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Abstract. In the past three decades, we have witnessed the creation of
various cryptanalytic attacks. However, relatively little research has been
done on their potential underlying connections. The geometric approach,
developed by Beyne in 2021, shows that a cipher can be viewed as a linear
operation when we treat its input and output as points in an induced free
vector space. By performing a change of basis for the input and output
spaces, one can obtain various transition matrices. Linear, differential,
and (ultrametic) integral attacks have been well reinterpreted by Beyne’s
theory in a unified way.
Thus far, the geometric approach always uses the same basis for the input
and output spaces. We observe here that this restriction is unnecessary
and allowing different bases makes the geometric approach more flexible
and able to interpret/predict more attack types. Given some set of bases
for the input and output spaces, a family of basis-based attacks is defined
by combining them, and all attacks in this family can be studied in a
unified automatic search method.
We revisit three kinds of bases from previous geometric approach papers
and extend them to four extra ones by introducing new rules when gen-
erating new bases. With the final seven bases, we can obtain 72d different
basis-based attacks in the d-th order spaces, where the order is defined
as the number of messages used in one sample during the attack.
We then provide four examples of applications of this new framework.
First, we show that by choosing a better pair of bases, Beyne and Ver-
bauwhede’s ultrametric integral cryptanalysis can be interpreted as a
single element of a transition matrix rather than as a linear combi-
nation of elements. This unifies the ultrametric integral cryptanalysis
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with the previous linear and quasi-differential attacks. Second, we re-
visit the multiple-of-n property with our refined geometric approach
and exhibit new multiple-of-n distinguishers that can reach more rounds
of the SKINNY-64 cipher than the state-of-the-art. Third, we study the
multiple-of-n property for the first-order case, which is similar to the
subspace trail but it is the divisibility property that is considered. This
leads to a new distinguisher for 11-round-reduced SKINNY-64. Finally, we
give a closed formula for differential-linear approximations without any
assumptions, even confirming that the two differential-linear approxima-
tions of SIMECK-32 and SIMECK-48 found by Hadipour et al. are determin-
istic independently of concrete key values. We emphasize that all these
applications were not possible before.

Keywords: Cryptanalysis, Geometric Approach, Automatic Search, Tran-
sition Matrix

1 Introduction

A secure symmetric-key primitive (block cipher, stream cipher, cryptographic
permutation, etc) is expected to have an indistinguishable behavior from an ide-
alized one. In practice, whether the primitive meets this expectation is tested by
cryptanalysis: confidence is brought about by the continuous analysis performed
by the community. There are many attack techniques in the toolbox of cryptan-
alysts, such as differential [10], linear [26], and integral [22] cryptanalysis, as well
as some combinatorial ones such as differential-linear attacks [23]. After creating
a cipher, designers and third-party cryptanalysts test its resistance against all
state-of-the-art cryptanalysis methods, and it is deemed secure only if it resists
all of them with sufficient security margin.

One issue with this process is that there are too many different types of
attacks and testing all of them is a very tedious task. In addition, being se-
cure against all known attacks is not foolproof against potential new attacks.
A well-known example is the boomerang attack on COCONUT98 [34], which
was designed to be secure against differential and linear cryptanalysis, but was
quickly broken by this newly introduced technique. Sometimes, even for well-
studied ciphers, some unexpected properties are uncovered many years after
their publication. At Eurocrypt 2017, a structural property [17] (later named
the multiple-of-8 property) was found for the Advanced Encryption Standard
(AES) [15]. This was surprising as AES has been carefully studied for almost 30
years, yet this simple property remained undiscovered. Furthermore, although
some cryptanalysis methods have been widely used to evaluate the security of
cryptographic algorithms, they may not yet be fully understood. For example,
before 2015, integral cryptanalysis was already one of the most mature cryptana-
lytic methods. However, Todo’s discovery of the division property [32,33] and the
following parity set [13] and monomial prediction [19] revealed a close relation-
ship between integral analysis and Boolean functions of cryptographic algorithms
– an evident connection that had not been truly utilized in integral analysis.
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More recently, Beyne and Verbauwhede applied the geometric approach [4] to
integral analysis [7], significantly deepening the community’s understanding of
integral analysis and division property once again. This suggests that the current
understanding of cryptanalysis methods remains relatively shallow.

A possible explanation for this situation is that cryptanalysis persists to be a
task heavily based on the experience of cryptanalysts. Although great progress
has been achieved in the past four decades, it is fair to say that the commu-
nity still knows little about the underlying principles and interconnections of
various cryptanalytical methods. Usually, new attacks are found based on the
good intuition of the cryptanalysts rather than on some systematic methods.
If a unified theory could be developed to describe all (or a large family of) at-
tacks and could be used to discover new ones, it would be extremely beneficial
for the advancement of the field. Recently, the geometric approach proposed
by Beyne [5] has shown the potential to bring about an interesting change in
cryptanalysis. This technique has been successfully used to reinterpret linear [4],
(quasi-d-)differential [6,35] and integral cryptanalysis [7], overcoming many diffi-
culties that could not be solved by classical methods. This theory also proposed
a new attack called the ultrametric integral cryptanalysis [8] and attempted to
describe the divisibility property of the weight of a ciphertext monomial, which
was previously impossible.

The key point of the geometric approach is to linearize a symmetric-key cipher
by viewing its input and output spaces as free vector spaces. Treating ciphers
as linear mappings brings great convenience and deep insight into cryptanalysis,
as researchers have accumulated a wide range of knowledge and many tools in
linear algebra.

In the following, we assume the plaintext and ciphertext spaces of a cipher
E : Fn

2 → Fn
2 are (Fn

2 )
⊗d = Fn

2 ⊗ Fn
2 ⊗ · · · ⊗ Fn

2 , where ⊗ represents the tensor
product, and (Fn

2 )
⊗d is called a d-th order space which will be formally defined

in Definition 5. Choosing a field K and regarding all vectors in (Fn
2 )

⊗d, denoted
by (δu, 0 ≤ u < 2dn), as a set of bases, a free vector space can be induced as

K[(Fn
2 )

⊗d] =

{∑
u

kuδu : ku ∈ K, u = 0, 1, . . . , 2dn − 1

}
.

The pushforward operator T E is induced from the cipher E , which is a linear
mapping that sends a vector of K[(Fn

2 )
⊗d] to another in the same space. Here,

(δu, 0 ≤ u < 2dn) plays the role of the standard basis, under which the corre-
sponding matrix of T E is uniquely determined, denoted by T E , which is called
the transition matrix of E . When we choose a different basis for T E , denoted by
(β0, β1, . . . , β2dn−1), with the change-of-basis matrix being F that satisfies

(δ0, δ1, . . . , δ2dn−1) = (β0, β1, . . . , β2dn−1)F,

the corresponding matrix of T E becomes another matrix under the new basis
(β0, β1, . . . , β2dn−1), denoted by AE , that is similar to T E , i.e., AE = FT EF−1.
This process can also be performed in a dual way by considering the dual space
of K[(Fn

2 )
⊗d].
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With a new proper basis, Beyne found that the element of AE would be
related to some attacks. For example, when d = 1 and the new basis is chosen as
(χu, u = 0, 1, . . . , 2n − 1), where χu = [(−1)u

⊤x, 0 ≤ x < 2n] is a column vector
with 2n length (u⊤x representing the inner product of u and x), the element at
the u-th column and v-th row of AE is

AE
v,u = 2−n

∑
x∈Fn

2

(−1)u
⊤x+v⊤E(x), (1)

which corresponds to a linear approximation of E with input and output masks
being u and v respectively.

From another perspective, for every pair (v, u), AE
v,u is a statistic on a set

of inputs and outputs, so it provides an opportunity for cryptanalysts to check
if this statistic follows the same distribution as a random permutation. In lin-
ear cryptanalysis, for example, the expected value of AR

v,u in Equation (1) of a
random permutation R is zero, so if AE

v,u significantly deviates from 0, we can
distinguish E from R. To make the distinguishing process easier, an attacker
prefers to choose a pair (v, u) with the largest possible distance between AE

v,u

and zero, which corresponds to the process of finding a good pair of input and
output masks in linear cryptanalysis. In theory, we can also check the variances
or any other values to do the distinguishing attacks, as long as it is useful to be
compared with a random permutation.

With various bases and different d, various transition matrices can be ob-
tained. Their elements can be regarded as different statistics of inputs and out-
puts, providing opportunities (in theory) to compare the cipher and a random
permutation. The linear [4], (quasi-d-)differential [6,35], integral attacks [7], and
ultrametric integral attacks [8], all follow a similar philosophy. In each of these
previous applications of geometric theory, the same kind of basis7 is always
chosen for the input and output space. Such a same-basis configuration works
perfectly except for the ultrametric integral cryptanalysis: this attack describes
the divisibility of a monomial value in ciphertext. Given a cipher E : Fn

2 → Fm
2 ,

the divisibility property is defined as∑
x⪯u

τ(Ev(x)) ≡ 0 mod 2t. (2)

where the partial order x ⪯ u means that every coordinate of x is lesser than
or equal to the corresponding coordinate of u, Ev(x) is a multiple of coordinates
of E(x) according to the support of v whose values are 0 or 1, and the function
τ(·) is just changing 0 or 1 from F2 to Q. When t = 1, this is simply the
zero-sum property studied by integral cryptanalysis. To study this property,
Beyne and Verbauwhede chose the basis as (µu, 0 ≤ u < 2n), where µu =

7 In this paper, when we write same basis/different bases, by default we mean same
kind of basis/different kinds of bases. For example, linear bases for K[Fn

2 ] and K[Fm
2 ]

are the same (kind of) basis, although they are bases for different spaces.
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[(−1)wt(u⊕x)τ(ux), 0 ≤ x < 2n] 8 (wt(x) represents the Hamming weight of x).
The corresponding transition matrix element is

AE
v,u =

∑
x⪯u

(−1)wt(u⊕x)τ(Ev(x))

By comparing Equations (2) and (1), one can observe that they are not the
same, thus Equation (1) cannot be used to study Equations (2) directly. This
is because Equation (2) does not equal any single element of AE , which makes
the description of the ultrametric integral cryptanalysis different from the other
applications of the geometric approach, and more techniques are required to
describe this attack.

Our contributions. We first remark that the restriction on the input/output
bases to be the same is not necessary. By allowing different bases for the input
and output spaces, the geometric approach will be more flexible and will contain
more attacks (we emphasize that previous geometric approach papers did not
exclude this possibility at all). Given a pair of (same or different) bases, one
can obtain the corresponding transition matrix. The elements of the matrix are
statistics that provide an opportunity for an attacker to examine whether the
cipher’s input and output samples follow the same distribution as a random
permutation.

This way, given a set of t different bases, t2 attacks can be naturally defined
by them. We call these attacks a family of basis-based attacks defined on the t
bases. This paper first recalls three bases used in previous geometric approach
papers, then introduces three rules to generate four new bases from these three
known bases. To characterize the number of messages in a sample used in an
attack, we also define the order of a space and an attack. Bases that are used
in higher-order attacks can be generated from first-order bases by the tensor
product. Finally, from the seven bases used in our work, 72d attacks are obtained
for the d-th order cases, including many known and unknown attacks. This has
significantly enlarged the scope of the geometric approach.

A direct benefit of allowing different bases is that the geometric approach can
now be applied to describe combinatorial attacks such as differential-linear crypt-
analysis [23]. Choosing the basis used in the quasi-differential cryptanalysis [6]
for the input space, and the basis used in the linear cryptanalysis [4] (actually, a
variant of this basis), we derive a closed formula for the differential-linear approx-
imation without any independence assumption. Automatic search tools are also
developed in a natural way to calculate/approximate the exact differential-linear
basis. By enumerating all trails, we managed to confirm that two differential-
linear approximations of SIMECK variants recently found by Hadipour et al. are
key-independently deterministic [18].

Three more applications are provided as examples to show the effectiveness
of our refined geometric approach.

8 In [8], this basis is equivalently written as
∑

x⪯u(−1)wt(u⊕x)δx.
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In Section 4, we revisit Beyne and Verbauwhede’s ultrametric integral crypt-
analysis. With a better choice of bases, this attack can be described as a simpler
mix-basis attack, where the statistic derived from the bases corresponds exactly
to a single element of the transition matrix. Thus, we can focus more on the
tracing of trails from all transition matrices, rather than the linear combinations
of the divisibility property of different input vectors. In Section 5, we apply our
refined geometric approach to the multiple-of-n property, a generalized property
of the multiple-of-8 property for the 5-round AES [17]. This property reached
only 5 rounds for SKINNY-64 before this paper, but our automatic search method
derived from the geometric approach easily extends its length to 10 rounds. Fi-
nally, in Section 6, we study the multiple-of-n property as a first-order attack.
This is naturally similar to the original multiple-of-n property. We find a new
distinguisher for SKINNY-64 that reaches 11 rounds, which is already of the same
length as the integral distinguishers. The applications in Sections 5 and 6 provide
an example of how to study the same property for different orders.

Paper organization. The remaining paper is organized as follows. Section 2
introduces the notations and recalls some background knowledge. In Section 3,
we describe our main contribution of allowing two different bases in the geometric
approach. The following four sections give four examples of applications of how
to use the refined geometric approach. Section 8 concludes the paper.

