
SNARKs for Stateful Computations on
Authenticated Data

Johannes Reinhart1 Erik-Oliver Blass2 Bjoern Annighoefer1

1 University of Stuttgart, Stuttgart, Germany
{johannes.reinhart, bjoern.annighoefer}@ils.uni-stuttgart.de

2 Airbus, Munich, Germany
erik-oliver.blass@airbus.com

Abstract. We present a new generalization of (zk-)SNARKs combin-
ing two additional features at the same time. Besides the verification of
correct computation, our new SNARKs also allow, first, the verification
of input data authenticity. Specifically, a verifier can confirm that the
input to the computation originated from a trusted source. Second, our
SNARKs support verification of stateful computations across multiple
rounds, ensuring that the output of the current round correctly depends
on the internal state of the previous round. Our SNARKs are specifically
suited to applications in cyber-physical control systems, where compu-
tations are periodically carried out and need to be checked immediately.
Our focus is on concrete practicality, so we abstain from arithmetizing
hash functions or signatures in our SNARKs. Rather, we modify the in-
ternals of an existing SNARK to extend its functionality. Additionally, we
present new optimizations to reduce proof size, prover time, and verifica-
tion time in our setting. With our construction, prover runtime improves
significantly over the baseline by a factor of 89. Verification time is 70%
less for computations on authenticated data and 33% less for stateful
computations. To demonstrate relevance and practicality, we implement
and benchmark our new SNARKs in a sample real-world scenario with
a (simple) quadcopter flight control system.

1 Introduction

In many applications, one party must demonstrate to others that it has correctly
executed a certain computation. Specifically, party P takes input x and computes
output y = f(x) for some function f . To then prove correct computation of y,
P (the prover) generates a proof π. The idea is that any verifier V can use
π and check whether y is the correct output with respect to x and f . Two
key properties towards practical efficiency are that verification of π should be
more efficient than re-computing y, and that the size of π is small, i.e., smaller
than the size of input x. The construction of such proofs is a very active area of
research as indicated by the recent flurry of papers on, for example, succinct non-
interactive ARguments of Knowledge (SNARKs) [1–15]. An additional attribute
as provided by zero-knowledge SNARKs (zk-SNARKs) is that V does not learn
anything about x besides the validity of the proof.

This paper explores a new generalization of recent (zk-)SNARKs, combining
two additional properties.

SNARKs over Authenticated Data If V must not learn x for performance or
privacy reasons, the natural question is how to authenticate x, such that a mali-
cious P does not choose arbitrary x as input. So, the first additional property we
consider in this paper is that x be authenticated by a third party. Consequently,
P must additionally prove to V that input x to f has been authenticated by the
third party before. A crucial challenge in this context is that V does not have
access to the third party at the time of verification.

State-Consistent SNARKs In many real-world scenarios, applications are state-
ful, and computations f depend on a changing state. That is, given initial state
s1, a function f is applied iteratively on state st and input xt producing output
yt and updated state st+1. So, in each iteration t,

(yt, st+1) = f(xt, st).

Again, the technical challenge comes in the situation where party P com-
puting f is untrusted or unreliable. An adversarial P might compute arbitrary
outputs yt and present them to V. Thus, the second property we target in this
paper is for P to create a proof πt allowing V to efficiently verify the correctness
of yt and st in each iteration t. As the state is often large, and communication
bandwidth or memory of the verifying party can be limited, we require that the
size of πt should also be smaller than the size of state st. Along the same lines
of zero-knowledge regarding inputs, we also require a zero-knowledge property
for the state. That is, V should not learn any information about a state beyond
what can be inferred by the output yt of the computation.

In conclusion, in each iteration t, P proves to V the correctness of computing
f , the use of authenticated input xt, and the consistency of state st at the same
time.

We dub our construction ADSC-SNARKs, generalized SNARKs on Authenti-
cated Data with State Consistency. An immediate application for ADSC-SNARKs
are digital controllers in a cyber-physical system where input xt is a tuple of mea-
surements of some physical quantities, and yt is a tuple of commands to actuators
that manipulate the physical system to be controlled. In most such cases, the
controller must periodically process sensor input, update its internal state and
provide output commands. Many control systems are safety-critical, such that
a malfunction or adversarial tampering can lead to loss of lives. Furthermore,
modern control system have a large complexity and inter-connectivity, exposing
many attack surfaces. Applying ADSC-SNARKs in such a setting can be used
to prevent cyber-attacks on control units or communication channels or help
detect incorrect outputs from malfunctioning devices. These settings would in
particular benefit from the ability to verify output commands immediately in
each iteration.

2

Related Work While we discuss related work in detail later in Section 6, we briefly
summarize the differences of our setting. Here, the (computationally limited)
verifying party V checks the output yt of an iterative stateful computation in
every single step t, immediately when yt is available. Ideally, V is not required to
see st or xt, as they can be large or private. SNARKs for incrementally verifiable
computation based on recursive proofs [16] or folding schemes [17–19] aim for a
verifier to check the entire iterative computation once at the final step within
a single proof. This is a stronger requirement compared to our setting. They
achieve this by additionally proving in each iteration the correctness of a proof
verification of the previous iteration or the correctness of compressing (folding)
two computational steps in each iteration. Constructions for composing SNARKs
[20, 21] use commit-and-prove SNARKs to prove the conjunction, disjunction or
functional composition of two ore more computations f1, f2, These fit our
setting better, because they can be used to prove stateful computations without
recursion or folding. Our construction is therefore based on the latter approach,
but specifically tailored to the setting of iterative stateful computations.

Previous SNARKs for computations on authenticated data [22–24] do not
consider stateful computations. Theoretically, it would be possible to prove an
iterative computation by proving f for all steps t and all inputs xt at once instead
of in each iteration. However, this would be inefficient, as prover time would grow
with each iteration. Furthermore, adding the state consistency property is non-
trivial. For example the designated-verifier SNARK in [22] uses one-time message
authentication codes for the input data, which would be insecure in an iterative
setting without additional measures.

Several works present proofs about authenticated data by arithmetizing and
proving a signature verification algorithm [25–27]. Similarly, several works present
proofs about computations with state by arithmetizing and proving hash func-
tions [27–30]. In practice, these approaches lead to long proving times. In this
paper, we call approaches that arithmetize hashes or verification algorithms as
folklore approaches.

Tables 1 and 2 compare the performance and properties of our ADSC-SNARKs
with related work.

This paper We present a new scheme dubbed Authenticated Data and State
Consistent Succinct Non-Interactive Arguments of Knowledge (ADSC-SNARKs)
which allows to efficiently verify the correctness of each value yt given a succinct
proof in each iteration t.

Besides our conceptual contributions, we also implement ADSC-SNARK and
compare it against related work, resulting in a concrete speedup of 89× for a
circuit with 214 states and inputs. The C++ implementation is open source and
freely available3.

The technical highlights of this paper are:

– A formal definition of the security properties for ADSC-SNARKs, including
definitions for completeness, soundness, and zero-knowledge.

3 https://github.com/johannes-reinhart/adsc-snark

3

Table 1. Comparison of our ADSC-SNARK with related approaches, part 1. |X|: num-
ber of private inputs, |S|: number of states, |Ω|: size of witness, MSMG1(n): multiscalar
multiplication of n G1 elements Overhead means difference in runtime or size of new
SNARK compared to its Base SNARK.

Approach Base
SNARK

Arithmetization1

Overhead
Prover

Overhead

ADSC-SNARK
(ours) Groth16 [7] — 1×MSMG1(|S|)

Folklore
("Strawman") Groth16 [7]

2126
+72|X|
+144|S|

—

AD-SNARK [22]
desig. verifier BCTV14 [6] |X| 1×MSMG1(|X|)

AD-SNARK [22]
pub. verifier BCTV14 [6] |X| 1×MSMG1(|X|)

SPHinx [23] Marlin [13] —
1×MSMG1(|Ω|)
+4×MSMG1(|X|)

+1×MSMG1(|X|+ |Ω|)

Geppetto [20]
SC-SNARK Pinocchio [4] 2× |S| 3×MSMG1(|S|)

LegoGro [21]
SC-SNARK Groth16 [7] 2× |S| 1×MSMG1(|S|)

+1×MSMG1(2|S|)

1 Arithmetization overhead increases prover runtime.

4

Table 2. Comparison of our ADSC-SNARK with related approaches, part 2. |X|:
number of private inputs, Fp: prime field element, G1: curve group 1 element, G2:
curve group 2 element, sig: signature, MSMG1(n): multiscalar multiplication of n G1

elements, P: pairing evaluation, SV: signature verification. Overhead means difference
in runtime or size of new SNARK compared to its Base SNARK.

Approach Verifier
Overhead

Proof
Overhead

Public
Verif.

Auth.
Data

State
Consist.

ADSC-SNARK
(ours)

3× P
+1× SV

2×G1

+1× sig
✓ ✓ ✓

Folklore
("Strawman") — 1× Fp ✓ ✓ ✓

AD-SNARK [22]
desig. verifier

1×MSMG1(|X|)
2× P

3×G1 — ✓ —

AD-SNARK [22]
pub. verifier

1×MSMG1(|X|)
+(|X|+ 4)× P
+|X| × SV

3×G1

+|X| ×G2

+|X| × sig
✓ ✓ —

SPHinx [23] 7× P
+2×MSMG1(|X|)

15×G1

10× Fp
✓ ✓ —

Geppetto [20]
SC-SNARK 1× P 3×G1 ✓ — ✓

LegoGro [21]
SC-SNARK 4× P 3×G1 ✓ — ✓

5

– The first construction of an efficient, public verifier ADSC-SNARK that is
significantly more performant in terms of prover runtime than folklore ap-
proaches where either a signature verification algorithm or a hashing algo-
rithm is arithmetized.
Crucially, proof size and verifier runtime are constant in the size
of witness, input, and internal state.

– An open source C++ implementation of our ADSC-SNARK based on the
standard libsnark library. This is particularly suitable for practitioners in
domains where C++ is predominantly used such as in embedded systems
engineering.

– An extensive evaluation that benchmarks ADSC-SNARK and compares its
performance to LegoGro16 by Campanelli et al. [21], AD− SNARK by Backes
et al. [22] and the folklore approach with highly optimized signature verifica-
tion and hashing arithmetizations. Our evaluation demonstrates that ADSC-
SNARKs are not only asymptotically but also concretely practical.

– A proof-of-concept application and its evaluation in the form of a safety-
critical and cyber-physical control system, where actuator commands pro-
vided by an untrusted controller can be verified. This work is an important
step towards a practical application of SNARKs in real-time settings.

Zero-Knowledge As with related work [4, 6, 7], also our ADSC-SNARK con-
struction proves in zero-knowledge by adding randomization masks to the proof.
To ease the exposition, we will focus on describing ADSC-SNARKs without the
zero-knowledge property, and we prove only completeness and soundness. Ap-
pendix B presents the full construction of ADSC-SNARKs with zero-knowledge.
We stress that our implementation and evaluation in Section 4 is performed with
the full version of ADSC-SNARK, including the zero-knowledge property.

1.1 Our solution in a nutshell

State Consistency: To prove that the state between two computations is con-
sistent, P might send constant-sized hashes of the state H(st) and the updated
state H(s′t) to V and augment proof πt to show consistency of H(st) with H(s′t−1)
from the previous iteration. This turns out to be expensive, as the computation
to be proven needs to be represented as a SNARK circuit. Additionally prov-
ing consistency of H(st) with H(s′t−1) requires arithmetization of cryptographic
hash function H. Adding an arithmetized hash function increases the size of the
SNARK circuit and therefore prover time significantly [27–30].

To overcome this drawback, we follow the observation by Campanelli et al.
[21] that the SNARK by Groth [7] can be strengthened to a commit-carrying
SNARK. Essentially, the proof does not only prove the validity of a computation,
but also commits to some parts of the data in the computation. This commitment
can then be used as a link to another proof of a commit-carrying SNARK.
Two such proofs can finally be checked whether they commit to the same data.
While Campanelli et al. add further transformations to this commit-carrying

6

SNARK to achieve compatibility between different proving schemes, we are able
to directly link the commitments of two proofs of the same SNARK. This results
in a significant reduction of proof size, verifier runtime, and prover runtime.

Authenticated Data: To prove that the computation has been carried out on
authenticated input data x, one might add a signature to x and prove correct-
ness of the signature with respect to x. Again, this would imply an expensive
arithmetization of the signature verification algorithm.

Our key idea to overcome this issue is to only sign a commitment to the
authenticated data. This commmitment can be linked to a commit-carrying
SNARK, similarly to our techniques for state-consistency described above. In
addition to verifying the proof π, V only needs to verify the signature on the
commitment which can be independent of the size of the actual committed data.
A similar idea was recently applied by Datta et al. [24] to make proofs on signed
images. However, they base their construction on the Plonk [10] proof system,
which results in a larger proof size compared to our construction.

