
Withdrawable signatures in Fiat-Shamir with aborts constructions

Ramses Fernandez
ramses.fernandez@fairgate.io

Fairgate Labs

Abstract

This article presents an extension of the work performed by Liu, Baek and Susilo [6] on withdrawable
signatures to the Fiat-Shamir with aborts paradigm. We introduce an abstract construction, and
provide security proofs for this proposal. As an instantiation, we provide a concrete construction
for a withdrawable signature scheme based on Dilithium [3].

1 Introduction

Digital signatures serve as a fundamental cryptographic mechanism that enables entities to bind their
identities to pieces of information. The essential purpose of a digital signature is to allow a signer,
who has established a public key pk, to sign messages using their private key sk in a way that enables
anyone knowing pk to verify both the message’s origin and its integrity during transit.

An important paradigm for the creation of digital signatures is the Fiat-Shamir transform, which
converts interactive identification protocols into non-interactive digital signature schemes. Starting
with a three-move identification protocol, where a prover demonstrates knowledge to a verifier through
commitment, challenge, and response steps, the transform replaces the verifier’s random challenge with
a hash function applied to both the commitment and the message. This creates a digital signature
scheme where the signing algorithm computes a commitment, generates a challenge by hashing the
commitment with the message, and produces a response using the secret key.

The Schnorr signature scheme is perhaps the most well-known application of the Fiat-Shamir transform
which has gained particular attention due to its security characteristics and its valuable properties, such
as signature aggregation. These advantages make Schnorr signatures especially attractive for blockchain
applications where transaction size reduction and privacy enhancement are crucial considerations.

The impact of digital signatures is particularly important in blockchain technology, where this primitive
extends beyond basic transaction authentication, enabling sophisticated smart contract interactions,
multi-signature schemes for enhanced security, and threshold signature systems for distributed key
management. Furthermore, innovations in signature aggregation and batch verification techniques
have contributed significantly to blockchain scalability solutions.

Current public-key cryptographic algorithms serve as the foundation for protecting sensitive electronic
information from unauthorized access. These algorithms have successfully withstood attacks from
conventional computing systems for decades, due to the hardness of their underlying mathematical
problems, prime factorization and the computation of discrete logarithms. However, the emergence
of quantum computing presents a significant challenge to this security paradigm as Shor’s algorithm
demonstrates the potential to solve both the prime factorization and the computation of discrete
logarithms efficiently. This means that quantum computers possess computational capabilities that

1

mailto:ramses.fernandez@fairgate.io

could potentially compromise current cryptographic methods, exposing vulnerable data and inform-
ation. To address this impending challenge, new cryptographic approaches are being designed to
withstand attacks from both traditional computers and future quantum systems. These methods rely
on problems, such as lattices, error-corrector codes or isogenies of elliptic curves, which have enhanced
mathematical structure, leading to computational problems assumed to be hard both for classical and
quantum computers. This framework is known as post-quantum cryptography, which represents a crit-
ical advancement in information security, ensuring that digital assets remain protected against evolving
technological threats.

The Fiat-Shamir transform can be extended to lattices, leading to the Fiat-Shamir with aborts
paradigm due to Lyubashevsky [8]. Fiat-Shamir with aborts provides a framework for constructing di-
gital signature schemes with provable security. This methodology addresses the challenge of generating
signatures from lattice-based one-way functions by introducing a controlled rejection sampling tech-
nique, aborting. When a potential signature might reveal information about the secret key, the signing
algorithm simply aborts and restarts the process. This paradigm converts an interactive identification
protocol with a a non-negligible probability of aborting into a signature scheme through iterative ex-
ecution until a successful completion occurs, the aborting procedure. This transformation eliminates
the need for interaction by substituting the verifier’s challenge with a hash function evaluation, which
security analysis treat as a random oracle.

Amongst the main construction based in the Fiat-Shamir with aborts mechanism, we find Dilith-
ium [3] and HAETAE [2]. Dilithium derives its security from the difficulty of solving certain lattice
problems, specifically the Module Learning with Errors and Module Short Integer Solution problems.
The importance of the scheme comes from the effective balance between security, signature size, and
computational efficiency, making it practical for real-world implementations. HAETAE has been spe-
cifically designed to produce more compact and efficiently maskable signatures. While built upon
the Fiat-Shamir with aborts paradigm underpinning Dilithium, HAETAE introduces design choices
that optimize the complexity-to-compactness ratio, which isparticularly important in space-constrained
implementation scenarios.

Digital signature schemes are designed to provide authenticity, integrity, and non-repudiation for signed
messages. Once a signature is created, it remains valid indefinitely, and the signer cannot rescind it.
This permanence, while typically considered a feature, raises an important question: Is it possible
for signers to efficiently revoke their signatures without compromising their private keys or affecting
the validity of their other signatures? Liu, Baek, and Susilo address this challenge by introducing
the concept of withdrawable signatures [6], offering a practical and secure mechanism for signature
revocation in situations where this capability is desirable.

The practical applications of withdrawable signatures span multiple domains where signature revoca-
tion capability is essential without compromising the signer’s private key. In blockchain-based smart
contracts, these signatures enable participants to commit to contract conditions while maintaining the
ability to revoke their commitment, particularly valuable when contract fulfillment depends on mul-
tiple parties or external conditions. Within decentralized e-voting systems, withdrawable signatures
provide voters the security to cast their votes while retaining the flexibility to modify their choices
before final vote tabulation, allowing voters to respond to new information or developments during
the voting period. Additionally, in decentralized escrow services, these signatures facilitate multi-party
transactions by allowing participants to revoke their signatures if circumstances change or disputes
arise, without compromising the security of other parties’ signatures.