2 Preliminaries

2.1 Notations

This paper strictly distinguishes + and ⊕ where x⊕ y = x+ y mod 2. A column
vector is written as [x0, x1, . . . , xn−1], if the vector can be generated by enumer-
ating some variable, we will also use a simplified version as [xi, 0 ≤ i < n]. The
row vector is represented by [x0, x1, . . . , xn−1]

⊤. We use double-struck upper-
case letters to represent various sets, such as Q for rational numbers, and G for
a group, etc. Ciphers or their parts and transforms are written with calligraphic
upper letters such as E and F . We use normal uppercase letters to represent
matrices such as T,A etc. An element of A at the intersection of the u-th col-
umn and the v-th row is represented by Av,u where A0,0 is at the top left. We
also call Av,u the (v, u)-element of A. If the (v, u)-element of A is the value of
a function fu(v), we write A as A = [fu(v)]v,u, where the first subscript (v) is
for the index of the row and the second (u) is for the column. Writing n column
vectors together leads to a matrix; we will interchangeably use A = [fu(v)]v,u
and A = (f0, f1, . . . , fn−1) where fu = [fu(v), 0 ≤ v < n]. For x ∈ Fn

2 , we use xi

to represent the i-th bit of x and x0 is the most significant bit. For two vectors
a, b ∈ Fn

2 , a ⪰ b means ai ≥ bi for all i. Similarly, a ⪯ b means ai ≤ bi for all i.
We introduce several functions that have been extensively used in previous

geometric approach papers and will play important roles in this one.

Function 1 (Weight function wt(·)) wt(·) : Fn
2 → N, for any x ∈ Fn

2 , wt(x)
is the Hamming weight of x.
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Function 2 (Correlation function (−1)u
⊤(·)) Let u ∈ Fn

2 , we define (−1)u
⊤(·) :

Fn
2 → Q as

(−1)u
⊤x =

{
1 if u⊤x = 0,

−1 if u⊤x = 1,

where u⊤x means the inner product of u and x, i.e., u⊤x =
∑

0≤i<n uixi mod 2.

Function 3 (Dirac delta function δu(·)) Let u ∈ Fn
2 , we define δu(·) : Fn

2 →
Q as

δu(x) =

{
1 if x = u,

0 otherwise.

Remark. Later in this paper, the notation “δu” (rather than “δu(·)”) is also used
to represent the unit vector where the u-th element is 1. This interpretation is
natural when we express it as δu = [δu(x), 0 ≤ x < 2n].

Function 4 (Power function (·)u) Let u ∈ Fn
2 , we define (·)u : Fn

2 → Q as

xu =

{
1 if x ⪰ u,

0 otherwise.

Note that in [8] and many previous papers, xu is defined as a value in F2.
To transform xu into numbers in Q, Beyne and Verbauwhede introduced an
embedding function τ : F2 → Q where τ(x) = x. However, since this paper only
works in Q, we default use xu as a number in Q to omit the notation τ for the
sake of a simpler description.

Function 5 (Exponential function u(·)) Let u ∈ Fn
2 , we define u(·) : Fn

2 → Q
as

ux =

{
1 if x ⪯ u,

0 otherwise.

Similarly to the power function, we also omit the τ function and regard ux by
default as a rational number.

2.2 Brief Introduction to Beyne’s Geometric Approach

The following contents are mainly summarized from [5]. Mathematical back-
ground knowledge can be found in some textbooks, such as [29]. Assume that
there exists a cipher E that takes an element of Fn

2 to Fm
2 :

E : Fn
2 → Fm

2 .

Now, E is a function that connects two spaces. Beyne introduced a way to use
linear algebra techniques to analyze the properties of E [5]. There are two meth-
ods for linearizing E . The first method is using the free vector space concept.
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Namely, let K be any field, we denote K[Fn
2 ] as a vector space over K, the ele-

ments of this vector space are
∑

i aiui where ai ∈ K, ui ∈ Fn
2 . It is easy to show

that the dimension of K[Fn
2 ] is 2n, the cardinality of Fn

2 . Then, E will induce a
map T E that connects

∑
i aiui to

∑
i biE(ui), and one can observe that T E is a

linear map from K[Fn
2 ] to K[Fm

2 ].
The other method is through the linear function space. Denote K[Fn

2 ]
∨ all

linear functions from Fn
2 to K, then K[Fn

2 ]
∨ forms a vector space naturally and

its dimension is also 2n. Actually, K[Fn
2 ] and K[Fn

2 ]
∨ are dual to each other.

Therefore, E can induce another linear map (T E)∨ between K[Fm
2 ]∨ to K[Fn

2 ]
∨

through the pullback function. For any function f ∈ K[Fm
2 ]∨, (T E)∨(f) is a linear

function in K[Fn
2 ]

∨, defined as follows: for any x ∈ Fn
2 , (T E)∨(f)(x) = f(E(x)).

Since T E : K[Fn
2 ] −→ K[Fm

2 ] and (T E)∨ : K[Fm
2 ]∨ −→ K[Fn

2 ]
∨ are both linear,

their matrix representation are determined after fixing the bases for the input
and output spaces, called transition matrix. Different cryptanalytic theories are
obtained by expressing cryptanalytic properties with respect to different pairs
of dual bases for K[Fn

2 ] and K[Fn
2 ]

∨.

Definition 1 (Dual basis). Let V be a linear space over a field K. A basis
for V, denoted by βu, and a basis for V∨, denoted by β∨

u , is called a pair of dual
bases if

β∨
u (βv) =

{
0 u ̸= v

1 u = v

The matrix reflects the nature of the cipher, and each element of the matrix
represents a statistic describing a cryptanalytic property.

Lemma 1. Let V and W be two linear spaces on K of dimension n and m,
respectively. Fix bases (αu, 0 ≤ u < n) and (βv, 0 ≤ v < m) for V and W,
respectively. Denote by T the linear map from V to W, and denote by T the
matrix of T corresponding to the bases αu and βv. Then, the element (v, u) of
T is equal to β∨

v (T (αu)).

Elements of the transition matrix of a cipher determined by a pair of dual
bases can be seen as statistics. In Section 2.3, we recall applications of the
geometric approach to linear [4], quasi-differential [6], quasi-d-differential [35],
and ultrametric integral cryptanalysis [8].

Before we go on, we need to introduce some basic rules of the tensor product
⊗, which is important to understand geometry theory.

Basis calculation rules of ⊗. The tensor product can be defined in different
ways (see e.g.. [5, Section 2.2.3]. Here, we introduce the basis-dependent defi-
nition. Let V (i) have a set of basis β

(i)
u , 0 ≤ u < |V (i)|, the tensor product of

V (1), . . . , V (n) is defined as⊗
i

V (i) = V (1)⊗V (2)⊗· · ·⊗V (n) = Span
{
β
(1)

u(1) ⊗ β
(2)

u(1) ⊗ · · · ⊗ β
(n)

u(n) : for all u(i)
}
.

When V (i) are the same as V ,
⊗

i V
(i) is also written as V ⊗d.
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Let v(i) =
∑

u(i) c
(i)

u(i)β
(i)

u(i) be a vector of V (i), the tensor product of v(1), v(2), . . . , v(n)
is calculated as⊗
i

v(i) = v(1)⊗v(2)⊗· · ·⊗v(n) =
∑
u(1)

· · ·
∑
u(n)

(
n∏

i=1

c
(i)

u(i)

)
β
(1)

u(1)⊗β
(2)

u(1)⊗· · ·⊗β
(n)

u(n) .

Let L(i) : V(i) −→ W(i), the tensor product of
⊗

i L(i) is defined as⊗
i

L(i) :
⊗
i

V(i) −→
⊗
i

W(i),
⊗
i

v(i) 7→
⊗
i

L(i)(v(i)).

The tensor product of corresponding matrices of these linear maps is(⊗
i

L(i)

)
⊗

i v
(i),

⊗
i u

(i)

=

(⊗
i

L(i)

)
v(1)||···||v(n),u(1)||···||v(n)

=
∏
i

L
(i)

v(i),u(i) ,

where L(i) is the matrix of L(i).

2.3 Geometric Approach to Linear, Quasi-Differential,
Quasi-d-Differential and Ultrametric Integral Cryptanalysis

For two functions χ, ϕ ∈ K[G]∨, their inner product is denoted by ⟨χ, ϕ⟩. When
χ, ϕ ∈ K[G]∨ is orthogonal, the inner product can be written as (note that this
paper works over Q, so we do not use ϕ(x) in the following)

⟨χ, ϕ⟩ =
∑
x∈G

χ(x)ϕ(x).

Now when a function space is equipped with such inner product, we have a
natural definition of an orthogonal basis:

Definition 2. A basis ϕu, 0 ≤ u ≤ |G| is called an orthogonal basis if ϕu satisfies
the following property:

⟨ϕu, ϕv⟩ =
{
⟨ϕu, ϕu⟩ if u=v
0 otherwise

Definition 3 (Linear isomorphism with (ϕu, 0 ≤ u < |G|)). There is a
linear isomorphism F from K[G]∨ to its dual space K[G]∨∨. The behaviour of
this linear isomorphism is determined by its effect on all the bases:

F(f) : F(f)(ϕu) = ⟨f, ϕu⟩/⟨ϕu, ϕu⟩

This linear isomorphism is useful to construct the dual basis. Given orthog-
onal basis ϕu ∈ K[G]∨, F(ϕu) is the dual of ϕu in K[G]∨∨, since

[F(ϕu)](ϕv) = ⟨ϕu, ϕv⟩/⟨ϕu, ϕu⟩ =
{
1 if u = v

0 otherwise .
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Next, we introduce how to derive the transition matrix of a cipher un-
der a pair of bases. In this paper, we will consider the combination of dif-
ferent attacks by combining different bases. Therefore, by default, we choose
K = Q to induce the corresponding free vector space in this paper. For lin-
ear, quasidifferential and quasi-d-differential cryptanalysis, we use the pullback
operator, i.e., for E : Fn

2 −→ Fm
2 , the corresponding transition matrices for

(AE)∨ : Q[Fm
2 ]∨ −→ Q[Fn

2 ]
∨ are calculated first, then AE is obtained as the

transpose of (AE)∨. For ultrametric integral cryptanalysis, we use the pushfor-
ward operator to derive AE directly. In fact, both methods work for each case.
We just follow the choices of the original papers.

Linear cryptanalysis. Beyne applied the geometric approach to linear crypt-
analysis in [4]. The group (Fn

2 ,⊕) is abelian; therefore, all the characters χu(x) =

(−1)u
⊤x for u ∈ Fn

2 form a set of orthogonal bases. With (χu, 0 ≤ u < 2n) and
(χv, 0 ≤ v < 2m) being the bases for Q[Fn

2 ]
∨ and Q[Fm

2 ]∨, respectively, the lin-
ear isomorphism in Definition 3 is just the famous Fourier transform. Thus, the
pullback matrix of E , i.e., the matrix of (AE)∨ (denoted by (AE)∨) is calculated
with the Lemma 1.

(AE)∨v,u =(χv)
∨ ((AE)∨(χu)

)
= F(χv)

(
(AE)∨(χu)

)
= F(χv) (χu(E(x)))

=
1

⟨χu, χu⟩
∑
x∈Fn

2

χv(x)χu(E(x)) = 2−n
∑
x∈Fn

2

(−1)v
⊤x⊕u⊤(E(x))

The matrix of the pushforward is the transpose of (AE)∨, thus

AE
v,u = 2−n

∑
x∈Fn

2

(−1)u
⊤x⊕v⊤(E(x)),

which is the statistic used in the linear cryptanalysis [26].

Quasi-d-differential cryptanalysis. Beyne and Rijmen introduced the quasi-
differential cryptanalysis [6], which was later generalized to the quasi-d-differential
cryptanalysis [35]. For the quasi-d-differential cryptanalysis (when d = 1, it is
the basis for the quasi-differential cryptanalysis), the group is ((Fn

2 )
⊗d,⊕) and

the basis for Q[(Fn
2 )

⊗d]∨ is chosen as

βu0,...,ud−1
(x0, x1, . . . , xd−1) = (−1)u0

⊤x0

∏
1≤i<d

δui
(x0 ⊕ xi).

Note that all the bases here are orthogonal, so the linear isomorphism F is
constructed similarly to the Fourier transform as

F(f) : F(f)(βu0,...ud−1
) =⟨f, βu0,...ud−1

⟩/⟨βu0,...ud−1
, βu0,...ud−1

⟩

=
1

2−n

∑
x0,...,xd−1∈(Fn

2 )
⊗d

f(x)βu0,...ud−1
(x0, . . . , xd−1).
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Therefore, choosing βu0,...ud−1
for both the input and output function spaces,

((v0, . . . , vd−1), (u0, . . . , ud−1)) element of the matrix (AE)∨ which is the pullback
operator (AE)∨ is calculated as

(AE)∨(v0,...,vd−1),(u0,...,ud−1)
= β∨

v0,...,vd−1

(
(AE)∨(βu0,...ud−1

)
)

= F(βv0,...,vd−1
)
(
(AE)∨(βu0,...ud−1

)
)
= F(βv0,...,vd−1

)
(
βu0,...ud−1

(E(x))
)

= 2−n
∑

x0,...,xd−1∈(Fn
2 )

⊗dE(x0)⊕E(x0⊕vi)=ui,1≤i<d

(−1)v
⊤
0 x0⊕u⊤

0 (E(x0))

Again, the matrix of the pushforward is the transpose of (AE)∨, i.e.,

AE
v,u = 2−n

∑
x0,...,xd−1∈(Fn

2 )
⊗d

E(x0)⊕E(x0⊕ui)=vi,1≤i<d

(−1)u
⊤
0 x0⊕v⊤

0 (E(x0)),

which is the statistic used in the quasi-d-differential cryptanalysis.

