
Low Communication Threshold FHE
from Standard (Module-)LWE

Hiroki Okada1,2 and Tsuyoshi Takagi2

1 KDDI Research, Inc., Japan
2 The University of Tokyo, Japan

March 4, 2025

Abstract. Threshold fully homomorphic encryption (ThFHE) is an
extension of FHE that can be applied to multiparty computation
(MPC) with low round complexity. Recently, Passelègue and Stehlé
(Asiacrypt 2024) presented a simulation-secure ThFHE scheme with
polynomially small decryption shares from “yet another” learning with
errors assumption (LWE), in which the norm of the secret key is leaked
to the adversary. While “yet another” LWE is reduced from standard
LWE, its module variant, “yet another” module-LWE (MLWE), lacks a
known reduction from standard MLWE. Because of this, it is left as an
open question to extend their scheme to the MLWE-based construction.

In this paper, we address this open problem: we propose a simulation-
secure ThFHE scheme with polynomially small decryption shares whose
security is (directly) reduced from standard LWE/MLWE. Our core
technique, which we call “noise padding”, eliminates the need of “yet
another” assumptions: we distribute shares of a small error and use them
to adjust the distribution of decryption noise so that no information
about the secret key is leaked. As side benefits of our construction,
our ThFHE efficiently realizes arbitrary T -out-of-N threshold decryption
via simple Shamir secret sharing instead of {0, 1}-linear secret sharing.
Furthermore, the sizes of keys, ciphertexts and decryption shares in
our scheme are constant w.r.t. the number of parties N ; we achieve
compactness w.r.t. N .

1 Introduction

Fully homomorphic encryption (FHE) was first realized by Gentry [Gen09]
based on ideal lattices. Constructions based on the learning with errors (LWE)
problem [Reg09], and its variants ring-LWE (RLWE) [LPR10] or module-LWE
(MLWE) [BGV12] are efficient, leading to active research in this field [CKKS17;
CGGI20]. Threshold FHE (ThFHE) is an extension of FHE in which ciphertexts
can be decrypted by collecting partial decryption shares from T out of N parties,
where N is the number of parties and T (≤ N) is a threshold. In 2023, the US
agency NIST initiated a project to establish guidelines and recommendations
for implementing threshold cryptosystems including ThFHE [BP23]. ThFHE
is an important cryptographic tool that can be applied to construct round

2 H. Okada and T. Takagi

optimal MPC protocols [GGHR14; GLS15; BJMS20] and universal thresh-
oldizer [BGG+18], which can be used to add threshold functionality to many
cryptosystems, such as CCA-secure PKE, signature schemes, pseudorandom
functions (PRF) and functional encryptions.

ThFHE was first constructed by Asharov et al. [AJL+12], and their re-
sults have been extended to ThFHE with arbitrary T -out-of-N decryption by
Boneh et al. [BGG+18]. A notable drawback of these schemes is that they require
(M)LWE with a superpolynomially large modulus to prove security, leading
to superpolynomially long keys, ciphertexts and decryption shares. To address
this drawback, Boudgoust and Scholl [BS23] proposed a ThFHE scheme based
on (M)LWE with a polynomial modulus q, providing a game-based security.
However, Passelègue and Stehlé [PS25] recently noted a flaw in the security
proof of [BS23]. In response to this attack, Boudgoust and Scholl updated
their construction in the full version [BS24], and now their scheme achieves
only selective IND-CPA security, where the adversary is allowed to query the
encryption (and homomorphic evaluation) oracle only before receiving challenge
ciphertexts and partial decryption shares.

In addition to the cryptanalysis, Passelègue and Stehlé [PS25] proposed a
simulation-secure ThFHE scheme with polynomially short decryption shares,
realizing threshold decryption with a small communication size. Although this
scheme still requires LWE with a superpolynomially large modulus and the
ciphertexts are superpolynomially long, the communication size of sending long
FHE ciphertexts can be reduced by transciphering [NLV11; BCK+23], although
this requires homomorphic evaluation of the decryption circuit of symmetric
key encryption (SKE) such as AES or FHE-friendly SKEs [ARS+15; DEG+18;
HKL+22]. Hence, we can achieve threshold FHE with small input/output
communications.

One notable drawback of the ThFHE scheme of [PS25] is that it cannot
be extended to the construction from MLWE (or RLWE). Thus, it cannot be
applied to most instantiations of FHE, including [CKKS17; CGGI20]. This is
because ThFHE of [PS25] relies on “yet another” variant of LWE called yaLWE,
where the norm of the secret vector of LWE is given to the adversary. Since a
(non-tight) reduction from (standard) LWE to yaLWE is proven by Micciancio
and Suhl [MS23], ThFHE of [PS25] can be based on LWE. To extend their
scheme into an MLWE-based construction, “yet another” variants of MLWE is
required. However, no reduction from standard assumption such as MLWE to the
required assumption is known. Hence, Passelègue and Stehlé posed the following
as a challenging open question:

Question 1.1. Can we construct (simulation-secure) Threshold FHE with poly-
nomially short decryption shares from MLWE (or RLWE)?

Another drawback in ThFHE of [PS25] and prior works [BS23] and [BGG+18,
Constr. 5.6] is that the size of the secret key shares is large, e.g., O(N4.2) or
O(
(
N
T

)
) to achieve arbitrary T -out-of-N threshold decryption. This is because

their construction relies on {0, 1}-linear secret sharing scheme (LSSS). A simple
and efficient method for achieving arbitrary threshold decryption is Shamir secret

Low Communication Threshold FHE from Standard (Module-)LWE 3

Table 1. Summary of our contributions: “ ” = satisfied; “G#” = satisfied at high cost;
“-” = not satisfied

Efficiency Security

q = poly Compact Shamir Simulation Module- Discrete
Enc Dec w.r.t. N Sharing Security LWE

[BGG+18] - - G#1 G#2
[BS23] - - -3
[PS25] -4 - - - -

Ours -4
1 [BGG+18, Constr. 8.35] is based on universal thresholdizer, which itself needs (non-

compact) ThFHE and NIZK.
2 [BGG+18, Constr. 5.11] requires q to be super-exponential (q = ω((N !)3)).
3 Only achieves selective IND-CPA [BS24], because of the attack of [PS25].
4 Communication size of sending (superpolynomially) long FHE ciphertexts can be

reduced (to polynomially short size) by transciphering [NLV11; BCK+23].

sharing, as in [BGG+18, Constr. 5.11]. However, the construction requires super-
exponentially large modulus, e.g., ω((N !)3) because the Lagrange coefficients
blows up the noise; the sizes of ciphertexts and decryption shares greatly increase.
Hence, as noted in [PS25], the following open question remains:

Question 1.2. Can we construct Threshold FHE with polynomially short de-
cryption shares from Shamir secret sharing (in stead of {0, 1}-LSSS)?

1.1 Our Contributions

In this paper, we address both Question 1.1 and Question 1.2 at the same time:
we propose a simulation-secure Threshold FHE scheme with polynomially short
decryption shares from standard LWE/MLWE with Shamir secret sharing by
modifying ThFHE of [PS25]. Our core technique is what we call noise padding,
which adds a small noise ζ whose (scaled) standard deviation is

√
Bpub − ‖s‖

and adjusts the standard deviation of the noise in LWE ciphertexts to be a
public value composed of Bpub; we thereby prevent the leakage of ‖s‖. With this
technique, we construct ThFHE without yaLWE and prove its security directly
from standard LWE. Furthermore, we also construct a ThFHE scheme from
MLWE, by naturally extending our LWE-based ThFHE scheme.