2

1.1 Contributions

This paper builds upon the research conducted by Liu, Baek, and Susilo on withdrawable signatures
[6] to present a general methodology for constructing post-quantum withdrawable signatures based on
Lyubashevsky’s Fiat-Shamir with aborts paradigm [8].

The work first introduces a comprehensive abstract construction that takes a mechanism based in the
Fiat-Shamir with aborts paradigm as its starting point and extends it to incorporate withdrawability
features. To demonstrate the practical applications of this abstract framework, the paper presents
a concret implementation of withdrawable versions for a prominent post-quantum signature scheme:
Dilithium [3].

The integration of withdrawability features with post-quantum cryptography addresses two crucial
challenges in modern cryptographic systems. First, it provides the flexibility to revoke signatures
when needed, a capability increasingly important in dynamic digital environments. Second, it ensures
this functionality remains secure against quantum computing threats.

1.2 Related work

The research in this paper revolves around three gravity centres, namely: the work done by Lyu-
bashevsky, the construction of Liu, Baek and Susilo, and the digital scheme Dilithium.

The Fiat-Shamir heuristic [5] provides a method for transforming public-coin interactive proof systems
into digital signatures. This transformation works by substituting the verifier’s public coin tosses with
hash function evaluations. In the random oracle model (ROM), these hash functions are treated as
uniform functions that adversaries can access through classical computing methods.

Schnorr’s signature scheme stands as a prominent implementation of the Fiat-Shamir heuristic, with its
security fundamentally based on the discrete logarithm problem. However, the emergence of quantum
computing necessitates two critical adaptations to this framework. First, the discrete logarithm hard-
ness assumption must be replaced with quantum-resistant alternatives. Second, the security model
must account for quantum access to the random oracle (QROM), as quantum adversaries can query
the hash function in superposition.

Lyubashevsky’s work [8] introduced an innovative lattice-based signature scheme that builds upon
Schnorr’s design while incorporating abortion as a crucial modification. The abort mechanism ensures
that the signature distribution remains independent of the signing key, preventing potential attacks
against the signature scheme. The protocol manages these aborts through a loop structure, continuing
iterations until a successful execution occurs without an abort.

This modified approach, known as Fiat-Shamir with aborts, maintains the fundamental concept of
replacing non-final verifier steps with hash function evaluations while adapting to the requirements of
lattice-based cryptography. The integration of the abort mechanism represents a significant advance-
ment in developing quantum-resistant signature schemes, providing a robust framework for crypto-
graphic security in the post-quantum era.

On another hand, Liu, Baek and Susilo propose a designated-verifier signature scheme that introduces
withdrawability to digital signatures. Their construction generates a withdrawable signature σ for a
message µ, distinct from conventional signature schemes.

The scheme’s construction centers on a transformation mechanism. When a signer generates a with-
drawable signature, it remains verifiable only by the designated verifier. The signature can then follow
two paths: it either remains in its withdrawable state through signer inaction, effectively withdrawing
the signature, or undergoes transformation through a "Confirm" algorithm. This algorithm converts

3

the withdrawable signature σ into a confirmed signature σ′, which becomes verifiable through both
parties’ public keys while maintaining a deterministic relationship to σ.

The formal construction involves two entities, signer and verifier, with their public keys comprising a
set π = {pks, pkv}, respectively. The scheme utilizes the underlying signature structure to construct a
withdrawable signature σ specifically designated for the verifier. Subsequently, using the secret key sks
and σ, the signer can generate a verifiable signature for µ through the public key set π. This confirmed
signature σ′ maintains a cryptographic link to the original withdrawable signature σ via the public key
set π, ensuring the signature transformation’s verifiability and traceability.

Finally, we find Dilithium [3], which builds upon the Fiat-Shamir with aborts paradigm. The scheme
operates over module lattices, specifically using the module learning with errors (MLWE) and the
Module short integer solution (MSIS) problems as its primary security foundations. Its construction
employs a ring Rq = Zq[x]/(x

n + 1) with carefully chosen parameters n and q. The signature scheme
utilizes matrices and vectors over this ring, with dimensions selected to balance security and efficiency.

The key generation in Dilithium produces a public key containing a matrix A ∈ Rk×l
q and a vector

t = As1 + s2, where s1 and s2 are secret vectors with small coefficients. The signing process involves
generating a masking vector y, computing w = Ay, and using a challenge value c derived from
the message and w to produce the signature. The scheme incorporates rejection sampling to ensure
signature security, leading to probabilistic signature generation.

2 Preliminaries

2.1 Notation

We write R and Rq to denote the rings Z[x]/(xn + 1) and Zq[x]/(x
n + 1) respectively, where q is

an integer. We will denote vectors by bold letters, and regular font letters denote elements in R or
Rq. Unless otherwise specified, all vectors are assumed to be column vectors. Bold upper-case letters

denote matrices. If S is a set, then a
$←− S means that a is chosen uniformly at random from S. All

logarithms are assumed to be base 2, and the hash function H(·, ·) will operate on the concatenation
of its arguments.

