
1

AsyRand: fast asynchronous distributed
randomness beacon with reconfiguration

Liang Zhang, Tao Liu, Zhanrong Ou, Haibin Kan∗ Member, IEEE, and Jiheng Zhang∗ . . .

Abstract—Distributed randomness beacon protocols, which
generate publicly verifiable randomness at regular intervals, are
crucial for a wide range of applications. The publicly verifiable
secret sharing (PVSS) scheme is a promising cryptographic
primitive for implementing beacon protocols, such as Hydrand
(S&P ’20) and SPURT (S&P ’22). However, two key challenges
for practical deployment remain unresolved: asynchrony and
reconfiguration. In this paper, we introduce the AsyRand beacon
protocol to address these challenges. In brief, AsyRand leverages
Bracha Reliable Broadcast (BRB) or BRB-like protocols for
message dissemination and incorporates a producer-consumer
model to decouple the production and consumption of PVSS
commitments. In the producer-consumer model, PVSS commit-
ments are produced and consumed using a queue data structure.
Specifically, the producer process is responsible for generating
new PVSS commitments and reaching consensus on them within
the queue, while the consumer process continuously consumes
the commitments to recover PVSS secrets and generate new
beacon values. This separation allows the producer and consumer
processes to operate simultaneously and asynchronously, without
the need for a global clock. Moreover, the producer-consumer
model enables each party to detect potential faults in other
parties by monitoring the queue length. If necessary, parties in
AsyRand can initiate a removal process for faulty parties. BRB
is also employed to facilitate the addition of new parties without
requiring a system restart. In summary, AsyRand supports
reconfiguration, enhancing both the protocol’s usability and
reliability. Additionally, we propose a novel PVSS scheme based
on the Σ protocol, which is of independent interest. Regarding
complexity, AsyRand achieves state-of-the-art performance with
O(n2) communication complexity, O(n) computation complexity,
and O(n) verification complexity.

Index Terms—distributed randomness beacon, publicly verifi-
able secret sharing, producer-consumer, reliable broadcast

I. INTRODUCTION

Distributed randomness beacon protocols are designed to
generate sequences of trustworthy and verifiable random val-
ues at regular intervals [1]. Beacons have a broad spectrum
of applications. Notable examples include secure multiparty

Liang Zhang and Jiheng Zhang is with Department of Industrial En-
gineering and Decision Analytics, Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong. scottzhang@ust.hk;
jiheng@ust.hk;

Tao Liu and Zhanrong Ou are with the School of Cyberspace Secu-
rity (School of Cryptology), Hainan University, Haikou 570228, China.
jb8181632@gmail.com; ozr@hainanu.edu.cn;

Haibin Kan is with School of Computer Science, Fudan University, Shang-
hai 200433, China. hbkan@fudan.edu.cn

This work was supported the National Natural Science Foundation of
China for Young Scientists (No. 62302129), the National Natural Science
Foundation of China (No. 62272107), Hainan Province Key R&D plan project
(No. ZDYF2024GXJS030) and the HK RGC General Research Fund (Nos.
16208120 and 16214121).

*Corresponding author

computation [2], consensus protocols [6], [19], anonymous
communication [8], [7], blockchain sharding [3], [4] and
byzantine agreement protocol [5] in distributed systems.

A beacon protocol must ensure that random values are both
unpredictable and unbiased prior to generation, while also
being publicly verifiable once generated. The key properties
of a beacon [14], [13] are summarized as follows:

• Liveness/Availability: The beacon must be capable of
producing randomness outputs at regular intervals, even
in the presence of adversarial activity or failures.

• Bias resistance: Each randomness must be unbiased and
uniformly distributed. This ensures that no adversary can
influence the random value in a predictable manner.

• Unpredictability: No party should be able to predict a
beacon’s value before it is generated.

• Public verifiability: Any party can verify that the beacon
values are correctly generated following the protocol.

• Guaranteed output delivery: Malicious parties cannot
prevent the correct parties from generating beacon values.

A. Related works

Randomness obtained from centralized protocols, such as
NIST randomness beacon[10], might be manipulated. Com-
pared with centralized approaches, distributed methods en-
hance security of randomnesses by eliminating the single
points of failure, but they introduce additional complexities
in coordination and consensus among distributed parties [11].

Many approaches have been explored to build distributed
randomness beacon protocols. Heuristically, public random
numbers can be obtained as a byproduct of Bitcoin’s PoW
consensus [12]. Other cryptographic primitives are also em-
ployed as the underlying tool of beacon protocols, such as
verifiable randomness function (VRF) [19], [9], verifiable
delay function (VDF) [23], [37], threshold signatures [20],
verifiable secret sharing (VSS) [32], [33], [42] and publicly
verifiable secret sharing (PVSS) [16], [13], [34], [35]. Some
beacon protocols [20], [21], also necessitate distributed key
generation (DKG) [21], [25], [22], [35] during the initial
setup. Summarily, these primitives are leveraged to achieve
a commit-and-reveal paradigm. In the committing phase, dis-
tributed parties introduce private randomness or entropy and
broadcast the corresponding commitment to others; In the
revealing phase, the random value is uncovered and the final
beacon value is calculated.

In the context of constructing a commit-and-reveal
paradigm, PVSS schemes [40], [24], [38], [16], [17] are advan-
tageous as they do not require a private communication chan-

scottzhang@ust.hk
jiheng@ust.hk
jb8181632@gmail.com
ozr@hainanu.edu.cn
hbkan@fudan.edu.cn

2

TABLE I: Comparison of PVSS-based beacon protocols

Protocol Network Live. Comm. Unpred. Bias-rist. Comp. Veri. Reconf. Resp.
RandHerd [14] asyn. ✗ O(c2logn) ✓ ✗ O(c2logn) O(1) ✗ ✗

SCRAPE [16] syn. ✓ O(n3) ✓ ✓ O(n2) O(n2) ✗ ✗

HydRand [13] syn. ✓ O(n2) ✓ → ✓ O(n) O(n) ✗ ✗

GRandPiper [33] syn. ✓ O(n2) ✓ → ✓ O(n2) O(n2) ✓ ✗

SPURT [34] semi-syn. ✓ O(n2) ✓ ✓ O(n) O(n) ✗ ✓

OptRand [36] syn. ✓ O(n2) ✓ ✓ O(n) O(n) ✓ ✓

GRandLine [35] syn. ✓ O(n2) ✓ ✓ O(n) O(n) ✗ ✓

AsyRand asyn. ✓ O(n2) ✓ → ✓ O(n) O(n) ✓ ✓

→ means that a worst case exists with little probability where l(≤ f) colluding malicious parties become leaders consecutively. In this occasion, the
colluding parties can predict l future beacon values. Randomness is fully unpredictable beyond epoch e+ f , due to the presence of at least one honest
leader in any consecutive f + 1 epochs. Additionally, the unpredictability might be broken slightly in AsyRand in the removal or joining process, as

analyzed in Section IV-D and Section IV-E.

nel and can identify faulty parties. RandHerd [14] divides par-
ties into c-size subgroups to achieve scalability with commu-
nication and computation complexity O(c2logn) at the cost of
higher liveness failure probability. The verification complexity
is O(1) due to the use of collective signing with cryptographic
multisignatures. In Ouroboros [6] and SCRAPE [16], n PVSS
commitments from all parties are published for calculating a
beacon value, resulting in O(n3) communication complexity.
Moreover, SCRAPE leverages an optimized PVSS scheme,
which reduces its computation and verification complexities to
O(n2). HydRand [13], GRandPiper [33] and AsyRand lower
the complexity by randomly choosing leaders in each epoch.
In a synchronous network, HydRand and GRandPiper tolerates
1/3 and 1/2 byzantine faulty parties, respectively. SPURT im-
proves communication efficiency by aggregating PVSS com-
mitments based on SCRAPE PVSS within a semi-synchronous
network. OptRand [36] further aggregates PVSS commitments
and can tolerate up to 1/2 faulty parties, incorporating the
advantages of SPURT and GRandPiper. However, OptRand
assumes a synchronous network model. GRandLine [35] runs
with an optimized DKG in the pre-processing phase. Table I
provides a comparison of PVSS-based beacon protocols.

This paper addresses the challenge remaining in previous
PVSS-based beacon research: achieving asynchrony while
supporting reconfiguration.

B. Our approach in a nutshell

We take advantage of the Bracha reliable broadcast
(BRB) [29] protocol to build our beacon protocol, where BRB
is regarded as a primary primitive to build asynchronous con-
sensus [28]. Inspired by the resource-management mechanisms
of operating systems, we leverage the producer-consumer
model to manage PVSS commitments for distributed parties.

Particularly, the producer process of each party continu-
ously generates PVSS commitments and achieves consistency
among all parties by utilizing BRB protocol. These PVSS
commitments are managed in separate queues for each party.
The consumer process defines the concept of epoch, where a
leader is randomly elected and a random beacon is collectively
produced. Specifically, the leader for the current epoch is
randomly selected using the randomness beacon value from
the previous epoch. The beacon value for the current epoch is
then computed using the leader’s earliest unconsumed PVSS

secret as the random source. Thus, the primary task of the
consumer process is to recover an unconsumed PVSS secret
for the randomly chosen leader. To ensure consistency within
the consumer process, we design a BRB-like protocol that
differs from the traditional BRB protocol by operating without
a predefined leader.

Refer to Appendix A for the detailed benefits of the
producer-consumer model, which facilitates asynchrony and
reconfiguration.

C. Contributions

We propose a novel beacon protocol, AsyRand, described
in a distributed producer-consumer model. The producer pro-
cess consists of an infinite execution of the BRB protocol,
while the consumer process is designed with continuous
instances of BRB-like protocol. Both processes achieve BFT
consensus assuming an asynchronous network, which might
be independent interest to BFT researchers.

To handle party-renewal without system restart, we design
reconfiguration by incorporating a removal process and a
joining process. Both processes are rigorously analyzed based
on the properties of BRB or BRB-like protocol. To our
knowledge, this is the first time to treat beacon reconfiguration
in an asynchronous environment.

