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Abstract. Cryptographic group actions have attracted growing atten-
tion as a useful tool for constructing cryptographic schemes. Among
their applications, commitment schemes are particularly interesting as
fundamental primitives, playing a crucial role in protocols such as zero-
knowledge proofs, multi-party computation, and more.

In this paper, we introduce a novel framework to construct commit-
ment schemes based on cryptographic group actions. Specifically, we
propose two key techniques for general group actions: re-randomization
and randomness extraction. Roughly speaking, a re-randomization algo-
rithm introduces randomness within an orbit for any input element, while
a randomness extractor maps this randomness to uniformity over the
message space. We demonstrate that these techniques can significantly
facilitate the construction of commitment schemes, providing a flexible
framework for constructing either perfectly hiding or perfectly binding
commitments, depending on the type of extractor involved. Moreover,
we extend our framework to support the construction of commitments
with additional desirable properties beyond hiding and binding, such
as dual-mode commitments and enhanced linkable commitments. These
extensions are achieved by further adapting the extractor to satisfy trap-
door or homomorphic properties. Finally, we instantiate all our proposed
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commitment schemes using lattices, specifically leveraging the lattice iso-
morphism problem (LIP) and the lattice automorphism problem (LAP)
as underlying cryptographic assumptions. To the best of our knowledge,
this is the first commitment scheme construction based on LIP/LAP.
Additionally, we use LIP to provide a repair and improvement to the
tensor isomorphism-based non-interactive commitment scheme proposed
by D’Alconzo, Flamini, and Gangemi (ASIACRYPT 2023), which was
recently shown to be insecure by an attack from Gilchrist, Marco, Petit,
and Tang (CRYPTO 2024).

Keywords: Cryptographic group action · Dual-mode commitment ·
Homomorphic commitment · Lattice isomorphism problem

1 Introduction

Cryptographic group action is a powerful tool in the design of cryptographic
schemes, with its study tracing back to Brassard and Yung in 1991 [14], where
the concept of one-way group action was first introduced. Due to the general-
ity of group actions in mathematics, various cryptographic assumptions with
specific algebraic structures fall under the category of cryptographic group ac-
tions. These include isogenies [15], lattices [7], linear codes [11], polynomial
isomorphisms [65,23], and trilinear forms [70]. Many of these assumptions are
believed to resist quantum attacks, making them particularly well-suited for
post-quantum cryptography. Recently, the framework of cryptographic group
actions has demonstrated its effectiveness in cryptographic constructions, includ-
ing commitment schemes [46,27], ring and group signatures [10,12,9], threshold
signatures [20,30,6], threshold ring signatures [67], blind signatures [50], key
exchanges [15], updatable encryption schemes [54,59], trapdoor claw-free func-
tions [2], dual-mode trapdoor functions [39], verifiable random functions [52],
and robustly reusable fuzzy extractors [73]. These wide-ranging applications
highlight the versatility of cryptographic group actions in building secure and
efficient cryptographic schemes.

Among these applications of cryptographic group actions, the commitment
scheme is perhaps the simplest but also one of the most important cryptographic
primitives. A commitment scheme is a protocol between two parties, a sender A
and a receiver B, where A wants to commit to a message m for B. In essence, A
can place the message into a “digital sealed envelope”, referred to as a commit-
ment. Later, when A wants to reveal the message to B, A opens the envelope.
This process must satisfy two fundamental properties. First, the digital envelope
must not reveal any information about the message prior to its opening. This
property is known as hiding. Second, A must not be able to open the same com-
mitment to a different message m′ 6= m, a property referred to as binding. These
properties make commitment schemes indispensable in many cryptographic ap-
plications, such as zero-knowledge protocols [35], multi-party computation [31],
digital auctions [63], confidential transactions [68], and electronic commerce [22].
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The construction of commitment schemes has been an active research area for
decades, with numerous classical results showing that commitment schemes can
be based on fundamental cryptographic assumptions [62,5,34,42,41]. Moreover,
commitment schemes often serve as building blocks for more complex crypto-
graphic protocols. In many cases, it is desirable for commitment schemes to
possess additional properties beyond hiding and binding, such as homomorphic
commitments [38,66], linkable commitments [27], dual-mode commitments [37],
and others.

1.1 Our Results and Techniques

In this paper, we introduce a novel group action-based framework for construct-
ing commitment schemes. Unlike previous construction frameworks, we observe
that group actions can be naturally equipped with a re-randomization and an
extraction process, which inherently facilitates the construction of commitments.

Re-Randomization and Randomness Extraction for Group Action. For
a group action (G,X, ⋆), where G is a group and X is a set, a re-randomization
algorithm R takes as input an element x ∈ X and outputs a pair (x′ = g ⋆x, g) ∈
X ×G, such that the output distribution depends only on the orbit O(x) under
the group action, and that g is uniformly distributed over the group elements
that map x to x′. Intuitively, the re-randomization algorithm applies a random
group action to x, effectively “forgetting” all specific information about x except
its orbit O(x). We note that this notion of re-randomization can be seen as an
abstraction of random self-reduction for lattice isomorphisms, where Gaussian
sampling is used to obscure the details of the lattice basis while retaining only
the geometric structure of the lattice [43,26,8]. Moreover, this self-reducing prop-
erty emerges in various isomorphisms of algebraic objects and is often studied
under the framework of random self-reducibility [61]. Thus, this abstraction of
re-randomization represents a common characteristic in instantiations of cryp-
tographic group actions.

An extractor roughly extracts the randomness over the group G to uniformity
over the message space M , which we assume to have a group structure. We note
that such functionality can be naturally achieved using a randomness extrac-
tor [4,42], which utilizes a public random seed to convert a non-uniform random
variable into a near-uniform one, and is broadly adopted in the construction of
cryptographic primitives. However, in our framework, we particularly focus on
extractors that better align with the algebraic structure of group actions. The
simplest type of extractor we introduce is a deterministic extractor E, which is
required to be a deterministic function that takes as input elements g ∈ G, such
that the output E(g) is uniformly distributed over M when g is drawn uniformly
from the group elements that map x to x′, where x, x′ ∈ X are in the same
orbit. When combined with the re-randomization algorithm R, the extractor E
can effectively extract the randomness introduced by R into uniformity over the
message space M .
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Basic Commitment Construction Framework. Equipped with the re-
randomization algorithm R and a deterministic extractor E, a commitment scheme
can be inherently constructed based on the group action (G,X, ⋆). Initially, we
set the commitment key to be Ck = x for some x ∈ X. To commit to a message
m ∈M , we evoke the re-randomization algorithm to obtain a pair (x′, g)← R(x),
and then set c = (c1, c2) = (E(g) ·m,x′) as the commitment, with d = g as the
open value. To open the message, we output the message E(d)−1 · c1 if the con-
dition d ⋆ Ck = c2 holds. On the one hand, due to the uniformity of the output
of E, this commitment scheme is inherently perfectly hiding. On the other hand,
the binding property can be satisfied under certain computational assumptions
on the group action.

Leveraging this basic model, we can adapt the extractor to obtain more com-
mitment constructions. We show that a perfectly binding and computationally
hiding commitment can be achieved using a local constant extractor, which ex-
tracts randomness for some orbits and returns constants for others. Additionally,
we demonstrate that using the classical randomness extractor [4,42], we can con-
struct a statistically hiding and computationally binding commitment, as well
as a perfectly binding and computationally hiding commitment.

Construction Framework for Dual-Mode Commitment. As mentioned
earlier, commitments often require additional properties beyond hiding and bind-
ing when used in cryptographic constructions such as zero-knowledge protocols.
Dual-mode commitment is a desirable scheme that operates in two indistinguish-
able key generation modes: one for perfectly binding commitment and another
for perfectly hiding commitment. The latter mode also generates a trapdoor, en-
abling the opening of commitments to arbitrary messages. We demonstrate that
the local constant extractor E can be adapted into a trapdoor extractor, allowing
the efficient computation of the “inverse” of E when the related stabilizer under
the group action is available as a trapdoor. Building on this extractor, we show
that a construction framework for dual-mode commitment can be naturally es-
tablished by combining our constructions of perfectly binding commitment and
perfectly hiding commitment. To the best of our knowledge, this is the first
dual-mode commitment construction based on general group actions.

Enhanced Linkable Commitment Based on Group Actions. In [27], the
authors introduced the linkable bit commitment, which allows a sender to gen-
erate two-bit commitments for the same message b to prove to the receiver that
these commitments correspond to that message, without revealing the actual
content. In this paper, we extend this concept to the enhanced linkable commit-
ment, which can disclose the difference m1·m−12 between the committed messages
m1 and m2 ∈M (assuming that M has a group structure). This enhanced link-
able commitment inherently demonstrates that c1 and c2 commit to the same
message by checking whether m1 ·m−12 = 1, and it can also disclose the differ-
ence m1 ·m−12 for distinct messages. This can be viewed as an analogue to the
homomorphic commitment [36,21,38,66], which requires that the commitments
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c1 and c2 for two messages m1 and m2 satisfy that c1 · c−12 is a commitment to
m1 ·m−12 . However, enhanced linkable commitment does not generally possess
this homomorphic property because the commitment space C is not required to
have a group structure, rendering c1 · c−12 undefined.

To establish a construction framework for enhanced linkable commitment,
we introduce the concept of a homomorphic extractor, which is a deterministic
extractor and also a group homomorphism from G to M . We then present two
constructions of enhanced linkable commitment schemes using the homomor-
phic extractor, one based on a perfectly hiding commitment and the other on
a perfectly binding commitment. It is worth noting that constructing a homo-
morphic commitment scheme under post-quantum cryptographic assumptions
remains challenging. For example, [69] states that “developing a homomorphic
commitment scheme based on isogeny assumptions would signify a significant
breakthrough in this domain.” From this perspective, enhanced linkable commit-
ments that follow our construction framework may be seen as viable alternatives
to homomorphic commitments in many cases.

Instantiating Using Lattices. We instantiate all the proposed commitment
schemes using lattices. Specifically, due to the well-established connection be-
tween lattices and quadratic forms [26], we consider the action of GLn(Z)/{±In}
on positive definite quadratic forms. In this setting, all computational assump-
tions involved in the constructions correspond to the lattice isomorphism or lat-
tice automorphism problem, whose hardness is extensively studied [43,24,48,49,57]
and has been adopted in the construction of various cryptographic schemes
[26,25,8,53]. As discussed earlier, the randomization algorithm can be realized
based on the random self-reduction technique established in [43,26,8]. For the
extractors, we provide a simple yet interesting deterministic extractor based on
the determinant. Specifically, we set n to be any even number and define the
extractor E(U) = det(U). Since the determinant is a group homomorphism, this
extractor is inherently homomorphic as required by the enhanced linkable com-
mitment. Furthermore, we show that the local constant extractor and trapdoor
extractor can be adapted from the deterministic extractor by leveraging specific
distributions on positive definite quadratic forms or the structure of stabilizer
groups. As a result, the corresponding commitment schemes can be instantiated
directly by utilizing these randomization algorithms and extractors.

Repair and Improvement of the Non-Interactive Commitment in [27].
In [27], the authors presented the first non-interactive bit commitment scheme
based on group actions, instantiated with a special tensor isomorphism prob-
lem. However, this instantiation was shown to be insecure in [33]. We introduce
a novel method to realize a non-interactive commitment scheme based on the
hardness of the lattice isomorphism problem, which is not vulnerable to the at-
tack in [33]. Moreover, our scheme leverages the ‘direct sum’ hardness of the
lattice isomorphism problem, a property not known to be available in other
isomorphism problems, enabling a substantial expansion of the message space.
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1.2 Related Works

There have been many commitment schemes based on the framework of group
actions, with most of these constructions focusing on bit commitments. In [14],
Brassard and Yung introduced the first group action-based bit commitment un-
der the assumption of one-way group actions. Ji et al. presented, among other
constructions, two interactive bit commitment schemes relying on cryptographic
assumptions related to non-abelian group actions [46]. D’Alconzo et al. [27] intro-
duced the first non-interactive linkable bit commitment scheme based on group
actions, which was instantiated using a special tensor isomorphism problem.

In [28], Kaafarani et al. presented a lossy identity scheme based on the class
group action of CSIDH. Due to the connection between lossy identity schemes
and dual commitments established in [64], their construction inherently provides
a dual commitment scheme. However, their construction follows the DDH-based
framework of commitment schemes, which essentially requires that the group
is abelian. In contrast, our framework focuses on general group action-based
constructions, which have the potential to be instantiated using a wide variety
of cryptographic algebraic structures.

1.3 Outline

Section 2 presents the basic definitions and preliminaries. Section 3 introduces
the general commitment framework based on group actions. Section 4 details the
construction framework for dual-mode commitments and enhanced linkable com-
mitments. Section 5 provides instantiations of the constructions using lattices.
Section 6 discusses the repair and improvement of the non-interactive commit-
ment scheme introduced in [27]. Finally, Section 7 summarizes the paper and
discusses some open problems.

2 Preliminary

2.1 Notations

– Let [n] = {1, 2, . . . , n} for a positive integer n. The size of a finite set A is
denoted by |A|.

– We use x ← D to denote that x is sampled from a distribution D. In this
paper, we focus solely on discrete distributions. For a finite set S, we write
s← S to indicate that s is drawn uniformly from S.

– Given two random variables x and x′ following distributions D and D′ over
X respectively, their statistical distance is defined as

∆(x, x′) :=
1

2

∑
a∈X
|Pr[x = a]− Pr[x′ = a]| .

– For a multivariate distributionD, letD[j] represent the marginal distribution
of the j-th variable.
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2.2 Group Action

Definition 2.1 (Group Action) Let G be a group with identity element e, and
let X be a set. We say G acts on X if there is an operator ⋆ : G × X → X
satisfying e ⋆ x = x and g ⋆ (h ⋆ x) = (gh) ⋆ x for all g, h ∈ G and x ∈ X. The
notation (G,X, ⋆) will be used to denote such a group action.

For a group action (G,X, ⋆), the orbit of an element x ∈ X is denoted by
O(x) := {g ⋆ x : g ∈ G}. The stabilizer of x ∈ X is the subgroup of G defined
as Stab(x) := {g ∈ G : g ⋆ x = x}. Additionally, the set I(x, y) := {g ∈ G :
g ⋆ x = y} is used to represent the elements of G mapping x to y. It is evident
that I(x, y) = g · Stab(x) for any g ∈ I(x, y).