For any even positive integer α, we define r′ = r mod ±α to be the unique element r′ in the range
−α

2 < r′ ≤ α
2 such that r′ ≡ r mod α. For any odd positive integer α, we define r′ = r mod ±α to

be the unique element r′ in the range −α−1
2 ≤ r′ ≤ α−1

2 such that r′ ≡ r mod α. We refer to these
operations as centered reductions modulo α.

For any positive integer α, we define r′ = r mod +α to be the unique element r′ in the range 0 ≤ r′ < α
such that r′ ≡ r mod α. When the specific representation is not significant, we simply write r mod α.

For an element w ∈ Zq, we denote ∥w∥∞ to mean |w mod ±q|. For an element w =
∑n−1

i=0 wix
i ∈ R,

we define ∥w∥∞ = maxi ∥wi∥∞ and ∥w∥ =
√
∥w0∥2∞ + . . .+ ∥wn−1∥2∞

Similarly, for w = (w1, . . . , wk) ∈ Rk: ∥w∥∞ = maxi ∥wi∥∞ and ∥w∥ =
√
∥w1∥2 + . . .+ ∥wk∥2. We

denote by Sα the set of all elements w ∈ R such that ∥w∥∞ ≤ α for α ∈ R.

2.2 Basic definitions

A withdrawable signature scheme involves two participating parties: signers and verifiers. The scheme
operates in two primary stages: first, the generation of a withdrawable signature, and second, its

4

transformation into a confirmed signature. Both stages are executed by the signer. Concerning the
security of a withdrawable signature scheme WS, it is established through three properties, namely:
correctness, unforgeability under insider corruption, and withdrawability.

1. Correctness establishes this strong relation between the verification algorithms: if a withdraw-
able signature σ is successfully verified through the WSVerify algorithm, then its corresponding
confirmed signature σ must also be verifiable through the CVerify algorithm.

2. Unforgeability under insider corruption ensures that only the original signer possesses the cap-
ability to transform a verifiable withdrawable signature σ (generated using sks for verifier pkv)
into its corresponding confirmed signature σ. This requirement holds even when an adversary
has obtained the verifier’s secret key skv, maintaining the exclusive control of the signer over the
confirmation process.

3. Finally, withdrawability establishes the indistinguishability of signature origin. Specifically, given
a verifiable withdrawable signature σ, no PPT adversary A should be able to determine whether
the signature was generated by the signer or the verifier, provided that the Confirm algorithm
has not been executed on σ. This property effectively ensures that both the signer and the
designated verifier possess equivalent capabilities in generating withdrawable signatures.

Definition 2.1 ([6], Section 3.2). A withdrawable signature scheme consists of five polynomial-time
algorithms KeyGen, WSign, WSVerify, Confirm, CVerify, defined as follows:

• (pk, sk)← KeyGen(1κ): On input of a security parameter κ, the key generation algorithm outputs
a key pair for each party in the system: (pks, sks) for the signer and (pkv, skv) for the verifier.

• σ ←WSign(m, sks, γ): Given a message m, a signer’s secret key sks, and a tuple π = {pks, pkv}
containing both the signer’s public key pks and a designated verifier’s public key pkv from the
set of all public keys S, the withdrawable signing algorithm generates a withdrawable signature
σ. This signature is specifically bound to message m under the signer’s identity and can only be
verified by the designated verifier pkv.

• 1/0 ← WSVerify(m, skv, pks, σ): The withdrawable signature verification algorithm validates a
signature σ on message m that was generated by a signer with public key pks. Using the designated
verifier’s secret key skv, it returns 1 if the signature is valid and 0 otherwise.

• σ̃ ← Confirm(m, sks, γ, σ): The confirmation algorithm transforms a withdrawable signature σ
into a confirmed signature σ. It takes as input the original message m, the signer’s secret key
sks, the public key set γ, and the withdrawable signature σ. The resulting confirmed signature σ
serves as a publicly verifiable signature with respect to the key set γ.

• 1/0 ← CVerify(m, γ, σ, σ̃): The confirmed signature verification algorithm validates the authen-
ticity of a confirmed signature σ on message m with respect to the public key set γ. It takes as
additional input the original withdrawable signature σ from which the confirmed signature was
derived. The algorithm outputs 1 if the confirmed signature is valid and 0 otherwise.

Definition 2.2. A withdrawable signature scheme WS is correct if, for any security parameter κ, any
public key set γ, and any message m ∈ {0, 1}∗, when executing the sequence KeyGen, WSign, and
Confirm, then the corresponding verification algorithms satisfy:

WSVerify(m, skv, pks, σ) = 1 and CVerify(m, γ, σ, σ̃) = 1

with overwhelming probability (in the security parameter κ).