1.2 Notation

In this paper, λ denotes the computational security parameter. For instantiating
our scheme, we use prime-order groups G1, G2, GT , |G1|, |G2|, |GT | ∈ poly(λ)
together with a Type-3 bilinear map e : G1 × G2 → GT . We denote a group
element α in G1, G2, GT by its discrete logarithm [α]1, [α]2, [α]T . The group
operation in G1 (G2,GT accordingly) is represented as addition, and scalar mul-
tiplication of element α by scalar b by b [α]1 = [bα]1. The multiplication operator
(·) applied to group elements from G1 and G2 represents applying the bilinear
map e to the operands.

For a randomized algorithm F (x; r$) with input x and random coins r$,
y ← F (x) denotes random sampling of r$ and then assigning the output of
F (x; r$) to y. We denote the assignment of multiple elements using independent
random coins r$ for F and set S as yt ← F (xt) for t ∈ S. For two randomized
algorithms F and H, we write (y; z) ← (F ||H)(x) for picking random coin r$
and then assigning the result of applying F to x with r$ to y, and assigning the
result of applying H to the same input x and the same random coin r$ to z. We
write FG(·) to denote that F has oracle access to G. To sample an element from
a set S uniformly from random, we write y ←$ S.

For functions f and g, the approximate equal operator ≈ denotes that the
difference f − g is negligible in security parameter λ:

f ≈ g ⇔ ∀c ∈ N : ∃λ0 such that ∀λ > λ0 : |f(λ)− g(λ)| < λ−c.

For a field F, we write F∗ for the set of invertible elements of F. A vector
or tuple with a lower index i denotes the ith element of that vector or tuple.
Similarly, we distinguish variables for different time steps using index t.

We write [a, b] for the set {x|a ≤ x ≤ b}. For some set {ai1 , . . ., ain}, let
{i1, . . . , in} be the corresponding index set. For an index set S, we write posS(i)
to order indices i by size, i.e., for S = {3, 4}, posS(3) = 1, posS(4) = 2.

7

We write PPT for a probabilistic polynomial time algorithm and Pr for prob-
ability.

2 ADSC-SNARK Background

Before our main construction, we present formal definitions of an ADSC-SNARK
and its properties for a family of relations Rλ and security parameter λ.

2.1 Setup

We assume that Rλ can be generated by a generator pp← Gen(λ) outputting
public-parameters pp, such that pp include a field H and a relation R ∈ Rλ over
m variables ai from field H.

We require that relation R allows mapping each variable ai into one of five
different categories. These are represented by disjoint vectors ϕ, x, s, s′, ω with
corresponding index sets Φ, X, S, S′, Ω as follows:

1. public input-output variables ϕ = (ai)i∈Φ,
2. private input variables x = (ai)i∈X ,
3. state variables s = (ai)i∈S ,
4. state update variables s′ = (ai)i∈S′ , and
5. witness variables ω = (ai)i∈Ω .

We write a ∈ R or alternatively (ϕ, x, s, s′, ω) ∈ R to denote that the
vector a satisfies relation R. We say that the sequence of r variable vectors
((ϕ1, x1, s1, s

′
1, ω1), . . ., (ϕr, xr, sr, s

′
r, ωr)) ∈ Rr with initial state s′0 has state

consistency, if for all t ∈ [1, r], we have st = s′t−1. We call r the number of itera-
tions and include it in pp. In order to relate corresponding state and state update
pairs, we require a bijective map s2s between index sets for states s2s : S → S′.
If state variables are ordered appropriately, this can be as simple as a fixed offset.

An ADSC-SNARK for Rλ consists of the following tuple of algorithms (Gen,
Setup, Auth, Prove, Verify).

Algorithm pp ← Gen(λ): on input security parameter λ, Gen outputs public
parameters pp including a relation R ∈ Rλ. All other algorithms below use pp
as an additional input, so for brevity we do not include pp in their description.

Algorithm (σp, σv, σa, c0)← Setup(s′0): takes initial state s′0 as input and com-
putes a prover-key σp, a verifier-key σv, and an authentication-key σa. It also
outputs a commitment to the initial state c0.

Algorithm νt ← Auth(σa, t, xt): gets authentication-key σa, time step t, and an
input xt and outputs a signature νt.

Algorithm (πt, ct, pt)← Prove(σp, at, νt, pt−1): gets prover-key σp, variables at =
(ϕt, xt, st, s

′
t, ωt), and signature νt. It outputs a proof πt and a commitment ct to

state update s′t. A prover is allowed to have some internal state pt that is stored
between iterative invocations of the proving algorithm.

8

Algorithm b← Verify(σv, ϕt, πt, ct, ct−1, t): gets verifier-key σv, the public input-
output ϕt, the proof πt, the current commitment ct, the commitment from the
previous iteration ct−1 and timestep t. It either accepts the proof by outputting
b = 1 or rejects it by outputting b = 0.

Discussion: To ease understanding, we briefly explain the above with the help of
function f , our running example from the introduction. Relation R represents a
(non-deterministic) computation of function f such that R is satisfied for (ϕt, xt,
st, s′t, ωt), when (yt, s

′
t) = f(xt, st). To represent state, we have two same-sized

tuples s and s′. The former is part of the input of f , the latter (the state update
for that iteration) is part of the output of f . When iteratively applying f on
state s, such that st+1 = s′t, we get yt, st+1 = f(xt, st).

The public input-output ϕ is the part of the variables sent to V. In our ex-
ample ϕ is the function’s output y. Private input x corresponds to the function’s
input xt for iteration t. Note that it is not sent to the verifier.

Finally, witness ω is a tuple of variables that appear in the relation and can
be seen as non-deterministic advice for the computation of f .

2.2 ADSC-SNARK Properties

For an ADSC-SNARK we require completeness, knowledge-soundness, and suc-
cinctness. Intuitively, completeness means that V accepts all proofs, if in each
iteration: 1) relation R is satisfied, 2) the state between consecutive iterations is
consistent, and 3) private inputs have been authenticated.

Definition 1 (Completeness of ADSC-SNARK).
For all λ ∈ N, pp← Gen(λ), (a1, ..., ar) ∈ Rr, with at = (ϕt, xt, st, s

′
t, ωt),

and s′0 ∈ H|S| such that
∧r

t=1(st = s′t−1) and p0 = {}:

Pr

(σp, σv, σa, c0)← Setup(s′0);

νt ← Auth(σa, t, (at,i)i∈X) for t ∈ [1, r] ;
(πt, ct, pt)← Prove(σp, at, νt, pt−1) for t ∈ [1, r] :∧r

t=1 Verify(σv, ϕt, πt, ct, ct−1, t) = 1

= 1.

With knowledge-soundness, intuitively, for each iteration t in which V accepts,
relation R must be satisfied, the prover must know the witness, and the state
between the previous relation and the current relation must be consistent. Addi-
tionally, the private inputs must have been authenticated. This must hold, even
if an adversary prover can query Auth.

Definition 2 (Knowledge-Soundness of ADSC-SNARK). For all PPT ad-
versaries A with oracle access to Auth, there exists a PPT algorithm Extract, such

9

that

Pr

pp← Gen(λ);
(σp, σv, σa, c0)← Setup(s′0);

((πt, ct, ϕt); (xt, st, s
′
t, ωt))←

(AAuth(·) ||Extract)(σp, σv, t, π0) for t ∈ [1, r] :

∨r
t=1

 (ϕt, xt, st, s

′
t, ωt) /∈ R

∨st ̸= s′t−1

∨(t, xt) /∈ X̃

∧Verify(σv, ϕt, πt, ct, ct−1, t) = 1

≈ 0,

where X̃ is the set of tuples (t̃, x̃t) for each query which A made to Auth.

The definition for knowledge-soundness of ADSC-SNARK is a combination
of knowledge-soundness of a regular SNARK in addition to authenticity and
state-consistency. For authenticity, the definition captures chosen message at-
tacks against the authenticating party by giving A oracle access to Auth.

Intuitively, succinctness implies that the proof and the commitment (π, c)
are asymptotically smaller than the relation (excluding public input-output),
and verifying is asymptotically cheaper than checking the relation directly. In
our specific situation with ADSC-SNARKs, both proof size |(π, c)| and runtime
TVerify of Algorithm Verify are even constant in the length of witness ω, the length
of input x, the size of states s. The verifier runtime is linear only in the size of
statement ϕ. We formalize this with the following definition.

Definition 3 (Succinctness of ADSC-SNARK). For all λ ∈ N, pp← Gen(λ),
(a1, ..., ar) ∈ Rr, (ϕt, xt, st, s

′
t, ωt) = at, s′0 ∈ H|s|, (σp, σv, σa, c0) ← Setup(s′0),

t ∈ [1, r], ν ← Auth(σa, t, (at,i)i∈X), p0 = {}, (πt, ct, pt)← Prove(σp, at, ν, pt−1):

|(πt, ct)| ∈ O(1) and TVerify ∈ O(|ϕ|),

i.e., they are constant in |ω|, |x|, |s|, and TVerify is linear in |ϕ|.

2.3 ADSC-SNARK Relation

Relation R in our ADSC-SNARK construction will be given as a Quadratic-
Arithmetic-Program (QAP). QAPs have turned out to be useful in practice,
as there exist straight-forward reductions from Arithmetic Circuits (see [4]) and
from Rank-1-Constraint-Systems (R1CS), a popular type of relation to represent
computations [31].

We define a QAP over the following parameters: a field H, degree d, number
of variables m, and a partition of the variables with index sets Φ,X, S, S′, Ω, such
that |S| = |S′| and Φ∪X ∪S ∪S′ ∪Ω = [1,m]. A QAP over these parameters is
the sequence of polynomials {ui(Z)}i∈[0,m], {vi(Z)}i∈[0,m], {wi(Z)}i∈[0,m], t(Z),
such that ui(Z), vi(Z), wi(Z) have degree equal or less than d− 1 and t(Z) has
degree d.

10

The QAP is satisfied for variables ai ∈ H and constant a0 = 1, if there exists
a polynomial h(Z), such that∑

i∈[0,m]

aiui(Z) ·
∑

i∈[0,m]

aivi(Z)−
∑

i∈[0,m]

aiwi(Z) = h(Z)t(Z). (1)

Setting a0 = 1 conveniently enables reductions from R1CS or Arithmetic
Circuits with constant terms to QAPs.

Discussion Many of the constructions by related works ([20–22]) require a special
non-degeneracy condition for the QAP, which is that the polynomials for i ∈ S∪
S′ or i ∈ X are linearly independent. This is usually achieved by augmenting the
relation by dummy constraints (see e.g. [32]), which increase degree d of the QAP
by the size of the set of indices for the independent polynomials, i.e. |S|+ |S′| or
|X|. This increases prover time and is accounted for as arithmetization overhead
in Table 1. Our construction specifically avoids this requirement.

3 Main ADSC-SNARK Construction

Before presenting our main contribution, the construction of ADSC-SNARK,
we start with a more formal overview and highlight the main ideas to ease
understanding.

3.1 Overview

Our ADSC-SNARK takes the SNARK of Groth [7] as a starting point. There, a
proof comprises 3 group elements [A]1 , [B]2, and [C]1 that the prover derives by
computing linear combinations of elements from their prover key σp. Informally,
the security rationale is that the prover cannot create a valid proof besides by
linearly combining elements from σp, as the verifier will check certain relations
between the proof elements that depend on a set of secret values (α, β, γ, . . .)
drawn randomly during setup. Note that the verifier does not need to see the
secret values in the clear, as they can perform verification with the help of
pairing e. As the prover does not know the secret values either, they can create
a verifying proof only by a (linear) combination the prover key elements that
depend on the secret values, but do not reveal them. In fact, the prover must
use variables (ϕ, x, s, s′, ω) ∈ R as coefficients of these linear combinations for a
proof to verify. Recall that (ϕ, x, s, s′, ω) ∈ R implies that the computation was
carried out correctly.

Our key idea to extend the Groth SNARK such that it also provides state-
consistency and data authenticity is loosely based on the observation made and
used in several other works [20, 21, 33, 34]: proof elements not only allow the
verifier to check the satisfaction of R, but can also act as a commitment to the
variables satisfying R. Intuitively, if you assume that the involved prover key
elements are random, any two different linear combinations of them are also

11

different with high probability. This is similar to the standard Pedersen com-
mitment [35]. Using the commitment property allows for checking between two
different SNARK proofs whether they were carried out on the same (committed)
data. Also, it allows to verify whether the data used in a SNARK proof complies
with the data commited to.

State Consistency: By defining state variables s and s′ as the committed data,
we can use the above technique to achieve state-consistency. More specifically,
the prover outputs a proof πt−1 and a vector commitment ct−1 in step t −
1. ct−1 commits to the state update s′t−1. In the subsequent iteration t, the
prover produces another proof πt (and also another commitment ct). Now, in
this iteration t, the verifier can not only check whether πt is correct, but also
whether state st committed to by some of the elements in πt is the same as
s′t−1 committed to by ct−1. In our ADSC-SNARK construction, we denote ct by
element [Et]1.

Authenticated Data: On a high level, we use a similar technique as for state
consistency to also enable proving data authenticity by letting element [Dt]1
serve as commitment for private input x. First, the authenticating party signs
the commitment with a regular signature scheme. Now the verifier can check
whether the private input variables used for πt match the committed input
variables used for [Dt]1. By also checking the signature on [Dt]1 the verifier
checks that the private input stems from the authenticating party.

