
Delegatable ABE with Full Security from Witness Encryption

Rishab Goyal
UW-Madison∗

Saikumar Yadugiri
UW-Madison†

Abstract

Delegatable Attribute-Based Encryption (DABE) is a well-known generalization of ABE,
proposed to mirror organizational hierarchies. In this work, we design a fully-secure DABE
scheme from witness encryption and other simple assumptions. Our construction does not
rely on Random Oracles, and we provide a black-box reduction to polynomial hardness of
underlying assumptions. To the best of our knowledge, this is the first DABE construction
(beyond hierarchical identity-based encryption) that achieves full security without relying on
complexity leveraging. Our DABE supports an unbounded number of key delegations, and the
secret key size grows just linearly with each key delegation operation.

1 Introduction

Since its inception, Attribute-Based Encryption (ABE) [SW05, GPSW06] has significantly revo-
lutionized data encryption. It supports fine-grained access over encrypted data. Over the past
two decades, ABE has received tremendous attention from the research community, leading to
innumerable designs with varying efficiency, functionalities, security guarantees, and diverse se-
curity assumptions [SW05, GPSW06, BW07, BSW07, KSW08, Wat09, LW10, LOS+10, GVW13,
GGSW13, BGG+14, GVW15]. ABE is extremely useful for many practical applications [PRV12,
GKP+13, GM15, SRGS12, CDEN12, APG+11, TBEM08, BBS+09], and many prominent ABE
schemes are also practically efficient [GPSW06, BSW07, Wat11, CGW15, AC17].

In ABE, a central authority sets up the system where any user can encrypt data under their
choice of attribute, and a user can only decrypt the resulting ciphertext if and only if they can
obtain a secret key for an accepting predicate. In particular, a ciphertext ct encrypting a payload
message m, under attribute x, can be decrypted using a secret key skϕ, associated with predicate
ϕ, if ϕ(x) = 1. For example, consider an academic institution that has deployed an ABE system for
internal communication. Using ABE, a student can encrypt their homework solutions under the
attribute ‘course:CS101’. Clearly, this can be accessed by any of the course staff (i.e., instructors,
TAs, etc), but not by other students.

Delegatable Attribute-Based Encryption (DABE) is a well-known generalization of ABE [GVW13,
BGG+14], that was proposed to mirror organizational hierarchies in ABE systems. In a few words,
DABE enables full key delegation capabilities (i.e., skf can be delegated to another skf∧g). Con-
necting to the earlier scenario, an instructor for ‘course:CS101’ can delegate their secret keys to

∗Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding
from the Wisconsin Alumni Research Foundation.

†Email: saikumar@cs.wisc.edu.

generate new keys for the TAs and other instructional staff, where the access policy for the staff
can even be further restricted. Thus, this reduces the burden on the central authority as it does not
need to generate secret keys for all receivers. A very popular specialization of DABE is the notion
of hierarchical identity-based encryption (HIBE) [HL02, GS02]. HIBE is a very simple DABE,
where the class of supported predicates are just prefix matching predicates (i.e., skf decrypts ctx
if f is a prefix of x). There are numerous constructions for DABE (and its specializations) in the
literature [HL02, GS02, Wat05, GH09, Wat09, LOS+10, LW10, DG17b, DG17a, GVW13, BGG+14,
ABG+13, BCG+17].

Due to the hierarchical nature of DABE, the notion of security has to be very carefully defined.
In a few words, unlike vanilla ABE where each secret key can only be generated by the master
key authority, secret keys in DABE can be computed by any honest user and not just the master
key authority. Thus, an attacker can now not only corrupt secret keys generated by the master
key authority, but also the secret keys generated by different users as part of key delegations.
This significantly increases the scope of attackers, and makes the task of defining and proving full
security of DABE significantly more challenging than vanilla ABE.

This gap between ABE and DABE security was first pointed out by Shi and Waters [SW08],
who studied these definitional issues in the context of HIBE. Informally, Shi and Waters noted that,
in delegatable encryption systems, the right approach to capture general adversaries is to let them
initialize an arbitrary number of honest users and adaptively decide which users must be corrupted.
Moreover, this process of honest user initialization and corrupting users can be arbitrarily inter-
leaved. As an example, any reasonable security definition should capture the following attacker.
Attacker A asks the challenger to initialize key skf1 for predicate f1, then it asks it to delegate it
to skf1∧f2 , and later to skf1∧f2∧f3 or to skf1∧f4 (and so on), and meanwhile it can ask to corrupt
any subset of these initialized keys (e.g., corrupt skf1∧f2).

While a real-world adversary should definitely be allowed to corrupt users as above, it seems
unclear as to why proving full security of DABE is significantly more challenging than ABE. Briefly,
the reason is that, in (vanilla) ABE, an attacker never initializes user keys but just directly corrupts
them. Thus, whenever a challenger has to create a secret key for some predicate f , in the pre-
challenge query phase, then it knows for a fact that f(x∗) = 0 (i.e., f will not satisfy the challenge
attribute x∗). However, this guarantee is not available for DABE. Because an attacker can ask
the challenger to initialize a secret key skf for any predicate f , even ask the challenger to use skf
to generate delegated keys, moreover it can even corrupt those delegated keys, but the challenger
still has no clue as to whether f(x∗) = 0 or 1. This uncertainty does not appear in vanilla ABE,
thus a reduction algorithm can always safely set up the system parameters in a trapdoor way such
that it can answer every secret key query. But in DABE, due to this additional power given to the
adversary (in the form of asking for delegated keys computed from a distinguishing key), it is very
difficult to generalize ABE proof techniques for proving full security for DABE.

In the case of HIBE, Lewko-Waters [LW14] also proved that full security cannot be proven (via
black-box reductions) for schemes with certain checkability properties. Given DABE is much more
expressive than HIBE, thus it is safe to say that proving full security of DABE faces even stronger
barriers.

Our results: Fully Secure Delegatable ABE from Witness Encryption. In this work, we
construct fully-secure DABE for all polynomial sized predicates from witness encryption [GGSW13]
along with statistically-sound NIZKs. To the best of our knowledge, this is the first DABE con-
struction (beyond HIBE) that achieves full security without relying on complexity leveraging, or an

2

exponential number of hybrids. Our construction does not rely on Random Oracle [BR93] heuris-
tics, and we provide a black-box reduction to polynomial hardness of underlying cryptographic
primitives.

Although witness encryption does not yet have as many diverse constructions, recent works from
evasive LWE assumption [Tsa22, VWW22] and new directions from pairing free groups [BIOW20]
suggest this could change quickly. Furthermore, we view our work as opening a new direction for
designing fully secure DABE, a problem for which we did not have any solutions outside of using
complexity leveraging (i.e., sub-exponential security loss) before this work.

Our DABE supports an unbounded number of key delegations, and the secret key size grows
just linearly with each key delegation operation. However, the encryptor must specify the maximum
hierarchy depth for secret keys that can decrypt the resulting ciphertext. We leave the problem of
designing fully unbounded DABE as an interesting open problem. We note that the only other prior
work that could support an unbounded number of key delegations (beyond HIBE) was by Brakerski
et al. [BCG+17], who required collusion resistant general-purpose functional encryption [SW08,
BSW11], and proved selective security1. Another prior work by Boneh et al. [BGG+14] designed
DABE that could support an-priori bounded number of delegations, and their secret key size grew
quadratically with the number of delegations.

At a high level, our approach is based on a recent work by Waters and Wichs [WW24], who
generalized the classic dual-systems methodology introduced by Waters [Wat09] for designing fully-
secure ABE from bilinear pairings. We develop new techniques to generalize Waters’ dual-systems
methodology to delegatable ABE systems. At its core, we go beyond the classic concept of semi-
functional keys and ciphertexts, as we show that for designing fully-secure DABE it is more appro-
priate to design “splittable” semi-functional keys. Abstractly, by splittable semi-functional keys we
mean that secret keys can be split up such that only a portion of them can be indistinguishably
made semi-functional, while the rest of it is not needed for answering key delegation queries. As
we elaborate in the overview, splitting semi-functional keys is an important technical tool that lets
us handle fully adaptive attackers in DABE.

Related Work. Since ABE was proposed in [SW05, GPSW06], it grasped significant attention
from the community. It has been a versatile tool in constructing encrypted access control systems
[PRV12, GKP+13]. Numerous works constructed ABE with varying levels of security and func-
tionality from several standard and post-quantum assumptions. A non-exhaustive list is as follows:
[LOS+10, GVW13, BGG+14, Tsa19, Wee22, LLL22, HLL23, AKY24, HLL24].

Delegatable ABE is a “hierarchical” variant of ABE and seen limited success through the decades
with [GVW13, BGG+14] constructing selectively secure variants. A stronger version, delegatable
FE is nearly equivalent to FE [BCG+17, BS15]. A weaker version, selective hierarchical IBE is
known to be equivalent to selective IBE [DG17b, DG17a].

Adaptive security is very challenging problem in ABE with only few approaches. These in-
clude those based on general-purposed functional encryption [GGH+13, Wat15, ABSV15, AJS15,
AJ15, BV15], pairing-based dual-systems methodology [Wat09, LOS+10], and subset functionali-
ties [Tsa19, GLW21]. Recently, [WW24] constructed adaptive ABE for any polynomial-size policy
class from witness encryption which is weaker than functional encryption/ obfuscation.

1We point out that Brakerski et al. [BCG+17] designed hierarchical/delegatable functional encryption, which is more
general than DABE.

3

2 Technical Overview

In this section, we provide a high-level overview of techniques we used in constructing a delegatable
ABE scheme for polynomial-size policies. We start by recalling the notion of delegatable ABE
[HL02, GS02, GVW13, BGG+14] as an extension of (key-policy) ABE.

Delegatable ABE. An ABE scheme consists of four algorithms — Setup,KGen,Enc,Dec. Setup
generates public parameters PP and master secret key MSK. KGen is used to privately delegate
keys for policy f to create secret key SKf . That is, KGen uses MSK and description of f to create
SKf . Enc encrypts a message µ and an attribute x to create a ciphertext CTx. Dec using SKf and
CTx outputs µ if and only if f(x) = 1.

A delegatable ABE (DABE) scheme facilitates for public delegation on top of private delegation
facility of KGen. This is done using Delegate algorithm that uses secret key for policy f (SKf) and
description of g to generate SKf∧g. Note that MSK is not used for this process. Naturally, Dec now
reveals µ if and only if for any f = f1 ∧ . . .∧ fℓ, f(x) = 1 = (f1(x) = 1)∧ . . .∧ (fℓ(x) = 1). We now
define the adaptive security definition that we consider for DABE [SW08, BGG+14, BCG+17].

Adaptive security for DABE. The main idea in adaptive security for DABE is to protect the
ciphertexts of users from active adversaries who can create and delegate secret keys for arbitrary
policies but can only corrupt unsatisfying secret keys. That is, for a ciphertext CTx, an attacker
can create and delegate keys for arbitrary policies f . However, attacker will only corrupt SKg if
g(x) = 0.