5

Definition 2.3. For a PPT adversary A and security parameter κ, we define the unforgeability under
insider corruption experiment ExpEUF-CMA

WS,A (1κ) using the following three oracles:

Algorithm 1 Corruption Oracle
1: procedure OCorrupt

i (·)
2: if i ̸= s then
3: CO ← CO ∪ ski
4: return ski
5: else
6: return ⊥
7: end if
8: end procedure

Algorithm 2 Withdrawable Signing Oracle
1: procedure OWSign

sks,γ
(·)

2: if pks ∈ π ∧ s /∈ CO then
3: σ ←WSign(µ, sks, γ)
4: W ←W ∪ {σ}
5: return σ
6: else
7: return ⊥
8: end if
9: end procedure

Algorithm 3 Confirmation Oracle
1: procedure OConfirm

sks,σ,γ
(·)

2: if σ ∈ W then
3: M←M∪ {µ}
4: σ ← Confirm(µ, sks, γ, σ)
5: return σ
6: else
7: return ⊥
8: end if
9: end procedure

Using these three oracles, we define the unforgeability experiment ExpEUF-CMA
WS,A (1κ) as follows:

Algorithm 4 Unforgeability Experiment ExpEUF-CMA
WS,A (1κ)

1: for i = 1 to m do
2: (pki, ski)← KeyGen(1κ)
3: end for
4: Select s, v ∈ [1,m] where v ̸= s
5: Initialize empty sets CO ← ∅, W ← ∅, M← ∅
6: (µ∗, σ∗)← AOCorrupt

i (·),OWSign
sks,γ (·),OConfirm

sks,σ,γ (·)(1κ, γ∗)
7: if γ∗ = {pks, pkv} ∧ j ∈ CO ∧ µ∗ /∈M then
8: if WSVerify(µ∗, skv, pks, σ

∗) = 1 ∧ CVerify(µ∗, γ∗, σ∗, σ∗) = 1 then
9: return 1

10: end if
11: end if
12: return 0

6

A withdrawable signature scheme WS is considered unforgeable under insider corruption with EUF-
CMA security if, for all PPT adversaries A, there exists a negligible function negl such that:

Pr[ExpEUF-CMA
WS,A (1κ) = 1] ≤ negl(1κ)

Definition 2.4. Let (pk0, sk0), (pk1, sk1) ← KeyGen(1κ) be two generated public/secret key pairs,
and let π = {pk0, pk1}. For a randomly selected bit b

$←− {0, 1}, a security parameter κ, and a PPT
adversary A, we build the withdrawability experiment ExpWithdraw

WS,A (1κ) with the following oracle:

Algorithm 5 Withdrawable Signing Oracle for Withdrawability Experiment
1: procedure OWSign

sks,γ
(·)

2: if π = {pk0, pk1} then
3: b

$←− {0, 1}
4: σb ←WSign(µ, skb, γ)
5: M←M∪ {µ}
6: return σb

7: else
8: return ⊥
9: end if

10: end procedure

With this signing oracle, we have the following experiment:

Algorithm 6 Withdrawability Experiment ExpWithdraw
WS,A (1κ)

1: for i = 0 to 1 do
2: (pki, ski)← KeyGen(1κ)
3: end for
4: π ← {pk0, pk1}
5: b

$←− {0, 1}
6: Initialize empty setM← ∅
7: if π = {pk0, pk1} ∧ µ∗ /∈M then
8: σb ←WSign(µ∗, skb, γ)

9: b′ ← AOWSign
skb,γ

(·)
(1κ, µ∗, σb)

10: if b = b′ then
11: return 1
12: end if
13: end if
14: return 0

A withdrawable signature scheme WS is withdrawable if, for any PPT adversary A, and in the absence
of the execution of the Confirm algorithm, there exists a negligible function negl such that:

Pr[ExpWithdraw
WS,A (1κ) = 1] ≤ 1

2
+ negl(1κ)

2.3 Security definitions and computational assumptions

Definition 2.5. For a signature scheme DS = (KeyGen,Sign,Verify) and a PPT adversary A, con-
sider the following experiment ExpEUF-CMA

A :

1. The challenger B generates a key pair (pks, sks)← KeyGen(1κ) using the system parameters SP.
It provides pks to A while retaining sks to handle signature queries.

7

2. A receives access to the signing oracle OSign
sks

(·) that computes σ ← Sign(µ, sks) upon request.

3. Eventually, A outputs a forgery attempt (µ∗, σ∗).

4. A succeeds if Verify(µ∗, pks, σ
∗) = 1 and µ∗ was not previously queried to OSign

sks
(·).

We say that DS is (t, qs, ε)-secure under EUF-CMA if no adversary running in time t and making at
most qs signing queries can succeed with probability greater than ε.

Definition 2.6. A designated-verifier signature scheme DVS consists of four probabilistic polynomial-
time algorithms operating on key pairs (pks, sks) for signers and (pkd, skd) for designated verifiers:

DVS =
{
(pk, sk)← KeyGen(1κ)

σ ← Sign(µ, pkd, sks)
σ ← Simul(µ, pks, skd)

0/1← Verify(µ, pks, skd, σ)
}

The key security property of DVS schemes is non-transferability, which states that for any message-
signature pair (µ, σ) that validates under Verify, it should be computationally infeasible to determine
whether σ was produced by the signer using Sign or simulated by the designated verifier using Simul,
without access to the signer’s secret key sks. The formal definition of this property follows:

Definition 2.7 (Non-transferability). For a designated-verifier signature scheme and a PPT adversary
A, consider the non-transferability experiment ExpSign

NonTrans,DV,A:

Algorithm 7 Non-transferability Experiment ExpSign
NonTrans,DV,A(1

κ)

1: (pks, sks), (pkd, skd)← KeyGen(1κ)
2: Provide A access to oracles:
3: OSign

sks,pkd
(·) : σ0 ← Sign(µ, sks, pkd)

