [7]. Quantum communication is a very important thread in the framework
for quantum computing systems [8]. With quantum computation, quantum communication allows for exponential gains in
processing large datasets or complex algorithms [9]. Quantum communication is expected to be the backbone of the quantum
networks spreading the quantum states among distributed quantum computers and sensors to perform complex tasks like
distributed quantum computing, quantum-enhanced sensing, and secure global QKD [10].

The word “anamorphic” characterizes a distorted or deformed projection or drawing; however, from a given point of view or
technique, it seems or appears normal. Anamorphic encryption is a cryptographic encryption technique, a notion invented by
Persiano et. al. [11]. According to Persiano et al. [11], its success depends on two often-taken-for-granted assumptions: sender
freedom and receiver privacy. The first assumes senders can choose the message, and the second assumes the receiver’s secret
key is uncompromised. While these assumptions are natural in most cases, they may be at risk in nations where law enforcement
can force users to hand over their decryption keys. In dictatorships, citizens may only communicate regime-approved content,
diminishing the sender’s freedom [12]. Persiano et al. [11] added anamorphic encryption to these challenging cases. In [11], two
primitives are proposed depending on which assumption is unreliable: Sender anamorphic encryption handles circumstances
where the sender’s freedom assumption fails, whereas receiver anamorphic encryption addresses compromised private keys
[12]. In an anamorphic encryption scheme, Alice can send a message to Bob, an original message and a covert message under
dictatorial supervision in such a way that the original ciphertexts and the anamorphic ciphertexts are indistinguishable from the
dictator [11]. One thing that makes anamorphic encryption stand out is that, unlike other steganographic methods, it can hide
communication in a message that looks like any other encrypted message. It keeps the very existence of the hidden anamorphic
message undetectable unless performed with the usage of the correct decryption key or method. The anamorphic message uses
a special anamorphic key or protocol to decrypt it, while the original message can be decrypted through another key distinct
from the anamorphic key. The existing works on classical encryption are mainly based on public-key encryption [11]–[13].

Here, we shall make a distinction between steganography and anamorphic encryption [14]. Steganography is the technique
of masking information within some other unsuspecting data in such a way that even the existence of the hidden data may
not be detectable [15]. A steganographic technique typically hides the original message in a non-encrypted cover message
through images, audio, or text using subtle modifications so that it would not raise suspicions in an observer that something
is being hidden [16]. The challenge is to ensure that the modifications made to the cover object do not raise suspicion [17].
This requires that the alterations are small enough to be undetectable [18]. If the cover object is examined closely, statistical
analysis (e.g., using steganalysis techniques) might reveal the existence of hidden data [19].

The main goal of anamorphic encryption is to construct such an encryption scheme in such a way that the original ciphertext
and the anamorphic ciphertext are indistinguishable from the observation of the adversary. The crucial point here is that the
ciphertext looks like normal encryption, and an observer is unaware that a second covert message exists. The encryption
process ensures that the ciphertext can be decrypted in two ways, depending on the key used. The challenge is to ensure that
the ciphertext is indistinguishable from a normal ciphertext, even to an adversary who suspects that hidden messages might
exist. The observer cannot tell that the ciphertext contains more than one message without the anamorphic key.

In quantum secret-sharing(QSS), a dealer distributes a secret, which is a quantum state, among the set of players. In the paper
[20], Çakan et al. initiated the computationally secure QSS and showed that similar to the classical secret-sharing scheme,
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computational assumptions can significantly help in building QSS schemes. In that paper, they have constructed polynomial-
time computationally secure QSS schemes under standard hardness assumptions for a wide class of access structures, which
also includes many access structures that necessarily require exponential share size. They have also studied the class of access
structures that can be implemented efficiently when the QSS scheme has access to a given number of copies of the secret,
including all functions in P and NP [20]. Here efficient means both the share and the reconstruction function can be computed
in polynomial time [20].

The no-cloning theorem prohibits the exact duplication of unknown quantum states [21], [22]. This implies that fundamental
approaches, such as distributing identical components to multiple players, cannot be applied in quantum contexts, as the
precise replication of shared states is infeasible [23], [24]. Furthermore, no quantum secret-sharing techniques currently exist
to implement the OR function, which underscores the difficulty of directly adapting classical methodologies for quantum
applications [25]. Consequently, essential classical outcomes, including the use of logical functions like OR, face intrinsic
incompatibilities with quantum mechanics due to these constraints [26].

In this paper, we have addressed the following specific questions:
• Question 1. Is it possible to define an analogous quantum anamorphic encryption scheme where both the original and

covert messages are represented as general quantum states or quantum density matrices of any finite dimension, while
accounting for the presence of quantum adversaries?

• Question 2. If such a quantum anamorphic encryption scheme is feasible, how can it be constructed to securely encode
general quantum density matrices?

• Question 3. While the classical anamorphic encryption framework is built upon public-key encryption (PKE), is it possible
to develop a quantum anamorphic symmetric key encryption scheme that is secure against quantum adversaries? What
are the inherent challenges in such a construction?

• Question 4. How can an anamorphic secret-sharing scheme be formally defined? What are the associated challenges, and
what are the potential attacks that need to be considered?

• Question 5. How can anamorphic encryption, and consequently anamorphic secret-sharing, be designed to ensure that
even if an adversary suspects the presence of a covert message, they remain incapable of decrypting it from the ciphertext?

• Quantum advantage: Quantum anamorphic encryption can exploit quantum superposition and entanglement to hide the
existence of the inner message more effectively. For instance, quantum states can encode multiple messages simultaneously,
and any attempt by an adversary to measure or intercept the message would disturb the quantum state, revealing the presence
of an eavesdropper. Also, because of the no-cloning theorem, it is impossible to create an exact copy of an unknown quantum
state. This property ensures that an adversary cannot clone the quantum-encrypted message to analyze it without detection. In
high-stakes environments (e.g., political dissidents, and military operations), quantum anamorphic encryption provides a higher
level of assurance that the hidden message cannot be detected or decrypted by a coercer, even if they have access to quantum
computing resources. Quantum entanglement can be used to distribute shares of a secret in a way that any unauthorized
attempt to access the shares would disrupt the entangled state, alerting the participants to the breach. Quantum systems can
encode information in higher-dimensional Hilbert spaces, allowing for more efficient and secure sharing of secrets compared
to classical systems. Quantum symmetric key anamorphic encryption is practical for scenarios where high-speed encryption
and decryption are required, such as in real-time communication systems. The use of symmetric keys reduces computational
overhead compared to public-key systems, while the quantum components ensure security against quantum attacks.

Applications: There are many real-life applications of anamorphic encryption, for example, in diplomatic or military commu-
nications, for whistleblowing, or in activism. Whether it is an autocratic regime or an environment that suppresses free speech,
a journalist, activist, or whistleblower will need to air out sensitive information without the hawk-eyed views of governmental
censors or repressive regimes. A whistleblower operating within one of many corrupt governmental agencies decides to leak
classified documents to a journalist. In international diplomacy and military operations, sensitive communications must be
kept from adversaries or other foreign intelligence agencies. Anamorphic encryption allows the diplomat or military person to
send secret messages without giving away the fact that they are transmitting sensitive information. In this domain, anamorphic
encryption can give added security by embedding the covert information and making it accessible only through the proper
anamorphic key. Sensitive data is often stored on a third-party cloud server in cloud storage. Even if the data are encrypted, it
may be in a form that the service provider can detect the existence of sensitive data, thus raising concerns about the privacy
of stored information. Anamorphic encryption is one way by which data can be stored hidden without being detected by a
cloud provider. A company might store business reports on a cloud server encrypted with the original key but allow the service
provider to audit or perform checks. Yet those very same files can also have classified financial data or intellectual property
embedded in them with the anamorphic key, whose access is limited to only the authorized personnel of the company.
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A. Related Works

In classical cryptography, particularly in public-key encryption, significant progress has been made in the study of anamorphic
encryption in recent years. Notable contributions include works by Banfi et al., Catalano et al., and Kutylowski [12], [13],
[27]–[29], building upon its original introduction by Persiano et al. in [11]. More recently, Jaeger and Stracovsky [30] proposed
additional conditions to refine the definition of anamorphic encryption. Furthermore, Wang et al. [31] presented a robust and
generic construction, reformulating the concept of sender-anamorphic encryption.

In the quantum setting, there has been growing interest in quantum public-key encryption, with foundational work by
Okamoto et al. [32]. More recently, Barooti et al. [33] introduced a quantum public-key encryption scheme utilizing quantum
public keys, expanding the scope of secure quantum communication.

Secret-sharing plays a fundamental role in classical cryptography. For a comprehensive survey on classical secret-sharing
schemes, we refer the reader to Beimel’s article [34]. Efficiency is a crucial aspect of secret-sharing, ensuring that both the
sharing and reconstruction processes are computationally feasible, i.e., executable in polynomial time. The seminal works of
Shamir [35] and Blakley [36] introduced efficient threshold secret-sharing schemes for t-out-of-n access structures. For all
functions in monotone P, Yao [37] and Vinod et al. [38] developed efficient computational secret-sharing schemes. Additionally,
Komargodski, Naor, and Yogev [39] constructed efficient computational secret-sharing schemes capable of realizing all functions
in mNP.

In quantum cryptography, secret-sharing naturally extends to the sharing of quantum states. However, not all monotone
functions permit quantum secret-sharing. The problem of quantum secret-sharing for specific classes of monotone functions
has been explored in [40]–[42]. Gottesman [43] and Smith [44] provided constructions for quantum secret-sharing schemes
realizing all allowable monotone functions. Imai et al. [45] proposed a general model for quantum secret-sharing, while Smith
[46] constructed quantum secret-sharing schemes for general access structures. Furthermore, in [44], Smith developed quantum
secret-sharing schemes for monotone functions f , ensuring that the total share size corresponds to the size of the smallest
monotone span program (MSP) computing f , thus extending a classical result by Karchmer and Wigderson to the quantum
domain. More recently, Çakan et al. [20] constructed and described an efficient computational model for quantum secret-sharing,
further advancing this field.

B. Our Contribution

In this paper, we introduce and rigorously analyze quantum analogues of anamorphic encryption and secret-sharing in
quantum communications.
Quantum Anamorphic Encryption: We propose a quantum analogous definition of the classical anamorphic encryption
scheme definition in the quantum public-key encryption setting [Subsection IV, Definition 12] as well as in the quantum
symmetric-key encryption setup [Subsection IV, Definition 14]. We have constructed a general quantum anamorphic symmetric-
key encryption scheme [Subsection V-A] and rigorously proved the computational indistinguishability of the original ciphertext
and the anamorphic ciphertext in the Theorem 11. Our construction ensures that the anamorphic ciphertext M (1)

f , which contains
both the original ciphertext and a covert ciphertext, remains indistinguishable from the original ciphertext M (0)

f to an adversary
or to the dictator in our model. We formally established that both M (1)

f and M (0)
f are valid quantum density matrices, ensuring

the integrity of our construction.

Indistinguishability and Fidelity Analysis: We demonstrate in Theorem 9 the crucial role of the multiplicative factor η in
maintaining the positive semi-definiteness of the quantum density matrix M

(1)
f , showing that it is 1

η -indistinguishable from

M
(0)
f . We derived a lower bound on η in Corollary 9.1, further deriving the sufficient condition to ensure that the anamorphic

ciphertext M (1)
f is a valid quantum density matrix. We analyzed the expected states and their computational indistinguishability

(Theorem 10). Utilizing fidelity as a measure of closeness between quantum states, we establish in Theorem 12 that the fidelity
between the original quantum ciphertext and the anamorphic quantum ciphertext is at least

(
1 − 1

η

)
, indicating a high level

of similarity. Also, we have analyzed the von Neumann entropy, mutual information and relative entropy for our construction
and for some particular cases in [Section VIII].

Quantum Anamorphic Secret-Sharing: We propose a new definition of anamorphic secret-sharing (Definition 29) and
construct a quantum anamorphic secret-sharing scheme (Theorem 14) and rigorously prove the correctness of our scheme
(Theorem 15) and establish perfect privacy (Theorem 16). Our scheme generalizes the work of Çakan et al. [20] to support
multiple key distributions.

Security Analysis: We analyze two potential attacks in Section VIII-B and propose countermeasures to prevent adversarial
reconstruction of the covert secret. We extend Ogata et al.’s definition of cheating probability [47] to partial cheating probability
(Definition 22) within the anamorphic secret-sharing context. We demonstrate that the adversary or dictator can be effectively
prevented with high partial cheating probability (Equation 142).
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C. Paper Organization

The paper is distributed among the following sections: In section II, we outline the preliminary concepts and notations
required for this work. In the section III we have described the classical anamorphic encryption. We proposed a definition of
quantum anamorphic public-key encryption and quantum anamorphic symmetric key encryption in IV. We present our main
construction of quantum anamorphic encryption in the symmetric-key encryption setup and computational analysis in section
V. The study on quantum anamorphic secret-sharing schemes is done in section VI and the compiler is presented in section VII.
In section VIII, we analyze the qubit requirements, analyzed the von Neumann entropy, mutual information, relative entropy
for our construction and also we have discussed some possible attacks and how to prevent it. The paper is concluded in section
IX.

II. PRELIMINARIES

A. Notations

In this paper, we have denoted non-empty sets by uppercase letters. We denote [n] = {1, . . . , n}. Let v be a vector and S
be a non-empty set. We denote the symmetric group of n elements by Sym(n). We denote vP to indicate the vector (vi)i∈P .
Let {Si}i∈[n] be a family of sets, and for P ⊆ [n], we denote SP :=

∏
i∈P⊆[n] Si. For convenience, we have denoted the set

of n players by [n] and {P1, . . . , Pn} interchangeably at appropriate places. We denote R←R to denote that R is uniformly
distributed on R. We used ρ to denote a density matrix acting on H. It will be clear from the context whether we mean a vector
|ψ⟩ in a Hilbert space H representing a pure state or a density matrix ρ acting on H, representing a mixed state. The trace norm
∥·∥1 for any operator X is defined by ∥X∥1 = Tr

(√
X†X

)
, with X† denoting the Hermitian conjugate (or adjoint) of X . The

operator norm of X , denoted ∥X∥, is given by ∥X∥ = sup|ψ⟩∈H,∥ψ∥=1⟨ψ|X|ψ⟩, where the supremum is taken over all unit
vectors |ψ⟩ ∈ H. If x is a vector in Rn, its Euclidean norm is denoted ∥x∥2 and is defined as ∥x∥2 =

√
x21 + x22 + · · ·+ x2n.

We denote log x as the base-2 logarithm of x, unless explicitly specified otherwise. We have used the notation P to denote
different quantities in different scenarios. P may denote the set of players, the Pauli operators or the distributions. We have
taken care to mention the context where the notation is used.

B. Quantum information theory

In this section, we review a few basic definitions and a few theoretical concepts of quantum information that will be used
in our paper. We refer the following references [48]–[50] to the reader.

LetH and K be finite-dimensional complex Hilbert spaces associated with the input and output quantum systems, respectively.
The space of linear operators on H is denoted L(H). The state of the quantum system is described by a density operator
ρ ∈ L(H), which satisfies:

1) Hermitian: ρ† = ρ
2) Positive semi-definiteness: ρ ≥ 0
3) Unit trace: Tr(ρ) = 1.

A quantum channel maps quantum states (represented as density operators on a Hilbert space) to other quantum states,
accounting for potential noise and decoherence effects. It is a completely positive, trace-preserving (CPTP) linear map on the
space of density operators.

Definition 1. (Quantum channel [48]–[50]) A quantum channel is a linear map Φ : L(H) −→ L(K) satisfying the following
properties:

1) Complete Positivity: For any n ∈ N, the map Φ⊗ Idn : L(H⊗Cn) −→ L(K⊗Cn) is positive, where Idn is the identity
map on Cn. That is, for all X ∈ L(H⊗ Cn) with X ≥ 0, we have (Φ⊗ Idn)(X) ≥ 0.

2) Trace Preservation: For all ρ ∈ L(H), Tr(Φ(ρ)) = Tr(ρ).
Therefore, Φ maps density operators on H to density operators on K, preserving the physical validity of quantum states.

We will consider finite-dimensional quantum systems with m degrees of freedom, represented by the algebra of m × m
matrices over C, referred to as Mm. The state of a quantum system X is characterized by its density matrix ρX ∈Mm.

Definition 2. (von Neumann entropy [48], [49], [51], [52]) The von Neumann entropy of a quantum system X with a density
matrix ρX ∈Mm is defined as

S(X) = −Tr(ρX log ρX) = −
∑

1≤j≤m

λj log λj ,

where λ1, . . . , λm are the eigenvalues of ρX . One way to look at the quantum entropy is as the average amount of qubits
needed to describe a system X [51].
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The maximum value for S(A) is given by:

S(X) ≤ log dim(HX) = logm,

where HX is the Hilbert space associated with the quantum system X .

Let XY be a bipartite quantum system. Let ρXY be the density matrix associated to XY resides on the Hilbert space
HXY = HX⊗HY . The subsystems X and Y will be represented by the partial traces ρX = TrY (ρXY ) and ρY = TrX(ρXY ).
The von Neumann entropy of a quantum system X conditional on another quantum system Y is defined as (see [45], [48]):

S(X|Y ) = S(XY )− S(Y ),

where S(XY ) = −Tr(ρXY log ρXY ) is the joint entropy of XY and S(Y ) = −Tr(ρY log ρY ).

The joint entropy of two quantum systems satisfies two important properties:
• Subadditivity:

S(XY ) ≤ S(X) + S(Y ),

• Araki-Lieb inequality:
| S(X)− S(Y ) |≤ S(XY ).

The mutual information between two quantum systems X and Y is defined as:

I(X : Y ) = S(X) + S(Y )− S(XY ).

Despite many analogies between quantum and classical entropies, they are fundamentally distinct. The conditional von
Neumann entropy can be negative, but the conditional classical Shannon entropy is always non-negative.

Definition 3. (Statistical distance/Total variation distance [53]–[56]). The total variation distance between two random
variables X and Y defined on the same sample space R is defined as

∆(X,Y ) = max
G⊆R

∣∣∣Pr[X ∈ G]− Pr[Y ∈ G]
∣∣∣ = 1

2

(∑
a∈R
|Pr[X = a]− Pr[Y = a]|

)
.

The analogue of the total variation distance in the quantum setting is the trace distance.

Definition 4. (Adversarial Pseudometric [20]) For a family F of quantum circuits that produce a single-bit classical output,
the distinguishing advantage of F between two quantum density matrices ρ and σ of appropriate dimensions is defined as:

AdvF (ρ, σ) = max
C∈F

∣∣∣Pr[C(ρ) = 1]− Pr[C(σ) = 1]
∣∣∣.

The adversarial pseudometric quantifies the maximum probability difference with which any circuit in F can distinguish
between ρ and σ.

Definition 5. (Trace distance [48], [49], [57]) The trace distance between two density matrices ρ and σ with the same
dimensions is defined as

D(ρ, σ) =
1

2
∥ρ− σ∥1.

Definition 6. (Fidelity [48], [49], [58], [59]) Let ρ and σ be two density matrices (quantum states) acting on the same Hilbert
space H. Fidelity F (ρ, σ) is defined as:

F (ρ, σ) = Tr

(√√
ρσ
√
ρ

)
.

Lemma 1. ( [48]) For any family of quantum circuits F and two density matrices ρ and σ of the same dimension, the
adversarial advantage is bounded by the trace distance

AdvF (ρ, σ) ≤ D(ρ, σ).