Cryptographic Assumptions for Group Actions. We briefly introduce the
cryptographic assumptions related to group actions as outlined in [1,7,27,14,19].
We assume a group action (G,X, ⋆) with an associated distribution DG,X on
G×X, which we sometimes denote as (G,X, ⋆,DG,X) for brevity. We note that
both G and X may be infinite, while we always assume that the distribution
DG,X is discrete.

Definition 2.2 (One-Way Group Action) Let F be a family of group ac-
tions such that for a security parameter λ, F(1λ) returns a group action (G,X, ⋆)
with distribution DG,X over G×X. Then (G,X, ⋆) is said to be DG,X-one-way
if for all PPT adversaries A, there exists a negligible function negl(λ) such that

Pr[A(x, g ⋆ x) ⋆ x = g ⋆ x | (g, x)← DG,X ] ≤ negl(λ).

When working with cryptographic constructions, decisional assumptions re-
lated to group actions are commonly utilized, such as Group Action Pseudo-
randomness (GAPR) [46] and the decisional Group Action Inversion Problem
(d-GAIP) [27]. The GAPR problem essentially requires distinguishing whether
x′ belongs to O(x) or is random, given x, x′ ∈ X. This can be viewed as a gener-
alization of the decisional Diffie-Hellman problem [46]. When the set X consists
of only two orbits, this problem is referred to as the 2GAPR problem. The d-
GAIP roughly entails determining whether x is in O(x1) or in O(x2), given that
x ∈ O(x1)∪O(x2). It is demonstrated in [27] that there exists a reduction from
the 2GAPR problem to d-GAIP when the two orbits are of similar size. In this
paper, we further extend d-GAIP to the decisional Group Action Orbit Problem
(d-GAOP), which requires distinguishing between two classes of orbits. Specif-
ically, given two classes of disjoint orbits {O(x)}x∈X0 and {O(x)}x∈X1 , where
X0, X1 ⊆ X, d-GAOP means distinguishing whether x′ is in ∪x∈X0O(x) or in
∪x∈X1

O(x) for a given x′. The formal definition is as follows. We note that in
this definition, we can utilize two distributions D(0)

G,X and D(1)
G,X to describe the

sets of orbits {O(x)}x∈X0
and {O(x)}x∈X1

, by letting Pr[xj ∈ ∪x∈Xj
O(x)] = 1

for (gj , xj)← D(j)
G,X , where j ∈ {0, 1}.
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Definition 2.3 (d-GAOP) Let F be a family of group actions such that for a
security parameter λ, F(1λ) returns a group action (G,X, ⋆) with distributions
D(0)

G,X and D(1)
G,X over G×X. The d-GAOP assumption requires that for all PPT

adversaries A, there is a negligible function negl(λ) such that

Pr

b = b̃
(g0, x0)← D(0)

G,X , (g1, x1)← D(1)
G,X

y0 = g0 ⋆ x0, y1 = g1 ⋆ x1

b← {0, 1}, b̃← A(yb)

 ≤ 1

2
+ negl(λ).

Additionally, we introduce the search Group Action Stabilizer Problem (s-
GASP), which relates to finding a non-trivial element in a stabilizer. Specifically,
given an x ∈ X such that Stab(x) 6= {e}, the goal is to find an h ∈ G such that
x = h ⋆ x and h 6= e. The formal definition is as follows.

Definition 2.4 (s-GASP) Let F be a family of group actions such that for a
security parameter λ, F(1λ) returns a group action (G,X, ⋆) with distribution
DG,X over G×X. The s-GASP assumption requires that for all PPT adversaries
A, there is a negligible function negl(λ) such that

Pr[A(y) ⋆ y = y,A(y) 6= e | y = h ⋆ x, (h, x)← DG,X ,Stab(x) 6= {e}] ≤ negl(λ).

We note that the problem of finding a non-trivial graph automorphism can
be viewed as an instance of s-GASP by considering the action of the permutation
group Sn on a graph with n vertices [58]. This problem currently has no known
polynomial-time algorithm [56].

2.3 Commitment Scheme

Definition 2.5 A commitment scheme Πcom is a triple of PPT algorithms
(Gen, Com, Open) for a security parameter λ and message space M , commit-
ment space C, open space D.
1. Gen: Gen(1λ) → Ck, generates the public commitment key Ck.
2. Com: For any m ∈ M , ComCk(m) → (c, d) ∈ C × D, c = c(m) is the

commitment value and d = d(m) as the opening value.
3. Open: OpenCk(c, d) → m̃ ∈ M ∪ {⊥}, where ⊥ is returned if c is not a

valid commitment to any message.

The correctness of a commitment scheme requires that, for any m ∈ M ,
OpenCk(ComCk(m)) = m. The security of a commitment scheme consists of
hiding and binding, which is defined below.

1. Hiding. It is computationally hard for an adversary A to generate two mes-
sages m0,m1 ∈M such that A can distinguish between their corresponding
commitment values c0, c1. Formally, for all PPT A = (A1,A2), there is a
negligible function negl(λ) such that

Pr

[
b = b̃

Ck ← Gen
(
1λ

)
, (m0,m1, α)← A1(Ck)

b
$← {0, 1}, (c, d)← ComCk (mb) , b̃← A2(c;α)

]
≤ 1

2
+ negl(λ).
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2. Binding. It is computationally hard for an adversary A to generate a triple
(c, d, d′), referred to as a collision, such that (c, d) and (c, d′) are valid com-
mitments for m and m′ such that m 6= m′. Formally, for all PPT adversaies
A, there is a negligible function negl(λ) such that

Pr

[
m 6= m′, Ck ← Gen

(
1λ

)
, (c, d, d′)← A(Ck)

m,m′ 6=⊥ m← OpenCk(c, d),m
′ ← OpenCk (c, d

′)

]
≤ negl(λ).

3 Basic Commitments from Group Actions

This section presents our basic construction framework. We begin by formally
introducing the re-randomization algorithm for group actions.

3.1 Re-Randomization for Group Actions

Definition 3.1 (Re-Randomized Algorithm) For a group action (G,X, ⋆),
a re-randomized algorithm R takes as input x ∈ X and outputs a pair (g ⋆x, g) ∈
X ×G according to a distribution, denoted as R(x), such that:

– For any x ∈ X, x′ ∈ O(x), and (x′′, g)← R(x), the marginal distributions of
the first variable are identical for R(x) and R(x′); g is uniformly distributed
on I(x, x′′).

To be more precise, let fx(t1, t2) be the probability mass function of R(x). For
x ∈ X, x′, x′′ ∈ O(x), a re-randomized algorithm requires that

∑
t2∈G fx(t1, t2) =∑

t2∈G fx′(t1, t2) for any t1 ∈ X, and that fx(t1 = x′′, g) is a constant for
g ∈ I(x, x′′). Intuitively, a re-randomized algorithm applies a random g ∈ G to
the input x, effectively ‘forgetting’ all information about x except for its orbit
information.

To facilitate the construction of commitment schemes, we aim to extract the
randomness of g ∈ I(x, x′′) introduced by re-randomization to ensure the hiding
property. A simple way to achieve this is by employing a randomness extractor
[4,42], commonly used in cryptographic constructions. Such an extractor can
be naturally integrated into our framework to yield commitment constructions.
Before delving into these constructions, we show that some simpler variants of ex-
tractors can be defined and used effectively in constructing commitment schemes.
Moreover, we demonstrate that these variant extractors are closely related to the
structure of group actions and can be extended to construct commitments with
advanced functionalities, which we will discuss in Section 4.

3.2 Commitment Scheme Using Deterministic Extractor

Definition 3.2 (Deterministic Extractor) For a group action (G,X, ⋆) with
a distribution DG,X on G×X, and M is a finite group. A deterministic extractor
is a deterministic and efficient algorithm E : G→M such that:
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– for (h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that E(g) is uniformly
distributed on M for g ← I(y′, y′′).

We note that when combining with a re-randomized algorithm R for (G,X, ⋆),
it holds that, for y = h ⋆ x, (h, x) ← DG,X , the pairs (y′,E(g)) and (y′, u)
follow the same distribution, where (y′, g) ← R(y) and u ← M . Intuitively, a
deterministic extractor converts the uniformity over the action on the orbit O(x)
into the uniformity over the finite group M , where x is required to sample from
(h, x)← DG,X (i.e., some orbits are excluded by the distribution DG,X).

In the following, we demonstrate how a commitment scheme can be con-
structed using a re-randomized algorithm R and a deterministic extractor E.

Commitment Scheme 3.1 : Πcom = (Gen,Com,Open) for a security
parameter λ and message space M .

– Gen(1λ): Sample (h, x)← DG,X and output Ck = y = h ⋆ x.
– Comy(m): For a message m ∈ M , sample (y′, g) ← R(y) such that

g ⋆ y = y′. Compute c = (c1, c2) = (E(g) ·m, y′) and set d = g. Output
(c, d).

– Openy(c, d): If d ⋆ y = c2, output m̃ = E(d)−1 · c1; otherwise, output ⊥.

Theorem 3.1 Suppose that the group action (G,X, ⋆,DG,X) satisfies the s-
GASP assumption, R is a re-randomization algorithm, and E is a deterministic
extractor. Then Commitment 3.1 is perfectly hiding and computationally binding.

Proof. The correctness is obvious. We prove the hiding and binding below.
Perfectly Hiding: Assume that Comy(m) → (c, d), then the distribution

of c = (E(g1) ·m, y1) and (u, y1) are identical, where u ← M and y1 ← R(y)[1],
due to the properties of R and E. Thus for any m,m′ ∈ M , Comy(m) → (c, d)
and Comy(m

′)→ (c′, d′), the distribution of the c and c′ are the same.
Computationally Binding: Given an s-GASP instance (h, x) ← DG,X .

Send the Ck = y = h ⋆ x to the adversary A in the binding game, then if A
outputs a commitment c = (c1, c2) = (E(g1) ·m, y1) = (E(g′1) ·m′, y1) with m′ 6=
m. Then E(g′1) 6= E(g1), thus g1 6= g′1 because E is a deterministic algorithm.
Note that g1, g

′
1 ∈ I(y, y1), so e 6= g−11 · g′1 ∈ Stab(y), this solves the s-GASP

assumption. ut

3.3 Commitment Scheme Using Local Constant Extractor

In this subsection, we demonstrate how to adapt the deterministic extractor to
achieve a perfectly binding and computationally hiding commitment scheme.

Definition 3.3 (Local Constant Extractor) For a group action (G,X, ⋆) with
distributions DG,X and D′G,X on G×X, and M is a finite group. A local constant
extractor is a deterministic and efficient algorithm E : G→M such that:

– For (h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that E(g) is uniformly
distributed on M for g ← I(y′, y′′).
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– For (h, x) ← D′G,X and any y′, y′′ ∈ O(x), it holds that E(g) is a constant
for g ∈ I(y′, y′′).

Like the deterministic extractor, the local constant extractor can be combined
with a re-randomized algorithm R for the group action (G,X, ⋆). For y = h ⋆ x,
(h, x) ← DG,X , it follows that E(g) is uniform on M for (y′, g) ← R(y). For
y = h ⋆ x, (h, x) ← D′G,X , we have E(g1) = E(g2) when (y′1, g1), (y

′
2, g2) are

sampled from R(y) with y′1 = y′2. Utilizing this property, we can construct the
following commitment scheme.

Commitment Scheme 3.2 : Πcom = (Gen,Com,Open) for a security
parameter λ and message space M .

– Gen(1λ): Sample (h, x)← D′G,X and output Ck = h ⋆ x = y.
– Comy(m): For a message m ∈ M , sample (y′, g) ← R(y) such that

g ⋆ y = y′. Compute c = (c1, c2) = (E(g) ·m, y′) and set d = g. Output
(c, d).

– Openy(c, d): If d ⋆ y = c2, output m̃ = E(d)−1 · c1; otherwise, m̃ =⊥.

Theorem 3.2 Suppose that the group action (G,X, ⋆,DG,X ,D′G,X) satisfies the
d-GAOP assumption, R is a re-randomized algorithm, and E is a local constant
extractor. Then Commitment 3.2 is perfectly binding and computationally hiding.

Proof. Correctness is trivial. For perfect binding, it is evident due to E being a
local constant extractor.

For computational hiding, the proof follows from a standard hybrid argu-
ment. Notably, when Ck is sampled from DG,X , Commitment 3.2 reduces to
Commitment 3.1, which provides perfect hiding. Therefore, it suffices to replace
Ck with the corresponding d-GAOP instance to complete the proof. Details can
be found in Appendix A. ut

3.4 Commitment Schemes Using Randomness Extractor

As mentioned earlier, the randomness extractor, which can be easily instantiated
as discussed in [4,42], can also be applied within our construction framework.
In essence, a randomness extractor utilizes a publicly known random seed z to
convert a non-uniform random variable on G into a near-uniform random variable
on M . We adapt this definition to the context of group actions, as follows.

Definition 3.4 (Randomness Extractor) For a group action (G,X, ⋆) with
a distribution DG,X , and M is a finite group, a (G,M, ϵ)-randomness extractor
is a deterministic and efficient algorithm E : G× {0, 1}ζ 7→M such that:

– For (h, x)← DG,X and any y′, y′′ ∈ O(x), it holds that ∆ ((z,E(g, z)), (z, u)) ⩽
ϵ, where the random seed z ← {0, 1}ζ , u←M , and g ← I(y′, y′′).
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To ensure the existence of a randomness extractor with negligible function
ϵ(λ), it is necessary to require that |M | ≤ |I(y′, y′′)| = |Stab(x)| for (h, x) ←
DG,X and any y′, y′′ ∈ O(x). Moreover, similar to the case of deterministic ex-
tractors, a randomness extractor can be combined with a re-randomization al-
gorithm R for (G,X, ⋆). Specifically, for y = h ⋆x, (h, x)← DG,X , the statistical
distance between (E(g, z), y′, z) and (u, y′, z) is at most ϵ, where (y′, g)← R(y),
z ← {0, 1}ζ and u ← M . This property can be leveraged to construct a sta-
tistically hiding and computationally binding commitment scheme, as described
below.

Commitment Scheme 3.3 : Πcom = (Gen,Com,Open) for a security
parameter λ and message space M .

– Gen(1λ): Sample (h, x)← DG,X and output Ck = y = h ⋆ x.
– Comy(m): For a message m ∈M , sample (y′, g)← R(y) s.t. g ⋆ y = y′,

z ← {0, 1}ζ . Compute c = (c1, c2, c3) = (E(g, z) ·m, y′, z) and set d = g.
Output (c, d).

– Openy(c, d): If d ⋆ y = c2, output m̃ = E(d, c3)
−1 · c1; otherwise, output

m̃ =⊥.