4: OSimul
skd,pks

(·) : σ1 ← Simul(µ, sks, pkd)
5: A outputs message µ∗

6: b
$←− {0, 1}

7: Provide A with signature σ∗
b

8: A outputs bit b′

9: return 1 if b′ = b, else return 0

A DVS achieves non-transferability if for any PPT adversary A, there exists a negligible function negl
such that:

Pr[ExpSign
NonTrans,DV,A(1

κ) = 1] ≤ 1

2
+ negl(1κ)

The security of our scheme rests upon three fundamental lattice-based hardness assumptions. The
Module Learning With Errors (MLWE) assumption provides protection against key-recovery attacks,
ensuring the confidentiality of secret keys. The SelfTargetMSIS assumption establishes the security
foundation against new message forgery attempts, preventing adversaries from generating valid signa-
tures for previously unsigned messages. Finally, the MSIS assumption is essential for achieving strong
unforgeability, which prevents even slight modifications of existing signatures.

Definition 2.8 (Module Learning With Errors (MLWE)). For integers m, k and a probability distri-
bution D : Rq → [0, 1], the advantage of an algorithm A in solving the decisional MLWEm,k,D problem
over the ring Rq is defined as:

8

Advm,k,D
MLWE :=Pr[b = 1 | A← Rm×k

q ; t← Rm
q ; b← A(A, t)]

− Pr[b = 1 | A← Rm×k
q ; s1 ← Dk; s2 ← Dm; b← A(A,As1 + s2)]

Definition 2.9 (Module Short Integer Solution (MSIS)). For an algorithm A, we define its advantage
function Advm,k,γ

MSIS in solving the (Hermite Normal Form) MSISm,k,γ problem over the ring Rq as:

Advm,k,γ
MSIS (A) := Pr

[
0 < ∥y∥∞ ≤ π ∧ [I | A] · y = 0 | A← Rm×k

q ;y← A(A)
]

Let Bh denote the subset of elements in R that have exactly h coefficients equal to either −1 or 1,
with all remaining coefficients being 0. The cardinality of this set is given by:

|Bh| = 2h ·
(
n

h

)
Definition 2.10 (SelfTargetMSIS). Let H : {0, 1}∗ → Bh be a cryptographic hash function. For an
algorithm A, we define its advantage function as:

AdvH,m,k,γ1
SelfTargetMSIS(A) := Pr

[
0 ≤ ∥y∥∞ ≤ γ1

∧ H([I | A] · y∥M) = c
| A← Rm×k

q ; (y := (r, c),M)← A⟨H(·)⟩(A)

]

The above problems are hard if, for any PPT adversary A, the respective advantages are negligible.
Furthermore, it will be a requirement the decisional MLWE problem, which asks Ay to distinguish
between:

1. (A,b) where A
$← Rm×l

q and b
$← Rm

q are chosen uniformly at random

2. (A,b) where A
$← Rm×l

q is chosen uniformly at random, s $← Rl
q is a secret vector, e $← χm is

an error vector, and b = As+ e ∈ Rm
q

We say the decisional MLWE problem is hard if for any PPT adversary A, there exists a negligible
function negl(λ) such that:

|Pr[A(A,b0) = 1]− Pr[A(A,b1) = 1]| ≤ negl(λ) (1)

where b0 is uniform from Rm
q and b1 = As+ e.

The intuition is that the MLWE assumption protects against key-recovery attacks, the SelfTargetMSIS
is the assumption upon which new message forgery is based, and the MSIS assumption is needed for
strong unforgeability. The decisional MLWE will be used to prove withdrawability.

3 Withdrawable signature schemes

3.1 The abstract construction

In this section we provide a global construction for withdrawable signatures based in the Fiat-Shamir
with aborts paradigm and prove the unforgeability and withdrawability as described in section 2.2.
This construction follows the paradigm described in [8] combined with ideas in [6]. Let H : {0, 1}∗ → R
be a random oracle.

9

Algorithm 8 Fiat-Shamir with aborts signature
1: procedure KeyGen(1κ)
2: A← Rk×l

q

3: s1 ← Sl, s2 ← Sk
4: t = As1 + s2
5: return pk = (A, t), sk = (s1, s2)
6: end procedure
7: procedure Sign(µ, ρ, sk, t)
8: repeat
9: y← Sl

10: w = Ay
11: c = H(µ,w)
12: z = y + cs1
13: until z ∈ Slα1

14: return σ = (z, c)
15: end procedure
16: procedure Verify(µ, σ, pk)
17: w = Az− ct
18: if (z ∈ Slα1

) ∧ (c = H(µ,w)) then return 1
19: end if
20: end procedure

Theorem 3.1 ([8], Theorem 2). Let n be an integer which is a power of 2, then if the above signature
scheme is not strongly unforgeable, then there is a polynomial-time algorithm that can solve SV Pε(Λ),
for ε = Õ(n2) and for every lattice Λ corresponding to an ideal in the ring Z[x]

xn+1 .