Proof. Consider any quantum circuit C ∈ F that performs a measurement on a quantum state and outputs a bit b ∈ {0, 1}.
Any such measurement can be described by a positive operator-valued measure (POVM).

We denote the measurement operators corresponding to output 1 and 0 as E and (I − E), respectively, where 0 ≤ E ≤ I
and I is the identity operator on H. The probability that C outputs 1 when measuring ρ is Pr [C(ρ) = 1] = Tr(Eρ).
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Similarly, the probability that C outputs 1 when measuring σ is Pr [C(σ) = 1] = Tr(Eσ). Then |Pr [C(ρ) = 1]− Pr [C(σ) = 1]| =
|Tr(E(ρ− σ))| . To find the maximum advantage over all circuits in F , we consider the maximal value over all valid
measurement operators E. Since 0 ≤ E ≤ I , we have

AdvF (ρ, σ) ≤ max
0≤E≤I

|Tr(E(ρ− σ))| .

However, in quantum hypothesis testing, it is known that the maximum of |Tr(E(ρ− σ))| over all 0 ≤ E ≤ I is equal to the
trace distance between ρ and σ. Specifically, from the definition of the trace norm:

∥ρ− σ∥1 = Tr [|ρ− σ|] = 2 max
0≤E≤I

|Tr(E(ρ− σ))| .

Therefore,
max

0≤E≤I
|Tr(E(ρ− σ))| = 1

2
∥ρ− σ∥1 = D(ρ, σ).

and consequently,
AdvF (ρ, σ) ≤ D(ρ, σ).

Lemma 2. (The Fuchs–van de Graaf inequalities [48]) The Fuchs–van de Graaf inequalities are given by:

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2.

Let X ∈ L(H) be a positive semidefinite operator on a finite-dimensional Hilbert space H. The support of X , denoted
supp(X), is the subspace spanned by all eigenvectors of X with nonzero eigenvalues. Equivalently, if X has spectral
decomposition,

X =
∑
i

λi |ui⟩ ⟨ui| (λi ≥ 0),

then supp(X) := span{|ui⟩ : λi > 0}.

When we write (X)−1 for X ≥ 0, we always mean the inverse restricted to supp(X); that is, we invert only the strictly
positive eigenvalues, and vectors in the kernel of X are understood to be outside the domain of (X)−1. Such an inverse is
sometimes called the generalized inverse on the support.

For a linear operator Y ∈ L(H) on a finite-dimensional complex Hilbert space H, the spectral norm ∥Y ∥ is defined as

∥Y ∥ = sup
|ψ⟩̸=0,|ψ⟩∈Cn

∥Y |ψ⟩ ∥2
∥ |ψ⟩ ∥2

,

where ∥ |ψ⟩ ∥2 is the usual Euclidean norm of the vector |ψ⟩. The spectral norm is equivalent to the largest singular value of A.
Formally, if the singular values of A, denoted σ1, σ2, . . . , σn, are the square roots of the eigenvalues of the positive-semidefinite
matrix A∗A (where A∗ is the conjugate transpose of A), then:

∥A∥ = σmax =
√
λmax(A∗A),

where λmax(A
∗A) is the largest eigenvalue of A∗A.

Definition 7. (Quantum Relative Entropy [48]) Given two quantum states ρ and σ, where ρ and σ are density matrices, the
quantum relative entropy is defined as

S(ρ||σ) =

{
Tr
(
ρ(log ρ− log σ)

)
, if supp(ρ) ⊆ supp(σ),

+∞, otherwise.

Now we will go through some definitions and results, which will be useful to prove the Theorem 9.

Definition 8. (Moore-Penrose Inverse [60], [61]) Let A be a (real or complex) m× n matrix. The Moore-Penrose inverse of
A, denoted A+, is the unique n×m matrix satisfying the following four equations called the Penrose equations:

i) AA+A = A,
ii) A+AA+ = A+,
iii) (AA+)† = AA+,
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iv) (A+A)† = A+A,

where X† denotes the conjugate transpose of X .

It is well known that for a strictly positive-definite, square, Hermitian matrix M , its Moore-Penrose inverse M+ is precisely
M−1.

Theorem 3. ( [60]–[62]) Let M be an n × n strictly positive-definite matrix over C or R. Then its Moore-Penrose inverse
M+ equals the usual inverse M−1.

Proof. For the proof, see [60].

Schur complement [60]. Consider a partitioned block matrix M ∈ Cn×n, structured as:

M =

(
B C
C† D

)
,

where B ∈ Ck×k, C ∈ Ck×(n−k), D ∈ C(n−k)×(n−k).
If D is invertible, the Schur complement of D in M is defined as:

SD = B − CD−1C†.

If B is invertible, the Schur complement of B in M is defined as:

SB = D − C†B−1C.

Theorem 4. (Schur complement condition [60]) A Hermitian matrix M ∈ Cn×n is positive semi-definite (M ≥ 0) if and only
if

1) The leading principal submatrix B is positive semi-definite: B ≥ 0.
2) The Schur complement of B in M , defined as D − C†B+C, is positive semi-definite:

D − C†B+C ≥ 0,

where B+ is the Moore-Penrose pseudo-inverse of B.

Corollary 4.1. (Schur complement condition [60]) If B is invertible, the condition simplifies:
1) Positive definiteness of B: B > 0.
2) Positive semi-definiteness of the Schur complement: D − C†B−1C ≥ 0.

Definition 9. (Twirling map [63], [64]) Let H be a finite-dimensional Hilbert space, and let ρ be a density matrix on H, i.e.,

ρ ∈ D(H) = {ρ ∈ L(H) | ρ† = ρ, ρ ≥ 0,Tr(ρ) = 1}. (1)

Given a unitary representation U : G −→ U(H) of a compact group G, the twirling map is a quantum channel defined by:

TG(ρ) =
∫
G

U(g)ρU†(g) dµ(g), (2)

where dµ(g) is the Haar measure on G, U(g) is the unitary representation of g ∈ G, and the integration is taken over all
elements of G. The twirling operation averages the state ρ over the unitary transformations of the group G, producing a state
that is invariant under the group G [65], [66].

When G is the symmetric group Sym(n) and the unitary operators are the permutation matrices, then we can define the
twirling map over Sym(n). We use this definition to compute the expectations later.

Definition 10. ( [48]) Let H = (Cd)⊗n be the Hilbert space of n quantum systems, each of dimension d. The symmetric group
Sym(n) acts on H via permutation operators σl, which permute the tensor factors according to l ∈ Sym(n).

The twirling operation over l ∈ Sym(n) is defined as:

TSym(n)(Φ) =
1

|Sym(n)|
∑

l∈Sym(n)

σlΦσ
†
l , (3)

where σl is the unitary permutation operator corresponding to l ∈ Sym(n). This operation symmetrizes the density matrix Φ
with respect to all possible permutations of the subsystems.

The Sym(n)-twirling map is a completely positive and trace-preserving (CPTP) map that has the following properties:
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• Linear: For a, b ∈ C, TSym(n)(aρ1 + bρ2) = aTSym(n)(ρ1) + bTSym(n)(ρ2),
• Trace-Preserving: Tr(TSym(n)(ρ)) = Tr(ρ) = 1.

Quantum one-time pad encryption(QOTP) [20]. The quantum one-time pad encryption (QOTP) can perfectly hide any
quantum message using a random classical key.
The quantum one-time pad encryption scheme is defined by a pair of quantum encryption and decryption circuits (QOTPEnc,QOTPDec)
with

QOTPEnc : (C2)⊗n × {0, 1}2n −→ (C2)⊗n and QOTPDec : (C2)⊗n × {0, 1}2n −→ (C2)⊗n

defined as
QOTPEnc(ρ, k) = (Xk1Zk2 ⊗ · · · ⊗Xk2i−1Zk2i ⊗ · · · ⊗Xk2n−1Zk2n)(ρ),

QOTPDec(ρ, k) = (Zk1Xk2 ⊗ · · · ⊗ Zk2i−1Xk2i ⊗ · · · ⊗ Zk2n−1Xk2n)(ρ),

for any message ρ ∈ (C2)⊗n and key k ∈ {0, 1}⊗2n, where Xi, Zi represent the quantum operation applying the standard
Pauli gates X,Z respectively to the i-th qubit.

Lemma 5. ( [20], [67]) The quantum one-time pad encryption scheme is correct and perfectly secure for a randomly chosen
key. That is,

QOTPDec(QOTPEnc(ρ, k), k) = ρ

for any key k ∈ {0, 1}2n, and ∑
k∈{0,1}2n

1

22n
QOTPEnc(ρ, k) =

∑
k∈{0,1}2n

1

22n
QOTPEnc(σ, k)

for any two quantum states ρ, σ ∈ (C2)⊗n.

C. Quantum adversarial model

Unless otherwise specified, we consider a quantum computational security setting where the adversaries are quantum
polynomial-time (QPT) algorithms. A QPT adversary or a circuit C means a non-uniform family of circuits {Cλ}λ∈Z+

with 1-bit classical output, where each circuit has size bounded by poly(λ) and is allowed to use a fixed basis set of gates, for
example, {H,CNOT,S,T}, etc. Each ancilla qubit is initialized to |0⟩. This model has been studied in quantum secret-sharing
and has been studied in [20] for computational quantum secret-sharing.

III. CLASSICAL ANAMORPHIC ENCRYPTION

First, we review the original description and definition of anamorphic encryption. Anamorphic encryption is a form of
public-key encryption (PKE) that enables a hidden communication mode alongside a regular encryption mode. Specifically,
this construction allows a receiver to decrypt a ciphertext to reveal a standard message or, alternatively, a covert message,
depending on the use of specific secret keys. Such a scheme can be deployed securely even under coercive environments where
a user may be forced to reveal their private key. We refer [11], [12] to the reader for a detailed description.

An anamorphic encryption scheme is defined as a public key encryption scheme E = (Gen,Encrypt,Decrypt), with additional
algorithms A = (Gena,Encrypta,Decrypta) that enable the encryption and decryption of covert messages.

1) Standard Encryption Scheme: The PKE scheme E = (Gen,Encrypt,Decrypt) consists of the following algorithms:
• Gen(1λ): A key generation algorithm that, given a security parameter λ, outputs a public-private key pair (pk, sk).
• Encrypt(pk,m): An encryption algorithm that takes a public key pk and a plaintext message m, and outputs a

ciphertext c.
• Decrypt(sk, c): A decryption algorithm that takes a private key sk and a ciphertext c, and outputs the original message
m or a special symbol ⊥ if decryption fails.

2) Anamorphic Triplet: The anamorphic triplet A = (Gena,Encrypta,Decrypta) introduces an additional encryption and
decryption layer that enables hidden communication:
• Gena(1

λ): Given a security parameter λ, outputs an anamorphic public key apk, an anamorphic secret key ask, a
double key dk, and an optional trapdoor key tk.

• Encrypta(apk, dk,m, m̂): Given the anamorphic public key apk, double key dk, a visible message m, and a covert
message m̂, it produces an anamorphic ciphertext act.

• Decrypta(dk, tk, ask, act): A decryption algorithm that takes the keys dk, tk, ask, and an anamorphic ciphertext act,
outputting the covert message m̂ or a special symbol ⊥ if decryption fails.
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To define the security of anamorphic encryption schemes, two games RealGE(λ,D) and AnamorphicGA(λ,D) are defined
to represent interactions with the real and anamorphic encryption modes, respectively. The goal is to evaluate whether an
adversary D can distinguish between these two games.

In the real game, the encryption scheme operates as a standard PKE scheme without covert capabilities:
1) Key Generation: A key pair (pk, sk)← Gen(1λ) is generated using the standard key generation function.
2) Oracle Access: The adversary D is provided access to an oracle OE defined by

OE(pk,m, m̂) = Encrypt(pk,m),

where Encrypt produces a ciphertext containing only m, ignoring any covert message m̂.
The adversary D uses OE to query pairs of messages (m, m̂) and receives corresponding ciphertexts generated in a standard
encryption mode.

In the anamorphic game, the encryption scheme operates in a mode that embeds a covert channel:
1) Anamorphic Key Generation: Anamorphic key generation produces keys (apk, ask), tk, and dk such that (apk, ask), tk, dk←

Gena(1
λ).

2) Oracle Access: The adversary D is provided access to an oracle OA defined by

OA(apk, dk,m, m̂) = Encrypta(apk, dk,m, m̂),

where Encrypta produces an anamorphic ciphertext that encodes both the visible message m and the covert message m̂.

The advantage of an adversary D in distinguishing between the two games is given by:

AdvAME
D,E,A(λ) = |Pr [RealGE(λ,D) = 1]− Pr [AnamorphicGA(λ,D) = 1]| ,

where Pr[RealGE(λ,D) = 1] is the probability that D identifies the game as the real game, and Pr[AnamorphicGA(λ,D) = 1]
is the probability that D identifies the game as the anamorphic game.

Definition 11. (Anamorphic Encryption [11], [12], [27]).
A PKE scheme E = (Gen,Encrypt,Decrypt) is called an anamorphic encryption scheme if:
1) It satisfies IND-CPA security (indistinguishability under chosen-plaintext attack).
2) There exists an anamorphic triplet A = (Gena,Encrypta,Decrypta) such that for any probabilistic polynomial-time

(PPT) adversary D, the distinguishing advantage AdvAME
D,E,A(λ) is negligible in λ.

3) The existence of a covert message m′ remains deniable as the ciphertext c′ is indistinguishable from a regular ciphertext.

In the following section, we introduce an analogue of classical anamorphic encryption within the quantum encryption
framework, encompassing both public-key and symmetric-key encryption schemes.

IV. QAUNTUM ANAMORPHIC ENCRYPTION

In this section, we propose an analogous definition of classical anamorphic encryption in the quantum encryption model,
where the secrets are quantum density matrices from a finite-dimensional Hilbert space with a quantum polynomial time (QPT)
adversary and quantum adversarial pseudometric. In a quantum environment, an anamorphic encryption scheme would need
to incorporate quantum-safe encryption methods.

We define a quantum anamorphic encryption scheme as a quantum public key encryption scheme Q = (QGen,QEnc,QDec)
with additional algorithms Qa = (QGena,QEnca,QDeca) to support hidden communication in the presence of quantum
adversaries.

A quantum anamorphic encryption scheme is a quantum public-key encryption (QPKE) scheme with an additional anamorphic
triplet of quantum algorithms, enabling hidden messages within ciphertexts. We denote this quantum anamorphic encryption
scheme by the tuple Q = (QGen,QEnc,QDec) and Qa = (QGena,QEnca,QDeca), where:

1) Quantum Public Key Encryption Scheme: The QPKE scheme Q = (QGen,QEnc,QDec) consists of:
• QGen(1λ): A key generation algorithm that takes a security parameter λ and outputs a public-private key pair

(qpk, qsk).
• QEnc(qpk, ρ): A quantum encryption algorithm that takes a public key qpk and a quantum state ρ representing a

message, producing a ciphertext in a quantum state qc.
• QDec(qsk, qc): A quantum decryption algorithm that takes a private key qsk and a ciphertext qc, outputting the

original message ρ or a special failure symbol ⊥ if decryption fails.
2) Quantum Anamorphic Triplet: The anamorphic triplet Qa = (QGena,QEnca,QDeca) introduces additional quantum

algorithms to enable covert communication:
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• QGena(1
λ): An anamorphic key generation algorithm that, given a security parameter λ, outputs an anamorphic

public key qapk, an anamorphic secret key qask, a double key qdk, and a potentially empty trapdoor key qtk.
• QEnca(qapk, qdk, ρ, ρ̂): An anamorphic encryption algorithm that, given qapk, qdk, a visible message state ρ, and

a covert message state ρ̂, outputs an anamorphic ciphertext qact.
• QDeca(qdk, qtk, qask, qact): An anamorphic decryption algorithm that takes the double key qdk, trapdoor key qtk,

anamorphic secret key qask, and anamorphic ciphertext qact, and outputs the covert message ρ̂ or a failure symbol
⊥.

To evaluate the security of quantum anamorphic encryption schemes, we introduce two games that distinguish the quantum
real and anamorphic encryption modes. These games, RealGQ(λ,D) and AnamorphicGQa

(λ,D), consider adversaries in the
quantum polynomial-time (QPT) model.

In the real game, the encryption scheme operates in a traditional QPKE setting with no covert channel.
1) Key Generation: The key pair (qpk, qsk)← QGen(1λ) is generated using the standard quantum key generation function.
2) Oracle Access: The adversary D is provided access to a quantum oracle OE defined by:

OE(qpk, ρ, ρ̂) = QEnc(qpk, ρ),

where QEnc produces a ciphertext containing only the visible message ρ, ignoring any covert message ρ̂.
The adversary D interacts with OE, querying pairs of quantum states (ρ, ρ̂) and receiving quantum ciphertexts generated in
the standard encryption mode.

In the anamorphic game, the encryption scheme operates in an anamorphic mode that enables covert communication.
1) Anamorphic Key Generation: The anamorphic key generation algorithm produces (qapk, qask), qtk, and qdk, such

that (qapk, qask), qtk, qdk← QGena(1
λ).

2) Oracle Access: The adversary D is provided access to a quantum oracle OA defined by:

OA(qapk, qdk, ρ, ρ̂) = QEnca(qapk, qdk, ρ, ρ̂),

where QEnca produces an anamorphic ciphertext encoding both the visible message ρ and the covert message ρ̂.
The adversary D uses OA to query quantum states (ρ, ρ̂), receiving anamorphic ciphertexts that contain both visible and covert
components.

To quantify the advantage of a quantum adversary in computationally distinguishing between the two games, we define the
distinguishing advantage with respect to a family of quantum circuits F :

AdvAME
F (ρ, σ) = max

C∈F
|Pr [C(ρ) = 1]− Pr [C(σ) = 1]| ,

where C is a circuit from F that outputs 1 if it identifies the quantum state as belonging to the anamorphic game [20].

Next, we define the quantum analogue of anamorphic encryption.

Definition 12. A QPKE scheme Q = (QGen,QEnc,QDec) is defined as a quantum anamorphic encryption scheme if:
1) It satisfies quantum IND-CPA security (indistinguishability under chosen-plaintext attack with quantum adversaries).
2) There exists a quantum anamorphic triplet Qa = (QGena,QEnca,QDeca) such that, for any quantum polynomial-time

(QPT) adversary D, the computationally distinguishing advantage

AdvAME
D (λ) =

∣∣Pr [RealGQ(λ,D) = 1]− Pr
[
AnamorphicGQa

(λ,D) = 1
]∣∣ < negl(λ).

The above definition of quantum anamorphic encryption, which we have discussed, is based on public key encryption. Now
we propose an analogous definition of quantum anamorphic encryption based on symmetric key encryption.

A general quantum symmetric key encryption is defined as follows:

Definition 13. A quantum symmetric-key encryption scheme is a triplet of quantum algorithms(QKGen,QEnc,QDec), where:
• QKGen(1λ): Takes as input a security parameter 1λ and outputs a secret key k. The key k can be classical or quantum.
• QEnc(k, ρ): Takes the secret key k and a quantum message state ρ in some Hilbert space H, and outputs a ciphertext qc

a quantum state in some, possibly different, Hilbert space Hc.
• QDec(k, qc): Takes the secret key k and a ciphertext state qc, and attempts to recover the original message ρ. If the

ciphertext is invalid, it outputs ⊥.