We design a new PVSS scheme maintaining state-of-the-
art complexity, where the Σ-protocol [30] and Fiat-Shamir
heuristic [31] are leveraged to achieve non-interactive zero
knowledge (NIZK) proofs. It might be of independent interest.

The security requirements of the four processes are formally
proved and properties of the beacon are thoroughly discussed.
Comprehensive experiments are conducted to evaluate the
throughput and bandwidth of proposed beacon protocol. With
n = 32, the throughput reaches 200 beacons per minute, sig-
nificantly outperforming SPURT [34] (84 beacons per minute,
S&P’22) and Hydrand [13] (25 beacons per minute, S&P’20).

II. PRELIMINARIES

A. Publicly verifiable secret sharing (PVSS)

A publicly verifiable secret sharing (PVSS) enables a dealer
to share secrets among distributed shareholders in a publicly
verifiable manner. Particularly, the dealer shares a secret gs

among n shareholders P = {P1, ..., Pn}, where s ∈ Zp. A
PVSS scheme consists of the following five phases:

3

1) ({ski, pki})← PVSS.Setup(λ, t, n) Each shareholder Pi

generates a key pair (pki, ski).
2) (C, π) ← PVSS.Share(s, {pki}) The dealer divides the

secret into n shares. Each share is encrypted into Ci and
all encrypted shares are accompanied by NIZK proofs.
Then the dealer publishes the PVSS commitment, i.e.,
C = {Ci} and π.

3) bool ← PVSS.Verify(C, π) Any external verifier can
check whether the dealer has honestly shared a secret
given (C, π).

4) Di ← PVSS.PreRecon(Ci, ski) Each shareholder de-
crypts his encrypted share to obtain decrypted share Di.

5) gs ← PVSS.Recon(C, {Di}i∈T) With a set of decrypted
shares T (|T | ≥ t), the secret value gs can be recon-
structed. Moreover, the decrypted shares {Di}i∈T are
also publicly verifiable.

A PVSS scheme satisfies the properties of correctness,
public verifiability and IND1-Secrecy.

• Correctness Correctness ensures that at least t sharehold-
ers follow the protocol, the reconstructed secret will be
identical to the original secret gs.

• Public Verifiability Public verifiability allows anyone
to verify the correctness of the encrypted shares from
the dealer. Besides, the decrypted shares should also be
publicly verifiable in the reconstruction phase.

• IND1-Secrecy IND1-Secrecy [38] guarantees that an ad-
versary, given any t− 1 secret keys {ski} and the public
information, learns no information about the secret gs.

B. Bracha reliable broadcast

Bracha reliable broadcast (BRB) [29] ensures that a message
broadcast by an honest party is received by all non-faulty
parties in a distributed system. Particularly, BRB is regarded
as a one-shot consensus algorithm in an asynchronous setting,
tolerating f < n/3 faulty parties, where n is the number of
total parties. Suppose the proposal is v. In our approach, we
slightly modify the original consensus protocol by replacing
the proposed value v (of size O(n)) with its hash value hv.
The details of the modified protocol are depicted as below:

Bracha Reliable Broadcast for O(n)-size v

Step 0. For the leader L
broadcasts (initial, v).

Step 1. For party i, waits until the receipt of
(initial, v)

broadcasts (echo, hv).

Step 2. For party i, waits until the receipt of
2f + 1 (echo, hv) or (f + 1) (ready, hv)

broadcasts (ready, hv).

Step 3. For party i, accepts v and hv until the
receipt of 2f + 1 (ready, hv).

Note that if party i receives 2f + 1 (ready, hv) without v
in Step 3, it can fetch v from any other parties. The BRB
protocol has the following security properties:

• Validity If the leader is non-faulty, then all non-faulty
parties will output the leader’s proposal v.1

• Agreement If some non-faulty party delivers v, then all
non-faulty parties eventually delivers v.

• Termination If a non-faulty terminates with v, then all
non-faulty parties will eventually terminates.

III. SYSTEM MODEL AND GOALS

A. System model

The system operates under an authenticated asynchronous
model with a network of pairwise connected public channels
for broadcasting. Parties only accept and act upon a message
only if it is correctly signed. Messages can be arbitrarily
delayed in periods of asynchrony. The current number of
parties (P) in the system is denoted by variable n, i.e.,
|P| = n. f represents the maximum number of faulty (also
called malicious or byzantine) parties that may cause byzantine
failures or disobey our protocol. A party is considered honest
or non-faulty if it abides by the protocol; otherwise, it is
considered to be faulty. We only consider one party joining
or removal at a time in the reconfiguration. Actually, simul-
taneous reconfiguration degrades into sequential, one-by-one
reconfiguration. Specifically, simultaneous joining violates the
BRB agreement property, preventing any node from joining;
simultaneous removal can be viewed as sequential removal
with multiple instances of the removal process. The condition
f < n/3 is assumed to hold, regardless of the number of
parties in the system.
AsyRand is introduced in a producer-consumer model,

in which each party continuously produces new PVSS com-
mitments and honest ones collectively consume the leader’s
earliest PVSS commitment. In the context of PVSS schemes,
we set the threshold value t = f + 1. An epoch is defined as
the period during which a PVSS commitment is decrypted to
produce a beacon value. The initial beacon value and the leader
are assumed to be obtained in a decentralized way, which can
be obtained with VDF [37] or a nonce from Bitcoin [12].

B. System goals and security threats

Our objective is to develop a beacon protocol, AsyRand,
that supports reconfiguration in an asynchronous environment.
To achieve this goal, we frame the protocol within a producer-
consumer model for each party. In this model, both pro-
ducer and consumer processes reach consensus using BRB
or BRB-like protocol. Beacon values continuously output as
the consumer process proceeds. The system goal is to achieve
liveness, bias-resistance, unpredictability, public verifiability,
guaranteed output delivery and responsiveness (beacon values
output at the speed of real network).

In the system, malicious parties or adversaries can collude to
violate the above properties by arbitrarily biasing the protocol.

1If leader is faulty in the BRB protocol, we prove that non-faulty parties
will agree on ⊥ by Lemma 1 in the producer process.

4

Fig. 1: Overview of the proposed beacon protocol AsyRand, depicting the four processes within a party

A summary of risks and potential attacks is introduced below:
In the producer process, each malicious party has the follow-
ing options: send invalid PVSS commitment (or nothing) to
honest parties; send contradicting valid PVSS commitments
to different honest parties; or delay the delivery of valid
PVSS commitment. In the consumer process, a malicious
party i may broadcast an invalid PVSS decryption key Di (or
nothing) when recovering a leader’s secret value. Besides, the
f malicious parties may collude to predict the random beacon
values in advance.

IV. THE AsyRand BEACON PROTOCOL

A. AsyRand in producer-consumer model

Leveraging the PVSS scheme, we construct the AsyRand
protocol with a producer-consumer model for each party. The
term “produce” refers to the generation of a PVSS commit-
ment by a party, while “consume” refers to the reconstruction
of the random value hidden within a PVSS commitment (i.e.,
the PVSS secret) by all parties. In the producer process,
each party broadcasts new PVSS commitments, which are
the outputs of the PVSS.Share algorithm, via continuously
invoking BRB protocols. In the consumer process, a leader
is randomly selected for each epoch, and the earliest PVSS
commitment produced by this leader is consumed to recover
a random value with the BRB-like protocol. Further, the
recovered random value is adopted to generate a fresh beacon
value.

We define some global states/variables to enhance the
clarity of our protocol. The leader queue (LQ) records past
f leaders. The candidate list (CL) denotes potential leaders,
i.e., the parties that have not been leaders in the past f
epochs. This design helps avoid the situation where malicious
parties dominate leadership consecutively, giving them an
undue advantage in the protocol. Apparently, CL = P − LQ .
CTL is a dictionary and CTL[i] is a queue recording the
PVSS commitments of party i in chronological order. We
use independent sequence numbers to guarantee chronology

of PVSS commitments for each producer process, and it is
omitted in the paper. Hence, all parties share the same global
states, including {pki},LQ ,CL, Re−1, e, L,CTL. Figure 1
depicts all the processes and the global states of AsyRand
with concrete examples within a party. Table II presents the
global states, which are shared among all processes in a party.
Parties operate based on their local states in an asynchronous
network, without relying on a global clock.

TABLE II: The global states shared by all processes

State description
P the set of all parties
n, f the number of parties and faulty parties
e current epoch
L the leader of current epoch e

Re−1, Re beacon value of epoch e− 1, e
pki the ith party’s public key
LQ a queue recording past f leaders
CL the leader candidates list, i.e., CL = P − LQ

CTL dictionary of queues
CTL[i] the queue recording unconsumed PVSS commitments

from party i

The producer and the joining processes directly employ
BRB protocols, while the consumer and the removal processes
are based on BRB-like protocols. Additionally, the removal
and the joining processes are one-shot. A summary of the
processes designed in AsyRand is provided in Section IV-F.

B. The producer process

The producer process directly employs the BRB protocol
to allow each party to commit to secrets. Castro et al. [26]
pointed out that BRB protocol does not resolve the problem
when the leader is faulty. This situation is handled in our
producer process. Each party commits to new random values
by PVSS.Share which enable others to check honesty by
PVSS.Verify. If the commitment is valid, the value can defi-
nitely be recovered or “consumed” in the consumer process.

5

In the producer process, each party i continuously invokes
BRB protocol (cf. Section II-B) to commit new commitments
as depicted by Figure 2. The main idea is for each party
to commit to new random values using the PVSS scheme.
Particularly, the proposal v = (i, C, π) in Step 0, where
(C, π) is output of the PVSS.Share algorithm. The public
verifiability property of PVSS scheme enables anyone to
check whether a BRB leader has honestly produced PVSS
commitments by leveraging the PVSS.Verify algorithm in Step
1. Once a BRB instance is accomplished in Step 3, each party
updates the global state by CTL[v.i].put(v), where v is the
PVSS commitment generated by the leader i. By leveraging
the BRB properties (i.e., agreement, validity, termination),
we prove the BFT security requirements [26], [27] for the
producer process in an asynchronous setting by Theorem 1
and Theorem 2.

Step 0. For party i, invokes (C, π) ← PVSS.Share.
Denotes v = (i, C, π) and

broadcasts (initial, v).