Ultrametric integral cryptanlysis. Beyne and Verbauwhede applied the geo-
metric approach to integral cryptanalysis [7] and later introduced the ultrametric
integral cryptanalysis [8]. The former works on F2[Fn

2 ], while the ultrametric in-
tegral cryptanalysis works on Q[Fn

2 ], and the ultrametric integral cryptanalysis
actually contains the cases of integral cryptanalysis. Since this paper will con-
sider the combination of different attacks, we have to work on Q[Fn

2 ]. Thus, only
the ultrametric integral cryptanalysis is introduced here.

Unlike previous linear and differential cryptanalysis, Beyne and Verbauwhede
derived the transition matrix for the pushforward operator directly rather than
from the transpose of the pullback operator. To show it, we also used their
method to get the transition matrix. In this case, they constructed the basis for
Q[Fn

2 ], with the help of the basis of Q[Fn
2 ]

∨. The basis of Q[Fn
2 ]

∨ is chosen as

(µu)
∨ : Fn

2 −→ Q, (µu)
∨(x) = xu =

{
1 x ⪰ u,

0 otherwise.

All these bases form the characters of the monoid (Fn
2 ,∧). Its dual basis in Q[Fn

2 ]
can be obtained by solving a set of linear equations, which is

µu =
∑
x⪯u

(−1)wt(x+u)δx = [(−1)wt(x+u)ux, 0 ≤ x < 2n]

Thus, the matrix of AE : Q[Fn
2 ] −→ Q[Fn

2 ] is

AE
v,u = µ∨

v (AE(µu)) =
∑
x⪯u

(−1)wt(x+u)Ev(x).

2.4 Propagation of Transition Matrix, Measurement and Automatic
Search

Calculating the element (v, u) of a transition matrix AE is challenging, as the
sizes of such transition matrices are extremely large. However, the transition
matrices enjoy the following property.
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Theorem 1 (Propagation of transition matrices [6,4]). The transition
matrix of E : Fn

2 → Fn
2 satisfies:

(1) If E = Es0 || · · · ||Esm−1
, AE =

⊗m−1
i=0 AEi .

(2) if E = Er−1 ◦ · · · ◦ E1 ◦ E0, AE = AEr−1 · · · · ·AE1 ·AE0 .

According to Theorem 1, if E = Er−1 ◦ Er−2 ◦ · · · ◦ E0 we have

AE
ur,u0

=
∑

ur−1,ur−2,...,u2

r−1∏
i=0

AE
ui+1,ui

. (3)

AE
ur,u0

is equal to the sum of correlations of all trails with input and output
being u0 and ur, respectively.

Definition 4 (Trail and correlation [4]). In Equation (3), (u0, u1, . . . , ur) is
called the trail of the corresponding attack.

∏r−1
i=0 AEi

ui+1,ui
is called the correlation

of this trail.

Therefore, AE
ur,u0

is the sum of all the correlations of the trails that connect
u0 and ur. The search for a trail or the enumeration of trails has been extensively
studied in previous articles related to automatic search, such as [27,30], which
can be and have been reused in a natural way for the search of trails in the
geometric approach [5]. In Appendix B, we give a high-level description of the
current automatic search methods.

To use the statistic AE
ur,u0

for a distinguishing attack, two types of measures
are known. The first is to use the value of AE

ur,u0
as the correlation in linear

attacks or the probability in differential attacks. The values for a cipher and
a random permutation are expected to follow different statistical distributions
that can be distinguished with some samples. The second is not to approximate
the real value of AE

ur,u0
, but to know if AE

ur,u0
is a multiple of a certain number

(divisibility property). For example, as Beyne and Verbauwhede recently showed,
the zero-sum property in integral cryptanalysis is equivalent to saying that the
weight of the output Boolean function under some input sets is a multiple of 2.
Thus, it is natural to consider whether the weight is also a multiple of 2v (v ≥ 2).
This measurement has been well studied in [8]. AE

ur,u0
≡ 0 mod 2v is equivalent

to saying |AE
ur,u0

|2 ≤ 2−v where |x|2 represents the 2-adic absolute value of x.
Since the number of trails can be too large to exhaust, in most cases, only

one or a small percentage of trails that have the most significant correlations
can be searched and used. These trails are called dominant trails [5]. In the first
measurement, the sum of dominant trails cannot ensure that the approximation
is always sound. Yet, in the second measurement, due to the ultrametric triangle
inequality |x + y|2 ≤ max{|x|2, |y|2}, the correlation of the dominant trails can
bound the summed correlations of all trails.
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3 Geometric Approach While Allowing Different Bases

This section introduces the main contribution of this paper. The geometric ap-
proach does not set the restriction that it has to use two same bases for input
and output spaces. However, for certain reasons, all previous related papers have
used the same basis. We demonstrate that using different bases for the input and
output spaces is entirely feasible and can enhance the geometric approach sig-
nificantly.

Besides, we choose to use a simpler way to write Beyne’s geometric theories
where we avoid advanced (for us) mathematical conceptions such as the dual
basis representation. To understand this section, readers are only required to
have some knowledge of linear transforms, change-of-basis operations, and the
basic calculation rules of the tensor product in Section 2.2. This way of presenting
is not new and has naturally been mentioned in previous geometric approach
papers (but always mixed with other ways of writing).

3.1 Using Different Basis for Input and Output Spaces

Consider E : Fn
2 → Fm

2 . An attack on E can use samples (p0, p1, . . . , pd−1) ∈
(Fn

2 )
d and corresponding (c0, c1, . . . , cd−1) ∈ (Fm

2 )d for a distinguishing or key-
recovery attack. For the distinguishing attack, a statistic is calculated from
(p0, p1, . . . , pd−1) and (c0, c1, . . . , cd−1) and reflects some statistical properties
of the cipher. If this statistic of the target cipher follows a different probability
distribution from a random function, we can perform a distinguishing attack
with some computational resources. The number of sample components, i.e., d,
is an important information about the attack, defining the order of the input
and output spaces. We call this number the order of an attack.

Definition 5 (The order of an attack). The number d of (Fn
2 )

d is called the
order of the space (Fn

2 )
d. An attack that uses samples in a d-th order space is

called the d-th order attack. Equivalently, we can consider (Fn
2 )

d as (Fn
2 )

⊗d whose
elements are p0 ⊗ p1 ⊗ · · · ⊗ pd−1 ∈ (Fn

2 )
⊗d. A d-th order attack on E : Fn

2 → Fm
2

uses samples like p0⊗p1⊗· · ·⊗pd−1 ∈ (Fn
2 )

⊗d and c0⊗ c1⊗· · ·⊗ cd−1 ∈ (Fm
2 )⊗d

to compute the corresponding statistic.

Notation trick. For sake of convenience, in the following we will say that a d-th
order attack on E : Fn

2 → Fm
2 is an attack on E⊗d : (Fn

2 )
⊗d → (Fm

2 )⊗d (but in the
cases when the order is clear, “⊗d” might be omitted for simplicity). For example,
differential cryptanalysis is a typical second-order attack as it uses a pair of
messages, so we say that the differential attack is on E⊗2 : (Fn

2 )
⊗2 → (Fm

2 )⊗2.
Furthermore, note that in a d-th (d > 1) order attack, in fact we are more
interested in the difference between the i-th (i > 1) and the first component of
the sample. Thus, we consider the input and output of E⊗d as

p0 ⊗ (p0 ⊕ p1)⊗ (p0 ⊕ pd−1) and c0 ⊗ (c0 ⊕ c1)⊗ (c0 ⊕ cd−1),



14 Authors Suppressed Due to Excessive Length

which is similar to the setting of polytopic attacks [31]. In the following, by de-
fault we will use (x0, x1, . . . , xd−1) to represent the input of an attack where xi

(i > 1) is the difference between the original element i-th and the first, and we
will use (E(x0), E(x1), . . . , E(xd−1)) to represent the output where E(xi) (i > 1)
also represents the difference of the i-th ciphertext and the first. For example,
in the differential attack, (x0, x1) and (E(x0), E(x1)) are, respectively, the input
and output pairs where x1 is the input difference and E(x1) is the output differ-
ence. Such a trick can simplify the notation.

Consider a d-th space (Fn
2 )

⊗d and a field K = Q, a free vector space can be
induced as Q[(Fn

2 )
⊗d], where elements in (Fn

2 )
⊗d are a set of bases of Q[(Fn

2 )
⊗d].

This set of bases can be viewed as the standard basis consisting of 2dn unit
vectors, and the u-th unit vector can be written as δu = [δu(x), 0 ≤ x < 2dn].
All the 2dn bases are written together like a matrix, denoted by [δu(x)]x,u (recall
Section 2.1).

Since Q[(Fn
2 )

⊗d] is a linear space, it is possible to choose another set of bases
consisting of 2dn linearly independent vectors. Suppose that the u-th basis is
denoted by αu = [αu(x), 0 ≤ x < 2dn], thus (αu, 0 ≤ u < 2nd) = [αu(x)]x,u is
the new set of basis. The relationship between the two sets of basis is connected
by a change-of-basis matrix i.e.,

(δ0, δ1, . . . , δ2dn−1) = (α0, α1, . . . , α2dn−1)P,

where P ∈ Q2dn×2dn .
For E⊗d : (Fn

2 )
⊗d −→ (Fm

2 )⊗d, a linear map T E⊗d

is induced that maps a
standard basis of Q[(Fn

2 )
⊗d] to a standard basis of Q[(Fm

2 )⊗d], i.e., T E⊗d

(δu) =

δE⊗d(u). Under the standard basis, the corresponding matrix of T E⊗d

is denoted
by T E⊗d

with T E⊗d

v,u = δv(E⊗d(δu)).
After doing the change-of-basis for the input space with a new set of basis

[αu(x)]x,u, i.e.,

(δ0, δ1, . . . , δ2nd−1) = (α0, α1, . . . , α2nd−1)I,

and for the output space with a new set of basis [βu(x)]x,u, i.e.,

(δ0, δ1, . . . , δ2nd−1) = (β0, β1, . . . , β2nd−1)O,

where I and O are the corresponding change-of-basis matrices. A new transition
matrix of E⊗d can be deduced as

AE⊗d

= O T E⊗d

I−1,

Note that the element (v, u) of a matrix can be obtained by multiplying to
the left a row unit vector δ⊤v and multiplying to the right a column unit vector
δu, thus the (v, u)-element of AE⊗d

is calculated by

AE⊗d

v,u = δv
⊤ AE⊗d

δu = δ⊤v (O T E⊗d

I−1) δu = (δ⊤v O)︸ ︷︷ ︸
v-th row of O

T E⊗d

(I−1 δu)︸ ︷︷ ︸
u-th column of I−1



Periodic Table of Cryptanalysis 15

[δu(x)]x,u I−1 x [δu(x)]x,u T E I−1 x
T E
v,u = δv(E(u))

X = [αu(x)]x,ux AEX = [βu(x)]x,uO T E I−1x
A

E(u)
v,u =?

[αu(x)]x,u = [δu(x)]x,uI
−1 [δu(x)]x,u = [βu(x)]x,uO

Fig. 1: The illustration of the geometric approach on a cryptanalysis with two dif-
ferent bases. Note I−1 = [αu(x)]x,u and O = [βu(x)]

−1
x,u. Given X = [αu(x)]x,ux

where x is the coordinate. After the change of basis operation in the input space,
it becomes a vector represented by [δu(x)]x,u, and then transformed by T E to
[δu(x)]x,uT

EI−1x. After the change of basis operation in the output space, it be-
comes to the final form under the basis [βu(x)]x,u whose coordinate is OT EI−1x.

The process is shown in Figure 1. Note that I−1 is just the matrix [αu(x)]x,u,
thus the u-th column of I−1 is [αu(x), 0 ≤ x < 2dn]. The v-th row of O is based
on the shape of [βu(x)]x,u, as O = [βu(x)]

−1
x,u (the inverse of [βu(x)]x,u). Assume

that [βu(x)]
−1
x,u can also be written in a compact form denoted by [β⋆

u(x)]x,u, the
v-th row of O is then [β⋆

y(v), 0 ≤ y < 2dn]⊤. Thus (a step-by-step explanation of
the calculation process is give in Appendix C),

AE⊗d

v,u = [β⋆
y(v), 0 ≤ y < 2dn]⊤ T E⊗d

[αu(x), 0 ≤ x < 2dn]

=

 ∑
y∈(Fn

2 )
⊗d

β⋆
y(v)δy(E(0)), . . . ,

∑
y∈(Fn

2 )
⊗d

β⋆
y(v)δy(E(2dn − 1))

⊤

[αu(x), 0 ≤ x < 2dn]

=
[
β⋆
E⊗d(0)(v), . . . , β

⋆
E⊗d(2dn−1)(v)

]⊤
[αu(x), 0 ≤ x < 2dn]

=
∑

x∈(Fn
2 )

⊗d

β⋆
E⊗d(x)(v) αu(x)

(4)
Depending on whether the two bases for the input and output spaces are the

same, we divide attacks into two kinds.