Now, we propose a definition of quantum anamorphic encryption. A quantum anamorphic encryption scheme adds a second
anamorphic mode of operation, consisting of another triplet of quantum algorithms (QKGena,QEnca,QDeca) which allows
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embedding a covert message ρ̂ inside the same ciphertext structure, but in such a way that an adversary cannot distinguish
between normal encryption and anamorphic encryption with high probability, where:
• Anamorphic Key Generation (QKGena): The algorithm QKGena takes as input the security parameter 1λ and returns
ka = (k, dk, tk), where ka is the anamorphic secret key when the system is operating in anamorphic mode. The key k
is the normal key used to encrypt the original message, and the dk double key and tk trapdoor key are additional secret
keys that can be classical keys or quantum states that may be necessary to embed and extract covert messages and which
will never be given to the dictator. Either might be an empty string if not needed.

• Anamorphic Encryption (QEnca): The algorithm QEnca takes as input the key ka and two quantum messages ρ, the
original and ρ̂, the covert quantum message, and returns a quantum anamorphic ciphertext qact, that is, QEnca

(
ka, ρ, ρ̂

)
=

qact, which must be indistinguishable from a original ciphertext produced by (k, ρ) 7→ QEnc(k, ρ).
• Anamorphic Decryption (QDeca): The algorithm takes as input the anamorphic key ka and anamorphic ciphertext qact

and outputs the covert message ρ̂, that is, QDeca
(
ka, qact

)
= ρ̂. If recovery fails, the algorithm outputs ⊥.

Security definition via two indistinguishability games: We define two worlds or games as previous, a real (no covert channel)
world and an anamorphic (with covert channel) world. An adversary attempts to distinguish these two scenarios.

The Real Game (RealGQ(λ,D)):
1) A secret key k ← QKGen(1λ) is generated, which is the normal encryption key.
2) The adversary D is given oracle access to a real encryption map

OE(k, ρ, ρ̂) = QEnc
(
k, ρ
)
,

which ignores the covert message ρ̂, that is, the oracle only encrypts the original state ρ in the normal mode.
3) D can make polynomially many queries and eventually outputs a guess bit b ∈ {0, 1}, meaning it guesses

whether it is in the real or anamorphic game.
The Anamorphic Game (AnamorphicGQa

(λ,D)):
1) The anamorphic keys are generated: ka ← QKGena(1

λ).
2) The adversary D is given oracle access to

OA

(
ka, ρ, ρ̂

)
= QEnca

(
ka, ρ, ρ̂

)
,

which produces an anamorphic ciphertext that contains both ρ and ρ̂.
3) As before, D makes a number of queries and finally outputs a guess bit b ∈ {0, 1}.

Adversarial Advantage. We define the advantage of adversary D distinguishing the above two games by

AdvAME
D,Q,Qa

(λ) =
∣∣∣Pr[RealGQ(λ,D) = 1

]
− Pr

[
AnamorphicGQa

(λ,D) = 1
]∣∣∣.

Definition 14. (Quantum Anamorphic Symmetric-Key Encryption) A triple (QKGen,QEnc,QDec) is called a quantum symmetric-
key encryption scheme, and a triple (QKGena,QEnca,QDeca) is called its anamorphic extension, if:

1) Correctness. For all original and covert quantum messages, ρ and ρ̂, respectively,

QDec
(
k, QEnc(k, ρ)

)
= ρ

and similarly,
QDeca

(
ka, QEnca(ka, ρ, ρ̂)

)
= ρ̂.

2) Security Against Chosen-Plaintext (Quantum) Attacks. The scheme (QKGen,QEnc,QDec) is quantum-IND-CPA secure
(in the symmetric-key sense), meaning that no QPT adversary D can distinguish encryptions of two chosen quantum
states (or classical messages) with more than negligible advantage in λ.

3) Anamorphic Indistinguishability. There is an anamorphic extension (QKGena,QEnca,QDeca) such that for every QPT
adversary D, the distinguishing advantage

AdvAME
D,Q,Qa

(λ) =
∣∣Pr[RealGQ(λ,D) = 1

]
− Pr

[
AnamorphicGQa

(λ,D) = 1
]∣∣ < negl(λ).

In other words, the ciphertexts generated by QEnc versus those generated by QEnca (even on pairs of inputs (ρ, ρ̂)) are
computationally indistinguishable to any quantum adversary.



COMPUTATIONAL QUANTUM ANAMORPHIC ENCRYPTION AND ANAMORPHIC SECRET SHARING 13

V. TECHNICAL DETAILS

In this section, we have proposed a construction of quantum anamorphic symmetric key encryption. Let Mo ∈ (C2)⊗d1 be the
mixed density matrix representing the original message, and let Mc ∈ (C2)⊗d2 be the mixed density matrix representing the
covert message. Hence both the matrices Mo and Mc are Hermitian, positive semi-definite with Tr(Mo) = 1 and Tr(Mc) = 1.
But as per our construction, we restrict the density matrix Mo to be strictly positive definite. The anamorphic message contains
both the original and covert messages, which Alice needs to send to Bob. On the dictator’s demand, Bob will hand over only
the anamorphic ciphertext and the original keys to the dictator so that the dictator gets only the original message, and also he
will be unable to distinguish between the original and the anamorphic ciphertexts.

A. Main Construction

We independently encrypt Mo and Mc using the QOTP scheme, with separate keys k and k′, respectively.
1) Encryption of Mo: Let M ′o = QOTPEnc(Mo, k), where QOTPEnc denotes the QOTP encryption operator with key

k ∈ {0, 1}2d1 . This operation is defined as follows:

M ′o =
(
Xk1Zk2 ⊗Xk3Zk4 ⊗ · · · ⊗Xk2d1−1Zk2d1

)
Mo

(
Xk1Zk2 ⊗Xk3Zk4 ⊗ · · · ⊗Xk2d1−1Zk2d1

)†
. (4)

2) Encryption of Mc: Let M ′c = QOTPEnc(Mc, k
′), where k′ ∈ {0, 1}2d2 is the QOTP key used for encrypting Mc. This

operation is defined as:

M ′c =
(
Xk′1Zk

′
2 ⊗Xk′3Zk

′
4 ⊗ · · · ⊗Xk′2d2−1Zk

′
2d2

)
Mc

(
Xk′1Zk

′
2 ⊗Xk′3Zk

′
4 ⊗ · · · ⊗Xk′2d2−1Zk

′
2d2

)†
. (5)

We define the Hilbert spaces associated with M ′o and M ′c by Ho = (C2)⊗d1 which is of dimension 2d1 denotes the space for
the original message and Hc = (C2)⊗d2 which is of the dimension 2d2 , denotes the covert message space, respectively.

Without loss of generality, let d2 ≤ d1 and if d2 < d1, then pad the density matrix M ′c with (2d1−2d2) zero rows and columns
to make it a (2d1 × 2d1) matrix, and we denote it by M ′′c .

We construct M ′′c by introducing (d1 − d2) ancillary qubits in a fixed state |0⟩⊗(d1−d2).

Define the extended Hilbert space
Hc ⊗ (C2)⊗(d1−d2) ∼=

(
C2
)⊗d1

= Hec.

Consider the isometric embedding
V : Hc −→ Hec

defined by
V |ψ⟩ = |ψ⟩ ⊗ |0⟩⊗(d1−d2), ∀ |ψ⟩ ∈ Hc.

Here, |0⟩ denotes the computational-basis state of a single qubit.
For a density matrix M ′c ∈ L(Hc), define

M ′′c = V M ′c V
† ∈ L(Hec).

We typically describe transformations on density operators by completely positive, trace-preserving (CPTP) maps. The above
padding can be described as a linear map

Epad : L
(
Hc
)
−→ L

(
Hec
)
.

We define

Epad(M ′c) =M ′′c =

M
′
c, if d1 = d2,

V M ′c V
†, if d2 < d1,

(6)

where V is the isometric embedding from above. Since V †V = IHc
and V V † is the projector onto Hc⊗ |0⟩⊗(d1−d2), Epad

is completely positive and trace-preserving. Since V is an isometry,

• Positivity is preserved: For any ϕ ∈ Hec ,
⟨ϕ|VM ′cV † |ϕ⟩ ≥ 0.

• Trace is preserved:
Tr
(
VM ′cV

†) = Tr(M ′c), (since V †V = IHc
).

Hence, it is a valid quantum channel.
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Given the security parameter negl(λ) > 0, choose η ∈ Z+ such that
1

η
< negl(λ) and

1

η2
∥∥(M ′′c )†(M ′o)−1M ′′c ∥∥ ≤ 1

4
λmin(M

′
o), (7)

where λmin(M
′
o) is the minimum eigenvalue of M ′o on its support and ∥ · ∥ is the operator norm. As η is a non-zero real

number, it is clear that the matrix M ′o should be not only positive semi-definite but also strictly positive definite, and hence
the matrix Mo should be strictly positive definite for our construction. In our construction, we construct a state Ma in a larger
Hilbert space (C2)⊗(d1+1).

We define

Ma := |0⟩ ⟨0| ⊗ 1
2 M

′
o + |0⟩ ⟨1| ⊗ 1

η M
′′
c + |1⟩ ⟨0| ⊗ 1

η

(
M ′′c

)†
+ |1⟩ ⟨1| ⊗ 1

2 M
′
o (8)

=

( 1
2M

′
o

1
ηM

′′
c

1
η (M

′′
c )
† 1

2M
′
o

)
. (9)

For b ∈ {0, 1}, we define

M (b)
a := (1− b)

(
|0⟩ ⟨0| ⊗ 1

2 M
′
o + |1⟩ ⟨1| ⊗ 1

2 M
′
o

)
+ bMa (10)

= (1− b)
(

1
2M

′
o 02d1×2d1

02d1×2d1
1
2M

′
o

)
+ bMa. (11)

To construct the final state for encoding, we choose a permutation matrix σl of order (2d1+1 × 2d1+1) uniformly randomly
and create the final state

M
(b)
f := σlM

(b)
a σ†l . (12)

Note that the state M (0)
f is the original ciphertext; as before, applying the permutation matrix, it is only encrypted using

the original key and can be decrypted using only the original key.

We now describe the quantum anamorphic decryption to extract the original message.
Define

M
(1)
d := σ†l M

(1)
f σl. (13)

Since σl is a permutation matrix, it is unitary, and σ†l = σ−1l . Hence M (1)
d recovers the block structure used by the encryption.

We define the following projectors on the first qubit:

Π0 = |0⟩ ⟨0| ⊗ I2d1 , Π1 = |1⟩ ⟨1| ⊗ I2d1 , (14)

where I2d1 is the identity operator on Ho. Then

Π0 +Π1 = I2d1+1 , Π0 Π1 = 0, Π2
0 = Π0, Π2

1 = Π1. (15)

Define
M

(1)
d (0, 0) = Π0M

(1)
d Π0 in (C2)⊗(d1+1), (16)

and
M

(1)
d (1, 1) = Π1M

(1)
d Π1 in (C2)⊗(d1+1). (17)

By extracting these two blocks (first and fourth) and adding them, we obtain an operator on (C2)⊗(d1+1) (since Π0+Π1 = I2d1+1

on the first qubit, restricted to the appropriate blocks).
We get

M (0)
a = M

(1)
d (0, 0) + M

(1)
d (1, 1) =

(
|0⟩ ⟨0| ⊗ I2d1

)
M

(1)
d

(
|0⟩ ⟨0| ⊗ I2d1

)
+
(
|1⟩ ⟨1| ⊗ I2d1

)
M

(1)
d

(
|1⟩ ⟨1| ⊗ I2d1

)
. (18)

Now to extract (0, 0)-block and (1, 1)-block, that is the first block and the fourth block only, in the reduced space Ho, we
define

M̃ ′o(0, 0)
∣∣∣
Ho

:= (⟨0| ⊗ I2d1 )M (0)
a (|0⟩ ⊗ I2d1 ) , (19)

M̃ ′o(1, 1)
∣∣∣
Ho

:= (⟨1| ⊗ I2d1 )M (0)
a (|1⟩ ⊗ I2d1 ) . (20)



COMPUTATIONAL QUANTUM ANAMORPHIC ENCRYPTION AND ANAMORPHIC SECRET SHARING 15

Then, M ′o := M̃ ′o(0, 0)
∣∣∣
Ho

+ M̃ ′o(1, 1)
∣∣∣
Ho

, since each block represents half of the total contribution,

1

2
M ′o +

1

2
M ′o =M ′o. (21)

Recall the QOTP decryption operation QOTPDec(·, k) : L(Ho) −→ L(Ho). For a key k = (k1, k2, . . . , k2d1−1, k2d1), the
corresponding QOTP encryption is given by

QOTPEnc(Mo, k) =
( d1⊗
j=1

Xk2j−1 Zk2j
)
Mo

( d1⊗
j=1

Xk2j−1 Zk2j
)†
. (22)

Hence, QOTPDec(·, k) applies the adjoint of that unitary factor

QOTPDec(M ′, k) =
( d1⊗
j=1

Xk2j−1 Zk2j
)†
M ′
( d1⊗
j=1

Xk2j−1 Zk2j
)
. (23)

Accordingly, our final normal decryption for the original state is

Mo = QOTPDec
(
M ′o, k

)
=
( d1⊗
j=1

Xk2j−1Zk2j
)†
M ′o

( d1⊗
j=1

Xk2j−1Zk2j
)
. (24)

The output is precisely the original density matrix Mo, completing the decryption for the original message.

Next, we describe the extraction and decryption of the covert message. After computing σ†lM
(1)
f σl, the second block or the

third block of M (1)
d corresponds to 1

η M
′′
c or its adjoint.

Define the partial extraction operators

Π0,1(X) = (|0⟩ ⟨0| ⊗ I2d1 ) (X) (|1⟩ ⟨1| ⊗ I2d1 ) ,
Π1,0(X) = (|1⟩ ⟨1| ⊗ I2d1 ) (X) (|0⟩ ⟨0| ⊗ I2d1 ) .

Applying the partial operators to M (1)
d , we get

M
(1)
d (0, 1) = Π0,1(M

(1)
d ) =

(
|0⟩ ⟨0| ⊗ I2d1

)
M

(1)
d

(
|1⟩ ⟨1| ⊗ I2d1

)
in (C2)⊗(d1+1) (25)

and
M

(1)
d (1, 0) = Π1,0(M

(1)
d ) =

(
|1⟩ ⟨1| ⊗ I2d1

)
M

(1)
d

(
|0⟩ ⟨0| ⊗ I2d1

)
in (C2)⊗(d1+1). (26)

Now we reduce to the Hilbert space Hec to extract the covert block

Mcovert(0, 1)
∣∣
He

c
= (⟨0| ⊗ I2d1 )M

(1)
d (|1⟩ ⊗ I2d1 ) , (27)

Mcovert(1, 0)
∣∣
He

c
= (⟨1| ⊗ I2d1 )M

(1)
d (|0⟩ ⊗ I2d1 ) . (28)

We may choose either of these blocks and denote it by Mcovert ∈ L((C2)⊗d1).
Recall that, at encryption, the covert block had a factor of 1

η . Hence, to recover the padded covert operator M ′′c , we define

M̃ ′′c := ηMcovert. (29)

If Mcovert =
1
η M

′′
c , then M̃ ′′c =M ′′c ; or if Mcovert =

1
η (M

′′
c )
†, then M̃ ′′c = (M ′′c )

†.
Recall that M̃ ′′c ∈ L

(
Hec
)
, but the original message belongs in Hc. To recover an operator in L(Hc), we unembed via the

adjoint of V .

Define
M̃ ′c := V † M̃ ′′c V ∈ L

(
Hc
)
. (30)

If M̃ ′′c = M ′′c , we get M̃ ′c = M ′c. In particular, since V † removes the zero-padding (the last (2d1 − 2d2) rows and columns),
M̃ ′c is the recovered padded covert operator in the original dimension 2d2 × 2d2 .

The QOTP decryption for key k′ = (k′1, k
′
2, . . . , k

′
2d2−1, k

′
2d2

) is:

QOTPDec
(
M ′, k′

)
=
( d2⊗
j=1

Xk′2j−1 Zk
′
2j

)†
M ′

( d2⊗
j=1

Xk′2j−1 Zk
′
2j

)
. (31)
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Hence the covert user obtains

Mc = QOTPDec
(
M̃ ′c, k

′) =
( d2⊗
j=1

Xk′2j−1 Zk
′
2j

)†
M̃ ′c

( d2⊗
j=1

Xk′2j−1 Zk
′
2j

)
. (32)

This final output is the covert density operator Mc originally encrypted.

The quantum anamorphic encryption algorithm is described below:

Algorithm 1 Quantum Anamorphic Encryption(QAE)
1: Input: Original density matrix Mo, covert density matrix Mc, dimensions d1, d2 (d2 ≤ d1), security parameter η ∈ Z+,

and permutation matrix σl.
2: Output: Anamorphic quantum state M (1)

f .
3: Steps:
4: 1. Sample keys:
5: Draw key k←{0, 1}2d1 uniformly at random.
6: Draw key k′←{0, 1}2d2 uniformly at random.
7: 2. Encrypt Mo using QOTP:
8: Compute M ′o = QOTPEnc(Mo, k) as:

M ′o =
(
Xk1Zk2 ⊗ · · · ⊗Xk2d1−1Zk2d1

)
Mo

(
Xk1Zk2 ⊗ · · · ⊗Xk2d1−1Zk2d1

)†
.

9: 3. Encrypt Mc using QOTP:
10: Compute M ′c = QOTPEnc(Mc, k

′) as:

M ′c =
(
Xk′1Zk

′
2 ⊗ · · · ⊗Xk′2d2−1Zk

′
2d2

)
Mc

(
Xk′1Zk

′
2 ⊗ · · · ⊗Xk′2d2−1Zk

′
2d2

)†
.

11: 4. Pad M ′c:
12: If d2 < d1, extend M ′c to M ′′c ∈ L((C2)⊗d1) using the isometric embedding:

V : Hc → Hc ⊗ (C2)⊗(d1−d2),

defined as:
V |ψ⟩ = |ψ⟩ ⊗ |0⟩⊗(d1−d2), ∀|ψ⟩ ∈ Hc.

The padded matrix is:
M ′′c = VM ′cV

†.

13: 5. Construct Ma:
14: Define the anamorphic quantum state:

Ma = |0⟩ ⟨0| ⊗ 1
2 M

′
o + |0⟩ ⟨1| ⊗ 1

η M
′′
c + |1⟩ ⟨0| ⊗ 1

η

(
M ′′c

)†
+ |1⟩ ⟨1| ⊗ 1

2 M
′
o.

15: 6. Apply permutation σl:
16: Construct the final anamorphic quantum state:

M
(1)
f = σlMaσ

†
l ,

where σl is a uniformly random permutation matrix of size 2d1+1 × 2d1+1.
17: 7. Return M

(1)
f :

18: Output M (1)
f as the encrypted anamorphic quantum state.

Now we describe the decryption algorithm to extract and decrypt the original secret from the anamorphic ciphertext:
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Algorithm 2 Decryption of Original Secret from Anamorphic Ciphertext(DOM)

1: Input: Anamorphic state M (1)
f ∈ L((C2)⊗(d1+1)), permutation matrix Pl, QOTP key k ∈ {0, 1}2d1 , dimension d1.

2: Output: Original density matrix Mo.
3: Steps:
4: 1. Apply the inverse permutation:
5: Compute the intermediate state M (1)

d by applying the inverse of σl:

M
(1)
d = σ†lM

(1)
f σl.

