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Abstract. Differential cryptanalysis, along with its variants such as boomerang at-
tacks, is widely used to evaluate the security of block ciphers. These cryptanalytic
techniques often rely on assumptions like the hypothesis of stochastic equivalence
and Markov ciphers assumption. Recently, more attention has been paid to verify-
ing whether differential characteristics (DCs) meet these assumptions, finding both
positive and negative results. A part of these efforts includes the automatic search
methods for both the value and difference propagation (e.g., Liu et al. CRYPTO
2020, Nageler et al. ToSC 2025/1), structural constraints analysis (e.g., Tan and
Peyrin, ToSC 2022/4), and the quasidifferential (Beyne and Rijmen, CRYPTO 2022).
Nevertheless, less attention has been paid to the related-key DCs and boomerang
distinguishers, where the same assumptions are used. To the best of our knowl-
edge, only some related-tweakey DCs of SKINNY were checked thanks to its linear
word-based key-schedule, and no similar work is done for boomerang distinguishers.
The verification of related-key DCs and boomerang distinguishers is as important as
that of DCs, as they often hold the longest attack records for block ciphers. This
paper focuses on investigating the validity of DCs in the related-key setting and
boomerang distinguishers in both single- and related-key scenarios. For this purpose,
we generalize Beyne and Rijmen’s quasidifferential techniques for the related-key DCs
and boomerang attacks.
First, to verify related-key DCs, the related-key quasi-DC is proposed. Similar to
the relationship between the quasi-DC and DC, the exact probability of a related-
key DC is equal to the sum of all corresponding related-key quasi-DCs’ correlations.
Since the related-key quasi-DCs involve the key information, we can determine the
probability of the target related-key DC in different key subspaces. We find both
positive and negative results. For example, we verify the 18-round related-key DC
used in the best attack on GIFT-64 whose probability is 2−58, finding that this related-
key DC has a higher probability for 2128 × (2−5 + 2−8) keys which is around 2−50,
but it is impossible for the remaining keys.
Second, we identify proper bases to describe the boomerang distinguishers with the
geometric approach. A quasi-BCT is constructed to consider the value influence
in the boomerang connectivity table (BCT). For the DC parts, the quasi-biDDT is
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used. Connecting the quasi-BCT and quasi-biDDT, we can verify the probability of
a boomerang distinguisher with quasi-boomerang characteristics. This also allows us
to analyze the probability of the boomerang in different key spaces. For a 17-round
boomerang distinguisher of SKINNY-64-128 whose probability is 2−50, we find that
the probability can be 2−44 for half of keys, and impossible for the other half.

Keywords: Quasidifferential, Boomerang, Related-Key

1 Introduction
Many modern cryptanalytic techniques, such as differential attack [BS90] and boomerang
attack [Wag99], practically rely on independence assumptions as the Markov cipher and
hypothesis of stochastic equivalence assumptions [LMM91]. Although these assumptions
may sometimes seem fairly reliable, the community has been continuously working to
verify or circumvent them.

Verification efforts can be roughly categorized into three categories. The first type
of methods are based on automatic search tools such as MILP or SAT. Usually, both
the value and difference transitions of a differential characteristic (DC) are described in
certain forms with proper constraints and fed to the search tools. The results of the search
tool can reflect the validity of the target DC. For example, Liu et al. [LIMY20] developed
a MILP tool to verify the DCs for Gimli permutation and found that many of them were
invalid. Li et al. [LZH+24] proposed the AlgSAT tool that can check if a DC has at least
one right pair. Very recently, Nageler et al. [NGJE25] proposed AutoDiVer based on the
SAT tool, which can be used to verify a DC and compute its probability for different key
spaces considering the key schedule.

The second type studies the local internal dependencies between different rounds or
components of a cipher, sometimes with the key schedule. Linear or non-linear constraints
would be obtained so the validity can be known by checking if these constraints are solvable.
For example, Peyrin and Tan analyzed the key dependencies arising from DCs in GIFT
and SKINNY [PT22]. Their algorithm can also find the probability of a DC under different
key spaces.

The third one is the quasidifferential techniques proposed by Beyne and Rijmen [BR22].
This method is an application of the geometric approach [Bey23] to various attacks such
as the linear [Bey21], differential [BR22] and (ultrametric) integral cryptanlysis [BV23,
BV24]. In this method, the differential cryptanalysis is described by a transition matrix
under a pair of quasidifferential bases. The exact probability of a DC can be calculated
by summing correlations of all quasidifferential characteristics (quasi-DCs) corresponding
to this DC. If the sum of the correlations is zero, then the target DC is invalid. Addition-
ally, for key-alternating ciphers, the round keys will only affect the positive/negative signs
of a quasi-DC’s correlation, but not influence the absolute value. Thus, a set of linear
equations can usually be easily obtained by analyzing the signs. Different solutions of the
linear equations lead to different key subspaces where the probability of the DC in the
corresponding key subspaces can be calculated.

Until now, most of the targets of the above methods are single-key DCs. For two of the
most important variants of the differential cryptanalysis, i.e., the related-key DCs [Bih94]
and boomerang distinguishers [Wag99], less attention has been paid. These two attacks
are important, as they often keep the longest attack records for many ciphers. Thus, it is
equally desirable to have some methods to verify the validity of the related-key DCs and
boomerang distinguishers.

As far as we know, SKINNY [BJK+16] is the only example whose related-key DCs have
been checked, one is by Peyrin and Tan in [PT22] and the other Nageler et al. in [NGJE25].
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No similar verification results for boomerang distinguishers have been reported1. Related-
key differential cryptanalysis and boomerang attack (including the rectangle attack) often
hit the longest attack record for lots of ciphers, thus verifying the validity of these dis-
tinguishers is as same important as verifying the DCs. However, tools that are useful to
verify DCs are not trivially applicable to related-key DCs and boomerang distinguishers.
Peyrin and Tan’s tool is highly tailored for SKINNY [BJK+16] and GIFT [BPP+17], thus
it seems not easy to apply it to other ciphers. AutoDiVer is much more versatile, as it
basically models the propagation of the two values (including the two keys in the related-
key setting) following the DCs. Nevertheless, modeling related-key DCs or boomerang
distinguishers will increase the number of their variables, especially with respect to the
nonlinear and heavy key schedules. The increase in the number of variables might make
AutoDiVer very slow, and it may even become unsolvable. In fact, in [NGJE25, Section
5], the authors of AutoDiVer have found that the key schedule will influence the speed.
Additionally, both Peyrin-Tan and AutoDiVer methods cannot give an accurate theoretical
model to calculate the exact probability of related-key DCs and boomerang distinguishers.

The (generalized) quasidifferential method seems more suitable in verifying the related-
key DCs and boomerang distinguishers. First, the current quasidifferential technique in
fact already works for verifying related-key DCs. When treating the key-XOR operation
as a normal cipher component (like an S-box), the transition matrix for key-XOR is easy
to be established. Second, as an application of the geometric approach, the idea of the
quasidifferential can be shifted to the boomerang attacks. A recent work shows that we
can allow two different bases in geometric approach to producing more flexible transition
matrices [HZC+25]. With this idea, it is potential to construct quasi-boomerang charac-
teristics (quasi-BCs) and use these quasi-BCs to verify the boomerang distinguishers. Due
to the similarities, techniques established for quasidifferential cryptanalysis in [BR22] can
be naturally used in a similar way to verify related-key DCs and boomerangs.

Our contributions. In this paper, we extend the quasidifferential techniques to cover
the related-key differential and boomerang attacks inside the geometric framework, as
a tool for the verification of existing distinguishers. Our contributions are two-fold as
follows.

Verify related-key DCs with quasidifferential techniques. The quasidifferential
technique can construct a transition matrix for a cipher component function F : Fn

2 → Fm
2 .

Regarding the key-XOR operation in the related-key setting, denoted by Fk,∆k(x, ∆x) =
(x ⊕ k, ∆x ⊕ ∆k), as a single function with the secret key k and known ∆k, we can
construct the transition matrix for Fk,∆k. The construction of transition matrices for
other non-key-XOR components is the same as [BR22]. Finally, we can get a related-
key quasi-DC together with the transition matrices of the key-XOR and non-key-XOR
operations. Since the key difference is known, only the key value will be variables, but for
a key-alternating cipher, it only affects the sign of the correlation and will be reflected in
the final correlation of the related-key quasi-DC. Similarly to the quasi-differential cases,
the sum of correlations of all corresponding related-key quasi-DCs is the exact probability
of the corresponding related-key DC. By searching for the related-key quasi-DCs with
big absolute values, we can approximate the exact probability under the dominant trail
assumption.

We apply this technique to verify related-key DCs for AES, CRAFT, and GIFT, and
estimate their probabilities in different key subspaces. We find that some published related-
key DCs of AES and CRAFT are indeed reliable, but some GIFT’s related-key DCs only work
with a fraction of keys. These results are listed in Table 1.

1There have been many works that handle the independent assumption between the upper DC and
lower DC of a boomerang, but no work has been done for verifying the independent assumptions for all
rounds.
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Figure 1: The input and output of a boomerang distinguisher. For the input, ∆1 is known,
and x, ∆2 can be any value. For the output, ∆2 is known, and x, ∆1 can be any value.
For both the input and output, the four values in a quartet sum to zero as the four values
are x, x ⊕ ∆1, x ⊕ ∆2, x ⊕ ∆1 ⊕ ∆2, to make it a 3rd order space.

Verify boomerang distinguishers with generalized geometric approaches. The
current geometric approach has not been applied to describe boomerang attacks. Thus, to
verify the boomerang distinguishers with the quasidifferential techniques, we should first
extend the geometric approach to cover the boomerang distinguisher. In [HZC+25], the
authors introduced a generalized geometric approach framework, where two different bases
are allowed to use to make the geometric approach more flexible. According to [HZC+25],
the boomerang attack should be described as a 4th-order attack, as it traces a quartet
of four values. However, the transition matrix of a 4th order attack will have a size of 4
times of the cipher size (with the known differences, the size can be reduced to 3 times of
the cipher size). This is too heavy to search for quasi trails. Instead, we notice that the
current boomerang attack has an implicit assumption that the sum of the four values of a
quartet in boomerang attacks is always zero. This inspires us to describe the boomerang
attack by a 3rd-order attack, i.e., we will trace a quartet like (x0, x1, x2, x0 ⊕ x1 ⊕ x2)
whose dimension is only 3.