Taking the above scheme as starting point, we define a withdrawable lattice-based scheme as follows:

Algorithm 9 Withdrawable lattice-based signature scheme
1: procedure KeyGen(1κ)
2: A← Rk×l

q

3: s′1, s′′1 ← Sl, s′2, s′′2 ← Sk
4: ts = As′1 + s′2, tv = As′′1 + s′′2
5: return pks = (A, ts), sks = (s′1, s′2), pkv = (A, tv), skv = (s′′1 , s′′2)
6: end procedure
7: procedure WSign(µ, π, sks)
8: π = {pks, pkv}
9: repeat

10: y← Sl
11: w = Ay
12: e = H(µ,w)
13: z = y + es′1
14: until z ∈ Smα1

15: r = H(µ, (s′2)
Tw)

16: B
$←− Rk×k

q

17: σ1 = Az− ets, σ2 = Btv +A(z+ res′1), σ3 = Ars′1, σ4 = BA
18: return σ = (σ1, σ2, σ3, σ4)
19: end procedure
20: procedure WSVerify(µ, skv, pks, σ)
21: σ = (σ1, σ2, σ3, σ4)
22: e′ = H(µ, σ1)
23: if ⌊σ2⌉ = ⌊σ1 + e′σ3 + e′ts + σ4s′′1⌉ then return 1
24: end if
25: end procedure

10

Algorithm 10 Withdrawable lattice-based signature scheme (continuation)
1: procedure Confirm(µ, sks, γ, σ)
2: σ = (σ1, σ2, σ3, σ4), π = {pks, pkv}
3: r′ = H(µ, (s′2)

Tσ1)
4: repeat
5: ys ← Sl
6: es = H(µ,Ays)
7: zs = ys + ess′1
8: until zs ∈ Slα1

9: repeat
10: yv ← Sl
11: ev = H(pkv, h(yv))
12: zv = yv + r′evs

′
1

13: until zv ∈ Slα1

14: δ1 = es, δ2 = zs + r′ess
′
1, δ3 = ev, δ4 = zv

15: return σ̃ = (δ1, δ2, δ3, δ4)
16: end procedure
17: procedure CVerify(µ, γ, σ, σ̃)
18: π = {pks, pkv}, σ = (σ1, σ2, σ3, σ4), σ̃ = (δ1, δ2, δ3, δ4)
19: δ′1 = H(µ,Aδ2 − tsδ1 − σ3δ1), δ′3 = H(tv,Aδ4 − σ3δ3)
20: if (δ1 = δ′1) ∧ (δ3 = δ′3) then return 1
21: end if
22: end procedure

The proofs for Theorem 3.2 and Theorem 3.3 below, closely follow the structure of their analogous
Theorems 12 and 13 in [6]. The fundamental arguments remain valid when adapting the security
assumptions to our context, with the primary distinction being the underlying signature scheme.

Theorem 3.2. If a signature scheme is unforgeable against chosen-message attacks, then the associated
withdrawable scheme defined using algorithm 9 and algorithm 10 is unforgeable under insider corruption
in the random oracle model with reduction loss L = qH1 for qH1 the number of hash queries to the
random oracle H.

Proof. Let B be an adversary breaking the EUF-CMA of the underlying signature scheme Sign. We
assume that B runs another adversary A which can break the unforgeability under insider corruption
in the random oracle model of the withdrawable signature scheme.

Setup: let us assume that B has access to a simulator C. Suppose C executes the EUF-CMA game of
Sign, denoted as ExpEUF-CMA

A which includes an oracle OSign
sks

(·), where OSign
sks

(·) : ω ← Sign(µ, sks). C
first generates (pks, sks)← KeyGen(1κ), then B obtains pks from C.

Let us assume that B then generates other public keys in S as S = {pk1, . . . , pks−1, pks+1, . . . , pkm}
and gains pks from C. B now can set the public key set of the signer and a specific (designated) verifier
as π = {pks, pkv} where s ̸= v and provide γ to A.

Oracle Simulation: B answers the oracle queries of A as follows:

• Corruption query: The adversary A makes secret key queries of public key pki, i ∈ [1,m] in this
phase. If A queries for the secret key of pks, abort. Otherwise, B returns the corresponding ski
to A, and adds ski to the corrupted secret key list CO.

• H query: C simulates H as a random oracle, B then answers the hash queries of H through C.

• Signature query: A outputs a message µi and queries for withdrawable signature with correspond-
ing signer pks and specific verifier pkv. If the signer of withdrawable signature is not pks, abort.
Otherwise, B sets µi as the input of C. B then asks the signing output of C as ωi = Sign(µi, sks).

11

Upon reception of ωi, B responds the signature query for the specific verifier pkv chosen by A as
follows:

– OWSign
sks,γ

(·): With the output of C, B can compute the withdrawable signature σi ← OWSign
sks,γ

(·)
for A with ωi = (ei, zi) = (H(µ, h(y)), zi) as follows:

1. Takes ri
$←− Sη

2. Computes σi = (σ1,i, σ2,i, σ3,i, σ4,i) as described in the algorithm.
– OConfirm

sks,σ,γ
(·): B then queries for the signature of µi again to C and returns a corresponding

ωs,i = (es,i, zs,i) instead. With ωi, ωs,i and σi, B can compute the confirmed signature
σ̃i ← OConfirm

sks,σ,γ
(·) for A as follows:

1. Takes yj,i
$←− Smy and ej,i

$←− Sη.
2. Computes σ̃i = {δ1,i, δ2,i, δ3,i, δ4,i}

Meanwhile, B sets the queried message set asM←M∪{µi} and queried withdrawable signature
set as W ←W ∪ {σi}.