6: 2. Extract the first block and fourth block:
7: Define the projectors:

Π0 = |0⟩ ⟨0| ⊗ I2d1 , Π1 = |1⟩ ⟨1| ⊗ I2d1 ,

where I2d1 is the identity operator on Ho = (C2)⊗d1 .
8: Extract the blocks:

M
(1)
d (0, 0) = Π0M

(1)
d Π0, M

(1)
d (1, 1) = Π1M

(1)
d Π1.

9: Combine the blocks to obtain the quantum state:

M (0)
a =M

(1)
d (0, 0) +M

(1)
d (1, 1).

10: 3. Reduce the extracted blocks to the smaller space Ho:

M̃ ′o(0, 0) := (⟨0| ⊗ I2d1 )M (0)
a (|0⟩ ⊗ I2d1 ) ,

M̃ ′o(1, 1) := (⟨1| ⊗ I2d1 )M (0)
a (|1⟩ ⊗ I2d1 ) .

11: 4. Combine the reduced blocks:
M ′o := M̃ ′o(0, 0) + M̃ ′o(1, 1).

Since each block represents half of the total contribution,

M ′o =
1

2
M ′o +

1

2
M ′o =M ′o.

12: 5. Apply QOTP decryption:
13: Use the QOTP decryption key k = (k1, k2, . . . , k2d1) to recover Mo:

Mo = QOTPDec(M ′o, k) =
( d1⊗
j=1

Xk2j−1Zk2j
)†
M ′o

( d1⊗
j=1

Xk2j−1Zk2j
)
.

14: 6. Return the original density matrix Mo:
15: Output Mo, completing the decryption.

The covert secret extraction and decryption algorithm from the anamorphic ciphertext, is described below:
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Algorithm 3 Decryption of Covert Message from Anamorphic Ciphertext(DCM)

1: Input: Anamorphic state M (1)
f ∈ L((C2)⊗(d1+1)), permutation matrix σl, QOTP key k′ ∈ {0, 1}2d2 , dimensions d1, d2,

and scaling factor η ∈ Z+.
2: Output: Covert density matrix Mc ∈ L((C2)⊗d2).
3: Steps:
4: 1. Apply the inverse permutation:
5: Compute the intermediate state M (1)

d by applying the inverse of Pl:

M
(1)
d = σ†lM

(1)
f σl.

6: 2. Extract one of the off-diagonal blocks (second or third):
7: By construction, one covert block resides in the |0⟩ ⟨1|-subspace and the other in the |1⟩ ⟨0|-subspace. Define the

partial extraction operators:
Π0,1(X) = (|0⟩ ⟨0| ⊗ I2d1 ) (X) (|1⟩ ⟨1| ⊗ I2d1 ) ,
Π1,0(X) = (|1⟩ ⟨1| ⊗ I2d1 ) (X) (|0⟩ ⟨0| ⊗ I2d1 ) .

8: Apply the above operators to extract the blocks:

M
(1)
d (0, 1) = Π0,1(M

(1)
d ),

M
(1)
d (1, 0) = Π1,0(M

(1)
d ).

9: Reduce to the smaller Hilbert space:

Mcovert(0, 1)
∣∣
He

c
= (⟨0| ⊗ I2d1 )M

(1)
d (|1⟩ ⊗ I2d1 ) ,

Mcovert(1, 0)
∣∣
He

c
= (⟨1| ⊗ I2d1 )M

(1)
d (|0⟩ ⊗ I2d1 ) .

10: Assign the covert block:

Mcovert =

{
Mcovert(0, 1)

∣∣
He

c
, if we choose the second block as covert block

Mcovert(1, 0)
∣∣
He

c
, if we choose the third block as covert block

11: 3. Multiply by η:
12: Recover the padded covert operator:

M̃ ′′c = ηMcovert.

13: 4. Remove the zero-padding:
14: Use the isometric embedding V : Hc → Hec , with adjoint V †, to unembed:

M̃ ′c = V †M̃ ′′c V.

15: The result M̃ ′c ∈ L((C2)⊗d2) is the padded covert density operator.
16: 5. Apply QOTP decryption:
17: Use the QOTP key k′ = (k′1, k

′
2, . . . , k

′
2d2

) to recover Mc:

Mc = QOTPDec(M̃ ′c, k
′) =

( d2⊗
j=1

Xk′2j−1Zk
′
2j

)†
M̃ ′c

( d2⊗
j=1

Xk′2j−1Zk
′
2j

)
.

18: 6. Return the covert density matrix Mc:
19: Output Mc, completing the covert decryption procedure.

Next, we describe an algorithm to extract the original ciphertext from the anamorphic ciphertext, which we will use in the
definition of anamorphic secret-sharing.
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Algorithm 4 Extraction of Original Ciphertext from Anamorphic Ciphertext(EOC)

1: Input: Anamorphic state M (1)
f ∈ L((C2)⊗(d1+1)), permutation matrix σl, QOTP key k ∈ {0, 1}2d1 , dimension d1.

2: Output: Original ciphertext M (0)
f .

3: Steps:
4: 1. Apply the inverse permutation:
5: Compute the intermediate state M (1)

d by applying the inverse of σl:

M
(1)
d = σ†lM

(1)
f σl.

6: 2. Extract the first block and fourth block:
7: Define the projectors:

Π0 = |0⟩ ⟨0| ⊗ I2d1 , Π1 = |1⟩ ⟨1| ⊗ I2d1 ,

where I2d1 is the identity operator on Ho = (C2)⊗d1 .
8: Extract the blocks:

M
(1)
d (0, 0) = Π0M

(1)
d Π0, M

(1)
d (1, 1) = Π1M

(1)
d Π1.

9: Combine the blocks to obtain the quantum state:

M (0)
a =M

(1)
d (0, 0) +M

(1)
d (1, 1).

10: 3. Extract the original ciphertext:
11: Apply the permutation matrix σl to recover the original ciphertext:

M
(0)
f = σlM

(0)
a σ†l .

12: 4. Return the original ciphertext M (0)
f :

13: Output M (0)
f , completing the extraction.

Remark 1. The algorithm DOM can be applied to the original ciphertext M (0)
f too. Exactly in a similar way, we can retrieve

the original message Mo from M
(0)
f .

Now we discuss the following theorems and corollaries to prove the Theorem 9 and the corollary 9.1.

Definition 15. (Rayleigh Quotient [Section 4.2, Page 176, [60]]) Let A be a Hermitian operator on an n-dimensional complex
Hilbert space H. The Rayleigh quotient R(A;x) associated with x ̸= 0 is defined as

R(A;x) =
x∗Ax

x∗x
. (33)

We now recall the fundamental variational characterization of eigenvalues of a Hermitian operator. This is sometimes called
the Rayleigh–Ritz theorem (in finite dimensions).

Theorem 6. (Variational Characterization of the Extreme Eigenvalues [60], [68], [69]) Let A be a Hermitian n × n matrix
(or Hermitian operator on an n-dimensional space). Denote its eigenvalues by

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) (34)

ordered in a nondecreasing sequence. Then

min
|v⟩̸=0

R(A; |v⟩) = λ1(A), max
|v⟩̸=0

R(A; |v⟩) = λn(A). (35)

In particular,
λmin(A) = min

∥|v⟩∥2=1
⟨v|A |v⟩ , λmax(A) = max

∥|v⟩∥2=1
⟨v|A |v⟩ . (36)

The following Corollary 6.1 can easily be derived from the Theorem 6, which we have used in our proof of the Theorem 9.
The Lemma 8 is also easy to prove using basic linear algebra, and we have used it to prove Corollary 8.1. We have included
them for completeness.

Corollary 6.1. Let X,Y ≥ 0 be positive semi-definite matrices on the same finite-dimensional Hilbert space H. If

λmax(Y ) ≤ λmin(X), (37)
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then
(X − Y ) ≥ 0. (38)

Proof. Since X,Y ≥ 0, all their eigenvalues are nonnegative. To show that X − Y is positive semi-definite, we show that for
all |v⟩ ∈ H,

⟨v| (X − Y ) |v⟩ ≥ 0. (39)

As λmin(X) is the smallest eigenvalue of X , and by the variational characterization of eigenvalues (or Rayleigh quotients),
we have

⟨v|X |v⟩
∥ |v⟩ ∥22

≥ λmin(X). (40)

Since X ≥ 0, for any |v⟩ ≠ 0,
⟨v|X |v⟩ ≥ λmin(X) ∥ |v⟩ ∥22. (41)

Since λmax(Y ) is the largest eigenvalue of Y , the Rayleigh quotient satisfies

⟨v|Y |v⟩
∥ |v⟩ ∥22

≤ λmax(Y ). (42)

Similarly, for Y ≥ 0, we have
⟨v|Y |v⟩ ≤ λmax(Y ) ∥ |v⟩ ∥22. (43)

Combining both the equations together, we get that, for any nonzero |v⟩ ∈ H,

⟨v|X |v⟩ − ⟨v|Y |v⟩ ≥
(
λmin(X) ∥ |v⟩ ∥22

)
−
(
λmax(Y ) ∥ |v⟩ ∥22

)
=
(
λmin(X)− λmax(Y )

)
∥ |v⟩ ∥22. (44)

By our assumption, (λmin(X)− λmax(Y )) ≥ 0.
Therefore,

∀ |v⟩ ∈ H, ⟨v| (X − Y ) |v⟩ ≥
(
λmin(X)− λmax(Y )

)
∥ |v⟩ ∥22 ≥ 0. (45)

Hence, (X − Y ) ≥ 0, that is, (X − Y ) is a positive semi-definite matrix.

Lemma 7. ( [60]) Let X ≥ 0 be a Hermitian and positive semi-definite matrix. Then

λmax(X) = ∥X∥, (46)

where λmax(M) is the largest eigenvalue of M , and ∥M∥ is the spectral norm or operator norm of X .

In general, if A and B are two positive semi-definite matrices, then AB may not be a positive semi-definite matrix unless
commutativity holds, that is AB = BA. But in our case we next prove that if M ′o is strictly positive definite and M ′′c is
positive semi-definite, then the matrix M ′′c (M ′o)

−1M ′′c is also positive semi-definite. Here we note that it is not necessary that
the matrix M ′′c should be strictly positive definite.

Lemma 8. Let Y ∈Mn(C) be a Hermitian positive definite matrix, and let X ∈Mn(C) be a Hermitian positive semi-definite
matrix. Then

XY −1X is a Hermitian positive semi-definite matrix.

Moreover, XY −1X is strictly positive definite if and only if X is invertible.

Proof. For vectors v, w ∈ Cn, we define, ⟨v, w⟩ := v†w. Then ⟨·, ·⟩ defines an inner product on Cn. Now as X is positive
semi-definite, for all non-zero vectors v ∈ Cn, ⟨v,Xv⟩ ≥ 0. Since Y is positive definite, its inverse Y −1 exists and is also
positive definite. The matrix XY −1X is Hermitian since both X and Y are Hermitian.

Consider an arbitrary vector v ∈ Cn and also consider the inner product ⟨v,XY −1Xv⟩.
Define w := Xv. Then ⟨v,XY −1Xv⟩ = ⟨w, Y −1w⟩. Since Y , is positive definite, for all w ∈ Cn, ⟨w, Y −1w⟩ ≥ 0. Therefore,
XY −1X is also a positive semi- definite matrix.

Note that XY −1X fails to be strictly positive definite precisely if there exists a nonzero vector v such that

⟨v, XY −1Xv⟩ = 0. (47)

However, we have
⟨v, XY −1Xv⟩ = ⟨Xv, Y −1Xv⟩. (48)
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Since Y −1 is strictly positive definite, ⟨w, Y −1w⟩ = 0 if and only if w = 0. Hence,

⟨Xv, Y −1Xv⟩ = 0 iff Xv = 0. (49)

Thus, if X has a nontrivial kernel, there is a nonzero v with Xv = 0, leading to ⟨v,XY −1Xv⟩ = 0. This shows that if X is
not invertible, then XY −1X is not strictly positive definite.

Conversely, if X is invertible, then Xv = 0 implies v = 0. Hence the only way ⟨v,XY −1Xv⟩ = 0 can hold is if v = 0.

Therefore, XY −1X is always Hermitian and positive semi-definite. It is strictly positive definite if and only if X is invertible.

Corollary 8.1. The matrix M ′′c (M
′
o)
−1M ′′c is a Hermitian and a positive semi-definite matrix.

Proof. By applying the Lemma 8. with X =M ′′c and Y =M ′o, the result follows.

We now state one of the main theorems of our paper.

Theorem 9. Given a security parameter negl(λ) > 0, with η ∈ Z+ such that
1

η
< negl(λ) both the original and the anamorphic

quantum states M (0)
f and M (1)

f are quantum density matrices, if

1

η2
∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤

1

4
λmin(M

′
o), (50)

where λmin(M
′
o) is the minimum eigenvalue of M ′o on its support and ∥ · ∥ is the operator norm and M ′o is a strictly positive

definite matrix.

Proof. We consider both the block matrices

M (0)
a =

(
1
2M

′
o 02d1×2d1

02d1×2d1
1
2M

′
o

)
and M (1)

a =

 1
2 M

′
o

1
η M

′′
c

1
η

(
M ′′c

)† 1
2 M

′
o

 , (51)

where M ′o ∈ L(Ho) is the QOTP-encrypted version of a density matrix Mo. Since QOTP preserves positivity and trace,
M ′o ≥ 0 and Tr(M ′o) = 1. Therefore, the matrix M (0)

a is a density matrix.
The encrypted covert matrix M ′′c ∈ L(Hec) is another operator obtained by encrypting the covert message Mc using QOTP

and then padding the encrypted covert message M ′c. Since the matrix Mc is also a density matrix, and since QOTP preserves
positivity and trace, M ′c ≥ 0 and Tr(M ′c) = 1. As Epad(M ′c) = V M ′c V

† = M ′′c , and Epad is an isometry and completely
positive by construction of V , M ′′c ≥ 0 and Tr(M ′′c ) = 1. As Mc is Hermitian, M ′c is also Hermitian, and consequently M ′′c
is also Hermitian. The parameter η > 0 is used to scale the off-diagonal blocks. It is clear that Tr(Ma) = 1. Therefore, we
only analyze whether Ma is a positive semi-definite (Ma ≥ 0) matrix. Writing

Ma =

(
A B

B† A

)
, where A = 1

2 M
′
o, B = 1

η M
′′
c , (52)

we note that
A = 1

2 M
′
o ≥ 0 iff M ′o ≥ 0, (53)

which is true by hypothesis. The potential problem for positivity arises from the off-diagonal blocks B and B†.
By the Schur complement condition 4 for the positivity of a 2× 2 block matrix, is that

A ≥ 0, and A−BA+B† ≥ 0 , (54)

where A+ denotes the generalized Moore Penrose inverse on the supp(A). By the Theorem 3. We have (M ′o)
+ = (M ′o)

−1.
Substituting A = 1

2 M
′
o and B = 1

η M
′′
c , we obtain

1
2 M

′
o −

(
1
η M

′′
c

)(
1
2 M

′
o

)−1(
1
η M

′′
c

)†
≥ 0 iff 1

2 M
′
o − 1

η2 (M
′′
c )
(

1
2 M

′
o

)−1
(M ′′c )

† ≥ 0. (55)

We prove that a sufficient condition is to require
1

η2
∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤

1

4
λmin(M

′
o), (56)

where λmin(M
′
o) is the minimum eigenvalue of M ′o on its support and ∥·∥ is the operator norm. Since A = 1

2 M
′
o, and M ′o ≥ 0

is invertible on its support, we can write

A−1 =
(
1
2 M

′
o

)−1
= 2

(
M ′o
)−1

on supp(M ′o). (57)
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Let B = 1
η M

′′
c . Then B† = 1

η (M
′′
c )
† = 1

η M
′′
c (since M ′′c ≥ 0, and M ′′c is also Hermitian).

Hence,
B†A−1B =

(
1
η M

′′
c

)(
2 (M ′o)

−1
)(

1
η M

′′
c

)
= 2

η2 M
′′
c (M ′o)

−1M ′′c . (58)

Thus,
A−B†A−1B = 1

2 M
′
o − 2

η2 M
′′
c (M ′o)

−1M ′′c . (59)

To ensure
1
2 M

′
o − 2

η2 M
′′
c (M ′o)

−1M ′′c ≥ 0, (60)

we show that a sufficient condition, is that the largest eigenvalue of 2
η2 M

′′
c (M ′o)

−1M ′′c does not exceed the smallest eigenvalue
of 1

2 M
′
o.

Let
X = 1

2 M
′
o, Y = 2

η2 M
′′
c (M ′o)

−1M ′′c . (61)

We want (X − Y ) ≥ 0. We know that if X,Y are positive semi-definite, then

λmax(Y ) ≤ λmin(X) implies (X − Y ) ≥ 0, (62)

where λmax and λmin denote the maximum and minimum eigenvalues on the relevant support.

Now,
λmin(X) = λmin

(
1
2 M

′
o

)
= 1

2 λmin(M
′
o), (63)

since scaling an operator by 1
2 scales all eigenvalues by 1

2 ,

and
λmax(Y ) = λmax

(
2
η2 M

′′
c (M ′o)

−1M ′′c

)
= 2

η2 λmax

(
M ′′c (M ′o)

−1M ′′c

)
. (64)

Because M ′′c , (M
′
o)
−1, are positive semi-definite and positive definite, respectively, by the Corollary 8.1, M ′′c (M ′o)

−1M ′′c is
positive semi-definite, and by Lemma 7, we get λmax

(
M ′′c (M ′o)

−1M ′′c
)
= ∥(M ′′c )† (M ′o)−1M ′′c ∥, i.e. the spectral norm of

that product.

Therefore, we need
2
η2 λmax

(
M ′′c (M ′o)

−1M ′′c
)
≤ 1

2 λmin(M
′
o), (65)

which is equivalent to
1

η2
λmax

(
M ′′c (M ′o)

−1M ′′c
)
≤ 1

4
λmin(M

′
o). (66)

Therefore,
1

η2
∥∥ (M ′′c )† (M ′o)−1M ′′c ∥∥ ≤ 1

4
λmin(M

′
o). (67)

This condition forces Ma ≥ 0. Since M ′o is a density operator, λmin(M
′
o) ≥ 0. By making η sufficiently large, one can always

satisfy 1
η2 ∥(M

′′
c )
† (M ′o)

−1M ′′c ∥ ≤ 1
4 λmin(M

′
o). Since the permutation matrices are unitary matrices, they preserve the

positive semi-definiteness and unit trace. Hence, both the matrices M (0)
f and M (1)

f are positive semi-definite with unit trace.
Therefore, both the original and anamorphic matrices are quantum density matrices.

Corollary 9.1. (A weaker sufficient condition) Given a security parameter negl(λ) > 0, with η ∈ Z+ such that
1

η
< negl(λ)

both the original and the anamorphic quantum states M (0)
f and M (1)

f are quantum density matrices, if

2λmax(M
′′
c )

λmin(M ′o)
≤ η, (68)

where λmin(M
′
o) and λmax(M

′′
c ) are the minimum and maximum eigenvalues of M ′o and M ′′c on their respective supports.

Proof. If
λmax(M

′′
c )

η
≤ 1

2
λmin(M

′
o), (69)

then,
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λmax(M
′′
c )

η
≤ 1

2
λmin(M

′
o) implies

1

η2
λmax(M

′′
c )

2

λmin(M ′o)
≤ 1

4
λmin(M

′
o). (70)

We know that for any two matrices A and B of compatible dimensions, ∥AB∥ ≤ ∥A∥ ∥B∥. Therefore, we get,

∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤ ∥(M ′′c )†∥ ∥(M ′o)−1∥ ∥M ′′c ∥. (71)

Since M ′′c is positive semi-definite and Hermitian, (M ′′c )
† =M ′′c and hence ∥(M ′′c )†∥ = ∥M ′′c ∥.