Method: To actually verify that two SNARK proofs or a SNARK proof and
a commitment have been computed using the same data, there exist two main
approaches in the literature: Costello et al. [20] split some of the proof elements
of the BCTV14 SNARK [6] into two parts, one part for the committed vari-
ables and the other part for the remaining variables used in the proof. Now, the
commitment part can be combined with proofs of the same relation, but with
different remaining variables. This ensures that the committed variables are the
same across the different proofs. The alternative by Campanelli et al. [21] is
to add an additional intermediate commitment for their modular LegoSNARK
framework that not only allows to connect proofs of the same relation, but also
for different relations and even different SNARKs and commitment schemes.
This approach requires an additional strengthening step of the QAP (increasing
its degree to make polynomials linearly independent) for the prover key elements
to be sufficiently “random” which results in an arithmetization overhead.

In ADSC-SNARKs, we design a novel strategy for checking proofs and com-
mitments for consistency that does not require the strengthening step of the QAP
and reduces the required number of proof elements. For commitments [Dt]1 and
[Et]1, we let Setup generate random group elements from G1. We then subtract
them from prover key elements (

{
Pi(z)

δ

}
i∈S

,
{

Pi(z)
δ

}
i∈S′

,
{

Pi(z)
δ

}
i∈X

) that cor-

respond to the variables for the state st, the state update s′t, and private input
x. This forces the prover to provide commitments Et−1, Et, and Dt with the
same coefficients as used for the modified prover key elements

{
Pi(z)−Rs2si

δ

}
i∈S

12

{
Pi(z)−Ri

δ

}
i∈S′

,
{

Pi(z)−Ti

δ

}
i∈X

). Commitments Et−1, Et, and Dt will be added
by the verifier to the verification equation. If the prover provided the commit-
ments correctly, the additional linear combinations of Ti and Ri will cancel out.
We use additional random secrets ε, κ, η to prevent the prover from mixing co-
efficients across the different commitments.

Summary: In conclusion, our ADSC-SNARK is a Groth16 SNARK with the
following modifications:

– Setup generates additional random G1 elements Ti, Ri and secret F∗
p elements

η, κ, ε.
– Setup subtracts ηRi, κRi, and εTi from the prover key elements correspond-

ing to s, s′, and X.
– Auth computes vector commitment [Dt]1 on the private input data xt and a

signature sig of [Dt]1.
– Prove produces commitments [Et]1 for state-consistency.
– The verifier includes commitments [Et−1]1 , [Et]1, and [Dt]1 in the verifica-

tion equation.
– The verifier checks signature sig on [Dt]1.

3.2 Technical details

In ADSC-SNARKs, public parameters pp = (QAP , G1, G2, GT , e, Fp, r) com-
prise the tuple of relation R = QAP , the descriptions of a pair of groups G1,
G2 with a bilinear map e and target group GT , and a prime field H = Fp such
that |Fp| = p = |G1| and |p| = λ. Parameters pp also include the number of
iterations r. Also, ADSC-SNARKs employ a standard digital signature scheme
(SigGen, SigSign, SigVerify) with

– (sk, pk)← SigGen(λ) generates private key sk and public key pk,
– sig ← SigSign(sk,m) computes a signature sig on a message m using the

private key,
– and b← SigVerify(pk, sig,m) verifies signature sig against message m using

public key pk and outputs a verification bit b.

We begin with the technical details of our ADSC-SNARK construction. For
now, we ignore prover state pt, as it will appear only in the zero-knowledge ver-
sion of our ADSC-SNARKs. To improve readability, we write Pi(z) for βui(z) +
αvi(z) + wi(z). Recall that function s2s maps indices from states S to state
updates S′. This means that if i ∈ S, then ai is a state and as2s(i) is its update.

(σp, σv, σa, c0)← Setup(s′0)

Setup comprises two parts:

1. (σa, σaux)← Setupa():
Pick Ti ←$ F∗

p for i ∈ X.
Compute (sk, pk)← SigGen().
Set σa = (sk, {[Ti]1}i∈X

), σaux = ({[Ti]1}i∈X
, pk).

13

2. (σp, σv, c0)← Setuppv(s
′
0, σaux):

Parse {[Ti]1}i∈X
, pk from σaux.

Pick α, β, γ, δ, κ, η, ε, z ←$ F∗
p, Ri ←$ F∗

p for i ∈ S′.
Compute

σp,1 =

α, {ui(z)}i∈[0,m] ,

{
Pi(z)

δ

}
i∈Ω

,{
Pi(z)−ηRs2s(i)

δ

}
i∈S

,
{

Pi(z)−κRi

δ

}
i∈S′

,{
Pi(z)−εTi

δ

}
i∈X

,
{

zit(z)
δ

}
i∈[0,d−2]

, {Ri}i∈S′

σp,2 =

(
β, {vi(z)}i∈[0,m]

)
σv,1 =

({
Pi(z)
γ

}
i∈{0}∪Φ

)
σv,2 =

(
γ, δ, ε, η, κ

)
.

Set σp = ([σp,1]1 , [σp,2]2),
and σv = ([σv,1]1 , [σv,2]2 , [αβ]T , pk).
Compute c0 = [E0]1 =

∑
i∈S′ s′0,posS′ (i)

[Ri]1.

νt ← Auth(σa, t, xt)

Parse sk, {[Ti]1}i∈X
from σa.

Compute νt = ([D]1 , sig)
with D =

∑
i∈X aiTi, and sig = SigSign(sk, ([D]1 , t)).

(πt, ct)← Prove(σp, at, νt)

Parse [D]1 , sig from νt.
Compute the coefficients of polynomial h(Z) by polynomial division:

h(Z) = ∑
i∈[0,m]

at,iui(Z) ·
∑

i∈[0,m]

at,ivi(Z)−
∑

i∈[0,m]

at,iwi(Z)

 /t(Z).

Compute πt = ([A]1 , [B]2 , [C]1 , [D]1 , sig), ct = [E]1, where

A = α+
∑

i∈[0,m]

aiui(z), B = β +
∑

i∈[0,m]

aivi(z),

C =
∑
i∈Ω

aiPi(z)

δ
+
∑
i∈S

ai
(
Pi(z)− ηRs2s(i)

)
δ

+
∑
i∈S′

ai (Pi(z)− κRi)

δ
+

∑
i∈X

ai (Pi(z)− εTi)

δ
+

h(z)t(z)

δ
,

E =
∑
i∈S′

aiRi.

14

v ← Verify(σv, ϕt, π, ct, ct−1, t)

After parsing [At]1, [Bt]2, [Ct]1, [Dt]1, sigt from πt,
setting [Et]1 = ct and [Et−1]1 = ct−1 and parsing at,i from ϕt for i ∈ Φ and
at,0 = 1,
accept proof iff

[At]1 · [Bt]2 = [αβ]T +

 ∑
i∈{0}∪Φ

at,i

[
Pi(z)

γ

]
1

 · [γ]2 + [Ct]1 · [δ]2

+ [Dt]1 · [ε]2 + [Et−1]1 · [η]2 + [Et]1 · [κ]2

and
SigVerify(pk, sigt, ([Dt]1 , t)) = 1.

3.3 Security Analysis and Zero-Knowledge

Due to space constraints, we defer the detailed security analysis to Appendix A.
Similarly, the zero-knowledge variation of our main construction is presented in
Appendix B.

3.4 Optimizations

The construction above contains a series of optimizations that might be of inde-
pendent interest.

– For the setting without zero-knowledge, the randomization factors originally
used by Groth [7] can be set to zero, which eliminates the terms with A and
B in the equation for proof element C. Therefore, the terms for B do not
need to be calculated both in groups G1 and G2, but only in G1, reducing
prover time.

– The prover-key contains direct evaluations of the polynomials ui(z) and
vi(z). This is suggested in the paper by Groth [7], but the presented con-
struction there shows a version where instead the prover-key contains mono-
mials zi. The latter variant requires the prover to do additional Fast-Fourier-
Transformations (FFTs) to transform coefficients of ui and vi to the mono-
mial basis.

– Subtracting the randomly drawn elements [Ti]1 and [Ri]1 for a commitment c
from the corresponding prover key elements [Pi(z)/δ]1 in σp, and letting the
verifier add c directly to the verification equation is a new efficient method to
check, whether commmitted variables for commitment c match the variables
for proof π. It does not require an additional strengthening of the QAP and
does not require additional intermediate proof elements.

15

3.5 Extension: Multiple Authenticators

It is possible to have several independent authenticating parties J which each
can only authenticate a subset Xj of the inputs, without the need of the authen-
ticating parties to communicate with each other. In order to ensure that inputs
have been provided by the correct authentication party,
Setupa produces multiple key pairs for the signature scheme:

(skj , pkj)← SigGen() for j ∈ J

and distributes authentication key σa,j = (skj , {Ti}i∈Xj
) to authenticating party

j.
Each authenticating party authenticates its input subset

νj,t ← Auth(σa,j , t, xj,t)

and sends it to the prover.
The prover includes all [Dj]1 , sigj from νj,t in proof πt.
The verifier checks the signatures of every [Dj]1:

SigVerify(pk, sigj,t, ([Dj,t]1 , t)) = 1.

It computes [Dt]1 =
∑

j∈J [Dj,t]1 and uses it to check the original verification
equation. It rejects the proof, if any of the checks fails and accepts otherwise.

Above extension will increase the proof size by |J | − 1 signatures and G1

elements. It will also increase verification time by the additional |J |−1 signature
verifications.

3.6 Relation Independent Authentication

A property of related constructions such as AD-SNARK [22] or SPHinx [23] is
that the authentication is independent of the relation R, such that data can
be authenticated, before a relation is decided. This is also the case with our
construction: If R has not been determined yet, but one wants to already au-
thenticate data, one can let a trusted party run Setupa to obtain authentication
key σa and auxiliary information σaux. Note that Setupa does not require any
inputs related to R. The trusted party then stores σaux for setting up σp and σv

for R at a later point in time.

4 Evaluation

We compare the performance of the full zero-knowledge version of our ADSC-
SNARK (see Appendix B.2) against the folklore (“strawman”) approach where a
regular SNARK is expanded with authenticated input data and state-consistency
by arithmetizing a signature verification algorithm as well as a hash function.
Additionally, we compare our ADSC-SNARK with two more recent, specialized
SNARKs. First, we compare it with the AD-SNARK by Backes et al. which

16

allows proofs for SNARKs on authenticated data [22] and, second, a construc-
tion that we name LegoGro SC-SNARK. The latter is a composition of two
LegoGro16 SNARKs from the LegoSNARK framework [21] achieving state-
consistency through functional composition.

We stress that neither AD-SNARKs (Backes et al.) nor LegoGro SC-SNARKs
provide the same properties as the full ADSC-SNARK construction. They either
provide authentication or state consistency, but not both at the same time.

4.1 Implementation Details

We have implemented our ADSC-SNARK, the Strawman ADSC-SNARK and the
LegoGro SC-SNARK in the popular libsnark C++ library2. Libsnark already
contains an implementation of AD-SNARK.

ADSC-SNARK We have implemented the zero-knowledge version of our ADSC-
SNARK. We instantiate the signature scheme by the OpenSSL implementation
of EdDSA.

Strawman ADSC-SNARK The strawman SNARK for relation R is a Groth16
SNARK for an augmented relation Ra = R ∧ Rx ∧ Rs ∧ Rs′ ∧ Ri. Here, Rx en-
codes a signature verification for the private input x. Relations Rs and Rs′

encode collision resistant hash functions applied to state s and state-update s′.
Finally, Ri encodes a counter-increment preventing that signed private input can
be reused across iterations. The hash outputs are made public inputs-outputs
of the Groth16 SNARK and are considered part of the proof of the SNARK.
State consistency can be checked in the verification algorithm by checking equal-
ity between corresponding state hashes additionally to the SNARK verification
equation.

While integrating Rx and Rs into SNARKs have previously been found to
be expensive (e.g., Backes et al. assume at least 1000 constraints per private
input for a signature verification arithmetization [22]), recent progress has led to
significant improvements, and our implementations build on these improvements
for fair comparisons. Specifically, for the signature verification, we have modified
the already efficient EdDSA verification gadget in the open-source gadget library
ethsnarks3 by instantiating it with the SNARK-friendly Poseidon hash described
by Grassi et al. [36]. We have further reduced the constraint count by fixing the
public key before arithmetization. Elliptic curve operations are efficiently realized
on a SNARK-friendly curve with curve points represented in affine montgomery
coordinates. Scalar multiplication uses fewer constraints due to 3 bit lookup
tables. This results in a constant number of 2126 constraints per signature and
additionally 72 constraints per private input. We assume that there is a single
signature for all inputs when the strawman approach is taken as the baseline
2 https://github.com/scipr-lab/libsnark
3 https://github.com/HarryR/ethsnarks

17

performance. This is the most conservative assumption, so speedups will likely
be higher in practice than the reported numbers. Note that, in contrast to this,
for our ADSC-SNARK, there is no difference in prover performance whether
the message authentication codes have been produced with the same private
authentication key, or if many private authentication keys have been used.