Definition 6 (Same-basis and mix-basis attack). An attack on

E⊗d : (Fn
2 )

⊗d → (Fm
2 )⊗d

is called a same-basis attack if the bases chosen for the input and output spaces
are the same; otherwise, a mix-basis attack.

This partition is crucial for calculating the propagation matrix of the com-
posite function. Most modern ciphers are constructed from smaller component
functions, so computing the whole transition matrix of the cipher should handle
the propagation properties of the transition matrices of its components.
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Consider a d-th order attack on E⊗d = E⊗d
2 ◦ E⊗d

1 ◦ E⊗d
0 , i.e., E⊗d divided

into three parts. When we choose the same basis for the input and output spaces
of E⊗d, the attack is a same-basis one. According to Theorem 1, the transition
matrix of E⊗d is the product of the transition matrices of E⊗d

2 and E⊗d
1 and E⊗d

0 .
However, things are a bit more complicated for a mix-basis attack because differ-
ent bases are used for different part ciphers. We have the following proposition.

Proposition 1 (Propagation of the mix-basis transition matrices). For
E⊗d = E⊗d

2 ◦ E⊗d
1 ◦ E⊗d

0 , suppose that we select [αu(x)]x,u for the change-of-basis
for the input space of E⊗d (it is also the input space of E⊗d

0 ) and [βu(x)]x,u for
the output space of E⊗d (it is also the output space of E⊗d

2 ). Denote the transition
matrix of E⊗d under the two bases by AE⊗d

. Then we have

AE⊗d

= AE⊗d
2 AE⊗d

1 AE⊗d
0

where AE⊗d
0 is the transition matrix of E⊗d

0 under the same input and output
bases [αu(x)]x,u, AE⊗d

1 is the transition matrix of E⊗d
1 under the input basis

[αu(x)]x,u and output basis [βu(x)]x,u, and AE⊗d
2 is the transition matrix of E⊗d

2

under the same input and output bases [βu(x)]x,u.

Proof. An illustration for this proof is provided in Figure 2. According to Equa-
tion 3.1,

AE⊗d
0 = [αu(x)]

−1
x,u T E⊗d

0 [αu(x)]x,u,

AE⊗d
1 = [βu(x)]

−1
x,u T E⊗d

1 [αu(x)]x,u,

and
AE⊗d

2 = [βu(x)]
−1
x,u T E⊗d

2 [βu(x)]x,u.

Therefore,

AE⊗d

= [βu(x)]
−1
x,u T E⊗d

[αu(x)]x,u

= [βu(x)]
−1
x,u T E⊗d

2 [βu(x)]x,u · [βu(x)]
−1
x,u T E⊗d

1 [αu(x)]x,u · [αu(x)]
−1
x,u T E⊗d

0 [αu(x)]x,u

= [βu(x)]
−1
x,u T E⊗d

2 T E⊗d
1 T E⊗d

0 [αu(x)]x,u.

.

⊓⊔

Corollary 1. Suppose E⊗d = E⊗d
r−1◦E⊗d

r−2◦· · ·◦E⊗d
0 . Choose r+1 bases [αu(x)]

(i)
x,u, 0 ≤

i < r + 1, denote the transition matrix of E⊗d
i under the input basis [αu(x)]

(i)
x,u

and output basis [αu(x)]
(i+1)
x,u by AE⊗d

i . Therefore, the transition matrix of E⊗d

under the input basis [αu(x)]
(0)
x,u and output space [αu(x)]

(r)
x,u can be calculated by

AE⊗d

= AE⊗d
r−1AE⊗d

r−2 · · ·AE⊗d
0 .
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Span([δu(x)]x,u) Span([δu(x)]x,u) Span([δu(x)]x,u) Span([δu(x)]x,u)
T E⊗d

0 T E⊗d
1 T E⊗d

2

Span([αu(x)]x,u) Span([αu(x)]x,u) Span([βu(x)]x,u) Span([βu(x)]x,u)

AE⊗d
0 = [αu(x)]

−1
x,uT

E⊗d
0 [αu(x)]x,u

AE⊗d
1 = [αu(x)]

−1
x,uT

E⊗d
1 [βu(x)]x,u

AE⊗d
2 = [βu(x)]

−1
x,uT

E⊗d
2 [βu(x)]x,u

Fig. 2: The illustration of the proof for Proposition 1. Span([αu(x)]x,u) represents
that the space is spanned from [αu(x)]x,u, and vectors are expressed as a linear
expression of [αu(x)]x,u.

3.2 Basis of First Order Spaces and Attacks

In this subsection, we enumerate several bases for the first-order spaces that
have been used in previous geometric theory and introduce rules to generate
new bases based on these existing bases.

Linear cryptanalysis. In [4], Beyne introduced geometric theory for the first
time and applied it to linear cryptanalysis. The basis he chose for the linear
cryptanalysis can be represented by

Basis 1 (Linear basis [4])
[
(−1)u

⊤x
]
x,u

(5)

Quasi-differential cryptanalysis. In [6], Beyne and Rijmen introduced the
quasi-differential attack. The differential cryptanalysis is a second-order attack
whose input and output spaces are second-order spaces. Thus, Beyne and Ri-
jmen chose two bases for the two component spaces. The first basis is for the
value, which is just the linear basis as Equation (5). The second basis is for the
difference, which is the standard basis.

Basis 2 (Standard basis [6]) [δu(x)]x,u

Ultrametric integral cryptanalysis. In [8], Beyne and Verbauwhede intro-
duced the ultrametric integral cryptanalysis to study the divisibility property.
Note that in [7], Beyne and Verbauwhede also introduced the algebraic transi-
tion matrix for the integral attacks, but that attack works in F2[Fn

2 ], which is
difficult to be combined with other basis whose space is based on Q, so we omit
it in this paper.

Basis 3 (Ultrametric integral basis [8])
[
(−1)wt(u⊕x)ux

]
x,u

Next, we introduce several rules that can generate new bases based on existing
ones. These rules follow a simple fact that any 2nd linearly independent vectors
can serve as a set of basis for a d-th order space.
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Table 1: Seven bases of the first order space concluded from previous geometric
approach papers and induced from Rules 1, 2 and 3. The usage of their effects
of these bases for the input and output have been shown in Equation (4).

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

0 [δu(x)]x,u δu(x) δE(x)(v)

1 [(−1)u
⊤x]x,u (−1)u

⊤x 2−n(−1)E(x)⊤v

2 [2−n(−1)u
⊤x]x,u 2−n(−1)u

⊤x (−1)E(x)⊤v

3 [ux]x,u ux (−1)wt(v⊕E(x))Ev(x)

4 [(−1)wt(u⊕x)ux]x,u (−1)wt(u⊕x)ux Ev(x)

5 [xu]x,u xu (−1)wt(v⊕E(x))vE(x)

6 [(−1)wt(u⊕x)xu]x,u (−1)wt(u⊕x)xu vE(x)

Rule 1 (Inverse) If [αu(x)]x,u is a set of basis, [αu(x)]
−1
x,u is a set of basis.

Rule 2 (Transpose) If [αu(x)]x,u is a set of basis, [αu(x)]
⊤
x,u is a set of basis.

Rule 3 (Scale) If [αu(x)]x,u is a set of basis, [kαu(x)]x,u is a set of basis, where
k ̸= 0 belongs to the corresponding field, in this paper the field is Q.

According to these three rules, we obtain four more bases.

Basis 4 (Inverse of linear basis) [2−n(−1)u
⊤x]x,u

It is easy to check [2−n(−1)u
⊤x]x,u · [(−1)u

⊤x]x,u = Identity.

Basis 5 (Inverse of ultrametric integral basis) [ux]x,u

It is easy to check [ux]x,u · [(−1)wt(u⊕x)ux]x,u = Identity.

Basis 6 (Transpose of ultrametric integral basis) [(−1)wt(u⊕x)xu]x,u

Basis 7 (Inverse and transpose of ultrametric integral basis) [xu]x,u

When choosing specific bases for the input and output spaces, we can use
Equation (4) to calculate the element in the corresponding transition matrix.
The β⋆

E⊗d(x)(v) and αu(x) calculated according to the matrix composed of the
bases are called effects. We list them for the seven bases above in Table 1.
These effects can help us quickly write the statistic i.e., the element of the
corresponding transition matrix, based on the chosen bases.

Combining these seven bases for the input and output spaces, 49 different
attacks, including 7 same-basis and 42 mix-basis ones, are generated. We list
them in Tables 6 and 7.
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Remark. One may doubt if some of them can be called “attacks”. For example,
when choosing [δu(x)]x,u for both input and output spaces, the statistic

AE
v,u =

∑
x=u,E(x)=v

1

says nothing except E(u) = v. Whether we should regard it as an attack de-
pends on the definition of “attacks”. On the one hand, considering E as a public
permutation, knowing E(u) = v is indeed useful to distinguish E from a random
permutation. On the other hand, when E is key-dependent, AE

v,u =
∑

x=u,E(x)=v 1
means there is a deterministic invariant behavior of E independently of the
key (practically, this statistic is always influenced by the secret key). There-
fore, we still include such simple statistics as attacks. In addition, we note that
some of the 49 attacks are actually identical, due to the bases [(−1)u

⊤x]x,u and
[2−n(−1)u

⊤x]x,u. However, counting these duplicated attacks can bring conve-
nience for us.

3.3 Basis of Higher Order Spaces and Attacks

For a d-th order attack, the input and output spaces are also d-th order. In the-
ory, any 2dn linearly independent vectors can serve as a set of bases and lead to
a basis-based attack. However, a random basis is difficult to handle if it does not
have a compact representation. Thus, inspired by the quasi-differential crypt-
analysis [6], we generate a basis for higher-order spaces by the tensor product of
first-order space bases.

Proposition 2 (Basis for K[(Fn
2 )

⊗d] ). For a d-th space K[(Fn
2 )

⊗d], we choose
bases for each of its d components, denoted by [αu(x)]

(i)
x,u. Then

⊗
0≤i<d[αu(x)]

(i)
x,u

is a basis of K[(Fn
2 )

⊗d].

Proof. This is from the calculation rules for the tensor product (see Section 2.2).
Since [αu(x)]

(i)
x,u spans to K[Fn

2 ],
⊗

0≤i<d[αu(x)]
(i)
x,u spans to

⊗
0≤i<d K[(Fn

2 )] =

K[(Fn
2 )

⊗d].

To compute Equation (4), we need the inverses of the basis matrices. The
proposition 3 gives a simple way of calculating.

Proposition 3 (Inverse of a higher order basis matrix). Let
⊗

0≤i<d[αu(x)]
(i)
x,u

be a set of basis of K[(Fn
2 )

⊗d]. Then,
⊗

0≤i<d

(
[αu(x)]

(i)
x,u

)−1

is the inverse of⊗
0≤i<d[αu(x)]

(i)
x,u, which is also a set of bases of K[(Fn

2 )
⊗d].

Proof. This directly follows from the fact that the inverse matrix of A ⊗ B is
A−1 ⊗B−1.
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Therefore, combining the seven first-order bases in Table 1, 7d different d-th
order bases are obtained. The 7d different bases lead to 72d attacks including 7d

same-basis attacks and 72d − 7d mix-basis attacks. Again, similar to the first-
order case, not all of them look interesting, but we still see them as attacks to
keep the theory intact. The effects of 49 bases for the second-order case are listed
in Tables 8 and 9.

To quickly derive the statistic of an attack, we can use a similar method with
first-order attacks. Either we can write all attacks according to the effects of
the bases and check if some are interesting, or we can write the statistic we are
interested in and see if there are proper bases that can lead to this attack.

3.4 Trail Search for Mix-Basis Attacks

Recalling Definition 1, trails are clustered to compute or approximate the tran-
sition matrix elements. For the mix-basis attacks following Proposition 1 and
Corollary 1, transition matrices are calculated based on the corresponding input
and output bases, which completely follows the same method as the same-basis
attacks like the linear [4], quasi-differential attacks [6] and the ultramtric integral
attacks [8].

In terms of the measurements, the case of mix-basis attacks is also the same
as that of same-basis attacks. We can approximate the value of the statistic by
adding the correlations of trails, or study the divisibility property by studying
their 2-adic absolute values. In this paper, we do not have a specific rule for how
to choose the measurements, but we try both to see if we can get interesting
attacks.

4 Example Application I: A Simplified Ultrametric
Integral Attack with a Better Basis

4.1 Revisiting the Ultrametric Integral Cryptanalysis from [8]

In [8], Beyne and Verbauwhede introduced the ultrametric integral cryptanalysis
to describe the divisibility property. The divisibility property is a generalization
of the integral property [22], interpolating between bits that sum to zero (di-
visibility by two) and saturated bits (divisibility by 2n−1 for 2n inputs). Given
u ∈ Fn

2 , Suppose U = {y ∈ Fn
2 : y ⪯ u, u ∈ Fn

2} is a structure of the plaintexts,
the divisibility studies if∑

y∈U
Ev(y) =

∑
y⪯u

Ev(y) ≡ mod 2t. (6)

To study it, Beyne and Verbauwhede chose the ultrametric integral basis as

[(−1)wt(u⊕x)ux]x,u.