Therefore,
∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤ ∥M ′′c ∥2 ∥(M ′o)−1∥. (72)

Since M ′′c is positive semi-definite, all its eigenvalues are non-negative, and the spectral norm equals the maximum eigenvalue
7,

∥M ′′c ∥ = λmax(M
′′
c ). (73)

Similarly, since M ′o is strictly positive-definite, λmin(M
′
o) > 0 and hence,

∥(M ′o)−1∥ = λmax

(
(M ′o)

−1) = 1

λmin(M ′o)
. (74)

Combining the equations 72,73,74, we get,

∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤
λmax(M

′′
c )

2

λmin(M ′o)
. (75)

Hence,

1

η2
∥(M ′′c )† (M ′o)−1M ′′c ∥ ≤

1

η2
λmax(M

′′
c )

2

λmin(M ′o)
≤ 1

4
λmin(M

′
o), (76)

which satisfies the sufficient condition we proved in Theorem 9.

• Adversary’s Observations in the Two Games

i) The real game RealGQ(λ,D) : In the real game, only the original message Mo is encrypted and sent. We have
the encrypted message M ′o = UkMoU

†
k by the QOTP and the key k. Then we have constructed the following message

M
(0)
a =

(
1
2M

′
o 02d1×2d1

02d1×2d1
1
2M

′
o

)
. The final state we have is M (0)

f = σlM
(0)
a σ†l .

ii) The anamorphic game AnamorphicGQa
(λ,D) In the anamorphic game, both Mo and Mc are encrypted and sent. The

encrypted message is M ′o = UkMoU
†
k , M ′c = Uk′McU

†
k′ . Then we have combined both the original message and the hidden

message as M (1)
a =Ma. Finally, we have constructed the state M (1)

f = σlM
(1)
a σ†l .

In both games, the adversary receives the state M (b)
f for b ∈ {0, 1}, without knowledge of l, k, k′, d1, d2, η. The expectation

El[M (0)
f ] and El[M (1)

f ] represent the average state the adversary would get if they sampled many ciphertexts using random
keys.

Theorem 10. The expectations of the original and the anamorphic states are

El,d1,k[M
(0)
f ] =

1

2d1+1
I2d1+1 , (77)

where I2d1+1 is the identity matrix of dimension 2d1+1 and after considering expectation Ek[M ′o] and Ek′ [M ′′c ] separately we
get,

El
[
M

(1)
f

]
= α

(
M (1)
a

)
I + β

(
M (1)
a

)
J =

2d1+1 − 1− 2
η

2d1+1(2d1+1 − 1)
I +

2/η

2d1+1(2d1+1 − 1)
J, (78)

where the matrix J is such that Ji,j = 1 for all i, j ∈ [2d1+1].

Hence the trace distance between the expectations is

D(El[M (1)
f ],El[M (0)

f ]) =
1

η 2d1
(79)

which is less than negl(λ),
and
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D(El[M (1)
f ],El[M (1)′

f ]) = 0. (80)

for any two density matrices M (1)
f and M (1)′

f , when the randomization is taken over two different keys l, d1, d2, k, k′, η and
l̃, d̃1, d̃2, k̃, k̃′, η̃ from the same set Sym(n)× [2d1+1]× [2d1+1]× {0, 1}d1 × {0, 1}d2 × J , with uniform distribution.

Proof. We recall that the Quantum One-Time Pad (QOTP) encryption of an n-qubit state ρ with key k ∈ {0, 1}2n is given
by QOTPEnc(ρ, k) = UkρU

†
k , where Uk =

⊗n
i=1X

k2i−1Zk2i . The expectation over all possible keys k is

Ek[QOTPEnc(ρ, k)] =
1

22n

∑
k∈{0,1}2n

UkρU
†
k =

I2n

2n
Tr(ρ) =

I2n

2n
, (81)

since Tr(ρ) = 1.

Let Mo ∈ (C2)⊗d1 be an arbitrary d1-qubit state (density matrix) representing the original matrix. The QOTP encryption
of Mo with key k ∈ {0, 1}2d1 is M ′o = UkMoU

†
k .

We compute the expectation over all keys k,

Ek[M ′o] =
1

22d1

∑
k∈{0,1}2d1

UkMoU
†
k . (82)

Using the properties of Pauli operators and the fact that the set {Uk}k∈{0,1}2d1 forms an orthonormal basis for operators on
(C2)⊗d1 (up to normalization), we can express Mo in terms of Pauli operators

Mo =
∑
P∈P

cPP, (83)

where the sum is over all d1-qubit Pauli operators P , and cP = 1
2d1

Tr(PMo). Then, we have

Ek[M ′o] =
1

22d1

∑
k∈{0,1}2d1

Uk

(∑
P∈P

cPP

)
U†k =

∑
P∈P

cP

 1

22d1

∑
k∈{0,1}2d1

UkPU
†
k

 . (84)

Note that for any Pauli operator P (excluding the identity), we have 1
22d1

∑
k∈{0,1}2d1 UkPU

†
k = 0. This is because the

conjugation of P by Uk effectively randomizes P over all possible Pauli operators, and their average is zero unless P is the
identity operator, and for P = I , we have 1

22d1

∑
k∈{0,1}2d1 UkIU

†
k = I. Therefore, Ek[M ′o] = cII, where cI = 1

2d1
Tr(IMo) =

1
2d1

Tr(Mo) =
1

2d1
. Thus, Ek(M ′o) =

I
2d1

2d1
, and hence, Ek′ [M ′′c ] =

I
2d2

2d2
.

Similarly, for the covert message Mc ∈ (C2)⊗d2 , the encrypted state is M ′c = Uk′McU
†
k′ , with k′ ∈ {0, 1}2d2 and we have

Ek′ [M ′c] =
I
2d2

2d2
.

We compute El[σlXσ†l ], for a fixed matrix X of compatible dimension. The set of all permutation matrices forms a group
under multiplication.

Then we have,
El[M (1)

f ] =
1

(2d1+1)!

∑
l∈Sym(2d1+1)

σlM
(1)
f σ†l . (85)

The representation of Sym(n) is defined by π : Sym(n) −→ U(Cn) by

π(σ) ei = eσ(i), for i = 1, . . . , n, (86)

where {ei}ni=1 is the standard orthonormal basis of Cn and U(Cn) denotes the group of unitary operators on Cn, [See [65],
[66]]. It is well known that this representation is reducible.

Let
A = {A ∈ L(Cn) : Aπ(σ) = π(σ)A, ∀σ ∈ Sym(n)}

be the centralizer or the commutant of the representation π.

By the Double Commutant Theorem and by applying Schur’s lemma, TSym(n)(Φ) ∈ A and A = span{I, J}, where I is
the n× n identity matrix and J is the n× n matrix such that Jij = 1 for all i, j ∈ [n]. Then, for any matrix Φ ∈ L(Cn) we
have,

TSym(n)(Φ) = α(Φ) I + β(Φ) J, (87)
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for some scalars α(Φ), β(Φ) ∈ C that depend linearly on Φ. We will only denote TSym(n)(Φ) by only T (Φ) if it is understood
that we are considering the representation of Sym(n) only.

For any matrix Φ ∈ L(Cn), the twirl T (Φ) = El
[
σl Φσ

†
l

]
. We compute the coefficients α(Φ) and β(Φ) in terms of two linear

invariants of Φ:

T (Φ) := Tr(Φ) and S(Φ) :=

n∑
i=1

n∑
j=1

Φij . (88)

Taking the trace of T (Φ), we obtain

α(Φ) + β(Φ) =
T (T (Φ))

n
. (89)

On the other hand, the sum of all entries of T (Φ) is

S
(
T (Φ)

)
= α(Φ)n+ β(Φ)n2. (90)

The twirling map is trace–preserving. As the permutation conjugation simply reorders the entries, the permutation twirling
preserves the sum of all matrix elements. Therefore,

S
(
T (Φ)

)
= S(Φ) and T

(
T (Φ)

)
= T (Φ). (91)

Thus,
α(Φ)n+ β(Φ)n2 = S(Φ) and n(α(Φ) + β(Φ)) = T (Φ). (92)

Solving both the equations 92, we get,

β(Φ) =
S(Φ)− T (Φ)
n(n− 1)

and α(Φ) =
nT (Φ)− S(Φ)
n(n− 1)

. (93)

Now, considering Φ =M
(0)
a , we get

α(M (0)
a ) =

2d1+1 − S(Φ)
2d1+1(2d1+1 − 1)

. (94)

Since M (0)
a is diagonal and constant along the diagonal, its off-diagonal entries are zero so that

S
(
M (0)
a

)
=

2d1+1∑
i=1

2d1+1∑
j=1

(M (0)
a )ij =

2d1+1∑
i=1

1

2d1+1
= 1. (95)

and hence, α(M (0)
a ) = 1

2d1+1 and β
(
M

(0)
a

)
= 0. Therefore,

El
[
M

(0)
f

]
= α

(
M (0)
a

)
I + β

(
M (0)
a

)
J =

I

2d1+1
. (96)

Now, consider the quantum density matrix Φ =M
(1)
a . Then, after taking expectation Ek[M ′o] and Ek′ [M ′′c ] separately, we get,

T
(
M

(1)
a

)
= 1 and S

(
M

(1)
a

)
=
(
1 + 2

η

)
.

Computing the coefficients α(Φ) and β(Φ), we get,

α
(
M (1)
a

)
=

2d1+1 − 1− 2
η

2d1+1(2d1+1 − 1)
and β

(
M (1)
a

)
=

2/η

2d1+1(2d1+1 − 1)
. (97)

Therefore,

El
[
M

(1)
f

]
= α

(
M (1)
a

)
I + β

(
M (1)
a

)
J =

2d1+1 − 1− 2
η

2d1+1(2d1+1 − 1)
I +

2/η

2d1+1(2d1+1 − 1)
J. (98)

Now, computing difference we get,

El
[
M

(1)
f

]
− El

[
M

(0)
f

]
=

2

η2d1+1(2d1+1 − 1)
(J − I). (99)

It is well-known that, one eigen value of the matrix (J − I) is (2d1+1−1) and the eigenvalue −1 has multiplicity (2d1+1−1).
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Therefore, the trace distance is

D
(
El
[
M

(1)
f

]
,El
[
M

(0)
f

])
=

1

2
∥El
[
M

(1)
f

]
− El

[
M

(0)
f

]
∥1

=
1

2

[ 2

η2d1+1(2d1+1 − 1)
∥(J − I)∥1

]
=

1

2
· 4

η 2d1+1(2d1+1 − 1)
(2d1+1 − 1)

=
1

η 2d1
. (100)

Hence, D
(
El
[
M

(1)
f

]
,El
[
M

(0)
f

])
< negl(λ).

Choosing two different keys (l, d1, d2, k, k
′, η) and (l̃, d̃1, d̃2, k̃, k̃′, η̃) from the same set Sym(n) × [2d1+1] × [2d1+1] ×

{0, 1}d1 × {0, 1}d2 × J , with uniform distribution, it is easy to see that D(El[M (1)
f ],El[M (1)′

f ]) = 0.

Now, we prove the computational indistinguishability of the original and anamorphic ciphertexts.

Theorem 11. The original and anamorphic ciphertexts M (0)
f and M (1)

f are computationally indistinguishable.

Proof. In the real game, the adversary receives the original ciphertext

M
(0)
f = σl

(
1
2M

′
o 0

0 1
2M

′
o

)
σ†l . (101)

and in the anamorphic game, the adversary receives the following anamorphic ciphertext

M
(1)
f = σl

( 1
2M

′
o

1
ηM

′′
c

( 1ηM
′′
c )
† 1

2M
′
o

)
σ†l . (102)

We know the following inequality between adversarial advantage and the trace distance AdvD(λ) ≤ D(M
(0)
f ,M

(1)
f ) 1.

Now, we compute the trace distance between the real and the anamorphic ciphertexts,

D(M
(0)
f ,M

(1)
f ) =

1

2

∥∥∥M (0)
f −M (1)

f

∥∥∥
1

=
1

2

∥∥∥∥σl( 1
2M

′
o 0

0 1
2M

′
o

)
σl − σl

( 1
2M

′
o

1
ηM

′′
c

1
η (M

′′
c )
† 1

2M
′
o

)
σ†l

∥∥∥∥
1

=
1

2

∥∥∥∥σl( 0 − 1
ηM

′′
c

− 1
η (M

′′
c )
† 0

)
σ†l

∥∥∥∥
1

=
1

2

∥∥∥∥( 0 − 1
ηM

′′
c

− 1
η (M

′′
c )
† 0

)∥∥∥∥
1

( since σl is unitary and the trace norm is unitary invariant). (103)

As, Mc is a Hermitian, positive semi-definite matrix with Tr(Mc) = 1, after encrypting with the key k′ the density matrix
M ′c = QOTP(Mc, k

′), remains as Hermitian, positive semi-definite and preserves the norm. Hence, 1
ηM

′′
c = 1

η (M
′′
c )
†.

Denote the matrix
(

0 − 1
ηM

′′
c

− 1
η (M

′′
c )
† 0

)
by A.

Then

A2 =

( 1
η2 (M

′′
c )

2 0

0 1
η2 (M

′′
c )

2

)
. (104)

The trace norm of A is
∥A∥1 = Tr(

√
A2) =

2

η
.Tr(M ′′c ) =

2

η
. (105)

Thus, the trace distance is

D(M
(0)
f ,M

(1)
f ) =

1

2
∥M (0)

f −M (1)
f ∥1 =

1

2
∥A∥1 =

1

2
· 2
η
=

1

η
< negl(λ). (106)
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Note that as we have remarked earlier 1 that the algorithm DOM can be applied to both M (0)
f and M (1)

f . The dictator and
the players can decryprt the original ciphertext Mo from both the ciphertexts M (0)

f and M
(1)
f exactly using the same DOM

algorithm. Therefore, both the ciphertexts M (0)
f and M (1)

f are indistinguishable to the dictator.

In quantum mechanics, fidelity is a metric used to quantify the similarity or closeness between quantum states. A high fidelity
value indicates that the states are nearly identical. In our case, as a consequence of negligible trace distance, it is easy to
show that the original and anamorphic quantum states exhibit a high fidelity. Consequently, this establishes that, in our case,
an adversary or dictator is computationally unable to distinguish between the ciphertexts M (0)

f and M (1)
f , making it infeasible

to identify which corresponds to the original ciphertext.

Theorem 12. The fidelity between the original and the anamorphic states is

F (M
(0)
f ,M

(1)
f ) ≥

(
1− 1

η

)
indicating that the two states are nearly indistinguishable for large η.

Proof. By the Fuchs-van de Graaf inequality, and Theorem 11,
(
1− F (M (1)

f ,M
(0)
f )
)
≤ 1

η .
Hence,

F (M
(1)
f ,M

(0)
f ) ≥

(
1− 1

η

)
.

Now we describe the communication procedure between Alice and Bob under dictatorial supervision.

Algorithm 5 Transmission Protocol under Dictatorial Supervision (TPDS)

1: Input: Anamorphic state M (1)
f ∈ L((C2)⊗(d1+1)), dimensions d1, d2, keys k, k′, and permutation matrix σl.

2: Output: The original message Mo for both Bob and the dictator, and the covert message Mc exclusively for Bob.
3: Step 1: Alice’s Transmission to Bob:
4: Alice generates the anamorphic encrypted state M (1)

f using the encryption process.
5: Alice transmits:

M
(1)
f , (l, d1, d2, k, k

′, η)

securely to Bob.
6: Step 2: Bob’s Decryption:
7: Bob receives M (1)

f and the keys l, d1, d2, k, k′, η.
8: Bob performs the following operations:

1) Run the Decryption of Original Message (DOM) algorithm with the key k to recover the original message Mo.
2) Run the Covert Decryption of Anamorphic Message (DCM) algorithm with key k′ to recover the covert message

Mc.
9: Step 3: Bob’s Forwarding to the Dictator:

10: Bob forwards to the dictator the following information:

M
(1)
f , (l, d1, k).

11: Step 4: Dictator’s Decryption:
12: The dictator receives M (1)

f and keys l, d1, k.
13: The dictator runs the Decryption of Original Message (DOM) algorithm using key k to recover the original

message Mo.
14: Step 6: Output:
15: Bob receives both Mo and Mc.
16: The dictator receives only Mo.
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VI. ANAMORPHIC SECRET-SHARING

In this section, our main goal is to define quantum anamorphic secret-sharing. First, we will review basic notions of quantum
secret-sharing schemes. Then we will propose a definition of a quantum anamorphic secret-sharing along with our construction.

With abuse of notation, we denote P ⊆ [n] to be a set of players. Let S be a set of secrets. Let R be a finite set of random
strings, µ : R −→ R be a probability distribution function, and ∀j, 1 ≤ j ≤ n, Sj be the domain of shares of j-th player.

In a secret-sharing scheme, we want to share a secret among n players so that
• only the authorized set of players can reconstruct the secret and
• the unauthorized set of players cannot reconstruct the secret.

Definition 16. [20] A sequence of monotone functions (fn)n∈Z+ , where each function fn : {0, 1}n −→ {0, 1} is computable
by a family of monotone circuits of size polynomial in n, based on the existence of one-way functions, is defined as belonging
to the class monotone P.

We refer to the survey article by [34] for detailed exposition. We can define the access structure by a monotone function
f : {0, 1}n −→ {0, 1} with a set P ⊆ [n] defined to be authorized if and only if f(vP ) = 1 where vP ∈ {0, 1}n the
characteristic vector of P satisfying vPi = 1 when i ∈ P [20]. We denote the t out of n threshold function by T tn such that
T tn(P ) = 1 if and only if |P | ≥ t.

• Key difficulty in quantum secret sharing due to no-cloning theorem: The no-cloning theorem [21] prevents copying
unknown quantum states, which makes quantum secret sharing difficult. This prevents fundamental strategies like sharing
components with multiple players. In other words, no quantum secret-sharing techniques realize the OR function. The method-
ologies behind many important classical conclusions cannot be readily transferred to the quantum setting, therefore lifting them
requires new thinking. We now detail our contributions and formal outcomes. A small generic compiler using hybrid encoding
from classical to quantum secret sharing that we construct and analyze yields our results. However, this problem was addressed
in the work of Chien [70], and also in the work of Çakan et. al. [20].

• Heavy monotone functions: This concept was introduced in the work of Çakan et. al. [20]. The no-cloning theorem limits
quantum secret sharing systems to no-cloning monotone functions. These monotone functions f are defined such that f(P ) = 1
implies f(P ) = 0, meaning the complement of an authorized set is unauthorized. The state-of-the-art share size for all no-
cloning monotone functions f is the size of the smallest monotone span program computing f , which can be very large even
for “simple” no-cloning monotone functions in monotone P.

Definition 17. (Heavy function [20]) A monotone function f : {0, 1}n −→ {0, 1} is said to be t-heavy if for any subset P ⊆ [n]
where f(P ) = 1, it holds that |P | ≥ t. For t ≥ ⌊n/2⌋+ 1, we say that f is heavy.

Note that t-heavy monotone functions are those with a minimum authorized set size of at least t. Note that a t-out-of-n
threshold function is a type of t-heavy function.