We note that the randomness extractor was employed in [42] to construct
a constant-round commitment, which leverages the compressibility of collision-
resistant hash functions to guarantee the min-entropy of the input variable.
In contrast, in our construction, the min-entropy of the input arises from its
uniformity over I(y, y′), which is ensured by the re-randomization algorithm R.

Theorem 3.3 Suppose the group action (G,X, ⋆,DG,X) satisfies the s-GASP
assumption, R is a re-randomized algorithm, and E is a randomness extractor.
Then Commitment 3.3 is statistically hiding and computationally binding.

Proof. The proof is similar to Theorem 3.1 and can be found in Appendix A. ut

Next, we show that Commitment 3.3 can be adapted to yield a perfectly
binding and computationally hiding commitment, similar to the approach in
Section 3.3. However, in Section 3.3, the extractor is required to satisfy a ‘lo-
cal constant’ property, meaning that E(g) remains constant for g ∈ I(y′, y′′),
where (h, x) ← D′G,X and any y′, y′′ ∈ O(x). This property is challenging to
reconcile with the randomness extractor in Definition 3.4 due to the influence
of the random seed. To address this, we impose stronger restrictions on the
group action (G,X, ⋆,DG,X ,D′G,X), specifically requiring that |Stab(x)| = 1 for
(h, x)← D′G,X . In addition, we require that for the group action (G,X, ⋆,DG,X)
and a finite group M , E is a (G,M, ϵ)-randomness extractor. This means that for
(h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that ∆ ((z,E(g, z)), (z, u)) ⩽ ϵ,
where the random seed z ← {0, 1}ζ , u ← M , and g ← I(y′, y′′). With these
restrictions in place, we can construct the following perfectly binding and com-
putationally hiding commitment scheme.
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Commitment Scheme 3.4 : Πcom = (Gen,Com,Open) for a security
parameter λ and message space M .

– Gen(1λ): Sample (h, x)← D′G,X and output Ck = y = h ⋆ x.
– Comy(m): For a message m ∈M , sample (y′, g)← R(y) s.t. g ⋆ y = y′,

z ← {0, 1}ζ . Compute c = (c1, c2, c3) = (E(g, z) ·m, y′, z) and set d = g.
Output (c, d).

– Openy(c, d): If d ⋆ y = c2, output m̃ = E(d, c3)
−1 · c1; otherwise, output

m̃ =⊥.

Theorem 3.4 Suppose that the group action (G,X, ⋆,DG,X ,D′G,X) satisfies the
d-GAOP assumption, where the distribution D′G,X satisfies |Stab(x)| = 1 for
(h, x) ← D′G,X . R is a re-randomized algorithm, and E is a randomness ex-
tractor for distribution DG,X . Then Commitment 3.4 is perfectly binding and
computationally hiding.

Proof. The proof is similar to Theorem 3.2 and can be found in Appendix A. ut

4 Dual-Mode Commitment and Enhanced-Linkable
Commitments from Group Actions

In many cases, it is desirable for commitment schemes to possess additional prop-
erties beyond hiding and binding, such as dual-mode commitment, enhanced-
linkable commitment. Specifically, the dual mode commitment was proposed
in [16] and plays an important role in zero-knowledge proof and security proof
[55,51,64]; the enhanced-linkable commitment introduced in this paper can be
seen as an intermediate between the linkable commitment [27] and the homo-
morphic commitment [66,36].

In this section, we demonstrate how to use the basic commitments in Section 3
to construct more versatile commitments, i.e. the dual-mode commitment and
the enhanced-linkable commitment.

4.1 The Dual-Mode Commitment

We present the definition of a dual-mode commitment scheme following [64,55].

Definition 4.1 (Dual-Mode Commitment) A dual-mode commitment scheme
is a tuple of PPT algorithms Πdmc = (Gen,TGen,Com,TCom,Open,TCol),
for a security parameter λ, message space M , commitment space C, and opening
space D, such that

1. (TGen, TCom, TCol) satisfies:
– TGen(1λ) outputs the public commitment key Ck and corresponding

trapdoor information Td.
– TCom(Ck, Td) outputs a commitment value c ∈ C and a state St.
– TCol(Ck, Td, St,m) outputs an opening value d ∈ D.
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2. Perfectly Binding: (Gen, Com, Open) is a perfectly binding commitment
scheme.

3. Completeness: For (Ck, Td)← TGen and m ∈M , it holds that

Pr[OpenCk(c, d) = m | (c, d)← ComCk(m)] = 1.

4. Trapdoor Property: For (Ck, Td) ← TGen and m ∈ M , the following
distributions are identical:

{(c, d,m) | (c, d)← ComCk(m)} and

{(c, d,m) | (c, St)← TCom(Ck, Td), d← TCol(Ck, Td, St,m)}.

5. Key Indistinguishability: For all PPT adversaries A, there exists a neg-
ligible function negl(λ) such that

Pr

[
b = b̃

Ck0 ← Gen(1λ), Ck1 ← TGen(1λ)

b← {0, 1}, b̃← A(Ckb)

]
≤ 1

2
+ negl(λ).

According to the definition, it is natural to consider combining a perfectly
binding commitment and a perfectly hiding commitment, such as Commit-
ment 3.2 and Commitment 3.1, to satisfy the requirements of a dual-mode com-
mitment. However, to achieve the trapdoor property, we need to adapt the local
constant extractor into a trapdoor extractor, which is defined as follows.

Definition 4.2 (Trapdoor Extractor) For a group action (G,X, ⋆) with dis-
tributions DG,X and D′G,X on G×X, and a finite group M , a trapdoor extractor
is a tuple of algorithms (E,F), where E is the local constant extractor defined in
Definition 3.3 with respect to the distributions DG,X and D′G,X , and F is a PPT
algorithm that takes (u, g, x, Stab(x)) ∈M ×G×X×P(G) as input and outputs
g′ ∈ G, such that:

– For (h, x)← DG,X and any u ∈ M , y′, y′′ ∈ O(x), g ∈ I(y′, y′′), the output
g′ of F(u, g, y′,Stab(y′)) satisfies g′ ∈ I(y′, y′′) and E(g′) = u.

– The distributions of (E(g), g) and (u, g′) are identical for any y′, y′′ ∈ O(x),
where g ← I(y′, y′′), u←M , g′ ← F(u, g, y′,Stab(y′)), and (h, x)← DG,X .

We note that the input Stab(y′) for F serves as a trapdoor for computing the
‘inverse’ of E. Additionally, we require that Stab(y′) for any involved y′ ∈ O(x)
can be generated by a polynomial number of elements, ensuring that Stab(y′)
can be represented in polynomial size. When combined with a re-randomization
algorithm R for the group action (G,X, ⋆), it follows from the definition that the
distributions of (E(g), y′, g) and (u, y′, g′) are identical for (y′, g) ← R(y), y =
h ⋆ x, (h, x) ← DG,X , and u ← M , g′ ← F(u, g, y, Stab(y)). Using the trapdoor
extractor, we can construct the following dual-mode commitment scheme.
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Commitment Scheme 4.1 : Πdmc = (Gen,TGen,Com,TCom,Open,
TCol), for a security parameter λ.

– Gen(1λ): Sample (h, x)← D′G,X and ouput Ck = h ⋆ x = y.
– TGen(1λ): Sample (h, x)← DG,X and compute Stab(x) from x. Then,

obtain Stab(y) = h · Stab(x) · h−1, where y = h ⋆ x. Finally, output
(Ck, Td) = (y, Stab(y)).

– Comy(m): For a message m ∈ M , sample (y′, g) ← R(y) such that
g ⋆ y = y′. Compute c = (c1, c2) = (E(g) ·m, y′) and set d = g. Output
(c, d).

– TCom(y, Stab(y)): Sample (y′, g)← R(y), u←M and set c = (c1, c2) =
(u, y′), St = (u, g). Output (c, St).

– Openy(c, d): If d ⋆ y = c2, output m̃ = E(d)−1 · c1; otherwise, m̃ =⊥.
– TCol(y, Stab(y), (u, g),m): Compute r = u · m−1, then sample

F(r, g, y, Stab(y))→ g′ and set d = g′. Output d.

Theorem 4.1 Suppose that the group action (G,X, ⋆,DG,X ,D′G,X) satisfies the
d-GAOP assumption, where it is efficient to compute Stab(x) from x given
(h, x) ← DG,X . R is a re-randomized algorithm, and (E,F) is a trapdoor ex-
tractor. Then Commitment 4.1 is a dual mode commitment.

Proof. The Completeness and Perfectly Binding properties are self-evident,
as illustrated in Theorem 3.2. Regarding the Trapdoor Property, it is apparent
due to (E,F) serving as a trapdoor extractor. Concerning Key Indistinguisha-
bility, it can be straightforwardly reduced to the d-GAOP assumption. The
detailed proof is outlined in Appendix A. ut

4.2 The Enhanced-Linkable Commitment

Definition 4.3 (Enhanced Linkable Commitment) Let λ be the security
parameter, (M, ·) be a finite group representing the message space, and (C,D) be
the commitment and opening spaces, respectively. An enhanced linkable commit-
ment scheme is a tuple Πelc = (Gen,Com,Open, (Link, LinkE, LinkC)), where
Πcom = (Gen,Com,Open) is a commitment scheme, and (Link, LinkE, LinkC)
is the link component. The scheme satisfies the following:

1. The link component consists of PPT algorithms (Link, LinkE, LinkC) such
that for two messages m0,m1 ∈ M , and (c0, d0) ← Com(m0), (c1, d1) ←
Com(m1), the following hold:

– Link(c0, c1, dL) outputs 0 or 1. If Link(c0, c1, dL) = 1, we say that dL is
a linking value for the pair (c0, c1).

– LinkE(d0, d1) outputs a linking value dL such that Link(c0, c1, dL) = 1.
That is, given the open values (d0, d1) for (c0, c1), LinkE extracts a linking
value dL for the pair (c0, c1).

– LinkC(c0, c1, dL) outputs m0 ·m−11 if Link(c0, c1, dL) = 1, and outputs ⊥
otherwise. Thus, with the linking value dL for (c0, c1), LinkC computes
m0 ·m−11 .
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2. Computationally Enhanced-Linkable-Hiding (ELH): For all PPT ad-
versaries A, there exists a negligible function negl(λ) such that

Pr [A wins ELH (Πelc)] ≤
1

2
+ negl(λ).

Here, ELH(Πelc) represents the game described in Figure 1.
3. Computationally Enhanced-Linkable-Binding (ELB): For all PPT

adversaries A, there exists a negligible function negl(λ) such that

Pr

 Open(ci, di) = mi, i ∈ {0, 1},
Link(c0, c1, dL) = 1,

m0 ·m−11 6= LinkC(c0, c1, dL)

Ck ← Gen(1λ),(
m0,m1, c0, c1
d0, d1, dL

)
← A(Ck)

 ≤ negl(λ).

4. Computationally Enhanced-Linkable-Unforgeable (ELU)1: For all
PPT adversaries A, there exists a negligible function negl(λ) such that

Pr [A wins ELU(Πelc)] ≤ negl(λ).

Here, ELU(Πelc) represents the game described in Figure 2.

Adversary A Challenger C

mi, i ∈ [4]

c0, c1, dL

b′

Enhanced-Linkable-Hiding(Πelc)

Ck Ck← Gen
(
1λ

)
b← {0, 1}

(c0, d0)← Com(m1+2b)
(c1, d1)← Com(m2+2b)

Choose mi ∈M , i ∈ [4]
s.t. m1 ·m−1

2 = m3 ·m−1
4

dL ← LinkE(d0, d1)

Choose b′ A wins if b′ = b

Fig. 1: The Enhanced Linkable Hiding Game

Intuitively, the ELH property requires that the linking value dL for the pair
(c0, c1) reveals only the information m0 · m−11 . This implies that an adversary
with access to the commitments c0 and c1 of messages m0 and m1, along with
the linking material dL, gains no insight into m0 and m1 other than m0 ·m−11 .
The ELB property requires that it is infeasible for the sender to produce a fake
linking value dL such that Link(c0, c1, dL) = 1 and m0 ·m−11 6= LinkC(c0, c1, dL).
The ELU property requires that no PPT adversary can craft a linking value
dL for pair (c0, c1) without possessing any information about d0 and d1, where
(c0, d0)← Com(m0) and (c1, d1)← Com(m1). Next, we demonstrate adjusting
the deterministic extractor E to achieve an Enhanced Linkable Commitment.
1 This property is referred to as computational link secrecy in [27].
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Adversary A Challenger C

m0,m1

c0, c1

dL

Enhanced-Linkable-Unforgeable(Πelc)

Ck Ck← Gen
(
1λ

)
(c0, d0)← Com(m0)
(c1, d1)← Com(m1)

Choose m0,m1 ∈M

Compute dL A wins if
Link(c0, c1, dL)=1

Fig. 2: The Enhanced Linkable Unforgeable Game

Definition 4.4 (Homomorphic Extractor) For a group action (G,X, ⋆) with
a distribution DG,X in G×X, and M is an abelian group. A homomorphic ex-
tractor is a deterministic and efficient algorithm E : G→M such that

– for (h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that E(g) is uniformly
distributed on M for g ← I(y′, y′′).

– E : G → M is a surjective group homomorphism, i.e, for any g0, g1 ∈ G,
E(g0) · E(g1)−1 = E(g0 · g−11 )

Then we define (Link, LinkE, LinkC) in Definition 4.3 to correspond to Com-
mitment 3.1.

Commitment Scheme 4.2 : Πelc = (Gen,Com,Open, (Link, LinkE,
LinkC)), for a security parameter λ.

– Πcom =(Gen, Com, Open) is Commitment 3.1.

If Ck = y, for two commitments of m0 and m1 in Commitment 3.1:

Comy(m0)→ (c0, d0) = ((c01, c02), d0) = ((E(g0) ·m0, y0), g0)
Comy(m1)→ (c1, d1) = ((c11, c12), d1) = ((E(g1) ·m1, y1), g1)

The link component (Link, LinkE, LinkC) as follows:

– Link(c0, c1, dL) =

{
1 if dL ⋆ c12 = c02.

0 else.

– LinkE(d0, d1) = d0 · d−11 .
– LinkC(c0, c1, dL): If dL⋆c12 = c02, it outputs E(dL)−1 ·c01 ·c−111 ; otherwise,

it outputs ⊥.