To formulate this, we consider a game between a challenger and an attacker where the attacker
asks the challenger to generate and “Store” secret key for policy f . The attacker receives a token h
from challenger in response. Attacker can use h and g to “Delegate” secret key SKf with g to create
SKf∧g and receive a token to access this secret key. The attacker can also “Corrupt” secret key for
any policy p using the corresponding token if p(x∗) = 0 and receive SKp. The attacker in addition
will make a challenge query with (x∗, µ0, µ1) adaptively, i.e, at any point in the game. Note that
there is no admissibility criterion on f, f ∧ g. They could be satisfying queries, i.e f(x) = 1 or
f(x) = 1∧ g(x) = 1 or both. Challenger encrypts (x∗, µb) for randomly chosen b and attacker wins
if it can guess b with non-negligible probability. As mentioned in introduction, this behavior of
attacker to send x∗ after making any of the previous queries is why achieving adaptive security is
hard.

The major tool we use in our construction is witness encryption (WE). A WE scheme for an NP
language (L) can be thought of as a worst-case public-key encryption where the relation between
public and secret key is determined by an NP relation (R). In particular, in a WE scheme, we
encrypt a message (µ) using an instance inst that may or may not be part of L. The resulting
ciphertext can only be decrypted by using a witness wit such that R(inst, wit) = 1, i.e, if and
only if wit is a valid witness for the membership of inst in L. Semantic security of WE can be
argued as long as inst /∈ L. With these definitions and goals, let’s now look at construction of
ABE from WE which we use to construct our fully secure DABE scheme.

Reviewing [GGSW13]. Here, we provide an overview of the selectively-secure ABE2 from WE of
Garg-Gentry-Sahai-Waters (GGSW) [GGSW13]. The public and master secret key of their system
are a verification and signing key of a special dual-mode constrained signature scheme. Secret-key
for f , is a signature (f, σf) generated in the normal mode. In order to encrypt (x∗, µ), GGSW uses

2In selectively-secure ABE, x∗ is declared by attacker before receiving PP.

4

a WE scheme for the language that requires a policy g and signature σg such that (g, σg) is a valid
signature pair and g(x) = 1.

In order to argue security, we constrain each signature to condition f(x∗) = 0 by moving to a
“trapdoor” mode of generating signatures. That is, the signatures now verify only if f(x∗) = 0.
Hence, the WE language will not be satisfiable anymore as it requires a valid signature and
f(x∗) = 1. However, in GGSW x∗ needs to be declared a-priori in order to constrain the sig-
natures. Thus, only selective security is achievable. The signature scheme is constructed using
commitment schemes (COM) and non-interactive zero-knowledge (NIZK) proof system for the fol-
lowing language.

PP :=
(
com(0) = Com(0; r(0)), com(1) = Com(0; r(1))

)
NIZK.L =

inst := (PP, f) :
wit := r(0) such that com(0) = Com(0; r(0))

(or)

wit := (r(1), x∗) such that com(1) = Com(x∗; r(1)) ∧ f(x∗) = 0

In the normal mode, we use r(0) to generate proofs for policies which are used as signatures,

i.e, σf := πf . We switch to trapdoor mode by setting com(1) = Com(x∗) and com(0) = Com(1). If
NIZK and Com are perfectly sound and binding, in the trapdoor mode, instance used in WE en-
cryption will not be satisfiable.

Now, we will discuss our initial approach in making GGSW scheme delegatable and fully secure.
We want to point out that this is not our final construction. Nevertheless, this discussion will
be helpful as parts of this approach overlap with the proof techniques of our main construction.
Towards the end of this discussion, we will point out a major issue in this approach later and
provide additional methods we used to remedy this. At a high level, in this approach we compose
proofs on top of πf to construct a delegation chain which will render the scheme too inefficient. We
expand on this below.

Adding delegation capacity to GGSW. In order to make the GGSW ABE delegatable, we need
to first design a public delegation algorithm Delegate that uses (SKf , g) to compute delegated SKf∧g.
To the best of our knowledge, prior to this work it was not known how to design delegatable ABE
using witness encryption. Our idea is to generate a metaproof [DSY91] for the NIZK verification
language using (f,SKf := πf) as witness

3. Let us elaborate.
In the Delegate algorithm, we will use (f, πf) as witness to a NIZK language that also checks

if NIZK.Verify(f, πf) = 1 in the normal mode. The resulting proof in conjunction with f, g will be
SKf∧g (we will not include πf as part of SKf∧g). We also modify the WE language appropriately.

In order to argue selective security, the same ideas from GGSW flow naturally. If we rely on the
recursive simulation property of metaproofs (that is, to simulate a metaproof, we start by simulating
the base layer proof and then the first composed proof, and so on), we can simulate all the secret
keys (that were stored either by performing KGen or Delegate). This yields two major advantages
– (1) we will not be using r(0), (2) we will also not use πf to generate πf∧g for Delegate queries. In
addition, we also know the policies (both queried to Store and Delegate) that are unsatisfying as
we know x∗ a-priori. Thus, we can generate proofs in the trapdoor mode only for these policies.
As NIZK and COM are perfectly sound and binding, we can argue that the instance in WE is not
satisfiable similar to GGSW.

3We abuse the notation with SKf = πf and SKf = (f, πf) when the context is clear.

5

Adaptive DABE from GGSW. Making this scheme adaptive requires some additional technical
tools. To this end, we look at the recent work of Waters-Wichs [WW24] that relied on a special
type of functional encryption (FE) system, called Mixed-FE4 [GKW18] which played an important
part in executing the dual systems paradigm. Below, we briefly recall the definition of Mixed-FE
before circling back to using it in our DABE scheme to realize adaptive security.

Reviewing Mixed-FE.Amixed functional encryption scheme (Mixed-FE) [GKW18] is a bounded-
collusion5 secure secret-key FE scheme. Although we know how to construct this FE from one-way
functions [SS10, GVW12, AV19], a Mixed-FE scheme has one interesting feature that makes it
non-trivial. The ciphertexts for any policy f can be generated in two modes – a private mode
using skEnc(msk, f) and a public mode using pkEnc(f). (skEnc,KGen) of Mixed-FE work like FE
and reveal f(x). (pkEnc,KGen) always outputs 0. Security is defined as an indistinguishability
game where an attacker makes unbounded queries for ciphertexts of policies {fi}i and a single
secret key for input x adaptively6. This attacker cannot distinguish between the modes in which
ciphertexts are generated for any policy as long as ∀i, fi(x) = 0. Full definition of Mixed-FE is
provided in Definition 3.5. Now, let’s look at how we can use Mixed-FE to boost security of our
DABE construction.

Adaptive DABE via Mixed-FE. Using Mixed-FE similar to [WW24], we can more or less realize
adaptive security readily. Essentially, (Mix-FE.KGen,Mix-FE.pkEnc) act as a functional system and
(Mix-FE.KGen,Mix-FE.skEnc) act as a semi-functional system. The modes are indistinguishable
readily from Mix-FE security.

More precisely the changes are as follows — in KGen and Delegate, we sample ctf ← pkEnc(f)
and use these as part of SKf . Similarly, in Enc, we sample msk and use skx ← Mix-FE.KGen(msk, x)

as part of CTx. We also modify the WE language to check 0
?
= Mix-FE.Dec(·, ·) ∧ f(x)

?
= 1. As

values from pkEnc,Mix-FE.KGen always output 0, correctness is unaltered. But in order to argue

adaptive security, we shouldn’t be committing x∗ and checking f(x∗)
?
= 0 in the NIZK trapdoor

mode. Instead, we should commit Mix-FE.msk to check if we are in the semi-functional mode, i.e,
∃ r such that ctf = Mix-FE.skEnc(Mix-FE.msk, f ; r).

To argue adaptive security of DABE, first observe that once we are in trapdoor mode where
we use semi-functional system, if πf verifies, it means 0 = f(x) = Mix-FE.Dec(skx, ctf). Thus
WE instance is always unsatisfiable! However, in order generate proofs in the trapdoor mode,
we need to set com(0) = Com(1) and generate all ctf using Mix-FE.skEnc as otherwise we will
generating proofs for invalid instances. Thus, we need to switch to the semi-functional system
before invoking the trapdoor mode. Switching to semi-functional system in adaptive game for
DABE poses additional challenges. Specifically, an attacker can ask the challenger to generate keys
for satisfying policies (f(x∗) = 1) as well. In that case, we will be generating ctf for satisfying
policies and we cannot rely on Mixed-FE security readily.

4We point that [WW24] introduced a new notion that they refer to as functional tags, constructed them from one-way
functions, and used functional tags instead of Mixed-FE. However, we observe that functional tags are merely an
alternate approach to define a 1-query bounded version of Mixed-FE [GKW18]. We find it a bit easier to explain our
approach using the Mixed-FE framework. Moreover, we believe that viewing this abstract dual-systems technique
from the lens of Mixed-FE could be more meaningful for future work in adaptive security.

5By bounded-collusion, we mean that security is only going to hold against attackers that corrupt an a-priori bounded
number of secret keys.

6Note that [GKW18, CVW+18] proposed and constructed the “dual” notion of our Mixed-FE where indistinguishabil-
ity holds against an attacker that possesses unbounded number of secret keys and a-priori bounded (not necessarily
one) ciphertexts. In addition, their ciphertexts generated by pkEnc always output 1.

6

In order to fix this issue, we observe that we do not need to generate keys for all policies when
the attacker queries for it. We can delay this generation to Corrupt phase when the attacker actually
requires a secret key. At this point, we know that this policy for which we need to send a secret key
to attacker is unsatisfying. Hence, we can readily generate ctf and rely on Mixed-FE security. In
summary based on the changes mentioned to the construction above, the flow of hybrids roughly
look as follows — (1) use recursive simulation to simulate all NIZK proofs (2) delay secret key
generation (for KGen or Delegate) and wait for Corrupt query (3) switch to the semi-functional
system (4) enter trapdoor mode in NIZK for all corrupted keys (5) rely on WE security.

Limitations of this approach. It looks like by generating metaproofs and relying on Mixed-
FE, we can construct a DABE scheme from the GGSW construction. However, there is a strong
technical hurdle that makes the above design for delegatable ABE very weak. The issue is that
if size of NIZK proof |π| = poly(λ, |inst|, |wit|), then running time of NIZK.Verify is at least
poly(λ, |inst|, |wit|). When we use another proof on top of it, size and running time of prover
will grow proportional to |π|. After d many layers of delegation, size of proof will be some poly(λ)d.
Thus, we cannot delegate more that O(1) times with this strategy.

One straight-forward way of fixing our issues is to use rate-1 NIZK schemes. If |π| = |wit| +
poly(λ), composing d proofs will result in a proof of size at most d · |wit| + poly(λ). But we need
additional requirements for NIZK – (a) perfect (or statistical) soundness (b) NIZK.Prove should run
in at most poly(λ, |wit|, log |inst|) time. We need (a) so that we could rely on witness encryption
security, and (b) so that Delegate remains efficient. Constructions of rate-1 NIZKs are known from
fully homomorphic encryption [GGI+15] or from batch arguments [ACG+24, BDS24]. However,
none of these constructions meet requirements (a + b) simultaneously. Hence, it looks like using
our basic template, we will be stuck at d = O(1) number of delegations. This is far from the
desirable goal of arbitrary key delegation capabilities.