Forgery: in this phase B returns a withdrawable signature σ∗ for γ∗ = {pks, pkv} on some µ∗ that has
not been queried before. Then σ∗ could be transformed into σ∗ under γ∗ for signer pks correctly. After
A transforms σ∗ into σ̃∗, if σ̃∗ could not be verified through CVerify(µ∗, γ∗, σ∗, σ̃∗), abort. Otherwise,
if σ̃∗ = (δ∗1 , δ

∗
2 , δ

∗
3 , δ

∗
4) is valid, B then could obtain a forged signature ω∗ for pks on µ∗.

Therefore, we can useA to break the unforgeability in the EUF-CMA model of our underlying signature
scheme, which contradicts the property of our underlying signature scheme.

Probability of successful simulation: all queried signatures ωi are simulatable, and the forged
signature is reducible because the message µ∗ cannot be chosen for a signature query as it will be used
for the signature forgery. Therefore, the probability of successful simulation is q−1

H1
.

Theorem 3.3. If a signature scheme relies in the hardness of the decisional MLWE problem, then
the associated withdrawable scheme defined using algorithm 9 and algorithm 10 is withdrawable in the
random oracle model.

Proof. Let us consider an adversary A who can (t, ε)-break the withdrawability of our withdrawable
signature scheme. We now construct a simulator B able to solve the decisional MLWE problem.

Setup: let B set a challenge public set θ = {pk0, pk1} and the associated secret set ϑ = {sk0, sk1}.
We denote the signer key pair as (pkb, skb) and (pk1−b, sk1−b) for the specific verifier.

Oracle simulation: in this phase B responds the oracle queries from A as follows:

• H query: the adversary A makes hash queries to B, who simulates the hash function H as a
random oracle.

• Signature query: here A outputs a message µi and queries its withdrawable signature for the
corresponding signer pkb and specific verified pk1−b. Then B responds this query running
OWSign

sks,γ
(·) = (σb,1, σb,2, σb,3, σb,4) and setsM←M∪ {µi}.

Challenge: in this phase the adversary A provides B with a message µ∗ /∈ M and queries for the
withdrawable signature for the corresponding signer and the specific verifier. Upon reception of µ∗, B
computes the signature σ∗

b for b← {0, 1}.

Guess: in this phase A outputs a guess bit b′ for b. The simulator outputs true if b′ = b; false
otherwise.

12

Probability of breaking the withdrawability property: we observe that σ∗
0 and σ∗

1 are indis-
tinguishable. Assuming the hardness of the decisional MLWE problem, the probability of guessing
correctly b′ is negligible.

Probability of successful simulation: this probability is 1 since there are no abortions in the
simulation.

3.2 An instantiation

From [3] we set β as the maximum possible coefficient of csi, γ1 is large enough so the signature does
not reveal the secret key and small enough so that the signature is not forged, γ2 = γ1/2, and η is a
small integer. We set Bh := B60.

Algorithm 11 Dilithium
1: procedure KeyGen(1κ)
2: A

$←− Rk×l
q , (s1, s2)

$←− Slη × Skη
3: t = As1 + s2
4: return (pk = (A, t), sk = (A, t, s1, s2))
5: end procedure
6: procedure Sign(µ, sk)
7: repeat
8: y

$←− Sl
γ1−1

9: w = HighBits(Ay, 2γ2)
10: c ∈ Bh = H(µ,w)
11: z = y + cs1
12: until (∥z∥∞ < γ1 − β) ∧ (∥LowBits(Ay − cs2, 2γ2)∥∞ < γ2 − β)
13: return σ = (z, c)
14: end procedure
15: procedure Verify(µ, pk, σ)
16: w′ = HighBits(Az− ct, 2γ2)
17: if ∥z∥∞ < γ1 − β and c = H(µ,w′) then return 1
18: end if
19: end procedure

Taking the above algorithm as starting point and following the general construction in 3.1, algorithm
9 and algorithm 10, it is straightforward to set a withdrawable digital signature based in Dilithium.

Since Dilithium relies on the hardness of MSIS, Theorem 3.2 applies to prove that the proposal below is
unforgeable under insider corruption. The hardness of the decisional MLWE problem makes Theorem
3.3 apply to prove withdrawability.

Below follows the withdrawable construction:

Algorithm 12 Dilithium-based withdrawable signature scheme
1: procedure KeyGen(1κ)
2: A

$←− Rk×l
q

3: (s′1, s′2)
$←− Slη × Skη , (s′′1 , s′′2)

$←− Slη × Skη
4: ts = As′1 + s′2, tv = As′′1 + s′′2
5: return pks = (A, ts), sks = (A, ts, s

′
1, s

′
2), pkv = (A, tv), skv = (A, tv, s

′′
1 , s

′′
2)

6: end procedure

13

Algorithm 13 Dilithium-based withdrawable signature scheme (continuation)
1: procedure WSign(µ, sks, π)
2: π = (pks, pkv)
3: repeat
4: y

$←− Slγ1−1

5: w = HighBits(Ay, 2γ2)
6: c ∈ Bh = H(µ,w)
7: z = y + cs′1
8: until (∥z∥∞ < γ1 − β) ∧ (∥LowBits(Ay − cs′2, 2γ2)∥∞ < γ2 − β)
9: r = H(µ,HighBits((s′2)TAy, 2γ2))