For Rs and Rs′ , we use the same Poseidon hash as in Rx, resulting in 144
constraints per state variable in total, as there are two hash functions for each
state. Relation Ri adds one plain constraint and one state variable, yielding 145
additional constraints in total.

AD-SNARK [22] Backes et al. provide a libsnark implementation of their AD-
SNARK construction, supporting both a designated and a public verfier version.
We benchmark against both versions.

LegoGro SC-SNARK The LegoSNARK framework by Campanelli et al. [21]
enables the composition of proofs including function composition. That is, for
functions y = f(x), z = h(y) and SNARK algorithms SNARKf , SNARKh,
the framework provides a compiler to construct a new SNARK from SNARKf

and SNARKh to create proofs for the relation representing z = h(f(x)). For
our setup, we can view the iterative application of some function f on state
s as a function composition of f with itself and therefore use the LegoSNARK
framework to achieve state-consistency. For that, we use the LegoGro16 primitive
described by Campanelli et al.. We define two index sets for state s and state-
update variables s′ which is equivalent to two subdomains in their paper. We
implemented LegoGro16 in libsnark and apply their composition scheme from
their Theorem 3.1 recursively to get LegoGro SC-SNARK.

4.2 Benchmarks

We have run the benchmarks with the BN-254 elliptic curve which is a stan-
dard choice for pairing-based SNARKs. We have instrumented the code with
timing functions provided by libsnark that use the per-process CPU timer. We
have compiled the code with the GCC C++ compiler set to optimization level 3
and ran benchmarks on an i5-3570K Intel Core Processor with a Ubuntu 24.04
operating-system and 24GB RAM. We have not used libsnark’s multiprocess
capabilities and ran the benchmarks within a single thread for better reprod-
ucability. For each data point, we have constructed a basic relation with 215

constraints as well as the provided number of inputs and states. The size of the
basic relation corresponds to a medium sized relation.

We have evaluated our ADSC-SNARK as well as LegoGro SC-SNARK and
AD-SNARK for up to |X| = 220 private inputs and |S| = 220 states. We eval-
uated the Strawman SNARK for up to |X| = 214 private inputs and |S| = 214

states. For a larger number of inputs and states, our 24 GByte RAM machine
runs out of memory when running the Strawman SNARK.

18

The number of public input-output variables was set to 0. This allows to
compare against the implementation of Backes’ AD-SNARK, as their imple-
mentation does not support public input-outputs additional to private inputs
without modifying the code.

Note: We stress that we compare ADSC-SNARKs with LegoGro SC-SNARKs
and AD-SNARKs only to put the performance of ADSC-SNARKs into perspec-
tive. Neither LegoGro SC-SNARKs nor AD-SNARKs provide the same security
properties as ADSC-SNARKs, see Table 1.

0 5 10 15 20 25 30

AD-SNARK (dv)
AD-SNARK (pv)

LegoGro
Strawman

Ours

20.3

24.4

8.9

4.4

6

TVerify (ms)

Fig. 1. Verifier runtimes of our zero-knowledge ADSC-SNARK, strawman SNARK,
LegoGro SC-SNARK and AD-SNARK designated verifier (dv) and public verifier (pv).
AD-SNARK is evaluated for |X| = 1 private inputs. LegoGro SC-SNARK and AD-
SNARK do not provide both state consistency and authenticated input data.

Figure 1 compares TVerify of the different SNARKs. The verifier runtimes
of our ADSC-SNARK, the strawman SNARK, and LegoGro SC-SNARK are
constant. For AD-SNARK, the plot shows the runtime with |X| = 1 private
inputs. Compared to AD-SNARK, our SNARK verifier needs 70% (designated
verifier) and 75% (public verifier) less runtime. However, as their verifier iterates
over all private input labels, the AD-SNARK verifier is asymptotically linear with
respect to the number of private inputs and therefore will increase in settings
with many inputs. This is even more significant for the public verifier version,
where the verifier needs to compute a linear number of pairing evaluations with
respect to |X| (see Table 1 for details). For |X| = 215 private inputs, TVerify

is 101.4ms for the designated verifier version and 34.9 s for the public verifier
version. The strawman SNARK has the fastest verifier runtime as it invokes the
unmodified Groth16 verifier with a hash digest as a public input. Our ADSC-
SNARK is faster than the LegoGro SC-SNARK (33% less runtime), because the
LegoGro16 verifier has additional overhead to allow for state-consistency between
different proof systems, while our construction is optimized to the setting of a
single proof system and a single relation. The AD-SNARK verifier is the slowest,
even with the designated verifier version and just one input.

Table 3 presents the proof size for each proof system. The center column
shows the elements of each proof, the right column shows the actual size after

19

Table 3. Proof size

System Elements Size

Strawman SNARK 2×G1, 1×G2, 1× Fr 166B
LegoGro SC-SNARK 5×G1, 1×G2 236B

AD-SNARK (dv) 8×G1, 3×G2 406B
ADSC-SNARK 5×G1, 1×G2, 1× sig 271B

serialization. The serialization routines compress elliptic curve points by storing
just one coordinate and a sign bit. However, there is additional overhead for
paddings to align objects to 8-bit data chunks and for additional separation to-
kens between data objects. While the strawman SNARK achieves the smallest
proofs, our SNARKs and LegoGro SC-SNARK are still smaller than the desig-
nated verifier AD-SNARK. The proof of the public verifier AD-SNARK has |X|
additional elements from G2 as well as |X| signatures.

27 29 211 213 215 217 219

101

102

|X|

T
P
ro
ve

(s
)

ADSC-SNARK (ours) Strawman SNARK
AD-SNARK

Fig. 2. Prover runtime, varying private inputs. AD-SNARK does not provide state
consistency.

Figure 2 compares the prover runtime with respect to the number of private
inputs. The prover runtime for the designated and public AD-SNARK verifier is
the same. For 214 inputs, our ADSC-SNARK is 29× faster than the strawman
SNARK and 1.6× faster than AD-SNARK. Note, that AD-SNARK does not
support state-consistency. Figure 2 does not include LegoGro SC-SNARK, as it
does not support private inputs.

Figure 3 compares the prover runtime with respect to the number of states.
For 214 states, our zero-knowledge ADSC-SNARK is 39× faster than the straw-
man SNARK and 1.2× faster than LegoGro SC-SNARK. Figure 3 does not
include AD-SNARK, as it does not support state consistency.

20

27 29 211 213 215 217 219

101

102

|S|

T
P
ro
ve

(s
)

ADSC-SNARK (ours) Strawman SNARK
LegoGro SC-SNARK

Fig. 3. Prover runtime, varying states. LegoGro SC-SNARK does not provide authen-
ticated data.

Table 4. Prover runtime for strawman SNARK vs. ADSC-SNARK and speedup factor
for varying states and inputs for a small relation with 210 constraints. |X|: number of
inputs, |S|: number of states.

|S| 20 27 214

|X| Strawman Ours Speedup Strawman Ours Speedup Strawman Ours Speedup

20 0.64 s 0.25 s ×2.5 3.80 s 0.32 s ×11.9 303 s 4.38 s ×69
27 2.46 s 0.27 s ×9.1 5.05 s 0.33 s ×15 303 s 4.30 s ×70
214 154 s 1.04 s ×147 155 s 1.11 s ×140 447 s 5.03 s ×89

21

Table 4 shows the prover runtimes of the strawman SNARK and our zero-
knowledge ADSC-SNARK as well as the ratio between the runtimes with respect
to both the number states and private inputs. The number of private inputs and
states is at most 214 due to the heavy memory requirements of the strawman
SNARK. To set the effects of the input and state size on the prover runtime in
relation to the constraint size of the base relation, we chose a smaller relation
with 210 constraints. We do not include AD-SNARK or LegoGro SC-SNARK, as
they only support either states or private inputs but not both. The table shows
a significant speedup in prover time that increases with the number of states
and inputs, up to about a factor of 150.

27 29 211 213 215 217 219

100

|X|

T
A
u
th

(s
)

ADSC-SNARK (ours) Strawman SNARK
AD-SNARK (dv) AD-SNARK (pv)

Fig. 4. Authenticator runtime. AD-SNARK does not provide state consistency.

Figure 4 compares the authenticator runtimes of our zero-knowledge ADSC-
SNARK, Backes et al.’s AD-SNARK with the public verifier (pv) version and the
designated verifier (dv) version, as well as the strawman SNARK. The runtime
of the strawman SNARK and the public verifier AD-SNARK are the largest and
overlap in most of the plot. The designated verifier AD-SNARK is the fastest,
our ADSC-SNARK is in between. Note, however, that our ADSC-SNARK is
publicly verifiable in contrast to the faster AD-SNARK version.

Summarizing, our construction scales well with the number of private in-
puts and states and has good concrete prover performance. It is significantly
faster than the strawman approach and even outperforms AD-SNARK [22] and
LegoGro SC-SNARK due to the optimizations presented earlier.

5 Applications

Many real-world computations are both stateful and iterative. ADSC-SNARKs
can be used to make outputs of such a computation verifiable, even if the com-
putational capabilities and communication bandwidth of the verifying party are

22

limited. Our motivating application is a digital control system. To demonstrate
the feasibility of applying ADSC-SNARK in this setting, we arithmetize a cy-
bernetic control law for a commercial quadrotor (“quadcopter”) UAV attitude
stabilization system and setup a simulation for evaluation.

5.1 Control Systems

A typical digital control system comprises sensors that measure some state of
the system to be controlled, a control unit that uses sensor measurements to
compute control outputs, and actuators that manipulate the system accordingly.
In most cases, control units have an internal state that is periodically updated
and compute outputs at a fixed frequency. Prominent examples are flight control
in aircraft, electrical power grid control, power generation plant control or control
in automated industrial processes.

Due to the complexity of these systems, there often exist trust boundaries
or no trust between components. For example, in a modern commercial aircraft
different suppliers provide sensors, electronic control units, and actuators [37].
Also, the systems’ complexity and their interconnectivity results in a large attack
surface. Yet, many of these applications are safety critical, i.e., a malfunction or
adversarial tampering can lead to loss of lives.

Applying ADSC-SNARK in such a setting is beneficial for several reasons.
First, SNARKs could be used as a security measure to prevent cyber-attacks
on control units or communication channels. The idea would be to require the
commands from a control unit to carry a proof about correct computation on
authenticated inputs. Second, in highly critical areas such as aviation, hardware
failures of control units can lead to complex and unpredictable failure behaviour
which must be mitigated [38]. Current solutions to detect these failures require
using redundant computers and comparing their outputs. SNARKs could be
used as an alternative for detecting malfunctions reducing the number of redun-
dant components [27]. An ADSC-SNARK would fit this application particularly
well: sensors would authenticate their measurements, the control unit provides
in each iteration control outputs together with a proof of output correctness,
and actuators verify that outputs have been correctly computed. In case of a
detected malfunction, the system could then perform graceful degradation (such
as automated landing) or require manual intervention.

Simulation To evaluate the feasibility of applying ADSC-SNARKs in such an
setting, we set up a simulation of four sensors, a control unit, and an actuation
unit. This setup reflects a standard quadrotor flight control system and is shown
in Figure 5. The four sensors measure 6 physical properties. Every physical prop-
erty is measured twice to cope with sensor failures. Sensors 1 and 2 both measure
the state of an input device, e.g., the deflection of a control stick in three axes
cx, cy, and cz. Sensors 3 and 4 measure the physical state of the system, e.g.,
the attitude of a quadrotor in Euler angles Θx, Θy, and Θz. They periodically
send messages containing the measurements and corresponding ADSC-SNARK’s

23

cx/y/z,1, sig1

cx/y/z,2, sig2

Θx/y/z,4, sig4

Θx/y/z,3, sig3

ox/y/z,
π, c

Plant

Control Unit

Actuation
System

Sensor 4

Sensor 3

Sensor 1

Sensor 2

Input
Device

Fig. 5. Simulation scenario of a verifiable control system for quadrotor stabilization.

Mon

Mon

Mon

Filter

Filter

Filter

Limit

Limit

Limit

+-+-

+-+-
+-+-

PID

PID

PID

Mon

Mon

Mon

cx,1
cx,2

oy

oz

ox

cy,1
cy,2
cz,1
cz,2

Θx,3
Θx,4

Θy,3
Θy,4

Θz,3
Θz,4

Fig. 6. Quadrotor attitude stabilization control law, 3-dimensional PID controller

message signatures sig to the (untrusted) control unit. Sensors each have their
own authentication key as described in Section 3.5. The control unit applies a
cyber-physical control law to compute outputs ox, oy, and oz and it generates a
proof π that is sent to the actuation system along with the outputs. The actua-
tion system uses ADSC-SNARK’s verification algorithm to check the outputs in
each iteration. The plant in Figure 5 represents the physics of the system to be
controlled, in this case the dynamics and kinematics of the quadrotor. As this
part is not relevant for our evaluation, it is not realized in the simulation.

Control Law The specific control law evaluated and proven by the control unit
is shown as a block diagram in Figure 6. It comprises the standard elements
of attitude control laws for quadcopters [39–41], including a three-degrees of
freedom PID controller and various signal filtering and shaping elements.