As a side benefit of our construction, our ThFHE scheme becomes compact
(= O(1)) w.r.t. N ; the sizes of ciphertexts and decryption shares do not increase
depending on N . Although a compact ThFHE scheme was already proposed in
[BGG+18, Constr. 8.35], it utilizes a heavy cryptographic tool called an universal
thresholdizer, which requires (non-compact) ThFHE and NIZK. In contrast, we
construct a compact ThFHE scheme directly from (M)LWE.

Furthermore, as a minor contribution, we construct ThFHE solely with
discrete values, while [PS25] requires (flooding) noise to be sampled from

4 H. Okada and T. Takagi

continuous Gaussian distribution. When we implement continuous values, we
need to approximate them with, e.g., floating-point numbers. However, it needs
to be formally proved that the rounding errors incurred by the approximation
do not affect the security and correctness. In contrast, we use discrete Gaus-
sian (flooding) noise instead of the continuous Gaussian and formally analyze
correctness and security.

In Table 1, we provide a brief summary of our contributions mentioned above.

1.2 Organization

The remainder of this paper is organized as follows: In Section 2, we provide
technical overview of our scheme. In Section 3, we describe necessary definitions
and lemmas. Then, we present our LWE-based threshold FHE scheme in Sec-
tion 4. Finally, we show in Section 5 that our scheme can (naturally) be extended
to an MLWE-based threshold FHE scheme.

2 Technical Overview

We first recall the ThFHE schemes of [AJL+12; BGG+18], which are constructed
(solely) with a superpolynomially large modulus in Section 2.1. Then, in Sec-
tion 2.2, we describe the prior work [PS25], which achieves a polynomially small
modulus for the decryption share, and we explain why their scheme needs “yet
another” variant of LWE. Finally, in Section 2.3, we provide a technical overview
of our ThFHE scheme, which can be (directly) based on standard LWE/MLWE.

2.1 Threshold FHE with Noise Flooding [AJL+12; BGG+18]

We first recall the threshold decryption procedure of the ThFHE schemes of
[AJL+12; BGG+18]. For simplicity, we assume the underlying FHE is based on
LWE. Let the public key be pk := (A,b = As+e), where A← U(Zm×n

Q), s ∈ Zn
Q

is a secret key, e ∈ Zm
Q is a (short) secret error, and Q is a modulus. We assume

that ciphertexts, after some homomorphic evaluation, are in the following form:

cteval := (a ∼ U(Zn
Q), b := aᵀs+ eeval + b q2c · µ mod Q), (1)

where eeval is a (small) noise, µ ∈ {0, 1} is the plaintext. For simplicity, we now
only consider N -out-of-N threshold decryption with additive secret sharing: each
party P1, . . . , PN holds a secret key share s1, . . . , sN such that

∑N
i=1 si = s. Given

ct, each party computes a partial decryption share as follows;

pdi ← PartDec(ct, si) := aᵀsi + ei, (2)

and broadcasts pdi to all parties. Given {pdi}i∈[N], each party computes

µ := FinDec(ct, {pdi}i∈[N]) := b(b−
∑

i∈[N]pdi)/b
q
2ce

= µ+ b(eeval +
∑

i∈[N]ei)/b
q
2ce

Low Communication Threshold FHE from Standard (Module-)LWE 5

and then correctly recovers µ if the parameters are selected so that the error
term e := eeval +

∑N
i=1ei satisfies |e| < b q4c (with overwhelming probability).

Notably, each parties can also recover the error term by calculating

e := b−
∑

i∈[N]pdi − b
q
2c · µ = eeval +

∑
i∈[N]ei. (3)

The error term eeval of the ciphertext after homomorphic evaluations may
strongly depend on the input plaintexts: For example, in the CKKS FHE
scheme [CHK+18], the error term of the multiplication of two ciphertexts
encrypting µ0, µ1 with error terms e0, e1, is as follows:

eeval = µ0e1 + µ1e0 + e′.

More simply, even without homomorphic evaluation, the ciphertext noise con-
tains secret information; e.g., the ciphertext noise of Regev PKE [Reg09] has the
form of eeval = rᵀe, where r is a short vector and e is the secret error vector of
the LWE public key pk := (A,b = As+ e).

This leak of the error eeval in the ciphertext is not problematic in single-key
FHE (or PKE) since the decryption is performed only by the party who owns the
secret key s (and e) and is allowed to recover plaintexts. However, it is obviously
problematic in threshold FHE since the decryption is executed by parties who
are only permitted to have the share of the secret key si and the input and result
plaintexts (excluding the input plaintexts of other parties).

Hence, we need to hide undesirable information in eeval for security.
Asharov et al. [AJL+12, Lemma 2.1] presented a simple method to “smudge out”
any information in eeval, known as “noise flooding”, by adding superpolynomially
large noise to the partial decryption share. We rewrite Eq. (2) as

pdi ← PartDec(ct, si) := aᵀsi + Ei, where |Ei| = nω(1) ·Beval,

and we assume |eeval| < Beval. Then, the error term in the ciphertext is

e = eeval +
∑

i∈[N]Ei ≈s

∑
i∈[N]Ei,

which information-theoretically hides (=smudges out) eeval. A notable drawback
is that we need a superpolynomially large modulus Q to satisfy correctness.

2.2 Prior Work: Flood-and-Round Threshold FHE [PS25]

Passelègue and Stehlé [PS25] also use noise flooding and smudge out the noise
eeval to prevent the leakage of information. Thus, their ThFHE scheme also
requires a superpolynomially large modulus Q for the ciphertexts. However,
they switch the modulus Q to a polynomially small modulus q by rounding the
ciphertexts, thereby obtaining small decryption shares. This flood-and-round3

3 Passelègue and Stehlé [PS25] call their scheme “double-flood-and-round”, as they
note that one more rounding can be performed on the partial decryption shares.
However, they also mention that they do not use this for security. Thus, we call this
method “flood-and-round”.

6 H. Okada and T. Takagi

procedure, denoted by ServerDec, takes a superpolynomially long ciphertext after
homomorphic evaluation cteval as input and outputs a ciphertext that has been
sanitized (by noise flooding) and rounded polynomially short ciphertext ctdec:

ServerDec(cteval ∈ Zn+1
Q)→ ctdec ∈ Zn+1

q .

ServerDec is executed by a special party called Server, who is untrusted (semi-
honest) but assumed not to be corrupted by the adversary. The threshold
decryption procedure is performed only on ctdec, the output of ServerDec; this
explains why it is called Server“Dec”: it is a part of the decryption process.

We next describe the details of ServerDec. On the input cteval := (a, b)
(defined as in Eq. (1)), it generates ctflood := cteval + (0,E), where E is a
superpolynomially large (Gaussian) flooding noise. Then, by the smudging
lemma for Gaussian [PS25, Lemma 2.1] (Lemma 3.15), we obtain

ctflood := (a,aᵀs+ eeval + E+ bQ2 c · µ)
≈s ct

′
flood := (a,aᵀs+ E+ bQ2 c · µ).

Next, the ciphertext with a large modulus Q, constructed as Q = p · q for
p = Ω(2κ) and q = poly(κ), is rounded to one with small modulus q;

ctdec :=

(⌊
1

p
· a
⌉
σ0

,

⌊
1

p
· (aᵀs+ E+ bQ2 c · µ)

⌉
σ1

)
:= (a, b),

where b·eσ denotes a randomized Gaussian rounding (Definition 3.16) and σ0

and σ1 are public parameters. Then, we have

ctdec = (a, b = aᵀs+ e+ b q2c · µ mod q), (4)

where e =

⌊
1

p
· (−rᵀs+ E)

⌉
σ1

≈s DZ,σdec
, σdec :=

√
σ2
0‖s‖2 + σ2

1 ,

and r := a − p · a is a rounding error. Thus, the error term e depends on the
norm of the secret key s. Because of this, [PS25] relies on “yet another” variant
of LWE, i.e., the known-norm LWE proposed in [MS23]. Although known-norm
LWE is reduced from standard LWE, its ring variant, known-covariance ring-
LWE, has no reduction from standard assumptions such as RLWE. Thus, it is
an open question to extend the scheme of [PS25] to the ring or module setting.