Going beyond O(1) delegations. At this point, in order to go beyond constant number of
delegations, we need to come up with a new design. The core issue in the previous construction
is the metaproof strategy where we compose proofs. We did so to make sure that there is a
connection between the secret key generated by KGen and any delegated key, yet a delegated key
does not contain all information about its parent’s key. The latter point is crucial in proving full
security, since if a delegated key contains a lot of non-trivial information about its parent key, then
it is unclear if the resulting scheme will still be secure.

In what follows, we look beyond basic proof composition techniques to capture key delegation
capabilities. Our strategy is to rather chain proofs. That is, instead of composing proofs, we will
generate new proofs based on the components of previous keys. Let us discuss this more thoroughly.

We view each secret key to be splittable into two components – a public part that can be given
out as part of future delegated keys, and a hidden part that is removed during delegation and only
needed when a user wants to decrypt a WE ciphertext. This way, we will still use the hidden part
of SKf to generate a (delegated) secret key for f ∧ g, but it won’t get “leaked” at all from the
delegated key. In particular, SKf∧g will contain the public part SKf along with some new public
components, and a new hidden component. This way, anyone in possession of SKf∧g can only
delegate on top of f ∧ g. Importantly, the hidden part of SKf will not appear in SKf∧g.

Expanding on this further, in order to achieve selectively secure DABE with unbounded col-
lusions, our main idea is that we will add two new commitments of 0 to each secret key. One of
these will be used to make the switch to trapdoor mode where the other will be used to delegate

7

further. That is, SKf = (f, πf , comf , com
(0)
f , r) where comf ← Com(0) and com

(0)
f = Com(0; r).

πf now also verifies if comf and com
(0)
f are commitments of 0 in the normal mode. In order to

construct a delegated key for f ∧ g, we will sample two new commitments of 0, comf∧g, com
(0)
f∧g

and sample a NIZK proof for the language that checks if comf∧g, com
(0)
f∧g are commitments of 0

and com
(0)
f

?
= Com(0; r). Essentially, we will use com

(0)
f as the new PP and r as the new master

secret key to delegate the key. Crucially, instance or witness for this NIZK proof does not include

πf . This will generate πf∧g and we will set SKf∧g = (f, πf , comf , g, πf∧g, comf∧g, com
(0)
f∧g, r

′). We

will also modify WE language that checks if each and every proof in SKf1∧...∧fℓ verifies, if the last
commitment in the chain is valid, and f1 ∧ . . . fℓ(x) = 1.

Note that, the size of πf∧g doesn’t grow drastically at each link and size of SKf1∧...∧fℓ only

grows linearly in ℓ. The link between SKf and SKf∧g maintained using com
(0)
f . Thus, instead

of metaproofs, a chaining of commitments and proofs bypasses the efficiency issue that we faced
earlier. It turns out that we can argue selective security similarly to our original (metaproof-
based) construction. In a few words, when we switch to trapdoor mode where we set comf for
f = f1 ∧ . . .∧ fℓ to be a commitment of 1, for any secret key where each {πi}i∈[ℓ] verifies, there will
be ℓ∗ ≤ ℓ such that f1 ∧ . . . fℓ∗(x) = 0 which makes the WE instance unsatisfiable.

We remark that prior to this work, the only known construction for delegatable ABE (that did
not rely on general-purpose obfuscation) was by Boneh et al. [BGG+14], and their construction
could only support a ‘fixed ’ number of key delegations. Our above witness encryption based ap-
proach is the first DABE construction in which secret keys can be delegated an unbounded number
of times, even when we set the final goal to be just selective security. Next, we show that the above
design can be further improved to resist fully adaptive attackers.

Adaptive Security from Mixed-FE. It stands to reason that if we use Mixed-FE similarly to
the metaproof construction, we could realize adaptive security readily. However, there is a major
flaw in that argument. If we generate ctf and include it as part of SKf , we will be giving away
{ctfi}i for a chain of f1, . . . , fℓ as part of SKf . This will be problematic as we cannot switch to
the semi-functional system of Mixed-FE. Recall that Mixed-FE security requires that ciphertexts
should be generated only for ‘unsatisfying’ policies. While any function f = f1 ∧ . . .∧ fℓ (for which
the attacker ever receives a key for) must be unsatisfying, it could be that f1 is a satisfying policy.
Thus, if we want to rely on Mixed-FE security, then we must not give away ctf1 to the attacker.
This is because then an adaptive attacker can trivially distinguish between honest and trapdoor
modes, by simply trying to decrypt ctf1 .

Splittable semi-functional keys. In order to hide ctf , we once again rely on our idea that
ctf is only needed when a Corrupt query has to be answered, thus its generation can be de-
layed. That is, ctf can also be treated as a hidden part of the key. In particular, we set
SKf = (f, comf , πf , com

ct
f , ctf , rf) and comct

f = Com(ctf ; rf) where πf now ensures that this re-

lation between comct
f and ctf is valid. And then delegation proceeds similar to the selectively

secure version where we will create comf∧g, com
ct
f∧g and generate πf∧g that checks the relation

between comct
f , ctf and comct

f∧g, ctf∧g. With this, we can sample the public part whenever a key
query is made but we can compute the hidden part only when a Corrupt query is made. As only the
hidden portion is semi-functional, we call this a splittable semi-functional key. Adaptive security of
the scheme can be argued similarly to the O(1) delegation construction where we simulate all NIZK

8

proofs to stop relying on previous proofs. We will then switch to the semi-functional system and
then start to use the trapdoor mode. A high-level sketch of our final construction looks as follows.

Setup. We will generate two commitments com(0), com(1) where com(0) = Com(0; r(0)), nizk.crs←
NIZK.Setup, and mfe.pp← Mix-FE.Setup. We will use PP := (com(0), com(1), nizk.crs,mfe.pp)
and MSK := r(0).

Key Generation. Sample ctf ← Mix-FE.pkEnc(f), comct
f = Com(ctf ; r), and comf = Com(0; r′)

Using (r(0), r, comct
f , ctf , r

′) as witness, generate πf that checks the validity of com(0), comf , com
ct
f .

Set SKf := (f, comf , πf , com
ct
f , ctf , r

′).

Delegation. Given secret key (f1, com1, π1, . . . , fℓ, comℓ, πℓ, com
ct
ℓ , ctℓ, r

′) and policy g, sample
ctℓ+1 ← Mix-FE.pkEnc(f1 ∧ . . . ∧ fℓ ∧ g), comct

ℓ+1 = Com(ctℓ+1; r), and comℓ+1 = Com(0; r′′).
Using (r′′, comct

ℓ , ctℓ, r
′, comct

ℓ+1, ctℓ+1, r) as witness, generate πf that checks the validity of
comct

ℓ+1, comℓ+1, com
ct
ℓ . Set SKf := (f1, com1, π1, . . . , fℓ, comℓ, πℓ, g, comℓ+1, πℓ+1, com

ct
ℓ+1, ctℓ+1, r

′′).

Encryption. Sample a master secret key msk for Mix-FE and generate skx for the attribute x.
Generate a WE ciphertext for the language where inst := (PP, x, skx) and µ where the
relationship circuit uses SKf and checks if each πi is valid and Mix-FE.Dec(ctf , skx) = 0, and
f(x) = 1. Output CT := (x, skx,we.ct).

Trapdoor modes for all the NIZK proofs remain same. Moreover, decryption follows naturally.
Note that delegation chain can run as long as possible or until the NIZK proof can handle it. So,
if we have a NIZK scheme that can prove unbounded inst using unbounded wit, we can handle
unbounded delegation. [GGI+15] constructs such a statistically sound NIZK scheme from fully
homomorphic encryption. In addition, we also point out a few alternate approaches to achieve full
delegation in Section 7. On the flip side, we need an upper bound on the witness size for WE
scheme and thus we can only decrypt a given ciphertext using secret keys that are delegated a
bounded d number of times. It is an interesting question to design DABE where a ciphertext can
be decrypted by a secret key generated by an unrestricted sequence of delegation operations.

Another technical subtlety is that size of Mixed-FE ciphertext grows with delegation. If we use
Mixed-FE obtained via lockable obfuscation [GKW17, WZ17] like in [CVW+18], we can handle un-
bounded size. This is because encryption in 1-key secret-key FE from [SS10] can handle unbounded
size functions as long as input and output sizes are used as global parameters. The same cannot
be said about functional tag system [WW24] that crucially relies on maximum size of policies as a
global parameter. Hence, if we use functional tag system instead of Mixed-FE, we can only handle
bounded delegations. As a straight-forward corollary of our main result, we get a fully secure dele-
gatable (one-sided) predicate encryption scheme for any polynomial-size policy class using lockable
obfuscation [GKW17, WZ17]. We provide full details of our construction in Section 5.

3 Preliminaries

Notation. By PPT we denote probabilistic polynomial-time. We denote the security parameter
by λ and the set of positive integers by N. For any a, b ∈ {0} ∪ N, a ≤ b, we denote by [a, b], the
set of all integers from a to b including a and b. In other words, [a, b] = {a, . . . , b}. We denote by

[n] := [1, n]. We denote by x
$←− X , the process of sampling an element x from the set X , with

9

uniform probability. Similarly, for any PPT algorithm A, x← A(y) denotes the process of sampling
x from the output distribution of A when run on y. By negl(·), we denote negligible functions. By
poly(·), we denote positive polynomials.

We say that two efficiently samplable probability distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any non-uniform PPT distinguisher D = {Dλ}λ∈N, and
for large enough λ ∈ N,∣∣∣∣ Pr

α←Xλ

[
1← D(1λ, α)

]
− Pr

α←Yλ

[
1← D(1λ, α)

]∣∣∣∣ ≤ negl(λ)

For all preliminaries below, µ ∈ {0, 1}∗. Note that for encryption schemes we can use hybrid
encryption to encrypt messages of arbitrary length.

3.1 Statistically Binding Commitments

Syntax. A statistically binding commitment scheme (COM) consists of the following polynomial
time algorithms.

Setup(1λ)→ crs. The probabilistic setup algorithm takes as input security parameter λ and outputs
a common reference string crs. The following algorithms take crs implicitly.

Com(µ; r)→ com. The probabilistic commitment algorithm takes as input message µ, randomness
r, and outputs commitment value com.

Definition 3.1 (COM). A COM scheme (Setup,Com) is said to be a COM scheme if it satisfies
the following properties.

Computational Hiding. For any stateful PPT adversary A, there exists a negligible function
such that ∀ λ ∈ N,

Pr
[
b← AOb(·,·)(crs) : crs← Setup(1λ), b

$←− {0, 1}
]
≤ 1

2
+ negl(λ)

where Ob(µ0, µ1) responds with com← Com(crs, µb).

Statistical Binding. There exists negl(·) such that ∀ λ ∈ N,

Pr

[
com = Com(µ0; r0)∧
com = Com(µ1; r1)

:
crs← Setup(1λ),
∃ (com, µ0, µ1, r0, r1)

]
≤ negl(λ)

where probability is taken on the randomness of crs.

Remark 3.2 ([Nao91]). Statistically binding commitments in the CRS model can be constructed
by assuming one-way functions via length tripling PRGs.

10

3.2 Non-Interactive Zero-Knowledge Proofs

Syntax. A non-interactive zero-knowledge proof system (NIZK) for Ls = {x : ∃ w,Rs(x,w) = 1}
consists of the following polynomial time algorithms.