The change-of-basis matrix between the standard basis [δu(x)]x,u is denoted by
I, thus

[δu(x)]x,u = [(−1)wt(u⊕x)ux]x,uI.
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Each element in U can be expressed by a linear combination of bases in
[(−1)wt(u⊕x)ux]x,u = (µ0, µ1, . . . , µ2n−1), thus δU =

∑
y∈U δy =

∑
y⪯u δy is

δU =
∑
ν⪯u

2wt(u)−wt(ν)µν .

Let the transition matrix of E under the basis [(−1)wt(u⊕x)ux]x,u be AE , we have

AE
v,ν = δ⊤v AEδν = δ⊤v I T E I−1δν = (T Eµν)

v.

Thus, the corresponding summation of the ciphertext is∑
y⪯u

Ev(y) =
∑
y∈U

(T Eδy)
v = (T EδU)

v =
∑
ν⪯u

2wt(u)−wt(ν)(T Eµν)
v =

∑
ν⪯u

2wt(u)−wt(ν)AE
v,ν .

There is equivalence between
∑

y⪯u Ev(y) ≡ 0 mod 2t (t ≤ wt(u)) and
∣∣∣∑y⪯u Ev(y)

∣∣∣
2
≤

2−t. According to the ultrametric triangle inequality of the 2-adic absolute value
|x+ y|2 ≤ max {|x|2, |y|2},∣∣∣∣∣∣

∑
y⪯u

Ev(y)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
ν⪯u

2wt(u)−wt(ν)AE
v,ν

∣∣∣∣∣∣
2

≤ max
ν⪯u

2wt(ν)−wt(u)
∣∣AE

v,ν

∣∣
2
.

Thus, if we prove maxν⪯u 2
wt(ν)−wt(u)

∣∣AE
v,ν

∣∣
2
≤ 2−t, we verify that

∑
y⪯u Ev(y) ≡

0 mod 2t. For those ν satisfying wt(ν) ≤ wt(u)− t, maxν⪯u 2
wt(ν)−wt(u)

∣∣AE
v,ν

∣∣
2
≤

2−t is already valid. For ν satisfying wt(ν) > wt(u) − t, we need to verify that∣∣AE
v,ν

∣∣
2

is divisible by 22t−wt(u) which can be done by searching for trails. That
is, the divisibility in Equation (6) is studied in an indirect way. The reason is
that the vector corresponding to the input set U is not any column index of the
matrix derived from the ultrametric integral basis.

4.2 A Simplified Version of Ultrametric Integral Cryptanalysis

Using two different bases for the input and output, we can derive a matrix whose
(v, u)-element is exactly

∑
y⪯u Ev(y), i.e., the transition matrix under the two

bases is AE that satisfies
AE

v,u =
∑
y⪯u

Ev(y).

Note that AE
v,u =

∑
x⪯u Ev(x) =

∑
x∈Fn

2
uxEv(x). According to Table 1, if we

want a term ux, we can choose the basis

[ux]x,u

for the input space. For Ev(y), we can choose the basis

[(−1)wt(u⊕x)ux]x,u



22 Authors Suppressed Due to Excessive Length

for the output space. The (v, u)-element of the transition matrix under these two
bases is

AE
v,u =

∑
x∈Fn

2

uxEv(x) =
∑
x⪯u

Ev(y).

Since the bases for the input and output space are different, the simplified
version of ultrametric integral cryptanalysis belongs to the mix-basis attacks.
To characterize the propagation of the transition matrices, we divide an r-round
cipher E into three parts

E = E2 ◦ E1 ◦ E0,

where E0, E1 and E2 are three consecutive parts of E whose number of rounds
are respectively r0, r1 and r2 that satisfies r0 + r1 + r2 = r.

For E0, the transition matrix is obtained in the same-base attack framework
under the basis [ux]x,u for the input and output spaces. Thus, the (v, u)-element
of the transition AE0 is

AE0
v,u =

∑
x∈Fn

2

ux · (−1)wt(v⊕E(x))Ev(x) =
∑
x⪯u

(−1)wt(v⊕E(x))Ev(x). (7)

For E2, the transition matrix is also obtained in the same-basis attack frame-
work under the basis [(−1)wt(u⊕x)ux]x,u for both the input and output spaces.
Thus, the (v, u)-element of the transition AE2 is

AE2
v,u =

∑
x∈Fn

2

(−1)wt(u⊕x)ux · Ev(x) =
∑
x⪯u

(−1)wt(u⊕x)Ev(x). (8)

Note that AE2 is just the transition matrix of the original ultrametric integral
cryptanalysis derived by Beyne and Verbauwhede.

For E1, the transition matrix is derived from the same bases for E , so the
(v, u)-element of this transition matrix is

AE1
v,u =

∑
x∈Fn

2

ux · Ev(x) =
∑
x⪯u

Ev(x). (9)

Finally,
AE = AE2AE1AE0 .

The automatic search can be done with the same methods introduced in Sec-
tion 2.4 and [8], with the | · |2 being the measurement. The targets of the original
and our simplied ultrametric integral cryptanalysis are the same, our method
cannot find more distinguishers than the original one. However, the simplified
version does not require any more techniques in the automatic search. We give
an example on how to use the automatic search model for the simplified ultra-
metric integral cryptanalysis and re-find the ultrametric integral distinguishers
for 9-round PRESENT in Appendix D.
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4.5-round AES

Fig. 3: An example of the multiple-of-8 property of the 5-round AES without the
last MixColumn. The black squares denote the subspaces. Encrypt all plaintexts
whose active bytes are in a diagonal, the number of ciphertext pairs whose active
bytes in an anti-diagonal is always a multiple of 8 [17].

5 Example Application II: Multiple-of-n Property

The multiple-of-8 property of the AES was found for the first time by Grassi,
Rechberger, and Rønjom [17], which is the first key-independent distinguisher
on the 5-round AES. This property shows that there exist two linear spaces V
and W of F128

2 satisfying: for any coset of V, say c ⊕ V, the number of distinct
pairs of elements x, x′, x ̸= x′ in c + V such that E(x) and E(x′) belong to
the same coset of W is always divisible of 8, where E is the 5-round AES in
[17] (an example is given in Figure 3). The original proof by Grassi et al. was
done by a detailed case-by-case method, and it was believed by Grassi et al.
that the maximum branch number of the AES MixColumn matrix was crucial
for this property. However, Boura, Canteaut, and Coggia later pointed out that
the maximum branch number is not necessary for this property by proposing
a compact general proof framework [14]. For different ciphers, the multiple-of-8
property may be generalized to multiple-of-n property. For example, SKINNY has
multiple-of-2h−1 property, where h ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14} according
to different subspace trails found by the methods of [24]. However, since this
proof heavily relies on the subspace trail, the rounds for SKINNY’s multiple-of-n
property still stop at 5 rounds.

5.1 Geometric Approach for Multiple-of-n Properties

In this subsection, we show how to apply the geometric approach to the multiple-
of-n property. For a cipher E : Fn

2 → Fn
2 , we assume c = 0 for c⊕V and consider

plaintexts in {x ∈ Fn
2 : x ⪯ u} and ciphertexts in {E(x) ∈ Fn

2 : E(x) ⪯ v}
for some u and v. Then we find a proper statistic for this property. Since the
plaintexts are chosen in a subspace, and pairs are combined with these plaintexts,
this should be a second-order attack. The statistic used in this attack can be

AE
v0||v1,u0||u1

=
∑

x0⪯u0,x1⪯u1

E(x1)⪯v1

vE0 (x0) =
∑

x0∈Fn
2 ,x1∈Fn

2

ux0
0 ux1

1︸ ︷︷ ︸
effect of input basis

v
E(x0)
0 v

E(x1)
1︸ ︷︷ ︸

effect of output basis

(10)
with v0 = 1 (1 is a n-bit string with elements being 1) and u0 = u1. The v0 = 1
condition is required because the output values in the multiple-of-n property are
free, so no restrictions should be placed on them. Condition u0 = u1 is required
as the two plaintexts should come from the same subspace.
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The above statistic with the two conditions exactly counts the number of
pairs that satisfy

1. the two inputs (x0, x0 ⊕ x1) (recall again that x1 represents the difference)
are from a subspace {x ∈ Fn

2 : x ⪯ u0 = u1},
2. the difference of the outputs E(x1) fall into a subspace {x ∈ Fn

2 : x ⪯ v1}
whatever E(x0) is (as E(x0) ⪯ 1).

By checking the effects of bases in Tables 8 and 9, the input basis can be
chosen as [ux]x,u ⊗ [ux]x,u, and the output basis chosen as [(−)wt(x⊕u)xu]x,u ⊗
[(−)wt(x⊕u)xu]x,u.

Note that the multiple-of-n property is to count the number of distinct pairs
while the nunber counted by the statistic AE

v0||v1,u0||u1
is the ordered pairs (i.e.,

(a, b) and (b, a) are counted twice). Besides, the trivial pairs such as (a, a) is also
counted. We have the following proposition.

Proposition 4. When u0 = u1 = u, v0 = 1, and 2wt(u)−1 ≡ 0 mod n,

AE
v0||v1,u0||u1

=
∑

x0⪯u0,x1⪯u1

E(x1)⪯v1

vE0 (x0) ≡ 0 mod 2n

is equivalent to

|{(p0, p1) : p0 ̸= p1, p0 ⪯ u, p1 ⪯ u, E(p0)⊕ E(p1) ⪯ v1}| ≡ 0 mod n.

Proof. Among the AE
v0||v1,u0||u1

pairs, there are 2wt(u) trivial ones. After ex-
cluding the trivial ones, there are AE

v0||v1,u0||u1
− 2wt(u) non-trivial pairs. Thus,

(AE
v0||v1,u0||u1

− 2wt(u))/2 is the number of distinct pairs. Since AE
v0||v1,u0||u1

≡
0 mod 2n, we have AE

v0||v1,u0||u1
= p× 2n for a certain p. Therefore,

(AE
v0||v1,u0||u1

− 2wt(u))/2 = (p× 2n− 2wt(u))/2 = p× n− 2wt(u)−1.

Thus, 2wt(u)−1 ≡ 0 mod n leads to (AE
v0||v1,u0||u1

− 2wt(u))/2 ≡ 0 mod n. ⊓⊔

Similar to ultrametric integral cryptanalysis [8], AE
v0||v1,u0||u1

≡ 0 mod 2t

is equivalent to |AE
v0||v1,u0||u1

|2 ≤ 2−t. This can be done by searching trails as
described in Section 2.4.

5.2 Automatic Search for Multiple-of-n Properties: Application to
SKINNY-64

Due to the page limitation, the specifications of SKINNY-64 are provided in Ap-
pendix A.2. Next, we introduce our search model. Consider r rounds of SKINNY-
64, we first divide it into three parts, as E = E2 ◦ E1 ◦ E0, where E1 contains
only one layer of Sboxes. For E1, the same bases are applied to compute the
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statistic and a corresponding matrix is obtained. For E0, the input and output
bases are chosen as [ux]x,u ⊗ [ux]x,u, so a same-basis attack is generated for E0.
The statistic is

AE0

v0||v1,u0||u1
=

∑
x0∈Fn

2 ,x1∈Fn
2

ux0
0 ux1

1 (−1)wt(v0⊕E(x0))E(x0)
v0(−1)wt(v1⊕E(x1))E(x1)

v1

=
∑

x0⪯u0,x1⪯u1

E(x0)⪰v0,E(x1)⪰v1

(−1)wt(v0⊕E(x0))(−1)wt(v1⊕E(x1))

(11)
For E2, [(−1)wt(u⊕x)xu]x,u ⊗ [(−1)wt(u⊕x)xu]x,u are chosen as the bases, thus
another same-basis attack is derived for E2, where the statistic is

AE2

v0||v1,u0||u1
=

∑
x0∈Fn

2 ,x1∈Fn
2

(−1)wt(u0⊕x0)ux0
0 (−1)wt(u1⊕x1)ux1

1 E(x0)
v0E(x1)

v1

=
∑

x0⪰u0,x1⪰u1

E(x0)⪯v0,E(x1)⪯v1

(−1)wt(u0⊕x0)(−1)wt(u1⊕x1)

(12)
According to Proposition 2.4, the product of the transition matrices of E0, E1
and E2 under corresponding bases is the transition matrix of E related to the
statistic of Equation (10).

To use the automatic search, we need to generate the matrices for operations
in E0, E1 and E2. For Sboxes in SC and LBox in the MC (the MixColumn operation
of SKINNY-64 can be split into 16 parallel 4-bit Sboxes, which are called LBox, see
Appendix A.2 for more details), given u0, u1, v0, v1, the corresponding correlation
(Definition 4) is calculated with Equations (11), (10) and (12) for E0, E1 and
E2, respectively. The 2-adic absolute values of the correlations of u0, u1, v0, v1 is
calculated and described with the automatic search tool languagae, as a classical
way.