2.3 Our Solution: “Noise Padding” and Masking

We modify the ServerDec procedure of [PS25] to prevent the leakage of ‖s‖. Our
core technique is what we call “noise padding”, and we construct it with the aid
of the “zero share masking” technique proposed by [PKM+24a].

Low Communication Threshold FHE from Standard (Module-)LWE 7

m1,1 m1,2 m1,3 m1,4 m1,5 mrow
1

m2,1 m2,2 m2,3 m2,4 m2,5 mrow
2

m3,1 m3,2 m3,3 m3,4 m3,5 mrow
3

m4,1 m4,2 m4,3 m4,4 m4,5 mrow
4

m5,1 m5,2 m5,3 m5,4 m5,5 mrow
5

mcol
1 mcol

2 mcol
3 mcol

4 mcol
5 mall

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

=

=

=

=

=

=

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

= = = = = =

Fig. 1. Relationships between mi,j = PRF(seedi,j), mrow
i :=

∑
j∈act mi,j , mcol

i :=∑
j∈act mj,i, and mall :=

∑
i∈act,j∈act mj,i, where we drop the subscript act = {1, . . . , 5}.

An adversary corrupting the user set corr = {1, . . . , 3} learns the masks {mi,j}min(i,j)≤3

and {mrow
i ,mcol

i }i∈corr (highlighted in red). Note that we let both mrow
i and mcol

i be private,
while [PKM+24a] let the row-sum masks mrow

i be public.

Concept. Let ctdec := (a, b) be the output of ServerDec(ct) as in Eq. (4). Our
goal is to add a small error ζ to ctdec to adjust the distribution of the error term:

ct′dec := (a, b
′
:= b+ ζ) = (a,aᵀs+ e+ ζ + b q2c · µ), (5)

where ζ ∼ DZ,σpadding
, σpadding :=

√
σ2
0(B

2
pub − ‖s‖2) + σ2

1 ,

e+ ζ ≈s DZ,σpub
, σpub :=

√
σ2
0B

2
pub + σ2

1 , (6)

for some public constant Bpub > ‖s‖ (for any s). Then, the error term (e+ ζ) of
ct′dec does not contain any information about ‖s‖: We can construct a ThFHE
scheme (directly) from standard LWE.

Masking with zero share [PKM+24a]. Since ζ contains information about ‖s‖,
it cannot directly be sent to the untrusted (semi-honest) Server or any parties.
Hence, we perform secret sharing on ζ, as with the secret key s: Share(ζ) →
{ζ1, . . . , ζN}. Here, we now describe with N -out-of-N additive secret-sharing for
simplicity, although we support arbitrary T -out-of-N secret-sharing.

Furthermore, we use the masking technique of [PKM+24a] to mask {ζi} to
hide ζ from the untrusted Server. For (i, j) ∈ [N] × [N] let seedi,j ← {0, 1}κ.
Each party Pi is given seedseti := {seedi,j , seedj,i}j∈[N]. Then, the parties can
have “pairwise shared” mask value mi,j := PRF(seedi,j , sid) generated with a
pseudorandom function PRF, where sid is a session ID of the threshold decryption
sessions. See Fig. 1 for more details of the shared masks. We now assume that
all parties attend partial decryption protocol (i.e., let the set of active parties
act = [N]). Using this mask, each party calculates the masked share of ζ;

maskerri := ζi +mrow
i ,

8 H. Okada and T. Takagi

and sends it to the Server. Given {maskerri}i∈[N], the Server calculates∑
i∈[N]maskerri =

∑
i∈[N]ζi +

∑
i∈[N]m

row
i = ζ +mall

and adds it to ctdec in Eq. (4), then outputs:

ct′dec := (a, b
′
:= b+

∑
i∈[N]maskerri) = (a,aᵀs+ e+ ζ + b q2c · µ+mall). (7)

This is almost identical to Eq. (5), except that the mask mall is added.
Note that Server is untrusted (semi-honest) but assumed not to be corrupted

by the adversary (among the parties), as with the prior work [PS25]. Hence, any
mi,j , mrow

i and mall are pseudorandom to the Server, and thus, no information
about ζ is revealed to the Server.

Masked partial decryption. To decrypt ct′dec in Eq. (7), each party Pi calculates
a partial decryption as follows:

pdi ← PartDec(ct′dec, si) := aᵀsi +mcol
i (8)

Recall that only the party Pi knows mcol
i (under the pseudorandomness assump-

tion for PRF), as can be seen from Fig. 1. Thus, pdi is essentially pseudorandom
to the adversary, which is the idea behind our security proof. Given all decryption
shares {pdi}i∈[N], the parties can calculate∑

i∈[N]pdi =
∑

i∈[N](a
ᵀsi +mcol

i) = aᵀs+mall,

since mall =
∑

i∈[N]m
col
i =

∑
i∈[N]m

row
i holds by construction. Thus, parties can

decrypt as follows:

FinDec(ct′dec, {pdi}i∈[N]) := µ := b(b′−
∑

i∈[N]pdi)/b
q
2ce = µ+b(e+ζ)/b q2ce. (9)

Since we select the parameters so that |e + ζ| < b q4c holds (with overwhelming
probability), µ = µ holds. This also means that the error term is revealed:

b
′ −
∑

i∈[N]pdi − b
q
2c · µ = e+ ζ (10)

Importantly, recall that the distribution of e+ ζ contains no information about
the secret key s by our construction:

e+ ζ ≈s DZ,σpub
, σpub :=

√
σ2
0B

2
pub + σ2

1 (same as Eq.(6))

Equivalently, this means that we can simulate e + ζ in the security proof.
Therefore, we can construct our scheme directly from standard LWE, without
relying on the “yet another” variant as in [PS25].

In the following paragraphs, we explain two side benefits of our construction.

Low Communication Threshold FHE from Standard (Module-)LWE 9

Side benefit 1: Compactness w.r.t. N . The error term in the FinDec output of
the prior works [AJL+12; PS25] is in the form of eeval +

∑
i∈[N]ei as in Eq. (3).

Since its standard deviation is O(
√
N) w.r.t. N , the moduli (q and Q) should

also be selected as O(
√
N). Thus, the length of their ciphertexts and public keys

increase depending on N . In contrast, the error term in the FinDec output of our
scheme is e + ζ, whose the standard deviation is independent on N , i.e., O(1)
w.r.t. N . Thus, we achieve compactness. This is because we do not add an error
in the partial decryption share as in Eq. (8); instead, we add “zero share” mask
mcol

i , which will be canceled out to zero during FinDec, as in Eq. (9).

Side benefit 2: Shamir-sharing-friendly. The masking technique of [PKM+24a] is
introduced to address the difficulty of handling Lagrange coefficients in lattice-
based threshold signatures. Our construction demonstrates that this technique
can also be applied to overcome the difficulty in threshold (fully homomorphic)
encryption. We first explain the difficulty of handling Lagrange coefficients.
The ThFHE with Shamir sharing of [BGG+18, Constr. 5.11] constructs the
partial decryption in the same form as Eq. (2), and the Lagrange coefficient
λact,i is multiplied when summing the partial decryptions during FinDec;∑

i∈actλact,i · pdi = aᵀsi +
∑

i∈actλact,i · ei mod q,

where act ⊆ [N] is the set of active parties in the decryption session s.t. |act| ≥ T .
However, this requires the modulus q to scale with O(N !2) to ensure that large
Lagrange coefficients relatively small to q. A naive approach to address this
inefficiency is to construct the partial decryption as follows:

pdi ← PartDec(ct, si, act) := λact,i · aᵀsi + ei mod q. (11)

While correctness is satisfied, there is a trivial attack on this construction since
the adversary can choose act to craft the coefficients λact,i, and ei is relatively
small compared to q. Let act ⊆ [N] s.t. λ̂ := λact,i satisfies q = λ̂ · q′ for some
integer q′ < q, and assume |ei| < λ̂ holds (with overwhelming probability). Then,
we have b′i := b pdi

λ̂
c mod q′ = aᵀsi mod q′. By querying a sufficient number of

such b′i, the lower bits of the secret share (si mod q′) can be recovered via simple
linear algebra.