Step 1. For party i, waits until the receipt of
(initial, v), where PVSS.Verify(v.C, v.π) is true

broadcasts (echo, hv), where hv = Hash(v).

Step 2. For party i, waits until the receipt of
2f + 1 (echo, hv) or f + 1 (ready, hv)

broadcasts (ready, hv).

Step 3. For party i, waits until the receipt of
2f + 1 (ready, hv)

CTL[v.i].put(v).

Fig. 2: The producer process at each party i

Lemma 1: Non-faulty parties reach agreement on “⊥” in
the producer process if the leader is faulty.
Proof. If the PVSS dealer is faulty, non-faulty parties take no
action to the queue CTL[L]. Thus, the queue length |CTL[L]|
is an indicator to judge whether the leader is honest or not. “⊥”
is defined as the default agreement value, which is initialized
by all non-faulty parties at the beginning of BRB protocol.
If |CTL[L]| remains unchanged, it means that the leader is
faulty and agreement on “⊥” is achieved.

Lemma 2 (CTL[i] is in order): The values in CTL[i]∀i are
in the right order for all honest parties.
Proof. CTL[i] is designed as a linear structure to record
all PVSS commitments for each party i chronologically. If
two values in the global state CTL[i] are in wrong order,
that means party i has successfully sent contradicting PVSS
commitments in a proposal, which is impossible to achieve
consensus due to the BRB agreement property.

Theorem 1 (Safety of the producer process): No matter
whether the current leader L is faulty or not, the result of the
producer process, CTL[L], will always reach agreement for
all honest parties.

Proof. The producer process consists of infinite BRB in-
stances invoked by each party. Any two BRB instances led by
two leaders are independent. Hence, we focus on the scenario
where any party i invokes the BRB protocol. Namely, party
i is the leader L of a BRB instance. No matter the leader L
is faulty or not, all honest parties will output the same value,
which may be the leader’s proposal v or the initialized value
“⊥” (cf. Lemma 1). If the consensus value is the former,
the BRB termination property guarantees that the leader’s
proposal v will be eventually accepted and be appended to
CTL[L] for all honest parties. If the consensus value is the
later, CTL[L] will not be updated for all honest parties and
the agreement of “⊥” does not impact the consensus of
CTL[L]. Moreover, the elements in CTL[L] are in right order
by Lemma 2. Therefore, the global state CTL[L] will be
eventually under consensus for all honest parties.

Theorem 2 (Liveness of the producer process): No adver-
saries could prevent the producer process from appending valid
PVSS commitment into CTL[i] for honesty party i.
Proof. The producer process consists of infinite independent
BRB protocols led by all parties separately. The proposal
(i.e., PVSS commitment) of party i does not interfere with
the proposal of another party j, since they have independent
storage space, i.e., CTL[i] and CTL[j]. We argue that the
producer process keeps liveness by proving that CTL[i] can
be appended as long as i’s PVSS commitments can be con-
tinuously provided. If the leader i is honest, i can initialize
a BRB protocol once the previous BRB proposal has been
agreed upon by all honest parties. The BRB termination
property guarantees that all non-faulty parties will eventually
reach a consensus on the leader’s proposal. Therefore, i can
initialize the next BRB proposal smoothly, allowing CTL[i] to
be appended with the new PVSS commitment. If the leader i
is faulty, by the agreement and termination properties of the
BRB protocol, two possible consensus outcomes may occur.
If consensus is reached on some PVSS commitment, the result
will be the same with the scenario where the leader is non-
faulty. Therefore, the consensus value will be appended to
CTL[i]. If consensus is reached on “⊥”, CTL[i] will keep
unchanged, as stated in Theorem 1. The faulty leader will be
removed from the system once it is deemed to have dropped
out, which will be discussed in Section IV-D. The removal
mechanism does not affect liveness for the remaining honest
parties.

C. The consumer process

In the consumer process, all parties cooperate to recover L’s
earliest unconsumed PVSS commitment and reach consensus
on a beacon value for each epoch in a BRB-like protocol.
Figure 3 depicts the consumer process in epoch e for each
party i. Different from the original BRB protocol, the protocol
is led by all honest parties, rather than a leader.

In Step 0, each party obtains current leader by computing
L = CL[Re−1 mod |CL|], where Re−1 is the beacon value of
previous epoch e − 1 and obtains the earliest PVSS commit-
ment by v ← CTL[L].get(). Then, each party i generates the
decryption key Di for the commitment v. In Step 1, each party

6

recovers the PVSS secret gs with at least t valid decryption
keys and constructs the beacon value Re of current epoch e.
The Step 2 and Step 3 are the same with the original BRB
protocol.

The initialization message in Step 0 is defined as
(recon, Di) where Di is the decryption key obtained via
PVSS.PreRecon(Ci, ski). The echo message is defined as
(reconEcho, e, Re) in Step 1, where Re is calculated by
employing the recovered random value gs of epoch e. Note
that gs was previously hidden in v = (L,C, π) by the leader
in the producer process. Thus, it is the unique PVSS secret
and can be recovered with t valid keys. The ready message is
defined as (reconReady, e, Re) in Step 2.

Step 0. For party i, L = CL[Re−1 mod |CL|] and
v ← CTL[L].get(), where v = (j, C, π). Waits until
|CTL[L]| > 1 or L.status == removed:
oldL← LQ .get() and CL.add(oldL)
if L.status != removed:
LQ .put(L) and CL.remove(L)

Di ← PVSS.PreRecon(Ci, ski)
broadcasts (recon, Di).

Step 1. For party i, waits until the receipt of t
(recon, Di),

gs ← PVSS.Recon(C, {Di}i∈T)
Re ← Hash(Re−1, g

s)
broadcasts (reconEcho, e, Re).

Step 2. For party i, waits until the receipt of
2f + 1 (reconEcho, e, Re) or f + 1

(reconReady, e, Re)
broadcasts (reconReady, e, Re).

Step 3. For party i, waits until the receipt of
2f + 1 (reconReady, e, Re),

accepts Re

enters Step 0 to the next round e+ 1.

Fig. 3: The consumer process at party i

The consumer process updates the global variables, i.e., L,
CL, LQ , CTL and outputs new beacon value Re for each
epoch e. Obviously, the execution of the consumer process
relies on the producer process. The consumer process should
be “slower” than the producer process, so that the operation
CTL[L].get() returns a valid PVSS commitment for every
epoch. The fact is guaranteed and it is proved by Lemma 3.
The required BRB-like security properties of an epoch are
proved by Lemma 4, Lemma 5 and Lemma 6, respectively.
Further, we prove the consumer process ensures the BFT
security properties [26], [27] by Theorem 3 and Theorem 4.

Note that the gray text in Figure 3 highlights the situation
that a faulty party (i.e., the leader L) should be removed. The
removal process is introduced in Section IV-D.

Lemma 3 (CTL[i] is non-empty): The set CTL[i] is non-
empty, ensuring that the consumer process always has a valid

PVSS commitment to consume whenever a party i is chosen
as leader.
Proof. By Theorem 2, the queue CTL[i] can be appended
without interruption. The condition, i.e., |CTL[i]| > 1, in Step
0 guarantees that CTL[i] is non-empty for all honest parties.
However, if party i stops producing valid PVSS commitments
in the producer process, CTL[i] will stop growing. |CTL[i]|
will be 0 in Step 0 if i is chosen as leader for |CTL[i]|
times. In this case, the consumer process will be suspended
and it will be resumed only when i starts to broadcast PVSS
commitments again or i is removed by the removal process.

Lemma 4 (Validity of each epoch): If each non-faulty party
i broadcasts Di in Step 0, then all non-faulty parties will
accept a beacon value for epoch e.
Proof. Notice that the PVSS commitment to be consumed for
current epoch e is the leader’s unconsumed earliest proposal.
We leverage the mathematical induction to prove the validity
of each epoch. In the first epoch 1, the global states are
initialized to be consistent for all honest parties. Suppose the
global states are consistent for all honest parties and CTL[L]
is non-empty (cf. Lemma 3) at the end of epoch e − 1. We
prove that the global states in epoch e in the consumer process
are consistent for all honest parties. By Lemma 2, CTL[L]
is ordered for all honest parties. So, given the same v ←
CTL[L].get(), all non-faulty parties will send (recon, Di) in
Step 0. Each party will collect n − f > t valid decryption
keys {Di} to obtain gs by PVSS.Recon(C, {Di}). Then the
beacon value Re is calculated as Re = Hash(Re−1, g

s). All
non-faulty parties will send (reconEcho, e, Re) in Step 1. The
subsequent steps (i.e., Step 2 and Step 3) are the same with
BRB protocol, guaranteeing that all honest parties will receive
2f+1 reconReady messages and accept the same beacon value
Re.

Claim 1: No two honest parties will send conflicting mes-
sages (reconReady, e, Re) and (reconReady, e, R′

e ̸= Re),
given the correctly chosen leader L at epoch e.
Proof. Suppose two honest parties i and j send reconReady
message for two different beacon values Re and R′

e, re-
spectively. Party i must have received a set A of 2f + 1
reconEcho for Re and party j must have received a set B
of 2f + 1 reconEcho for R′

e. Since |A| = |B| = 2f + 1, then
|A

⋂
B| ≥ f + 1 due to quorum intersection property. This

implies that at least f + 1 parties have sent an echo to both i
and j. It means that at least one honest party must have sent
two reconReady messages for different values, violating the
assumption.

Lemma 5 (Agreement of each epoch): If a non-faulty party
accepts Re, then all non-faulty parties accept Re for epoch e.
Proof. First consider the scenario where faulty parties collude
or send invalid decryption keys {Di} for current leader’s earli-
est PVSS commitment in Step 0. However, invalid keys can be
detected by the PVSS.Recon(C, {Di}) algorithm and they will
be abandoned. And the PVSS threshold t = f+1 > f , making
it impossible for faulty parties to recover the valid secret
without participation of an honest party. Further, Claim 1
shows that no contradicting beacon values can be output
for two honest parties. Hence, all honest parties will reach
agreement on the same beacon value Re for epoch e.