Note that if E is a homomorphic extractor and dL = g0 · g−11 , then:

E(dL)
−1 · c01 · c−111 = E(g0 · g−11 )−1 · E(g0) ·m0 · (E(g1) ·m1)

−1 = m0 ·m−11 .

where we have used the fact that M is an abelian group.
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Theorem 4.2 Suppose that group action (G,X, ⋆,DG,X) satisfies the s-GASP
assumption, R is a re-randomization algorithm, and E is a homomorphic extrac-
tor. Then Commitment 4.2 is an Enhanced Linkable Commitment.

Proof. We have proved that the Commitment 3.1 is secure under the s-GASP
assumption. Thus, we only need to establish the security of the enhanced linkable
commitment scheme. Enhanced linkable hiding can be straightforwardly derived
from the properties of R and E, while enhanced linkable binding can be directly
reduced to s-GASP. Moreover, enhanced linkable unforgeability can be reduced
to s-GASP with the assistance of R. The detailed proof is outlined in Appendix A.

ut

Similarly, we can adjust the local constant extractor E to a homomorphic local
constant extractor E so that if we have such E, we can transform Commitment 3.2
into an Enhanced Linkable Commitment.

Definition 4.5 (Homomorphic Local Constant Extractor) For a group ac-
tion (G,X, ⋆) with distributions DG,X and D′G,X on G×X, and M is an abelian
group. A homomorphic local constant extractor is a deterministic and efficient
algorithm E : G→M such that:

– For (h, x) ← DG,X and any y′, y′′ ∈ O(x), it holds that E(g) is uniformly
distributed on M for g ← I(y′, y′′).

– For (h, x) ← D′G,X and any y′, y′′ ∈ O(x), it holds that E(g) is a constant
for g ∈ I(y′, y′′).

– E : G → M is a surjective group homomorphism, i.e, for any g0, g1 ∈ G,
E(g0) · E(g1)−1 = E(g0 · g−11 )

Commitment Scheme 4.3 : Πelc = (Gen,Com,Open, (Link, LinkE,
LinkC)), for a security parameter λ.

– Πcom =(Gen, Com, Open) is Commitment 3.2.
– (Link, LinkE, LinkC) is the same defined in Commitment 4.2.

Theorem 4.3 Suppose that group action (G,X, ⋆,DG,X ,D′G,X) satisfies the d-
GAOP assumption and DG,X-one-way, R is a re-randomization algorithm, and E
is a homomorphic local constant extractor. Then Commitment 4.3 is an Enhanced
Linkable Commitment.

Proof. This proof essentially uses the same techniques in Theorem 4.2 and The-
orem 3.2, so we omit it here. The full proof can be found in Appendix A. ut

5 Instantiation of the Commitments with Lattices

In this section, we demonstrate how to instantiate the commitment schemes
introduced in Section 3 and Section 4 using lattices. We introduce some basic
notations and definitions, which will be used throughout Section 5 and Section 6.
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– Matrices and column vectors are denoted by bold letters, such as A and a.
The transpose of A is denoted by A⊤, and (A−1)⊤ is abbreviated as A−⊤.
The Euclidean norm of a ∈ Rn is represented as ‖a‖.

– Let GLn(Z) denote the general linear group of rank n over Z, and let GL±n (Z)
denote the quotient group GLn(Z)/{±In}.

– Let On(R) denote the group of orthogonal matrices O ∈ GLn(R) such that
O⊤O = In, where In is the identity matrix.

– Let S>0
n (Z) denote the set of n× n positive definite matrices over Z.

5.1 Definitions Related to Lattices
A lattice L of rank n and dimension m is a set of points in Rm that can
be expressed as integer combinations of n linearly independent basis vectors
b1, . . . ,bn. Denote the basis of the lattice L as B = (b1, . . . ,bn), then

L := L(B) = {Bz : z ∈ Zn}.

We focus on full-rank lattices, where m = n and B ∈ GLn(R). The dual lattice
of L is defined as L∗ := {u ∈ Rn : 〈u,v〉 ∈ Z for all v ∈ L}. A lattice L is said
to be unimodular if L = L∗. A unimodular lattice is called even if all its vectors
have an even squared norm, and odd otherwise.

Lattice Isomorphism and Automorphism. Two n-dimensional lattices L1

and L2 are called isomorphic if there exists an orthogonal matrix O ∈ On(R)
such that L2 = {Ov : v ∈ L1}, which we denote as L1

∼= L2 or L1 = O · L2. For
any lattice L, we denote its isomorphism class by [L] = {O · L : O ∈ On(R)}.
A related problem is the Lattice Isomorphism Problem (LIP) [43,26], which
involves finding an isomorphism O ∈ On(R) such that L = O · L′ for two given
isomorphic lattices L and L′.

The automorphism group Aut(L) of an n-dimensional lattice L consists of
all orthogonal matrices that preserve L, i.e., Aut(L) = {O ∈ On(R) : Ov ∈
L for all v ∈ L}. It is evident that Aut(L) includes the trivial automorphisms
±In. A relevant problem is the Lattice Automorphism Problem (LAP) [47,57],
which involves finding a non-trivial automorphism O ∈ Aut(L) for a given lattice
L.
Definition 5.1 (Reducible & Irreducible Lattices) A lattice L is said to
be reducible if it is isomorphic to a lattice of the form L1⊕L2, where L1 and L2

are lattices of dimension at least 1. If L is not reducible, it is called irreducible.

Group Action Based on Lattices. Let Q ∈ S>0
n (Z) be a positive definite

quadratic form over Z, and let [Q] denote the set of quadratic forms equivalent
to Q, i.e. [Q] := {VQV⊤ : V ∈ GLn(Z)}. A group action (GL±n (Z), [Q], ⋆) can
then be defined as 2:

V ⋆Q′ = VQ′V⊤ for any V ∈ GL±n (Z),Q′ ∈ [Q]. (1)
2 As observed in [7], the choice of representative in GL±

n (Z) does not matter for this
group action since VQV⊤ = (−V)Q(−V)⊤.
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This group action is closely related to lattice isomorphisms and automor-
phisms. Specifically, given two isomorphic n-dimensional lattices L ∼= L′ with
respective bases B and B′, define Q = B⊤B and Q′ = B′⊤B′ ∈ S>0

n (Z). For any
isomorphism O from L′ to L, there exists a unique matrix V⊤ ∈ GLn(Z) such
that OB′ = BV⊤. This implies VQV⊤ = (BV⊤)⊤(BV) = (OB′)⊤(OB′) =
Q′, so we have Q′ ∈ [Q]. The above correspondence defines a one-to-one map
between I(Q,Q′) and the set of isomorphisms from L′ to L modulo the re-
lation (−O) ∼ O [7]. Additionally, it has been shown in [47] that the map
V⊤ 7→ BV⊤B−1 defines an isomorphism from Stab(Q) to Aut(L)/{±In}.

On the other hand, every quadratic form Q induces a unique upper-triangular
lattice basis BQ such that Q = B⊤QBQ through Cholesky decomposition, imply-
ing an efficient conversion between quadratic forms and lattices. Thus, lattice
isomorphisms and automorphisms can be represented in two equivalent forms:
lattice basis and quadratic form. In this paper, we primarily use quadratic forms
to describe lattice problems.

Definition 5.2 (Lattice Isomorphism Problem, LIP) Given two quadratic
forms Q and Q′ associated with isomorphic lattices L and L′, the objective is to
find an isomorphism U ∈ GLn(Z) such that UQU⊤ = Q′. When L ∼= Zn, this
problem is referred to as the ZLIP.

Definition 5.3 (Decisional LIP(L0,L1)) 3 Let L0 and L1 be non-isomorphic
lattices, with the corresponding quadratic forms Q0 and Q1. Given a quadratic
form Q ∈ [Qb], where b ∈ {0, 1} is a uniformly random bit, the objective is to
determine the value of b.

Definition 5.4 (Lattice Automorphism Problem, LAP) Given a quadratic
form Q of a lattice L where Aut(L) 6= {±In}, the objective is to find an au-
tomorphism U ∈ Stab(Q) such that U 6= ±In. When L ∼= Zn, this problem is
referred to as the ZLAP.

Both LIP and LAP are considered computationally hard problems. LIP has
been applied in the design of various cryptographic schemes [26,25,8,53]. Fur-
thermore, it has been demonstrated in [47] that ZLAP is equivalent to ZLIP.

The Genus of a Lattice. The genus is a classification of lattices under Zp-
equivalence, where Zp represents the p-adic integers. Specifically, two lattices L1

and L2 ⊂ Rn are said to be Zp-equivalent if there exists a matrix U ∈ GLn(Zp)
such that UQ1U

⊤ = Q2, where Q1 and Q2 are the corresponding quadratic
forms of L1 and L2.

Definition 5.5 (Genus [72]) For an n-dimensional integral lattice L, genus(L)
consists of all integral lattices that are Zp-equivalent to L for all primes p.
3 In earlier LIP-based works, ’Decisional LIP’ has been referred to as ’Distinguish

LIP’.



A Novel Commitment Construction Framework from Group Actions 21

Given an integral lattice L, a canonical label for genus(L) can be efficiently
computed if the prime factorization of det(L)2 is known. Thus, for LIP, it is
essential that the input lattices belong to the same genus.

Automorphism Group of Zn. The automorphism group of Zn consists of
signed permutation matrices of size n×n, which have exactly one nonzero entry
per row and column, and the nonzero entries are either ±1. We denote this group
as S±n , and the group of permutation matrices of size n× n as Sn.

It is known that S±n is the semi-direct product Dn⋊Sn, where Dn represents
the group of signed matrices, i.e., diagonal matrices with diagonal entries ±1.
Besides, we denote the standard basis of Zn as {ei}i∈[n].

Lattices with Specific Automorphism Groups. We introduce the following
types of lattices, which will be used in our construction. The existence of these
lattices will be discussed later.

(1) Λn
0 is the set of n-dimensional lattices with a trivial automorphism group,

i.e., Λn
0 := {L : Aut(L) = {±In}}.

(2) Λn
k , where k > 0, is the set of n-dimensional lattices with an automor-

phism group of size at least 2k+1, i.e., Λn
k := {L : |Aut(L)| ≥ 2k+1}.

(3) Λn
+ is the set of n-dimensional lattices where all automorphisms have

determinant 1, i.e., Λn
+ := {L : det(O) = 1 for all O ∈ Aut(L)}.

(4) Λn
− is the set of n-dimensional lattices where the number of automor-

phisms with determinant 1 equals the number of automorphisms with deter-
minant −1, i.e., Λn

− := {L : |A(L)
1 | = |A

(L)
−1 |}, where A

(L)
i = {O ∈ Aut(L) :

det(O) = i}.

5.2 Instantiating the Re-Randomization Algorithm

As mentioned earlier, the re-randomization algorithm R fundamentally arises
from the self-reduction of LIP. Intuitively, this self-reduction process leverages
the well-known Gaussian sampling algorithm on lattices [32,13], which effectively
conceals the details of the lattice basis while preserving the geometric structure
of the lattice. There are two similar methods to realize this process, both of
which can be adapted for the group action (GL±n (Z), [Q], ⋆) in the instantiation
of the re-randomization algorithm R, described as follows.

The first method, explained in terms of the lattice basis [8,47], proceeds as
follows. Given an input Q, the algorithm R first computes the corresponding lat-
tice basis B. It then applies the LLL algorithm to remove the length information
from the lattice basis B. Next, it utilizes the Gaussian sampling algorithm on
the lattice L(B) to generate m = poly(n) lattice vectors V = {v1, . . . ,vm} such
that V spans L(B) with overwhelming probability [43, Lemma 5.4]. Afterward,
a uniformly random orthogonal matrix O is sampled, and the LLL algorithm is
applied to the set O · V to obtain a lattice basis B′ and a transition matrix
U⊤ ∈ GLn(Z) such that B = OB′U⊤. The output is (B′⊤B′,U).
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The second method, described in terms of quadratic forms [26], first applies
the LLL algorithm to the Gram matrix Q, eliminating the length information.
Then, the Gaussian sampling algorithm is used to sample n linearly independent
lattice vectors V = {v1, . . . ,vn}. By leveraging [60, Lemma 7.1] (which exploits
the uniqueness of the Hermite Normal Form), these vectors are converted into
the Gram matrix Q′, yielding the transition matrix U⊤ ∈ GLn(Z), such that
Q = UQ′U⊤. The output is (Q′,U).

Since the second method is simpler and more efficient, we recommend opting
for this approach. For further details, please refer to [26].

Lemma 5.1 (Adapted from [26, Lemma 3.4]) There exists an efficient ran-
domized algorithm R that takes any Q ∈ S>0

n (Z) as input and outputs (R,U)
such that (R = UQU⊤,U) ∈ [Q]×GL±n (Z), with the following properties:

– For any quadratic form Q ∈ S>0
n (Z), Q′ ∈ [Q], and (Q′′,U) ← R(Q), the

marginal distributions of the first variable are identical for R(Q) and R(Q′);
U is uniformly distributed on I(Q,Q′′).

5.3 The Deterministic Extractor and Commitment 3.1

It suffices to instantiate the deterministic extractor, as the commitment directly
follows from the randomization algorithm R in Lemma 5.1 and the framework
established in Commitment 3.1. Let n be an even positive integer, and let Q
be the quadratic form of a lattice L ∈ Λn

−. Define the distribution DGL±
n (Z),[Q]

which outputs a pair (U,Q), where U is sampled using the re-randomization
algorithm (Q′,U)← R(Q).

Lemma 5.2 For the group action (GL±n (Z), [Q], ⋆) with distribution DGL±
n (Z),[Q]

on GL±n (Z)× [Q] and the group M = ({±1},×), define E : GL±n (Z) → M such
that E(U) 7→ det(U). Then, E is a deterministic extractor as in Definition 3.2.

Proof. The function E is well-defined because det(U) = det(−U) for even n and
any U ∈ GLn(Z). Since Q ∈ Λn

− and E : GL±n (Z) → {±1} is a surjective group
homomorphism, det(U) is uniformly distributed over {±1} for any Q′ ∈ [Q] and
U ← Stab(Q′). Therefore, for (U′,Q) ← DGL±

n (Z),[Q] and any Q′,Q′′ ∈ [Q],
det(U′) is uniformly distributed over {±1} for U′ ← I(Q′,Q′′) = V · Stab(Q′),
where V ∈ I(Q′,Q′′). ut

Since E is a group homomorphism, the following corollary holds.

Corollary 5.1 For DGL±
n (Z),[Q] and E defined in Lemma 5.2, E is a homomor-

phic extractor as in Definition 4.4.