This type of attack is not possible in our scheme. In our scheme, the partial
decryption share for T -out-of-N threshold decryption is defined as follows:

pdi ← PartDec(ctdec, si, act) := λact,i · aᵀsi +mcol
act,i mod q.

In contrast to Eq. (11), the mask value of mcol
act,i of any uncorrupted party Pi

is essentially pseudorandom over Zq, except that
∑

i∈actm
col
act,i =

∑
i∈actm

row
act,i =

mall holds by construction (see Fig. 1) and mall is included in the ciphertext as
described in Eq. (7). This condition is used to simulate the partial decryption
in the security proof. We now let |act| = T and corr = act\{h} be the set of the
corrupted parties. Then, using Eq. (10), we can simulate pdh as follows:

pdh ≈s b
′ − b q2c · µ−

∑
i∈corrpdi + eSim, where eSim ← DZ,σpub

(see, Eq.(6)).

10 H. Okada and T. Takagi

Given simulated pdh instead of real one (in the ideal experiment), the adversary
only has information related to {si}i∈corr. Due to the security of secret sharing,
no information about sh (and s) is obtained from {si}i∈corr.

2.4 Future Work

In this work, we present a threshold FHE scheme with polynomially short partial
decryption shares from (LWE or) Module-LWE, addressing the open problem
posed by [PS25]. Furthermore, as side effects of our construction, we achieve
compactness w.r.t. the number of parties N and enable efficient (arbitrary) T -
out-of-N threshold decryption with Shamir secret sharing (see Table 1 for the
summary of our contributions).

A notable open question in our scheme is that we need to bound the number
of partial decryption queries, as in the prior work [BS23]. We need to generate
a number of secret shares of the padding noise ζ that is equal to the decryption
query bound LDec and distribute them to the parties at the setup stage. As a
result, the storage cost for the shares linearly increases w.r.t. LDec. However, it
is important to note that we can choose the value LDec independently of any
other security-related parameters, unlike in [BS23]. Thus, this limitation is not
problematic for use-cases in which the number of decryption queries is small or
the parties can tolerate a large storage cost. Alternatively, this drawback can
be easily removed if we may assume a trusted third party (TTP) and ask TTP
to distribute shares of ζi for every partial decryption session. We leave it as an
open problem to improve our scheme by removing the bound on LDec.

3 Preliminaries

In this section, we provide necessary definitions and lemmas.

3.1 Notation

We denote the base 2 logarithm by log. For N ∈ N, we define [N] := {i ∈ N |
1 ≤ i ≤ N}. The number of elements in a set S is denoted by |S|. We define
Zq := Z/qZ and Rq := R/qR for a modulus q ∈ N. Unless otherwise specified,
we treat κ as a security parameter. We write negl(κ) = κ−ω(1) for the set of
negligible functions and poly(κ) = κO(1) for the set of polynomial functions. We
call 1− negl(κ) overwhelming functions.

We use bold lower-case letters for vectors and bold upper-case letters for
matrices. The transpose of x is written as xᵀ. We denote the l2-norm and l∞-
norm of x by ‖x‖ and ‖x‖∞, respectively. The identity matrix is denoted by
In ∈ Zn×n. We write Σ � 0 if Σ is positive definite. A square root of Σ � 0 is a
nonsingular matrix S such that SSᵀ = Σ, which is written as S =

√
Σ. Note that

(
√
Σ)−1 = S−1 = (S−ᵀ)ᵀ = (

√
Σ−1)ᵀ holds. The largest and smallest singular

values of a matrix S are denoted by σmax(S) and σmin(S), respectively. Similarly,
the largest and smallest eigenvalues are denoted by λmax(S) and λmin(S). We

Low Communication Threshold FHE from Standard (Module-)LWE 11

denote by ‖S‖ the matrix norm of S induced by the l2-norm. Let ‖S‖len =
maxi∈[n] ‖si‖, where si is the i-th column vector of S; then, we have:

Fact 3.1. ‖S‖len ≤ ‖S‖ and ‖S1S2‖len ≤ ‖S1‖‖S2‖len ≤ ‖S1‖‖S2‖.

3.2 Statistics

We denote the uniform distribution over a set S by U(S). For any distributions
χ1 and χ2, we denote by χ1+χ2 the distribution {X1+X2 | X1 ← χ1 and X2 ←
χ2 are mutually independent}. We denote X1 ≈ X2 if X1 and X2 are identically
distributed. We provide other necessary definitions as follows:

Definition 3.2. The statistical distance between χ1 and χ2 is defined as
∆(χ1, χ2) :=

1
2

∑
x∈Ω |fχ1

(x) − fχ2
(x)|, where fχ1

(x) and fχ2
(x) are the proba-

bility functions of χ1 and χ2, respectively, and Ω := Supp(χ1) ∪ Supp(χ2).

Definition 3.3 (≈s). The distributions χ1 and χ2 are statistically indistinguish-
able and are denoted as χ1 ≈s χ2 if we have ∆(χ1, χ2) = negl(κ).

Definition 3.4 (≈c). The distributions χ1 and χ2 over the set Ω are com-
putationally indistinguishable and are denoted as χ1 ≈c χ2 if |Pr[A(χ1) =
1]− Pr[A(χ2) = 1]| = negl(κ) holds for any PPT algorithm A : Ω → {0, 1}.

Definition 3.5 (B-bounded distribution). For B > 0, we say a distribution
χ over R is B-bounded if PrX←χ[|X| ≥ B] = negl(n)

3.3 Lattices

A lattice L is the set of all integer linear combinations of linearly independent
vectors b1, . . . ,bn ∈ Rm, i.e., L = {

∑n
i=1zibi | z ∈ Zn}. The rank of this lattice

is n and its dimension is m. If n = m, then the lattice is called full rank. If
we arrange the vectors bi as the columns of a matrix B ∈ Rm×n, then we can
write L := L(B) = {Bz | z ∈ Zn} = B · Zn. For arbitrary c ∈ Rm, a coset of
lattice L is defined as A := L + c := {v + c | v ∈ L}. The dual of a lattice
L is L̂ := {x | ∀y ∈ L, 〈x,y〉 ∈ Z}. For the n-rank lattice L and i ∈ [n],
the successive minimum λ̃i(L) is defined as the radius of the smallest ball that
contains i linearly independent vectors in L.

3.4 Gaussians

For a rank-n matrix S ∈ Rn×m, the Gaussian function on Rn with the (scaled)
covariance matrix Σ = SSᵀ ∈ Rn×n and a center c ∈ Rn is defined as follows:

ρS,c(x) := exp(−π(x− c)ᵀ(SSᵀ)−1(x− c)).

Since the function ρS,c(x) is determined exactly by Σ (and c), we have ρS,c =
ρ√Σ,c. When S = sIn, we write ρS,c as ρs,c. For any set A ⊆ Rn, we define
ρS,c(A) :=

∑
x∈A ρS,c(x). The subscript is c = 0 when omitted.

We define the discrete Gaussian distribution over the lattice L as follows:

12 H. Okada and T. Takagi

Definition 3.6 (Discrete Gaussian). For a full column-rank matrix S, the
discrete Gaussian distribution over a lattice L with a center c is defined as
∀x ∈ L, DL,S,c(x) = ρS,c(x)/ρS,c(L). In particular, when SSᵀ = s2In for some
s > 0, we write DL,S,c as DL,s,c and call it as the spherical discrete Gaussian
distribution. The subscript is c = 0 when omitted.