First, for each input signal, a monitoring function Mon is applied. Mon checks
that the difference of redundant input signals is within a defined limit and com-
putes an average. This is a common technique in safety-critical systems to ensure
correctness of sensor inputs. If input signals differ by too much, for example be-
cause one of the hardware sensors provides erroneous signals, the control unit
will not be able to produce a verifying proof.

24

The input signals are further processed by a first-order low-pass Filter. This
is also a common technique to attenuate high-frequency noise from a signal in
control systems. Each Filter has one state. In the next step, the filtered signal
is constrained by a set of bounds. The output of Limit is the input value, if it
lies within the bounds, or the limit value, if it is outside the bounds.

Finally, the difference of the limited command and the measured signal is
given as an input to PID, a discrete Proportional-Integral-Derivative filter, which
has two states. In total, the controller has 12 inputs, 3 outputs, and 9 states.
The relation representing the evaluation of this control law is expressed in R1CS
with 1065 constraints.

Benchmarks We have measured I) the runtime for the control unit to pro-
cess the input data and to create a proof for a valid computation, and II) for
the actuation system to verify the command from the control unit. This in-
cludes serializing, writing, reading and deserializing exchanged data in addition
to executing the ADSC-SNARK algorithms. Additionally, the size of the proof
including commitment is reported.

For sake of simplicity, the simulation does not run on different computers
sending the data over a network, but instead runs the logic of the sensors, control
unit and actuation system on the same machine.

The numbers reported include the walltime time passed including reading
and writing in- and output, not just the processor time as in Section 4. It does
not include one-time setup and initialization computations, such as deserializing
and preprocessing the verifier-key. The reported proof size includes overhead
such as separation characters used in the serialization routines

If the untrusted control unit is expected to not behave maliciously, but hard-
ware faults occur statistically, e.g., randomly with a certain probability, one can
significantly reduce the security parameter of SNARKs [27]. Consequently, we
present benchmarks for a choice of different elliptic curves and security param-
eters:

– BLS12-381: A Barreto-Lynn-Scott elliptic curve [42] with embedding degree
12 and prime group order of 255 bits,

– BN254, BN183, BN124: Barreto-Naehring elliptic curves [43] with embedding
degree 12 and 254, 183, and 124 bits prime group order,

– GMV181, GMV97, GMV58: Galbraith-McKee-Valença elliptic curves [44]
with embedding degree 6 and 181, 97, and 58 bits prime group order.

Curve BLS12-381 is the elliptic curve used for the ZCash cryptocurrency
and specified in [45]. BN254 was constructed by Ben-Sasson et al. [6] and is the
default curve in libsnark, also referred to as alt_bn128. GMV181 is the curve
used by Ben-Sasson et al. [5]. We constructed and implemented the other curves
according to the methods of Barreto and Naehrig as well as Galbraith et al.. The
curve parameters and implementations can be found in the accompanying source
code. Table 5 shows runtime measurements and the communication overhead for
sensors (authentication tag size) and control unit (proof size). The simulation

25

Table 5. Runtime and communication of digital control system demo. Proof size in-
cludes proof and commitment.

Elliptic
Curve

Control
Unit

runtime

Actuation
System
runtime

Proof
size

BLS12-381 165.8ms 12.0ms 712B
BN254 82.3ms 6.9ms 568B
BN183 39.5ms 3.7ms 496B
BN124 35.2ms 3.3ms 442B
GMV181 34.2ms 3.2ms 512B
GMV97 24.9ms 2.5ms 432B
GMV58 13.8ms 1.5ms 352B

has been run with the same settings as the benchmarks in Section 4. The code
is compiled with GCC in optimization level 3 and executed on an Intel Core
i5-3570K Processor.

The long runtime for the control unit when using elliptic curves with a large
prime group order restricts the update rate in this scenario to frequencies be-
tween 1 and 10Hz, while smaller prime group elliptic curves allow for up to 65Hz
update frequency. Again, we stress that smaller prime group curves do not pro-
vide security against a malicious adversary, but can be employed to improve the
integrity of computations susceptible to random hardware malfunctions. Typical
update rates for flight control in large aircraft lie in the range of 25Hz (Space
Shuttle [46]) and 100Hz (Boeing Fly-by-Wire system [47]) and small quadrotors
have update rates from 50Hz up to several kHz [41]. We conclude that for sim-
ple control laws, reductions in prover runtime by ADSC-SNARK over previous
approaches enable a usage in real-time systems with moderate timing require-
ments for protection against random hardware faults. For more complex control
laws and with requirements to protect against intentional tampering, the prover
runtimes currently still limit the applicability of this approach to systems with
small update frequencies.

5.2 Further Applications

We briefly present additional applications for ADSC-SNARKs to show the use-
fulness of our construction.

Trustless Audio and Video Streaming With the rapid increase of photo-
realism and quality of machine generated audio and video, it will be hard to
distinguish artificial from actual video and audio footage leading to fake news
and targeted misinformation campaigns. This could be tackled by letting the
capturing hardware sign audio or video streams. If the stream, however, is pro-
cessed by compression methods or by applying filtering, such a signature cannot
be verified anymore. Such compression methods or filters can be stateful, as their

26

outputs might depend not only on the current, but on previous frames of the
stream. ADSC-SNARK can solve this problem by enabling proofs, that signed
and streamed data has undergone a set of allowed transformations, and therefore
make the final result traceable to the recording hardware. Compared to previous
folklore approaches that perform expensive signature and hash function evalu-
ations within the circuits, our ADSC-SNARK significantly reduce the overhead
in this already computationally intensive application.

Stateful Machine Learning Some deep neural network types including recur-
rent neural networks and long short-term memory networks are stateful. Com-
putationally expensive instances usually do not directly run on consumer’s hard-
ware. Instead, they are outsourced to server centers. In such a setting, a user
might whish to verify, that the correct model was applied to its query with-
out needing to trust the service provider. Modern machine learning models can
also take external data as an input and the user might want to be asserted,
that this data originates from a trusted source. In such a case, ADSC-SNARKs
make model outputs verifiable without disclosing inputs while at the same time
reducing the additional overhead introduced by folklore approaches.

6 Related Work

This work is the first to explicitly consider proofs of stateful computations and
on authenticated data, both at the same time without arithmetizing signatures
or hashes. In this section, we discuss methods that achieve either one of these
properties.

Starting with proofs on authenticated data, some works describe the folklore
approach of arithmetizing an entire signature verification algorithm [20, 25] or
parts thereof [26]. The first SNARK-based solution that does not require arith-
metizing a signature verification algorithm is AD-SNARK by Backes et al. [22].
AD-SNARK comes in two flavors: A designated verifier version and a public ver-
ifier version. The latter is, unfortunately, not succinct, as proof size and verifier
runtime are linear in the size of signed input data. More recently, SPHinx [23]
was designed, which is a publicly verifiable SNARK for proofs on authenticated
data with proof size constant in the size of signed input data. However, veri-
fication time is linear in the number of signed data items. VerITAS [24] aims
to prove that only a set of allowed transformations was applied to a signed im-
age. They present two modes, where the first mode is a very efficient hashing
algorithm to be arithmetized. The second mode is similar to our construction,
where the signer signs a commitment to the image. The prover then applies a
modified SNARK proving algorithm, which is based on the Plonk proof system.
The modified SNARK prover proves that the input-image corresponds to the
commitment without a need to arithmetize the commitment algorithm.

A different line of works on proofs of computations over authenticated data
are homomorphic message authentication codes [48–50] and their publicly verifi-
able counterpart: homomorphic signatures [51, 52]. However, these constructions

27

are either concretely inefficient as they build on fully homomorphic encryption
([48]), or on cryptographic multi-linear maps ([50, 52]), or they are not suc-
cinct ([49, 51]). So, either the proof size or the verification time increase at least
linearly with the size of the computation. Furthermore, the class of supported
computations is more restricted than SNARK-based solutions.

Next, there exist several works on proofs of stateful computations. Our notion
of state-consistency stipulates schemes facilitating multiple proofs over a set
of shared data which we refer to as the state. One line of work follows the
folklore approach of arithmetizing collision-resistant hash functions [28] or more
complex structures such as Merkle-trees [16, 29] or RSA acumulators [30]. These
approaches significantly increase the size of the relation and therefore prover
runtime.

Gepetto [20] introduces an approach that does not increase the size of the
relation. It extends the Pinocchio SNARK [4] to a commit-and-prove scheme,
enabling proofs on relations with a shared state. Campanelli et al. [21] extend
this idea by making the commitment independent of the relation and the proof
system, allowing proofs from different proving schemes to share state. There is
a large line of work on various other commit-and-proof schemes that could be
used for state consistency as well [33, 34, 53].

A somewhat orthogonal approach to the idea of stateful proofs is incremen-
tally verifiable computation (IVC) [17, 54, 55] which also considers proofs over
iterative computations with some shared state but requires that a single succinct
proof guarantees the correctness of all iteration steps instead of a single step.
While this is a stronger, useful property for many applications, practical im-
plementations are concretely expensive, as they require either arithmetizing an
entire proof verification algorithm, making use of proof aggregation schemes, or
proving the folding of several SNARK relations, which adds additional overhead
to the prover. Note that in our setting, we aim for the ability of the verifier to
immediately check a computational output in each iteration.

7 Conclusion

In this paper, we have introduced ADSC-SNARKs, a generalization of SNARKs
that add input data authentication and state consistency over multiple execu-
tions. Including these two properties in SNARKs is important for many real-
world applications including control systems, but also in various streaming, or
machine learning applications.

ADSC-SNARKs combine authentication of input data with state consistency
in an efficient manner by careful modifications and optimizations to previous
works on achieving the properties separately. Compared to a naïve solution,
ADSC-SNARK achieve a 89× reduction in prover time. Compared to related,
more efficient, approaches, ADSC-SNARK achieve better prover time, verifica-
tion time and smaller proof size.

28

Bibliography

[1] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
Extractable Collision Resistance to Succinct Non-Interactive Arguments of
Knowledge, and Back Again. In Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ACM Conferences, pages 326–349.
ACM, 2012.

[2] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Os-
trovsky. Succinct Non-interactive Arguments via Linear Interactive Proofs.
In Theory of Cryptography: 10th Theory of Cryptography Conference, pages
315–333. Springer, Berlin, Heidelberg, 2013.

[3] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic Span Programs and Succinct NIZKs without PCPs. In Advances
in Cryptology – EUROCRYPT 2013, pages 626–645. Springer, Berlin, Hei-
delberg, 2013.

[4] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on
Security and Privacy, pages 238–252. IEEE, 2013.

[5] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying Program Executions Succinctly
and in Zero Knowledge. In Proceedings of the 33rd Annual International
Cryptology Conference, pages 90–108. Springer, Berlin, Heidelberg, 2013.

[6] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
23rd USENIX Security Symposium, pages 781–796. USENIX Association,
2014.

[7] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In
Advances in Cryptology – EUROCRYPT 2016, pages 305–326. Springer
Berlin Heidelberg, 2016.

[8] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2087–2104. ACM, 2017.

[9] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, editor, Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, ACM Digital Library, pages 2111–2128. Association for Computing
Machinery, 2019.

[10] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive arguments
of Knowledge. Cryptology ePrint Archive, pages 1–34, 2019.

[11] Srinath Setty. Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup. In Daniele Micciancio and Thomas Ristenpart, editors,

Advances in Cryptology – CRYPTO 2020, volume 12172 of Springer eBook
Collection, pages 704–737. Springer International Publishing and Imprint
Springer, 2020.

[12] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent
zkSNARKs. Cryptology ePrint Archive, 2020.

[13] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zkSNARKs with Uni-
versal and Updatable SRS. In Anne Canteau and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, Lecture Notes in Computer
Science, pages 738–768. Springer, Cham, 2020.

[14] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from
DARK Compilers. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Springer eBook Collection, pages 677–
706. Springer International Publishing and Imprint Springer, 2020.

[15] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-Time and Field-Agnostic SNARKs for
R1CS. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology – CRYPTO 2023, Lecture Notes in Computer Science, pages
193–226. Springer Nature Switzerland and Imprint Springer, 2023.

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scal-
able Zero Knowledge via Cycles of Elliptic Curves. In Juan A. Garay and
Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, volume
8617 of Lecture Notes in Computer Science, pages 276–294. Springer Berlin
Heidelberg, 2014.

[17] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes. In Advances in Cryp-
tology - CRYPTO 2022, pages 359–388. Springer, Cham, 2022.

[18] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive Arguments
for Customizable Constraint Systems. In Leonid Reyzin and Douglas Ste-
bila, editors, Advances in Cryptology – CRYPTO 2024, Lecture Notes in
Computer Science, pages 345–379. Springer Nature Switzerland and Im-
print Springer, 2024.

[19] Liam Eagen and Ariel Gabizon. ProtoGalaxy: Efficient ProtoStar-style fold-
ing of multiple instances. Cryptology ePrint Archive, pages 1–18, 2023.

[20] Craig Costello, Cedric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Ver-
satile Verifiable Computation. In 2015 IEEE Symposium on Security and
Privacy, pages 253–270. IEEE, 2015.

[21] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2075–2092. ACM, 2019.