For the bit-permutations like SR, a direct variable changes works. For AC,
the affected bits can be seen as a 1-bit Sbox, thus the corresponding propagation
rules can be derived. For ART, the round tweakey are seen as random constants,
thus the elements in the corresponding matrices are tweakey-dependent. For
E0 (E2), according to Equation (11) (Equation (12)), the transition matrix of
ART is (u0||u1 is the index of columns, v0||v1 is the index of rows, k is the
tweakey/constant)

AART =


(−1)k 0 0 0

0 (−1)k 0 0
k 0 1 0
0 k 0 1


AART =


(−1)k 0 k 0

0 (−1)k 0 k
0 0 1 0
0 0 0 1




AAC is a special case of AART where k is known. Propagation rules of AART are
obtained when considering all possible key values since the key is unknown.
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Table 2: The multiple-of-n property on SKINNY-64 from 6 to 10 rounds. “1” in the
input/output means the corresponding bits of the input/output value-difference
pairs can be any value.

Rnd. Input/Output Value-Difference Pairs Multiple
-of-2n(-n) Config.

6
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

247(246) 2 + 1 + 3

7
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

242(241) 3 + 1 + 3

8
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

229(228) 4 + 1 + 3

9
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

217(216) 4 + 1 + 4

10
(0fff′ffff′ffff′ffff, 0fff′ffff′ffff′ffff)

↓
(ffff′ffff′ffff′ffff, ffff′f0ff′ffff′ffff)

28(27) 4 + 1 + 5

Results. The 10-round SKINNY-64 has a multiple-of-27 property, which has sur-
passed the previous best 5-round results. We list the results for SKINNY-64 from
6 to 10 rounds in Table 2

Restrictions of our method. There are two main restrictions of our automatic
search method compared to previous ones [17,14]. The first is that we cannot
set the inactive cell values as non-zero constants, currently they are always set
as zero. The second is that the current search is limited to 4-bit cell ciphers
such as SKINNY-64. For larger ones such as AES, the search needs to handle the
propagations from a 16-bit vector to another. Current automatic search methods
have usually difficulties to trace such large-scale propagations.

6 Example Application III: First Order Multiple-of-n
Property

This section studies the divisibility property of messages that follow certain
subspace trails. Such a property is very similar to the multiple-of-n property in
Section 5, but we do it as a first-order attack. Concretely, we study the property
that for E : Fn

2 −→ Fn
2 and a pair of u and v, if there exists a number n that

satisfies
|{x ∈ Fn

2 : x ⪯ u, E(x) ⪯ v}| ≡ 0 mod n.
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When n ≥ 2, we obtain an interesting property of E as in the random case the
property holds with a proportion of 1/n.

Similar to the second-order multiple-of-n property, we study the following
statistic:

AE
v,u =

∑
x⪯u,E(x)⪯v

1 =
∑
x∈Fn

2

ux︸︷︷︸
effect of

input basis

vE(x)︸ ︷︷ ︸
effect of

output basis

Checking Table 1, the input basis is [ux]x,u, and the output basis is [(−1)wt(u⊕x)xu]x,u,
which is a mix-basis attack. The cipher will be divided into three parts where
the middle round contains one layer of Sboxes. The first and last parts are two
same-basis attacks with bases being [ux]x,u and [(−1)wt(u⊕x)xu]x,u, respectively.
The two statistics are respectively

AE0
v,u =

∑
x⪯u

(−1)wt(E0(x)⊕v)E(x)v

and
AE2

v,u =
∑
x⪰u

(−1)wt(x⊕u)vE(x)

The automatic search model is constructed based on matrices of the three parts.
To study if AE

v,u is divisible by 2t, we check if |AE
v,u|2 ≤ 2−t, this can be done

with proving that there is no trail whose correlation is larger than 2−t.

6.1 Application to SKINNY-64

Applying this statistic to SKINNY-64 is almost identical to Section 5. The Sboxes
and Lboxes are described with 16 × 16 matrices. For each input and output
pair (u, v), the corresponding 2-adic absolute value is recorded by variables.
For key/constant XOR operations, we also regard them as 1-bit Sboxes. The
transition matrices of the key XOR for E0 and E2 are respectively

AART =

[
(−1)k 0
k 1

]
(for E0) and AART =

[
(−1)k k

0 1

]
(for E2).

Results. The longest first order multiple-of-n property reaches 11 rounds for
SKINNY-64, as shown in Table 3. The 11-round SKINNY-64 has a first order
multiple-of-2 property, which has the same length as the longest integral dis-
tinguishers [16].

7 Example Application IV: Differential-Linear
Cryptanalysis

Differential-linear (DL) cryptanalysis was originally proposed by Langford and
Hellman in 1994 [23]. In this attack, a cipher E is decomposed into two sub-
ciphers as E = E1◦E0, where a differential for E0 and a linear approximation for E1
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Table 3: The first order multiple-of-n property of SKINNY-64 from 6 to 11 rounds.
“1” in the input/output means the corresponding bits of the input/output value
can be any value.
Rnd. Input/Output Value Multiple-of-n Configure

6 ffff′ffff′ffff′fff0 → ffff′ffff′ffff′fff0 247 3 + 1 + 2

7 ffff′ffff′ffff′fff0 → ffff′ffff′ffff′fff0 235 3 + 1 + 3

8 ffff′ffff′ffff′fff0 → ffff′ffff′ffff′fff0 226 4 + 1 + 3

9 ffff′ffff′ffff′fff0 → ffff′ffff′ffff′fff0 213 4 + 1 + 4

10 ffff′ffff′ffff′fff0 → ffff′ffff′ffff′fff0 25 4 + 1 + 5

11 ffff′ffff′ffff′fff0 → ffff′f0ff′ffff′ffff 21 3 + 1 + 7

are considered. The bias of this DL approximation can be estimated accordingly
under some independence assumptions.

As pointed out in [9], experiments are required to verify the estimated bias
when possible because the underlying assumptions may fail. A closed formula for
the DL bias, from Blondeau, Leander and Nyberg [11], is given under the sole
assumption that E0 and E1 are independent. Let ε[δ E0−→ γ] denote the correlation
of a DL distinguisher over E0 with the input difference δ and output mask γ, and
c[θ

E1−→ λ] denote the linear correlation with input and output masks θ and λ,
respectively, over E1. Then, based on the independence assumption between E0
and E1, a DL distinguisher over E = E1 ◦ E0 with input difference δ and output
mask λ has the exact correlation

ε[δ
E−→ λ] =

∑
γ

ε[δ
E0−→ γ]c2[γ

E1−→ λ]. (13)

Recently, more new methods to estimate the DL bias have been proposed,
for example, Bar-On et al. proposed the Differential-Linear Connectivity Ta-
ble (DLCT) [1], Liu et al. introduced the differential algebraic transform form
(DATF) to approximate the bias [25], Hadipour, Derbez and Eichlseder gener-
alized the DLCT to more rounds [18], and Peng et al. combined the truncated
differential for a preciser estimation on the DL bias [28].

7.1 Closed Formula without Independence Assumption

Using our notations, the DL approximation over a cipher E with input difference
δ and output mask λ can be described by the following statistic

AE
v0||v1,u0||u1

= 2−n
∑

x0∈Fn
2 ,x1=u1

(−1)u
⊤
0 x0⊕v⊤

0 E(x0)⊕v⊤
1 E(x1). (14)
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Where u0 = v0 = 0, u1 = δ and v1 = λ. Indeed, after replacing u0, v0, u1, v1 with
0, 0, δ, λ, the above equation becomes

ε[δ
E−→ λ] = AE

0||λ,0||δ = 2−n
∑

x0∈Fn
2 ,x1=δ

(−1)v
⊤
1 E(x1).

By checking the effects in Tables 8 and 9, Equation (14) can be obtained with
the geometric approach with the input basis [(−1)u

⊤x]x,u⊗[δu(x)]x,u and output
basis [(−1)u

⊤x]x,u ⊗ [(−1)u
⊤x]x,u.

Therefore, we can treat the DL attacks as a mix-basis attack. We first divide
E into three parts as E = E2 ◦ E1 ◦ E0. For E0, the quasi-differential attack [6]
is applied, and the transition matrix is denoted by AE0 . For E1, Equation (14)
is used as the statistic, and the transition matrix is denoted by AE1 . For E2,
the statistic derived with the same basis [(−1)u

⊤x]x,u ⊗ [(−1)u
⊤x]x,u for the

input/output spaces is

AE2

v0||v1,u0||u1
= 2−2n

∑
x0∈Fn

2 ,x1∈Fn
2

(−1)u
⊤
0 x0⊕v⊤

0 E(x0)⊕u⊤
1 x1⊕v⊤

1 E(x1)

The transition matrix of E with input basis [(−1)u
⊤x]x,u⊗ [δu(x)]x,u and output

basis [(−1)u
⊤x]x,u ⊗ [(−1)u

⊤x]x,u is calculated by

AE = AE2 ◦AE1 ◦AE0

Setting u0 = v0 = 0, u1 = δ and v1 = λ, we get

ε[δ
E−→ λ] = AE

0||λ,0||δ =
∑

θ0||θ1,γ0||γ1

AE2

0||λ,θ0||θ1 AE1

θ0||θ1,γ0||γ1
AE0

γ0||γ1,0||δ (15)

Equation (15) can be seen as the closed formula for the DL approximation cor-
relation. Inherent from the geometric approach, such a formula holds without
independence assumptions. Using the automatic search tools to trace all trails
derived from Equation (15), we can get the exact correlation.

When treating E1 ◦ E0 as a whole part and considering E1 ◦ E0 and E2 as two
independent parts, we can get the same Blondeau-Leander-Nyberg formula from
Equation (15). The details is shown in Appendix E.

7.2 Automatic Search for DL Approximation

Like previous applications, it is easy to develop an automatic search model to
look for DL distinguishers on a cipher. For a given input difference δ and an
output mask λ, we can use trails to approximate Equation (14). If we can exhaust
all possible trails, the sum of all trail correlations is the exact DL approximation.

In [18], Hadipour et al. extended the DLCT to cover more rounds to give an
efficient and precise method to estimate the correlation of DL approximations.
They applied the method to the block cipher SIMECK and obtained the currently
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Table 4: Three deterministic DL approximations of SIMECK found by Hadipour
et al. [18].

Cipher Round Input Diff Output Mask Cor.

SIMECK-32 7 00001000 00000400 1
SIMECK-48 8 000000020000 000000010000 1

best-known DL distinguishers. Among the DL distinguishers they found, there
are two deterministic DL approximations, one for SIMECK-32 and one for SIMECK-
48, as shown in Table 4. However, as Hadipour et al.’s model was set based on the
classical assumption that the consecutive rounds are independent, it is difficult
to know if these deterministic DL approximations hold for all the key values.
This is actually a challenge for almost all classical cryptanalysis methods. The
geometric approach, as shown in previous applications, inherently works well
without independence assumptions, as long as we can exhaust all trails.

We set the automatic search tools for the two DL distinguishers. Our auto-
matic search model is able to exhaust all trails for the three DL approximations,
thus calculates out the exact correlations of them. According to our search re-
sults, the sum of correlations of trails with non-zero masks for the values (which
means the concrete key values would affect the final correlation) is always zero.
The sum of correlations of trails with zero masks for the values (which means
the key values would not affect the final correlation) is finally 1. Therefore, we
confirm that the two DL approximations have exactly 1 correlation, without
being affected by the key bits.

8 Conclusion

This paper extends Beyne’s geometric approach by allowing using two different
bases for the input and output spaces. We utilized three previously known bases
and generated four new ones according to some simple rules. Based on these seven
bases, we defined a family of basis-based attacks. For a d-th order, the seven bases
lead to 72d attacks. The basis-based attacks provide a systematic way to gen-
erate new ones rather than the classical intuitive method. Our extension makes
the geometric approach more flexible and able to describe/predict more types
of attacks. Inherent to the geometric approach, all basis-based attacks can be
studied with a similar automatic search method. The core is to track the prop-
agation trails and estimate the correlations according to certain measurements.
We provided four example applications to show how to take some basis-based
attacks into practice, including a simplified ultrametric integral cryptanalysis,
multiple-of-n properties for the second-order and first-order attacks, and finally,
the differential-linear attacks.

There are many future works. For example, one can explore how to quickly
check all these basis-based attacks and identify the most threatening one for a
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certain cipher. Besides, Corollary 1 is not really used in this paper, it is interest-
ing to study how to find a “best basis chain” that can connect the bases for the
input and output spaces of each round that brings the best dominant trail [8,
Theorem 2.2], which can reduce the search burden significantly. Finally, it would
be interesting to study more possibilities of the bases, in addition to the ones
presented by this paper.
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A Specifications of SKINNY-64, PRESENT and SIMECK

A.1 Specifications of PRESENT

PRESENT is a 64-bit block cipher supporting 80-bit and 128-bit keys designed by
Bogdanov et al. in 2007 [12]. The design is a SPN construction consisting of a
round key addition, a 4-bit Sbox layer, and a bit permutation layer. The S-box
is specified as follows:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

The bit permutation and the entire round function are both illustrated in
Figure 4.
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Fig. 4: Round function of PRESENT. The figure is taken from [20].