The smoothing parameter of L is defined as ηε(L) = min{s | ρ1/s(L̂) ≤ 1+ ε}
for ε > 0. Unless otherwise specified, we set ε = negl(κ). An upper-bound of
ηε(L) is obtained with the successive minimum4 λ̃n(L):

Lemma 3.7 ([MR07, Lemma 3.3]). Define η+ε (Zn) :=
√
ln(2n(1 + 1/ε))/π.

For any rank-n lattice L and any ε > 0, we have ηε(L) ≤ λ̃n(L) · η+ε (Zn).
In particular, ηε(Zn) ≤ η+ε (Zn) holds; for any ω(

√
log n) function, there is

ε = negl(κ) s.t ηε(Zn) ≤ ω(
√
log n).

The smoothing parameter is extended to matrices as follows:

Definition 3.8 ([Pei10, Definition 2.3]). Let Σ � 0 be any positive definite
matrix. For any lattice L, we say that

√
Σ ≥ ηε(L) if 1 ≥ ηε(

√
Σ
−1L).

We obtain a sufficient condition for showing
√
Σ ≥ ηε(L) as follows5:

Fact 3.9. For any full-rank lattice L(B)(= BZn) and Σ � 0, we have
√
Σ ≥

ηε(L) if σmin(
√
Σ) ≥ ‖B‖lenη+ε (Zn).

Proof. By Fact 3.1, Lemma 3.7 and the hypothesis, we have ηε(
√
Σ
−1L) ≤

λ̃n(
√
Σ
−1L)η+ε (Zn) ≤ ‖

√
Σ
−1

B‖lenη+ε (Zn) ≤ ‖
√
Σ
−1‖‖B‖lenη+ε (Zn) ≤ 1.

The linear sum of discrete Gaussians is close to a discrete Gaussian:

Lemma 3.10 ([MP13, Theorem 3.3]). Let L be an n-dimensional lattice,
ε = negl(λ), z 6= 0 ∈ Zm, si ≥

√
2‖z‖∞ηε(L), Ai := L+ ci be arbitrary cosets of

L, and yi ← DAi,si for i ∈ [m]. Then, we have y :=
∑m

i=1 ziyi ≈s DY,s, where
Y = gcd(z)L+

∑m
i=1 zici, and s =

√∑m
i=1(zisi)

2.
In particular, if gcd(z) = 1 and

∑m
i=1 zici ∈ L, then y ≈s DL,s.

More generally, the sum of two ellipsoid discrete Gaussians is statistically
close to an ellipsoid discrete Gaussian:

Lemma 3.11 ([GMPW20, Thm. 3]). Let ε = negl(κ). Let A1 and A2 be
cosets of full-rank lattices L1 and L2, respectively. Let Σ1,Σ2 � 0 be positive
definite matrices and define Σ3 := (Σ−11 +Σ−12)−1. Let X := {(x1,x2) | x1 ←
DA1,

√
Σ1

,x2 ← x1 + DA2−x1,
√
Σ2
}. If

√
Σ2 ≥ ηε(L2) and

√
Σ3 ≥ ηε(L1) hold,

The marginal distribution of x2 in X is statistically close to DL2,
√
Σ1+Σ2

.

4 Although [GPV08, Lemma 3.1] provides a sharper bound with the Gram–Schmidt
minimum, we use Lemma 3.7 for ease of analysis.

5 Although sharper bounds can be obtained by the successive minimum λ̃n or Gram–
Schmidt minimum, we rely on ‖·‖len for ease of analysis.

Low Communication Threshold FHE from Standard (Module-)LWE 13

In particular, when A1 ⊆ A2, we can simplify the above lemma:

Corollary 3.12. Let ε = negl(κ). Let Σ1,Σ2 � 0 be positive definite matrices
and define Σ3 := (Σ−11 +Σ−12)−1. Let A1 and A2 be cosets of full-rank lattices
L1 and L2 such that A1 ⊆ A2. If

√
Σ2 ≥ ηε(L2) and

√
Σ3 ≥ ηε(L1) hold, we

have DA1,
√
Σ1

+DA2,
√
Σ2
≈s DA2,

√
Σ1+Σ2

.

The linear transformation of a discrete Gaussian is analyzed as follows:

Lemma 3.13 ([GMPW20, Lemma 1]). For any lattice coset A = L+c ⊆ Rn

and matrices S,T representing linear functions where T is injective on A, we
have T·DA,S = DT·A,TS. In particular, for any s, t > 0, we have t·DZ,s = DtZ,ts.

The tail bound of discrete Gaussian can be obtained as follows:

Lemma 3.14. For any ε ∈ (0, 1), s ≥ η+ε (Z) and t ∈ N, we have Prx←DZ,s [|x| ≥
t] ≤ s

(1−ε)πte
−πt2/s2 . In particular, for any t = s·Ω(

√
κ), we have Prx←DZ,s [|x| ≥

t] = negl(κ), i.e., DZ,s is s ·Ω(
√
κ)-bounded (Definition 3.5).

Proof. We have ρs(Z) ∈ (1± ε)s by [Reg09, Claim 3.8]. Hence, we obtain

Prx←DZ,s [|x| ≥ t] = 2Prx←DZ,s [x ≥ t] = 2
∑∞

y=tρs(y)/
∑

y∈Zρs(y)

≤ 2
1−ε
∑∞

y=t
1
se
−πy2/s2 ≤ 2

(1−ε)t
∑∞

y=t
y
s e
−πy2/s2 ≤ 2

(1−ε)t
∫∞
t

y
s e
−πy2/s2dy

Passelègue and Stehlé [PS25] show the smudging lemma for Gaussian:

Lemma 3.15 ([PS25, Lemma 2.1]). Let σ > 0 and c0, c1 ∈ Z. Then:

∆(DZ,σ,c0 , DZ,σ,c1) ≤ O

(
|c0 − c1|

σ

)
In particular, for κ > 0, c ∈ Z and σ = Ω(c2κ), we have ∆(DZ,σ, DZ,σ,c) < 2−κ.

Finally, we define the randomized Gaussian rounding operation:

Definition 3.16 (b·eσ). For any n ∈ N, c ∈ Rn and σ > 0, bceσ denotes the
randomized Gaussian rounding that returns y← DZn,σ,c.

3.5 Learning with Errors (LWE)

The LWE distribution and the LWE problem are defined as follows:

Definition 3.17 (LWE). Let n,m, q be integers and χ be an error dis-
tribution over Zq. The LWE distribution is defined as LWE(n,m, q, χ) :={
(A,b := As+ e) | A← U(Zm×n

q), s← χn, e← χm
}
. The advantage of an al-

gorithm A for solving d-LWE is defined as

Advd-LWE
A = |Pr[A(A,As+ e) = 1]− Pr[A(A,u← U(Zn

q)) = 1]|.

We say that d-LWE is hard if Advd-LWE
A = negl(n) for any PPT algorithm A.

14 H. Okada and T. Takagi

3.6 Shamir Secret Sharing

We describe a construction of Shamir secret sharing [Sha79] as follows:

Construction 3.18. (T,N)-Shamir secret sharing for a finite field K is a tuple
of PPT algorithms ShamirK,T,N := (Share,Recon) defined as follows:

• Share(s ∈ K): Choose a degree T − 1 polynomial P ∈ K[X] that satisfies
P (0) = s and outputs (s1, . . . , sN) = (P (1), . . . , P (N)) ∈ KN .

• Recon({si}i∈S⊆[N]): Outputs s =
∑

i∈S λS,isi, where λS,i =
∏

j∈S\{i}

(
−j
i−j

)
.