Setup(1λ, 1s)→ crs. The probabilistic setup algorithm takes as input security parameter λ, lan-
guage index s, and outputs a common reference string crs. The following algorithms take crs
implicitly.

Prove(x,w)→ π. The probabilistic proving algorithm takes as input instance x ∈ L, witness w,
and outputs proof π.

Verify(x, π)→ 0/1. The deterministic verification algorithm takes as input instance x, proof π, and
outputs 0 (reject) or 1 (accept).

Definition 3.3 (NIZK). A NIZK scheme (Setup,Prove,Verify) is said to be a NIZK scheme for
language Ls if it satisfies the following properties.

Correctness. ∀ λ ∈ N, x ∈ L, Pr[1 = Verify(x, π) : crs← Setup(1λ, 1s), π ← Prove(x,w)] = 1.

Statistical Soundness. There exists a negligible function negl(·) such that ∀ λ ∈ N, s = s(λ), x /∈
Ls, ∀ π, Pr[1 = Verify(x, π) : crs← Setup(1λ, 1s),∃ π] ≤ negl(λ).

Computational Zero Knowledge. For any admissible adversary A, there exists a stateful sim-
ulator Sim such that ∀ λ ∈ N, s = s(λ),∣∣∣∣Pr [1← AO0(·,·)(1λ, crs) : crs← Setup(1λ, 1s)

]
−

Pr
[
1← AO

Sim(·)
1 (·,·)(1λ, crs) : crs← Sim(1λ, 1s)

] ∣∣∣∣ ≤ negl(λ)

where O0 uses π ← Prove(x,w) and O1 uses π ← Sim(x) to respond to A’s queries of the form
(x,w). A stateful PPT machine is said to be admissible if for each of its queries, Rs(x,w) = 1.

3.3 Witness Encryption

Syntax. A witness encryption (WE) scheme for language Ls = {x : ∃ w,Rs(x,w) = 1} consists
of the following polynomial time algorithms.

Enc(1λ, 1s, x, µ)→ CT. The probabilistic encryption algorithm takes as input the security param-
eter λ, language index s, instance x ∈ Ls, a message µ, and outputs a ciphertext CT.

Dec(CT, w)→ µ′. The deterministic decryption algorithm takes as input a ciphertext CT, a witness
w, and outputs a message µ′.

Definition 3.4 (WE). A WE scheme (Enc,Dec) is said to be a WE scheme for language Ls if it
satisfies the following properties.

Correctness. ∀ λ ∈ N, µ, x ∈ Ls, if Rs(x,w) = 1,Pr[µ = Dec(CT, w) : CT← Enc(1λ, 1s, x, µ)] = 1.

11

Semantic Security. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀ λ ∈ N, x ̸∈ L, |µ0| = |µ1|,

Pr

[
b← A(CT) : (1s, µ0, µ1)← A(1λ), b

$←− {0, 1},
CT← Enc(1λ, 1s, x, µb)

]
≤ 1

2
+ negl(λ)

3.4 Mixed Functional Encryption

Syntax. A mixed functional encryption scheme (Mixed-FE) for any polynomial-size policies con-
sists of the following polynomial-time algorithms.

Setup(1λ, 1n)→ PP. The probabilistic setup algorithm takes as input security parameter λ, input
size n, and outputs public parameters PP. The following algorithms take PP implicitly.

Gen(PP)→ MSK. The probabilistic master key generation algorithm takes as input public param-
eters PP and outputs master secret key MSK.

KGen(MSK, x)→ SKx. The possibly randomized key generation algorithm takes as input master
secret key MSK, input x, and outputs secret key SKx.

skEnc(MSK, f)→ CT. The probabilistic secret key encryption algorithm takes as input master
secret key MSK, policy f , and outputs ciphertext CT.

pkEnc(f)→ CT. The probabilistic public-key encryption algorithm takes as input policy f and
outputs ciphertext CT.

Dec(SKx,CT)→ 0/1. The deterministic decryption algorithm takes as input secret key SKx, ci-
phertext CT, and outputs either 0 or 1.

Definition 3.5 (Mixed-FE). A Mix-FE scheme (Setup,KGen, skEnc, pkEnc,Dec) is said to be a
Mixed-FE scheme for policy class F if it satisfies the following properties.

Correctness. There exist negligible functions negl1(·), negl2(·) such that for any λ ∈ N,

Pr

[
f(x) = Dec(SKx,CT) :

PP← Setup(1λ, 1n),MSK← Gen(PP),
SKx ← KGen(MSK, x),CT← skEnc(MSK, f)

]
≥ 1− negl1(λ)

Pr

[
0 = Dec(SKx,CT) :

PP← Setup(1λ, 1n),MSK← Gen(PP),
SKx ← KGen(MSK, x),CT← pkEnc(f)

]
≥ 1− negl2(λ)

Mode Indistinguishability. For any admissible adversary A, there exists a negligible function
negl(·) such that ∀ λ ∈ N,

Pr

 b← AOb(·)(CT) :

b
$←− {0, 1}, 1n ← A(1λ),

PP← Setup(1λ, 1n),
MSK← Gen(PP),

x← AOb(·)(PP),
SKx ← KGen(MSK, x)

 ≤
1

2
+ negl(λ)

where, O0(f) outputs pkEnc(f) and O1(f) outputs skEnc(MSK, f). A stateful PPT machine
A is said to be admissible if for each input x queried to Ob, f(x) = 0.

12

Remark 3.6. The above definition is a weaker version of Mixed-FE which was originally proposed
in [GKW18, CVW+18]. Specifically, the definition only considers one key generation query and we
forgo function indistinguishability. Furthermore, we switched the “accept” condition for pkEnc in
order to align with the classical definition for ABE (i.e, µ is revealed when f(x) = 1).

Remark 3.7. Assuming that the delegation depth is bounded, Definition 3.5 can be instantiated
from one-way functions [WW24]. However, for unbounded delegations, the size of policies grow
arbitrarily and we require lockable obfuscation to construct this similar to [GKW18, CVW+18].

4 Delegatable Attribute-Based Encryption

In this section, we provide the definition of a delegatable ABE (DABE) scheme.

Syntax. A DABE scheme for the policy class F = {Fs}s∈N7 consists of the following polynomial
time algorithms.

Setup(1λ, 1s)→ (PP,MSK). The probabilistic setup algorithm takes as input security parameter λ,
functionality index s, outputs public parameters PP and master secret key MSK.

KGen(MSK, f)→ SKf . The possibly randomized key generation algorithm takes as input master
secret key MSK, policy f , and outputs secret key SKf .

Enc(1d, x, µ)→ CTx. The probabilistic encryption algorithm takes delegation depth d, attribute x,
message µ ∈ {0, 1}∗, and outputs ciphertext for attribute x,CTx.

Delegate(SKf , g)→ SKf∧g. The possibly randomized delegation algorithm takes as input a secret
key for policy f, SKf , policy g and outputs a secret key for the policy f ∧ g,SKf∧g.

Dec(SKf ,CT)→ µ′/⊥. The deterministic decryption algorithm takes as input secret key for policy
f , ciphertext for attribute x,CTx, and outputs message µ′ or aborts and outputs ⊥.

Definition 4.1 (Delegatable ABE). A DABE scheme (Setup,KGen,Enc,Dec,Delegate) is said to
be a DABE scheme for Fs if it satisfies the following properties.

Correctness. There exist negligible functions negl1(·), negl2(·) such that for any λ ∈ N, s =
s(λ), f ∈ Fs, x ∈ Xs,

Pr

 µ = Dec(SKf ,CTx) :
(PP,MSK)← Setup(1λ, 1s),
SKf ← KGen(MSK, f),
CTx ← Enc(x, µ), f(x) = 1

 ≥ 1− negl1(λ)

Pr

 ⊥ = Dec(SKf ,CTx) :
(PP,MSK)← Setup(1λ, 1s),
SKf ← KGen(MSK, f),
CTx ← Enc(x, µ), f(x) = 0

 ≥ 1− negl2(λ)

7We use s = s(λ) as an all-encompassing index that bestows the user with all the necessary information about the
policy class in question.

13

Delegation Correctness. This is defined similarly to correctness. Except that the policy f can
now be parsed as (f1 ∧ . . . ∧ fℓ) for some ℓ ∈ [d]. Here, SKf is defined as follows —

SKf1 ← KGen(MSK, f1) and for i ∈ [2, ℓ], SKf1∧...∧fi ← Delegate(SKf1∧...∧fi−1
, fi)

Dec with high probability now outputs ⊥ if for any i ∈ [ℓ], fi(x) = 0 and µ otherwise.

Adaptive Security. For any admissible adversary, there exists a negligible function negl(·) such
that ∀ λ ∈ N, |µ0| = |µ1|,

Pr

 b← AO(·,·)(CT) :

1s ← A(1λ), b $←− {0, 1},
(PP,MSK)← Setup(1λ, 1s),

(x∗, µ0, µ1)← AO(·,·)(PP),
CT← Enc(x∗, µb)

 ≤ 1

2
+ negl(λ)

where O is a stateful oracle that initiates h := 1 and answers these queries:

(Store, f)→ h. A sends policy f . O samples SKf ← KGen(MSK, f), stores (SKf , h,⊥), and
sends with h to A. Also, update h := h+ 1

(Corrupt, h′)→ SKf . A sends handle h′. If there is no tuple of the form (SKf , h
′, ∗), output

⊥. Otherwise, send SKf to A.
(Delegate, h′, g)→ h. A sends handle h′ and policy g. If there is no tuple of the form

(SKf , h
′, ∗), output⊥. Otherwise, O samples SKf∧g ← Delegate(SKf , g), stores (SKf∧g, h,

h′) and sends h to A. Also, update h := h+ 1.

A stateful PPT machine A is said to be admissible if for any Corrupt query made by A, SKf

is for a policy such that f(x∗) = 0.

Definition 4.2 (DABE with Bounded Delegations). A DABE scheme (Setup,KGen,Enc,Delegate,Dec)
is said to be a DABE scheme with bounded delegations for policy class Fs = {Fs}s∈N if the number
of times a secret key can be delegated is a-priori bounded. Setup takes this bound 1d as input.
Security definition is also altered accordingly.

5 DABE with Bounded Delegations from Witness Encryption

In this section, we provide the construction of a DABE scheme with bounded delegations. In
Section 7, we will show various approaches that will achieve a DABE scheme with unbounded
delegations.

Construction 5.1 (DABE). We provide the construction of a DABE scheme with bounded dele-
gations (Definition 4.2) for any family of polynomial-size policies using the following ingredients:

• A statistically-sound NIZK scheme (Definition 3.3) for languages LKG,LDel (Figure 1, 2 resp.).

• A WE scheme (Definition 3.4) for language LWE (Figure 3).

14

Language LKG

Instance: com.crs, com(0), com(1),mfe.pp, f, com
(0)
f

Witness: r(0), r
(0)
f , comct

f ,mfe.ctf , r
ct
f , r

(1),mfe.msk, r̃ctf
Relation: Output 1 if and only if (ϕ1 ∧ ϕ2 ∧ ϕ3) ∨ (ϕ4 ∧ ϕ5) = 1
where,

– ϕ1 : com(0) ?
= Com(com.crs, 0; r(0))

– ϕ2 : comct
f

?
= Com(com.crs,mfe.ctf ; r

ct
f)

– ϕ3 : com
(0)
f

?
= Com(com.crs, 0; r

(0)
f)

– ϕ4 : com(1) ?
= Com(com.crs,mfe.msk; r(1))

– ϕ5 : mfe.ctf
?
= Mix-FE.skEnc(mfe.msk, f ; r̃ctf).