How to Choose a Lattice from Λn
−. We now explain how to select a quadratic

form Q of a lattice L ∈ Λn
−, given an even n. In fact, for any (n−1)-dimensional

lattice L1 and (n−2)-dimensional lattice L2, we have L1⊕Z and L2⊕Z2 ∈ Λn
−,

particularly Zn ∈ Λn
−. Additionally, other methods for selecting a lattice from

Λn
− exist, as discussed in [18, Section 3.4.2].
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The s-GASP Assumption. For the group action (GL±n (Z), [Q], ⋆) with dis-
tribution DGL±

n (Z),[Q], given an s-GASP instance Q′ ∈ [Q], finding a non-trivial
stabilizer ±In 6= U ∈ Stab(Q′) is equivalent to solving LAP, as discussed in
Section 5.1. Thus, the security of this instantiation reduces to the hardness of
LAP.

A Discussion on E. An interesting question is whether we can identify a finite
group M and a deterministic extractor E : G→M such that |M | is maximized.
However, if we wish to preserve the homomorphic property, it seems challenging
to extend E to extract additional bits. A more detailed discussion on this is
provided in the Appendix B.

5.4 The Local Constant Extractor and Commitment 3.2

Let n be an even positive integer, and let Q0,Q1 be the quadratic forms cor-
responding to lattices L0 ∈ Λn

− and L1 ∈ Λn
+, respectively. For the group ac-

tion (GL±n (Z), [Q0] ∪ [Q1], ⋆), we define the distributions D(0)

GL±
n (Z),[Q0]∪[Q1]

and
D(1)

GL±
n (Z),[Q0]∪[Q1]

such that D(b)

GL±
n (Z),[Q0]∪[Q1]

outputs a pair (Ub,Qb), where
Ub is sampled using the re-randomization algorithm (Q′b,Ub) ← R(Qb) for
b ∈ {0, 1}. The following lemma can be derived similar to Lemma 5.2, and
the proof is omitted here.

Lemma 5.3 For the group action (GL±n (Z), [Q0] ∪ [Q1], ⋆) with distributions
D(0)

GL±
n (Z),[Q0]∪[Q1]

and D(1)

GL±
n (Z),[Q0]∪[Q1]

on GL±n (Z)× [Q0]∪ [Q1] and the group
M = ({±1},×), define E : GL±n (Z)→M such that E(U) 7→ det(U). Then, E is
a local constant extractor as in Definition 3.3.

Corollary 5.2 For the distributions D(0)

GL±
n (Z),[Q0]∪[Q1]

, D(1)

GL±
n (Z),[Q0]∪[Q1]

, and E

defined in Lemma 5.3, E is a homomorphic local constant extractor as described
in Definition 4.5.

An instantiation of Commitment 3.2 can be achieved by applying the re-
randomization algorithm R from Lemma 5.1 and the local constant extractor E
from Lemma 5.3. In this context, the d-GAOP problem becomes equivalent to
the decisional LIP(L0,L1), as discussed in Section 5.1. Therefore, an additional
requirement for L0 and L1 is that they must belong to the same genus, with the
details of this selection discussed below.

How to Choose Lattices from Λn
− and Λn

+ . We present two methods for
selecting L0 and L1 such that they belong to the same genus, noting that the
dimension n must be an even number in both cases.

Method 1: This method leverages the properties of lattice direct sums. Specif-
ically, to construct a pair of lattices (L0,L1) that satisfy the desired conditions,
we first identify two irreducible low-dimensional lattices (N0,N1) ∈ Λk

− × Λk
0 ,
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where k is an even number and genus(N0) = genus(N1). Using the following
proposition, we can deduce that setting (L0,L1) = (⊕m

i=1N0,⊕m
i=1N1) for any m

results in (L0,L1) ∈ Λmk
− × Λmk

+ and genus(L0) = genus(L1). The deduction of
Proposition 5.1 is provided in the Appendix C.

Proposition 5.1 For two k-dimensional irreducible lattices (L1,L2) satisfying
genus(L1) = genus(L2) and any positive integer m, we have genus(⊕m

i=1L1) =
genus(⊕m

i=1L2) and Aut(⊕m
i=1Lj) = {(S⊗Ik) ·diag(A1, · · · ,Am) | S ∈ S±m, Ai ∈

Aut(Lj), i ∈ [m]}, j ∈ {1, 2}.

The selection of lattices (N0,N1) can proceed as follows. Set N0 = Zk and N1

as a k-dimensional odd unimodular lattice with a trivial automorphism group.
This selection requires that k be an even integer of at least 30. This is because
such N1 only exists for dimensions k > 28, and an explicit construction of N1

for k = 30 can be found in [71].
It is generally believed that the ‘direct sum’ structure does not compromise

the hardness of the LIP. On the one hand, Zn = ⊕n
i=1Z has a ‘direct sum’

structure, yet ZLIP is still considered hard, with the best-known algorithms
having exponential complexity in the dimension n. Our construction can be
viewed as an extension of ZLIP by replacing the direct sum of Z with the direct
sum of other small lattices. On the other hand, the ‘direct sum’ structure has
been implicitly used in previous scheme constructions. For instance, in [26], the
lattice structure N ⊕ a(a + 1)N was employed, where a is an integer and N
represents a lattice.

Method 2: This method employs a sampling algorithm from a given genus, a
similar approach has also been mentioned in [72]. Specifically, for a given genus
G (typically represented by its canonical label), lattices can be sampled from G
according to a distribution related to the sizes of their automorphism groups, as
stated below.

Proposition 5.2 ([44,17]) For a given genus G, there exists an efficient algo-
rithm to sample from the distribution D(G), which selects [L] ∈ G with relative
mass m(L) := 1/|Aut(L)|. In particular, for any [L] ∈ G, we have:

Pr[L′]←D(G) [ [L′] = [L] ] = m(L)∑
[L′]∈Gm(L′)

.

Note that Zn is an odd unimodular lattice, and the Barnes-Wall lattices of
dimension n = 22k+1 are even unimodular lattices up to scaling. Additionally,
for a given dimension n, odd unimodular lattices form a single genus, as do even
unimodular lattices. Considering Zn or the Barnes-Wall lattices (up to scaling)
as L0 ∈ Λn

−, then we can employ Proposition 5.2 to sample a lattice L1 from
D(G), where G = genus(L0). According to Theorem 5.1, the automorphism group
of L1 is overwhelmingly likely to be trivial for large n. Consequently, we obtain
an instantiation (L0,L1) ∈ Λn

− × Λn
0 ⊂ Λn

− × Λn
+.
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Theorem 5.1 ([3]) Let m be the mass of the given genus of positive definite uni-
modular lattices of rank n and m′ be the mass of all the classes in the genus with
nontrivial automorphisms. Then the ratio of the mass m′/m is upper bounded
by 33(

√
2π)n/Γ (n2 ) for odd unimodular lattices of dimension n ≥ 43 and by

2n+1(
√
2π)n/Γ (n2 ) for even unimodular lattices of dimension n ≥ 144. In par-

ticular, this ratio approaches 0 very rapidly as n increases.

5.5 Commitments Based on the Randomness Extractor

In [4,42,26], a (k, ϵ)-random extractor E : X × {0, 1}n → {0, 1}v with a dis-
tribution X ← DX is a computationally efficient algorithm such that if the
min-entropy of X is greater than k, then ∆((E(X,Z), Z), (V, Z)) ≤ ϵ, where
X ← DX , Z ← {0, 1}n, V ← {0, 1}v. The leftover hash lemma [4] is a well-known
technique for constructing randomness extractors, providing a (k, ϵ)-extractor
with k = Θ(v) and ϵ = 2−Θ(k). Thus, the randomness extractor defined in Defi-
nition 3.4 essentially functions as an (k, ϵ)-extractor when we set (X ,DX , n) to
(G,DG,X , ζ) and (M, ·) = ({0, 1}v,⊕), requiring the distribution DG,X to satisfy
|Stab(x)| ≥ 2k for (h, x)← DG,X . Thus, the following lemma can be derived:

Lemma 5.4 For an even integer n and a quadratic form Q of a lattice L ∈
Λn
k , consider the group action (GL±n (Z), [Q], ⋆) with distribution DGL±

n (Z),[Q] on
GL±n (Z)× [Q] and M = ({0, 1}v,⊕), where DGL±

n (Z),[Q] samples the pair (U,Q)
such that U is drawn according to (Q′,U)← R(Q).

Then there is an efficient algorithm E : GL±n (Z)× {0, 1}ζ →M , such that E
is a randomness extractor as defined in Definition 3.4.

Instantiation of Commitment 3.3. First, we demonstrate how to find a
quadratic form Q of a lattice L ∈ Λn

k , given an even n. To maximize the number
of bits committed, it is desirable for the automorphism group of L to be as large
as possible. Feit [29] showed that for n > 10, Zn has the largest automorphism
group among all n-dimensional lattices, with |Aut(Zn)| = 2n · n!. Furthermore,
it is noteworthy that ZLAP is equivalent to ZLIP [47]. Therefore, by selecting
Q ∈ [In], k can approximately scale as Θ(n log n). Using R from Lemma 5.1
and E from Lemma 5.4, we can effectively instantiate Commitment 3.3. In this
context, the s-GASP problem reduces to ZLIP.

Instantiation of Commitment 3.4. Given an even n, we demonstrate how
to find a quadratic form Q0 for a lattice L0 ∈ Λn

k and a quadratic form Q1

for a lattice L1 ∈ Λn
0 such that genus(L0) = genus(L1). Similarly, to maximize

the commitment of more bits, it is preferable for the automorphism group of
L0 to be as large as possible. Thus, we set L0 = Zn, and we can apply Propo-
sition 5.2 to sample a lattice L1 from D(G), where G = genus(L0). According
to Theorem 5.1, the automorphism group of L1 is overwhelmingly likely to be
trivial for a sufficiently large n. As a result, we instantiate (L0,L1) ∈ Λn

k × Λn
0 ,

with k = Θ(n log n). Using R from Lemma 5.1 and E from Lemma 5.4, we can
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effectively instantiate Commitment 3.4. In this context, the d-GAOP problem
is reduced to the decisional LIP(L0,L1).

5.6 Dual-Mode Commitment and Enhanced-Linkable Commitments

To begin with, we demonstrate how to obtain a trapdoor extractor (E,F) that
satisfies the conditions in Definition 4.2. Let n be an even integer, and let Q0,Q1

be quadratic forms of lattices L0 ∈ Λn
− and L1 ∈ Λn

+, respectively. For the
group action (GL±n (Z), [Q0]∪ [Q1], ⋆), define distributions D(0)

GL±
n (Z),[Q0]∪[Q1]

and
D(1)

GL±
n (Z),[Q0]∪[Q1]

on GL±n (Z) × [Q0] ∪ [Q1], where D(b)

GL±
n (Z),[Q0]∪[Q1]

outputs a
pair ((Ub,Qb)) such that Ub is sampled according to (Q′b,Ub) ← R(Qb), for
b ∈ {0, 1}.

Define the extractor E : GL±n (Z) → {±1} such that E(U) 7→ det(U), which
serves as a local constant extractor according to Lemma 5.3. We construct F as
follows. For (U0,Q0) ← D(0)

GL±
n (Z),[Q0]∪[Q1]

and u ∈ {±1}, with Q′0,Q
′′
0 ∈ [Q0]

and U ∈ I(Q′0,Q′′0), F takes (u,U,Q′0, Stab(Q′0)) as input. If det(U) = u, F
sets U′ = U and outputs U′. Otherwise, F finds an element V ∈ Stab(Q′0) such
that det(V) = −1, sets U′ = UV, and then outputs U′. Thus, we conclude the
following lemma, with its proof provided in Appendix C.

Lemma 5.5 The above pair of algorithms (E,F) forms a trapdoor extractor as
described in Definition 4.2.

Instantiation of Commitment 4.1. This instantiation closely resembles that
of Section 5.4. For an even n, the instantiation involves not only finding a
quadratic form Q0 of a lattice L0 ∈ Λn

− and a quadratic form Q1 of a lat-
tice L1 ∈ Λn

+ such that genus(L0) = genus(L1), but also efficiently computing
a polynomial-size generating set of Stab(Q0) from Q0. It is worth noting that
in Lemma 5.5, we only required an element V ∈ Stab(Q′′0) with det(V) = −1.
This implies the need to efficiently find an element V ∈ Stab(Q0) such that
det(V) = −1 from Q0 to finalize the instantiation. Furthermore, for all instanti-
ation methods described in Section 5.4, Aut(L0) is consistently computationally
feasible and succinctly represented. Specifically, in Method 1, the selected lattice
L0 = ⊕m

i=1N0, where Aut(N0) can be efficiently computed due to its constant
dimension or because it has a known automorphism group, such as N0 = Zk.
Thus, by Proposition 5.1, Aut(L0) can be fully determined. In Method 2, one
might choose L0 = Zn such that Aut(L0) = S±n . Consequently, following the
discussions in Section 5.4, utilizing R in Lemma 5.1 and E in Lemma 5.5, we can
effectively instantiate Commitment 4.1 based on the Decisional LIP(L0,L1).

5.7 Enhanced-Linkable Commitments

Since Commitment 4.2 can be viewed as an extension of Commitment 3.1 with
an additional linking component, and given that the extractor E defined in
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Lemma 5.2 is already a homomorphic extractor, the corresponding linking com-
ponent naturally arises from Commitment 3.1. Therefore, in line with the dis-
cussion in Section 5.3, by utilizing R from Lemma 5.1 and E from Lemma 5.2,
we can efficiently instantiate Commitment 4.2 based on LAP.

Similarly, following the discussion in Section 5.4, by utilizing R from Lemma 5.1
and E from Lemma 5.3, we can efficiently instantiate Commitment 4.3 based on
LIP and the Decisional LIP(L0,L1).

6 Non-Interactive Commitment Based on Decisional LIP

In this section, we present how to derive a non-interactive commitment scheme
based on the decisional LIP. Compared to the non-interactive commitment
schemes proposed in [27], this scheme does not suffer from the attack in [33],
while also offering an enhancement by expanding the message space without
increasing the asymptotic size of the commitment.

Commitment Scheme 6.1 : A non-interactive commitment scheme
Πcom = (Gen,Com,Open) with security parameter λ, message space
M = {0, 1}n, where n is an even integer.

– Gen(1λ): Generate a set of lattices {L0
i ,L1

i }i∈[n] such that L0
i and L1

i

belong to the same genus, and there exists a witness w to show that
the 2n lattices {⊕n

i=1L
ji
i }ji∈{0,1} are pairwise non-isomorphic. Compute

a Gram matrix Qj
i for the lattice Lj

i , where i ∈ [n], j ∈ {0, 1}. Output
Ck = {Q0

i ,Q
1
i }ni=1.