Proposition 13. ( [20]) Let mSP(f) and mC(f) be the size of smallest monotone span program and monotone circuit for
computing f , respectively. Then, for every monotone function f : {0, 1}n −→ {0, 1} there exist a heavy monotone function
f : {0, 1}2n −→ {0, 1} such that mSP(f ′) ≥ mSP(f′)

2n and mC(f ′) ≤ mC(f) + n. Also, whenever f ∈ mNP, then f ′ ∈ mNP.

Corollary 13.1. ( [20]) There exist heavy monotone functions in monotone P requiring monotone span programs of size
exp(nΩ(1)).

• Sharing multiple copies bypassing the no-cloning theorem: Not all monotone functions can be implemented by conventional
quantum secret sharing protocols due to the no-cloning theorem and due to that, we need some additional assumptions to design
quantum secret-sharing schemes for a wide range of monotone functions [20]. One solution to this problem is to assume that
we have access to several copies of the quantum state that we want to share [20]. In the multiparty computations(MSP), this
makes sense. The classical description of their quantum input is already known to each player and they can create as many
copies as they want. The work of [70] considered a special case of threshold monotone functions and investiated the number
of copies we would require to construct an efficient secret-sharing scheme realizing all monotone functions in monotone P
[20]. Chien showed without security proof that max(1, n− 2t+ 2) copies of the quantum secret are sufficient to construct a
t-out-of-n quantum secret-sharing scheme [20], [70].
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A. Classical secret-sharing scheme

In this section, we review some basic definitions of the theory of classical secret-sharing schemes.

Definition 18. (Classical secret-sharing scheme [20], [34]) A classical perfect secret-sharing scheme realizing the monotone
function f : {0, 1}n −→ {0, 1} is a pair of functions SS = (Share, (RecP )P⊆[n])

where Share : S × R −→ S[n] and RecP : SP −→ S are deterministic functions satisfying the following properties for all
P ⊆ [n]:
• Correctness: If f(P ) = 1, then for all s ∈ S,

Pr
R←R

[RecP (Share(s;R)P ) = s] = 1.

• Perfect Privacy: If f(P) = 0, then for all secrets s1, s2 ∈ S and share vectors v ∈ SP , we have

Pr
R←R

[Share(s1;R)P = v] = Pr
R←R

[Share(s2;R)P = v] .

Definition 19. (Share size [20]) For a secret-sharing scheme SS defined over the share domains {S1, . . . ,Sn}, the share size,
denoted as size(SS), is given by

size(SS) =
n∑
i=1

⌈log |Si|⌉.

This represents the total number of bits required to encode all shares in the scheme.

Definition 20. (Statistical privacy for classical secrets [20]) A secret-sharing scheme SS that realizes a monotone function f
is said to be ε-statistically private if, for any subset P ⊆ [n] where f(P ) = 0 and for any two secrets s1, s2 ∈ S, the following
holds:

∆(Share(s1;R1)P ,Share(s2;R2)P ) ≤ ε,

where R1 ← R and R2 ← R are independent random variables.

Definition 21. (Post-quantum computational privacy for classical secrets [20]) A secret-sharing scheme SS that realizes a
monotone function f is considered post-quantum computationally private if, for any subset P ⊆ [n] where f(P ) = 0, any two
secrets s1, s2 ∈ S, and any QPT (quantum polynomial-time) adversary {Cλ}λ, the following holds:∣∣∣ Pr

R←R

[
Cλ(Share(s1; 1

λ, R)P ) = 1
]
− Pr
R←R

[
Cλ(Share(s2; 1

λ, R)P ) = 1
]∣∣∣ ≤ negl(λ).

In a (t, n)-threshold secret-sharing scheme, Ogata et al. introduced the concept of security against cheaters [Section 4.1,
[47]]. Building upon this concept, we propose an extension to this definition, termed security against partial cheating, which
serves as a property to defend against potential attacks.

For each participant Pi the share is given by s(a)i =
(
s
(a)
i1
, s

(a)
i2
, . . . , s

(a)
im

)
, for some integer m and is written into two parts,

s
(a)
i =

(
s
(o)
i , s

(c)
i

)
, where s(o)i is the original share part, and s(c)i is the covert share part. Let XS(o) and XS(c) be the random

variable defined over the original and the covert part of the secret spaces in S and V
(a)
i be the random variable induced by

s
(a)
i . Let

supp(V
(a)
i ) = { s(a)i | Pr

(
V

(a)
i = s

(a)
i

)
> 0 }

denote the support of the share vector s(a)i for participant Pi. For a given t-tuple of shares

w(a) =
(
(s

(o)
i1
, s

(c)
i1

), (s
(o)
i2
, s

(c)
i2

), . . . , (s
(o)
it
, s

(c)
it

)
)

in the product space
supp(V

(a)
i1

)× supp(V (a)
i2

)× · · · × supp(V (a)
it

),

we define the partial reconstruction function Sec(o) by

Sec(o)(w(a)) =

{
s(o), if ∃s(o) s.t. Pr

(
XS(o) = s(o) | V (a)

i1
, . . . , V

(a)
it

= w(a)
)
= 1,

⊥, otherwise.
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and

Sec(c)(w(a)) =

{
s(c), if ∃s(c) s.t. Pr

(
XS(c) = s(c) | V (a)

i1
, . . . , V

(a)
it

= w(a)
)
= 1,

⊥, otherwise.

Thus, when the t players provide their correct shares

b =
(
(s

(o)
i1
, s

(c)
i1

), (s
(o)
i2
, s

(c)
i2

), . . . , (s
(o)
it
, s

(c)
it

)
)
,

we have
Sec(p)(b) = (Sec(o)(b),Sec(c)(b)) =

(
s(o), s(c)

)
= s.

Let b denote the honest share tuple:

b =
(
(s

(o)
i1
, s

(c)
i1

), (s
(o)
i2
, s

(c)
i2

), . . . , (s
(o)
it
, s

(c)
it

)
)
.

Now, consider a forged share tuple

b′ =
(
(s

(o)
i1
, s

(c)′

i1
), (s

(o)
i2
, s

(c)′

i2
), . . . , (s

(o)
it
, s

(c)′

it
)
)

with the property that for every j ∈ {1, 2, . . . , t} the original part is unchanged:

s
(o)
ij

in b′ = s
(o)
ij

in b,

while there exists at least one index j such that
s
(c)′

ij
̸= s

(c)
ij
.

We say that the dictator D is partially cheated by the forged tuple b′ if

Sec(p)(b′) ∈ S and Sec(p)(b′) ̸= Sec(p)(b).

That is, although D reconstructs the correct original component s(o), the covert component s(c) is altered due to the substitution
of forged shares.

Definition 22. ( [47]) For a coalition of t players Pi1 , . . . , Pit with covert shares b(c) = (s
(c)
i1
, . . . , s

(c)
it

), define the partial
cheating probability as:

Cheat(p)
(
V

(a)
i1

, . . . , V
(a)
it

)
:= max

b
max
b′

Pr (D is cheated by b′ | Pi1 , . . . , Pit have b) .

B. Quantum erasure-correcting codes

We have used the following description of quantum erasure correcting code, described by Çakan et al. from the paper [20].

Definition 23. (Quantum Erasure Correcting Code(QECC) [20]) A pair of trace-preserving quantum operations, denoted as
QC = (QC.Enc,QC.Dec), is referred to as a quantum erasure correcting code (QECC) over the input space Hinp and the
output space Hout =

⊗
i∈[n]Hi for a subset P ⊆ [n], if for any quantum operation Υ acting on Hout that preserves the identity

on Hi for all i ∈ P , the following condition holds for any quantum state ρ in Hinp:

(QC.Dec ◦Υ ◦ QC.Enc)(ρ) = (ρ⊗ σ)

for some fixed quantum state σ.
If (QC.Enc,QC.DecP ) serves as a Quantum Error-Correcting Code (QECC) for all subsets P ⊆ [n] where a monotone

function f : {0, 1}n −→ {0, 1} satisfies f(P ) = 1, then the collection of operations (QC.Enc, (QC.DecP )P⊆[n]) is said to
realize f as a QECC. The code reconstruction function is defined as follows:

QC.RecP (τ) = QC.Dec(τ ⊗ (|0⟩⟨0|)⊗P ).

A quantum error-correcting code that encodes k q-ary qudits into n q-ary qudits and can recover from up to (d−1) erasures
is referred to as a [[n, k, d]]q code.
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C. Quantum secret-sharing scheme

Secret sharing involves dividing a secret into multiple parts, which are then distributed to different players. Only when these
parts are combined, the original secret can be reconstructed. In a quantum anamorphic secret-sharing scheme, not only would
the secret be protected by quantum-resistant cryptographic methods, but an additional covert secret is encoded into the shares
themselves. This ensures that even if a quantum adversary were to intercept or analyze some of these shares, they would be
unable to detect the existence of the hidden message without the appropriate classical or quantum key.

For a rigorous description about quantum secret-sharing model we refer [20], [45] to the reader.

Definition 24. (No-cloning function [20]) A monotone function f : {0, 1}n −→ {0, 1} is said to satisfy the no-cloning property
and called no-cloning function if, for every subset P ⊆ [n], it holds that f(P ) = 0 while f(P ) = 1.

Let the Hilbert space S be the domain of secret, and the Hilbert spaces H1, . . . ,Hn be the domain of shares of n players.
Let f : {0, 1}n −→ {0, 1} be a no-cloning monotone function.

Definition 25. (Quantum secret-sharing scheme [20]) A quantum secret-sharing (QSS) scheme with perfect privacy that realizes
a monotone function f is defined as a set of trace-preserving quantum operations:

QSS = (Share, (RecP )P⊆[n])

that satisfy the following conditions for all subsets P ⊆ [n]:
• Correctness: If f(P ) = 1, then the pair (Share,RecP ) forms a quantum error-correcting code (QECC) for P , ensuring that
the secret can be reconstructed.
• Perfect Privacy: If f(P ) = 0, then for any two quantum states |ψ1⟩, |ψ2⟩ ∈ S, the marginal distributions over the shares
outside P remain identical, i.e.,

TrP (Share(|ψ1⟩⟨ψ1|)) = TrP (Share(|ψ2⟩⟨ψ2|)).

This property ensures that unauthorized subsets gain no information about the quantum secret.

A quantum secret-sharing scheme (QSS) is considered efficient if both the sharing algorithm (QSS.Share) and the reconstruction
algorithm (QSS.Rec) can be implemented using polynomial-size circuits [20]. Additionally, in efficient schemes, the size of
each share is also polynomially bounded [20].

Definition 26. ( Statistical privacy for quantum secrets [71] [20]) A quantum secret-sharing scheme (QSS) that realizes a
monotone function f is said to be ε-statistically private if, for every subset P ⊆ [n] where f(P ) = 0, and for any two secrets
|ψ1⟩, |ψ2⟩ ∈ S , the following condition holds:

D(TrP (Share(|ψ1⟩⟨ψ1|)),TrP (Share(|ψ2⟩⟨ψ2|))) ≤ ε.

Note that the perfect privacy means here 0-statistical privacy.

Definition 27. (Computational privacy for quantum secrets [20]) A quantum secret-sharing scheme (QSS) that realizes f is
considered computationally private if, for any subset P ⊆ [n] where f(P ) = 0, any two secrets |ψ1⟩, |ψ2⟩ ∈ S, and any QPT
(quantum polynomial-time) adversary {Cλ}λ, the following holds:∣∣Pr [Cλ(TrP (Share(|ψ1⟩⟨ψ1|; 1λ))) = 1

]
− Pr

[
Cλ(TrP (Share(|ψ2⟩⟨ψ2|; 1λ))) = 1

]∣∣ ≤ negl(λ).

Definition 28. (Information ratio of a quantum secret-sharing scheme [34] [20]). If a secret is composed of t qubits then the
information ratio of a quantum secret-sharing scheme is defined by

maxi∈[n] |Si|
t

1) Quantum Anamorphic Secret-Sharing Schemes
In this section, we introduce the notion of an anamorphic secret-sharing. In our proposed mathematical model, there is a
dictator D, who is a passive adversary here, a dealer D who distributes shares to a set of n players according to predefined
access structures, in the presence of the dictator ensuring the correctness and privacy properties of the anamorphic secret-
sharing scheme. The dealer aims to send two messages: an original message and a covert message, to the set of players.
After the encryption of these two messages, combining these two ciphertexts we construct the anamorphic ciphertext which is
computationally indistinguishable from the original ciphertext to the dictator. The dealer now sends the anamorphic ciphertext
to the set of players along with the keys to decrypt those messages.
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The dealer sends the anamorphic ciphertext and the anamorphic key to the set of n players. The authorized set of
players reconstructs the original key and the covert key and then shares the original key with the dictator along with the
anamorphic ciphertext. The dictator extracts the original message from the anamorphic ciphertext and then verifies the original
message, that he wanted to send. The dictator cannot distinguish between original and anamorphic ciphertexts, because of the
indistinguishability property and using the same decryption algorithm DOM that can be applied to both original and anamorphic
ciphertext to extract the same original message from either of the ciphertexts.

Let S be a secret space, and let s, ŝ ∈ S be the original and covert secrets, respectively. Let S1, · · · ,Sn be the domain of
shares of the players. Let k(o), k(a) ∈ K be the normal or the original key and the anamorphic key, respectively. The anamorphic
key k(a) = (k(o), k(c)) consists of both the original and the covert keys. Let ASS.Share,ASS.RecOriginal

P⊆[n] ,ASS.Rec
Covert
P⊆[n] denote

the share function for the combined anamorphic message, the normal reconstruction function to reconstruct the original message,
and the reconstruction function to recover the covert message, respectively.

We define two encryption schemes:
• Original message encryption scheme:

Enc(o) :S × K(o) → C(o)

(s, k(o)) 7−→ c(o)

with corresponding decryption function Dec(o).
• Covert message encryption scheme:

Enc(c) :S × K(c) −→ C(c)

(ŝ, k(c)) 7−→ c(c)

with corresponding decryption function Dec(c).
We introduce an efficiently computable embedding function to construct the anamorphic message:

Θ : C(o) × C(c) −→ C(a)

which produces an anamorphic ciphertext c(a) = Θ(c(o), c(c)). Additionally, we assume the existence of an efficient extraction
algorithm:

EOC : C(a) −→ C(o)

such that for all c(o) and c(c), we have:
EOC(Θ(c(o), c(c))) = c(o).

Let the anamorphic key be defined as:
k(a) = (k(o), k(c)) ∈ K(o) × K(c),

and let R be a randomness space with distribution µ. Define K = K(a) ×R, where K(o) × K(c) = K(a).

For b ∈ {0, 1}, we define c(b), where c(0) = c(o) defines the original ciphertext and c(1) = c(a) defines the anamorphic
ciphertext.

Definition 29. (Anamorphic Secret Sharing(ASS)) An anamorphic secret-sharing scheme(ASS) with perfect privacy realizing
the monotone function f : {0, 1}n −→ {0, 1} is formally defined as a tuple ΣASS = (ASS.Share,ASS.RecAMP⊆[n]), where
ASS.RecAMP⊆[n] = (ASS.RecOriginal

P⊆[n] ,ASS.Rec
Covert
P⊆[n]). Each of the deterministic functions is defined as follows:

• Anamorphic Share Distribution:

ASS.Share :S × S × K −→ C(a) × S[n].

(s, ŝ, κ(a)) 7−→
(
c(a), s

(a)
1 , · · · , s(a)n

)
where K := K × R, with κ(a) = (k(a), r) with r randomly chosen from a distribution µ : R −→ R, and κ(a) = (κ(o), κ(c))
consists of both original and covert parts. Using a secret-sharing scheme with access structure f , distribute the original key
k(o) into shares {s(o)i }ni=1 and the covert key k(c) into shares {s(c)i }ni=1. Each player i receives the key share s(a)i = (s

(o)
i , s

(c)
i ).

• Reconstruction of the original share: For any authorized subset P ⊆ [n] with f(P ) = 1, there exist deterministic
reconstruction functions, Rec

(keyo)
P , which is the original key reconstruction function, and ASS.RecP that reconstruct the

original secret s, is defined by the following commutative diagram:
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Rec
(keyo)
P :SP −→ K(o)

C(a) × SP C(a) × K(o)

S

Rec
(keyo)
P

Dec(o) ◦ Rec
(keyo)
P

Dec(o)

where Dec(o) refers to the decryption of the original message algorithm, Rec(keyo)P (c(a), s
(o)
P ) = (c(a), k(o)), Dec(o)(c(a), k(o)) =

s and we define RecOriginal
P⊆[n] := Dec(o) ◦ Rec(keyo)P⊆[n] .

• Reconstruction of the covert share: For any authorized subset P ⊆ [n] with f(P ) = 1, there exist deterministic covert
key reconstruction function Rec

(keyc)
P and consequently, ASS.RecCovertP that reconstructs the covert secret ŝ, is defined by the

following commutative diagram:

Rec
(keyc)
P : SP −→ K(c)

C(a) × SP C(c) × K(c)

S

ECC◦Rec(keyc)P

Dec(c) ◦ ECC◦Rec(keyc)P

Dec(c)

where Dec(c) refers to the decryption of the covert message algorithm, ECC ◦ Rec(keyc)P (c(a), s
(c)
P ) = (c(a), k(c)). Let

ECC : C(a) −→ C(o)

be the deterministic covert ciphertext extraction algorithm and ECC(c(a)) = c(c)). Then, Dec(c)(c(c), k(c)) = ŝ, and we define
RecCovertP := Dec(c) ◦ ECC ◦ Rec(keyc)P .

An anamorphic secret-sharing scheme ΣASS must satisfy the following properties:
• Correctness:
• Correctness for original secret: If f(P ) = 1, then for all s ∈ S,

Pr
R←R

[
RecOriginal

P (Share(c(a), κ(o))P = s
]
= 1.

• Correctness for anamorphic secret: If f(P ) = 1, then for all s, ŝ ∈ S,

Pr
R←R

[
RecCovertP (Share(c(a), κ(c))P = ŝ

]
= 1.

• Perfect Privacy:
• Privacy for the anamorphic secret: If f(P ) = 0, the shares reveal no information about the secrets, the anamorphic keys

as well as anamorphic ciphertexts (s, s′). For all k(a)1 , k
(a)
2 ∈ K,

Pr
R←R

[
(Share(κ

(a)
1 )P = v

]
= Pr
R←R

[
(Share(κ

(a)
2 )P = v

]
• Condition for covert reconstruction: If f(P ) = 1, then the probability of reconstructing the covert secret ŝ using only
original key shares κ(o), given that s has been successfully reconstructed using the original key shares κ(o), is zero:

Pr
R←R

[
ASS.RecCovertP (ASS.Share(c(a), κ(o))P ) ̸= ⊥

]
= 0.

• Indistinguishability of original and anamorphic ciphertexts: We now describe a security game in which an adversary (or
dictator) D is given access to shares produced from either an original encryption or anamorphic encryption. Using the shared
extraction algorithm (EOC), the players extract the original key shares(possibly based on ordering) and the original ciphertext
c(o) from the anamorphic ciphertext c(a), defined as

EOC : C(a) −→ C(o)
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which, on any anamorphic ciphertext c(a), outputs the original ciphertext c(o) embedded within c(a) and

EOK : {s(a)i }
n
i=1 −→ {s

(o)
i }

n
i=1

is a deterministic extraction algorithm that extracts original key shares from anamorphic key shares possibly based on ordering.

Note that the challenger does not provide adversary access to extraction oracles EOC and EOK.