[22] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk.
ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authen-
ticated Data. In 2015 IEEE Symposium on Security and Privacy, pages
271–286. IEEE, 2015.

30

[23] Dario Fiore and Ida Tucker. Efficient Zero-Knowledge Proofs on Signed
Data with Applications to Verifiable Computation on Data Streams. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 2022.

[24] Trisha Datta, Binyi Chen, and Dan Boneh. VerITAS: Verifying Image
Transformations at Scale. Cryptology ePrint Archive, 2024.

[25] Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T-H. Hubert Chan,
Charalampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi.
C∅C∅: A Framework for Building Composable Zero-Knowledge Proofs.
Cryptology ePrint Archive, 2015.

[26] Zhiguo Wan, Zhangshuang Guan, Yan Zhou, and Kui Ren. zk-AuthFeed:
How to Feed Authenticated Data into Smart Contract with Zero Knowledge.
In 2019 IEEE International Conference on Blockchain, pages 83–90. IEEE,
2019.

[27] Johannes Reinhart, Bastian Luettig, Nicolas Huber, Julian Liedtke, and
Bjoern Annighoefer. Verifiable Computing in Avionics for Assuring
Computer-Integrity without Replication. In Digital Avionics Systems Con-
ference 2023, pages 1–10, 2023.

[28] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 341–357. ACM, 2013.

[29] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast
reductions from RAMs to delegatable succinct constraint satisfaction prob-
lems. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 401–413. ACM Press, 2013.

[30] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. Scaling Ver-
ifiable Computation Using Efficient Set Accumulators. In Proceedings of the
29th USENIX Security Symposium, pages 2075–2092. USENIX Association,
2020.

[31] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio,
and Jordi Baylina. Circom: A Circuit Description Language for Building
Zero-Knowledge Applications. IEEE Transactions on Dependable and Se-
cure Computing, 20(6):4733–4751, 2023.

[32] Bryan Parno. A Note on the Unsoundness of vnTinyRAM’s SNARK. Cryp-
tology ePrint Archive, pages 1–4, 2015.

[33] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohri-
menko, and Bryan Parno. Hash First, Argue Later. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 1304–1316. ACM, 2016.

[34] Helger Lipmaa. Prover-Efficient Commit-and-Prove Zero-Knowledge
SNARKs. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, Progress in cryptology - AFRICACRYPT 2016, Lecture
notes in computer science Security and cryptology, pages 185–206. Springer,
2016.

31

[35] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In Joan Feigenbaum, editor, Advances in Cryptol-
ogy — CRYPTO ’91, SpringerLink Bücher, pages 129–140. Springer-Verlag
Berlin Heidelberg, 1992.

[36] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A New Hash Function for Zero-
Knowledge Proof Systems. In Proceedings of the 30th USENIX Security
Symposium, pages 519–535. USENIX Association, 2021.

[37] NBC. Hundreds of suppliers, one Boeing 737 airplane, 2010.
https://www.nbcnews.com/id/wbna36507420.

[38] Kevin Driscoll, Brendan Hall, Michael Paulitsch, Phil Zumsteg, and Håkan
Sivencrona. The real Byzantine Generals. In The 23rd Digital Avionics
Systems Conference, pages 6.D.4–61–11. IEEE Operations Center, 2004.

[39] Atheer L. Salih, M. Moghavvemi, Haider A. F. Mohamed, and Khalaf Sal-
lom Gaeid. Modelling and PID controller design for a quadrotor unmanned
air vehicle. In 2010 IEEE International Conference on Automation, Quality
and Testing, Robotics, pages 1–5. IEEE, 2010.

[40] Jun Li and Yuntang Li. Dynamic analysis and PID control for a quadrotor.
In 2011 IEEE International Conference on Mechatronics and Automation.
IEEE, 2011.

[41] José Claudio Vianna Junior, Julio Cesar de Paula, Gideon Villar Leandro,
and Marlio Couto Bonfim. Stability Control of a Quad-rotor Using a PID
Controller. Brazilian Journal of Instrumentation and Control, 1(1):15, 2013.

[42] Barreto, Paulo S. L. M., Ben Lynn, and Michael Scott. Constructing Elliptic
Curves with Prescribed Embedding Degrees. In International Conference
on Security in Communication Networks, pages 257–267. Springer, Berlin,
Heidelberg, 2003.

[43] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order. In International workshop on selected areas in
cryptography, pages 319–331. Springer, Berlin, Heidelberg, 2005.

[44] S. D. Galbraith, J. F. McKee, and P. C. Valença. Ordinary abelian varieties
having small embedding degree. Finite Fields and Their Applications, 13
(4):800–814, 2007.

[45] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox.
ZCash Protocol Specification: Version 2022.3.8 [NU5], 15.09.2022. URL
https://zips.z.cash/protocol/protocol.pdf.

[46] G. M. Minott, J. B. Peller, and K. J. Cox. Space Shuttle Digital Flight
Control System. Advanced Control Technology and its Potential for Future
Transport Aircraft, pages 271–294, 1976.

[47] Robert Bleeg. Commercial jet transport fly-by-wire architecture consider-
ations. In Digital Avionics Systems Conference, pages 399–406. American
Institute of Aeronautics and Astronautics, 1988.

[48] Rosario Gennaro and Daniel Wichs. Fully Homomorphic Message Authen-
ticators. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
- ASIACRYPT 2013, Lecture Notes in Computer Science, pages 301–320.
Springer, 2013.

32

[49] Dario Catalano and Dario Fiore. Practical Homomorphic MACs for Arith-
metic Circuits. In Advances in Cryptology - EUROCRYPT 2013, pages
336–352. Springer, Berlin, Heidelberg, 2013.

[50] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Gen-
eralizing Homomorphic MACs for Arithmetic Circuits. In Hugo Krawczyk,
editor, Public-key cryptography, Lecture notes in computer science Security
and cryptology, pages 538–555. Springer, 2014.

[51] Dan Boneh and David Mandell Freeman. Homomorphic Signatures for
Polynomial Functions. In Advances in Cryptogoly - EUROCRYPT 2011,
pages 149–168. Springer, Berlin, Heidelberg, 2011.

[52] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic Sig-
natures with Efficient Verification for Polynomial Functions. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014, Lecture notes in computer science Security and cryptology, pages
371–389. Springer, 2014.

[53] Meilof Veeningen. Pinocchio-Based Adaptive zk-SNARKs and Se-
cure/Correct Adaptive Function Evaluation. In Marc Joye and Abder-
rahmane Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017,
Lecture notes in computer science Security and cryptology, pages 21–39.
Springer, 2017.

[54] Paul Valiant. Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency. In Theory of Cryptography: Fifth Theory of
Cryptography Conference, pages 1–18. Springer, Berlin, Heidelberg, 2008.

[55] Omer Paneth and Rafael Pass. Incrementally Verifiable Computation via
Rate-1 Batch Arguments. In 2022 IEEE 63rd Annual Symposium on Foun-
dations of Computer Science, pages 1045–1056. IEEE, 2022.

A Security Proof

We prove that our construction satisfies the three properties completeness, know-
ledge-soundness, and succinctness following definitions 1, 2, and 3 in the generic
group model. Our proof follows the same type of blueprint and arguments as
Groth [7].

Before diving into formal details, we start by sketching the intuition behind
our proof. Note that we defer the treatment of zero-knowledge to Section B.

A.1 Proof Intuition

Verifier V checks the following relation between proof elements “in the exponent”:

At ·Bt = α · β +
∑

i∈{0}∪Φ

at,i
Pi(z)

γ
· γ + Ct · δ +Dt · ε+ Et−1 · η + Et · κ (2)

Completeness is given by construction, which can be verified by inserting the
terms for proof elements At, Bt, Ct, ... in (2), and by comparing the result with
QAP relation (1).

33

We show knowledge-soundness in two steps:
First, prover P is forced to build a proof from prover-key σp, as Equation 2 checks
a relation depending on secret values α, β, z, The only information that P has
on these secrets are the prover-key elements. As operations take place “in the
exponent”, P is restricted to only linear operations on prover-key elements σp,
which are encoded as elements in G1 or G2. While it is possible to also evaluate
the bilinear map on these elements, one can show that P does not gain any
useful information from doing so (disclosure-freeness[7]).
Second, as P can only compute linear combinations of the prover-key, we can
parameterize the set of all possible proofs it can produce. By inserting into (2)
and comparing coefficients on both sides, one can show that all possible proofs
satisfying (2) contain proof elements with coefficients ai that also satisfy the
original QAP. Hence, P must know these ai that satisfy QAP. Similarly, (2)
can only be satisfied, if those coefficients representing the state (ai)i∈S in the
current proof and coefficients representing the state update (ai)i∈S′ are equal to
the coefficients in commitments ct−1 (proof element Et−1) and ct (Et), which
ensures state consistency. Finally, for (2) to hold, coefficients (ai)i∈X must equal
the committed coefficients in proof element D. By letting the verifier check the
signature on proof element D, authenticity is ensured.

A.2 Preliminaries

We require additional security definitions for proving security of our ADSC-
SNARKs. First, the construction of our authentication function (and therefore
soundness) relies on digital signatures. Recall the standard security definition of a
digital signature scheme with generator (sk, pk)← SigGen(λ), signing algorithm
sig ← SigSign(sk,m) and verification algorithm b ← SigVerify(pk, sig,m) for
message m, private key sk, public key pk, and signature sig, such that:

Definition 4 (Correctness of Digital Signature Scheme). For all security
parameters λ and messages m:

Pr

[
(sk, pk)← SigGen(λ) :

SigVerify(pk,SigSign(sk,m),m) = 1

]
= 1.

Definition 5 (Security of Digital Signature Scheme). A digital signature
scheme (SigGen,SigSign,SigVerify) is secure, if for all PPT adversaries A with
oracle access to SigSign:

Pr

[
(sk, pk)← SigGen(λ); (m, sig)← ASigSign(·)() :

SigVerify(pk, sig,m) = 1 ∧m /∈ M̃

]
≈ 0,

where M̃ is the set of queried messages by A.

Second, we make use of a Pedersen vector commitment scheme for vector v
of size n with binding properties:

34

Setup: σc ← PedSetup(λ):
Setup group G1 with size |G1| = p and |p| = λ.
Pick: Ti ←$ G1 for i ∈ [0, n], Set σc = (Ti)i∈[0,n]

Commit: (c, o)← PedCommit(σc, v):
Parse Ti from σc.
Pick: o←$ F∗

p, Compute c = o · T0 +
∑

i∈[1,n] vi · Ti.

Verify: b← PedVerify(σc, c, v, o):
Parse Ti from σc.
Output b = 1 (accept), iff c = o · T0 +

∑
i∈[1,n] vi · Ti

A pedersen vector commitment is correct, iff:

Definition 6 (Correctness of Pedersen Vector Commitment). For all
security parameters λ and vectors v:

Pr

 σc ← PedSetup(λ);
(c, o)← PedCommit(σc, v) :
PedVerify(σc, c, v, o) = 1

 = 1.

A pedersen vector commitment is binding:

Definition 7 (Security of Pedersen Commitment). For every PPT adver-
sary A:

Pr

σc ← PedSetup(λ); (c, v, o, ṽ, õ)← A(σc) :

PedVerify(σc, c, v, o) = 1
∧PedVerify(σc, c, ṽ, õ) = 1

∧v ̸= ṽ

 ≈ 0.

A.3 Proof Details

We proceed by proving the properties of our ADSC-SNARK from section 3.

Completeness

Theorem 1. Our ADSC-SNARK is complete.

Proof. We show that for all t ∈ [1, r], Verify will accept given outputs from Setup,
Auth, and Prove for a satisfied relation R with state-consistency.
Step 1.1. Inserting At, Bt, Ct, Dt, Et, and Et−1 in (2), multiplying out γ, δ, η,
κ, and ε, and subtracting αβ from both sides, we get∑

i∈[0,m]

at,iui(z) ·
∑

i∈[0,m]

at,ivi(z)

+ β
∑

i∈[0,m]

at,iui(z) + α
∑

i∈[0,m]

at,ivi(z)

=
∑

i∈[0,m]

at,iPi(z) + ht(z)t(z)−
∑
i∈S

at,iηRs2s(i) +
∑
i∈S′

at−1,iRiη.

35

Recall that function s2s maps indices from states S to state updates S′. Condi-
tion st = s′t−1 translates to at,i = at−1,s2s(i) for i ∈ S. Therefore, the latter two
sums are equal and cancel out. Writing out Pi(z) as βui(z)+αvi(z)+wi(z), we
get ∑

i∈[0,m]

at,iui(z) ·
∑

i∈[0,m]

at,ivi(z)

+ β
∑

i∈[0,m]

at,iui(z) + α
∑

i∈[0,m]

at,ivi(z)

=
∑

i∈[0,m]

at,i (βui(z) + αvi(z) + wi(z)) + ht(z)t(z).

We further simplify to∑
i∈[0,m]

at,iui(z) ·
∑

i∈[0,m]

at,ivi(z)−
∑

i∈[0,m]

at,iwi(z) = ht(z)t(z).