ShamirK,T,N satisfies correctness and privacy:

• Correctness: For all S ⊆ [N] s.t. |S| ≥ T , s ∈ K, (s1, . . . , sN) ←
ShamirK,T,N .Share(s), we have ShamirK,T,N .Combine({si}i∈S) = s.

• Privacy: For all S ⊆ [N] s.t. |S| < T , s(0), s(1) ∈ K, (s
(b)
1 , . . . , s

(b)
N) ←

ShamirK,T,N .Share(s(b)) for b ∈ {0, 1}, we have {s(0)i }i∈S ≈ {s
(1)
i }i∈S.

The above Shamir secret sharing scheme naturally extends to secrets in vector
form, by performing the algorithm in an elementwise manner.

4 Our Threshold FHE Scheme from LWE

In this section, we present our threshold FHE scheme, which can be (directly)
constructed from (standard) LWE without using “yet another” variant of LWE
as in [PS25].

We first define the structure of underlying FHE scheme in Section 4.1. Then,
we describe our construction in Section 4.2. In Section 4.3, we analyze the noise
distribution of the output ciphertext ctdec of ServerDec to provide Lemma 4.3.
Then, relying on the lemma, we prove the correctness and security of our scheme
in Section 4.4 and Section 4.5, respectively.

4.1 Structure of the Underlying FHE Scheme

We specify in Algo. 1 a high-level structure for the underlying FHE scheme based
on LWE, which is identical to that of [PS25]. We also define the syntax of FHE
as follows:

Definition 4.1 (FHE). A fully homomorphic encryption (FHE) scheme
FHE = (PP,KeyGen,Enc,Dec,Eval) for a plaintext spaceM is defined as follows.

• FHE.PP(1κ)→ pp: On input a security parameter κ, outputs a set of public
parameters pp. The following algorithms implicitly take pp as an argument.

• FHE.KeyGen(pp)→ (evk, pk, sk): Outputs a public evaluation key evk, a public
key pk and a secret key sk.

• FHE.Enc(pk,m ∈M), FHE.Dec(sk, ct): Have the usual syntax for public-key
encryption/decryption.

Low Communication Threshold FHE from Standard (Module-)LWE 15

Algorithm 1: Underlying FHE := (PP,KeyGen,Setup,Enc,Dec)

PP(1κ, 1N)→ pp:
1 return pp := (n,m,Q, χlwe, Beval)

KeyGen():
2 sk := s← χn

lwe, pk := (A,b := As+ e) ∼ LWE(n,m,Q, χlwe)
3 Generate the evaluation key evk . We omit the details of evk
4 return (evk, pk, sk)

Enc(pk, µ ∈M := R2):
5 r← χm

lwe, f ← χn
lwe, f ← χlwe

6 return ct := (a, b) := (rᵀA+ f , rᵀb+ f + bQ
2
c · µ)

Note: PP outputs pp s.t. the noise in the ciphertext ect := b− aᵀs− bQ
2
c · µ

satisfies |ect| < Beval with overwhelming probability
Eval(evk, C, ct1, . . . , ctl):

7 return ct := (a, b) s.t. eeval := b− aᵀs− bQ
2
c · C(µ1, . . . , µl) satisfies

|eeval| < Beval for any C, where µ1, . . . , µl are the plaintexts of ct1, . . . , ctl
Dec(sk, ct := (a, b))→ µ ∈M:

8 return µ := b(b− aᵀs)/bQ
2
ce

• FHE.Eval(evk, C, ct1, . . . , ctl) = cteval: The homomorphic evaluation algo-
rithm takes the evaluation key evk, a function C :Ml →M, and a set of l
ciphertexts ct1, . . . , ctl of µ1, . . . , µl. It outputs the result ciphertext cteval. FHE
is correct, if Dec(sk, ct) = f(m1, . . . ,ml) holds with overwhelming probability.

We construct our ThFHE scheme in Section 4 on the basis of this underlying
FHE scheme. This framework captures most known FHE schemes, except for
GSW-like [GSW13] schemes. Note that we can also use ring- or module- variants
of this FHE scheme, because we do not require the “known-norm” variant of LWE
for security in contrast to ThFHE construction of [PS25]. We also describe a
variant of the FHE scheme based on module-LWE in Algo. 13 of Appendix C. We
construct our MLWE-based ThFHE in Section 5 upon this underlying MLWE-
based FHE scheme.

4.2 Construction and the Threshold Decryption Procedure

Passelègue and Stehlé [PS25] generalized the definition of threshold functional
encryption with the additional ServerDec algorithm. Since we slightly modify
the definition with our additional MaskErr algorithm, we formally describe the
syntax of our threshold FHE as follows:

Definition 4.2 (Threshold FHE). Let P = {P1, . . . , PN} be a set of parties
and T (≤ N) is a threshold. A threshold FHE scheme is a tuple of PPT algorithms
ThFHE = (PP,KeyGen,Enc,Eval,MaskErr,ServerDec,PartDec,FinDec) with the
following properties:

16 H. Okada and T. Takagi

• ThFHE.PP(1κ) → pp: On input a security parameter κ and a number of
parties N , outputs a set of public parameters pp. The following algorithms
implicitly take pp as argument.

• ThFHE.KeyGen(T,N) → (evk, pk, sk, err, {ski, erri, seedseti}i∈[N]): On input
a threshold T and a number of parties N , outputs a public evaluation key
evk, a public key pk and a secret key sk, a padding error err and thier shares
{ski, erri}i∈[N], as well as sets of the seed values {seedseti}i∈[N].

• ThFHE.Enc(pk,m) → ct and ThFHE.Eval(evk, C, ct1, . . . ctl) → cteval: Same
as FHE.Enc and FHE.Eval in Definition 4.1.

• ThFHE.MaskErr(erri, seedseti, act, sid) → maskerri: On input an error share
erri, a set of seeds seedseti, and a set of active parties act for the decryption
session with ID sid, outputs the masked error share maskerri related to Pi.

• ThFHE.ServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act) → ctdec: On input a cipher-

text ct (or an evaluation result cteval), act, sid and the set of masked error
shares {maskerr

(sid)
i }i∈act, outputs a sanitized ciphertext ctdec.

• ThFHE.PartDec(ctdec, ski, seedseti, act, sid)→ pdi: On input a ciphertext ctdec
outputted by ServerDec, a secret key share ski, seedseti, act and sid, outputs
a partial decryption share pdi related to the party Pi.

• ThFHE.FinDec({pdi}i∈act) → m: On input a set of partial decryption share
{pdi}i∈act, outputs a decryption result m ∈ {0, 1} if |act| ≥ T and ⊥
otherwise.

We present our construction of ThFHE in Algo. 2. We assume the deter-
ministic function PRF : {0, 1}κ × [LDec] → Zq is pseudorandom function (see
Definition A.1 in Appendix A). Our threshold decryption procedure is described
in the following.

Setting. As in prior works [AJL+12; BGG+18], we assume all parties are semi-
honest, i.e., they follow the protocol but are curious about secret information.
In addition, as with [PS25], we assume the existence of a special party called
Server, which is untrusted (semi-honest) but assumed not to be corrupted by the
adversary (among the parties). Note that security against malicious adversaries
can be obtained by a generic transformation aided by NIZK (see, e.g., [AJW11,
Section E]), proving that all outputs are (semi-)honestly generated. Also note
that we assume a trusted key generation process as in [BGG+18, Constr. 5.11].

Input/output. Let a (possibly evaluated) ciphertext ct, given to the Server be
an input of the threshold decryption process. If we apply the threshold decryption
protocol to an MPC, each party Pi sends a ciphertext cti of its own input
plaintext µi to the Server (during the first round). Then, the Server performs
homomorphic evaluation of C to ct1, . . . , ctN . The result ciphertext cteval is used
as an input of the threshold decryption protocol (i.e., an input of the ServerDec).
As an output of threshold decryption, all parties (except for the Server) obtain
the plaintext of cteval.