10: B
$←− Rk×k

q

11: σ1 = Az− cts, σ2 = Btv +A(z+ rcs′1), σ3 = Ars′1, σ4 = BA
12: return σ = (σ1, σ2, σ3, σ4)
13: end procedure
14: procedure WSVerify(µ, skv, pks, σ)
15: σ = (σ1, σ2, σ3, σ4)
16: c′ = H(µ,HighBits(σ1, 2γ2))
17: if ⌊σ2⌉ = ⌊σ1 + c′σ3 + c′ts + σ4s′′1⌉ then return 1
18: end if
19: end procedure
20: procedure Confirm(µ, sks, π, σ)
21: π = (pks, pkv), σ = (σ1, σ2, σ3)
22: r′ = H(µ,HighBits((s′2)Tσ1, 2γ2))
23: repeat
24: ys

$←− Slγ1−1

25: cs = H(µ,HighBits(Ays, 2γ2))
26: zs = ys + css

′
1

27: until (∥zs∥∞ < γ1 − β) ∧ (∥LowBits(Ays − cs′2, 2γ2)∥∞ < γ2 − β)
28: repeat
29: yv

$←− Sγ1−1

30: cv = H(tv,HighBits(Ayv, 2γ2))
31: zv = yv + r′cvs

′
1

32: until (∥zv∥∞ < γ1 − β) ∧ (∥LowBits(Ayv − cs′2, 2γ2)∥∞ < γ2 − β)
33: δ1 = cs, δ2 = zs + r′css

′
1

34: δ3 = cv, δ4 = zv
35: return (δ1, δ2, δ3, δ4)
36: end procedure
37: procedure CVerify(µ, π, σ, σ̃)
38: π = (pks, pkv), σ = (σ1, σ2, σ3, σ4), σ̃ = (δ1, δ2, δ3, δ4)
39: δ′1 = H(µ,HighBits(Aδ2 − tsδ1 − σ3δ1, 2γ2))
40: δ′3 = H(tv,HighBits(Aδ4 − σ3δ3, 2γ2))
41: if (δ1 = δ′1) ∧ (δ3 = δ′3) then return 1
42: end if
43: end procedure

Remark 3.1. The identity r = r′ follows from the identity c = c′ (Section 3.1, [3]). The same
arguments used in [3] apply in this work to justify why the function CVerify returns 1 correctly,
therefore we refer the reader to Section 1.1 and Section 3.1 in [3] for the technical details.

14

4 Conclusion and future research

This work uses the ideas in [6] to extend the Fiat-Shamir with aborts paradigm [8] with withdrawability
and defines a general construction for withdrawable lattice-based digital signature schemes.

We demonstrated our approach by creating a withdrawable version of Dilithium, though the same prin-
ciples could be applied to other signature schemes like HAETAE [2]. Our construction maintains the
security properties of the underlying signature scheme while adding the ability to withdraw signatures
when needed by the signer.

Several directions remain for future research, including optimizing our construction’s efficiency and
exploring additional features such as blindness, multiparty capabilities, or enhancing this construction
with extended withdrawability, where rather than limiting verification to a specific entity, we can ensure
the universal verifiability of the withdrawable signature by employing any signature scheme that can
maintain signer ambiguity (this is work done in [7]). Another potential line of research is given by
practical applications, particularly how these constructions could enhance quantum resistance in block-
chain systems. The ability to withdraw signatures could prove valuable in blockchain environments
where transaction revocation is desirable but traditionally difficult to implement.

References

[1] Boneh, Dan, Ben Lynn, and Hovav Shacham. "Short signatures from the Weil pairing." In In-
ternational conference on the theory and application of cryptology and information security, pp.
514-532. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[2] Cheon, Jung Hee, Hyeongmin Choe, Julien Devevey, Tim Güneysu, Dongyeon Hong, Markus
Krausz, Georg Land, Marc Möller, Damien Stehlé, and MinJune Yi. "HAETAE: Shorter lattice-
based fiat-shamir signatures." IACR Transactions on Cryptographic Hardware and Embedded
Systems 2024, no. 3 (2024): 25-75.

[3] Ducas, Léo , Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. "Dilithium: A lattice-based digital signature scheme." IACR Transactions on
Cryptographic Hardware and Embedded Systems (2018): 238-268.

[4] ElGamal, Taher. "A public key cryptosystem and a signature scheme based on discrete logar-
ithms." IEEE transactions on information theory 31, no. 4 (1985): 469-472.

[5] Fiat, Amos, and Adi Shamir. "How to prove yourself: Practical solutions to identification and
signature problems." In Conference on the theory and application of cryptographic techniques,
pp. 186-194. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.

[6] Liu, Xin, Joonsang Baek, and Willy Susilo. "Withdrawable signature: how to call off a signa-
ture." In International Conference on Information Security, pp. 557-577. Cham: Springer Nature
Switzerland, 2023.

[7] Liu, Xin, Willy Susilo, and Joonsang Baek. "Extended Withdrawable Signature." In International
Conference on Data Security and Privacy Protection, pp. 119-140. Singapore: Springer Nature
Singapore, 2024.

[8] Lyubashevsky, Vadim. "Fiat-Shamir with aborts: Applications to lattice and factoring-based sig-
natures." In International Conference on the Theory and Application of Cryptology and Inform-
ation Security, pp. 598-616. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[9] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital signatures
and public-key cryptosystems." Communications of the ACM 21, no. 2 (1978): 120-126.

15

	Introduction
	Contributions
	Related work

	Preliminaries
	Notation
	Basic definitions
	Security definitions and computational assumptions

	Withdrawable signature schemes
	The abstract construction
	An instantiation

	Conclusion and future research