Next, we choose suitable bases for the boomerang attack. As shown in Figure 1, for the
input of a boomerang, the value x and the second difference ∆2 can be any value, thus, we
use (−1)u⊤

0 x(−1)u⊤
2 ∆2 to describe them. When u0 = u2 = 0, x and ∆2 can be any value.

The first difference ∆1 is known as a fixed value; therefore, we use δu1(∆1) to describe it,
where δu(·) is the Dirac delta function. Thus, the input basis is (−1)u⊤

0 xδu1(∆1)(−1)u⊤
2 ∆2 .

For the output, the value y and the first difference ∇1 can be any value, thus, we use a
(−1)v⊤

0 y(−1)v⊤
1 ∇1 to describe them. When v0 = v1 = 0, y and ∇1 can be any value. The

second difference ∇1 is known as a fixed value, so we use δv2(∇2) to describe it. Thus,
the output basis is (−1)v⊤

0 y(−1)v⊤
1 ∇1δv2(∇2).

Since the input and output bases are different, this attack falls into the mixed-basis
attack [HZC+25, Definition 6]. The statistic used for describing the boomerang attack on
a cipher F is then

BF
v0||v1||v2,u0||u1||u2

= 1
22n

∑
x,∆1=u1,∇2=v2

(−1)u⊤
0 x(−1)u⊤

2 ∆2(−1)v⊤
0 y(−1)v⊤

1 ∇1

where y = F(x), ∇1 = F(x) ⊕ F(x ⊕ ∆1), ∇2 = F(x) ⊕ F(x ⊕ ∆2) and F(x ⊕ ∆1 ⊕ ∆2) =
y ⊕ ∇1 ⊕ ∇2. When u0 = u2 = v0 = v1 = 0. This formula describes the boomerang
attack2.

2Actually, it describes the rectangle attack. The probability of a boomerang attack should be a 2n

times of that of its corresponding rectangle. However, in this paper, we do not specifically distinguish the
two attacks. We will always manually multiply a 2n to the formula to make it a boomerang probability.
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After covering the boomerang attack by the geometric approach, we define the boomerang
characteristic (BC) as an approximation to the real boomerang distinguisher. The quasi-
boomerang characteristics (quasi-BCs) can also be defined as the quasi-DCs. To do it,
following the framework of handling the mix-basis attack in [HZC+25], we divide a cipher
F into three parts as F = F2 ◦ F1 ◦ F0. For F0 (F2), a same-basis attack can be derived,
whose transition matrix is called an upper (lower) quasi-biDDT. For F1, a mix-basis at-
tack is obtained; we call its transition matrix the quasi-BCT. The trails connecting these
transition matrices are called quasi-BCs. By searching for the quasi-BCs, we can verify if
a BC is valid.

Similarly to [BR22], this technique can be used to check the validity of a boomerang
characteristic (in both single-key and related-key settings). We apply this method to
SKINNY and GIFT, improving the probabilities in certain key spaces or disproving some.
The results are shown in Table 1.

All source codes and results of this paper are provided at https://github.com/
ccc53021/related-key-quasi.

Outline. In Section 2, we briefly recall the related works of differential, boomerang
attacks, and Beyne’s geometric approach. Section 3 generalizes the geometric approach to
the differential and boomerang distinguishers in the related-key setting. In Section 4 and
Section 5, we apply our technique to verify the validity of the differential characteristic and
boomerang distinguishers, respectively. Section 6 discusses and compares our technique
with Peyrin and Tan’s work and AutoDiVer.

2 Preliminaries
In this section, we recall the differential cryptanalysis, the boomerang attacks and their
related-key variants, and Beyne’s geometric approach. We first introduce the notations
used in this paper.

2.1 Differential and Boomerang Cryptanalysis
Typically, differential cryptanalysis [BS91] focuses on functions F that are structured as
compositions, specifically F = Fr ◦Fr−1◦· · ·◦F1. Obtaining the input and output difference
for Fi, say (ai, ai+1), and connecting them, we can get a DC as (a1, a2, . . . , ar+1). The es-
timation of probabilities associated with these characteristics often assumes independence
between the intermediate differentials:

PrDC [a0, . . . , ar+1] ≈
r∏

i=1
Pr[Fi(xi ⊕ ai) ⊕ Fi(xi) = ai+1]. (1)

In scenarios where the functions F1, . . . , Fr depend on keys k1, . . . , kr, the heuristic pro-
posed in Equation (1) can be supported by the Markov cipher assumption [LMM91].
Specifically, it has been shown that if all round keys are uniformly random and indepen-
dent, the key-averaged probability of a characteristic corresponds to the product of the
intermediate key-averaged probabilities.

Wagner [Wag99] first introduced the boomerang attack, which can regard the target
cipher F as a composition of two sub-ciphers F0 and F1, i.e., F = F1 ◦ F0. The boomerang
attack is an adaptive chosen plaintext-ciphertext attack. We assume that there is a
differential α

F0−→ β with probability p, and γ
F1−→ δ with probability q, The expected

probability of the boomerang attack is:

Pr[F−1(F(P1) ⊕ δ) ⊕ F−1(F(P1 ⊕ α) ⊕ δ) = α] = p2q2. (2)

https://github.com/ccc53021/related-key-quasi
https://github.com/ccc53021/related-key-quasi
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Table 1: Our results of the verification of DCs and BCs. For a cipher with n-bit key, the
size of key space is #Key × 2n and full denotes the size of key space is 2n. #DC/BC
denotes the number of DC/BC. In our results, the probability is zero except for the given
key space.

Cipher #R #DC/BC Valid? #Key Prob. Reference

GIFT-64

15 DC-1 7
Full 2−48 [JZZD20, Table 10]

2−1 2−46.42 Section 4.1

18 DC-2 7

Full 2−58 [SWW21, Figure 8]

2−8 2−49.42
Section 4.1

2−5 2−52.42

AES

4 DC-3 3
Full 2−81 [FJP13, Figure 14]

Full 2−81 Section 4.2

4 DC-4 3
Full 2−81 [FJP13, Figure 15]

Full 2−81 Section 4.2

5 DC-5 3
Full 2−105 [FJP13, Figure 16]

Full 2−105 Section 4.2

6 DC-6 3
Full 2−130 [SGL+17, Table 1]

Full 2−130 Section 4.2

CRAFT 30 DC-7 3
Full 2−30 [SWW22, Figure 3]
Full 2−30 Section 4.3

SKINNY-64-128
2† BC-1 3

Full 2−8.42 [LGS17, Table 12]
Full 2−2 [CHP+18]

Full 2−2 Section 5.1

17 BC-3 7
Full 2−50 [LGS17, Table 12]
2−1 2−44 Section 5.1

SKINNY-64-192
2† BC-2 3

Full 2−16.30 [LGS17, Table 14]
Full 2−5.31 [CHP+18]

Full 2−5.29 Section 5.1

22 BC-4 3
Full 2−80 [LGS17, Table 14]
Full 2−62 Section 5.1

GIFT-64 2 BC-5 7

Full 1 [CWZ19, Table 5]
Full 2−18 [JZZD20]

2−1 2−15
Section 5.2

2−1 2−16

† The middle two rounds of the boomerang distinguishers including clustering effect.
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The boomerang attack relies on an independent assumption between F0 and F1. But
this assumption might be unreliable [Mur11]. Therefore, many papers have studied this
problem thoroughly, including sandwich attack [DKS10] and the boomerang connectivity
table (BCT) technique [CHP+18]. The BCT technique divides the cipher into three parts,
say F = F2 ◦ F1 ◦ F0. Assume F1 is a layer of parallel small Sboxes, for each Sbox, a BCT
can be established.

Definition 1 (Boomerang Connectivity Table, [CHP+18]). Let S : Fn
2 → Fn

2 be an
invertible Sbox, and β, γ ∈ Fn

2 . The Boomerang Connectivity Table (BCT) of S is given
by a 2n × 2n table T , in which the entry for the (β, γ) position is given by

BCT (β, γ) = #{x ∈ Fn
2 |S−1(S(x) ⊕ γ ⊕ S−1(S(x ⊕ β) ⊕ γ) = β}

2n
.

Again, if there is a differential α
F0−→ β with probability p, and γ

F1−→ δ with probability
q, the probability of a boomerang distinguisher of F is p2q2r where r = PrBCT [β, γ] =
BCT (β, γ).

Although these techniques have managed to handle the connecting point of F0 and F1,
however, the independent assumptions in other rounds still exist, such as the propagations
for F0 and F2. This paper verifies the boomerang distinguishers considering all these
independent assumptions.

The amplified boomerang attack, later renamed the rectangle attack [BDK01, BDK02],
is proposed by Kelsey et al. [KKS00], turning the boomerang attack into the chosen-
plaintext scenario. In [KT22], Kidmose and Tiessen proved that the probability of a
boomerang distinguisher is the 2n times of that of the corresponding rectangle distin-
guisher, with a formal analysis with 3-differential cryptanalysis, where n is the length of
the block. Since this paper focuses on verification, we always use the boomerang attack
as the example, we do not strictly distinguish the boomerang and rectangle attacks The
geometric approach actually describes the rectangle attack, we will multiply a 2n with the
probability to make it satisfy the boomerang probability.
Differential and boomerang attacks in the related-key setting. In [Bih94],
Biham introduced related-key attacks, where the attacker knows the specific difference
of the round keys. In this setting, longer related-key DC and boomerang distinguishers
might be obtained. The differential and boomerang attacks in the related-key setting
depend on similar independent assumptions between adjacent rounds.

2.2 Beyne’s Geometric Approach Theory
Let n be positive integers, Q is the rational number field, the free vector space over
Q (in fact, any field works for the geometric approach) is denoted as Q[Fn

2 ], and every
element in Q[Fn

2 ] is represented by
∑

i kuδu, where ku ∈ k, δu ∈ Fn
2 . For a block cipher

F : Fn
2 → Fn

2 , Beyne shows that F can be regarded as a linear mapping over Q[Fn
2 ] [Bey21].