Low Communication Threshold FHE from Standard (Module-)LWE 17

Algorithm 2: Our threshold FHE from LWE:
ThFHE := (PP,KeyGen,Setup,Enc,MaskErr,ServerDec,PartDec,FinDec)

PP(1κ, 1N):
1 return pp := (T, n,m, p, q,Q = p · q, χlwe, σ0, σ1, σflood, Bpub, Beval, LDec)

KeyGen(T,N):
2 (evk, pk, sk)← FHE.KeyGen() . sk := s← χn

lwe

3 err := ζ := (ζ(1), . . . , ζ(LDec))← D
LDec

Z,σ0

√
B2

pub
−‖s‖2

4 {ski := si, erri := ζi}i∈[N] ← ShamirZq,T,N .Share((sk, err))

5 for (i, j) ∈ [N]× [N] do seedi,j
$← {0, 1}κ

6 for i ∈ [N] do seedseti := {seedi,j , seedj,i}j∈[N]

7 return (evk, pk, sk, err, {ski, erri, seedseti}i∈[N])

Enc(pk, µ ∈M := {0, 1}):
8 return ct← FHE.Enc(pk, µ) (defined in Algo. 1)
Eval(evk, C, ct1, . . . , ctl):

9 return cteval ← FHE.Eval(evk, C, ct1, . . . , ctl) (defined in Algo. 1)
MaskErr(erri, seedseti, act, sid):

10 mrow
act,i :=

∑
j∈act PRF(seedi,j , sid) mod q . Private row-sum mask of Pi

11 return maskerr
(sid)
i := λact,i · ζ(sid)i +mrow

act,i mod q . Masked share of ζ

ServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

12 ctfresh ← Encpk(0), E← DZ,σflood . We use the discrete Gaussian for E
13 ctin := (ctin,0, ctin,1) := ct+ ctfresh + (0,E) mod Q,
14 ctdec,0 :=

⌊
1
p
· ctin,0

⌉
σ0

mod q

15 ctdec,1 :=
⌊

1
p
· ctin,1

⌉
σ1

+
∑

i∈act maskerr
(sid)
i mod q

16 return ctdec := (ctdec,0, ctdec,1) := (a, b)

PartDec(ctdec := (a, b), ski, seedseti, act, sid):
17 mcol

act,i :=
∑

j∈act PRF(seedj,i, sid) mod q . Private column-sum mask of Pi

18 return pdi := λact,i · aᵀsi +mcol
act,i mod q

FinDec(ctdec := (a, b), {pdi}i∈act, act)→ µ ∈M or ⊥:
19 assert {|act| ≥ T}
20 return µ := b(b−

∑
i∈actpdi)/b

q
2
ce

First round. Each party Pi in the active party set act of the distributed
decryption session with the session ID sid, generates its masked error share
maskerr

(sid)
i := λact,i · ζ(sid)i +mrow

act,i ← MaskErr(erri, seedseti, act, sid), where mrow
act,i

is the (secret) row-sum mask of Pi. See Fig. 1 for a graphical explanation of the
relations between mask terms. The parties then send maskerr

(sid)
i to the Server.

Second round. The Server performs ServerDec on the input ciphertext ct of
large modulus Q to sanitize ct with noise flooding and round it to a ciphertext

18 H. Okada and T. Takagi

ctdec with a small modulus q as in [PS25]. In our scheme, the Server further
adds a sum of all given masked error shares {maskerr

(sid)
i }i∈act during the

ServerDec procedure, to adjust the distribution of noise in ctdec so that it leaks
no information about ‖sk‖ in contrast to [PS25]. The Server then broadcasts
ctdec to all parties in act.

Third round. Each party Pi performs PartDec on ctdec := (a, b) and generates
the partial decryption share pdi := λact,i ·aᵀsi+mcol

act,i, where mcol
act,i is the (secret)

column-sum mask of Pi (see Fig. 1). Pi then broadcasts pdi to all parties in act.
Note that all (semi-honest) parties perform PartDec only on the ciphertexts
sent by the Server, and they never send partial decryption shares to the Server.
Additionally, recall that the Server is untrusted (semi-honest) but assumed not
to be corrupted by any parties, as in [PS25]; the Server does not obtain any
partial decryption shares.

At the end of the third round, given all partial decryption shares {pdi}i∈act,
each party Pi performs FinDec to recover the plaintext.

4.3 Noise Analysis

We next analyze the noise distribution of the output ciphertext ctdec of ServerDec.
Although the analysis is essentially identical to the correctness proof of [PS25,
Theorem 5.1], we use a discrete Gaussian for the flooding noise E ← DZ,σflood

,
while [PS25] requires a continuous Gaussian. The following lemma is used to
prove both the correctness and security of our threshold FHE scheme:

Lemma 4.3 (Noise analysis). Let ε := negl(κ), p ∈ N, and let χlwe be a
Blwe-bounded (Definition 3.5) distribution s.t. s ← χn

lwe satisfies gcd(s) = 1
with overwhelming probability. Let σflood ≥

√
2pηε(Z), σ0 ≥

√
2Blweηε(Z), σ1 ≥√

2
p ηε(Z). Define E← DZ,σflood

, u ∈ Zn and r := u− p · b 1pueσ0 . Then, we have

e := b 1p (r · s+ E)eσ1
≈s DZ,

√
(σ0‖s‖)2+(σflood/p)2+σ2

1

. (12)

Furthermore, let Bpub ≥
√
nB2 + 1 and ζ ∼ DZ,σ0

√
B2

pub−‖s‖2
, then we have

e+ ζ ≈s DZ,σdec
, where σdec :=

√
(σ0Bpub)2 + (σflood/p)2 + σ2

1 . (13)

Proof. Note that r ∼ Dp{ 1
pu}+pZn,pσ0

holds, where {x} := x−bxe is the fractional
part of x ∈ R. Let c := p{ 1pu}, then we have c ∈ p · (1pZ

n) = Zn is an integer
vector. Let us denote the i-th elements of c and r by ci and ri; then, we have
ri ∼ Dci+pZ,pσ0

for i ∈ [n]. By the hypothesis, we have p · σ0 ≥
√
2Bηε(pZ) ≥√

2‖s‖∞ηε(pZ). Hence, by Lemma 3.10, we obtain

rᵀs ≈s Dcᵀs+pZ,pσ0‖s‖.

Low Communication Threshold FHE from Standard (Module-)LWE 19

Algorithm 3: Correctness game for our ThFHE (Algo. 2).

GamecorrectThFHE(1
κ, T,N, act, sid, l, C, (µ1, . . . , µl) ∈Ml):

1 assert { act ⊆ [N] ∧ |act| ≥ T ∧ sid ≤ LDec}
2 pp← PP(1κ, 1N), (evk, pk, sk, err, {ski, erri, seedseti}i∈[N])← KeyGen(T,N)
3 for j ∈ [l] do ctj ← Enc(pk, µj)
4 ct← Eval(evk, C, ct1, . . . , ctl)

5 for i ∈ act do maskerr
(sid)
i ← MaskErr(erri, seedseti, act, sid)

6 ctdec ← ServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

7 for i ∈ act do pdi ← PartDec(ctdec, ski, seedseti)
8 µ← FinDec(ctdec, {pdi}i∈act, act)
9 if µ = C(µ1, . . . , µl) then return 1 else return 0

Next, since ((σ0‖s‖)−2 + (σflood/p)
−2)−1/2 ≥ 1√

2
min(σ0‖s‖, σflood/p) ≥ ηε(Z)

holds by the hypothesis σflood ≥
√
2pηε(Z) (and σ0 ≥

√
2ηε(Z)), by Corol-

lary 3.12, we have
rᵀs+ E ≈s DZ,

√
(pσ0‖s‖)2+σ2

flood

,

where we use the fact that cᵀs ∈ Z; thus cᵀs+ pZ ⊆ Z. Hence, we also have

e′ := 1
p (r

ᵀs+ E) ≈s D 1
pZ,

√
(σ0‖s‖)2+(σflood/p)2

by Lemma 3.13. Finally, we have ((
√

(σ0‖s‖)2 + (σflood/p)2)
−2 + σ−21)−1/2 ≥

1√
2
min(

√
(σ0‖s‖)2 + (σflood/p)2, σ1) ≥ ηε(

1
pZ) by the hypothesis σ1 ≥

√
2
p ηε(Z).