Figure 1: Description of LKG

Language LDel

Instance: com.crs, com(0), com(1),mfe.pp, f1, . . . , fℓ, com
(0)
ℓ−1, com

(0)
ℓ for some ℓ ∈ [d].

Witness: comct
ℓ−1,mfe.ctℓ−1, r

ct
ℓ−1, r

(0)
ℓ , comct

ℓ ,mfe.ctℓ, r
ct
ℓ , r

(1),mfe.msk, r̃ctℓ
Relation: Output 1 if and only if (ϕ1 ∧ ϕ2 ∧ ϕ3) ∨ (ϕ4 ∧ ϕ5) = 1 where,

– ϕ1 : comct
ℓ−1

?
= Com(com.crs,mfe.ctℓ−1; r

ct
ℓ−1)

– ϕ2 : comct
ℓ

?
= Com(com.crs,mfe.ctℓ; r

ct
ℓ)

– ϕ3 : com
(0)
ℓ

?
= Com(com.crs, 0; r

(0)
ℓ)

– ϕ4 : com(1) ?
= Com(com.crs,mfe.msk; r(1))

– ϕ5 : mfe.ctℓ
?
= Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃ctℓ).

Figure 2: Description of LDel

• A statistically-binding COM scheme (Definition 3.1).

• A Mixed-FE scheme (Definition 3.5) for polynomial-size policies.

Setup(1λ, 1d, 1s). Sample nizk.crsKG ← NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Setup(1λ, 1Del). Sam-

ple com.crs← COM.Setup(1λ). Compute com(0) = Com(0; r(0)) and com(1) = Com(0poly(s); r(1))

where r(0), r(1)
$←− {0, 1}λ. mfe.pp← Mix-FE.Setup(1λ, 1s).

Set PP := (nizk.crsKG, nizk.crsDel, com.crs, com(0), com(1),mfe.pp, d),MSK := r(0), and output
(PP,MSK).

KGen(MSK, f). Parse MSK as r(0). Sample mfe.ctf ← Mix-FE.pkEnc(f), comct
f = Com(mfe.ctf ; r

ct
f),

com
(0)
f = Com(0; r

(0)
f), where r

(0)
f , rctf ← {0, 1}λ.

15

Language LWE

Instance: nizk.crsKG, nizk.crsDel, com.crs, com(0), com(1),mfe.pp, d, x,mfe.skx
Witness: f1, com

(0)
1 , π1, . . . , fℓ, com

(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ for some ℓ ∈ [d].

Relation: Output 1 if and only if,

1. 1
?
= NIZK.Verify(nizk.crsKG, instKG, π1)

2. ∀ i ∈ [2, ℓ], 1
?
= NIZK.Verify(nizk.crsDel, instDel,i, πi)

3. comct
ℓ

?
= Com(com.crs,mfe.ctℓ; r

ct
ℓ)

4. 0
?
= Mix-FE.Dec(mfe.ctℓ,mfe.skx)

5. 1
?
= f1(x) ∧ . . . ∧ fℓ(x)

Here, instKG = (com.crs, com(0), com(1),mfe.pp, f1, com
(0)
1),

instDel,i = (com.crs, com(0), com(1),mfe.pp, f1, . . . , fi, com
(0)
i−1, com

(0)
i).

Figure 3: Description of LWE

Compute πf ← NIZK.Prove(nizk.crsKG, inst, wit) where inst := (com.crs, com(0), com(1),mfe.pp,

f, com
(0)
f), wit := (r(0), r

(0)
f , comct

f ,mfe.ctf , r
ct
f , 0)

8.

Output SKf := (f, com
(0)
f , πf , com

ct
f ,mfe.ctf , r

ct
f).

Enc(x, µ). Sample mfe.msk ← Mix-FE.Gen(mfe.pp),mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample

we.ct←WE.Enc(1λ, 1poly(s,d), inst, µ) where inst := (PP, x,mfe.skx).

Output CTx := (x,mfe.skx,we.ct).

Delegate(SKf , g). Parse SKf as (f1, com
(0)
1 , π1, . . . , fℓ, com

(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) for some ℓ ∈

[d − 1]. Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧ . . . fℓ ∧ g), comct
ℓ+1 = Com(mfe.ctℓ+1; r

ct
ℓ+1),

com
(0)
ℓ+1 = Com(0; r

(0)
ℓ+1) where r

(0)
ℓ+1, r

ct
ℓ+1 ← {0, 1}λ.

Sample πℓ+1 ← NIZK.Prove(nizk.crsDel, inst, wit) where inst := (com.crs, com(0), com(1),mfe.pp,

f1, . . . , fℓ, g, com
(0)
ℓ , com

(0)
ℓ+1), wit := (comct

ℓ ,mfe.ctℓ, r
ct
ℓ , r

(0)
ℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1, 0).

Output SKf∧g := (f1, com
(0)
1 , π1, . . . , fℓ, com

(0)
ℓ , πℓ, g, com

(0)
ℓ+1, πℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1).

Dec(SKf ,CTx). Parse SKf as (f1, com
(0)
1 , π1, . . . , fℓ, com

(0)
ℓ , πℓ, com

ct
ℓ ,mfe.skℓ, r

ct
ℓ) for some ℓ ∈ [d]

and CTx as (x,mfe.skx,we.ct). If fi(x) = 0 for any i ∈ [ℓ], abort and output ⊥.
Otherwise, output µ′ := WE.Dec(SKf ,we.ct).

Correctness. The correctness of the construction follows from the correctness of WE, NIZK,

Mix-FE, and COM. Since com(0) = Com(0; r(0)), com
(0)
f = Com(0; r

(0)
f), mfe.ctf ← Mix-FE.pkEnc(f),

comct
f = Com(mfe.ctf ; r

ct
f) for some r(0), rctf , r

(0)
f , we have NIZK.Verify(nizk.crsKG, instKG, witKG) =

1 for the corresponding instKG, witKG. By correctness of Mix-FE, Mix-FE.Dec(mfe.skx,mfe.ctf) = 0
with high probability. Hence, if f(x) = 1, we have by correctness of WE, µ′ = µ.

8By 0, we mean a zero string of sufficient length.

16

Delegation Correctness. We prove this by induction on ℓ ∈ [d]. When ℓ = 1, its the same as cor-

rectness property. Consider ℓ = 2. We have that SKf∧g = (f, com
(0)
1 , π1, g, com

(0)
2 , π2, com

ct
2 ,mfe.ct2,

rct2). If SKf was generated using KGen, we have that NIZK.Verify(nizk.crsKG, (com, com(0), com(1),

mfe.pp, f, com
(0)
1), π1) = 1 (from correctness property). In addition, we also have some rct1 such that

Com(mfe.ct1; r
ct
1) = comct

1 . Similarly, we have rct2 and r
(0)
2 that satisfy the respective properties.

Hence, NIZK.Verify(nizk.crsDel, inst2, π2) = 1 for inst2 = (com.crs, com(0), com(1),mfe.pp, f, com
(0)
1 ,

π1, g, com
(0)
2). By correctness of Mix-FE, with high probability, Mix-FE.Dec(mfe.ct2,mfe.skx) = 0.

Hence, by correctness of WE if f ∧ g(x) = 1, i.e, f(x) = 1 ∧ g(x) = 1, we have that µ′ = µ.
For the induction step, assume that delegation correctness holds for some k ∈ [d − 1] levels of

delegation. And assume that f1 ∧ . . . ∧ fk(x) = 1 and g(x) = 1. Arguing similarly as above, we

have rctk+1 and r
(0)
k+1 that satisfy the respective properties for mfe.ctk+1 and com

(0)
k+1 respectively.

Hence, NIZK.Verify(nizk.crsDel, instDel,k+1, πk+1) = 1. By induction hypothesis, we have some rctk
such that mfe.ctk ← Mix-FE.pkEnc(f1∧ . . . fk ∧ g), comct

k = Com(mfe.ctk; r
ct
k), and ∀ i ∈ [2, k],NIZK.

Verify(nizk.crsDel, instDel,i, πi) = 1. Thus, by WE correctness, µ′ = µ.

6 Security Analysis

In this section, we prove that Construction 5.1 satisfies adaptive security as defined in Definition 4.1.
Specifically, we prove the following theorem.

Theorem 6.1. If WE is a WE scheme for LWE (Definition 3.4), COM is a COM scheme (Defini-
tion 3.1), NIZK is a NIZK scheme for LKG and LDel (Definition 3.3), Mix-FE is a Mixed-FE scheme
for polynomial-size circuits (Definition 3.5), then Construction 5.1 is a DABE scheme with bounded
delegations (Definition 4.2) for polynomial-size policies.

Proof. We prove this theorem using the following experiments and lemmas.

ExptA,b0 (1λ). This is almost the honest experiment with O where either b = 0/1. The only
change is that we sample mfe.msk ← Mix-FE.Gen(PP) during setup. The output distributions of
this experiment and honest experiment are identical.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Setup(1λ, 1Del).
mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel,
com.crs, com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Sample mfe.ctf ← Mix-FE.pkEnc(f), comct
f = Com(mfe.ctf ; r

ct
f), com

(0)
f =

Com(0; r
(0)
f), πf ← NIZK.Prove(inst, wit) where inst = (com.crs, com(0), com(1),mfe.pp, f,

com
(0)
f), wit = (r(0), r

(0)
f , comct

f ,mfe.ctf , r
ct
f , 0).

Set SKf = (f, com
(0)
f , πf , com

ct
f ,mfe.ctf , r

ct
f). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise,

17

Parse SKf as (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ). Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧

. . . ∧ fℓ ∧ g), comct
ℓ+1 = Com(mfe.ctℓ+1; r

ct
ℓ+1), com

(0)
ℓ+1 = Com(0; r

(0)
ℓ+1).

Sample πℓ+1 ← NIZK.Prove(inst, wit) where inst = (com.crs, com(0), com(1),mfe.pp, f1, . . . ,

fℓ, g, com
(0)
ℓ , com

(0)
ℓ+1), wit = (comct

ℓ ,mfe.ctℓ, r
ct
ℓ , r

(0)
ℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1, 0).

Set SKf∧g = (. . . , fℓ, com
(0)
ℓ , πℓ, g, com

(0)
ℓ+1, πℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1). Send h to A. Store

(SKf∧g, g, h, h
′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b1 (1λ). In this experiment, we will simulate all the proofs generated by NIZK for LDel using
NIZK.Sim.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del).
mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel,
com.crs, com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Sample mfe.ctf ← Mix-FE.pkEnc(f), comct
f = Com(mfe.ctf ; r

ct
f), com

(0)
f =

Com(0; r
(0)
f), πf ← NIZK.Prove(inst, wit) where inst = (com.crs, com(0), com(1),mfe.pp, f,

com
(0)
f), wit = (r(0), r

(0)
f , comct

f ,mfe.ctf , r
ct
f , 0).