For v = F(u), we can get a pushforward operator of F, denoted by T F : Q[Fn
2 ] → Q[Fn

2 ]
which satisfies T F(δu) = δv. Regarding δu as a unit vector with only the u-th element
being 1, δ0, δ1, . . . , δ2n−1 form a set of standard basis of Q[Fn

2 ].
We borrow the notation from [HZC+25]. Writing all these 2n unit vectors in 2n

columns, we will obtain a matrix, denoted by [δu(x)]x,u, where the element at the u-th
column and x-th row is just δu(x). δx(y) is the Dirac delta function as

δx(y) =

{
1, x = y

0, x ̸= y

Actually, δu = [δu(x), x = 0, 1, . . . , 2n − 1], which justify the usage of δu as a unit vector
and δu(·) a function.
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Under this set of basis, the matrix of T F can be obtained, which is a 2n × 2n matrix
whose element in the u-th column and v-th row is δv(F(u)). Since T F is a linear mapping
over a linear space Q[Fn

2 ], the matrix corresponding to T F changes as the basis changes.
To study differential cryptanalysis in a fixed key setting, Beyne and Rijmen studied

the pushforward induced by F over Q[Fn
2 ⊗Fn

2 ], where Fn
2 ⊗Fn

2 = {x ⊗ y : x ∈ Fn
2 , y ∈ Fn

2 },
which is still denoted by T F, where here “x ⊗ y” is the tensor product of two vectors. For
example, [a0, a1] ⊗ [b0, b1] = [a0b0, a0b1, a1b0, a1b1].

Remark (the notation trick). To describe the quasidifferential cryptanalysis eas-
ier, we use the notation trick in [HZC+25, Section 3.1]. (x0, x1) denotes the input value
and input difference of F, and (F(x0), F(x1)) denote the output value and output difference.

The u0||u1-th standard basis for the differential attack is

δu0||u1 = [δu0(x0) ⊗ δu1(x1), x0||x1 = 0, 1, . . . , 22n − 1].

Thus, T F(δu0||u1) = δF(u0)||F(u1). Then the matrix of T F under the standard basis is T
satisfying

Tv0||v1,u0||u1 = δv0||v1(F(u0)||F(u1)).

Beyne and Rijmen chose 22n linearly-independent vectors as the quasidifferential basis,
where the u0||u1-th basis is

βu0,u1 = [(−1)u⊤
0 x0 ⊗ δu1(x1), x0||x1 = 0, 1, . . . , 22n − 1].

The basis in the matrix form is then [(−1)u⊤
0 x0 ⊗ δu1(x1)]x0||x1,u0||u1 .

With the quasidifferential basis, the quasidifferential transition matrix D is calculated
as

DF
v0||v1,u0||u1

= 1
2n

∑
x0||x1∈Fn

2 ×Fn
2

(−1)u⊤
0 x0δu1(x1)(−1)v⊤

0 F(x0))δv1(F(x1))

= 1
2n

∑
x0∈Fn

2
F(x0⊕u1)⊕F(x0)=v1

(−1)u⊤
0 x0⊕v⊤

0 F(x0),
(3)

where u0, u1, v0, v1 ∈ Fn
2 . The quasidifferential combines the linear mask and difference

propagations, thus following [BR22], we call (u0, u1) is the input mask-difference pair, and
(v0, v1) is the output mask-difference pair.

Theorem 1 ([BR22], Theorem 3.2). Let n be a positive integer and F : Fn
2 → Fn

2 a
function. The transition matrix D has the following properties:

(1) If F = (F1, . . . , Fm), then DF =
⊗m

i=1 DFi .

(2) If F = F2 ◦ F1, then DF = DF2DF1 .

Definition 2 ([BR22], Definition 4.1). A quasidifferential characteristic (quasi-DC) for
a function F = Fr ◦ · · · ◦ F1 is a sequence ω1, ω2, . . . , ωr+1 of mask-difference pairs ωi =
(ui

0, ui
1). The correlation of this quasi-DC is defined as

∏r
i=1 DFi

ωi+1,ωi
.

According to Theorem 2, if F = Fr ◦ Fr−2 ◦ · · · ◦ F1 we have

DF
0||ur+1

1 ,0||u1
1

=
∑

ωr,...,ω2

r∏
i=1

DFi
wi+1,wi

with ω0 = 0||u1
0, ωr+1 = 0||ur+1

1 .
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Note that DF
0||ur+1

1 ,0||u1
1

is exact the differential probability of F with input/output
difference u1

1 and ur+1
1 . Given a DC of F, say (u1

1, u2
1, . . . , ur+1

1 ), then the probability of
the DC is exactly calculated by

PrDC [u1
1, . . . , ur

1] =
∑

u2
0,...,ur

0

r∏
i=1

DFi

ui+1
0 ||u1

i+1,ui
0||ui

1
with u1

0 = 0, ur+1
0 = 0.

To sum up, the exact probability of a DC is equal to the summation of correlations of
all its corresponding quasi-DCs.
Generalization of the geometric approach. In [HZC+25], the authors generalized
the geometric approach. An attack has an important information called the order which
indicates the dimension of its input spaces.

Definition 3 (The order of an attack [HZC+25]). The dimension of the input space of
an attack is called the order of the attack.

The order of an attack is crucial when we choose bases to describe it with the geometric
approach. For

T F : Q[Fn
2 ] → Q[Fn

2 ], T F(δu) = δF(u),

if the input and output bases are chosen as the standard basis [δu(x)]x,u, the matrix of T F

is just [δu(x)]x,u. When we choose another pair of bases for the input and output spaces,
say [αu(x)]x,u and [βu(x)]x,u, the transition matrix of T F can be calculated by

AF
v,u =

∑
x∈(Fn

2 )⊗d

β⋆
F(x)(v) αu(x)

according to [HZC+25], where [β⋆
u(x)]x,u represents the inverse matrix of [βu(x)]x,u.

Distinguished by whether we use the same basis for the input and output spaces,
attacks can be divided into same-basis and mix-basis attacks.

Definition 4 (Same-basis and mix-basis attack [HZC+25]). An attack on

F : Fn
2 → Fn

2

is called a same-basis attack if the bases chosen for the input and output spaces are the
same; otherwise, a mix-basis attack.

With this generalization, the transition matrices are obtained considering the in-
put/output bases. The properties of these transition matrices are as same as those in
the original geometric approach [Bey23].

3 Verify Related-Key DC and Boomerang Distinguishers
with Geometric Approach

In this section, we show how to extend the geometric approach to the related-key differen-
tial and boomerang attacks. In the related-key differential attack, it is assumed that the
attacker has known the difference of round keys. Thus, parts of the state difference might
be canceled by the round key difference, which can bring longer DC in the related-key
setting. From the perspective of the geometric approach, the key-XOR is not special from
other components. Thus, the quasidifferential technique can be almost directly applied to
the key-XOR operation. In other words, it is natural to apply the geometric approach to
verify the related-key DCs. The case for boomerang distinguishers is much more compli-
cated. There are no known applications of the geometric approach to this attack. Thus,
we will extend the geometric approach to cover the boomerang attack.
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G1

∆k1

G2

∆kr−1

Gr

∆kr

Figure 2: Related-key differential characteristic for a key-alternating composite cipher.

3.1 Transition Matrix of Key-XOR Operation in Related-Key Setting
Following the quasidifferential framework, the key-XOR operation for key-alternating ci-
phers in the related-key setting can be described as a function

Fk,∆k : (x, ∆) → (x ⊕ k, ∆ ⊕ ∆k)

Applying Equation (3) to Fk,∆k, we obtain the transition matrix of Fk,∆k whose element
is

DF
v0||v1,u0||u1

= 1
2n

∑
x0||x1∈Fn

2 ×Fn
2

(−1)u⊤
0 x0δu1(x1)(−1)v⊤

0 (x0⊕k)δv1(x1 ⊕ ∆k)

= 1
2n

∑
x0∈Fn

2
u1⊕∆k=v1

(−1)u⊤
0 x0⊕v⊤

0 x0⊕v⊤
0 k

= (−1)v⊤
0 kδv1(u1 ⊕ ∆k)δv0(u0)

(4)

The term δv0(u0) says that the input and output masks should be unchanged. The
δv1(u1 ⊕ ∆k) term ensures that the difference of the key changes the state difference from
u1 to u1 ⊕ ∆k. The (−1)v⊤

0 k term shows that the value of k will influence the sign of the
correlation of a quasi-DC in the related-key setting (for the sake of simplicity, we call it
related-key quasi-DC).

Consider a composite cipher F = Fr ◦ · · · ◦ F1, where for some i, Fi will be the key-
XOR operation Fk,∆k. For those operations that are not the key-XOR, the transition
matrix is built in the same way as the original quasidifferential cryptanalysis. For the
key-XOR operations, the difference changes, and the value of the key contributes to a
sign. Then, the correlation of a related-key quasi-DC can be defined similar to that of a
quasi-DC [BR22].

Definition 5 (Related-key quasi-DC and its correlation). A related-key quasi-DC for a
function F = Fr ◦ · · · ◦ F1 is a sequence ω1, ω2, . . . , ωr+1 of the related-key mask-difference
pairs with a key difference sequence ∆k1, ∆k2, . . . , ∆kr, where ωi = (ui

0, ui
1), 1 ≤ i ≤ r + 1

and ∆ki is the i-th key difference for 1 ≤ i ≤ r. The correlation of the related-key
quasi-DC can be expressed as

∏r
i=1 DFi

ωi+1,ωi
.

Compute the probability of differential characteristic in the related-Key set-
ting. For a key-alternating cipher in the related-key setting, the round function can be
written as Fi(x) = Fki,∆ki

◦ Gi(x), 1 ≤ i ≤ r. With the transition matrix of Fk,∆k, the
related-key quasi-DC has properties similar to the quasi-DC. According to [BR22, Section
4], when u1

0 = u1
0 = · · · = ur+1

0 = 0, the related-key quasi-DC corresponds to the related-
key DC. Additionally, the exact probability of the related-key DC can be calculated by
summing up all correlations of related-key quasi-DCs related to this related-DC [BR22,
Theorem 4.1].

Corollary 1. Suppose that F = Fr◦· · ·◦F1 has a related-key DC denoted by (a1, a2, . . . , ar+1)
with key difference sequence is ∆k1, . . . , ∆kr, where Fi = Fki,∆ki

◦ Gi(x). The probability
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of this related-key DC is equal to the sum of the correlation of all quasi-DCs with the same
intermediate differences:

PrDC [a1, a2, . . . , ar+1] =
∑

u2
0,...,ur

0

r∏
i=1

DFi

ui+1
0 ||ui+1

1 ,ui
0||ui

1

=
∑

u2
0,...,ur

0

r∏
i=1

(−1)(ui+1
0 )TkiDGi

ui+1
0 ||(ai+1⊕∆ki),ui

0||ai

(5)

with u1
0 = ur+1

0 = 0.