7

Lemma 6 (Termination of each epoch): The consumer
process eventually outputs a valid beacon value Re for the
epoch e.
Proof. By Lemma 3, CTL[i] is always non-empty for each
epoch. When a party i is elected as leader, Step 0 can be
guaranteed to be executed for all honest parties. Further, with
at least 2f + 1 > t = f + 1 honest parties, Step 1 will be
eventually invoked. The subsequent steps Step 2 and Step 3
follow the same structure as the original BRB protocol. Thus,
all honest parties will eventually accept Re for epoch e. Hence,
each epoch, described in a BRB-like protocol, achieves the
termination property.

Theorem 3 (Safety of the consumer process): For any epoch
e, the consumer process will always reach agreement for all
honest parties.
Proof. The agreement of each epoch (cf. Lemma 5) indicates
that all honest parties share the same global states at the
beginning of each epoch2. Hence, each honest party i will
broadcast share Di, guaranteeing that all honest parties will
accept the same beacon value Re due to validity of each
epoch (cf. Lemma 4). Moreover, the consumer process is a
combination of infinite epochs. Then, the consumer process
will always reach agreement for all honest parties for any
epoch.

Theorem 4 (Liveness of the consumer process): No adver-
saries could prevent the consumer process from outputting a
new beacon value and forwarding to the next epoch.
Proof. Suppose L is the leader, the CTL[L] is non-empty
(cf. Lemma 3) at the beginning of epoch e and the consumer
process will eventually output a valid beacon Re due to the
termination property (cf. Lemma 6). The Step 0 may suspend
if the only one PVSS commitment can be fetched out from
CTL[L] and |CTL[L]| = 1 holds for a long time. Note that the
time is a system parameter, rather than from a global clock. In
this occasion, party L will be removed in the removal process
and it will not be elected as leader. The removal process
notifies the consumer process to go on from the suspended
point in Step 0. Therefore, the consumer process is guaranteed
to achieve liveness.

Lemma 7 (Back-on-track): If some party j falls offline or
experiences network issues at epoch e′, it can get back on
track to the latest epoch e > e′ by downloading the tuple
CTL,CL,LQ , e, Re−1 from any honest party.
Proof. If j downloads the tuple from a dishonest party, it
will detect inconsistencies with at least 2f +1 other parties at
epoch e. Consequently, j can attempt to download the tuple
from another party. Without loss of generality, suppose the
honest party i eventually provides correct tuple for j. As
designed, CTL stores PVSS commitments for all parties in
the producer process. Moreover, elements in CTL[j] are in
order (cf. Lemma 2). Although CTL continues to grow as
the producer process progresses, this does not impact party j
to download earliest PVSS commitment from party i. Besides,
the tuple (CL,LQ , e, Re−1) is updated and reaches consensus
as consumer safety (cf. Theorem 3) indicates. Hence, a slow
party can always get back on track to the latest epoch e.

2It does not mean they share the same state at the same time.

D. The removal process
The removal process is designed to enable the system to

remove faulty members without restarting. In the producer-
consumer model, each party is designed to produce and
consume PVSS commitments in the producer and consumer
process, respectively. In case a party i behaves maliciously in
the producer process, and all honest parties reach a consensus
on “⊥”. Hence, the length of CTL[i] will not increase, and
CTL[i] will eventually become empty after i is elected as
leader for |CTL[i]| epochs. Figure 4 depicts the party removal
process in a BRB-like protocol, similar to the consumer
process where conditions of Step 2 and Step 3 are the same
with original BRB protocol.

Step 0. For party i, if |CTL[L]| = 1 holds for a period
longer than ∆t and no valid receipt (initial, (L,C, π))
in Step 1 of the producer process. Denote v = (L, e),

broadcasts (removal, v).

Step 1. For party i, waits until the receipt of t
(removal, v),

broadcasts (removalEcho, v).

Step 2. For party i, waits until the receipt of
2f + 1 (removalEcho, v) or f + 1

(removalReady, v)
broadcasts (removalReady, v).

Step 3. For party i, waits until the receipt of
2f + 1 (removalReady, v),

set L.status = removed
notify the consumer process.
rollback to epoch v.e, if needed.

Fig. 4: The removal process to remove L at party i

If the leader L’s amount of unconsumed commitments
at current epoch e is 1, i.e., |CTL[L]| = 1, for more
than ∆t3 for party i, it broadcasts the initialization message
(removal, v), where v = (L, e). Once a party i receives 2f+1
(removalReady, v), it marks that L is removed and informs
its consumer process, which was suspended in Step 0 in
consumer process. Besides, due to termination of BRB(-like)
protocols, the removal process might bring fork and honest
parties need rollback in Step 3. This is discussed by Claim 3.

We prove the validity, agreement and termination of the
proposed BRB-like protocol by Lemma 8, Lemma 9 and
Lemma 10, respectively.

Lemma 8 (Validity of the removal process): If all honest
parties broadcast the removal message at epoch e, then all
honest parties will remove L.
Proof. The conclusion is evident, akin to the consumer
process (cf. Lemma 4).

Claim 2: No two honest parties will send conflicting mes-
sage (removalReady, v) and (removalReady, v′ ̸= v).

3Note that ∆t is a global parameter and it does not require a global clock.

8

Proof. The proof follows the same reasoning as in Claim 1
and is therefore omitted here.

Lemma 9 (Agreement of the removal process): If a non-
faulty party agrees to remove party L, then eventually all non-
faulty parties will agree to remove L.
Proof. By Claim 2, all non-faulty parties will broadcast
the removalReady message for the same value v, where
v = (L, e). So, if a non-faulty party agrees to remove
party L, it must have received 2f + 1 (removalReady, v)
messages, of which at least f + 1 came from non-faulty
parties. Consequently, all non-faulty parties will broad-
cast (removalReady, v), either due to seeing the f +
1 removalReady messages or due to seeing 2f + 1
echoes. Claim 2 guarantees that no non-faulty will broadcast
(removalReady, v′ ̸= v). So there will not be 2f + 1 echoes
for v′ or f + 1 removalReady for v′. Hence, eventually all
non-faulty parties will agree to remove party L.

Lemma 10 (Termination of the removal process): All non-
faulty parties will eventually terminates with agreement on
whether L is removed or not.
Proof. If L does not provide valid PVSS commitments and
it will be removed by honest parties by Lemma 8. Here, we
consider the worst-case scenario in the removal process, where
a fork may occur among honest parties. Define a set A in
which at least one honest party has removed L, another set B
containing the other honest parties who have not removed L
yet. Due to agreement of the removal process (cf. Theorem 9),
all parties in set B will eventually switch to set A at epoch e∗,
which is determined by the last party in set B. e∗ is also called
the termination epoch, which may not be a deterministic value.
We leave it an open question whether e∗ ?

= e holds forever.
Claim 3: If a fork arises due to the removal process, it will

be eventually resolved.
Proof. Suppose e∗ to be the determination epoch of the
removal process, as defined in Lemma 10. During the period
e∗−e, at most e∗−e beacon values will have been generated.
Since the status of parties in the forking set B will eventually
rollback, the fork and the e∗ − e associating beacon values
will be abandoned. This implies that unpredictability might
be affected if e∗ − e > 0. Summarily, all honest parties will
continue the beacon protocol without party L starting from
epoch e and share the same global state (CTL,CL,LQ , Re),
even though some parties rely on rollback. Besides, old PVSS
commitments in CTL will still be consumed with at least t
honest parties and new PVSS commitments will be generated
with the remaining n− 1 parties’ public keys after epoch e.

E. The joining process

To achieve system reconfiguration without the need for
restarting, we introduce a party joining process that facilitates
the seamless integration of a new party into the system.
The joining process is an instance of BRB protocol, hence
the properties of validity, agreement and termination are
guaranteed.

Suppose a joining party θ composes a proposal v =
(e, e∗, pkθ, C, π), where e is the current epoch, e∗ ≫ e is the
expected epoch for θ to appear in the system, pkθ is θ’s public

key, and (C, π) is the output of PVSS.Share(s, {pki} ∪ pkθ).
Then, θ initiates the BRB protocol to request to join the system
by broadcasting (join, v). Denote the termination epoch e#,
which is not a deterministic value. The only distinction with
standard BRB protocol (cf. Section II-B) is in Step 3, where
a party may need to rollback status of (CTL,CL,LQ , Re∗)
to the expected epoch e∗. Figure 5 depicts the party joining
process using BRB protocol.

Step 0. For a joining party θ, invokes (C, π) ←
PVSS.Share. Set v = (e, e∗, pkθ, C, π) and

broadcasts (join, v).

Step 1. For party i, waits until the receipt of
(join, v), where PVSS.Verify(v.C, v.π) is true

broadcasts (joinEcho, hv).

Step 2. For party i, waits until the receipt of
2f +1 (joinEcho, hv) or f +1 (joinReady, hv)

broadcasts (joinReady, hv).

Step 3. For party i, waits until the receipt of
2f + 1 (joinReady, hv), and wait until
epoch e∗ or current epoch e# > e∗,

if e# > e∗:
rollback (CTL,CL,LQ , Re∗) to epoch e∗

CTL[θ].put(v)
CL.add(θ)

Fig. 5: The joining process for party θ at party i

We consider the worst situation where rollback occurs, i.e.,
e# > e∗, by Claim 4.

Claim 4: Consider the worst case where an honesty party
j accepts θ in Step 3 at the epoch e# > e∗. We claim
that beacon output will be eventually under consensus in
the consumer process, and any fork, if appeared with little
probability, will be temporary.
Proof. Normally, all honest parties will put the joining party
θ in CTL and CL, since v.e∗ ≫ v.e for a valid BRB proposal
v by θ. Then we consider the worst case. Define a set A
of which honest parties that have accepted θ before e∗, and
another set B of honest parties that have not. Obviously,
|A| + |B| = 2f + 1. (|A| can be 0 in our design.) Due to
the BRB agreement and termination properties, parties in B
will eventually rollback to epoch e∗ and align their status with
those in A. Summarily, all honest parties eliminate the fork
and share the same state in epoch e∗, though some honest
parties rely on rollback. Consequently, starting from epoch e∗,
newly generated PVSS commitments in the producer process
will include the public key of θ. Besides, all honest parties
will update (CTL,CL,LQ , Re∗) to the same value and run
the consumer process with participation of θ.