Set SKf = (f, com
(0)
f , πf , com

ct
f ,mfe.ctf , r

ct
f). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise,

Parse SKf as (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ). Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧

. . . ∧ fℓ ∧ g), comct
ℓ+1 = Com(mfe.ctℓ+1; r

ct
ℓ+1), com

(0)
ℓ+1 = Com(0; r

(0)
ℓ+1).

Sample πf∧g ← NIZK.Sim(inst) where inst = (com.crs, com(0), com(1),mfe.pp, f1, . . . , fℓ, g,

com
(0)
ℓ , com

(0)
ℓ+1).

Set SKf∧g = (. . . , fℓ, com
(0)
ℓ , πℓ, g, com

(0)
ℓ+1, πℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1). Send h to A. Store

(SKf∧g, g, h, h
′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

18

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b2 (1λ). In this experiment, we will simulate all the proofs generated by NIZK for LKG using
NIZK.Sim.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp
← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Sample mfe.ctf ← Mix-FE.pkEnc(f), comct
f = Com(mfe.ctf ; r

ct
f), com

(0)
f =

Com(0; r
(0)
f), πf ← NIZK.Sim(inst) where inst = (com.crs, com(0), com(1),mfe.pp, f, com

(0)
f).

Set SKf = (f, com
(0)
f , πf , com

ct
f ,mfe.ctf , r

ct
f). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise,

Parse SKf as (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ). Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧

. . . ∧ fℓ ∧ g), comct
ℓ+1 = Com(mfe.ctℓ+1; r

ct
ℓ+1), com

(0)
ℓ+1 = Com(0; r

(0)
ℓ+1).

Sample πf∧g ← NIZK.Sim(inst) where inst = (com.crs, com(0), com(1),mfe.pp, f1, . . . , fℓ, g,

com
(0)
ℓ , com

(0)
ℓ+1).

Set SKf∧g = (. . . , fℓ, com
(0)
ℓ , πℓ, g, com

(0)
ℓ+1, πℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1). Send h to A. Store

(SKf∧g, g, h, h
′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b3 (1λ). In this experiment, as we do not depend on the chain of proofs anymore for dele-
gation, we will only perform KGen and/or Delegate when a Corrupt query is made.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp
← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

19

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.pkEnc(f1 ∧ . . . ∧ fℓ), com
ct
ℓ = Com(mfe.ctℓ; r

ct
ℓ).

Sample com
(0)
f = Com(0; r

(0)
f), πf ← NIZK.Sim(instKG).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(0; r

(0)
i) and πi ← NIZK.Sim(instDel,i).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly. The general case can be done similarly as explained in the
proof of Lemma 6.4.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b4 (1λ). In this experiment, we generate mfe.ctf using Mix-FE.skEnc.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp
← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃
ct
ℓ), com

ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f = Com(0; r

(0)
f), πf ← NIZK.Sim(instKG).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(0; r

(0)
i) and πi ← NIZK.Sim(instDel,i).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

20

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b5 (1λ). In this experiment, we will commit mfe.msk using com(1) rather than an all zero
string.

• Setup. A sends 1d, 1s. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), nizk.crsKG ←
NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk
← Mix-FE.Gen(PP), com(1) = Com(mfe.msk; r(1)). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Perform the remaining steps same as ExptA,b4 (1λ).

ExptA,b6 (1λ). In this experiment, we generate NIZK proofs honestly for LKG but use the “trapdoor”
witnesses.

• Setup. A sends 1d, 1s. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), nizk.crsKG ←
NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk
← Mix-FE.Gen(PP), com(1) = Com(mfe.msk; r(1)). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃
ct
ℓ), com

ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f = Com(0; r

(0)
f), πf ← NIZK.Prove(instKG, witKG) where witKG = (0, r(1),

mfe.msk, r̃ctf).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(0; r

(0)
i) and πi ← NIZK.Sim(instDel,i).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

21

ExptA,b7 (1λ). In this experiment, we generate NIZK proofs honestly for LDel but use the “trap-
door” witnesses.

• Setup. A sends 1d, 1s. Compute com.crs← Com.Setup(1λ), com(0) = Com(0; r(0)), nizk.crsKG ←
NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Setup(1λ, 1Del). mfe.pp ← Mix-FE.Setup(1λ, 1s),
mfe.msk ← Mix-FE.Gen(PP), com(1) = Com(mfe.msk; r(1)). Set PP = (nizk.crsKG, nizk.crsDel,
com.crs, com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃
ct
ℓ), com

ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f = Com(0; r

(0)
f), πf ← NIZK.Prove(instKG, witKG) where witKG = (0, r(1),

mfe.msk, r̃ctf).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(0; r

(0)
i) and πi ← NIZK.Prove(instDel,i, witDel,i)

where witDel,i = (0, r(1),mfe.msk, r̃ctf).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b8 (1λ). In this hybrid, we will set com
(0)
f for every queried function to be commitment of 1.

• Setup. A sends 1d, 1s. Compute com.crs← Com.Setup(1λ), com(0) = Com(1; r(0)), nizk.crsKG ←
NIZK.Setup(1λ, 1KG), nizk.crsDel ← NIZK.Setup(1λ, 1Del). mfe.pp ← Mix-FE.Setup(1λ, 1s),
mfe.msk ← Mix-FE.Gen(PP), com(1) = Com(mfe.msk; r(1)). Set PP = (nizk.crsKG, nizk.crsDel,
com.crs, com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

22

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃
ct
ℓ), com

ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f = Com(1; r

(0)
f), πf ← NIZK.Prove(instKG, witKG) where witKG = (0, r(1),

mfe.msk, r̃ctf).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(1; r

(0)
i) and πi ← NIZK.Prove(instDel,i, witDel,i)

where witDel,i = (0, r(1),mfe.msk, r̃ctf).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

ExptA,b9 (1λ). In this experiment, we encrypt all zero string using WE.

• Setup, Store, Delegate, Corrupt. Same as ExptA,b8 (1λ).

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, 0

|µb|).

Send (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

Lemma 6.2. ExptA,b0 (1λ), ExptA,b1 (1λ) are computationally indistinguishable assuming the com-
putational zero-knowledge property of NIZK for LDel.

Proof. Assume that there exists an adversary A that can distinguish between ExptA,b0 (1λ) and

ExptA,b1 (1λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← ExptA,b0 (1λ)
]
− Pr

[
1← ExptA,b1 (1λ)

]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the computational zero-knowledge prop-
erty of NIZK for LDel with non-negligible probability. The description of BO is as follows.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Setup(1λ, 1KG), nizk.crsDel ← O(1λ, 1Del). mfe.pp ←
Mix-FE.Setup(1λ, 1s),mfe.msk ← Mix-FE.Gen(PP). Set PP = (nizk.crsKG, nizk.crsDel, com.crs,
com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A.

23

• Store. A sends f . Sample mfe.ctf ← Mix-FE.pkEnc(f), comct
f = Com(mfe.ctf ; r

ct
f), com

(0)
f =

Com(0; r
(0)
f), πf ← NIZK.Prove(inst, wit) where inst = (com.crs, com(0), com(1),mfe.pp, f,

com
(0)
f), wit = (r(0), r

(0)
f , comct

f ,mfe.ctf , r
ct
f , 0).

Set SKf = (f, com
(0)
f , πf , com

ct
f ,mfe.ctf , r

ct
f). Send h to A. Store (SKf , h,⊥) and h := h+ 1.

• Delegate. A sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise,

Parse SKf as (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ). Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧

. . . ∧ fℓ ∧ g), comct
ℓ+1 = Com(mfe.ctℓ+1; r

ct
ℓ+1), com

(0)
ℓ+1 = Com(0; r

(0)
ℓ+1).

Sample πf∧g ← O(inst, wit) where inst = (com.crs, com(0), com(1),mfe.pp, f1, . . . , fℓ, g,

com
(0)
ℓ , com

(0)
ℓ+1).

Set SKf∧g = (. . . , fℓ, com
(0)
ℓ , πℓ, g, com

(0)
ℓ+1, πℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1). Send h to A. Store

(SKf∧g, g, h, h
′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (SKf , h
′, ∗), send ⊥. Otherwise, send SKf to A.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
uses (NIZK.Setup,NIZK.Prove), B behaves like ExptA,b1 (1λ) and if O uses NIZK.Sim, B behaves like

ExptA,b2 (1λ). Hence, B is a valid adversary against the computational zero-knowledge property of

NIZK that can break its security with probability ϵ(λ). Thus ExptA,b1 (1λ) and ExptA,b2 (1λ) are
computationally indistinguishable.

Lemma 6.3. ExptA,b1 (1λ), ExptA,b2 (1λ) are computationally indistinguishable assuming the com-
putational zero-knowledge property of NIZK for LKG.

Proof. The proof of this lemma is similar to proof of Lemma 6.2.

Lemma 6.4. ExptA,b2 (1λ) and ExptA,b3 (1λ) are identically distributed.

Proof. Note that all that’s changed is we are delaying KGen and Delegate procedures to Corrupt
query. Rest all is done similarly to Store,Delegate queries. There are 3 cases to consider —

• None of the keys for f1, . . . , fℓ are generated. In this case, we start from the root node using
Store and keep on running Delegate procedure to get the final key.

• There exists 1 < ℓ′ < ℓ such that key for f1 ∧ . . . ∧ fℓ′ is generated. In this case, keep on
delegating like in Delegate procedure to generate final key but using NIZK.Sim for LDel.

24

• A requested key for f1 ∧ . . . ∧ fℓ′ when we have a key for f1 ∧ . . . ∧ fℓ with ℓ > ℓ′ ≥ 1. In
this case, we take a portion of key for f1 ∧ . . .∧ fℓ and generate mfe.ctℓ′ and commit it. This
forms a key for the required policy.

Hence, these two experiments are identical.

Lemma 6.5. ExptA,b3 (1λ), ExptA,b4 (1λ) are computationally indistinguishable assuming the mode
indistinguishability property of Mix-FE.

Proof. Assume that there exists an adversary A that can distinguish between ExptA,b4 (1λ) and

ExptA,b5 (1λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← ExptA,b3 (1λ)
]
− Pr

[
1← ExptA,b4 (1λ)

]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the mode indistinguishability property
of Mix-FE with non-negligible probability. The description of BO is as follows.

• Setup. A sends 1d, 1s. Compute com.crs ← Com.Setup(1λ), com(0) = Com(0; r(0)), com(1) =
Com(0poly(s); r(1)), nizk.crsKG ← NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp
← O(1λ, 1s). Set PP = (nizk.crsKG, nizk.crsDel, com.crs, com(0), com(1),mfe.pp, d), MSK := r(0).
Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← O(f1 ∧ . . . ∧ fℓ), com
ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f = Com(0; r

(0)
f), πf ← NIZK.Sim(instKG).

For each i ∈ [2, ℓ], sample com
(0)
i = Com(0; r

(0)
i) and πi ← NIZK.Sim(instDel,i).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

25

As we can see, the running time of B is polynomial in the running time of A and λ. If O uses
Mix-FE.pkEnc, B behaves like ExptA,b4 (1λ) and if O uses Mix-FE.skEnc, B behaves like ExptA,b5 (1λ).
Hence, B is a valid adversary against the mode indistinguishability property of Mix-FE that can
break its security with probability ϵ(λ). Thus ExptA,b4 (1λ) and ExptA,b5 (1λ) are computationally
indistinguishable.