Proof. Since the key-XOR is regarded as a normal cipher component, whose transition
matrix is calculated by Equation (4). According to Theorem 1(2), the proof ends.

3.2 Geometric Approach for Boomerang Cryptanalysis
In the following, we generalize the geometric approach to describe boomerang cryptanal-
ysis. To describe the boomerang attack shown in Figure 1 by Beyne’s geometric theory,
we first choose the attack order and define the input and output space bases for the
boomerang attack that the two upper and lower DCs can be combined by one Sbox layer
as the middle part. Then we give the definition of the quasi-boomerang trail and propose
how to calculate the exact probability of a boomerang characteristic.

3.2.1 Choose the Order for Boomerang Attack

According to [HZC+25], when extending the geometric approach to new attacks, we should
first decide the order of the attack. Since the boomerang attack treats four values (a quar-
tet), the orders of the input and output spaces are both 4. In this sense, the boomerang
attack can be described by a 4th-order attack. In fact, in [WSW+24], Wang et al. extended
the quasidifferential cryptanalysis to quasi-d-differential cryptanalysis. When d = 3, the
quasi-3-differential cryptanalysis can be used to describe the boomerang attack. This is
also similar to the d-difference of the polytope attacks [Tie16].

However, the 3-differential has a disadvantage in that the row and column size of the
transition matrix is 4 times of the Sbox size, which makes the search very slow. Actually,
both [KT22] and [WSW+24] can only search for (a part of) the 3-differential trails for
two middle rounds of a boomerang distinguisher. In [WSW+24], the authors in fact only
searched for only a part of the 3-differentials corresponding to the 2-round boomerang
distinguisher that they want to verify.

We notice that for both the classical boomerang distinguishers and refined ones with
BCT, there is an implicit assumption that the 4 values in a quartet will sum to zero, i.e.,
the orders of the input and output spaces can be 3. In this case, the theoretical boomerang
probability (the sum of the inner quartets is always zero) is actually an approximation of
the real boomerang probability.

If we add a constraint to make sure that the sum of the quartet is always zero, then the
orders of the input and output spaces become 3, which is easier to handle. Considering
that in a verification work, the differences of the states (and differences in the key schedule)
are known, the matrices for quasi trails will further reduce to 2 times of the Sbox size,
making the search work.

3.2.2 Quasi-Boomerang Bases as a 3rd-Order Attack

Consider a 3rd-order space X = {(a, b, c, d) : a⊕b⊕c⊕d = 0, a, b, c, d ∈ Fn
2 } and construct

the free vector space as Q[X]. The pushforward of a cipher F is a linear mapping over
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Q[X]. Next, we choose proper bases to describe the boomerang attack. As shown in
Figure 1, for the input space, we need to consider the value of x, the difference ∆1, and
the difference ∆2. However, only ∆1 will be explicitly determined, so we choose the
standard basis for ∆1, which is δu1(∆1). x and ∆2 can be any value, which is like the
value in the quasidifferential attack. Thus, we choose the linear basis for x and ∆2, which
is (−1)u⊤

0 x(−1)u⊤
2 ∆2 . Finally, the basis written in the matrix form for the input space is

[(−1)u⊤
0 x ⊗ δu1(∆1) ⊗ (−1)u⊤

2 ∆2 ]x||∆1||∆2,u0||u1||u2 (6)

For the output space, we consider the value of F(x), the difference F(∆1) △= F(x) ⊕
F(x ⊕ ∆1) and the difference F(∆2) △= F(x) ⊕ F(x ⊕ ∆2) (recall the notation trick in
Section 2.2). However, for the output, F(x) and F(∆1) can be any value, but the F(∆2)
will be determined. Similar to the input basis, we choose the output basis as

[(−1)u⊤
0 F(x) ⊗ (−1)u⊤

1 F(∆1) ⊗ δu2(F(∆2))]F(x)||F(∆1)||F(∆2),u0||u1||u2 (7)

The input and output bases are different, so the boomerang attack will be described by a
mix-basis attack according to [HZC+25].

Since the input and output bases are different, the boomerang attack can be described
as a mix-basis attack. Following [HZC+25], we divide the target cipher F into three parts,
F = F2 ◦ F1 ◦ F0, where F1 is a layer of Sbox, and construct the transition matrices for
each of the three parts.

For F0, the basis in Equation (6) is used for the input, output, and intermediate spaces.
So we obtain a same-basis attack, where the element of the corresponding transition matrix
is

BF0
v0||v1||v2,u0||u1||u2

= 1
22n

∑
x0,∆1,∆2

(−1)u⊤
0 x0δu1(∆1)(−1)u⊤

2 ∆2(−1)u⊤
0 F(x0)δv1(F(∆1))(−1)u⊤

2 ∆2

= 1
22n

∑
x0∈Fn

2 ,∆2∈Fn
2

∆1=u1,F(∆1)=v1

(−1)u⊤
0 x0⊕u⊤

2 ∆2⊕v⊤
0 F(x0)⊕v⊤

2 F(∆2)

(8)
under the constraint F0(x ⊕ ∆1 ⊕ ∆2) = F(x) ⊕ F(x ⊕ ∆1 ⊕ ∆2), where this constraint is
to ensure that the elements are from the 3rd-order space X.

For F2, the basis in Equation (7) is used for the input, output and intermediate spaces.
Therefore we obtain a same-basis attack too. The element of the corresponding transition
matrix is

BF2
v0||v1||v2,u0||u1||u2

= 1
22n

∑
x0,∆1,∆2

(−1)u⊤
0 x0(−1)u⊤

1 ∆1δu2(∆2)(−1)u⊤
0 F(x0)(−1)v⊤

1 F(∆1)δu2(F(∆2))

= 1
22n

∑
x0∈Fn

2 ,∆1∈Fn
2

∆2=u2,F(∆2)=v2

(−1)u⊤
0 x0⊕u⊤

1 ∆1⊕v⊤
0 F(x0)⊕v⊤

1 F(∆1)

(9)
under the constraint F0(x ⊕ ∆1 ⊕ ∆2) = F(x) ⊕ F(x ⊕ ∆1 ⊕ ∆2)

Definition 6 (Quasi-biDDT). The transition matrices defined by Equations (8) and (9)
model the propagation of two differences, thus we call them quasi-biDDT. To distinguish
the two quasi-biDDT, the one for F0 is called the upper quasi-biDDT, and the one for F2
lower quasi-biDDT.

For F1, Equation (6) is used for the input basis and Equation (7) is used for the output
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basis. The transition matrix is

BF1
v0||v1||v2,u0||u1||u2

= 1
22n

∑
x0,∆1,∆2

(−1)u⊤
0 x0δu1(∆1)(−1)u⊤

2 ∆2(−1)u⊤
0 F(x0)(−1)v⊤

1 F(∆1)δu2(F(∆2))

= 1
22n

∑
x0∈Fn

2 ,∆2∈Fn
2

∆1=u1,F(∆2)=v2

(−1)u⊤
0 x0⊕u⊤

2 ∆2⊕v⊤
0 F(x0)⊕v⊤

1 F(∆1)

(10)
under the constraint F0(x ⊕ ∆1 ⊕ ∆2) = F(x) ⊕ F(x ⊕ ∆1 ⊕ ∆2).
Definition 7 (Quasi-BCT). The transition matrix defined by Equation (10) models the
propagation from the upper difference to the lower difference, which is like the BCT
considering the values. Thus, we call this matrix quasi-BCT.

Remark. The value calculated by Equation (10) is actually the probability of a rectangle
distinguisher, while the probability should be multiplied with a 2n term. In this paper, we
will always consider the boomerang distinguisher, so we multiply 2n with the probability
calculated from Equation (10).

3.2.3 Use Quasi-Boomerang Characteristic to Approximate Boomerang Distinguisher

Like that a differential can contain lots of DCs, and some of these DCs will play a domi-
nant role in deciding the probability of the differential. The probability of a boomerang
distinguisher can be approximated by a so-called boomerang characteristic.
Definition 8 (Boomerang characteristic). Suppose a composite cipher E = Er◦· · ·◦Em+1◦
Em◦Em−1◦· · ·◦E1, where Em−1◦· · ·◦E0 has a DC (a1, . . . , am) and Er ◦· · ·◦Em+1 has a DC
(am+1, . . . , ar+1). Using the BCT connecting am and am+1, (a1, . . . , am, am+1, . . . , ar+1)
can represent a boomerang distinguisher, which is called a boomerang distinguisher (BC),
whose probability is

PrBC [a0, . . . , am, am+1, . . . , ar+1] = Pr2
DC [a1, . . . am]Pr2

DC [am+1, . . . ar+1]PrBCT [am, am+1].

According to Theorem 1, the probability of a boomerang distinguisher for E, can be
calculated by summing all the correlations of the quasi-boomerang characteristics (quasi-
BC).
Definition 9 (Quasi-boomerang characteristic). A quasi-boomerang characteristic for a
function E = Er ◦ · · · Em+1 ◦ Em ◦ · · · ◦ E1 is a sequence ω1, ω2, . . . , ωm, ωm+1, . . . , ωr+1 of
the triples, where ωi = (ui

0, ui
1, ui

2) for 1 ≤ i ≤ r + 1. The correlation of the quasi-BC can
be calculated as

∏r
i=1 BEi

ωi+1,ωi
. BEi is the transition matrix of Ei:

• for i < m, BEi is the upper quasi-biDDT (Equation (8)),

• for i = m, BEi is the quasi-BCT (Equation (10)),

• for i > m, BEi is the lower quasi-biDDT (Equation (9)).
When ∀i, ui

0 = 0, ∀i ≤ m, ui
2 = 0 and ∀i ≥ m + 1, ui

1 = 0, the quasi-BC corresponds to
a BC. Their correlation is equal to the product of the one-round probabilities of the BC
(a1, ..., ar+1), i.e.,

PrBC [a1, a2, . . . , ar+1] =

(
m−1∏
i=1

BEi

0||ai+1||0,0||ai||0

)2

BEm

0||0||am+1,0||am||0

(
r∏

i=m+1
BEi

0||0||ai+1,0||0||ai

)2

= Pr2
DC [a1, . . . am]Pr2

DC [a1, . . . am]PrBCT [am, am+1]

Similarly to [BR22, Theorem 4.1], we can also use the quasi-BC to compute the exact
probability of a BC as shown in the following Theorem.
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Corollary 2. For E = Er ◦ · · · Em+1 ◦ Em ◦ · · · ◦ E1, the probability of a boomerang
characteristic (α1, α2, . . . , αm, αm+1, . . . , αr) is equal to the sum of the correlations of all
quasi-boomerang trails with the same intermediate differences:

PrBC [a1, a2, . . . , ar+1] =
∑

u2
0,...,ur

0

∑
um+1

1 ,...,ur
1

∑
u2

2,...,um
2

BEm
ωm+1,ωm

m∏
i=1

BEi
ωi+1,ωi

r∏
i=m+1

BEi
ωi+1,ωi

,

where ωi = (ui
0, αi, ui

2) for 1 ≤ i ≤ m, ωi = (ui
0, ui

1, αi) for m + 1 ≤ i ≤ r + 1, and with
u1

0 = ur+1
0 = 0, ur+1

1 = 0, u0
2 = 0.