This equation holds when the QAP is satisfied. Note that we do not need to
consider a separate case for E0, as E0 in Setup is computed in the same way as
Et for t > 0 in Prove.
Step 1.2. According to the correctness property (Definition 4) of a signature
scheme, a valid signature verifies:

SigVerify(pk, sigt, ([Dt]1 , t))

= SigVerify(pk,SigSign(sk, ([Dt]1 , t)), ([Dt]1 , t)) = 1.

Step 1.3. As both conditions which the verifier checks are satisfied in every case,
it will always accept. □

Knowledge Soundness To prove knowledge-soundness, we assume the generic
group model. That is, any adversary A is restricted to only performing group
operations and applying the bilinear map on group elements.

Theorem 2. In the generic group model, our ADSC-SNARK is knowledge-sound.

Proof. First (step 2.1), following Groth we argue, that the reference-string (σp, σv)
is disclosure-free and therefore A does not use the bilinear map. Following
(steps 2.2 - 2.4), we show that a witness can be extracted, which satisfies state-
consistency (step 2.5) and input data authenticity (steps 2.6 - 2.7).
Step 2.1. The reference-string in our construction is disclosure-free (see Def-
inition 4 in [7]), the argument in the proof of Theorem 2 in [7]) applies: The
reference-string elements can be regarded as multivariate polynomials in α, β, z, ...,
and any quadratic test on them (applying the bilinear map) evaluating to zero
is either due to one of the following: 1.) The multivariate polynomials evaluate
to zero for any α, β, z, This does not disclose any additional information, as
the same test on any other reference-string (with different α, β, z, ...) will also

36

evaluate to zero. 2.) The multivariate polynomials evaluate to zero for a set of
specific variables α, β, z, This case occurs with negligible probability due to
the Schwartz-Zippel lemma.
Step 2.2. The verifier checks a relation between the proof elements involving
secret values α, β, γ, The only information about the secret values available
to A are the elements of the reference-string (σp, σv) as well as {[Ti]1}i∈X

(as
it has oracle access to Auth, allowing it to query arbitrary linear combinations
of [Ti]1). Due to the generic group model and the disclosure-freeness of the
reference-string, we conclude, that A only outputs linear combinations of those
elements as proof elements. To show that knowledge-soundness holds even if
there were an efficient homomorphism between G1 and G2, we assume that A
has access to these elements in both G1 and G2. For example for the first element
it knows [α]1 and [α]2. All possible linear combinations that A can output as
proof elements can formally be considered as multi-variate Laurent polynomials
where the randomly chosen secrets α, β, γ, δ, κ, η, ε, z, {Ti}i∈X , {Ri}i∈S′ are
indeterminates. For simplicity, we will look at the corresponding exponents only,
omitting the group element notation. We parameterize all possible polynomials
with the elements of the reference-string and name coefficients according to the
corresponding element. For example, the polynomial for C is:

C(α, β, γ, δ, κ, η, ε, z, {Ti}i∈X , {Ri}i∈S′) =

Cαα+ Cββ +
∑

i∈[0,m]

C(ui(z))ui(z)+

∑
i∈[0,m]

C(vi(z))vi(z) +
∑
i∈S′

C(Pi(z)/δ)
Pi(z)

δ
+

For A and B, we factor out Aα and Bβ and mark the scaled coefficients with a
dash (A′

β = Aβ/Aα, B′
α = Bα/Bβ , . . .) yielding:

A(α, β, . . .) = Aα(α+A′
ββ +

∑
i∈[0,m]

A′
(ui(z))

ui(z) + . . .).

We do the equivalent for B. We will show later that Aα and Bβ cannot be zero.
We insert the polynomials in the verification equations. Consider the case

that the resulting polynomial on the left side and the resulting polynomial on
the right side of one of these equations do not have the same coefficients for
their indeterminates. In this case, the probability that both polynomials evaluate
to the same value when inserting the indeterminates is negligible due to the
Schwartz-Zippel lemma. As a result, we can assume that coefficients on both
sides of the equation are equal.
Step 2.3. We start with (2) for timestep t and look at proof elements At, Bt,
Ct, Dt, Et and Et−1. To improve readability, we omit index t when it can be
determined from the context.

Comparing coefficients of α2, we get AαBβB
′
α = 0, therefore one of the term’s

factors must be zero. Comparing coefficients of αβ, we get AαBβ+AαA
′
βBβB

′
α =

37

AαBβ(1+A′
βB

′
α) = 1. Therefore, neither Aα nor Bβ can be zero. Thus, B′

α = 0

and AαBβ = 1. Comparing coefficients of β2, we get AαA
′
βBβ = A′

β = 0.
The polynomial from the left-hand side of the first verification equation then
simplifies to:

LHS =

α+
∑

i∈[0,m]

A′
(ui(z))

ui(z) +
∑

i∈[0,m]

A′
(vi(z))

vi(z) + . . .

×

β +
∑

i∈[0,m]

B′
(ui(z))

ui(z) +
∑

i∈[0,m]

B′
(vi(z))

vi(z) + . . .

 .

Step 2.4. We now demonstrate that the remaining terms in A, which are
not multiples of α, ui(z), vi(z), δ, ε, η or κ, must be zero, due to the left-
hand side product resulting in terms with multiples of β that do not appear
as indeterminates on the right-hand side: Comparing coefficients β/γ, we get∑

i∈{0}∪Φ A′
(Pi(z)/γ)

Pi(z)/γ = 0. Terms are zero similarly for coefficients β/δ,
βγ, βTi for any i ∈ X and βRi for any i ∈ S′. The same holds for the terms in
B when comparing coefficients α/γ, α/δ, αγ, αTi for any i ∈ X and αRi for any
i ∈ S′.

We now have

LHS = (
α+

∑
i∈[0,m] A

′
(ui(z))

ui(z) +
∑

i∈[0,m] A
′
(vi(z))

vi(z)

+A′
δδ +A′

εε+A′
ηη +A′

κκ

)
×
(
β +

∑
i∈[0,m] B

′
(ui(z))

ui(z) +
∑

i∈[0,m] B
′
(vi(z))

vi(z)

+B′
δδ +B′

εε+B′
ηη +B′

κκ

)
.

Comparing the remaining terms with α on both sides, we get (recall that
Pi(z) contains terms αvi(z)):

α

 ∑
i∈[0,m]

B′
(ui(z))

ui(z) +
∑

i∈[0,m]

B′
(vi(z))

vi(z)

=

∑
i∈{0}∪Φ

at,i · αvi(z) +
∑
i∈Ω

Ct,Pi(z)/δ · αvi(z)

+
∑
i∈S

Ct,(Pi(z)−ηRs2s(i))/δ · αvi(z)

+
∑
i∈S′

Ct,(Pi(z)−κRi)/δ · αvi(z)

+
∑
i∈X

Ct,(Pi(z)−εTi)/δ · αvi(z)

38

Renaming coefficients Ct,··· to at,i, we get:

α

 ∑
i∈[0,m]

B′
(ui(z))

ui(z) +
∑

i∈[0,m]

B′
(vi(z))

vi(z)

=

∑
i∈[0,m]

aiαvi(z).

We compare similarly the remaining terms with β on both sides. Then the
left hand side simplifies to:

LHS = (
α+

∑
i∈[0,m] aiui(z)

+A′
δδ +A′

εε+A′
ηη +A′

κκ

)
×
(
β +

∑
i∈[0,m] aivi(z)

+B′
δδ +B′

εε+B′
ηη +B′

κκ

)
.

Finally, comparing all terms with powers of z, we get: ∑
i∈[0,m]

at,iui(z)

 ·
 ∑

i∈[0,m]

at,ivi(z)

=

∑
i∈[0,m]

at,iwi(z) +
∑

i∈[0,d−2]

Ct,(zit(z)/δ)z
it(z)

Writing the last sum as h(z)t(z), one can see that the at,i for i ∈ [0,m] satisfy
the QAP, i.e. (at,i)i∈[1,m] = (ϕt, xt, st, s

′
t, ωt), (ϕt, xt, st, s

′
t, ωt) ∈ R. They can be

extracted from A, as the at,i appear as coefficients of the proof elements.
Step 2.5. We now show that V accepting at iteration t implies st = s′t−1.

Comparing all remaining terms with ηRi for each i ∈ S, we get:

∀i ∈ S : Et−1,Rs2s(i)
ηRs2s(i) − at,iηRs2s(i) = 0

⇒ ∀i ∈ S : Et−1,Rs2s(i)
= at,i.

Similarly, when comparing terms with κRi for each i ∈ S, we get:

∀i ∈ S : Et,Rs2s(i)
κRs2s(i) − at,s2s(i)ηRs2s(i) = 0

⇒ ∀i ∈ S : Et,Rs2s(i)
= at,s2s(i)

⇒ ∀i ∈ S : Et−1,Rs2s(i)
= at−1,s2s(i).

Combining both results gets us:

∀i ∈ S : at−1,s2s(i) = at,i ⇔ s′t−1 = st.

Step 2.6. Next, we show that an accepting verifier V implies that the private
input must have been authenticated. We first demonstrate, that coefficients in
proof element Dt equal coefficients at,i for i ∈ X.

39

Comparing all remaining terms with εTi for each i ∈ X, we get:

∀i ∈ X : Dt,Ti
εTi − at,iεTi = 0

⇒ ∀i ∈ X : Dt,Ti
= at,i.

Step 2.7. As shown in step 2.4, if Verify = 1, then (ϕt, xt, st, s
′
t, ωt) ∈ R, and

as shown in step 2.5, if Verify = 1 then st = s′t−1. For knowledge-soundness it
remains to be shown that if Verify = 1, then the tuple (t, xt) must be part of
the set of queries to Auth(·): (t, xt) ∈ X̃. We do so by assuming that Extract
can extract an xt, such that (t, xt) /∈ X̃ and Verify = 1. From that we construct
another adversary B with oracle access to SigSign, which either breaks security of
the signature scheme or the binding property of the pedersen vector commitment
scheme. We conclude that such an adversary does not exist.

We define the success probability of B as:

Pr
B

= Pr

(σa, σaux)← Setupa();
T0 ←$ Fp;Ti ← Parse(σa);

σc = (T0, {Ti}i∈X);

(t,D, sig, xt, x̃, o, õ)← BSigSign(·)(σc, σaux) : PedVerify(σc, D, xt, o) = 1
∧PedVerify(σc, D, x̃, õ) = 1

∧xt ̸= x̃

∨
(
SigVerify(pk, sig, (D, t)) = 1

∧(D, t) /∈ M̃

)

,

where M̃ is the set of queries by B made to SigSign.

(t,D, sig, xt, x̃t, o, õ)← BSigSign(·)(σc, σaux) works as follows:

Pick any s′0 ∈ F|S|
p .

Compute
(σp, σv, c0)← Setuppv(s

′
0, σaux).

Compute

((πt, ct, ϕt); (xt, st, s
′
t, ωt))← (AAuth(·) ||Extract)(σp, σv, t, c0)

for any t, such that Verify(σv, ϕt, πt, ct, ct−1, t) = 1 and xt /∈ X̃, where X̃ is the
set of queries given to Auth.

Note, that BSigSign(·) can answer the queries of AAuth(·) to Auth by using the
information from σaux and the oracle access to SigSign. Let M̃ be the set of
queries made by B to the signing oracle.

Now, B distinguishes two cases:
a.) If there exists x̃ ∈ X̃, such that xt ̸= x̃ and

∑
i∈X xt,iTi =

∑
i∈X x̃iTi, output:

t,D =
∑
i∈X

xt,iTi, o = õ = 0, sig = {}.

40

b.) Otherwise, parse sig from πt and output

t,D =
∑
i∈X

xt,iTi, sig, xt = x̃t = o = õ = {}.

We see, that if A is successful, either of the cases a.) or b.) occurs, resulting
in either

PedVerify(σc, D, xt, o) = 1 ∧ PedVerify(σc, D, x̃, õ) = 1 ∧ xt ̸= x̃t

to hold (case a), or
SigVerify() = 1

to hold (case b).
Therefore, by construction, PrB ≈ PrA.

It is now easy to see, that we can derive from B another adversary C, which
tries to break the binding property of a pedersen commitment of Definition 7.
It’s success probability is PrC .
(c, v, o, ṽ, õ)← C(σc) works as follows:
Parse {Ti} from σc

Compute σaux as in Setupa, but use Ti from σc, instead of sampling them.
Compute (t,D, sig, xt, x̃t, o, õ)← BSigSign(·)(σc, σaux).
Set c = D, v = xt, ṽ = x̃t.
Similarly, we can derive from B an adversary D with oracle access to SigSign,
which tries to break the security of the signature scheme of Definition 5. It’s
success probability is Pradvd.
(m, sig)← DSigSign(·)() works as follows: Compute

(σa, σaux)← Setupa()

T0 ←$ Fp, Ti ← Parse(σa)

σc = (T0, {Ti}i∈X).

Run B

(t,D, sig, xt, x̃t, o, õ, t)← BSigSign(·)(σc, σaux).

Set m = (D, t).
Output m, sig.