– Com(m): For a message m = (m1,m2, . . . ,mn) ∈ {0, 1}n, define Qm =
diag{Qmi

i }i∈[n]. Use the re-randomization algorithm from Section 5.2 to
generate (Q,U)← R(Qm). Output (c, d) = (Q,U).

– Open(c, d): Compute Q′ = d−1 · c · d−⊤. If there exists a message m′ =

(m′1,m
′
2, . . . ,m

′
n) ∈ {0, 1}n such that Q′ = diag{Qm′

i
i }i∈[n], output m′;

otherwise, output ⊥.

Theorem 6.1 Assuming that it is difficult to distinguish among the 2n lattices
{⊕n

i=1L
ji
i }ji∈{0,1}, i.e., the decisional LIP(⊕n

i=1L
mi
i ,⊕n

i=1L
m′

i
i ) is hard for any

m,m′ ∈ {0, 1}n, then Commitment 6.1 is perfectly binding and computationally
hiding.

Proof. The correctness is evident. The binding property arises from the 2n

lattices {⊕n
i=1L

ji
i }ji∈{0,1} being pairwise non-isomorphic. The hiding property

can be reduced to the hardness of the decisional LIP(L,L′) for any L,L′ ∈
{⊕n

i=1L
ji
i }ji∈{0,1}. The proof is provided in Appendix C ut

Generation of the Lattices {L0
i ,L1

i }i∈[n]. Generating a witness that is short
and efficiently verifiable for non-isomorphic lattices is a challenging task in gen-
eral, as it remains unclear whether the lattice isomorphism problem is in coNP.
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However, for Commitment 6.1, we can provide a straightforward instantiation
of {L0

i ,L1
i }i∈[n], ensuring that L0

i and L1
i belong to the same genus. Therefore,

all lattices in {⊕n
i=1L

ji
i }ji∈{0,1} have the same genus. A short and efficiently

verifiable witness w for their non-isomorphism can be easily constructed.
Observe that for any positive integer a and lattice L, the lattices a · L ⊕

(a+ 1) · L and L ⊕ a(a+ 1) · L are in the same genus [26, Section 8]. Thus, for
Commitment 6.1, we can define L0

i = 2i·Z⊕(2i+1)·Z and L1
i = Z⊕2i(2i+1)·Z.

Moreover, the witness can be trivially set as the set of bases for Lj
i , where i ∈ [n]

and j ∈ {0, 1}. This witness can then be used to efficiently prove that the lattices
in {⊕n

i=1L
ji
i }ji∈{0,1} are non-isomorphic, as stated in the following lemma.

Lemma 6.1 Suppose B
(0)
i and B

(1)
i are bases of L0

i = 2i · Z ⊕ (2i + 1) · Z
and L1

i = Z ⊕ 2i(2i + 1) · Z respectively. Let the witness w = {B(0)
i ,B

(1)
i }i∈[n],

it can be efficiently verified that the 2n lattices {⊕n
i=1L

ji
i }ji∈{0,1} are pairwise

non-isomorphic.

Proof. The receiver needs to verify that each Bj
i is a lattice basis of Lj

i , for
j ∈ {0, 1} and i ∈ [n], which can be done efficiently. This verification suffices
because for any distinct s 6= t ∈ {0, 1}n, the lattices ⊕n

i=1L
si
i and ⊕n

i=1L
ti
i are not

isomorphic. Consider two diagonal bases of Ls = ⊕n
i=1L

si
i and Lt = ⊕n

i=1L
ti
i ,

denoted as Bs = diag(a1, . . . , an) and Bt = diag(b1, . . . , bn), respectively. It
follows that Ls and Lt are isomorphic if and only if the diagonal elements of Bs

and Bt are identical up to a signed permutation, especially the odd integers in
both diagonals must match. This observation underscores the non-isomorphism
of Ls and Lt by comparing the odd integers in their diagonals. ut

Comparison with the Non-Interactive Commitment Scheme from [27].
The non-interactive commitment scheme in [27] is a bit-commitment based on
d-GAIP. Specifically, their scheme is instantiated using a special case of the
tensor isomorphism problem, where ranks serve as witnesses to distinguish non-
isomorphic tensors. However, this instantiation is vulnerable due to the ‘direct
sum’ structure in the tensor isomorphism problem, as demonstrated in [33]. In
contrast, Commitment 6.1 is based on lattice isomorphism problems, which we
believe exhibit ’direct sum’-hardness. Moreover, Commitment 6.1 has the ad-
vantage of utilizing 2n different combinations {⊕n

i=1L
ji
i }ji∈{0,1} for committing,

a feature that cannot be achieved with the approach from [27]. This effectively
enlarges the message space of Commitment 6.1.

7 Conclusion

We propose two key techniques for general group actions: re-randomization and
randomness extraction. We demonstrate that these techniques can significantly
facilitate the construction of commitment schemes, providing a flexible frame-
work for constructing commitment schemes with various properties, depending



A Novel Commitment Construction Framework from Group Actions 29

on the type of extractor involved. Finally, we instantiate all our proposed com-
mitment schemes using lattices, specifically leveraging the LIP and the LAP as
underlying cryptographic assumptions. Additionally, we use LIP to provide a
repair and improvement to the tensor isomorphism-based non-interactive com-
mitment scheme proposed by [27].

As part of future research, it would be intriguing to explore the potential ap-
plicability of alternative assumptions for instantiation, such as code equivalence
or isogenies. Furthermore, an investigation of the feasibility of devising addi-
tional cryptographic schemes using the methodologies and framework described
in this paper could be an interesting avenue for exploration.
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Supplementary Material

Appendix A Security Proofs

A.1 Security Proofs in Section 3

Theorem A.1 (Corresponding to Theorem 3.2) Suppose that the group ac-
tion (G,X, ⋆,DG,X ,D′G,X) satisfies the d-GAOP assumption, R is a re-randomized
algorithm, and E is a local constant extractor. Then Commitment 3.2 is perfectly
binding and computationally hiding.

Proof. Correctness is obvious. We prove the hiding and binding below.
Perfectly Binding: Assume an adversary A outputs a commitment c =

(c1, c2) = (E(g) ·m, y′) = (E(g′) ·m′, y′) with m′ 6= m and g, g′ ∈ I(y, y′). Then
E(g′) 6= E(g), this contradicts the property of the local constant extractor E.

Computationally Hiding: We use a hybrid argument to complete the
proof.

Game 0. This is the standard hiding game in Commitment 3.2. Let A be an
adversary against the hiding property. CH interacts with an A as below. Let Si

be the event that A wins in Game i and S̄i be the event that A loses in Game i.

1. Gen: CH samples (h, x)← D′G,X , sets Ck = h ⋆ x = y, sends Ck to A.
2. Choose: A chooses two messages m0,m1 ∈M and sends them to CH.
3. Challenge: CH picks b ← {0, 1} and generates (c, d) ← Comy(mb), sends

c to A as the challenge.
4. Guess: A outputs a bit b′ and wins if its guess b′ = b.

Game 1 is same as Game 0 except that CH generates Ck from DG,X , this is
the standard hiding game in Commitment 3.1.

1. Gen: CH samples (h, x)← DG,X , sets Ck = h ⋆ x = y, send Ck to A.
2. Choose: A chooses two messages m0,m1 ∈M and sends them to CH.
3. Challenge: CH picks b ← {0, 1} and generates (c, d) ← Comy(mb), sends

c to A as the challenge.
4. Guess: A outputs a bit b′ and wins if its guess b′ = b.

Since Commitment 3.1 is perfectly hiding, thus Pr[S1] =
1
2 for any adversary

A. If there is a PPT adversary A that wins the hiding game of Commitment 3.2
with probability larger than 1

2 + 1
p(λ) . Then, we can construct a PPT A′ that

solves d-GAOP with probability 1
2 + 1

2p(λ) .
For a d-GAOP instance y, A′ sets the Ck = y and sends it to A, then A

chooses two messages m0,m1 ∈ M to A′. A′ picks a b ← {0, 1} and generates
(c, d)← Comy(mb), sends c to A as the challenge. A outputs a bit b′. If b′ = b,
A′ returns 1, i.e. y is from distribution D′G,X ; otherwise, A′ returns 0, i.e. y
is from distribution DG,X . Thus, the probability that A′ wins is Pr[S0 | y =
g ⋆ x, (g, x) ← D′G,X ] + Pr[S̄1 | y = g ⋆ x, (g, x) ← DG,X ], which is larger than
1
2 (

1
2 + 1

p(λ) ) +
1
2 ·

1
2 = 1

2 + 1
2p(λ) . ut
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Theorem A.2 (Corresponding to Theorem 3.3) Suppose that the group ac-
tion (G,X, ⋆,DG,X) satisfies the s-GASP assumption, R is a re-randomized al-
gorithm, and E is a randomness extractor. Then Commitment 3.3 is statistically
hiding and computationally binding.

Proof. Correctness is easy to obtain. We prove the hiding and binding below.
Statistically Hiding: Assume that Comy(m) = (c, d), the statistical dis-

tance between c = (E(g, z) ·m, y1, z) and (u, y1, z) is at most ϵ(λ), where u←M ,
z ← {0, 1}ζ , (y1, g) ← R(y) and ϵ(λ) is a negligible function. Thus the commit-
ment scheme is statistically hiding.

Computationally Binding: Given an s-GASP instance y. Send the Ck = y
to the adversary A in the binding game, if A outputs a commitment c =
(c1, c2, c3) = (E(g1, z) ·m, y1, z) = (E(g′1, z) ·m′, y1, z) with m′ 6= m and g, g′ ∈
I(y, y1). Then E(g′1, z) 6= E(g1, z), thus g1 6= g′1, because of E(·, z) is a determin-
istic extraction algorithm. Thus e 6= g−11 · g′1 ∈ Stab(y), this solves the s-GASP
assumption. ut

Theorem A.3 (Corresponding to Theorem 3.4) Suppose that the group ac-
tion (G,X, ⋆,DG,X ,D′G,X) satisfies the d-GAOP assumption, where the distri-
bution D′G,X satisfies |Stab(x)| = 1 for (h, x) ← D′G,X . R is a re-randomized
algorithm, and E is a randomness extractor for distribution DG,X . Then Com-
mitment 3.4 is perfectly binding and computationally hiding.

Proof. Correctness is obvious. We prove the hiding and binding below.
Perfectly Binding: Assume an adversary A outputs a commitment c =

(c1, c2, c3) = (E(g1, z) ·m, y1, z) = (E(g′1, z) ·m′, y1, z) with m′ 6= m and g, g′ ∈
I(y, y1). Then E(g′1, z) 6= E(g1, z), thus g1 6= g′1. Thus, e 6= g−11 · g′1 ∈ Stab(y),
contradicts |Stab(y)| = 1.

Computationally Hiding: We use hybrid argument to complete the proof.

Game 0. This is the standard hiding game in Commitment 3.4. Let A be an
adversary against the hiding property. CH interacts with A as below. Let Si be
the event that A wins in Game i, and S̄i be the event that A loses in Game i.

1. Gen: CH samples (h, x)← D′G,X , sets the public key Ck = h ⋆ x = y, sends
Ck to A.

2. Choose: A chooses two messages m0,m1 ∈M to CH.
3. Challenge: CH picks b ← {0, 1} and generates (c, d) ← Comy(mb), sends

c to A as the challenge.
4. Guess: A outputs a bit b′ and wins if its guess b′ = b.

Game 1 is same as Game 0 except that CH generates Ck from DG,X , this is
the standard hiding game in Commitment 3.3.

1. Gen: CH samples (h, x)← DG,X , sets the public key Ck = h ⋆ x = y, sends
Ck to A.
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2. Choose: A chooses two messages m0,m1 ∈M to CH.
3. Challenge: CH picks b ← {0, 1} and generates (c, d) ← Comy(mb), sends

c to A as the challenge.
4. Guess: A outputs a bit b′ and wins if its guess b′ = b.

According to the Theorem 3.3, we know that it’s statistically hiding, thus
Pr[S1] ≤ 1

2 + ϵ(λ) for any adversary A. If there is a PPT adversary A that
wins the hiding game of Commitment 3.4 with probability larger than 1

2 +
1

p(λ) .
Then, we get a distinguisher A′ that solves d-GAOP with probability larger than
1
2 + 1

2p(λ) −
1
2ϵ(λ).

A′ needs to simulate the CH to callA. For the group action (G,X, ⋆,DG,X ,D′G,X),
given a d-GAOP instance y, A′ sets Ck = y and sends it to A, then A chooses
two messages m0,m1 ∈ M to A′. A′ picks a b ← {0, 1} and generates (c, d) ←
Comy(mb), sends c to A as the challenge. A outputs a bit b′. If b′ = b, A′
returns 1, i.e., y is from distribution D′G,X ; otherwise, A′ returns 0, i.e. y is
from distribution DG,X . Thus, the probability that A′ wins is Pr[S0 | y =
g ⋆ x, (g, x) ← D′G,X ] + Pr[S̄1 | y = g ⋆ x, (g, x) ← DG,X ], which is larger than
1
2 (

1
2 + 1

p(λ) ) +
1
2 (

1
2 − ϵ(λ)) = 1

2 + 1
2p(λ) −

1
2ϵ(λ). ut

A.2 Security Proofs in Section 4

Theorem A.4 (Corresponding to Theorem 4.1) Suppose that the group ac-
tion (G,X, ⋆,DG,X ,D′G,X) satisfies the d-GAOP assumption, where it is efficient
to compute Stab(x) from x given (h, x)← DG,X . R is a re-randomized algorithm,
and (E,F) is a trapdoor extractor. Then Commitment 4.1 is a dual mode com-
mitment.

Proof. The Completeness and Perfectly Binding properties are evident, as
demonstrated in Theorem 3.2. We establish the Trapdoor Property and Key
Indistinguishability below.

Trapdoor Property: For TGen(1λ) → (y, Stab(y)), where y = h ⋆ x,
(h, x)← DG,X , and for any m ∈M , the distribution

{(c, d,m) | (c, d)← Comy(m)}

is {(E(g) ·m, y′), g,m}, where (g, y′)← R(y). The distribution of

{(c, d,m) | (c, (u, g))← TCom(y, Stab(y)), g′ ← TCol(y, Stab(y), (u, g),m)}

is {(u, y′), g′,m}, where (g, y′) ← R(y), u ← M , r = u · m−1, and g′ ←
F(r, g, y, Stab(y)).

Therefore, we only need to demonstrate that the distributions of

{(E(g), y′), g | (g, y′)← R(y)}

and
{(r, y′), g′ | (g, y′)← R(y), g′ ← F(r, g, y, Stab(y)), r ←M}
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are identical, which holds true based on the property of F and E is a local constant
extractor.