Here we define the Real game and the Anamorphic game as follows:

• Challenge Oracle O:
1) The challenger selects a random bit b ∈ {0, 1}.
2) If b = 0 (Real Game(RealGa(λ,D)):

a) Geno(1
λ): Generate the original key k(o).

b) Compute c(o) ← Enc(o)(s, k(o)).
c) Set the challenge ciphertext c∗ := c(o) and generate shares

{
(c(o), s

(o)
i )

}n
i=1

.

3) If b = 1 (Anamorphic Game(AnamorphicGa(λ,D))):
a) Gena(1

λ): Generate the anamorphic key k(a) = (k(o), k(c)).
b) Compute

c(a) ←− Θ
(
c(o), c(c)

)
.

c) Set c∗ := c(a) and generate shares
{
(c(a), s

(o)
i )

}n
i=1

.

The adversary D is given access to the challenge shares and outputs a guess b′ ∈ {0, 1}.

Remark 2. Here we want to emphasize that here the original ciphertext is extracted from the anamorphic ciphertext and
original key shares are extracted from the anamorphic key shares, then in both shares the original key shares are the same
and the challenge is to distinguish the original and anamorphic ciphertexts for the adversary. Our main goal is to hide the
covert ciphertext so that the adversary cannot suspect that there is a covert message within.

We define the advantage of D in distinguishing the Real Game and the Anamorphic Game as

AdvAME
D (λ) =

∣∣∣Pr[RealGa(λ,D)]− Pr
[
AnamorphicGa(λ,D)

]∣∣∣ (107)

=
∣∣∣Pr[(D outputs 1) ∧ (b = 1)

]
− Pr

[
(D outputs 1) ∧ (b = 0)

]∣∣∣. (108)

The scheme satisfies the indistinguishability of original and anamorphic ciphertexts property if for all PPT adversaries D

AdvAME
D (λ) < negl(λ).

In other words, an adversary (or dictator) is unable to distinguish (with a non-negligible advantage) whether the provided
shares originated from an original encryption or from anamorphic encryption.

2. To reconstruct the original message, the reconstruction procedure applied either to the original ciphertext or to the
anamorphic ciphertext will produce the same original message

RecOriginal
P⊆[n] (Share(c

(a), κ(o)) = RecOriginal
P⊆[n] (Share(c

(o), κ(o)) = s,

so that the dictator cannot distinguish between c(o) and c(a), which one is the original ciphertext.

Remark 3. Note that the definition of the anamorphic secret-sharing we described here is mainly based on classical key
secret-sharing SS Definition 18. We will interchangeably use classical secret-sharing SS while defining the secret-sharing
algorithm and whenever we want to emphasize the classical key distribution separately.
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VII. THE COMPILER

The following compiler model has been discussed by Çakan et al. in the paper [20]. This compiler can perfectly encrypt
a quantum state using classical keys. Using similar ideas with classical secret-sharing scheme of Krawczyk [72] and using
some techniques from [73], [74], Çakan et al. constructed a general compiler combining classical secret-sharing scheme and
quantum erasure-correcting code [Theorem 9., Page 20, [20]]. In our paper, we have generalized the construction for anamorphic
quantum ciphertext using multiple keys and we have also proved the correctness and perfect privacy properties accordingly
with some additional techniques.

Let f : {0, 1}n −→ {0, 1} be a monotone function and SS be the classical secret-sharing realizing f , and QECC QC =
(QC.Enc,QC.Rec) with n components, and for all x ∈ {0, 1}n realizing some monotone function f ′(x) ≥ f(x) which
we have access to. The quantum erasure correcting code operations QC corrects erasures in the complement of all the sets
P ⊆ [n] such that f ′(P ) = 1 [20]. Together with a classical secret-sharing scheme SS the compiler implements a no-cloning
monotone function f with a quantum error correcting code QC that achieves a suitable no-cloning monotone function f ′ ≥ f ,
to establish a quantum secret sharing scheme QSS that realizes f [20]. To construct quantum anamorphic secret-sharing ΣQASS,
we want to establish QASS.Share algorithm to share the quantum states Mo and Mc and using The reconstruction procedure
QASS.RecAMP⊆[n] the set of players P ⊆ [n] reconstructs both the state Mo and Mc utilizing the decoding process for QC and
the algorithm DOM and DCM.

We now describe the quantum anamorphic secret-sharing algorithm:

Algorithm 6 Quantum Anamorphic Secret Sharing (QASS)

1: Input: Anamorphic quantum state M (1)
f and players P1, . . . , Pn.

2: Output: Shares (s
(a)
i , Ei) for each player Pi.

3: Step 1: Dealer Encrypts the Quantum State:
4: Dealer runs the Quantum Anamorphic Encryption algorithm QAE to create the anamorphic quantum state: M (1)

f .
5: Step 2: Share Generation:
6: Share the anamorphic key: Share the anamorphic key k(a) ∈ K using SS.Share which yields the classical shares

(s
(a)
1 , . . . , s

(a)
n ), that is,

(s
(a)
1 , . . . , s(a)n ) = SS.Share(k1, k2, k3, k4, k5, k6).

7: Step 3: Encode the anamorphic quantum state:
8: Encode the anamorphic quantum state M (1)

f using QC.Enc, which yields entangled quantum systems (E1, . . . , En).
9: Step 4: Distribution of Shares:

10: Set (s(a)i , Ei) to be the final share of the player Pi.

For convenience of writing we have written the previous anamorphic key k(a) = (k, k′, d1, d2, l, η) as (k1, k4, k2, k5, k3, k6)
in the respective order, where k(o) = (k1, k2, k3) is the original key and k(c) = (k4, k5, k6) is the covert key.

Let J ⊂ Z+ be a finite set containing η. Let f, f ′ : {0, 1}n −→ {0, 1} be no-cloning monotone functions with the property
that f ′ ≥ f . We define ξ

M
(1)
f

= QC.Enc(M
(1)
f ) and for each i = 1, . . . , 6, define τ(ki,ri) = |SS.Share(ki, ri)⟩⟨SS.Share(ki, ri)|,

τk′i,r = |SS.Share(k
′
i, r
′)⟩⟨SS.Share(k′i, r′)| as the sharing of the keys ki, k′i with the random inputs ris respectively.

The scheme QASS can be defined as follows:

QASS.Share(M
(1)
f ) =

∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
r1,r2,r3,r4,r5,r6∈R

∑
k3∈Sym (2d1+1)

∑
k6∈J

1

24d1+2d2+2

1

|R|6
1

| J |
1

2d1+1!

[
6⊗
i=1

τ(ki,ri) ⊗ ξM(1)
f

]
. (109)

and

QASS.RecOriginal
P⊆[n] (σ) = DOM(QC.RecP⊆[n](Trkeya(σ))),SS.RecP⊆[n](Trstate(σ)),

where keya corresponds to anamorphic key and

QASS.RecCovertP⊆[n](σ) = DCM(QC.RecP⊆[n](Trkeya(σ))),SS.RecP⊆[n](Trstate(σ)),
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where Trkeya and Trstate represent the process of tracing out the subsystem associated with the shares of the key and the
shares of the quantum secret, respectively. In this framework, the classical key shares are represented as qubits in basis states.
However, they may also be preserved as classical shares without altering the scheme.

We describe the quantum anamorphic secret reconstruction algorithm as follows:

Algorithm 7 Quantum Anamorphic Secret Reconstruction (QASS.Rec)

1: Input: Shares (s
(a)
i , Ei) of each player Pi from a set of authorized players P ⊆ [n].

2: Output: Reconstructed original message Mo and covert message Mc.
3: Step 1: Reconstruct the Classical Shares:
4: Compute the classical shared components using classical secret-sharing(SS) reconstruction:

SS.RecP⊆[n]

(
(s

(a)
i )i∈P

)
= (k1, k2, k3, k4, k5, k6).

5: Step 2: Reconstruct the Anamorphic State:
6: Compute the anamorphic quantum state using quantum reconstruction:

QC.RecP ((Ei)i∈P ) =M
(1)
f .

7: Apply the reconstruction algorithm QASS.RecOriginal
P⊆[n] to reconstruct the original message.

8: Apply the reconstruction algorithm QASS.RecCovertP⊆[n] to reconstruct the covert message.
9: Step 7: Output:

10: Output the reconstructed original message Mo and the covert message Mc.

Theorem 14. Let f, f ′ : {0, 1}n −→ {0, 1} be no-cloning monotone functions satisfying f ′ ≥ f . Let QC = (QC.Enc, (QASS.RecAMP⊆[n]))
denote a quantum error-correcting code (QECC) that implements f ′, and let SS = (SS.Share, (SS.RecP )P⊆[n]) represent a
classical secret sharing scheme classified as [post-quantum computational, statistical, perfect] that realizes f . Thus, QASS
represents a [computational, statistical, perfect] quantum anamorphic secret sharing scheme for f , with the

total share size for the anamorphic secret is = size(QC.Enc(M
(1)
f ))+(4d1+2d2+1)+6⌈log |R|⌉+⌈log |J |⌉+⌈log

(
2d1+1!

)
⌉).

The difference between the anamorphic share size and the original share size, along with anamorphic key shares, is

size
(
QASS.Share(M

(1)
f

)
− size

(
QASS.Share(M

(0)
f )
)
= 0.

Moreover, QASS exhibits efficient sharing and reconstruction protocols whenever QC and SS do.

Correctness and Privacy:

Theorem 15. Let P ⊆ [n] be an authorized set of players (i.e., f(P ) = 1). Then the reconstruction procedure QASS.RecP (σ)

applied to the sharing state QASS.Share(M
(1)
f ) correctly reconstructs the original message Mo and the covert message Mc.

In other words, if

QASS.RecP (σ) :=
(
DOM

(
QC.RecP (Trkeya(σ))

)
, DCM

(
QC.RecP (Trkeya(σ))

))
,

then
QASS.RecP (σ) = (Mo,Mc),

where Mo is the original message and Mc is the covert message.

Proof. We assume that both the classical secret sharing scheme SS and the quantum encoding scheme QC satisfy their correct-
ness properties. The scheme distributes classical shares s(a)i for each i ∈ [n] corresponding to the keys (k1, k2, k3, k4, k5, k6).
By the correctness of the classical secret sharing scheme SS, if P ⊆ [n] is an authorized set (i.e., f(P ) = 1), then

SS.RecP
(
{s(a)i }i∈P

)
= (k1, k2, k3, k4, k5, k6). (110)

The overall sharing state is given by

σ =
∑
k⃗, r⃗

α(k⃗, r⃗)

(
6⊗
i=1

τ(ki,ri)

)
⊗ ξ

M
(1)
f

,
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where k⃗ = (k1, k2, k3, k4, k5, k6), r⃗ = (r1, . . . , r6) and the normalization constant is

α(k⃗, r⃗) =
1

24d1+2d2+2

1

|R|6
1

|J |
1

(2d1+1)!
.

The subsystem corresponding to the classical key shares is denoted by keya. By linearity of the trace and by the independence
of the classical and quantum parts, we have

Trkeya(σ) = ξ
M

(1)
f

. (111)

The normalization factors in the definition of σ guarantee that
∑
k⃗, r⃗ α(k⃗, r⃗) = 1, so that the partial trace exactly recovers the

quantum component ξ
M

(1)
f

.

Since ξ
M

(1)
f

= QC.Enc(M
(1)
f ), the correctness of the quantum encoding scheme QC implies that the reconstruction procedure

applied to the quantum subsystem yields the secret, i.e.,

QC.RecP⊆[n]

(
Trkeya(σ)

)
= QC.RecP⊆[n]

(
ξ
M

(1)
f

)
=M

(1)
f . (112)

The decoding maps DOM and DCM are applied to the reconstructed quantum state M (1)
f to extract the original message

Mo and the covert message Mc, respectively. That is,

DOM
(
M

(1)
f

)
=Mo,

DCM
(
M

(1)
f

)
=Mc.

(113)

Hence, the overall reconstruction procedure yields

QASS.RecP (σ) =
(
DOM

(
QC.RecP (Trkeya(σ))

)
, DCM

(
QC.RecP (Trkeya(σ))

))
=
(
DOM

(
M

(1)
f

)
, DCM

(
M

(1)
f

))
= (Mo,Mc).

(114)

proving the correctness of the quantum anamorphic secret-sharing scheme.

Theorem 16. The above quantum anamorphic secret-sharing scheme has perfect privacy.

Proof. To prove the correctness of the secret-sharing scheme, we show the existence of a reconstruction function. Let P ⊆ [n]
with f(P ) = 0, that is P is an unauthorized subset of players. Then,

TrP (QASS.Share(M
(1)
f ))

= TrP

[ ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
r1,r2,r3,r4,r5,r6∈R

∑
k3∈Sym (2d1+1)

∑
k6∈J

1

24d1+2d2+2

1

|R|6
1

| J |
1

(2d1+1)!

[
6⊗
i=1

τ(ki,ri) ⊗ ξM(1)
f

]]
=

∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

∑
k6∈J

TrP

[
1

24d1+2d2+2

1

(2d1+1)!

1

| J |
ξ
M

(1)
f

] 6⊗
i=1

TrP

[∑
ri∈R

1

|R|
τ(ki,ri)

]

=
∑

k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

∑
k6∈J

TrP

[
1

24d1+2d2+2

1

(2d1+1)!

1

| J |
ξ
M

(1)
f

]
⊗ TrP (σP )

= TrP

[
QC.Enc

( ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

∑
k6∈J

1

24d1+2d2+2

1

(2d1+1)!

1

| J |
M

(1)
f

)]
⊗ TrP (σP )

= TrP (QC.Enc(σ′P ))⊗ TrP (σP ). (115)

Since the density matrix σP is only dependent upon the set of players P , the unauthorized set of players P cannot reconstruct
the secret.
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Next, We will show that if the SS is ϵ
12 -statistically private then the QASS is ϵ-statistically private. For any two keys

k, k′ ∈ {0, 1}2d1 × {0, 1}2d2 × {1, . . . , 2d1+1} × {1, . . . , 2d1+1} × Sym (2d1+1) × J ; where k = (k1, k4, k2, k5, k3, k6) and
k′ = (k′1, k

′
4, k
′
2, k
′
5, k
′
3, k
′
6).

For each i = 1, . . . , 6, the partial trace over subsystem P reduces to

TrP

(∑
ri∈R

1

|R|
τ(ki,ri)

)
=
∑
vi

p(i)vi |vi⟩ ⟨vi| , (116)

where for each v = (v1, . . . , v6) ∈ SP , p(i)vi = Prri←R[Share(ki; ri)P = vi] and p
(i)′

vi = Prri←R[Share(k
′
i; ri)P = vi] are

defined to be the marginal probability distributions induced by the secret sharing process for ki and k′i on subsystem P and
|vi⟩ ⟨vi| represents the basis state corresponding to vi.

Then,

TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(ki,ri)

)]
=
∑
v∈SP

(
6∏
i=1

p(i)vi

)[
6⊗
i=1

|vi⟩ ⟨vi|

]
=
∑
v∈SP

(
6∏
i=1

p(i)vi

)
|v⟩ ⟨v| , (117)

where
⊗6

i=1 |vi⟩ ⟨vi| = |v⟩ ⟨v| and we get the following relation between the trace distance and the total variation distance

D

(
TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(ki,ri)

)]
,TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(k′i,ri)

)])
= D

(∑
v∈SP

6∏
i=1

p(i)vi |v⟩ ⟨v| ,
∑
v∈SP

6∏
i=1

p(i)
′

vi |v⟩ ⟨v|

)
(118)

≤ ∆

(
{

6∏
i=1

p(i)vi }v∈SP
, {

6∏
i=1

p(i)
′

vi }v∈SP

)
, (119)

which we got using the Lemma 22. (Property v.).

Now we prove the privacy of the QASS. Let P ⊆ [n] be an unauthorized subset such with f(P ) = 0. For any two secret states
M

(1)
f and M (1)′

f . Our argument is a hybrid one. First, we will contend that the perfect privacy of the one-time pad, along with

Lemma 5, ensures that the composite shares of P for two secrets M (1)
f and M (1)′

f will be computationally indistinguishable.

We define sharing of a random anamorphic key by

κ(a) =
∑

k′1∈{0,1}2d1

∑
k′4∈{0,1}2d2

∑
k′2∈{1,...,2d1+1}

∑
k′5∈{1,...,2d1+1}

∑
r1,r2,r3,r4,r5,r6∈R

∑
k′3∈Sym (2d1+1)

∑
k′6∈J

1

24d1+2d2+2

1

|R|6
1

| J |
1

2d1+1!

[
6⊗
i=1

τ(k′i,ri)

]
. (120)

and we define the hybrids

Ψ1 = TrP

[( ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
ξ
M

(1)
f

)
⊗ κ(a)

]
(121)

and

Ψ2 = TrP

[( ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
ξ
M

(1)′
f

)
⊗ κ(a)

]
(122)

Our goal is to show D(Ψ1,Ψ2) = 0.

Subsequently, we will demonstrate that composite shares of the same secret are within a ϵ
2 -close trace distance when the shares

of the key are replaced with shares of a random key, as opposed to when they are not replaced. We will show

D
(
TrP

(
QSS.Share(M

(1)
f )
)
,Ψ1

)
≤ ϵ

2
(123)

and



COMPUTATIONAL QUANTUM ANAMORPHIC ENCRYPTION AND ANAMORPHIC SECRET SHARING 39

D(TrP (Ψ2,QSS.Share(M
(1)′

f ))) ≤ ϵ

2
(124)

Then using the triangle inequality we will show that

D(TrP (QASS.Share(M
(1)
f )),TrP (QASS.Share(M

(1)′

f ))) ≤ ϵ (125)

Using the [Property (ii), Lemma 22] and by distributing the partial trace we get

D(Ψ1,Ψ2) = D

(
TrP

[ ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym(2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
ξ
M

(1)
f

]
,

TrP

[ ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym(2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
ξ
M

(1)′
f

])
(126)

Therefore, when the key is chosen uniformly random, according to Lemma 5, the input is perfectly hidden by the quantum
one-time pad and there exists a state ϑ such that

D(Ψ1,Ψ2) = D(TrP (QC.Enc(ϑ)),QC.Enc(ϑ))) = 0 (127)

By the [Properties v. and iv., Lemma 22], we get,

D(Ψ1,TrP (QASS.Share(M
(1)
f )))

= D

( ∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
TrP (ξM(1)

f

)⊗ TrP (κ
(a)),

∑
k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

1

24d1+2d2+2

1

(2d1+1)!
TrP (ξM(1)

f

)⊗ TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(ki,ri)

)])

≤
∑

k1∈{0,1}2d1

∑
k4∈{0,1}2d2

∑
k2∈{1,...,2d1+1}

∑
k5∈{1,...,2d1+1}

∑
k3∈Sym (2d1+1)

1

24d1+2d2+2

1

(2d1+1)!