Further, we discuss the impact to unpredictability of the
beacon. When a party j in B rolls back, we consider that
party j is changed from B to A. Denote e# > e∗ as the

9

BRB termination epoch, determined by the last party in B.
Hence, at most e#−e∗ beacon values may have been generated
with e# − e∗ PVSS commitments being decrypted in the
consumer process. This implies that unpredictability may be
compromised for a maximum of e# − e∗ epochs.

F. Summary of the processes

Bracha Reliable Broadcast (BRB) or BRB-like protocol is
a one-shot communication abstraction to achieve consensus.
The original BRB protocol has the security properties of
validity, agreement and Termination (cf. Section II-B). We
also define and prove the security properties for the BRB-like
protocols when they are designed in the consumer and removal
processes. To provide a concise overview of the processes,
Table III is presented. The column Instance(s) indicates how
many BRB(-like) protocols is executed in each process. The
column Actions summarizes the PVSS algorithms involved in
each process. The column States introduces the global states
which are updated in each process.

TABLE III: Summary of the processes in AsyRand

Process Protocol Instance(s) Actions States

Producer BRB infinite PVSS.Share
PVSS.Verify

CTL[L]

Consumer BRB-like infinite PVSS.PreRecon
PVSS.Recon

LQ ,CL, L
CTL[L], e, Re

Removal BRB-like 1 − L

Joining BRB 1 PVSS.Share
PVSS.Verify

CL,CTL[θ]

The producer and joining processes are directly leverage
the BRB protocol. All parties in the producer process, as
well as the joining node in the joining process, first invoke
the PVSS.Share algorithm and initiate the BRB protocol
with the output PVSS commitment as proposal. Subsequently,
PVSS.Verify is triggered when a party receives the initial
or join message. The consumer and removal processes are
constructed based on BRB-like protocols. In the consumer
process, the PVSS.PreRecon and PVSS.Recon algorithms are
executed to recover the leader’s secret. Both the producer
and joining processes run with an infinite number of BRB(-
like) instances, which form the foundation of AsyRand. The
removal and joining processes require only a single instance
of the BRB(-like) protocol, achieving reconfiguration.

V. PROPERTIES OF AsyRand

In this section, we argue the security properties of
AsyRand, focusing on liveness, bias-resistance, unpredictabil-
ity, public verifiability, guaranteed output delivery and respon-
siveness.

Theorem 5 (Liveness/Availability): No adversaries could
prevent the processes in AsyRand from proceeding.
Proof . We discuss all the four processes in AsyRand de-
scribed in Section IV. In the producer process, each party
i continuously invokes the BRB protocol to commit new
PVSS commitments. The PVSS commitments are verified as
valid by all honest parties or any external user. Hence, a
valid PVSS commitment can always reach consistency among
honest parties. By Theorem 2, we prove that no adversaries can

prevent new PVSS commitments from being appended into
global state CTL for honesty parties. In the consumer process,
parties collectively consume the previously PVSS commit-
ments stored in CTL. Lemma 3 has shown that CTL[L] is
not empty before L is elected as leader. Thus, the leader
L’s earliest PVSS commitment, i.e., v ← CTL[L].get(), can
always be available for each epoch e. By Theorem 4, we
prove that no adversaries could prevent a PVSS commitment
from being consumed. If CTL[L] remains empty for a long
time, party L will be removed in the removal process by
all honest parties. Both the removal and joining processes
will eventually reach agreement due to BRB(-like) agreement
and termination properties. Thus, adversaries cannot prevent
the processes of AsyRand from proceeding in the proposed
producer-consumer model.

Theorem 6 (Bias Resistance): Adversaries cannot bias the
beacon output Re of epoch e in a predictable way.
Proof . As designed, beacon values are delivered in the
consumer process. In the consumer process, the condition
|CTL[L]| > 0 holds (cf. Figure 3) for leader L when the
earliest PVSS commitment v ← CTL[L].get() is consumed.
Moreover, the leader queue LQ guarantees that a party can be
chosen as leader again only after f epochs. Hence, the random
beacon value of epoch e, Re = Hash(gs, Re−1), depends on
the secret gs hidden in a PVSS commitment produced at least
f epochs earlier. Further, Re−1, which also affects the value
of Re, is available at the end of epoch e − 1. Summarily, gs

and Re−1 are determined by past commitments and cannot be
controlled or predicted by adversaries in the current epoch e.
Thus, it is impossible for adversaries to bias the beacon output
Re in a meaningful manner.

Theorem 7 (Unpredictability): An adversary should not be
able to predict (precompute) a future beacon value Re+f+1,
where e is the epoch of current time.
Proof . As described in Theorem 6, predicting a future random
beacon value Re requires knowledge of both PVSS secret
gs and the previous beacon value Re−1. We have proved
that the proposed PVSS scheme guarantees IND1-Secrecy in
Appendix C, ensuring that the PVSS secret remains indistin-
guishable until it is reconstructed for honest parties. The PVSS
secret can be recovered only when at least t(> f) distinct
(recon, Di) messages are broadcast. Consider the worst-case
scenario where the f colluding malicious parties share their
PVSS secrets privately in real time. If l ≤ f of these malicious
parties are selected as leaders in consecutive epochs starting
from epoch e, then the beacon values from epoch e to epoch
e + l can be calculated in advance. The probability of this
case can be modeled as hypergeometric distribution [13]. A
party will be elected as leader at least f epochs later, making
it impossible to predict beacon value after epoch Re+f+1.
Therefore, to ensure complete unpredictability in practice, it is
recommended to use future beacon values beyond epoch e+f .

Theorem 8 (Public Verifiability): Any third party with
publicly known information can verify the correctness of
beacon value Re of each epoch e.
Proof . The AsyRand public verification property essentially
inherits from the PVSS functionality. In the producer process,
PVSS commitments are generated using the PVSS.Share

10

algorithm and broadcast among the parties, making them
publicly verifiable with the PVSS.Verify algorithm. In the
consumer process, the decrypted PVSS shares, obtained using
the PVSS.PreRecon algorithm, are broadcast by all parties.
These shares are then further verified with the PVSS.Recon
algorithm before being used to recover the PVSS secret. Both
the PVSS algorithms and the calculation of beacon value are
deterministic, enabling any third party to verify the entire
process of generating Re.

Theorem 9 (Guaranteed Output Delivery): A new beacon
value is guaranteed to be output in each epoch e.
Proof . By Lemma 3, the PVSS commitment queue CTL[L]
of the leader L is always non-empty during the consumer
process. Hence, a secret gs hidden in v ← CTL[L].get()
can be eventually recovered with at least n − f > t > f
PVSS decrypted shares from honest parties. Further, a new
beacon value Re for epoch e is guaranteed to be calculated
by Hash(gs, Re−1).

Theorem 10 (Responsiveness): AsyRand is responsive,
meaning that beacon values are delivered at the speed of the
real network.
Proof . Both the producer and the consumer processes of
AsyRand are depicted in an asynchronous setting. The objects
produced and consumed in AsyRand are PVSS commitments
contributed by all parties. During the producer process, PVSS
commitments are reliably generated as parties independently
invoke the PVSS.Share algorithm and reach consensus on each
commitment using BRB protocols. In the consumer process,
honest parties output the random beacon value Re for each
epoch e using the leader’s earliest PVSS commitment in a
BRB-like protocol. Furthermore, Lemma 7 demonstrates that
a slow party can get back on track to the latest epoch in the
consumer process. This implies that AsyRand delivers beacon
values at the pace of the consumer process, advancing at the
speed of the actual asynchronous network.

VI. NEW PVSS CONSTRUCTION

Figure 6 depicts the concrete construction of the pro-
posed PVSS scheme using Σ protocol and NIZK proof (cf.
Appendix B). Particularly, C ′ is the commitment, c is the
challenge, (s̃, p̃(i)) is the response in PVSS.Share. The intpl
algorithm in PVSS.Verify is the Lagrange interpolation. The
required security properties are proved in Appendix C. The
complexity and the performance comparison with state-of-the-
art works are presented in Appendix D.

VII. IMPLEMENTATION AND EVALUATION

The modified BRB protocol (cf. Section II-B) has com-
munication complexity of O(n2) in the producer process,
where parties broadcast O(n)-size PVSS commitments. In
the consumer process, each party only broadcasts O(1) size
messages in each step, as Figure 3 shows. Consequently, the
complexity of the consumer process is O(n2). Therefore, the
overall communication complexity of AsyRand is O(n2).

We implement the proposed PVSS scheme with Charm-
Crypto library, which is a framework for constructing crypto-
graphic schemes. We choose an asymmetric curve MNT159 to

Functionality The proposed PVSS scheme

({ski, pki})← PVSS.Setup(λ, t, n) :

g ∈ G, ski
R←− Zp, pki ← gski

(C, π)← PVSS.Share(s, {pki}) :

p(x)
R←− poly(·),where p(0) = s

C =
{
{Ci = pk

p(i)
i }i∈[1,··· ,n]

}
p′(x)

R←− p(x),where p′(0) = s′
R←− Zp

C′ =
{
{C′

i = pk
p′(i)
i }i∈[1,··· ,n]

}

π ←

C′,
c = H(C,C′),
s̃ = s′ − cs,
{p̃(i) = p′(i)− c · p(i)}i∈[1,··· ,n],

bool← PVSS.Verify(C, π) :{
{C′

i
?
= pk

p̃(i)
i · Cc

i }i∈[1,··· ,n],

s̃
?
= intpl({(i, p̃(i))}i∈[1,··· ,n])

Di ← PVSS.PreRecon(Ci, ski) :

Di = C
1/ski
i = gp(i)

gs ← PVSS.Recon(C, {Di}i∈T) :

e(Di, pki)
?
= e(g, Ci) ∀i ∈ T

µi =
∏

j∈T,j ̸=i
j

j−i∏
i∈T Dµi

i =
∏

i∈T gµi·p(i) = gp(0) = gs

Fig. 6: Construction of the proposed PVSS scheme

implement the proposed PVSS scheme. For the network setup,
we implement a fully-connected peer-to-peer (p2p) network
based on TCP socket programming. Both the consumer and
the producer processes share the same P2P network interface,
thereby competing for network resources. Our experiments are
executed on 128 AWS cloud servers t4g.medium scattered in
8 regions, namely, Canada, Ireland, Ohio, Paris, SaoPaulo,
Seoul, Singapore and Sydney. Each of the servers is with 2
vCPUs and 4 GB RAM and runs Linux ubuntu-bionic-18.04
with Python 3.6.9. The proof-of-concept implementation is
available on Github4.