Key Indistinguishability: This is obvious. If there is a PPT adversary A
and a polynomial p(·) such that

Pr

[
b = b̃

Ck0 ← Gen(1λ), Ck1 ← TGen(1λ)

b← {0, 1}, b̃← A(Ckb)

]
≥ 1

2
+

1

p(λ)
.

Then, we get a distinguish A′ that solves d-GAOP with the same probability.
For a d-GAOP instance y, A′ sends y to A, then A′ outputs what A outputs. It
is evident that the probability of A′ winning is the same as the probability of A
winning.

Thus, we get a dual-mode commitment if the d-GAOP assumption holds. ut

Theorem A.5 (Corresponding to Theorem 4.2) Suppose that group action
(G,X, ⋆,DG,X) satisfies the s-GASP assumption, R is a re-randomization algo-
rithm, and E is a homomorphic extractor. Then Commitment 4.2 is an Enhanced
Linkable Commitment.

Proof. We have already proven that the Commitment 3.1 is secure under the
s-GASP assumption. Now, we only need to prove the enhanced linkable com-
mitment scheme is secure, in fact, it is perfectly enhanced linkable hiding, com-
putationally enhanced linkable binding and computationally enhanced linkable
unforgeable.

Perfectly enhanced linkable hiding: If Ck = y, assume that Comy(mi)→
(ci, di) where (ci, di) = ((ci1, ci2), di) = ((E(gi) ·mi, yi), gi), (yi, gi) ← R(y) for
i ∈ [4] and m1 ·m−12 = m3 ·m−14 .

We only need to demonstrate that the distributions of (c1, c2, d1 · d−12 ) and
(c3, c4, d3 · d−14 ) are identical. For the distributions of (c1, c2, d1 · d−12 ) = ((E(g1) ·
m1, y1), (E(g2) ·m2, y2), g1 ·g−12 ), by the properties of the homomorphic extractor
E, c11 = E(d1 · d−12 ) ·m1 ·m−12 · c21. Thus, combined with the properties of R and
m1 ·m−12 = m3 ·m−14 , we only need to show

Pr[c21 = E(g1) ·m2, d1 · d−12 = g1 · g−12 | c12 = y1, c22 = y2]

=Pr[c31 = E(g3) ·m3, d3 · d−14 = g3 · g−14 | c32 = y3, c42 = y4]

where gi ← I(y, yi) for i ∈ [4]. According to the independence of the distribution
of gi and the first property of the homomorphic extractor E, we know that the
above probabilities are the same. Therefore, the scheme is perfectly enhanced
linkable hiding.

Computationally enhanced linkable binding: Assume there is a PPT
A and a polynomial p(·) such that

Pr

 Open(ci, di) = mi, i ∈ {0, 1},
Link(c0, c1, dL) = 1,

m0 ·m−11 6= LinkC(c0, c1, dL)

Ck ← Gen(1λ),(
m0,m1, c0, c1
d0, d1, dL

)
← A(Ck)

 ≥ 1

p(λ)
.
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Then we can construct a PPT A′ that solves s-GASP with a probability larger
than 1

p(λ) .
For an s-GASP instance y, A′ sets the Ck = y and sends Ck to A in the

enhanced linkable binding game. Then, A returns (m1,m2, c1, c2, dL) satisfying
Link(c0, c1, dL) = 1 and m1 · m−12 6= LinkC(m1,m2, dL) to A′, where (ci, di) =
((E(gi) ·mi, yi), gi) for i ∈ [2], and dL ∈ I(y2, y1). Note that g1 · g−12 is also in
I(y2, y1), thus E(g1)·m1 ·(E(g2)·m2)

−1 ·E(dL)−1 6= m1 ·m−12 implies E(g1 ·g−12 ) 6=
E(dL). Therefore, e 6= dL · g2 · g−11 is a non-trivial element in Stab(y1), thus
e 6= g−11 · dL · g2 is a non-trivial element of Stab(y), thus A′ solves the s-GASP
with a probability larger than 1

p(λ) .
Computationally enhanced linkable unforgeable: Assume there is a

PPT A and a polynomial p(·) such that

Pr [A wins ELU(Πelc)] ≥
1

p(λ)
.

Then we can construct a PPT A′ that solves s-GASP with a probability larger
than 1

2p(λ) .
For an s-GASP instance y, A′ sets the Ck = y and sends Ck to the A in the

enhanced linkable unforgeable game. Then A returns two messages m1 and m2

to A′. A′ uses Ck to generate two commitments of m1 and m2, Comy(mi) →
(ci, di) = ((E(gi) ·mi, yi), gi) for i ∈ [2] and sends (c1, c2) to A. Then A′ obtains
a dL ∈ I(y2, y1) from A, i.e., dL ⋆y2 = y1. Note that A′ has a g1 ·g−12 ∈ I(y2, y1),
and it’s uniformly distributed in I(y2, y1) by the property of R. Thus, dL ·g2 ·g−11

is uniformly distributed in Stab(y1), so g1 · dL · g2 is uniformly distributed in
Stab(y). Therefore, e 6= g1 · dL · g2 with a probability larger than 1

2 , and thus A′
solves s-GASP with a probability larger than 1

2p(λ) . ut

Theorem A.6 (Corresponding to Theorem 4.3) Suppose that group action
(G,X, ⋆,DG,X ,D′G,X) satisfies the d-GAOP assumption and DG,X-one-way, R is
a re-randomization algorithm, and E is a homomorphic local constant extractor.
Then Commitment 4.3 is an Enhanced Linkable Commitment.

Proof. We have already proven that the Commitment 3.2 is secure under the
d-GAOP assumption. Now, we only need to prove the enhanced linkable com-
mitment scheme is secure, in fact, it is computationally enhanced linkable hiding,
perfectly enhanced linkable binding and computationally enhanced linkable un-
forgeable.

Computationally enhanced linkable hiding: Assume there is a PPT A
and a polynomial p(·) such that

Pr [A wins ELH (Πelc)] ≥
1

2
+

1

p(λ)
.

Then we can construct a PPT A′ that solves d-GAOP with a probability larger
than 1

2 + 1
2p(λ) .
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For a d-GAOP instance y, A′ sets the Ck = y and sends Ck to A. Then A
chooses messages mi, i ∈ [4] such that m1 ·m−12 = m3 ·m−14 and sends them to A′.
A′ picks a b ← {0, 1} and outputs two commitments Comy(m1+2b) → (c1, d1),
Comy(m2+2b) → (c2, d2), and sends (c1, c2, dL) to A where dL = d1 · d−12 . A
outputs a bit b′. If b′ = b, A′ returns 1, i.e., y is from D′G,X ; otherwise A′ returns
0, i.e., y is from DG,X .

Note that if y is from DG,X , the distribution of (c1, c2, dL) is perfectly hiding
the bit b due to Theorem 4.2. In this case, the probability that A guesses b
correctly is 1

2 . Thus, the probability thatA′ guesses the distribution of y correctly
is larger than 1

2 + 1
2p(λ) .

Perfectly enhanced linkable binding: If Ck = y, where y = h ⋆ x and
(h, x) ← D′G,X . Assume A is an adversary in the enhanced linkable binding
game. If A outputs (m1,m2, c1, c2, dL) satisfying Link(c1, c2, dL) = 1 and m1 ·
m−12 6= LinkC(c1, c2, dL), where (ci, di) = ((E(gi) · mi, xi), gi) for i ∈ [2], and
dL ∈ I(x2, x1), g1 ·g−12 ∈ I(x2, x1), and E(g1) ·E(g2)−1 ·m1 ·m−12 ·E(g2 ·g

−1
1 )−1 =

m1 ·m−12 6= E(g1) · E(g2)−1 ·m1 ·m−12 · E(dL)−1 = LinkC(c1, c2, dL), this means
E(g2 · g−11 ) 6= E(dL), which contradicts the property of E. Thus, it is perfectly
enhanced linkable binding.

Computationally enhanced linkable unforgeable: For this property, it
holds under DG,X -one-way and d-GAOP assumptions. We use hybrid argument
to complete the proof.

Game 0 is the standard enhanced linkable unforgeable game in Commit-
ment 4.3. LetA be an adversary against the enhanced linkable unforgeable game.
Let Si be the event that A wins in Game i. CH interacts with the adversary A.
1. Gen: CH generates the Ck ← Gen(1λ), where Ck = y = h ⋆ x, (h, x) ←
D′G,X . CH sends it to A.

2. Choose: A chooses two messages m1,m2 and sends them to CH.
3. Challenge: CH commits the commitments of m1 and m2, i.e. Comy(mi)→

(ci, di) = ((E(gi) · mi, yi), gi) where (yi, gi) ← R(y), for i ∈ [2]. CH sends
(c1, c2) to A.

4. Return: A returns a dL ∈ G and A wins if Link(c1, c2, dL) = 1.

Game 1 is similar to Game 0 except that CH generates the Ck = y =
h ⋆ x, (h, x) ← DG,X . This is the standard enhanced linkable unforgeable game
in Commitment 4.2

1. Gen: CH generates the Ck ← Gen(1λ), where Ck = y = h ⋆ x, (h, x) ←
DG,X . CH sends it to A.

2. Choose: A chooses two messages m1,m2 and sends them to CH.
3. Challenge: CH generates the commitments of m1 and m2, Comy(mi) →

(ci, di) = ((E(gi) ·mi, yi), gi) where (yi, gi)← R(y), i ∈ [2]. CH sends (c1, c2)
to A.

4. Return: A returns a dL ∈ G and A wins if Link(c1, c2, dL) = 1.

Game 2 is similar to Game 1 except that CH generates the commitment of
m2 in a different way.
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1. Gen: CH generates the Ck ← Gen(1λ), where Ck = y = h ⋆ x, (h, x) ←
DG,X . CH sends Ck to A, and CH generates a y′ ∈ O(y) where (y′, g′) ←
R(y).

2. Choose: A chooses two messages m1,m2 sends them to CH.
3. Challenge: CH generates the commitments of m1 and m2, Comy(m1) →

(c1, d1) = ((E(g1)·m1, y1), g1) where (y1, g1)← R(y). Comy′(m2)→ (c2, d2) =
((E(g2) ·m2, y2), g2) where (y2, g2)← R(y′). CH send (c1, c2) to A.

4. Return: A returns a dL ∈ G and A wins if Link(c1, c2, dL) = 1.

Similar to the proof in Theorem 3.2, suppose the d-GAOP assumption, then
|Pr[S0]−Pr[S1]| ≤ ϵ(λ), where ϵ(λ) is a negligible function of λ. Next, we show
Pr[S1] = Pr[S2] and if Pr[S2] ≥ 1

p(λ) for some polynomial p(·), then we construct
an A′ that solves the DG,X -one-way assumption with a probability larger than
1

p(λ) .
Note that the distributions of (c1, c2) is independent of m1 and m2 in Game

1 and Game 2, which are same as the distribution of ((u1, y1), (u2, y2)) where
(h, x) ← DG,X , u1 ← M , u2 ← M and y1 ← R(x)[1], y2 ← R(x)[1] due to
the properties of R and E, thus Pr[S2] = Pr[S1]. Then, if there is an A that
wins Game 2 with probability larger than 1

p(λ) . For a DG,X -one-way instance
(x, y = h ⋆ x), where (h, x)← DG,X and A′ needs to find a g ∈ G s.t. g ⋆ x = y.
A′ sets the Ck = y and sends Ck to the A that in the enhanced linkable
unforgeable game. Then A returns two messages m1 and m2 to A′. A′ generates
two commitments m1 and m2 respectively. Specifically, Comy(m1)→ (c1, d1) =
((E(g1) · m1, y1), g1) where (y1, g1) ← R(y), Comx(m2) → (c2, d2) = ((E(g2) ·
m2, y2), g2) where (y2, g2) ← R(x) and sends (c1, c2) to A. A outputs a dL s.t.
dL ⋆ y2 = y1 with a probability larger than 1

p(λ) . Thus A′ gets a g = g−11 · dL · g2
s.t. g ⋆ x = y with a probability larger than 1

p(λ) . ut

Appendix B Discussion regarding extractors E

For a group action (G,X, ⋆) with a distribution DG,X on G × X. A natural
question is whether we can find a finite group M and a deterministic extractor
E : G → M in Definition 3.2 such that |M | is as large as possible. To extract
more bits, a natural idea is to take a good distribution DG,X .

In lattice automorphisms, as we mentioned earlier, for n > 10, Zn has the
largest automorphism group for any n-dimensional lattice. Therefore, it is nat-
ural to think that setting Q ∈ [In] is a good choice in Lemma 5.2.

The Optimal Homomorphic Extractor E under ZLAP. For Q ∈ [In] and
the group action (GL±n (Z), [Q], ⋆,DGL±

n (Z),[Q]) in Lemma 5.2, we show that the
homomorphic extractor E can only be the determinant function, so extracting
one bit is optimal in this case.

Note that for Q = UU⊤ ∈ [In], and for any Q′ ∈ [In], the set I(Q,Q′) =
{VUSU−1 : S ∈ S±n }, where V ∈ I(Q,Q′). Therefore, for a homomorphic
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extractor E, where E : GLn(Z)→M is a surjective group homomorphism, E|S±
n
:

S±n → M is also a surjective group homomorphism. Hence, in this scenario, we
can rephrase the problem of finding a homomorphic extractor E that maximizes
|M | as the following question:

Question 1. Let E : GLn(Z) → M be a surjective group homomorphism with
|M | > 2, and let ϕ : S±n →M also be a surjective group homomorphism (which
are the restrictions of E on S±n ). Is there a E that satisfies these conditions?

If such a E exists, consider ker(ϕ), which is a normal subgroup of S±n . We
have E : GLn(Z) → M ' S±n / ker(ϕ). This can be denoted as f : GLn(Z) →
S±n / ker(ϕ), and then f |S±

n
= (S±n

ϕ→M ' S±n / ker(ϕ)) represents the canonical
quotient map. The following theorem illustrates that such an f does not exist,
leading to the conclusion that such an E does not exist.

Theorem B.1 If the proper normal subgroup H of S±n and the group homo-
morphism f : GLn(Z)→ S±n /H is such that f |S±

n
is the canonical quotient map

π : S±n → S±n /H, then S±n /H ' {±1} and the induced f̃ : GLn(Z) → {±1} is
just det |GLn(Z), that is, ker(f) = SLn(Z) = ker(det |GLn(Z)).

To complete the proof of Theorem B.1, we need to introduce some structural
properties of GLn(Z) and S±n .