D

(
TrP (κ

(a)),TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(ki,ri)

)])
(128)

By using the Lemma 22 (Property i.), we get

D(Ψ1,TrP (QASS.Share(M
(1)
f )))

≤
∑

k1,k′1∈{0,1}2d1

∑
k4,k′4∈{0,1}2d2

∑
k2,k′2∈{1,...,2d1+1}

∑
k5,k′5∈{1,...,2d1+1}

∑
k3,k′3∈Sym (2d1+1)

1

44d1+2d2+2

1

((2d1+1)!)2
D

(
TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(k′i,ri)

)]
,TrP

[
6⊗
i=1

(∑
ri∈R

1

|R|
τ(ki,ri)

)])
≤

∑
k1,k′1∈{0,1}2d1

∑
k4,k′4∈{0,1}2d2

∑
k2,k′2∈{1,...,2d1+1}

∑
k5,k′5∈{1,...,2d1+1}

∑
k3,k′3∈Sym (2d1+1)

1

44d1+2d2+2

1

((2d1+1)!)2
∆

(
{

6∏
i=1

p(i)vi }v∈SP
, {

6∏
i=1

p(i)
′

vi }v∈SP

)
(129)

If P and P ′ are two probability distributions over a finite set SP , then the statistical distance between two probability
distributions P and P ′ is

∆(P, P ′) =
1

2

∑
v∈SP

|pv − p′v|. (130)

Now, considering two product distributions formed from marginals
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P =

{
6∏
i=1

p(i)vi

}
v∈SP

, P ′ =

{
6∏
i=1

p(i)
′

vi

}
v∈SP

.

we get

∆(P, P ′) =
1

2

∑
v∈SP

∣∣∣∣∣
6∏
i=1

p(i)vi −
6∏
i=1

p(i)
′

vi

∣∣∣∣∣ . (131)

Using the telescoping expansion of the difference

6∏
i=1

p(i)vi −
6∏
i=1

p(i)
′

vi =

6∑
j=1

(
j−1∏
i=1

p(i)
′

vi

)(
p(j)vj − p

(j)′

vj

) 6∏
i=j+1

p(i)vi

 , (132)

we get ∣∣∣∣∣
6∏
i=1

p(i)vi −
6∏
i=1

p(i)
′

vi

∣∣∣∣∣ ≤
6∑
j=1

∣∣∣∣∣∣
j−1∏
i=1

p(i)
′

vi · (p
(j)
vj − p

(j)′

vj ) ·
6∏

i=j+1

p(i)vi

∣∣∣∣∣∣ (by the triangular inequality)

≤
6∑
j=1

|p(j)vj − p
(j)′

vj | (since each probability lies in [0, 1]). (133)

Summing over all elements of SP we get the statistical distance

∆(P, P ′) =
1

2

∑
v∈SP

∣∣∣∣∣
6∏
i=1

p(i)vi −
6∏
i=1

p(i)
′

vi

∣∣∣∣∣
≤ 1

2

∑
v∈SP

6∑
j=1

|p(j)vj − p
(j)′

vj |

=
1

2

6∑
j=1

∑
v∈SP

|p(j)vj − p
(j)′

vj | (as both sums are finite)

=

6∑
j=1

∆(p(j), p(j)
′
). (134)

Given for each j = 1, . . . , 6, ∆(p(j), p(j)
′
) ≤ ϵ

12 , for some ϵ > 0, we have

∆(P, P ′) = ∆

{ 6∏
i=1

p(i)vi

}
v∈SP

,

{
6∏
i=1

p(i)
′

vi

}
v∈SP

 ≤ 6
( ϵ

12

)
=
ϵ

2
. (135)

This is the statistical distance between the classical sharing of keys k, k′. Therefore, invoking ϵ
12 -statistical privacy of SS and

Equation 129, we get

D(Ψ1,TrP (QASS(M
(1)
f ))) ≤ ϵ

2
. (136)

In a similar way we can prove that
D(Ψ2,TrP (QASS(M

(1)′

f ))) ≤ ϵ

2
. (137)

Therefore,

D(TrP (QASS.Share(M
(1)
f )),TrP (QASS.Share(M

(1)′

f )))

≤ D(Ψ1,TrP (QASS(M
(1)
f ))) +D(Ψ1,Ψ2) +D(Ψ2,TrP (QASS(M

(1)′

f )))

≤ ϵ

2
+ 0 +

ϵ

2
= ϵ (138)

Since ϵ > 0 is arbitrary, D(TrP (QASS.Share(M
(1)
f )),TrP (QASS.Share(M

(1)′

f ))) = 0. Hence, the quantum anamorphic secret
sharing scheme has perfect privacy.
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Following the proof idea from Theorem 9., page 22, in the paper [20], we can prove the computational privacy similarly by
replacing the trace distance with the quantum advantage pseudometric AdvF (ρ, σ) 4, and properties in Lemma 23.

It is important to note that this compiler can be extended to accommodate states of any arbitrary dimension [20]. It is
essential to assume that f ′, and consequently f , adheres to the no-cloning property f(P ) = 1 =⇒ f(P ) = 0, so that an
appropriate QECC can be applied [20]. As in the paper [20] Çakan et al. noted that we can take any quantum erasure-correcting
code QC realizing any monotone function f ′ with f ′ ≥ f , and this means even when we do not know efficient QECCs for f ,
we may take some f ′ ≥ f to use an efficient QECC.

Let T tn be the t-out-of-n threshold function such that T tn(P ) = 1 iff | P |≥ t, then T tn ≥ f . As we have seen above choosing
a correct f ′ is important and here for the choice of threshold function, we may take f ′ = T tn [20].

The following results are from the paper [20] from Section 5. and Section 6. These results are applicable in our work and
the share sizes can be computed based on these results. You have included them to mention the existing works on existence
of post quantum computational classical secret-sharing scheme realizing f and construction of f ′.

We use the compiler we have constructed to design efficient computational quantum anamorphic secret-sharing schemes.
The following lemma is due to Yao [37] and Cleve, Gottesman, and Lo [75].

Lemma 17. ( [37], [75]) If f belongs to monotone P, then an efficient post-quantum computational classical secret-sharing
scheme realizing f can be constructed, assuming the existence of post-quantum secure one-way functions.

Lemma 18. (Quantum Shamir secret sharing [76]) For any t > n/2, there exists an efficient perfect quantum secret sharing
scheme that realizes T tn with a share size of O(n log n).

The following theorem is due to Çakan et al..

Theorem 19. ( [20]) If f is a heavily monotone function within monotone P, then an efficient computational quantum
secret-sharing scheme can be constructed to realize f , assuming the existence of post-quantum secure one-way functions.

In the proof [Theorem 11., Page 25., [20]] for t = ⌊n2 ⌋+ 1, f ′ = T tn is chosen for which T tn ≥ f , when f is heavy.

Definition 30. ( [20]) A monotone function f is said to be in mNP if the corresponding language L = {x ∈ {0, 1}n | f(x) = 1}
is in NP.

Let n ∈ Z+ be a positive integer representing the number of players. Define S as the Hilbert space corresponding to the
secret space. Let H1, . . . ,Hn be Hilbert spaces representing the share spaces for the n players. Consider f : {0, 1}n −→ {0, 1}
as a no-cloning monotone function that characterizes a language L ∈ mNP, and let Y be a polynomial-time verifier for L.

Anamologous to the definition of the quantum secret-sharing(QSS) in mNP from [Section 6, Page 26., [20]], we can define
the QASS too.

Definition 31. ( [20]) A quantum anamorphic secret-sharing scheme (QASS) for mNP that realizes an access function f is
defined as a set of trace-preserving quantum operations:

ΣmNP
QASS = (QASS.Share, (QASS.RecAMP⊆[n]))

that satisfy the following conditions for all subsets P ⊆ [n]:
• Correctness: If f(P ) = 1, then for any valid witness w such that Y(P,w) = 1, the reconstruction process ensures that if
ρP represents the shares held by the subset P , then

RecP (ρP , P, w) = |ψ⟩.

• Privacy: If f(P ) = 0, then for any quantum states |ψ1⟩, |ψ2⟩ ∈ S and for any quantum polynomial-time (QPT) adversary
{Cλ}λ, the following holds:

|Pr
[
C(TrP (Share(|ψ1⟩⟨ψ1|; 1λ))) = 1

]
− Pr

[
C(TrP (Share(|ψ2⟩⟨ψ2|; 1λ))) = 1

]
| ≤ negl(λ).

Lemma 20. ( [39]) If f ∈ mNP, there is an efficient post-quantum computational classical secret-sharing scheme realizing f
based on the existence of post quantum secure witness encryption for NP and one-way functions.

The following theorem is proved by Çakan et al. [Section 6, Page 26, Theorem 12] proving the existence of a QSS for every
heavy function in mNP.

Theorem 21. [20] For any heavy function f : {0, 1} −→ {0, 1} belonging to mNP, there exists a computational QSS that
realizes f with size(QSS) bounded above by poly(n). This construction relies on the existence of post-quantum secure witness
encryption for NP and the existence of one-way functions.
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Consequently, the existence of ΣmNP
QASS can be shown easily by exactly following and extending the compiler, as we have

constructed in Theorem 14 with similar f ′ = T ⌊
n
2 ⌋ + 1 [Theorem 12., Page 26, [20]].

VIII. DISCUSSIONS

A. Qubit Requirements and Entropy Computations

• Total number of qubits: The anamorphic ciphertext M (1)
f and the original ciphertext M (o)

f , both resides in the Hilbert space
(C2)⊗(d1+1). Therefore the anamorphic encryption requires (d1 + 1) qubits. Processing M

(1)
f also requires (d1 + 1) qubits.

Extracted messages Mo and Mc use d1 and d2 qubits, respectively, but the decryption circuit operates on (d1 + 1) qubits.

• Mutual informations, von-Neumann entropy and relative entropy: We have defined the original ciphertext M (0)
f =

σlM
(0)
a σ†l , where

M (0)
a =

(
1
2M

′
o 0

0 1
2M

′
o

)
.

Because σl is unitary, the spectrum of M (0)
f is unchanged.

let {λi}2
d1

i=1 be the eigenvalues of the original quantum density matrix Mo and since M ′o is obtained by using QOTP, the
eigenvalues of the M ′o is same as the eigenvalues of Mo.

Thus the von Neumann entropy of M (0)
f is

S(M
(0)
f ) = −

2d1∑
i=1

[
2
(1
2
λi

)
log
(1
2
λi

)]

= −
2d1∑
i=1

λi

[
log(λi)− log 2

]

= −
2d1∑
i=1

λi log λi +

2d1∑
i=1

λi

= S(M ′o) + 1, (sinceTr(Mo) = 1).

Therefore, S(M (0)
f ) = S(M ′o) + 1

We compute S(M
(1)
f ) for a particular case, assuming that both M ′o and M ′′c are are simultaneously diagonalizable. Let

{µi}2
d1

i=1 be the eigenvalues of the embedded covert quantum density matrix M ′′c .
Thus for each i = 1, . . . , 2d1+1, we get pair of eigenvalues of M (1)

f as
{

1
2λi ±

1
η µi

}
, since Mo is strictly positive-definite.

Then,

S(M
(1)
f ) = −

2d1+1∑
i=1

[(1
2
λi +

1

η
µi

)
log
(1
2
λi +

1

η
µi

)
+
(1
2
λi −

1

η
µi

)
log
(1
2
λi −

1

η
µi

)]
.

As QOTP encryption is information-theoretically secure. In other words, if the keys are unknown then the ciphertext reveals
no information about the underlying plaintext. In our construction the states M ′o and M ′c are encrypted by independent random
QOTP keys, so that without knowledge of the key one has

I(Mo;M
(1)
f ) = 0 and I(Mc;M

(1)
f ) = 0.

We now compute the quantum relative entropy for a particular case, under the same assumption that M ′o and M ′′c are
simultaneously diagonalizable

S(M
(1)
f ∥M

(0)
f ) =

2d1+1∑
i=1

[(1
2
λi +

1

η
µi

)
log

1
2λi +

1
η µi

1
2λi

+
(1
2
λi −

1

η
µi

)
log

1
2λi −

1
η µi

1
2λi

]

=

2d1+1∑
i=1

[(1
2
λi +

1

η
µi

)
log
(
1 +

2µi
η λi

)
+
(1
2
λi −

1

η
µi

)
log
(
1− 2µi

η λi

)]
.

Let xi = 2µi

η λi
, then

S(M
(1)
f ∥M

(0)
f ) =

2d1+1∑
i=1

1

2
λi

[
(1 + xi) log2(1 + xi) + (1− xi) log2(1− xi)

]
. (139)
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Define the function
f(x) =

1

2

[
(1 + x) log2(1 + x) + (1− x) log2(1− x)

]
,

so that

S(M
(1)
f ∥M

(0)
f ) =

2d1+1∑
i=1

λi f(xi).

For |x| < 1 and using the Taylor series expansion for the base-2 logarithm, we get,

f(x) =
x2

2 ln 2
+

x4

12 ln 2
+O(x6). (140)

The function f(x) is even and convex in (−1, 1) and easy to verify that f(x) ≤ x2 for |x| ≤ 1.

Thus, for each i we have

λi f(xi) ≤ λi x2i = λi

(
2µi
η λi

)2

=
4µ2

i

η2 λi
.

Thus we get

S(M
(1)
f ∥M

(0)
f ) ≤ 4

η2

2d1+1∑
i=1

µ2
i

λi
.

As, 1
η < negl(λ), this bound indicates that in our construction the anamorphic ciphertext M (1)

f and the original ciphertext

M
(0)
f are indistinguishable.

B. Possible Attacks

In this section, we present two possible attacks by the dictator and discuss how they can be prevented.
Case-I: The adverary or the dictator is authorized to have the origianl key shares but not authorized to have covert key shares.
As we proved the perfect privacy of both SS and ASS, the dictator cannot reconstruct the covert key shares but will be able
to reconstruct the original key shares.

Case-II: If D wants to enter as an extra player in the set of players to receive shares. If the dictator joins the set of players
as an additional player to obtain a share and subsequently demands that the authorized set of players submit their shares for
message reconstruction, the authorized set of players strategically partially cheats the dictator. Specifically, while they provide
the dictator with the correct key shares necessary to reconstruct the original message, they simultaneously submit forged shares
for the other covert keys, thereby ensuring that the dictator is unable to access unauthorized information.

We now compute the Partial cheating probability Cheat(p)
(
V

(a)
i1

, . . . , V
(a)
it

)
. In our construction, the anamorphic key is

k = (k1, k4, k2, k5, k3, k6), with the original key part k(o) = (k1, k2, k3) and the covert key part k(c) = (k4, k5, k6). The key
is chosen uniformly at random from {0, 1}2d1 × {0, 1}2d2 × {1, . . . , 2d1+1} × {1, . . . , 2d1+1} × Sym(2d1+1) × J . Thus, the
covert key is uniformly distributed over S(c) = {0, 1}2d2 × {1, . . . , 2d1+1} × J with | S(c) |= 22d2 · 2d1+1 · |J | .

Suppose the honest covert shares of the t players (when they are honest) are b(c) =
(
s
(c)
i1
, s

(c)
i2
, . . . , s

(c)
it

)
, and the dictator’s

reconstruction function Sec(c) then returns Sec(c)(b(c)) = s(c), which is the (correct) covert secret.
Now, assume that a coalition of cheaters wishes to partially cheat by forging their covert shares. That is, they replace

b(c) by some b(c)
′

with b(c)
′ ̸= b(c) (with at least one coordinate changed) while leaving the original part untouched (so that

the overall reconstructed secret is Sec(p)(b′) = (Sec(o)(b),Sec(c)(b′)) with Sec(o)(b) = s(o) as before). In our construction,
since the key (and hence the covert secret) is chosen uniformly at random from S(c) and the reconstruction function Sec(c) is
deterministic and surjective onto S(c), any forged share tuple b(c)

′
will, in effect, cause the dictator to compute a covert secret

that is uniformly distributed over S(c). Since the forged reconstruction Sec(c)(b(c)
′
) is uniform over S(c), the probability that

it accidentally equals the honest secret s(c) is

Pr
(
Sec(c)(b(c)

′
) = s(c)

)
=

1

|S(c)|
.

Hence, the probability that the dictator reconstructs a covert secret different from s(c) (i.e. that the cheating is successful) is

Pr
(
Sec(c)(b(c)

′
) ̸= s(c)

)
=
(
1− 1

|S(c)|

)
.
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Since the cheating probability is defined as the maximum (over all possible true covert shares b(c) and over all feasible forged
choices b(c)

′
) of the above probability, we have

Cheat(p) ≤
(
1− 1

|S(c)|

)
. (141)

=
(
1− 1

22d2+d1+1 · |J |

)
, (142)

which ensures the partial cheating probability is very high, and therefore the dictator cannot get the covert key shares with a
very high probability. In fact, with optimal forging the players can achieve exactly this probability and the maximum cheating
probability is equal to (

1− 1

22d2+d1+1 · |J |

)
. (143)

IX. CONCLUSION

In this paper, we have constructed a quantum symmetric-key anamorphic encryption scheme and an anamorphic secret-sharing
scheme. For future work, we aim to explore the following problems:

Question 1: Construct a quantum anamorphic public-key encryption (QAPKE) scheme.
Question 2: Develop quantum anamorphic secret-sharing using pseudorandom function-like state generators (PRFS) and

optimize the share size in the case of anamorphic secret-sharing.
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X. APPENDIX

We have included useful results and properties in this section for use throughout our paper. Most of these results are taken
from [48] and from the Appendix section of the paper [20].

Lemma 22. (Trace distance [20], [48])
i. For a probability distribution {pi}i∈I and an ensembles of states {ρi}i∈I

D(
∑
i∈I

piρi, σ) ≤
∑
i∈I

piD(ρi, σi).

ii. For any trace-preserving quantum operation E ,

D(E(ρ), E(σ)) ≤ D(ρ, σ).

iii. Let AB be a composite system and The states are assumed to be of AB,

D(ρA, σA) ≤ D(ρAB , σAB).

iv. Given two density matrices σ and ρ, and for any state τ ,

D(ρ⊗ τ, σ ⊗ τ) = D(ρ, σ).

v. For any two probability distributions {pi}i∈I , {p′i}i∈I and ensembles of states {ρi}i∈I , {σi}i∈I .

D

(∑
i∈I

piρi,
∑
i∈I

p′iσi

)
≤ ∆(pi, p

′
i) +

∑
i∈I

piD(ρi, σi).

vi. For any two states τ1, τ2,
D(ρ⊗ τ1, σ ⊗ τ2) ≤ D(ρ, σ) +D(τ1, τ2).

Proof. For the proofs see Section 9.2.1 of [48] and Appendix A of [20].

Lemma 23. (Properties of Adversarial Advantage Pseudometric [20], [48])
For any circuit family F and two states ρ, σ, the following holds:
i. AF (ρ, ρ) = 0;
ii. AF (ρ, σ) = AF (σ, ρ);
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iii. For any state τ ,
AF (ρ, σ) ≤ AF (ρ, τ) +AF (τ, σ);

iv. Assuming the states are of a composite system AB,

AF (ρA ⊗ |0⟩⟨0|, σA ⊗ |0⟩⟨0|) ≤ AF (ρAB , σAB);

v. For any two probability distributions, {pi}i∈I , {qi}i∈I , and ensembles of states {ρi}i∈I , {σi}i∈I ,

AF

(∑
i∈I

piρi,
∑
i∈I

qiσi

)
≤ ∆(pi, qi) +

∑
i∈I

piAF (ρi, σi);

vi. For a probability distribution {pi}i∈I and an ensemble of states {ρi}i∈I ,

AF

(∑
i∈I

piρi, σ

)
≤
∑
i∈I

piAF (ρi, σ);

vii. For any family F ′ and state τ such that there is C ′ ∈ F ′ satisfying C ′(ρ) = C(ρ ⊗ τ) and C ′(σ) = C(σ ⊗ τ) for any
C ∈ F ,

AF (ρ⊗ τ, σ ⊗ τ) ≤ AF ′(ρ, σ).

Proof. For the proofs see Appendix A of [20].
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