As we assume that the pedersen vector commitment is binding (Definition 7),
C has negligible chance of success: PrC ≈ 0. As we also assume, that the signature
scheme is secure (Definition 5), D has also negligible chance of success: PrD ≈ 0.
Both C and D having negligible chance of success means that also PrB ≈ 0. It
follows that PrA ≈ PrB ≈ 0. □

Theorem 3. Our ADSC-SNARK is succinct.

Proof. A proof π consists of a fixed number of 6 group elements and a signature.
The algorithm Verify does 1 + |ϕ| scalar multiplications, 6 pairing operations, 5
field multiplications, a signature verification and 2 comparisons. □

41

B Zero-Knowledge

We present a variation of our main ADSC-SNARK construction which is also
zero-knowledge.

B.1 Zero-Knowledge Definition

We let algorithm Setup output a trapdoor τ which is passed to a simulator Sim.
The simulator does not receive any of the private input x, states s and s′ or
witness ω. If adversary A will not be able to distinguish simulated from real
proofs, no information about x, s, s′ or ω is leaked by a real proof.

Definition 8 (Zero-knowledge of ADSC-SNARK). For all λ ∈ N, pp ←
Gen(λ), there exists a PPT algorithm (πt, ct) ← Sim(τ, ϕt, ct−1, t), such that
for all (a1, ..., ar) ∈ Rr, with at = (ϕt, xt, st, s

′
t, ωt), and s′0 ∈ H|S| such that∧r

t=1(st = s′t−1), and for all adversaries v ← A(σp, σv, σa, τ,Π,C):

Pr

(σp, σv, σa, c0, τ)← Setup(s′0);

νt ← Auth(σa, t, (at,i)i∈X) for t ∈ [1, r] ;
(πt, ct, pt)← Prove(σp, at, νt, pt−1)

for t ∈ [1, r] :
A(σp, σv, σa, τ, (π1, π2, ..., πt), (c0, c1, ..., ct)) = 1

=Pr

 (σp, σv, σa, c0, τ)← Setup(s′0);
(πt, ct)← Sim(τ, ϕt, ct−1, t) for t ∈ [1, r] :

A(σp, σv, σa, τ, (π1, π2, ..., πt), (c0, c1, ..., ct)) = 1

 .

B.2 Zero-Knowledge Construction

To make proofs zero-knowledge, the authenticating party and the prover add
randomization masks bA, bB , bC , bD, bE to the proof. These make the group el-
ements in the proof indistinguishable from randomly drawn group elements.
Additionally, the randomization masks cancel out in the verification equation,
preserving completeness of the SNARK. For the randomization masks to cancel
out, the prover needs to know bE,t−1 from the previous iteration, therefore it
stores bE between iterations.

We now present the zero-knowledge ADSC-SNARK construction including
the zero-knowledge property. Differences to the version without the zero-know-
ledge property are highlighted .

(σp, σv, σa, c0, τ)← Setup(s′0)
Again, Setup comprises two parts:

1. (σa, σaux)← Setupa():
Pick Ti ←$ F∗

p for i ∈ X, δ ←$ F∗
p .

Compute (sk, pk)← SigGen().

42

Set σa = (sk, {[Ti]1}i∈X
, [δ]1),

σaux = ({[Ti]1}i∈X
, pk, δ).

2. (σp, σv, c0, τ)← Setuppv(s
′
0, σaux):

Parse {[Ti]1}i∈X
, pk, δ from σaux.

Pick α, β, γ, κ, η, ε, z ←$ F∗
p, Ri ←$ F∗

p for i ∈ S′.
Set τ = (α, β, γ, δ, κ, η, ε, z, {Ri}i∈S′ , sk)

Compute

σp,1 =

α, β , {ui(z)}i∈[0,m] , {vi(z)}i∈[0,m] ,

{
Pi(z)

δ

}
i∈Ω

,{
Pi(z)−ηRs2s(i)

δ

}
i∈S

,
{

Pi(z)−κRi

δ

}
i∈S′

,{
Pi(z)−εTi

δ

}
i∈X

,
{

zit(z)
δ

}
i∈[0,d−2]

, {Ri}i∈S′ ,

δ, ε, η, κ

σp,2 =

(
β, δ , {vi(z)}i∈[0,m]

)
σv,1 =

({
Pi(z)
γ

}
i∈{0}∪Φ

)
σv,2 =

(
γ, δ, ε, η, κ

)
.

Set σp = ([σp,1]1 , [σp,2]2),
and σv = ([σv,1]1 , [σv,2]2 , [αβ]T , pk).
Compute c0 = [E0]1 =

∑
i∈S′ s′0,posS′ (i)

[Ri]1.

νt ← Auth(σa, t, xt)

Parse sk, {[Ti]1}i∈X
, [δ]1 from σa.

Pick bD ←$ Fp

Compute νt =
(
[D]1 , bD , sig

)
with D =

∑
i∈X aiTi +bDδ ,

and sig = SigSign(sk, ([D]1 , t)).

(πt, ct, pt)← Prove(σp, at, νt, pt−1)

Parse [D]1 , bD , sig from νt.
Compute the coefficients of polynomial h(Z) by polynomial division:

h(Z) = ∑
i∈[0,m]

at,iui(Z) ·
∑

i∈[0,m]

at,ivi(Z)−
∑

i∈[0,m]

at,iwi(Z)

 /t(Z).

43

Pick bA, bB , bt,E ←$ Fp .

Set bt−1,E =

{
0, if pt−1 = {}
pt−1, else

, pt = bt,E .

Compute πt = ([A]1 , [B]2 , [C]1 , [D]1 , sig), ct = [E]1, where

A = α+
∑

i∈[0,m]

aiui(z) + bAδ , B = β +
∑

i∈[0,m]

aivi(z) + bBδ ,

C =
∑
i∈Ω

aiPi(z)

δ
+
∑
i∈S

ai
(
Pi(z)− ηRs2s(i)

)
δ

+
∑
i∈S′

ai (Pi(z)− κRi)

δ
+

∑
i∈X

ai (Pi(z)− εTi)

δ
+

h(z)t(z)

δ

+bBA+ bAB − babBδ − bDε− bt−1,Eη − bt,Eκ ,

E =
∑
i∈S′

aiRi + bt,Eδ .

v ← Verify(σv, ϕt, π, ct, ct−1, t)
After parsing [At]1, [Bt]2, [Ct]1, [Dt]1, sigt from πt, setting [Et]1 = ct and
[Et−1]1 = ct−1 and parsing at,i from ϕt for i ∈ Φ and at,0 = 1,
Accept proof iff

[At]1 · [Bt]2 = [αβ]T +

 ∑
i∈{0}∪Φ

at,i

[
Pi(z)

γ

]
1

 · [γ]2 + [Ct]1 · [δ]2

+ [Dt]1 · [ε]2 + [Et−1]1 · [η]2 + [Et]1 · [κ]2

and
SigVerify(pk, sigt, ([Dt]1 , t)) = 1.

B.3 Security Proof

We show that the zero-knowledge ADSC-SNARK is complete, knowledge-sound,
succinct, and zero-knowledge following definitions 1, 2, 3, and 8.

Theorem 4. The zero-knowledge ADSC-SNARK is complete.

Proof. When comparing the zero-knowledge variant to the main variant, it is
easy to see, that the additional randomization masks bA, bB , bC , bD, bE , that are
added to the proof elements by Auth and Prove cancel out in the verification
equations. □

Theorem 5. The zero-knowledge ADSC-SNARK is zero-knowledge.

44

Proof. We provide a simulator and show that both real and simulated proofs
satisfy the verification equations and demonstrate that real and simulated proofs
are distributed equally.

Simulate: (πt, ct)← Sim(τ, ϕt, ct−1, t)
Set Et−1 = ct−1.
Pick At, Bt, Dt, Et,←$ Fp.
Compute Ct =
1
δ

(
AtBt − αβ −

∑
i∈{0}∪Φ at,iPi(z)−Dtε− Et−1η − Etκ

)
.

Compute sig = SigSign(sk, ([Dt]1 , t)).
Set πt = ([At]1 , [Bt]2 , [Ct]1 , [Dt]1 , sig), ct = [Et]1.

Step 5.1. Real proofs verify due to completeness (Theorem 4). From construc-
tion, it is straight forward to see that simulated proofs verify.
Step 5.2. The elements At, Bt, Dt, Et for t ∈ [1, r] of both real and simulated
proofs are uniformly and randomly distributed. The remaining proof element
Ct is uniquely determined by the first verification equation and sig was derived
from (Dt, t) using SigSign in both the real and simulated proofs. □

Theorem 6. In the generic group model, our zero-knowledge ADSC-SNARK is
knowledge-sound.

Proof. The verifier algorithm of the zero-knowledge ADSC-SNARK is the same
as the verifier algorithm of the main ADSC-SNARK. The prover-key of the zero-
knowledge ADSC-SNARK has additional elements ([β]1 ,

[
{vi(z)}i∈[0,m]

]
1
, . . .).

However, these additional elements were already part of the prover-key or verifier-
key of the main ADSC-SNARK version, but represented in a different group (e.g.
[β]2 was part of the prover-key of the main construction). As the proof for The-
orem 2 is valid, even if there existed an efficiently computable homomorphism
between G1 and G2, it follows from Theorem 2, that also the zero-knowledge
ADSC-SNARK is sound. □

Theorem 7. The zero-knowledge ADSC-SNARK is succinct.

Proof. The structure of the proof and the verifier algorithms of the zero-knowledge
ADSC-SNARK and the main ADSC-SNARK are the same. From Theorem 3 it
follows that also the zero-knowledge variant is succinct. □

C Elliptic curve parameters

We list the parameters of the elliptic curves that were used for benchmarking
ADSC-SNARK and the presented example use case.

C.1 Barreto-Lynn-Scott elliptic curves

Barreto-Lynn-Scott elliptic curves are described in [42]. The curves used in our
benchmarks and examples are defined over base field prime q. They have prime

45

group order r and embedding degree k. The prime group order r is of form
2s · r′ + 1, where r′ is uneven (s is referred to as the two-adicity of prime field
Fr).

Groups G1 are the elliptic curve points defined over prime field Fq for the
curve equation

y2 = x3 + b.

Groups G2 are defined over extension field Fq2 = Fq[u]/(u
2 − β) for curve equa-

tion
y2 = x3 + b · ξ.

The parameters are listed in Table 6.

Table 6. Parameters of used Barreto-Lynn-Scott elliptic curves

BLS12-381 [45]

k 12
r 5243587517512619047944774050818596583769055250052763782260365

8699938581184513
q 4002409555221667393417789825735904156556882819939007885332058

136124031650490837864442687629129015664037894272559787
β −1

b 4
ξ 1 + u

s 32

C.2 Barreto-Naehring elliptic curves

Barreto-Naehring elliptic curves are described in [43]. The curves used in our
benchmarks and examples are defined over base field prime q. They have prime
group order r and embedding degree k. The prime group order r is of form
2s · r′ + 1, where r′ is uneven (s is referred to as the two-adicity of prime field
Fr).

Groups G1 are the elliptic curve points defined over prime field Fq for the
curve equation

y2 = x3 + b.

Groups G2 are defined over extension field Fq2 = Fq[u]/(u
2 − β) for curve equa-

tion
y2 = x3 + b/ξ.

The parameters are listed in Table 7.

46

Table 7. Parameters of used Barreto-Naehring elliptic curves

BN254 [6]

k 12
r 2188824287183927522224640574525727508854836440041603434369820

4186575808495617
q 2188824287183927522224640574525727508869631115729782366268903

7894645226208583
β −1

b 3
ξ 9 + u

s 28

BN183

k 12
r 6804759748846355405830582786011032970784946075266449409
q 6804759748846355405830582788619626413398422602255236423
β −1

b 3
ξ 2 + u

s 30

BN124

k 12
r 17000133324792832058895897937997463553
q 17000133324792832063019019729102503239
β −1

b 3
ξ 5 + u

s 25

47

C.3 Galbraith-McKee-Valença elliptic curves

Galbraith-McKee-Valença elliptic curves are described in [44]. The curves used
in our benchmarks and examples are defined over base field prime q. They have
prime group order r and embedding degree k. The prime group order r is of
form 2s · r′ + 1, where r′ is uneven (s is referred to as the two-adicity of prime
field Fr).

Groups G1 are the elliptic curve points defined over prime field Fq for the
curve equation in twisted edwards form

a · x2 + y2 = 1 + d · x2y2.

Groups G2 are defined over extension field Fq3 = Fq[u]/(u
3 − β) for curve equa-

tion
aξ · x2 + y2 = 1 + dξ · x2y2.

The parameters are listed in Table 8.

48

Table 8. Parameters of used Galbraith-McKee-Valença elliptic curves

GMV181 [6]

k 6
r 1552511030102430251236801561344621993261920897571225601
q 6210044120409721004947206240885978274523751269793792001
β 61

a 1
d 600581931845324488256649384912508268813600056237543024
ξ u

s 31

GMV97

k 6
r 141455844224742490147094691841
q 565823376898968604518330826753
β 5

a 5
d 482996825047815773983380486779
ξ u

s 15

GMV58

k 6
r 211006452744585217
q 844025809322115073
β 10

a 5
d 579073710274753001
ξ u

s 19

49