A.2 Specifications of SKINNY-64

The block cipher family SKINNY was presented at CRYPTO 2016 [3] designed
under the TWEAKEY framework [21], whose goal is to compete with the NSA
design SIMON [2] in terms of hardware/software performance. According to the
length of block and tweakey, the SKINNY family consists of 6 different members
represented as SKINNY-n-t, where n ∈ {64, 128} and t ∈ {n, 2n, 3n}, which re-
spectively represent the sizes of block and tweakey. Here we introduce the 64-bit
version of SKINNY, i.e., SKINNY-64, under the single tweakey model. SKINNY-64
is chosen as its Sbox is 4-bit. Since the multiple-of-n property is described as a
2nd order attack, it is equivalent to describe the propagation for an 8-bit Sbox
ciphers in the classical automatic search.

The round function of SKINNY-64 comprises five operations as SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns
(MC), see Figure 5. So a round of SKINNY-64 can be written as

R = MC ◦ SR ◦ ART ◦ AC ◦ SC.
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1. SC: SC is the only non-linear layer of SKINNY-64, using a 4-bit Sbox S as
follows,

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

2. AC and ART: In the AC operation, a 6-bit round-based constant is XORed
with the top two cells of the first column, and a constant 2 is XORed with
the third cell of the first column. In the ART operation, a 8-cell round key
is XORed with the first two rows of the state.

3. SR: SR circularly shifts the i-th row of the internal state to right with i
nibbles, where i = 0, 1, 2, 3.

4. MC: MC multiplies four nibbles of each state column with the binary matrix
M . The details of M are listed below,

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Since the non-zero elements in this matrix are only 1, the MC operation
can be decomposed into 4 parallel small operations called Lbox, denoted
by LBox. Let the input and output of M is x and y, (yi, yi+4, yi+8, yi+12 =
L(xi, xi+4, xi+8, xi+12) = (x0⊕x2⊕x3, x0, x1⊕x2, x0⊕x2), for i ∈ {0, 1, 2, 3}.

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 5: Round function of SKINNY-64. The figure is taken from [20].

A.3 Specifications of SIMECK

SIMECK is a family of lightweight block ciphers proposed at CHES 2015 [36]. The
design is similar to SIMON. The SIMECK family consists of several family members
SIMECK-2n/4n operating on n-bit words with a state size of 2n bits and a key
size of 4n bits for n ∈ {16, 24, 32}. In round i, the 2n-bit input state of round
i is split into two n-bit words (Li, Ri) and updated with a Feistel-based round
function F to produce (Li+1, Ri+1) using the n-bit round key Ki. The round
function is a quadratic Feistel function using bitwise XOR (x⊕ y), bitwise AND
x ∧ y, and cyclic left-shifts by c bits (x ≪ c) (see Figure 6):

Ri+1 = Li

Li+1 = Ri ⊕Ki ⊕ (Li ∧ (Li ≪ 5))⊕ (Li ≪ 1).
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The round key Ki is produced using a similar nonlinear update function. The
total number of rounds is 32 rounds for SIMECK 32/64 (referred to as SIMECK-32
for short), 36 rounds for SIMECK 48/96 (referred to as SIMECK-48).

xi yi

S0

S5

S1

ki

xi+1 yi+1

Fig. 6: Round function of SIMECK. The figure is adapted from [20].

B High-Level Viewpoint of Automatic Search for
Geometric Approach

In the past decade, automatic search methods have been very popular in crypt-
analysis and many classical attack techniques have been modelled. The idea is
to express a cryptanalytic problem into a constrained problem, such as Mixed
Integer Linear Programming (MILP) or the Satisfiability Problem (SAT), then
use off-the-shelf solvers to complete the search. The results are then translated
into solutions for the original cryptanalytic problem.

In the case of the geometric approach, the transition matrix is naturally
suitable to be modelled in such frameworks.

First, the cipher is divided into many small components, such as Sboxes, bit
permutations, and even XORs, ANDs, or COPYs (aka. Branches, where a bit
is copied into 2 or multiple bits). Then, each component can be viewed as a
“function” (the COPY function is also viewed as a function with one input and
two outputs), the statistic derived after choosing two bases for the input and
output is then applied to the function. For a function F : Fn

2 −→ Fm
2 (note that

n and m are usually small as they are the components of the target cipher), we
traverse all input and output values. For the d-th order attack, the input and
output vectors should be u0||u1|| . . . ||ud−1 and v0||v1|| . . . ||vd−1, respectively.
Then, according to the statistic, a value related to the input/output vectors,
denoted by c, is obtained. Values c ̸= 0 are then made into an entry:

(u0||u1|| · · · ||ud−1, v0||v1|| · · · ||vd−1,M(c)),

where M(c) represents the values after applying some measures to c (usually forc-
ing it to a positive integer number). For example, if one targets a probability, then
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M(c) is usually − log(c). While for the divisibility property, M(c) = − log(|c|2)
where |c|2 is the 2-adic absolute value of c. Usually, such an entry will be edited
as bit strings.

All these entries with c ̸= 0 will be called valid propagations. We generate
corresponding variables for the input and output of F , then we can use a set of
inequalities, CNF constraints or other methods to make sure that these variables
have to be one of these valid propagations.

Finally, we define an objective function that usually sums up all variables
from M(c), and we use a solver to search for one trail that makes the summation
maximum or minimum. Sometimes, one can also want to search for all valid trails.

We recommend that readers refer to previous research on geometric approach,
such as [6] and [8], for a deeper understanding on how automation is applied in
this field.

C Step-By-Step Explanation of Equation (4)

AE⊗d

v,u = [β⋆
y(v), 0 ≤ y < 2dn]⊤ T E⊗d

[αu(x), 0 ≤ x < 2dn]

=
(
[β⋆

y(v), 0 ≤ y < 2dn]⊤ T E⊗d
)

[αu(x), 0 ≤ x < 2dn]

Note that the i-th column of T E⊗d

is [δy(E⊗d(i)), y = 0, 1, . . . , 2dn − 1]

=

 ∑
y∈(Fn

2 )
⊗d

β⋆
y(v)δy(E(0)), . . . ,

∑
y∈(Fn

2 )
⊗d

β⋆
y(v)δy(E(2dn − 1))

⊤

[αu(x), 0 ≤ x < 2dn]

Note that
∑

y∈(Fn
2 )

⊗d β⋆
y(v)δy(E(i)) = β⋆

E⊗d(i)(v) because only when y = E⊗d(i), δy(E⊗d(i)) = 1

=
[
β⋆
E⊗d(0)(v), . . . , β

⋆
E⊗d(2dn−1)(v)

]⊤
[αu(x), 0 ≤ x < 2dn]

=
∑

x∈(Fn
2 )

⊗d

β⋆
E⊗d(x)(v) αu(x)

D Automatic Search for the Simplified Ultrametric
Integral Crytanalysis

We replay here the ultrametric integral attack, but in the simplified way de-
scribed in Section 4. Setting u = fffffffffffffffe, we obtain the same results
for 9 rounds of PRESENT as for [8]. We divide the 9-round PRESENT without the
last bit permutation into 3 parts: E0 covers the first 4 rounds, E1 covers the Sbox
layer of the 5th round, and E2 covers the remaining 4 rounds. The transition
matrices of the Sboxes of E0, E1 and E2 can be computed according to Equa-
tions (7), (9) and (8). The transition matrix of E2 is the same as the one in [8],
but we still provide it here for a better comparison among the three matrices of
the PRESENT Sbox.

Now let us consider the propagation. For the Sbox layer, we first construct
the transition matrices for a single Sbox, which is not difficult since the statistic
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expressions of the three matrices we constructed earlier already exist. Based on
the transition matrix of a single Sbox, the propagation rules of the Sbox layer
can be conveniently characterized: PRESENT’s Sbox layer consists of 16 Sboxes,
we have A

S0||···||S15
v,u =

∏15
i=0 A

Si
vi,ui

, where AS0||···||S15 is the transition matrix of
the Sbox layer and ASi is the transition matrix of the i-th Sbox.

For the bit permutation layer P , one can easily obtain that for all the three
matrices, Mv,u ̸= 0 if and only if v = P (u). For the round key layer K(x) = x⊕k,
we can regard it as 64 parallel 2-input-1-output functions, so we have

AK =

63⊗
i=0

AKi =

63⊗
i=0

[
(−1)ki 0
ki 1

]
(for E0), AK =

63⊗
i=0

AKi =

63⊗
i=0

[
1 0
ki (−1)ki

]
(for E2),

Our goal is to obtain the 2-adic value of AE
v,u =

∑
y⪯u Ev(y). Because of the

triangle inequality of 2-adic value, we have

∣∣AE
ur,u0

∣∣
2
≤ max

ur−1,ur−2,...,u2

∣∣∣∣∣
r−1∏
i=0

AEi

ui+1,ui

∣∣∣∣∣
2

.

Therefore, we only need to utilize an automated search tool to find the path that
maximizes the 2-adic value of

∏r−1
i=0 AEi

ui+1,ui
according to the propagation rules

mentioned above. Table 5 presents the search results for 9-round PRESENT.

Table 5: Divisibility property for the integral distinguisher on 9-round PRESENT
searched by our simplified method, with input set {x : x ⪯ fffffffffffffffe}.
The number of times the i-th output bit equals one is divisible by 2bi . These
results are completely the same as [8].

bit i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
theoretical bi 2 1 1 1 2 0 0 0 2 0 0 0 2 0 0 0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

E Obtain Blondeau-Leander-Nyberg Formula from
Geometric Approach

Given Equation (15), and taking E1 ◦ E0 as a whole part, we get
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ε[δ
E−→ λ] = AE

0||λ,0||δ =
∑
γ0||γ1

AE2

0||λ,γ0||γ1
AE1◦E0

γ0||γ1,0||δ

we can set γ = 0 to force E1 ◦ E0 and E2 to be independent. Indeed, AE1◦E0

γ0=0||γ1,0||δ
represents the correlation of a DL approximation of E1 ◦E0 with the input differ-
ence δ and the output mask γ1. The independence of E1 ◦E0 and E2 is equivalent
to say that the intermediate values at the connection point can be any values,
which is equivalent to γ0 = 0.

Note that

AE2

0||λ,0||γ1
= 2−2n

∑
x0∈Fn

2 ,x1∈Fn
2

(−1)γ
⊤
1 x1⊕λ⊤E(x1)

= 2−2n
∑

x0∈Fn
2 ,x0⊕x1∈Fn

2

(−1)γ
⊤
1 x0⊕γ⊤

1 (x0⊕x1)⊕λ⊤E(x0)⊕λ⊤E(x0)⊕λ⊤E(x0⊕x1)

=

2−n
∑

x0∈Fn
2

(−1)γ
⊤
1 x0⊕λ⊤E(x0)

2−n
∑

x0⊕x1∈Fn
2

(−1)γ
⊤
1 (x0⊕x1)⊕λ⊤(E(x0)⊕E(x1))


= c2[γ1

E2−→ λ]

Thus, Equation (15) becomes to

ε[δ
E−→ λ] = AE

0||λ,0||δ =
∑
0||γ1

AE2

0||λ,0||γ1
AE1◦E0

0||γ1,0||δ =
∑
0||γ1

AE2

0||λ,0||γ1
AE1◦E0

0||γ1,0||δ

=
∑
γ1

ε[δ
E1◦E0−−−−→ γ1]A

E2

0||λ,0||γ1
=
∑
γ1

ε[δ
E1◦E0−−−−→ γ1]c

2[γ1
E2−→ λ]

which is exactly Equation (13).