TABLE IV: Cryptographic cost

ExpG0
ExpG1

Pair |G0|/|G1| |Zp|
0.46ms 4ms 3.6ms 100B/304B 48B

We begin by evaluating the cryptographic operation costs
of the curve MNT159, as shown in Table IV. It is evident
that the bilinear pairing (e : G0 × G1 → GT) and ExpG1

incur a significantly higher cost than ExpG0
.5 We then assess

the performance of our proposed PVSS scheme in comparison
with related PVSS schemes in Appendix D.

Next, we evaluate the performance of AsyRand under
different configurations with n = 16, 32, 64, 128. The producer

4https://github.com/AppCrypto/beacon
5In some programming libraries or on certain elliptic curves, such as

SS512, the bilinear pairing may be faster than ExpG0
.

https://github.com/AppCrypto/beacon

11

1 2 3 4 5

70

80

90

100

cmtLen

B
an

dw
id

th
op

tim
iz

at
io

n
pe

rc
en

ta
ge

(%
)

n = 16
n = 32
n = 64
n = 128

Fig. 7: Bandwidth optimization with
multiple PVSS commitments broadcast

20 40 60 80 100 120
0

50

100

150

200

250

The number of parties n

B
an

dw
id

th
(k

B
/

be
ac

on
)

AsyRand
SPURT
Hydrand

Fig. 8: Bandwidth per beacon

20 40 60 80 100 120

0

50

100

150

200

250

The number of parties n

th
ro

ug
hp

ut
(b

ea
co

n
/

m
in

ut
e)

AsyRand
SPURT
Hydrand

Fig. 9: Average beacon throughput per
minute

process allows parties to broadcast an arbitrary number of
PVSS commitments independently.

As expected, the producer process operates faster than the
consumer process. By Theorem 10, it is shown that AsyRand
beacon values are generated at the speed of the consumer
process. To prevent the consumer process from lagging in
computational resource allocation, we introduce parameters
to regulate the producer’s speed. These parameters include
bufferLen, the number of unconsumed PVSS commitments
from a party, and cmtLen, the number of PVSS commitments
sent at a time by a party. Adjusting bufferLen effectively slows
down the producer process, while modifying cmtLen reduces
bandwidth consumption, as multiple PVSS commitments can
be transmitted via a single BRB protocol.

By setting bufferLen to 2 or 3, the producer process
is slowed with minimal impact on throughput. Adjusting
cmtLen to 2, 4, or 5 reduces bandwidth by approximately
17%-27% compared to cmtLen = 1. Figure 7 shows the
results of bandwidth optimization. Figure 8 illustrates the
bandwidth usage (both sent and received data) per beacon
output. For n = 32 with bufferLen = 2 and cmtLen = 4,
the average bandwidth of a party is around 51kB per beacon.
The bandwidth usage in AsyRand is higher than in SPURT
(35 kB per beacon), because two consensus algorithms are
occurring independently in both the producer and consumer
processes. However, this increased bandwidth does not hinder
AsyRand’s high throughput in an asynchronous setting. As
illustrated in Figure 9, AsyRand achieves significantly higher
throughput compared to Hydrand and SPURT. Specifically,
with n = 128, AsyRand produces 58 beacons per minute,
while SPURT and Hydrand produce only 12 and 8 beacons
per minute, respectively.

VIII. CONCLUDING REMARKS

In this paper, we introduce AsyRand, a distributed ran-
domness beacon protocol designed for asynchronous set-
tings and based on a novel publicly verifiable secret shar-
ing (PVSS) scheme. AsyRand operates within a producer-
consumer model. The producer process generates PVSS com-
mitments, which are then used by the consumer process to
continuously produce beacon values. To ensure consensus and
consistency among distributed parties, we integrate Bracha
Reliable Broadcast (BRB) or BRB-like protocols. Addition-
ally, AsyRand supports reconfiguration, enabling the removal

of faulty parties and the addition of new ones without com-
promising the protocol’s eventual consensus. We offer proofs
showing that these reconfiguration processes do not impact
the consistency of the beacon protocol. Our analysis also
establishes that AsyRand achieves key properties, including
liveness, unpredictability, bias-resistance, public verifiability,
guaranteed output delivery and responsiveness. Experimental
results further validate the feasibility and effectiveness of
AsyRand. In the future, we plan to explore verifiable batched
secret sharing [43] to further reduce communication overhead
and improve throughput. Additionally, batched secret sharing
could be leveraged to achieve complete unpredictability while
maintaining state-of-the-art complexity as AsyRand.

REFERENCES

[1] Rabin, M. O. Transaction protection by beacons. J. Comput. Syst. Sci.,
1983, 27(2):256–267.

[2] Escudero, D., Tjuawinata, I., & Xing, C. On Information-Theoretic Secure
Multiparty Computation with Local Repairability. In PKC, 2024, pp. 205-
239.

[3] David, B., Magri, B., Matt, C., Nielsen, J. B., & Tschudi, D. Gear-
box: Optimal-size shard committees by leveraging the safety-liveness
dichotomy. In CCS, 2023, pp. 683-696.

[4] Hu, D., Wang, J., Liu, X., Li, Q., & Li, K. LMChain: An Efficient Load-
Migratable Beacon-based Sharding Blockchain System. IEEE TC, 2024.

[5] Hou, R., Yu, H., & Saxena, P. Using throughput-centric byzantine
broadcast to tolerate malicious majority in blockchains. In S&P, 2022,
pp. 1263-1280.

[6] Kiayias, A., Russell, A., David, B., & Oliynykov, R. Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol. In CRYPTO, 2017,
pp. 357-388.

[7] Van Den Hooff, J., Lazar, D., Zaharia, M., & Zeldovich, N. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In POSP, 2015,
pp. 137-152.

[8] Abraham, I., Chan, T. H., Dolev, D., Nayak, K., Pass, R., Ren, L., &
Shi, E. Communication complexity of byzantine agreement, revisited. In
PODC, 2019, pp. 317-326.

[9] David, B., Gaži, P., Kiayias, A., & Russell, A. Ouroboros Praos: An
Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain. In EU-
ROCRYPT, 2018, pp. 66-98.

[10] Interoperable Randomness Beacons. https://www.nist.gov/
programs-projects/nist-randomness-beacon, Accessed: 2024-07-06.

[11] Choi, K., Manoj, A., & Bonneau, J. SoK: Distributed randomness
beacons. In S&P, 2023, pp. 75-92.

[12] Bonneau, J., Clark, J., & Goldfeder, S. On bitcoin as a public random-
ness source. http://eprint.iacr.org/2015/1015, 2015.

[13] Schindler, P., Judmayer, A., Stifter, N., & Weippl, E. HydRand: Efficient
Continuous Distributed Randomness. In S&P, 2020, pp. 73-89.

[14] Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I.,
Fischer, M. J., & Ford, B. Scalable Bias-Resistant Distributed Random-
ness. In S&P, 2017, pp. 444–460.

[15] Bünz, B., Goldfeder, S., & Bonneau, J. Proofs-of-delay and randomness
beacons in Ethereum. In S&B, 2017.

https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
http://eprint.iacr.org/2015/1015

12

[16] Cascudo, I., & David, B. SCRAPE: Scalable Randomness Attested by
Public Entities. In ACNS, 2017, pp. 537-556.

[17] Cascudo, I., & David, B. ALBATROSS: Publicly Attestable Batched
Randomness Based on Secret Sharing. In ASIACRYPT, 2020, pp. 311-
341.

[18] Cascudo, I., David, B., Garms, L., & Konring, A. YOLO YOSO: Fast
and Simple Encryption and Secret Sharing in the YOSO Model. In
ASIACRYPT, 2022, pp. 651-680.

[19] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. In SOSP, 2017, pp.
51-68.

[20] Hanke, T., Movahedi, M., & Williams, D. Dfinity technology overview
series, consensus system. arXiv preprint arXiv:1805.04548, 2018.

[21] Cascudo, I., David, B., Shlomovits, O., & Varlakov, D. Mt. Random:
Multi-tiered randomness beacons. In ACNS, 2023, pp. 645-674.

[22] Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., & Ren, L.
Practical Asynchronous Distributed Key Generation. In S&P, 2022, pp.
2518-2534.

[23] Boneh, D., Bonneau, J., Bünz, B., & Fisch, B. Verifiable delay functions.
In Crypto, 2018, pp. 757-788.

[24] Schoenmakers, B. A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic Voting. In CRYPTO, 1999, pp. 148-164.

[25] Zhang, L., Qiu, F., Hao, F., & Kan, H. 1-round distributed key generation
with efficient reconstruction using decentralized CP-ABE. IEEE TIFS,
2022, 17: 894-907.

[26] Castro, M., & Liskov, B. Practical byzantine fault tolerance. In OSDI,
1999.

[27] Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., & Abraham, I.
HotStuff: BFT consensus with linearity and responsiveness. In PODC,
2019, pp. 347-356.

[28] Wang, X., Duan, S., Clavin, J., & Zhang, H. BFT in blockchains: From
protocols to use cases. ACM Comput. Surv., 2022, 54(10s), 1-37.

[29] Bracha, G. An asynchronous [(n-1)/3]-resilient consensus protocol. In
PODC, 1984, pp. 154–162.

[30] Damgård, I. On Σ-Protocols, https://www.cs.au.dk/∼ivan/Sigma.pdf,
Accessed: 2024-07-06

[31] Fiat, A., & Shamir, A. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, 1986, pp. 186–194.

[32] Feldman, P. A practical scheme for non-interactive verifiable secret
sharing. In FOCS, 1987, pp. 427-438.

[33] Bhat, A., Shrestha, N., Luo, Z., Kate, A., & Nayak, K.
Randpiper–reconfiguration-friendly random beacons with quadratic com-
munication. In CCS, 2021, pp. 3502-3524.