Proof. The proof directly follows Theorem (1) and Equations (8), (9) and (10).

3.2.4 Quasi-BC for Key-Alternating Ciphers in the Related-Key Setting

Similar to the related-key quasi-DC case, the key-XOR operation for key-alternating ci-
phers in the related-key boomerang attack can be described as a function

Fk,∆k,∇k : (x0, ∆1, ∆2) → (x0 ⊕ k, ∆1 ⊕ ∆k, ∆2 ⊕ ∇k)

The upper quasi-biDDT for Fk,∆k,∇k can be calculated according to Equation (8) as

B
Fk,∆k,∇k

v0||v1||v2,u0||u1||u2
= 1

22n

∑
x0∈Fn

2 ,∆2∈Fn
2 ,∆1=u1

u1⊕∆k=v1

(−1)u⊤
0 x0⊕u⊤

2 ∆2⊕v⊤
0 (x0⊕k)⊕v⊤

2 (∆2⊕∇k)

= (−1)v⊤
0 k⊕v⊤

2 ∇kδv1(u1 ⊕ ∆k)δv0(u0)δv2(u2)

(11)

Similarly, the lower quasi-biDDT for Fk,∆k,∇k can be calculated according to Equa-
tion (9) as

B
Fk,∆k,∇k

v0||v1||v2,u0||u1||u2
= (−1)v⊤

0 k⊕v⊤
1 ∆kδv2(u2 ⊕ ∇k)δv0(u0)δv1(u1) (12)

Consider a key-alternating cipher E = Er ◦ · · · ◦ Em+1 ◦ Em ◦ · · · ◦ E1 in the related-
key setting. Assume that for 1 ≤ i < m, Ei = Fki,∆ki,∇ki

◦ Gi; for m + 1 ≤ i ≤ r,
E = Gi◦Fk,∆k,∇k the round function satisfies that Ei(x) = Fki,∆ki,∇ki

◦Gi(x); as illustrated
in Figure 3.

Therefore, the probability of a BC (α1, α2, . . . , αm, αm+1, . . . , αr) is that

PrBC [α1, . . . , αm−1, αm, . . . , αr+1]

=
∑

u2
0,...,ur

0

∑
um+2

1 ,...,ur
1

∑
u2

2,...,um+1
2

r−1∏
i=1

(−1)(ui+1
0 )Tki

m−1∏
i=1

(−1)(ui+1
2 )⊤∇ki

r∏
i=m

(−1)(ui+1
1 )⊤∆ki

BGm

um+1
0 ||um+1

1 ||αm+1,um
0 ||αm||um

2

m−1∏
i=1

BGi
ωi+1,ωi

r∏
i=m+1

BGi

(ωi+1,ωi),

where ωi = (ui
0, αi, ui

2) for 1 ≤ i ≤ m, ωi = (ui
0, ui

1, αi) for m + 1 ≤ i ≤ r, and with
u1

0 = ur+1
0 = 0, ur+1

1 = 0, u0
2 = 0, xi = Fi−1(xi−1) = Gi−1(xi−1) ⊕ ki, 2 ≤ i ≤ r.

4 Applications to Verify the Differential Characteristic
In this section, we combine the quasidifferential framework and the related-key quasi-DCs
to verify the given related-key DCs.
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Gm
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∆km−1

Gm−1

∆k1

G1

∇km

Gm+1

∇kr−1

Gr

Figure 3: The BC in the related-key setting for a composite key-alternating cipher E =
Er ◦ · · · ◦ Em+1 ◦ Em ◦ · · · ◦ E1.

Automatic search model for related-key quasi-DCs of a given related-key DC.
Any cipher can be regarded as a composition of small components. For each component
including the key-XOR, the transition matrix of the quasidifferential differential is first
built. The transition matrix of a component function F : Fn

2 → Fm
2 is a 22m × 22n matrix.

However, since the input and output differences are known according to the given DC,
the related-key quasi-DC in fact follows a 2m × 2n submatrix. We utilize the SMT solver
Boolector3 to search for related-key quasi-DCs that follow these submatrices and set the
input mask and output mask of the quasi-DC be zero. Every solution returned by the
solver is a valid related-key quasi-DC that corresponds to the given DC.
Derive the key conditions. Consider E = Er ◦ · · · ◦ E1 where Ei = Fki,∆ki

◦ Gi(x).
Suppose a related-key DC with the key difference sequence ∆k1, . . . , ∆kr of E, denoted
by (α0, . . . , αr+1), has m quasi-DCs. According to Corollary 5, the correlation of the ℓ-th
(1 ≤ ℓ ≤ m) quasi-DC, say (0, u

(ℓ)
1 , . . . , u

(ℓ)
r , 0), can be calculated by

Cl =
r∏

i=1
(−1)(u

(ℓ)
i+1)⊤ki

r∏
i=1

DGi

u
(ℓ)
i+1||αi+1⊕∆ki

,u
(ℓ)
i

||αi

= (−1)
∑r

i=1
(u

(ℓ)
i+1)⊤kiC(ℓ),

where u
(ℓ)
0 = u

(ℓ)
r+1 = 0, and C(ℓ) =

∏r
i=1 DGi

u
(ℓ)
i+1||αi+1⊕∆ki

,u
(ℓ)
i

||αi

is the correlation of
non-key-XOR components.

Therefore, we can control
∏r

i=1(−1)(u
(ℓ)
i+1)⊤ki by imposing conditions on keys to de-

termine the sign of the correlation of the ℓ-th quasi-DC. Suppose that the rank of all
non-all-zero-mask conditions (there must be an all-zero mask quasi-DC, which is just the
DC) from the m quasi-DCs is m′. Thus, there are 2m′ possibilities to assign values to
these conditions, which also divide the whole key space into 2m′ subspaces.

According to [BR22, Theorem 4.2], the quasi-DCs whose correlation has the same
absolute value with their corresponding DC are specifically interesting. If the sum of
their correlations is zero, then the sum of all quasi-DCs is always zero. We call these
quasi-DCs maximum-correlation quasi-DCs. In terms of the related-key quasi-DC, this
theorem naturally applies. Therefore, we can divide the 2m′ conditions into two categories.
In the first category, the key conditions make the sum of correlations of all related-key
maximum-correlation quasi-DCs be zero. Thus, the target related-key DC is also zero. In
the second category, the key conditions make the sum of maximum-correlation quasi-DCs
non-zero, thus the related-key DC may work in this key subspace. We will try to search
for all related-key quasi-DCs and sum their correlations to approximate the probability
of the target DC. However, it is actually very difficult to exhaust all related-key quasi-
DCs, so we will search for related-key quasi-DCs with large absolute correlations. These
related-key quasi-DCs are called the dominant related-key quasi-DCs. The sum of these
dominant related-key quasi-DCs’ correlation is used to approximate the probability of the
DC. Note that this is the same strategy with that in [BR22]. In Section 6.1, we will discuss
the plausibility of this approximation in our applications.

3https://boolector.github.io

https://boolector.github.io
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We apply these techniques to related-key DCs of AES, CRAFT, and GIFT, respectively,
searching for quasi-DCs corresponding to the related-key DCs, deriving the key conditions
from the dominant quasi-DCs, and estimating the probability in the different key spaces.
For GIFT, the round key constraints can be transformed to the mask key constraints as
the linear key schedule.

4.1 Applications to GIFT-64

Specification of GIFT. The block cipher GIFT, proposed by Banik et al. [BPP+17] at
CHES 2017, includes two variants: GIFT-64 and GIFT-128, both utilizing an SPN structure
with a 128-bit key. The GIFT-64 processes 64-bit inputs while the GIFT-128 processes
128-bit inputs, corresponding to 28 and 40 rounds, respectively. Each round function
contains four operations: SubCells (4-bit S-box), PermBits, AddRoundConstants, and
AddRoundKey. Additionally, the key schedule initializes a 128-bit master key divided into
16-bit segments, extracting round keys differently for each version. Let kj

i denotes the
j-th bit of the i-th segment (0 ≤ i ≤ 7, 0 ≤ j ≤ 15) of the master key and RKi

r denotes
the i-th bit of the r-th round key (0 ≤ i ≤ 31 for GIFT-64 and 0 ≤ i ≤ 63 for GIFT-128).

Verification of a 15-round related-key DC of GIFT-64 (DC-1). In [JZZD20,
Table 10], Ji et al. proposed a 15-round related-key DC for GIFT-64 whose probability is
2−48. We search and find 2 maximum-correlation quasi-DCs with correlation values being
(positive) 2−48. The first one has the related-key quasi-DC with all zero masks, thus the
key values have no influence on its sign. The second one provides a 1-bit key condition
as RK14

6 ⊕ RK30
6 , interestingly, the round key bits involved in this condition are actually

two master key bits, thanks to the simple linear key schedule of GIFT. Finally, we obtain
a condition of 2 master key bits, which is k3

2 ⊕ k11
2 .

On the one hand, when k3
2 ⊕k11

2 = 1, the correlations of the two related-key quasi-DCs
will sum to zero. According to [BR22, Theorem 4.2], the summation of all related-key
quasi-DCs’ correlations is zero under this condition.