Table 6: First order attacks (first part)

Output/Input [δu(x)]x,u [(−1)u
⊤x]x,u [2−n(−1)u

⊤x]x,u [ux]x,u

[δu(x)]x,u ∑
x=u,E(x)=v

1
∑
x∈Fn2

E(x)=v

(−1)u
⊤x 2−n

∑
x∈Fn2

E(x)=v

(−1)u
⊤x

∑
x⪯u

E(x)=v

1

[(−1)u
⊤x]x,u

2−n
∑
x=u

(−1)v
⊤E(x) 2−n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−2n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−n

∑
x⪯u

(−1)v
⊤E(x)

[2−n(−1)u
⊤x]x,u ∑

x=u

(−1)v
⊤E(x)

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x) 2−n

∑
x∈Fn2

(−1)u
⊤x⊕v⊤E(x)

∑
x⪯u

(−1)v
⊤E(x)

[ux]x,u ∑
x=u

(−1)wt(v⊕E(x))Ev(x)
∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))Ev(x) 2−n

∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))Ev(x)

∑
x⪯u

(−1)wt(v⊕E(x))Ev(x)

[(−1)wt(u⊕x)ux]x,u ∑
x=u

Ev(x)
∑
x∈Fn2

(−1)u
⊤xEv(x) 2−n

∑
x∈Fn2

Ev(x)
∑
x⪯u

Ev(x)

[xu]x,u ∑
x=u

(−1)wt(v⊕E(x))vE(x)
∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))vE(x) 2−n

∑
x∈Fn2

(−1)u
⊤x(−1)wt(v⊕E(x))vE(x)

∑
x⪯u

(−1)wt(v⊕E(x))vE(x)

[(−1)wt(u⊕x)xu]x,u ∑
x=u

vE(x)
∑
x∈Fn2

(−1)u
⊤xvE(x) 2−n

∑
x∈Fn2

(−1)u
⊤xvE(x)

∑
x⪯u

vE(x)



Table 7: First order attacks (second part)
Output/Input [(−1)wt(u⊕x)ux]x,u [xu]x,u [(−1)wt(u⊕x)xu]x,u

[δu(x)]x,u ∑
x⪯u

E(x)=v

(−1)wt(u⊕x)
∑
x⪰u

E(x)=v

1
∑
x⪰u

E(x)=v

(−1)wt(u⊕x)

[(−1)u
⊤x]x,u

2−n
∑
x⪯u

(−1)wt(u⊕x)(−1)v
⊤E(x) 2−n

∑
x⪯u

(−1)v
⊤E(x) 2−n

∑
x⪰u

(−1)wt(u⊕x)(−1)v
⊤E(x)

[2−n(−1)u
⊤x]x,u ∑

x⪯u

(−1)wt(u⊕x)(−1)v
⊤E(x)

∑
x⪰u

(−1)v
⊤E(x)

∑
x⪰u

(−1)wt(u⊕x)(−1)v
⊤E(x)

[ux]x,u ∑
x⪯u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))Ev(x)
∑
x⪰u

(−1)wt(v⊕E(x))Ev(x)
∑
x⪰u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))Ev(x)

[(−1)wt(u⊕x)ux]x,u ∑
x⪯u

(−1)wt(u⊕x)Ev(x)
∑
x⪰u

Ev(x)
∑
x⪰u

(−1)wt(u⊕x)Ev(x)

[xu]x,u ∑
x⪯u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))vE(x)
∑
x⪰u

(−1)wt(v⊕E(x))vE(x)
∑
x⪰u

(−1)wt(u⊕x)(−1)wt(v⊕E(x))vE(x)

[(−1)wt(u⊕x)xu]x,u ∑
x⪯u

(−1)wt(u⊕x)vE(x)
∑
x⪰u

vE(x)
∑
x⪰u

(−1)wt(u⊕x)vE(x)



Table 8: 49 Bases for the second order attacks and their effects(first part)

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

0 [δu0(x0)]x0,u0 ⊗ [δu1(x1)]x1,u1 δu0(x0)δu1(x1) δv0(E(x0))δv1(E(x1))

1 [δu0(x0)]x0,u0 ⊗ [2−n(−1)u1
⊤x1

]x1,u1 δu0(x0)2
−n(−1)u

⊤
1 x1 δv0(E(x0))(−1)v

⊤
1 E(x1)

2 [δu0(x0)]x0,u0 ⊗ [(−1)u1
⊤x1

]x1,u1 δu0(x0)(−1)u
⊤
1 x1 δv0(E(x0))2

−n(−1)v
⊤
1 E(x1)

3 [δu0(x0)]x0,u0 ⊗ [u1
x1 ]x1,u1 δu0(x0)u1

x1 δv0(E(x0))(−1)wt(v1⊕E(x1))Ev1(x1)

4 [δu0(x0)]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1
x1 ]x1,u1 δu0(x0)(−1)wt(u1⊕x1)u1

x1 δv0(E(x0))Ev1(x1)

5 [δu0(x0)]x0,u0 ⊗ [x1
u1 ]x1,u1 δu0(x0)x1

u1 δv0(E(x0))(−1)wt(v1⊕E(x1))v
E(x1)
1

6 [δu0(x0)]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1
u1 ]x1,u1 δu0(x0)(−1)wt(u1⊕x1)x1

u1 δv0(E(x0))v
E(x1)
1

7 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [δu1(x1)]x1,u1 2−n(−1)u
⊤
0 x0δu1(x1) (−1)v

⊤
0 E(x0)δv1(E(x1))

8 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [2−n(−1)u1
⊤x1

]x1,u1 2−n(−1)u
⊤
0 x02−n(−1)u

⊤
1 x1 (−1)v

⊤
0 E(x0)(−1)v

⊤
1 E(x1)

9 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)u1
⊤x1

]x1,u1 2−n(−1)u
⊤
0 x0(−1)u

⊤
1 x1 (−1)v

⊤
0 E(x0)2−n(−1)v

⊤
1 E(x1)

10 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [u1
x1 ]x1,u1 2−n(−1)u

⊤
0 x0u1

x1 (−1)v
⊤
0 E(x0)(−1)wt(v1⊕E(x1))Ev1(x1)

11 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1
x1 ]x1,u1 2−n(−1)u

⊤
0 x0(−1)wt(u1⊕x1)u1

x1 (−1)v
⊤
0 E(x0)Ev1(x1)

12 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [x1
u1 ]x1,u1 2−n(−1)u

⊤
0 x0x1

u1 (−1)v
⊤
0 E(x0)(−1)wt(v1⊕E(x1))v

E(x1)
1

13 [2−n(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1
u1 ]x1,u1 2−n(−1)u

⊤
0 x0(−1)wt(u1⊕x1)x1

u1 (−1)v
⊤
0 E(x0)v

E(x1)
1

14 [(−1)u0
⊤x0

]x0,u0 ⊗ [δu1(x1)]x1,u1 (−1)u
⊤
0 x0δu1(x1) 2−n(−1)v

⊤
0 E(x0)δv1(E(x1))

15 [(−1)u0
⊤x0

]x0,u0 ⊗ [2−n(−1)u1
⊤x1

]x1,u1 (−1)u
⊤
0 x02−n(−1)u

⊤
1 x1 2−n(−1)v

⊤
0 E(x0)(−1)v

⊤
1 E(x1)

16 [(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)u1
⊤x1

]x1,u1 (−1)u
⊤
0 x0(−1)u

⊤
1 x1 2−n(−1)v

⊤
0 E(x0)2−n(−1)v

⊤
1 E(x1)

17 [(−1)u0
⊤x0

]x0,u0 ⊗ [u1
x1 ]x1,u1 (−1)u

⊤
0 x0u1

x1 2−n(−1)v
⊤
0 E(x0)(−1)wt(v1⊕E(x1))Ev1(x1)

18 [(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1
x1 ]x1,u1 (−1)u

⊤
0 x0(−1)wt(u1⊕x1)u1

x1 2−n(−1)v
⊤
0 E(x0)Ev1(x1)

19 [(−1)u0
⊤x0

]x0,u0 ⊗ [x1
u1 ]x1,u1 (−1)u

⊤
0 x0x1

u1 2−n(−1)v
⊤
0 E(x0)(−1)wt(v1⊕E(x1))v

E(x1)
1

20 [(−1)u0
⊤x0

]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1
u1 ]x1,u1 (−1)u

⊤
0 x0(−1)wt(u1⊕x1)x1

u1 2−n(−1)v
⊤
0 E(x0)v

E(x1)
1

21 [u0
x0 ]x0,u0 ⊗ [δu1(x1)]x1,u1 u0

x0δu1(x1) (−1)wt(v0⊕E(x0))Ev0(x0)δv1(E(x1))

22 [u0
x0 ]x0,u0 ⊗ [2−n(−1)u1

⊤x1
]x1,u1 u0

x02−n(−1)u
⊤
1 x1 (−1)wt(v0⊕E(x0))Ev0(x0)(−1)v

⊤
1 E(x1)

23 [u0
x0 ]x0,u0 ⊗ [(−1)u1

⊤x1
]x1,u1 u0

x0(−1)u
⊤
1 x1 (−1)wt(v0⊕E(x0))Ev0(x0)2

−n(−1)v
⊤
1 E(x1)



Table 9: 49 Bases for the second order attacks and their effects (second part)

Index Basis Effect of input
αu(x)

Effect of output
β⋆
E(x)(v)

24 [u0
x0 ]x0,u0 ⊗ [u1

x1 ]x1,u1 u0
x0u1

x1 (−1)wt(v0⊕E(x0))Ev0(x0)(−1)wt(v1⊕E(x1))Ev1(x1)

25 [u0
x0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1

x1 ]x1,u1 u0
x0(−1)wt(u1⊕x1)u1

x1 (−1)wt(v0⊕E(x0))Ev0(x0)Ev1(x1)

26 [u0
x0 ]x0,u0 ⊗ [x1

u1 ]x1,u1 u0
x0x1

u1 (−1)wt(v0⊕E(x0))Ev0(x0)(−1)wt(v1⊕E(x1))v
E(x1)
1

27 [u0
x0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1

u1 ]x1,u1 u0
x0(−1)wt(u1⊕x1)x1

u1 (−1)wt(v0⊕E(x0))Ev0(x0)v
E(x1)
1

28 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [δu1(x1)]x1,u1 (−1)wt(u0⊕x0)u0

x0δu1(x1) Ev0(x0)δv1(E(x1))

29 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [2−n(−1)u1

⊤x1
]x1,u1 (−1)wt(u0⊕x0)u0

x02−n(−1)u
⊤
1 x1 Ev0(x0)(−1)v

⊤
1 E(x1)

30 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [(−1)u1

⊤x1
]x1,u1 (−1)wt(u0⊕x0)u0

x0(−1)u
⊤
1 x1 Ev0(x0)2

−n(−1)v
⊤
1 E(x1)

31 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [u1

x1 ]x1,u1 (−1)wt(u0⊕x0)u0
x0u1

x1 Ev0(x0)(−1)wt(v1⊕E(x1))Ev1(x1)

32 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1

x1 ]x1,u1 (−1)wt(u0⊕x0)u0
x0(−1)wt(u1⊕x1)u1

x1 Ev0(x0)Ev1(x1)

33 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [x1

u1 ]x1,u1 (−1)wt(u0⊕x0)u0
x0x1

u1 Ev0(x0)(−1)wt(v1⊕E(x1))v
E(x1)
1

34 [(−1)wt(u0⊕x0)u0
x0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1

u1 ]x1,u1 (−1)wt(u0⊕x0)u0
x0(−1)wt(u1⊕x1)x1

u1 Ev0(x0)v
E(x1)
1

35 [x0
u0 ]x0,u0 ⊗ [δu1(x1)]x1,u1 x0

u0δu1(x1) (−1)wt(v0⊕E(x0))v
E(x0)
0 δv1(E(x1))

36 [x0
u0 ]x0,u0 ⊗ [2−n(−1)u1

⊤x1
]x1,u1 x0

u02−n(−1)u
⊤
1 x1 (−1)wt(v0⊕E(x0))v

E(x0)
0 (−1)v

⊤
1 E(x1)

37 [x0
u0 ]x0,u0 ⊗ [(−1)u1

⊤x1
]x1,u1 x0

u0(−1)u
⊤
1 x1 (−1)wt(v0⊕E(x0))v

E(x0)
0 2−n(−1)v

⊤
1 E(x1)

38 [x0
u0 ]x0,u0 ⊗ [u1

x1 ]x1,u1 x0
u0u1

x1 (−1)wt(v0⊕E(x0))v
E(x0)
0 (−1)wt(v1⊕E(x1))Ev1(x1)

39 [x0
u0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1

x1 ]x1,u1 x0
u0(−1)wt(u1⊕x1)u1

x1 (−1)wt(v0⊕E(x0))v
E(x0)
0 Ev1(x1)

40 [x0
u0 ]x0,u0 ⊗ [x1

u1 ]x1,u1 x0
u0x1

u1 (−1)wt(v0⊕E(x0))v
E(x0)
0 (−1)wt(v1⊕E(x1))v

E(x1)
1

41 [x0
u0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1

u1 ]x1,u1 x0
u0(−1)wt(u1⊕x1)x1

u1 (−1)wt(v0⊕E(x0))v
E(x0)
0 v

E(x1)
1

42 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [δu1(x1)]x1,u1 (−1)wt(u0⊕x0)x0

u0δu1(x1) v
E(x0)
0 δv1(E(x1))

43 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [2−n(−1)u1

⊤x1
]x1,u1 (−1)wt(u0⊕x0)x0

u02−n(−1)u
⊤
1 x1 v

E(x0)
0 (−1)v

⊤
1 E(x1)

44 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [(−1)u1

⊤x1
]x1,u1 (−1)wt(u0⊕x0)x0

u0(−1)u
⊤
1 x1 v

E(x0)
0 2−n(−1)v

⊤
1 E(x1)

45 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [u1

x1 ]x1,u1 (−1)wt(u0⊕x0)x0
u0u1

x1 v
E(x0)
0 (−1)wt(v1⊕E(x1))Ev1(x1)

46 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)u1

x1 ]x1,u1 (−1)wt(u0⊕x0)x0
u0(−1)wt(u1⊕x1)u1

x1 v
E(x0)
0 Ev1(x1)

47 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [x1

u1 ]x1,u1 (−1)wt(u0⊕x0)x0
u0x1

u1 v
E(x0)
0 (−1)wt(v1⊕E(x1))v

E(x1)
1

48 [(−1)wt(u0⊕x0)x0
u0 ]x0,u0 ⊗ [(−1)wt(u1⊕x1)x1

u1 ]x1,u1 (−1)wt(u0⊕x0)x0
u0(−1)wt(u1⊕x1)x1

u1 v
E(x0)
0 v

E(x1)
1
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