[34] Das, S., Krishnan, V., Isaac, I. M., & Ren, L. Spurt: Scalable distributed
randomness beacon with transparent setup. In S&P, 2022, pp. 2502-2517.

[35] Bacho, R., Lenzen, C., Loss, J., Ochsenreither, S. and Papachristoudis,
D. GRandLine: adaptively secure DKG and randomness beacon with (log-
)quadratic communication complexity. In CCS, 2024, pp. 941-955.

[36] Bhat, A., Shrestha, N., Kate, A., & Nayak, K. OptRand: Optimistically
Responsive Reconfigurable Distributed Randomness. In NDSS, 2023.

[37] Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., & Weippl, E.
Randrunner: Distributed randomness from trapdoor VDFs with strong
uniqueness. In NDSS, 2021.

[38] Heidarvand, S., & Villar, J. L. Public verifiability from pairings in secret
sharing schemes. In SAC, 2009, pp. 294-308.

[39] Chaum, D., & Pedersen, T. P. Wallet databases with observers. In
CRYPTO, 1992, pp. 89-105.

[40] Stadler, M. Publicly verifiable secret sharing. In Eurocrypt, 1996, pp.
190-199.

[41] Cascudo, I. and David, B. Publicly verifiable secret sharing over class
groups and applications to DKG and YOSO. In Eurocrypt, 2024, pp.
216-248.

[42] Meng, X., Sui, X., Yang, Z., Rong, K., Xu, W., Chen, S., Yan, Y.
and Duan, S. Rondo: Scalable and Reconfiguration-Friendly Randomness
Beacon. In NDSS, 2024.

[43] Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S. and Stern, G.,
2022. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret
Sharing and Asynchronous Distributed Key Generation. In CRYPTO,
2023.

Liang Zhang obtained excellent programming skills
in Baidu Co., Ltd. after acquiring bachelor’s degree
from Huazhong University of Science and Technol-
ogy. He then acquired Ph.D. degree from Fudan Uni-
versity in 2022. He is currently a postdoctoral fellow
at Hong Kong University of Science and Technol-
ogy. His research interests include blockchain and
applied cryptography. His recent publications are
included in IEEE TIFS, IEEE TC, IEEE TSC, IEEE
TBD, CJ, CSCWD’25, APWeb-WAIM’23, CF’22 and
SACMAT’22.

Tao Liu was born in 2002. He joined Hainan Univer-
sity in September 2021. He is currently pursuing a
bachelor’s degree at the School of Cyberspace Secu-
rity (School of Cryptography) at Hainan University
and will pursue a master’s degree at the School of
Cyber Science and Engineering, Wuhan University,
starting from September 2025. His research interests
include blockchain and applied cryptography.

Zhanrong Ou was born in 1998. He received
a bachelor’s degree in Hanshan Normal Univer-
sity, Chaozhou, Guangdong province, in 2021. He
joined Hainan University in September 2022. Now,
he is pursuing his master’s degree in the School
of Cyberspace Security (School of Cryptology) at
Hainan University. His research interests consist of
blockchain and decentralized randomness beacon.

Haibin Kan was born in 1971. He received a
Ph.D. from Fudan University, Shanghai, China,
1999. From June 2002 to February 2006, he was
with the Japan Advanced Institute of Science and
Technology as an assistant professor. He went back
Fudan University in February 2006, where he is
currently a full professor. He is also the Director
of the Shanghai Blockchain Engineering Research
Center. His research interests include coding theory,
cryptography, and computation complexity.

Jiheng Zhang received both Ph.D. and M.S. degrees
in operations research from Georgia Institute of
Technology, MS degree in mathematics from the
Ohio State University, and BS degree in mathe-
matics in Nanjing University. He joined Industrial
Engineering and Decision Analytics (IEDA) of the
Hong Kong University of Science and Technology
(HKUST) as an Assistant Professor in 2009, and was
promoted to Associate Professor in 2015 and then
to full Professor in 2020. He now is the department
head of IEDA of HKUST. He is also the associate

director of HKUST Crypto-Fintech Lab.

https://www.cs.au.dk/~ivan/Sigma.pdf

13

APPENDIX

A. Benefits of the producer-consumer model

The producer-consumer model offers below advantages.
• The producer and consumer processes in each party can

work simultaneously and they are coordinated by the
queue. If queue is non-empty, a beacon value is guaran-
teed to be delivered. Besides, no global clock is required,
as a consumer process can suspend and wait until new
PVSS commitment is put into the queue. Consequently,
the producer-consumer model ensures asynchrony in local
processes, while the BRB protocol achieves asynchrony
across all parties.

• The model enables non-faulty parties to set a default
agreement of “⊥” in the producer process when a party
acts as a PVSS dealer and it is unknown to be faulty
or not. “⊥” means that no honest party takes the action
of putting PVSS commitment into the queue. Further,
a party can simply detect whether another party is
faulty/malicious by monitoring queue length of the party.
If the length is 1 for a long time, honest parties can start
to remove the party using a BRB-like protocol before
consuming its last PVSS commitment. This approach
allows a party to detect faulty behaviors without relying
on detailed messages in the BRB or BRB-like protocols.
Additionally, this faulty detection method allows parties
to trigger the removal process without system restart.

• The epoch sequence number defined in the consumer
process defines a “chronological clock” for all parties,
similar to block height in blockchain systems. This fea-
ture facilitates the removal and joining processes with
unified and determined global epoch numbers.

• This model decouples the production and consumption
of PVSS commitments, making it convenient to identify
performance bottlenecks in the beacon execution and
facilitating further optimization of throughput and band-
width.

B. Σ-protocol and NIZK proof

In a Σ-protocol [30], a prover (P) demonstrates the validity
of a statement x such that a verifier (V) learns nothing about
the witness w, where (x,w) ∈ R represents a relation. A Σ-
protocol follows a three-move interaction pattern between the
prover and the verifier:

1) Commitment (a): P selects a random value r and com-
putes a commitment a. P sends the a to V .

2) Challenge (e): V selects a random challenge e from a
challenge space and sends it to P .

3) Response (z): P computes a response z using r, e, and
the witness w. P sends the response z to V . Then, V
checks a verification equation involving a, e, and z.

In practice, NIZK proofs can be derived from the Σ-protocol
by leveraging Fiat-Shamir heuristic [31], where the challenge
value e is calculated by P with random oracle. Σ-protocols
have the following properties:

• Completeness. If P knows the witness, P can always
prove it.

• Soundness. If P does not know the witness, P cannot
convince the verifier that it does.

• Zero-Knowledge. Zero-knowledge ensures that the veri-
fier learns nothing beyond the validity of the statement.

C. Security analysis of the proposed PVSS

By Theorem 11, Theorem 12 and Theorem 13, we prove
the required security properties, defined in Section II-A, of
the proposed PVSS scheme.

Theorem 11 (Correctness): Given at least t decrypted shares
{Di}i∈T , the secret gs can be successfully recovered.
Proof. The polynomial property ensures that

∑
i∈T µi ·p(i)

interpolates to the value p(0), where {µi} are the lagrange
coefficients. Consequently, the PVSS secret gs can be re-
constructed as gs = gp(0) by evaluating

∏
i∈T Dµi

i where
Di = gp(i). Therefore, the correctness of the PVSS scheme is
guaranteed.

Lemma 11 (Σ Completeness): If the dealer knows the
witness gs, he can prove it.
Proof. The dealer, acting as the prover, generates (C, πs)
using PVSS.Share algorithm. Then the equations in the
PVSS.Verify algorithm can be proved to be true as follows.

C ′
i = pk

p′(i)
i = pk

p̃(i)
i pk

c·p(i)
i = pk

p̃(i)
i · Cc

i , ∀i ∈ [1, · · · , n]
s̃ = p̃(0) = intpl({(i, p′(i)− c · p(i))})

= intpl({(i, p′(i))})− intpl({(i, c · p(i))})
= intpl({(i, p̃(i))})

Therefore, if the dealer knows the witness gs, he can prove it
in (C, π) with probability 1.

Lemma 12 (Σ Soundness): If the dealer does not know gs,
he cannot cheat the verifier successfully.
Proof. It is widely adopted to prove Σ-protocol Soundness
by extracting the witness when two accepting proofs with
the same commitment and different challenges are given [30].
Denote the two accepting proofs π1 = (C ′, c1, (s̃1, {p̃1(i)}))
and π2 = (C ′, c2, (s̃2, {p̃2(i)})) for the statement C, where
c1 ̸= c2. Hence, we have:{

C ′
i = pk

p̃1(i)
i · Cc1

i = pk
p̃1(i)+c1·p(i)
i ,

C ′
i = pk

p̃2(i)
i · Cc2

i = pk
p̃2(i)+c2·p(i)
i

,∀i ∈ [1, · · · , n]

By dividing the two equations, we get:

1G = pk
p̃2(i)−p̃1(i)+(c2−c1)·p(i)
i

Then p(i) can be calculated as:

p(i) =
p̃2(i)− p̃1(i)

c1 − c2

Further, s← intpl({(i, p(i))}i∈[1,··· ,n]) and the witness gs can
be extracted with (C, π1, π2).

Theorem 12 (Public Verifiability): The messages from the
dealer and the shares sent by shareholders are publicly verifi-
able.
Proof. By Lemma 11 and Lemma 12, the Σ-protocol used

in the proposed PVSS provides a proof of knowledge for the
dealer, who acts as the prover. Specifically, the output (C, π) of
the PVSS.Share algorithm represents a non-interactive proof

14

of knowledge for the witness gs. Moreover, the proof π can
be verified publicly. Then we consider the public verifiability
of shareholders in the reconstruction phase. Since Ci (in C)
is already publicly verified and pki is publicly known, anyone
can determine whether Di from shareholder Pi is valid or
not by e(Di, pki)

?
= e(g, Ci), as shown in the PVSS.Recon

algorithm.
Lemma 13 (Σ Zero knowledge): The output of PVSS.Share

reveals no information about a shareholder Pi’s gp(i) or the
dealer’s witness gs.
Proof. We introduce a simulator S, taking input a valid
statement C ∈ G and a challenge c ∈ Zp. We prove that
S can produce an accepting proof (C ′, c, (s̃, {p̃(i)})) for C.
Moreover, the proof should have the same distribution as a
transcript generated by a real-world prover and verifier.