Lemma 6.6. ExptA,b4 (1λ), ExptA,b5 (1λ) are computationally indistinguishable assuming the com-
putational hiding property of COM.

Proof. Assume that there exists an adversary A that can distinguish between ExptA,b4 (1λ) and

ExptA,b5 (1λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← ExptA,b4 (1λ)
]
− Pr

[
1← ExptA,b5 (1λ)

]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the computational hiding property of
COM with non-negligible probability. The description of BO is as follows.

• Setup. A sends 1d, 1s. Receive com.crs ← O, sample com(0) = Com(0; r(0)), nizk.crsKG ←
NIZK.Sim(1λ, 1KG), nizk.crsDel ← NIZK.Sim(1λ, 1Del). mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk
← Mix-FE.Gen(PP). Compute com(1) = O(0poly(s),mfe.msk). Set PP = (nizk.crsKG, nizk.crsDel,
com.crs, com(0), com(1),mfe.pp, d), MSK := r(0). Initiate h to 1.

Send PP to A

• Perform the remaining steps same as ExptA,b5 (1λ).

As we can see, the running time of B is polynomial in the running time of A and λ. If O returns
a commitment of 0poly(s), B behaves like ExptA,b4 (1λ) and if O returns a commitment of mfe.msk, B
behaves like ExptA,b5 (1λ). Hence, B is a valid adversary against the computational hiding property

of COM that can break its security with probability ϵ(λ). Thus ExptA,b4 (1λ) and ExptA,b5 (1λ) are
computationally indistinguishable.

Lemma 6.7. ExptA,b5 (1λ), ExptA,b6 (1λ) are computationally indistinguishable assuming the com-
putational zero knowledge property of NIZK for LKG.

Proof. Note that the trapdoor witnesses are also valid witness for LKG. Hence, the proof of this
lemma is similar to proof of Lemma 6.2.

Lemma 6.8. ExptA,b6 (1λ), ExptA,b7 (1λ) are computationally indistinguishable assuming the com-
putational zero knowledge property of NIZK for LDel.

Proof. Note that the trapdoor witnesses are also valid witness for LDel. Hence, the proof of this
lemma is similar to proof of Lemma 6.2.

Lemma 6.9. ExptA,b7 (1λ), ExptA,b8 (1λ) are computationally indistinguishable assuming the com-
putational hiding property of COM.

26

Proof. Assume that there exists an adversary A that can distinguish between ExptA,b7 (1λ) and

ExptA,b8 (1λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← ExptA,b7 (1λ)
]
− Pr

[
1← ExptA,b8 (1λ)

]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the computational hiding property of
COM with non-negligible probability. The description of BO is as follows.

• Setup. A sends 1d, 1s. Receive com.crs← O, com(0) = O(0, 1), nizk.crsKG ← NIZK.Setup(1λ, 1KG),
nizk.crsDel ← NIZK.Setup(1λ, 1Del). mfe.pp← Mix-FE.Setup(1λ, 1s),mfe.msk← Mix-FE.Gen(PP),
com(1) = Com(mfe.msk; r(1)). Set PP = (nizk.crsKG, nizk.crsDel, com.crs, com(0), com(1),mfe.pp, d).
Initiate h to 1.

Send PP to A.

• Store. A sends f . Send h to A. Store (f, h,⊥) and h := h+ 1.

• Delegate. A asks sends h′, g. If there is no entry (SKf , h
′, ∗), send ⊥ to A. Otherwise, send h

to A. Store (g, h, h′) and h := h+ 1.

• Corrupt. A sends h′. If there is no entry (f, h′, ∗), send ⊥. Otherwise, let the chain from
root-to-leaf for f be f1 ∧ . . . ∧ fℓ for some ℓ ∈ [d].

Sample mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧ . . . ∧ fℓ; r̃
ct
ℓ), com

ct
ℓ ← Com(mfe.ctℓ)

Sample com
(0)
f ← O(0, 1), πf ← NIZK.Prove(instKG, witKG) where witKG = (0, r(1),mfe.msk, r̃ctf).

For each i ∈ [2, ℓ], sample com
(0)
i ← O(0, 1) and πi ← NIZK.Prove(instDel,i, witDel,i) where

witDel,i = (0, r(1),mfe.msk, r̃ctf).

Send SKf = (. . . , fℓ, com
(0)
ℓ , πℓ, com

ct
ℓ ,mfe.ctℓ, r

ct
ℓ) to A. For each of the root-to-leaf functions,

update information accordingly.

• Encryption. A sends x∗, µ0, µ1. Sample mfe.skx ← Mix-FE.KGen(mfe.msk, x). Sample we.ct ←
WE.Enc(1λ, 1poly(s,d), instWE, µb).

Send CT = (x,mfe.skx,we.ct) to A.

Store, Delegate, Corrupt. These are handled similarly to pre-challenge phase.

• Guess. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
returns a commitment of 0, B behaves like ExptA,b7 (1λ) and if O returns a commitment of 1, B
behaves like ExptA,b8 (1λ). Hence, B is a valid adversary against the computational hiding property

of COM that can break its security with probability ϵ(λ). Thus ExptA,b7 (1λ) and ExptA,b8 (1λ) are
computationally indistinguishable.

Lemma 6.10. ExptA,b8 (1λ), ExptA,b9 (1λ) are computationally indistinguishable assuming the se-
curity of WE.

27

Proof. Note that at this point, instWE = (nizk.crsKG, nizk.crsDel, com.crs, com(0), com(1),mfe.pp, x,

mfe.skx, d) is unsatisfiable. Assume that there is witWE = (f1, com
(0)
1 , π1, . . . , fℓ, com

(0)
ℓ , πℓ, com

ct
ℓ ,

mfe.ctℓ, r
ct
ℓ) for some ℓ ∈ [d] such that WE.R(instWE, witWE) = 1 with πi verifying for every i ∈ [ℓ].

Then —

• If com
(0)
ℓ is a commitment of 1, then it must be that mfe.ctℓ ← Mix-FE.skEnc(mfe.msk, f1 ∧

. . . ∧ fℓ) as com
(1) is a commitment of mfe.msk. Hence, by correctness of Mix-FE, we reach a

contradiction.

• If ℓ∗ < ℓ is such that com
(0)
ℓ∗ is a commitment of 1, then it must be that f1 ∧ . . .∧ fℓ∗(x) = 0,

which is a contradiction.

By statistical binding property of COM and statistical soundness of NIZK, with overwhelming
probability, WE instance is unsatisfiable.

Note that ExptA,b9 (1λ) is independent of b. Hence, security of Construction 5.1 follows.

7 Bootstrapping to Unbounded Delegations

In Section 5, we constructed a DABE scheme that can handle a-priori bounded d number of
delegations. In this section, we highlight the approaches one can use that can handle unbounded
delegations. That is, we can construct DABE for polynomial-size policies satisfying Definition 4.1
from any DABE scheme for polynomial-size policies satisfying Definition 4.2 using the following
approaches.

Approach 1: Fully Homomorphic Encryption. The reason we achieve bounded delegation
with Construction 5.1 is that we need to bound |inst| and |wit| while creating nizk.crs for any NIZK
(Definition 3.3). However, if we have a statistically sound NIZK that can handle unbounded size
inst, wit, we can readily use this to realize unbounded delegation. Note that it is fine to let running
time of NIZK.Prove grow polynomially in |inst|, |wit|, its just that we need NIZK.Prove to run on
unbounded size inputs. [GGI+15] constructs such a statistically sound NIZK scheme using fully
homomorphic encryption (which is known from circularly-secure LWE [Gen09, BV11, GSW13]).
If we plug-in this NIZK in Construction 5.1, we can achieve DABE that satisfies Definition 4.1
readily.

Approach 2: Create a new NIZK after each delegation. After ℓ many delegations, we
know that instℓ+1 for LDel grows additively in ℓ and functionality index s. Similarly, an upper
bound on |witℓ+1| can be determined using ℓ, s independent of |witℓ|. Hence, we can sample a
new nizk.crs for these parameters and include it as part of secret key. This way the delegator
will use this new nizk.crs to generate πℓ+1. We also need to “sign” the new nizk.crs so that the
attacker cannot switch it to delegate further. Moreover, to use WE security, this signature should
be statistically secure. Such a signature can be generated using another NIZK scheme9 where the
instance is com′, πℓ, nizk.crs and witness is r′ such that com′ = Com(0; r′). We can repeat this
process to handle unbounded delegations. With these modifications, changes in our construction
are highlighted in red as follows:

9We cannot include nizk.crs as part of instℓ as this would lead to efficiency issues.

28

Changes in LWE. We use the witness — f1, com
(0)
1 , π1, com

′
2, nizk.crs2, σ2, . . . , fℓ, com

(0)
ℓ , πℓ, com

′
ℓ+1,

nizk.crsℓ+1, σℓ+1, com
ct
ℓ ,mfe.ctℓ, r

ct
ℓ for some ℓ ∈ [d]. In the relationship circuit, we check for

each i ∈ [2, ℓ] NIZK verifies using nizk.crsi and the signatures {σi}i verify too.

Delegate(SKf , g). Parse SKf as (f1, com
(0)
1 , π1, com

′
2, nizk.crs2, σ2, . . . , fℓ, com

(0)
ℓ , πℓ, nizk.crsℓ+1, σℓ+1,

comct
ℓ ,mfe.ctℓ, r

ct
ℓ) for some ℓ. Sample mfe.ctℓ+1 ← Mix-FE.pkEnc(f1 ∧ . . . fℓ ∧ g), comct

ℓ+1 =

Com(mfe.ctℓ+1; r
ct
ℓ+1), com

(0)
ℓ+1 = Com(0; r

(0)
ℓ+1) where r

(0)
ℓ+1, r

ct
ℓ+1 ← {0, 1}λ.

Sample πℓ+1 ← NIZK.Prove(nizk.crsℓ+1, inst, wit) where inst := (com.crs, com(0), com(1),

mfe.pp, f1, . . . , fℓ, g, com
(0)
ℓ , com

(0)
ℓ+1), wit := (comct

ℓ ,mfe.ctℓ, r
ct
ℓ , r

(0)
ℓ+1, com

ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1, 0).

Sample nizk.crsℓ+2 ← NIZK.Setup(1λ, 1Del′) where Del′ is the new language whose instance
and witness length can be efficiently determined.

Sample com′ = Com(0; r′), σℓ+2 ← Sign((com′, πℓ+1, nizk.crsℓ+2), r
′).

Output SKf∧g := (f1, com
(0)
1 , π1, com

′
2, nizk.crs2, σ2, . . . , fℓ, com

(0)
ℓ , πℓ, com

′
ℓ+1, nizk.crsℓ+1, σℓ+1,

g, com
(0)
ℓ+1, πℓ+1, com

′, nizk.crsℓ+2, σℓ+2, com
ct
ℓ+1,mfe.ctℓ+1, r

ct
ℓ+1).