In the other hand, when k3
2 ⊕ k11

2 = 0, the correlations of the two related-key quasi-
DCs will sum to 2−47. To get a better approximation to the real probability of DC-1, we
continue to search for all related-key quasi-DCs with absolute correlations from 2−48 to
2−63. The sum of all these correlations is 2−46.42.

Therefore, for half of the keys, this 15-round related-key DC is invalid. For the other
half of the keys, the probability is about 2−46.42.

Verification of a 18-round related-key DC of GIFT-64 (DC-2). In [SWW21,
Figure 8], Sun et al. presented a first 26-round differential attack on GIFT-64 in the related-
key scenario, utilizing an 18-round related-key DC with probability 2−58. We search for
quasi-DCs with absolute correlation 2−58 and find 128 maximum-correlation quasi-DCs
with correlation 2−58, and 128 maximum-correlation quasi-DCs with correlation −2−58.
Among the 256 maximum-correlation quasi-DCs, there is one with all zero masks. The
remaining 255 provide 255 key conditions, but the rank of them is only 8. Thus, we have
256 possibilities for the key spaces. These key bits is as follows,

k4
0 + k6

0 + k8
2 + k15

2 + k7
5 + k9

5 + k3
7 + k11

7 = z0 k5
0 + k6

0 + k8
2 + k7

5 + k9
5 + k11

7 = z1

k0
2 + k8

2 = z2 k7
2 + k15

2 = z3

k3
3 = z4 k11

3 = z5

k1
6 = z6 k6

6 + k14
6 = z7.

When (z0, . . . , z7) = (0, 1, 0, 1, 1, 1, 1, 0), the sum of the maximum-correlation related-
key quasi-DCs’ (including the zero-mask quasi-DC) correlation is 2−50. We continue
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to search for all quasi-DCs with absolute correlations from 2−49 to 2−64. The sum of
correlations is 2−49.42.

For 8 subspaces, i.e.,

(z0, . . . , z7) ∈
{

(1, 0, 0, 0, 1, 1, 1, 0), (0, 1, 0, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1, 1, 0), (1, 1, 1, 0, 1, 1, 1, 0)
(0, 0, 0, 1, 1, 1, 1, 0), (1, 1, 0, 1, 1, 1, 1, 0), (1, 0, 1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1, 1, 0)

}
,

the sum of the maximum-correlation related-key quasi-DCs’ (including the zero-mask
quasi-DC) correlation is 2−53. Thus, we continue to search for all quasi-DCs with absolute
correlations from 2−49 to 2−64. The sum of correlations is 2−52.42.

For the remaining 247 subspaces, the sum of the maximum-correlation related-key
quasi-DCs’ (including the zero-mask quasi-DC) correlation is zero. Therefore, the proba-
bility of the related-key DC is always zero.

Therefore, for 1
256 keys, the probability of this 18-round related-key DC is about 2−49.52.

For 1
256 × 8 = 1

32 keys, the probability is about 2−52.42. For the remaining keys, the
probability is zero.

4.2 Applications to AES-128

Specification of AES. The Advanced Encryption Standard (AES) [DR20] is a symmetric
key encryption algorithm widely used for information security. Established by the National
Institute of Standards and Technology (NIST) in 2001, AES operates on 128-bit block
sizes and supports key lengths of 128, 192, and 256 bits. The encryption algorithm
includes three versions: rounds 10 for 128-bit keys, 12 for 192-bit keys, and 14 for 256-
bit keys, respectively, with each round. The round function consists of SubBytes (8-bit
S-box), ShiftRows, MixColumns, and AddRoundKey. Note that the final round omits the
MixColumns operation.
Verification of a 6-round related-key DC of AES-128 (DC-3). In [SGL+17, Table
1], Sun et al. proposed the (currently) optimal 6-round related-key DC of AES-128 with
probability 2−131 that the probabilities of state DC (denoted as ps) and key DC (denoted
as pk) are 2−92 and 2−39, respectively.

To verify this related-key DC, we first check the DC of the states assuming that the
round keys are all independent. We search for quasi-DCs whose absolute correlation is
from 2−92 to 2−142, and only one quasi-DC with all-zero masks is found, whose correlation
is 2−92. That means the round keys will not influence the validity of the state DC.

Since the key schedule of AES-128 is also non-linear, we still need to ensure that the
difference propagation in the key schedule is also valid. Thus, we search for quasi-DCs
whose absolute correlations from 2−39 to 2−89 corresponding to the key schedule DC, also,
only one quasi-DC with all-zero masks is found whose correlation is 2−39.

Therefore, we fully verify that this 6-round related-key DC of AES-128 is reliable, and
it is independent of keys.
Verification of a 5-round related-key DC of AES-128 (DC-4). The best 5-round
related-key DC of AES-128 is proposed in [FJP13, Figure 16]. The probability is 2−105

(ps = 2−66 and pk = 2−39).
Similar to the 6-round case, only one quasi-DC with all-zero masks is found corre-

sponding to the state DC when searching for the absolute correlation from 2−66 to 2−116

and only one quasi-DC with all-zero masks is found of the key DC when searching for the
absolute correlation from 2−39 to 2−89.

Therefore, we fully verify this 5-round related-key DC of AES-128, and it is independent
of keys.
Verification of the first 4-round DC of AES-128 (DC-5). For the 4-round best
related-key DC of AES-128 [FJP13, Figure 14] with probability 2−81 (ps = 2−48 and
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pk = 2−33), we find that only one quasi-DC with all-zero masks when searching for
the absolute correlation from 2−48 to 2−98 corresponding to the state DC and only one
quasi-DC with all-zero masks is found corresponding to the key DC when searching for
the absolute correlation from 2−33 to 2−83, which means this 4-round related-key DC of
AES-128 is independent of keys and reliable.

Verification of the second 4-round DC of AES-128 (DC-6). For another 4-round
best related-key DC of AES-128 [FJP13, Figure 15] with probability 2−81 (ps = 2−48 and
pk = 2−33), only one quasi-DC with all-zero masks is found corresponding to the state
DC when searching for the absolute correlation from 2−48 to 2−98. When searching for
the absolute correlation from 2−33 to 2−83 of quasi-DC corresponding to the key DC, we
find only one quasi-DC. Then this 4-round related-key DC of AES-128 is also reliable and
independent of the keys.

4.3 Applications to CRAFT

Specification of CRAFT. CRAFT [BLMR19] is a lightweight symmetric encryption al-
gorithm designed for constrained environments, focusing on efficiency and security. It
operates on 64-bit block sizes, supports key sizes of 128 bits, and tweak size of 80 bits.
The algorithm employs an SPN structure and the internal state can be viewed as a 4 × 4
square. During encryption, the plaintext through a combination of the round function
and the subkey is derived from the main key. The round function includes five operations:
MixColumn, AddConstants, AddTweakey, PermuteNibbles, and SubBox (4-bit S-box).

Verification of a 30-round DC of CRAFT (DC-7). In [SWW22, Figure 3], Sun et
al. presented a practical key-recovery attack on the full-round CRAFT in the related-key
setting that only uses one DC with probability 2−30. We search for all quasi-DCs with
absolute correlation being 2−30 to 2−80 in the related-key setting corresponding to this
DC. There is only one quasi-DC with all-zero masks, making this 30-round DC and the
practical full-round attack reliable.

5 Applications to Verify the Boomerang Distinguishers

Automatic Search Model. According to Definitions 8 and 9, for E = Er ◦ · · · ◦ Em+1 ◦
Em ◦ · · · ◦ E1, a BC is a sequence of differences like

(α1, . . . , αm, αm+1, . . . , αr+1),

while a quasi-BC is a sequence of triples like

((u1, v1, w1), . . . , (um−1, vm−1, wm−1), (um, vm, wm), . . . , (ur+1, vr+1, wr+1))

with u1 = w1 = ur+1 = vr+1 = 0. Replacing the corresponding differences of the quasi-BC
with the differences from the given BC, we can search for the sequence of the remaining
two masks in each triple, which is like

((0, α1, 0), . . . , (um−1, αm−1, wm−1), (um, vm, αm), . . . , (0, 0, αr+1))

According to Theorem 2, the sum of all correlations of such quasi-BCs is exactly the
probability of the above BC. The SMT solver Boolector is also used for searching for the
quasi-BCs.

Derive key conditions. Suppose the key difference sequence of a related-key BC
is (∆k1, . . . , ∆km−1, ∇km, . . . , ∇kr−1), we can get a bit of key conditions according to
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Equations (11) and (12) for each quasi-BC, which is similar to the related-key DC case.
Suppose we have m quasi-BCs, and the ℓ-th quasi-BC suggests a key condition as

Kℓ =
r−1∑
i=1

(u(ℓ)
i+1)⊤ki

m−1∑
i=1

(v(ℓ)
i+1)⊤∇ki

r−1∑
i=m

(w(ℓ)
i+1)⊤∆ki.

Suppose the rank of these key conditions (excluding the all-zero mask quasi-BC) is m′,
then the key space can be divided into 2m′ subspaces. For each subspace, we can search
for all quasi-BCs to compute the probability of the target BC.

We apply these techniques to SKINNY-64 and GIFT, respectively, searching for the quasi-
BCs corresponding to the tested related-key BCs. We derive the key constraints and
estimate the probability in different key subspaces. Note that our techniques naturally
apply to single-key case, too.

5.1 Applications to SKINNY-64
SKINNY is a tweakable block cipher proposed by Beierle et al. [BJK+16], and has two
versions by the block size n = 64, 128. Let t denote the tweakey size and c denote
the cell size, the SKINNY family, denoted as SKINNY-n-t, has six main versions: for each
n ∈ {64, 128}, the tweakey size has three versions t = n, t = 2n, and t = 3n. The round
function contains five operations: SubCell, AddConstants, AddRoundTweakey, ShiftRows,
and MixColumns. The tweakey schedule is linear containing cell shuffle and two linear
feedback shift registers. Let TKm[i] denotes the i-th bit of TKm, m ∈ {1, 2, 3}.