In the PVSS.Share algorithm of the real world, an hon-
est prover can always output a transcript (C ′, c, (s̃, {p̃(i)})),
which is randomly distributed. Then, we argue the output of
the simulator S. For ∀i ∈ [1 · · · , n], it firstly calculates :

pt(i)
R←− Zp, Cit ← pk

pt(i)
i · Cc

i

and outputs a tuple (Cit, c, pt(i)). Notice that the tuple always
represents an accepting proof, as required. Further, since c and
pt(i) are randomly distributed in Zp, it follows that Cit is also
randomly distributed in G. Summarily, the simulator S can
always output a transcript that is indistinguishable from the
output of real-world prover and verifier, meaning that nothing
about p(i) is leaked. Hence, the adversary cannot obtain the
Pi’s witness gp(i) via p(i).

Besides, it is also infeasible to defer Pi’s witness gp(i) using
C ′

i = pkp(i) = (gp(i))ski , due to discrete logarithm problem.
Definition 1 (IND1-Secrecy Game): A PVSS scheme

achieves IND1-Secrecy if for any polynomial time adversary
A corrupting at most t−1 parties, A has negligible advantage
in the following game.

1) A challenger C runs the PVSS.Setup algorithm and sends
(g, pki, ski) to each uncorrupted shareholder Pi.

2) C sends public information and t − 1 corrupted private
keys {ski} to A.

3) C selects two random values x0, x1 ∈ G and randomly
chooses b ← {0, 1}. It then runs the PVSS.Share algo-
rithm with secret xb and sends all the output to A, along
with x1−b.

4) A outputs a guess b′ ∈ {0, 1}.
A’s advantage over the game is defined as |Pr[b = b′]-1/2|.

Theorem 13 (IND1-Secrecy): The proposed PVSS scheme
achieves IND1-Secrecy, i.e., for any probabilistic polynomial
time adversary A, corrupting fewer than t shareholders, has a
negligible advantage in obtaining information about gs.

Proof. By Lemma 13, the Σ-protocol used in the proposed
PVSS provides zero knowledge about each shareholder’s wit-
ness gp(i) for i ∈ [1, · · · , n] in the PVSS.Share phase. Then,
we consider the situation where A corrupts t−1 shareholders.
We prove the IND1-Secrecy property by analyzing the secu-
rity game defined in Definition 1 based on discrete logarithm
(DL) assumption. Without lose of generality, denote the first
t−1 shareholders, i.e., [P1, · · · , Pt−1], as the corrupted parties.

1) The challenger C runs the PVSS.Setup algorithm and
sends (g, pki, ski) to each uncorrupted shareholder Pi ∈
[t, · · · , n].

2) C sends public information (g, {pki}i∈[1,··· ,n]) and cor-
rupted private keys {ski}i∈[1,t−1] to A.

3) For 1 < i ≤ t − 1, C chooses uniformly random values
si ← Zp and sets Ci = pksii . For t ≤ i ≤ n, C generates
Ci = pk

p(i)
i where p(x) is the (t-1)-degree polynomial

ensuring the PVSS secret xb = gp(0) and p(j) = sj for
1 ≤ j ≤ t − 1. Denote C = {Ci}i∈[1,··· ,n]. It calculates
the NIZK proofs π for C, as the dealer does. Finally, C
sends (C, π) to A.

4) A makes a guess of b′.
The information sent to A is identical to the output of the

PVSS.Share algorithm. With t− 1 shareholders corrupted, A
can interpolate gp

′(0) using each gp(i), where p′(x) is a (t-2)-
degree polynomial. It follows that p(x) = p′(x)+τ

∏t−1
j=1(x−

j), where τ is an unknown value randomly distributed in Zp.
Hence, gs = gp(0) = gp

′(0)+τ
∏t−1

j=1(0−j) is also a random value
in G. Thus, A can successfully guess b′ = b with probability
1/2 + ϵ, where ϵ is the probability to break DL assumption.
Hence, |Pr[b = b′]-1/2|=ϵ which is negligible.

D. PVSS Comparison
SCRAPE [16] is notable for being the first PVSS scheme

with O(n) verification complexity, leveraging Reed-Solomon
codes. ALBATROSS [17], building on SCRAPE [16], intro-
duces packed (or ramp) shamir secret sharing in PVSS and
linear t-resilient function. In YOLO YOSO [18], the authors
introduce two PVSS protocols (i.e,. HEPVSS and DHPVSS)
based on SCRAPE, where specific techniques are applied
to generating proofs of (re-)share validity. More recently,
qCLPVSS [41] is introduced, based on DHPVSS, to recover
the original secret on Zp, making it applicable in DKG
and YOSO MPC. The underlying mathematical technique
depends on class group. while the complexity is similar to
DHPVSS [18].

Computation Complexity: In the PVSS.Share phase, the
dealer costs n exponentiations to generate C. And the
NIZK proofs, generated from Σ-protocol, π = (C ′, c,
s̃, {p̃i}i∈n), where C ′ also takes n exponentiations. Hence,
the PVSS.Share phase takes 2n exponentiations. In the
PVSS.Verify phase, it costs 2 exponentiations for verifying
each Ci. Therefore, the PVSS.Verify phase takes 2n expo-
nentiations. In the PVSS.Recon phase, it costs 2t pairings to
check validity of {Di} and t exponentiations to calculate gs.

TABLE V: Computation complexity

Ref. Sharing Verfication Reconstruction
Exp. Exp. Pair Exp. Pair

[16]DBS 2n n 2n t+ 1 2t+ 1
[16]DDH 4n 5n − 5t+ 3 0
[17]ALBAT. 2n 2n − 6t −
[18]HEPV SS 7n 4n − 3t −

[18]DHPV SS
n(n− t+
2) + 2

n(n −
t) + 4

− 5t −

Ours 2n 2n − t 2t

Communication Complexity: In the sharing phase, the dealer
publishes the encrypted shares C and the corresponding NIZK

15

50 100 150 200 250 300

0

0.5

1

1.5

The number of parties n

tim
e

(s
)

Ours
SCRAPEDBS

SCRAPEDDH

ALBATROSS
HEPVSS
DHPVSS

Fig. 10: Comp. cost in
the sharing

50 100 150 200 250 300

0

1

2

3

The number of parties n

tim
e

(s
)

Ours
SCRAPEDBS

SCRAPEDDH

ALBATROSS
HEPVSS
DHPVSS

Fig. 11: Comp. cost of
in the verification

50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

1.2

The number of parties n

tim
e

(s
)

Ours
SCRAPEDBS

SCRAPEDDH

ALBATROSS
HEPVSS
DHPVSS

Fig. 12: Comp. cost in
the reconstruction

50 100 150 200 250 300

0

50

100

150

200

The number of parties n

si
ze

(k
B

)

Ours
SCRAPEDBS

SCRAPEDDH

ALBATROSS
HEPVSS
DHPVSS

Fig. 13: Comm. cost in
the sharing

50 100 150 200 250 300

0

50

100

150

The number of parties n

si
ze

(k
B

)

Ours
SCRAPEDBS

SCRAPEDDH

ALBATROSS
HEPVSS
DHPVSS

Fig. 14: Comm. cost in
the reconstruction

proofs π = (C ′, c, s̃, {p̃i}i∈n). C contains n elements in G,
and the NIZK proofs π contain n elements in G and n +
2 elements in Z. In the reconstruction phase, the recoverer
receives an array {Di}i∈T to decrypt C. Hence, reconstruction
phase requires t elements in G to recover the secret gs.

TABLE VI: Communication complexity

Ref. Sharing Reconstruction
G Z G Z

[16]DBS 2n 0 t 0
[16]DDH 4n n+ 1 3t t+ 1
[17]ALBATROSS 2n n+ 1 5t 4t
[18]HEPV SS 3n 2n t 2
[18]DHPV SS n+ 2 1 3t t
Ours 2n n+ 2 t 0

By Table V and Table VI, we compare the complexity
between our proposed PVSS scheme and previous schemes,
where n is the number of shareholders and t is the threshold
value.

Figures 10, 11, and 12 illustrate the computation costs for
sharing, verification, and reconstruction phases, respectively.
Since G1 (cf. ExpG1

in Table IV) is used in SCRAPEDBS [16],
it results in the highest computation overhead in the distribu-
tion phase. The results also suggest that ALBATROSS [17],
which builds upon SCRAPEDDH [16], shifts the computa-
tional burden from the sharing and verification phases to the
reconstruction phase. The superlinear costs in sharing (cf.
Figure 10) and verification (cf. Figure 11) phases of DHPVSS
arise from evaluating a random (n-t-1)-degree polynomial
at each i, where i ∈ [1, · · · , n], leading to approximately
O(n2) exponentiations. SCRAPEDBS and our PVSS incur
higher computational costs than HEPVSS, DHPVSS and
SCRAPEDDH in the reconstruction phase (see Figure 12),
primarily because they use bilinear pairings instead of DLEQ
for verifying decrypted PVSS shares.

Figures 13 and 14 compare the communication overhead
during the sharing and reconstruction phases for the dealer
and the recoverer as the number of parties n increases. Our
PVSS scheme demonstrates competitive performance in terms
of communication efficiency.

	Introduction
	Related works
	Our approach in a nutshell
	Contributions

	Preliminaries
	Publicly verifiable secret sharing (PVSS)
	Bracha reliable broadcast

	System model and goals
	System model
	System goals and security threats

	The AsyRand beacon protocol
	AsyRand in producer-consumer model
	The producer process
	The consumer process
	The removal process
	The joining process
	Summary of the processes

	Properties of AsyRand
	New PVSS construction
	Implementation and evaluation
	Concluding remarks
	References
	Biographies
	Liang Zhang
	Tao Liu
	Zhanrong Ou
	Haibin Kan
	Jiheng Zhang

	Appendix
	Benefits of the producer-consumer model
	-protocol and NIZK proof
	Security analysis of the proposed PVSS
	PVSS Comparison