Dec(SKf ,CTx). Parse SKf as (f1, com
(0)
1 , π1, com

′
2, nizk.crs2, σ2, . . . , fℓ, com

(0)
ℓ , πℓ, com

′
ℓ+1, nizk.crsℓ+1,

σℓ+1, com
ct
ℓ ,mfe.skℓ, r

ct
ℓ) for some ℓ ∈ [d] and CTx as (x,mfe.skx,we.ct). If fi(x) = 0 for any

i ∈ [ℓ], abort and output ⊥.
Otherwise, output µ′ := WE.Dec(SKf ,we.ct).

The security argument remains almost the same. However, now we need to go down the dele-
gation tree maintained by the challenger level-by-level to simulate all the new NIZK instantiations
and do this for each branch of the delegation tree. In addition, we will also simulate nizk.crsℓ inside
signatures σ.

Approach 3: Use NIWIs. If we use non-interactive witness indistinguishability proofs (NIWI)
[BOV07, FS90] instead of NIZKs, we will not face any of the efficiency issues that plagued NIZKs
in the previous two approaches. In addition, there will be no crs for NIZKs as well. However, it
wouldn’t be enough for the languages to have a normal mode and a trapdoor mode. This is because
in both modes, we are using mfe.ctf to some capacity (cf. Figs. 1 and 2). In order to resolve this,
we need to introduce a “simulation” mode which serves the same purpose as NIZK simulation.
That is, this mode lets us to create valid proofs without using mfe.ctf and thus we can defer Store
and Delegate queries to Corrupt phase.

We can do so by simply using another commitment com′ that in conjunction with com(0) will
determine which mode we are in. For instance, if com(0), com′ are both commitments of 0, we will
be in the normal mode. If com(0) is a commitment of 0, com′ is a commitment of 1, we will be
in the simulation mode where we will not be using any information about mfe.ctf . If com(0) is
commitment of 1, we will be in the trapdoor mode where we don’t care about com′. Each time we
generate SKf or delegate it, we need to sample a new com′. By relying on statistical soundness of
NIWIs and statistical binding of COM we can argue adaptive security similarly to NIZK version.

Note that in all approaches, LWE still required bound d as we need a bound for |witWE|.

29

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 657–677, Santa Barbara, CA, USA,
August 16–20, 2015. Springer Berlin Heidelberg, Germany.

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex pred-
icate encryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes
in Computer Science, pages 627–656, Paris, France, April 30 – May 4, 2017. Springer,
Cham, Switzerland.

[ACG+24] Abtin Afshar, Jiaqi Cheng, Rishab Goyal, Aayush Yadav, and Saikumar Yadugiri. En-
crypted RAM delegation: Applications to rate-1 extractable arguments, homomorphic
NIZKs, MPC, and more. Cryptology ePrint Archive, Paper 2024/1806, 2024.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Cryptology ePrint Archive, 2015.

[AKY24] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute based encryption for
turing machines from lattices. In Leonid Reyzin and Douglas Stebila, editors, Advances
in Cryptology – CRYPTO 2024, Part III, volume 14922 of Lecture Notes in Computer
Science, pages 352–386, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham,
Switzerland.

[APG+11] Joseph A Akinyele, Matthew W Pagano, Matthew D Green, Christoph U Lehmann,
Zachary NJ Peterson, and Aviel D Rubin. Securing electronic medical records using
attribute-based encryption on mobile devices. In Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices, pages 75–86, 2011.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Theory of Cryptography Conference, pages 174–198. Springer,
2019.

[BBS+09] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin.
Persona: an online social network with user-defined privacy. In Proceedings of the
ACM SIGCOMM 2009 conference on Data communication, pages 135–146, 2009.

[BCG+17] Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil
Segev. Hierarchical functional encryption. In 8th Innovations in Theoretical Computer

30

Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[BDS24] Pedro Branco, Nico Döttling, and Akshayaram Srinivasan. Rate-1 statistical non-
interactive zero-knowledge. Cryptology ePrint Archive, 2024.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. In
Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings 33, pages 533–556. Springer, 2014.

[BIOW20] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments
and witness encryption from groups. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture
Notes in Computer Science, pages 776–806, Santa Barbara, CA, USA, August 17–21,
2020. Springer, Cham, Switzerland.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil Vadhan. Derandomization in cryptography. SIAM
Journal on Computing, 37(2):380–400, 2007.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 62–73, 1993.

[BS15] Zvika Brakerski and Gil Segev. Hierarchical functional encryption. Cryptology ePrint
Archive, 2015.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In 2007 IEEE symposium on security and privacy (SP’07), pages 321–334.
IEEE, 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography: 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8, pages 253–273. Springer,
2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foun-
dations of Computer Science, pages 97–106, Palm Springs, CA, USA, October 22–25,
2011. IEEE Computer Society Press.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography: 4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007. Proceedings 4, pages 535–554.
Springer, 2007.

31

[CDEN12] Jan Camenisch, Maria Dubovitskaya, Robert R Enderlein, and Gregory Neven. Obliv-
ious transfer with hidden access control from attribute-based encryption. In Security
and Cryptography for Networks: 8th International Conference, SCN 2012, Amalfi, Italy,
September 5-7, 2012. Proceedings 8, pages 559–579. Springer, 2012.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 595–624, Sofia, Bulgaria, April 26–30, 2015. Springer Berlin
Heidelberg, Germany.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from lwe made simple and attribute-based. In Theory of Cryptogra-
phy: 16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018,
Proceedings, Part II 16, pages 341–369. Springer, 2018.

[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 372–
408, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages
537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham, Switzerland.

[DSY91] Alfredo De Santis and Moti Yung. Cryptographic applications of the non-interactive
metaproof and many-prover systems. In Advances in Cryptology-CRYPTO’90: Pro-
ceedings 10, pages 366–377. Springer, 1991.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd Annual ACM Symposium on Theory of Computing, pages 416–426, Baltimore,
MD, USA, May 14–16, 1990. ACM Press.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178,
Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual Symposium on Foundations of Computer Science, pages 40–
49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam Smith.
Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge
proofs. Journal of Cryptology, 28(4):820–843, 2015.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th

32

Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press.

[GH09] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially
many levels. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Con-
ference, volume 5444 of Lecture Notes in Computer Science, pages 437–456. Springer
Berlin Heidelberg, Germany, March 15–17, 2009.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA, USA,
August 18–22, 2013. Springer Berlin Heidelberg, Germany.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
612–621, 2017.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 660–670, 2018.

[GLW21] Rishab Goyal, Jiahui Liu, and Brent Waters. Adaptive security via deletion in attribute-
based encryption: Solutions from search assumptions in bilinear groups. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part IV, volume 13093 of Lecture Notes in Computer Science, pages 311–341, Singapore,
December 6–10, 2021. Springer, Cham, Switzerland.

[GM15] Matthew D Green and Ian Miers. Forward secure asynchronous messaging from punc-
turable encryption. In 2015 IEEE Symposium on Security and Privacy, pages 305–320.
IEEE, 2015.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on
Computer and Communications Security, pages 89–98, Alexandria, Virginia, USA, Oc-
tober 30 – November 3, 2006. ACM Press. Available as Cryptology ePrint Archive
Report 2006/309.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Yuliang
Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 548–566, Queenstown, New Zealand, December 1–5,
2002. Springer Berlin Heidelberg, Germany.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA,
USA, August 18–22, 2013. Springer Berlin Heidelberg, Germany.

33

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, pages 162–179. Springer, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523. Springer, 2015.

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 466–481, Amsterdam, The Netherlands,
April 28 – May 2, 2002. Springer Berlin Heidelberg, Germany.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of un-
bounded depth from lattices. In 64th Annual Symposium on Foundations of Computer
Science, pages 415–434, Santa Cruz, CA, USA, November 6–9, 2023. IEEE Computer
Society Press.

[HLL24] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. A general framework for lattice-based ABE
using evasive inner-product functional encryption. In Marc Joye and Gregor Leander,
editors, Advances in Cryptology – EUROCRYPT 2024, Part II, volume 14652 of Lecture
Notes in Computer Science, pages 433–464, Zurich, Switzerland, May 26–30, 2024.
Springer, Cham, Switzerland.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Advances in Cryptology–
EUROCRYPT 2008: 27th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings
27, pages 146–162. Springer, 2008.

[LLL22] Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size secret keys
and adaptive security. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022:
20th Theory of Cryptography Conference, Part I, volume 13747 of Lecture Notes in
Computer Science, pages 680–710, Chicago, IL, USA, November 7–10, 2022. Springer,
Cham, Switzerland.

[LOS+10] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Wa-
ters. Fully secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In Advances in Cryptology–EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30–June 3, 2010. Proceedings 29, pages 62–91. Springer, 2010.

34

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010: 7th
Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer Science,
pages 455–479, Zurich, Switzerland, February 9–11, 2010. Springer Berlin Heidelberg,
Germany.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EU-
ROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 58–76,
Copenhagen, Denmark, May 11–15, 2014. Springer Berlin Heidelberg, Germany.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology, 4:151–
158, 1991.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Ronald
Cramer, editor, TCC 2012: 9th Theory of Cryptography Conference, volume 7194 of
Lecture Notes in Computer Science, pages 422–439, Taormina, Sicily, Italy, March 19–
21, 2012. Springer Berlin Heidelberg, Germany.

[SRGS12] Nuno Santos, Rodrigo Rodrigues, Krishna P Gummadi, and Stefan Saroiu. {Policy-
Sealed} data: A new abstraction for building trusted cloud services. In 21st USENIX
Security Symposium (USENIX Security 12), pages 175–188, 2012.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings 24, pages 457–473. Springer, 2005.

[SW08] Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption sys-
tems. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International
Colloquium on Automata, Languages and Programming, Part II, volume 5126 of Lec-
ture Notes in Computer Science, pages 560–578, Reykjavik, Iceland, July 7–11, 2008.
Springer Berlin Heidelberg, Germany.

[TBEM08] Patrick Traynor, Kevin RB Butler, William Enck, and Patrick D McDaniel. Realizing
massive-scale conditional access systems through attribute-based cryptosystems. In
NDSS, 2008.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages
62–85, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Cham, Switzerland.

35

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Annual
International Cryptology Conference, pages 535–559. Springer, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-
io from evasive lwe. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 195–221. Springer, 2022.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings 24, pages 114–127. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 619–636, Santa Barbara, CA,
USA, August 16–20, 2009. Springer Berlin Heidelberg, Germany.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011: 14th International Conference on Theory
and Practice of Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 53–70, Taormina, Italy, March 6–9, 2011. Springer Berlin Heidelberg,
Germany.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Sci-
ence, pages 678–697, Santa Barbara, CA, USA, August 16–20, 2015. Springer Berlin
Heidelberg, Germany.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and cp-abe from evasive lattice assump-
tions. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 217–241. Springer, 2022.

[WW24] Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from
witness encryption. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024:
22nd Theory of Cryptography Conference, Part III, volume 15366 of Lecture Notes in
Computer Science, pages 65–90, Milan, Italy, December 2–6, 2024. Springer, Cham,
Switzerland.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pages 600–611, 2017.

36

	Introduction
	Technical Overview
	Preliminaries
	Statistically Binding Commitments
	Non-Interactive Zero-Knowledge Proofs
	Witness Encryption
	Mixed Functional Encryption

	Delegatable Attribute-Based Encryption
	DABE with Bounded Delegations from Witness Encryption
	Security Analysis
	Bootstrapping to Unbounded Delegations