Verification of a 2-round BC (including clustering effect) of SKINNY-64-128 (BC-
1). In [LGS17, Table 12], Liu et al. proposed a 17-round related-tweakey boomerang
distinguisher for SKINNY-64-128, combining an 8-round upper DC with probability 2−12

and a 9-round lower DC with probability 2−20, thus the probability of the 17-round
distinguisher is 2−64 following Equation (2). Cid et al. [CHP+18] proposed the BCT
to analyze the dependent Sboxes. They first applied the BCT to analyze the above
results under the assumption that the DDT and BCT in consecutive two rounds can be
evaluated independently, then the probability is 2−4 including the clustering effect. They
also made careful analysis including dependency of consecutive Sbox applications that
list the possible paired values before and after the Sbox by the DDT and BCT, with
the randomness based on the XOR subtweakey values and the MixColumns, then they
reported that the probability should be 2−2.

We apply our quasi-BC model to the middle two rounds of the boomerang distinguish-
ers of SKINNY-64-128, automatically search for the quasi-BCs with absolute correlation
from 20 to 2−100, and consider the clustering effect of BCs, i.e., we consider all BCs with
the given input and output differences. We find 4096 quasi-BCs corresponding to all 64
BCs, each of which has 64 quasi-BCs with correlation 2−14. By deriving the key condi-
tions from all quasi-BCs, we get 3-bit key conditions. The fixed related-TK2 conditions
are as follows by satisfying the deterministic key difference.

∆TK1[4] + ∆TK2[4] = 0, ∆TK1[6] + ∆TK2[6] = 0, ∆TK1[7] + ∆TK2[7] = 0. (13)

By checking the related-tweakey sequence in [LGS17, Table 12], we find

∆TK1[4] = ∆TK2[4] = ∆TK1[6] = ∆TK2[6] = ∆TK1[7] = ∆TK1[7] = ∆TK2[7] = 0

Thus, Condition (13) is already satisfied. Thus, this related-key BC is reliable. The sum
of all correlations is 2−2. We also implement the experiment to verify the middle two
rounds including the clustering effect and the probability is about 2−2. The results are
listed in Table 2.
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Table 2: Comparison of the middle two round boomerang distinguishers of SKINNY-64
and GIFT-64.

Probabilities SKINNY-64-128 SKINNY-64-192 GIFT-64

(pq)2 including clustering effect 2−8.42 [LGS17] 2−16.30 [LGS17] -

Probability obtained by BCT 2−4 [CHP+18] 2−5† 1 [CWZ19]

Probability obtained by BCT and values 2−2 [CHP+18] 2−5.31 [CHP+18] -

Probability obtained by BDT - - 2−18 [JZZD20]

Our probability by quasi-BCs 2−2 2−5.29 2−15

Our experimental probability 2−2 2−5.2 2−13

† The probability is calculated by ourselves following [CHP+18].

Verification of a 2-round BC (including clustering effect) of SKINNY-64-192
(BC-2). Liu et al. proposed a 22-round related-tweakey boomerang distinguisher of
SKINNY-64-192, combining an 11-round upper DC with probability 2−20 and an 11-round
lower DC with probability 2−20 in [LGS17, Table 14], then the probability of the 22-round
BC is 2−80 following Equation (2). In [LGS17], Liu et al. proposed that the probability of
the middle two rounds including the clustering effect is 2−16.30, while their experimental
verification probability is 2−7.53.

Similarly to the analysis of the middle two rounds of SKINNY-64-128, Cid et al. [CHP+18]
gave the probability of the middle two rounds of SKINNY-64-192 including the clustering
effect is 2−5.31 by combining BCT and dependency of consecutive Sbox.

We automatically search for the quasi-BCs considering the clustering effect and find
6144 quasi-BCs corresponding to all 32 BCs, including 512 quasi-BCs with correlation
2−16, 768 quasi-BCs with correlation 2−17, 1792 quasi-BCs with correlation 2−18, 2304
quasi-BCs with correlation 2−19 and 768 quasi-BCs with correlation 2−20. By deriving
the key conditions from all quasi-BCs, we get the 3-bit conditions, the fixed related-TK3
conditions are as follows by satisfying the deterministic key difference.

∆TK1[4] + ∆TK2[4] + ∆TK3[4] = 0,

∆TK1[6] + ∆TK2[6] + ∆TK3[6] = 0,

∆TK1[7] + ∆TK2[7] + ∆TK3[7] = 0.

(14)

by checking [LGS17, Table 14], we found that Condition (14) are already valid. The
probability of the 2-round boomerang distinguisher including clustering effect is 2−5.29 by
summing up all correlations of all quasi-BCs. In addition, we implement the experiment
and obtain the experimental probability is about 2−5.2. The results are listed in Table 2.
Verification of a 17-round BC of SKINNY-64-128 (BC-3). Furthermore, we apply
the approach to search for the quasi-BCs of the complete 17-round BC of SKINNY-64-128.
We find the maximum absolute correlation of quasi-BCs is 2−62. The number of quasi-BCs
is too numerous to enumerate, we find 4542 maximum-correlation quasi-BCs so far.

To verify the validity of this BC, we divide the 17-round BC into three parts. The first
part is the first 7 rounds of the upper DC, whose probability is 2−12 in [LGS17, Table 12].
The second part is the middle two rounds (including the clustering effect), i.e., the 8-th
round of the upper DC and the 9-th round of the lower DC. In Table 2, the probability
of the second part is 2−8.42 estimated by Liu et al. [LGS17], 2−2 by Cid et al. [CHP+18],
and 2−2 by our. The third part is the last 8 rounds of the lower DC, whose probability is
2−36. Then we apply our quasi-BC’s automatic model to these three parts, respectively.
When deriving the key conditions, we combine the quasi-BCs of three parts as a whole.
This search method assumes that the three parts are independent. The 17-round BC is
depicted in Figure 4.
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For the first and the third part, we automatically search for the quasi-BCs with ab-
solute correlation from 20 to 2−100. We find only one quasi-BC with correlation 2−12

corresponding to the first part with all-zero masks and 4 quasi-BCs with correlation 2−32

corresponding to the third part. For the second part, we utilize the above results of the
middle two rounds including the clustering effect, i.e., 4096 quasi-BCs with correlation
2−14 corresponding to all 64 BCs. By deriving the key conditions from all quasi-BCs, we
get 5-bit key conditions. The fixed related-TK2 conditions are as follows by satisfying
the deterministic key difference. A 1-bit condition of the key value is derived from the
quasi-BCs of the third part.



TK1[42] + TK2[40] + TK2[42] + TK2[43] = 0,

∆TK1[56] + ∆TK2[56] + ∆TK2[58] + ∆TK2[59] = 0,

∆TK1[58] + ∆TK2[57] + ∆TK2[58] = 0,

∆TK1[59] + ∆TK2[58] + ∆TK2[59] = 0,

∇TK1[42] + ∇TK2[40] + ∇TK2[42] + ∇TK2[43] = 0.

(15)

By checking [LGS17, Table 12], the last four related-Tk2 conditions in Condition (15) are
already valid. Analyzing the first conditions of key value in Condition (23), the probability
of the 17-round BC is 2−44 for 1

2 keys (i.e., TK1[42]+TK2[40]+TK2[42]+TK2[43] = 0),
and invalid for the other 1

2 keys. The result shows that the probability of boomerang
distinguishers is key-dependent, i.e., it may be impossible to cluster the upper DCs and
lower DCs independently.

Experimental verification. We further verify the middle four rounds of the 17-round
BC of SKINNY-64-128 with probability 2−32. We search for the quasi-BCs with the absolute
correlation from 20 and find that the maximum absolute correlation is 2−30, which includes
4096 quasi-BCs with correlation 2−30. By deriving the key conditions, we get 5-bit key
conditions, the fixed related-Tk2 conditions are as follows by satisfying the deterministic
key difference.



∆TK1[60] + ∆TK2[62] + ∆TK2[63] = 0,

∆TK1[62] + ∆TK2[61] = 0,

∇TK1[0] + ∇TK1[1] + ∇TK2[0] + ∇TK2[2] + ∇TK2[3] = 0,

∇TK1[2] + ∇TK2[1] = 0,

∇TK1[3] + ∇TK2[2] = 0.

(16)

These conditions are already valid by checking that the probability of the 4-round BC is
2−18 by summing up all correlations of 4096 quasi-BCs.

We also implement the experiment for these middle four rounds, the probability of the
experiment is about 2−17.

Verification of a 22-round BC of SKINNY-64-192 (BC-4). For the 22-round BC
of SKINNY-64-192 with probability 2−80, we automatically search for the quasi-BCs with
absolute correlation from 20 and find the maximum absolute correlation is 2−69. By
searching for the quasi-BCs with absolute correlation from 2−69 to 2−74, we find 128
quasi-BCs with correlation 2−69, 256 quasi-BCs with correlation 2−70, 384 quasi-BCs
with correlation 2−72, 1536 quasi-BCs with correlation 2−73, and 768 quasi-BCs with
correlation −2−73. By deriving the key conditions from all quasi-BCs, we get 8-bit key
conditions, the fixed related-TK3 conditions are as follows by satisfying the deterministic
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key difference.

∆TK1[4] + ∆TK2[5] + ∆TK2[7] + ∆TK3[4] + ∆TK3[5] + ∆TK3[7] = 1,

∆TK1[5] + ∆TK2[4] + ∆TK2[6] + ∆TK2[7] + ∆TK3[4] + ∆TK3[5] + ∆TK3[6] + ∆TK3[7] = 0,

∆TK1[6] + ∆TK2[4] + ∆TK2[5] + ∆TK3[4] + ∆TK3[5] + ∆TK3[6] = 0,

∆TK1[7] + ∆TK2[5] + ∆TK2[6] + ∆TK3[5] + ∆TK3[6] + ∆TK3[7] = 1,

∆TK1[16] + ∆TK2[17] + ∆TK2[19] + ∆TK3[16] + ∆TK3[17] + ∆TK3[19] = 0,

∆TK1[18] + ∆TK2[16] + ∆TK2[17] + ∆TK3[16] + ∆TK3[17] + ∆TK3[18] = 0,

∇TK1[40] + ∇TK1[43] + ∇TK2[41] + ∇TK2[42] + ∇TK3[41] + ∇TK3[43] = 1,

∇TK1[42] + ∇TK2[40] + ∇TK2[42] + ∇TK2[43] + ∇TK3[41] + ∇TK3[42] + ∇TK3[43] = 1.
(17)

By checking [LGS17, Table 14], the Condition (17) are already valid. Thus, the probability
of the 22-round BC is 2−62 by summing up all correlations of all quasi-BCs.