Definition B.1 For R a unital ring, we denote by En(R) the subgroup of
GLn(R) generated by all transvections eij(r) = In + rϵij (a.k.a. the elemen-
tary matrices over R) with r ∈ R, 1 ≤ i 6= j ≤ n, where In is the identity matrix
and ϵij is the matrix whose (i, j) entry is 1 while all its other entries are zero.

Lemma B.1 ([40, Thm 4.3.9]) Let R be a commutative ring. If R is a Eu-
clidean domain, then SLn(R) = En(R) for all n.

Proposition B.1 [GLn(Z),GLn(Z)] = SLn(Z).

Proof. Since eik(s) = [eij(1), ejk(s)] ∈ [GLn(Z),GLn(Z)], ∀s ∈ Z, En(Z) ⊆
[GLn(Z),GLn(Z)]. By Lemma B.1, SLn(Z) = En(Z) ⊆ [GLn(Z),GLn(Z)]. And
GLn(Z)/SLn(Z) ' C2 is abelian ⇒ [GLn(Z),GLn(Z)] ⊆ SLn(Z).
Thus [GLn(Z),GLn(Z)] = SLn(Z). ut

And we can know that its normal subgroups have only the following possi-
bilities [45]. We only consider the case of n ≥ 5, and the following proposition
provides a formal statement. We provide a proof in the following proposition.

Proposition B.2 Assume n ≥ 5. We regard S±n as the subgroup of GLn(Z) and
det : S±n → {±1} is taking determinant. Then all the normal subgroups of S±n
are

{In}, {±In}, ker(det)∩Dn ≜ Dn−1, Dn, Dn−1⋊An, Dn⋊An, Dn−1⋊Sn, ker(det),S±n .

Here An is the alternate permutation group and Dn−1 is also ker(det |Dn
).
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Lemma B.2 If H⊴S±n and H ≤ Dn, then H is one of {In}, {±In}, Dn−1, Dn.

Proof. If H 6= {In}, {±In}, then ∃ d = diag(d1, . . . , dn) ∈ H s.t. d 6= ±In. As-
sume di = 1, dj = −1. Since H⊴S±n , (i j)d(i j)−1 ∈ H. Then d̃ := (i j)d(i j)−1d ≜
diag(d̃1, . . . , d̃n) ∈ H and d̃i = d̃j = −1, d̃s = 1, ∀s ∈ {1, . . . , n} \ {i, j}. Denote

such d̃ by di,j . ∀ k 6= ℓ ∈ {1, . . . , n}, take σ =

(
i j
k ℓ

)
∈ Sn (means exchange

the i-th row and k-th row, j-th row and ℓ-th row), then dk,ℓ = σdi,jσ
−1 ∈ H.

Thus Dn−1 = 〈dk,ℓ|k 6= ℓ ∈ {1, . . . , n}〉 ⊆ H. Note [Dn : Dn−1] = 2, so H =
Dn or Dn−1. ut

Proof (of Proposition B.2). Note S±n =Dn ⋊ Sn i.e. we can write the element
in S±n as d · s where d ∈ Dn, s ∈ Sn. We will use this notation in the proof.
And we have the surjective group homomorphism π : d · s ∈ S±n 7→ s ∈ Sn. For
H ⊴ S±n , denote π|H by πH . Then Im(πH)=π(H) ⊴ π(G) = Sn. n ≥ 5 implies
Im(πH) = {In}, or An, or Sn.
If An ⊆ Im(πH), then ∃d ∈ Dn s.t. d · (1 2 3) ∈ H. Since H ⊴ G, d · s ∈ H ⇒
s · d = d−1(ds)d ∈ H. So (1 2 3)d ∈ H and then (1 3 2) = (1 2 3)d · d(1 2 3) ∈ H.
This implies An ⊆ H. Consider d′ := diag(−1, 1, 1, . . . , 1), then d′−1(1 2 3)d′ ·
(1 2 3)−1 ∈ H. Following the same discussion as in the Lemma B.2 and noting
that d′−1(1 2 3)d′ · (1 2 3)−1 = d1,3, we have Dn−1 ⊆ H.

(1) Im(πH)=Sn, then An ⊆ H, Dn−1 ⊆ H.
i) H ∩ Sn = Sn

a) H ∩Dn = Dn ⇒ S±n = Dn ⋊ Sn ⊆ H ⊆ S±n ⇒ H = S±n .
b) H ∩Dn = Dn−1 ⇒ Dn−1 ⋊ Sn ⊆ H. ∀d · s ∈ H, note s ∈ Sn ⊆ H ⇒

d ∈ H ⇒ d ∈ Dn−1. So H ⊆ Dn−1 ⋊ Sn, and then H = Dn−1 ⋊ Sn.
ii) H ∩ Sn = An. Im(πH) = Sn ⇒ ∀ s ∈ Sn \ An, ∃ds ∈ Dn s.t. ds · s ∈ H.

Note s /∈ H ⇒ ds /∈ H ⇒ ds /∈ Dn−1. This means Dn ⊈ H and
∀d′ ∈ Dn \Dn−1, d

′d−1s ∈ Dn−1 ⊆ H ⇒ d′s = d′d−1s dss ∈ H.
We already have Dn−1⋊An ⊆ H. ∀s ∈ An, if d ∈ Dn \Dn−1 s.t. ds ∈ H,
then s ∈ An ⊆ H ⇒ d ∈ H ⇒ Dn ⊆ H. It’s a contradiction.
So ∀ds ∈ G, ds ∈ H ⇐⇒ s ∈ Sn \ An, d ∈ Dn \ Dn−1 or s ∈ An, d ∈
Dn−1 ⇐⇒ det(ds) = 1. Thus H = ker(det).

(2) Im(πH)=An, then An ⊆ H, Dn−1 ⊆ H. Im(πH)=An ⇒ H ⊆ Dn ⋊ An.
An ⊆ H,Dn−1 ⊆ H ⇒ Dn−1 ⋊An ⊆ H. So Dn−1 ⋊An ≤ H ≤ Dn ⋊An ⇒
H = Dn−1 ⋊An or Dn ⋊An.

(3) Im(πH)={In}, then H ⊆ Dn. By Lemma B.2, the normal subgroups of Dn

are {In}, {±In}, Dn−1, Dn. ut

Proof (of Theorem B.1). Firstly, we have [S±n ,S±n ]=[Dn−1⋊An] since it’s clearly
the minimum normal subgroup that makes the quotient group abelian from
Proposition B.2. So, if Dn−1 ⋊ An ≤ H, then GLn(Z)/ ker(f) is abelian ⇒
SLn(Z) = [GLn(Z),GLn(Z)] ≤ ker(f). [GLn(Z) : SLn(Z)] = 2 and ker(f) 6=
GLn(Z) implies ker(f) = SLn(Z) = ker(det |GLn(Z)).
Next, we just need to show H cannot be any of {In}, {±In}, Dn−1, Dn.
f(SLn(Z)) = f([GLn(Z),GLn(Z)]) = [f(GLn(Z)), f(GLn(Z))] = [S±n /H,S±n /H] =
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[S±n ,S±n ]/H = (Dn−1 ⋊An)/H.
[f(GLn(Z)) : f(SLn(Z))] ≤ [GLn(Z) : SLn(Z)] = 2 and the equality holds if and
only if ker(f) ≤ SLn(Z).
So [S±n /H : (Dn−1 ⋊ An)/H] ≤ 2 and the equality holds if and only if ker(f) ≤
SLn(Z).(∗)
For (H = {In}), (H = Dn−1), or (H = {±In} and n is even), we have
H ≤ Dn−1 ⋊ An and then [S±n /H : (Dn−1 ⋊ An)/H] = [S±n : Dn−1 ⋊ An] = 4.
It’s a contradiction with (∗).
For (H = Dn) or (H = {±In} and n is odd), H ≤ ker(f) and−In, diag(−1, 1, . . . , 1) /∈
SLn(Z), so [S±n /H : (Dn−1 ⋊ An)/H] should be 1 by (∗) but it’s obviously not
1. ut

How to find a such E in other isomorphism problems From the preceding
discussion, concerning a group action (G,X, ⋆,DG,X), it becomes evident that
a natural E as outlined in Definition 3.2 is likely a surjective homomorphic
mapping of G. For example, Similarly, let E(·) be det(·), in the group action of
module-LIP or code equivalence problem, it is possible to extract more bits. The
task of discovering an improved E and its corresponding group action is left to
future research.

Appendix C Direct Sum of Lattices

The following lemma seems to be folklore, but we have not found any correct
proof in the existing literature.

Lemma C.1 For an n1-dimensional irreducible lattice L1 and an n2-dimensional
lattice L2, if L = L1 ⊕ L2, then for any O ∈ Aut(L), either O · L1 ⊆ L1 or
O · L1 ⊆ L2 always holds 4.

Proof. Let n = n1 + n2, for any O ∈ Aut(L) ⊂ On(R). Let x ∈ L1 satisfies
‖x‖ = λ1(L1), then ∃ j ∈ [2] s.t. Ox ∈ Lj due to the orthogonal decomposition
structure of L, thus U = Rx ⊆ L1 ⊗Z R and V = O · U ⊆ Lj ⊗Z R.

In induction, assume that U is a rank k subspace of L1⊗ZR, k < n1 and V =
O ·U ⊂ Lj ⊗ZR. Because L1 is irreducible, therefore L1 6= (U∩L1)⊕ (U⊥∩L1),
let v ∈ L1 − ((U ∩ L1) ⊕ (U⊥ ∩ L1)) be a such vector, let πU(v) = s, note that
s /∈ L1. Let v1 ∈ L1 be one of the shortest vectors satisfying πU(v1) = s, note
that v1 /∈ U. Let A1 = {v ∈ L1 : πU(v) = s}, A = {v ∈ L : πU(v) = s}, then
{v ∈ A1 : ∀y ∈ A1, ‖y‖ ≥ ‖v‖} = {v ∈ A : ∀y ∈ A, ‖y‖ ≥ ‖v‖}, due to the
orthogonal decomposition structure of L.

We will show Ov1 ∈ Lj , thus lifting the rank of U, if we let U = (U,v1).
Note that Ov1 ∈ L is the one of the shortest vectors y satisfing πV(y) = Os,
since πV(O(·)) = O(πU(·)). And let Bj = {v ∈ Lj : πV(v) = Os}, B = {v ∈ L :

4 Here, L1 denotes
(
L1

0

)
∈ L, and L2 denotes

(
0
L2

)
∈ L.
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πV(v) = Os}, then {v ∈ Bj : ∀y ∈ Bj , ‖y‖ ≥ ‖v‖} = {v ∈ B : ∀y ∈ B, ‖y‖ ≥
‖v‖}, due to the orthogonal decomposition structure of L. Thus, Ov1 ∈ Lj .

By induction, for any O ∈ Aut(L), ∃ j ∈ [2] s.t. O · L1 ⊆ Lj ⊗Z R, thus
O · L1 ⊆ Lj due to L ∩ (Lj ⊗Z R) = Lj . ut
Proof (of Proposition 5.1). For the lattices Ni, i ∈ [4], it is easy to observe that
if genus(N1) = genus(N2) and genus(N3) = genus(N4), then genus(N1 ⊕N3) =
genus(N2 ⊕ N4), hence genus(⊕m

i=1L1) = genus(⊕m
i=1L2). From Lemma C.1,

we can observe that for any O ∈ Aut(⊕m
i=1L1), O acts on irreducible lattice

blocks L1 as a signed permutation among these blocks, thus Aut(⊕m
i=1Lj) =

{(S⊗ Ik) · diag(A1, · · · ,Am) | S ∈ S±m, Ai ∈ Aut(Lj), i ∈ [m]}, j ∈ {1, 2}. ut

Lemma C.2 (Corresponding to Lemma 5.5) The above pair of algorithms
(E,F) forms a trapdoor extractor as described in Definition 4.2.

Proof. We demonstrate that (E,F) forms a trapdoor extractor as described in
Definition 4.2. The correctness is obvious, as it always holds that U′ ∈ I(Q′0,Q′′0)
and E(U′) = u.

It is notable that for n > 10, any n-dimensional lattice L satisfies |Aut(L)| ≤
2n · n! as mentioned in Section 5.5. Hence, it follows that Stab(Q′0) always pos-
sesses a polynomial-sized generating set. Because L0 ∈ Λn

− and E : GL±n (Z) →
{±1} is a surjective group homomorphism, there always exists an V ∈ S such
that det(V) = −1. Therefore, in Algorithm F, finding such an element V ∈
Stab(Q′0) is efficient given a polynomial-sized generating set of Stab(Q′0). Thus,
F is a probabilistic polynomial-time algorithm.

Moreover, due to L0 ∈ Λn
−, the distributions of (E(U),U) and (u,U′) are

identical for any Q′0,Q
′′
0 ∈ [Q0], where U← I(Q′0,Q′′0), u←M , g′ ← F(u,U,Q′0, Stab(Q′0)),

and (U0,Q0)← D(0)

GL±
n (Z),[Q0]∪[Q1]

ut

Theorem C.1 (Corresponding to Theorem 6.1) Assuming that it is diffi-
cult to distinguish among the 2n lattices {⊕n

i=1L
ji
i }ji∈{0,1}, i.e., the decisional

LIP(⊕n
i=1L

mi
i ,⊕n

i=1L
m′

i
i ) is hard for any m,m′ ∈ {0, 1}n, then Commitment 6.1

is perfectly binding and computationally hiding.

Proof. The correctness is obvious. We prove the hiding and binding properties.
Perfect Binding: This property holds because the receiver can use the wit-

ness w to verify that the lattices {⊕n
i=1L

ji
i }ji∈{0,1} are pairwise non-isomorphic,

ensuring that the commitment is perfectly binding.
Computational Hiding: For Gen(1λ)→ Ck = {Q0

i ,Q
1
i }ni=1. If there exists

a polynomial p(·) and a PPT A wins the hiding game in Commitment 6.1 with a
probability larger than 1

2 +
1

p(λ) , then we can construct a PPT adversary A′ that
solves some decisional LIP(L,L′) with a probability larger than 1

2 +
1

p(λ) , where
L,L′ ∈ {⊕n

i=1L
ji
i }ji∈{0,1}. A′ sends Ck to A. Then A returns m0,m1 ∈M . For

a decisional LIP(Qm0
,Qm1

) instance Q, A uses the re-randomization algorithm
from Section 5.2 to generate (Q′,U) ← R(Q), and sends Q′ to A. Then A′
outputs what A outputs. It is evident that the probability of A′ winning is the
same as the probability of A winning. ut
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