5.2 Applications to GIFT-64

Verification of 2-round BC of GIFT-64 (BC-5). Chen et al. presented a 23-round
attack on GIFT-64 in [CWZ19] utilizing a 19-round related-key boomerang distinguisher
[CWZ19, Table 5]. The probability of the middle part (round 10 to 11) is 1 according to
the BCT.

In [JZZD20], Ji et al. pointed out that the probability of the middle two rounds is only
2−18 calculated by BDT proposed in [WP19], which means the 23-round attack proposed
in [CWZ19] is invalid.

From the perspective of 3-differential, Wang et al. [WSW+24] searched for quasi-3-DCs
corresponding to partial (optimal) 3-DCs and claimed all optimal 3-DCs are impossible.
Indeed, the sum of the probabilities of all optimal 3-DCs is about 2−25.83, which has
little impact on the probability of the middle two rounds when comparing the result 2−18

proposed in [JZZD20].
We apply our quasi-BC model to the middle two rounds of the BC of GIFT-64, auto-

matically search for the quasi-BCs with the absolute correlation from 20 to 2−100, and
find 512 quasi-BCs with correlation 2−25 and 1024 quasi-BCs with correlation 2−26. The
fixed related-key conditions are as follows by satisfying the deterministic key difference.
In addition, we get a 1-bit condition of the key value.

k9
0 = 0,

∆k1
0 = 0, ∆k8

0 + ∆k12
1 = 0, ∆k9

0 = 0, ∆k11
0 = 0, ∆k5

1 = 0, ∆k13
1 = 0, ∆k15

1 = 0
(18)

By checking [CWZ19, Table 6], the last 7 related-key conditions in Condition (18) are al-
ready valid. By analyzing the first condition k9

0 of the key value, we obtain the probability
of the 2-round BC is 2−16 for 1

2 keys (i.e., k9
0 = 0), and 2−16 for the other 1

2 keys.

6 Discussion and Comparison
6.1 Comparison with Peyrin-Tan Method and AutoDiVer
Peyrin and Tan [PT22] focused on verifying DCs of SKINNY and GIFT by structural analysis.
The advantage of their work is that they can identify the impossibility or compute the
probability distribution in different key spaces for DCs of SKINNY and GIFT by detecting
constraints on the internal value. However, for other ciphers, their algorithm does not
seem general. In addition, for SKINNY-128 with an 8-bit Sbox, the probability distribution
in different key spaces in their work is infeasible for a theoretical computation, so they
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had to estimate it by experiments. Thus, we expect their method is not easy to generalize
for verifying more kinds of ciphers in related-key settings and for verifying boomerang
distinguishers.

The advantage of the tool AutoDiVer presented by Nageler et al. [NGJE25] is adaptive
and practical for more kinds of block ciphers by modeling the propagation of input values,
output values, and (optional) key schedules. Their work also can deduce the key conditions
and estimate the set of valid keys. While for some ciphers such as SKINNY, estimating
the probability distribution in different key spaces seems not easy by their tool. The
author also pointed out that the limitation of AutoDiVer is the effectiveness, which will
be influenced by the key schedule. For related-key DCs and boomerang distinguishers,
AutoDiVer should set more variables, which will further slow down their speed.

Advantage and limitation of our framework. The quasidifferential/geometric ap-
proach framework, including our extension for related-key DC and boomerang, is general
and applicable to various block ciphers. It also brings a rigorous theory on probability
computation, i.e., in theory, we can compute the exact probability of a DC or BC.

However, the quasi-DCs/BCs with lower absolute correlation are too numerous to
enumerate, the key dependencies having to be analyzed by the so-called dominant quasi-
DCs. In [NGJE25], Nageler et al. pointed out that obtaining key dependencies for quasi-
DCs with lower absolute correlation is not always easy, although the correlations of these
quasi-DCs may affect the probability of DC. We do not know whether the quasi-DCs/BCs
without being considered will finally affect our analysis.

To partially mitigate the concern, we draw figures about the probability computed
from enumerating quasi-DCs in Figure 5. In cases of DC-1, DC-2, DC-8, DC-9, the
probabilities of the DCs increase or keep stable as we enumerate more quasi-DCs with
smaller absolute correlations, which shows the dominant quasi-DC assumptions work well.
However, there are also two exceptions for DC-10, as the enumeration, the DC probability
first increases but reduces again. In DC-11, the probability first stays stable but then goes
down. However, it seems the probabilities will stay stable in new values. These figures
remind us the dominant quasi-DCs assumptions might fail sometimes. But it also shows
in more cases, it works well.

6.2 A Detailed Comparison on Related-Key DCs for SKINNY

As mentioned in Section 1, SKINNY is the only cipher whose related-key DCs have been
verified by Peyrin and Tan [PT22] and the AutoDiVer. For a better comparison, we also
apply our framework to SKINNY, to obtain a direct contrast with the two tools. Through
these comparisons, one can find that our framework is more consistent in different cases.

Verification of a 10-round related-key DC of SKINNY-64-64 (DC-8). The best
10-round related-TK1 DC of SKINNY-64-64 was presented in [DDH+21, Table 7], the
probability of which is 2−46. In [PT22], Peyrin and Tan found that this 10-round DC is
impossible by structural analysis.

To check it with our method, we search for quasi-DCs with absolute correlation 2−46,
i.e., the maximum-correlation quasi-DCs, and find 16 quasi-DCs with correlation 2−46,
16 quasi-DCs with −2−46. Then we derive the values of the TK1 by these 32 maximum-
correlation quasi-DCs and get 2-bit keys: TK1[13] and TK1[15]. We further compute the
probability distribution by summing the correlations of these 32 maximum-correlation
quasi-DCs in different key spaces (i.e., the different values of TK1[13] and TK1[15]). We
find that no matter what TK1[13] and TK1[15] are, the sum of these 32 quasi-DCs is zero.
Thus, it is invalid.

Verification of a 13-round DC of SKINNY-64-128 (DC-9). For the best 13-round
TK2 DC of SKINNY-64-128 ([DDH+21], Table 8) with probability 2−55, Peyrin and Tan
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[PT22] found that the probability is 2−51 for 2−4 of keys, and zero for other keys.
We search for quasi-DCs of the 13-round DC and find 8 maximum-correlation quasi-

DCs with correlation 2−55. By deriving the key (TK1 and TK2) conditions, We find that
for the following 2−4 of keys, the probability is 2−51 and zero for other keys, which is
consistent with the result of Peyrin and Tan.

TK1[25] + TK2[25] + TK2[26] + TK[27] = 0,

TK1[26] + TK1[27] + TK2[24] + TK2[25] + TK2[26] + TK2[27] = 0,

TK1[36] + TK2[38] + TK[39] = 1,

TK1[38] + TK2[37] = 0.

(19)

We further search for the quasi-DCs with the absolute correlation from 2−56 to 2−75,
and the sum of the correlations is 2−51. Therefore, for 2−4 of keys, the probability of this
13-round DC is about 2−51, and zero for the remaining keys.
Verification of a 15-round DC of SKINNY-64-192 (DC-10). For the best 15-round
TK3 DC of SKINNY-64-192 ([DDH+21], Table 9) with probability 2−54, Peyrin and Tan
[PT22] found that the probability is about 2−48 to 2−47 for 2−6.19 of keys, Nageler et al.
[NGJE25] estimated that the number of linear constraints is 5 and the key size is about
2−6.48 to 2−6.11 but not predict the probability in the different key spaces.

We search for and find 16 maximum-correlation quasi-DCs with correlation 2−54, 16
maximum-correlation quasi-DCs with correlation −2−54. By deriving the key (TK1, TK2,
and TK3) conditions, We get 5-bit key conditions and find that for the following 2−5 of
keys, the probability is 2−49 and zero for other keys.

TK1[36] + TK1[37] + TK1[38] + TK2[36] + TK2[39] + TK3[37] + TK3[39] = 1,

TK1[39] + TK2[36] + TK3[36] + TK3[37] + TK3[38] + TK3[39] = 0,

TK1[40] + TK2[40] + TK2[43] + TK3[40] + TK3[42] + TK3[43] = 1,

TK1[41] + TK1[43] + TK2[42] + TK2[43] + TK3[40] + TK3[41] + TK3[42] + TK3[43] = 0,

TK1[42] + TK2[40] + TK2[41] + TK2[42] + TK2[43] + TK3[41] + TK3[42] = 0
(20)

We continue to search for the quasi-DCs with the absolute correlation from 2−54 to
2−70. The sum of these correlations is 2−48. Therefore the probability is about 2−48 for
2−5 of keys and zero for others.

The key size we obtained is smaller than Peyrin and Tan’s [PT22], while the estimated
probability in the different key spaces is consistent with them. This result implies that
although maximum-correlation quasi-DCs may leave out some key bits, also make a major
contribution to the probability.
Verification of a 17-round DC of SKINNY-128-384 (DC-11). For the best 17-round
related-TK3 DC of SKINNY-128-384 ([DDH+21], Table 12) with probability 2−110, Nageler
et al. [NGJE25] estimated that the number of linear constraints is 6 and the key size is
about 2−7.98 to 2−7.39, but not predict the probability in the different key spaces.

We search for and find 128 maximum-correlation quasi-DCs with correlation 2−110.
We get 6-bit key (TK1, TK2, and TK3) conditions and find that for the following 2−6 of
keys, the probability is 2−103 and zero for other keys.

TK1[16] + TK2[16] + TK3[16] = 0,

TK1[27] + TK2[29] + TK2[31] + TK3[31] = 0,

TK1[35] + TK2[37] + TK2[39] + TK3[39] = 0,

TK1[89] + TK2[92] + TK2[94] + TK3[92] = 0,

TK1[123] + TK2[120] + TK3[126] = 0,

TK1[127] + TK2[126] + TK3[120] + TK3[126] = 1

(21)
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By further searching for the quasi-DCs with absolute correlation from 2−111 to 2−117,
we get the probability is about 2−104.4 for 2−6 of keys and zero for other keys. The key
size that we find is smaller than Nageler et al., which means those quasi-DCs with lower
correlation may introduce 1-bit or more key information.
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Figure 4: The 17-round BC of SKINNY-64-128.
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Figure 5: The relationship between the absolute correlation and probability of DCs.
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