Hence, by Lemma 3.11, we have e = be′eσ1 = DZ,σ1,e′ = e′ + DZ−e′,σ1 ≈s

D
Z,

√
(σ0‖s‖)2+(σflood/p)2+σ2

1

, i.e., Eq. (12). Furthermore, we obtain Eq. (13) by

Lemma 3.10 since we have σ0

√
B2

pub − ‖s‖2 ≥ σ0

√
B2

pub − nB2 ≥ σ0 ≥
√
2ηε(Z).

4.4 Correctness

We then define the correctness of our ThFHE scheme.

Definition 4.4 (Correctness). We define GamecorrectThFHE in Algo. 3. ThFHE
(Algo. 2) is correct if, for any κ,N > 0, T ∈ [1, N], l > 0, C : Ml → M,
(µ1, . . . , µl) ∈M l, act ⊆ [N] s.t. |act| ≥ T , LDec > 0 and sid ≤ LDec, we have:

Pr[GameThFHE-correct(1κ, T,N, act, sid, l, C, (µ1, . . . , µl) = 1] ≥ 1− negl(κ).

We show the correctness of our ThFHE scheme as follows:

Theorem 4.5. Assume that parameters ε, p, χlwe, Blwe, Bpub, σflood, σ0, σ1 are se-
lected as in Lemma 4.3. Furthermore, let σflood = Ω(2κBeval), Q = p · q =
σflood·Ω(

√
κ), and q = σdec·Ω(

√
κ), where σdec :=

√
(σ0Bpub)2 + (σflood/p)2 + σ2

1.
Then, ThFHE (Algo. 2) is correct.

20 H. Okada and T. Takagi

Proof. The proof is essentially identical to the proof of the correctness of [PS25,
Theorem 5.1], except for the additional term

∑
i∈act maskerr

(sid)
i on line 15 in

Algo. 2. Additionally, note that we use a discrete Gaussian for E← DZ,σflood
owing

to our Lemma 4.3, while [PS25] uses a continuous Gaussian. We first analyze
the output ctdec := (ctdec,0, ctdec,1) of ServerDec on line 6. Let the rounding error
of ctdec,0 be denoted as

r0 := ctin,0 − p · ctdec,0 ∼ Dp{ 1
p ctin,0}+pZn,pσ0

,

where {x} := x − bxe is the fractional part of x ∈ R. Assume that we have
ctin,1 := ctᵀin,0s+ b

Q
2 c · µ+ eeval + efresh, where eeval and efresh are the decryption

noises of cteval and ctfresh. Then, as shown in [PS25], we have

ctdec,1 = ctᵀdec,0s+ e+
∑

i∈actmaskerr
(sid)
i + b q2c · µ mod q, (14)

where e := b 1p (r0 · s + eeval + efresh + E)eσ1
. Furthermore, by the correctness of

Shamir secret sharing (Constr. 3.18), we have∑
i∈actmaskerr

(sid)
i =

∑
i∈actλact,i · ζ(sid)i +mrow

act,i = ζ(sid) +
∑

i∈actm
row
act,i. (15)

Let pdi := PartDec(ct, ski, seedseti, act, sid) := λact,i · ctᵀdec,0si + mcol
act,i mod q for

i ∈ act; then, again by the correctness of Shamir secret sharing, we have∑
i∈actpdi := ctᵀdec,0s+

∑
i∈actm

col
act,i mod q. (16)

Finally, by Eqs. (14) to (16), we have

FinDec(ct, {pdi}i∈act, act) = b(ctdec,1 −
∑

i∈actpdi)/b
q
2ce

= µ+ b(e+ ζ(sid))/b q2ce, (17)

where we use the fact that
∑

i∈actm
col
act,i =

∑
i∈actm

row
act,i by construction (see Fig. 1

for a graphical explanation).
Hence, we only need to analyze the bound of e+ ζ(sid). Since we have σflood =

Ω(2κBeval) by the hypothesis, we obtain e ≈s e := b 1p (r0 · s + E)eσ1 by the
smudging lemma Lemma 3.156. Then, by subsequent Lemma 4.3, we have

e+ ζ(sid) ≈s DZ,σdec
, where σdec :=

√
(σ0Bpub)2 + (σflood/p)2 + σ2

1 .

Note that DZ,σdec
is σdec · Ω(

√
κ)-bounded by Lemma 3.14. Thus, by selecting

q = σdec ·Ω(
√
κ), we have b(e+ ζ(sid))/b q2ce = 0 in Eq. (17) with overwhelming

probability; i.e., correctness holds.
6 This strong noise flooding lemma is only needed for the security proof, but it is also

used for the correctness just for the simplicity of analysis.

Low Communication Threshold FHE from Standard (Module-)LWE 21

Compactness with respect to N . The security of our scheme (subsequent
Theorem 4.7) can also be satisfied with the parameters for the correctness
Theorem 4.5. Note that all parameters ε, p, χlwe, Blwe, Bpub, σflood, σ0, σ1 are inde-
pendent of N and O(1) w.r.t. N ; thus, our ciphertexts (and decryption shares)
achieve compactness w.r.t N . This is because we do not need to add a noise
for partial decryption share unlike prior works (as in Eq. (2)). Instead, we add
a “zero-share” mask (=mcol

act,i) that is canceled out to zero in the decryption
procedure (line 18 of Algo. 14).

4.5 Security

We define the security of our ThFHE scheme in Definition 4.6. Intuitively, the
definition means that the view of the real world (:= ExptA,Real), where the
adversary receives an honestly generated set of partial decryption shares

{pdi}i∈act ← {PartDec(ct, ski, seedseti)}i∈act

is (computationally) indistinguishable from the view of the ideal world (:=
ExptA,Ideal), where the adversary receives simulated inputs

{pdi}i∈act ← Sim(ct, {ski, seedseti}i∈corr)

generated by some PPT algorithm Sim by using only incomplete share sets
{ski, seedseti}i∈corr (|corr| < t) that are given to the adversary. Then, the privacy
of secret sharing (Constr. 3.18) implies that the secret share {ski, erri}i∈corr
provide no information regarding sk, err to the adversary.

Definition 4.6 (Security). ThFHE (Algo. 2) is simulation-secure if, for any
PPT algorithms D and A, there exists a PPT simulator Sim s.t. AdvThFHED,A (κ) :=
|Pr[D(ExptA,Real(1

κ)) = 1] − Pr[D(ExptA,Ideal(1
κ)) = 1]| = negl(κ), where and

ExptA,Real(1
κ) and ExptA,Ideal(1

κ) are defined in Algo. 4 and Algo. 5, respectively.

Then, we prove the above security in Theorem 4.7.

Theorem 4.7. ThFHE (Algo. 2) is simulation-secure under the assumption on
the pseudorandomness of PRF and d-LWE(n,m,Q, χlwe): Formally, for any PPT
algorithms D and A, there exists PPT algorithms Sim, BLWE and BPRF s.t.

AdvThFHE
D,A (κ) < Adv

d-LWE(n,m,Q,χlwe)
BLWE

+AdvPRFBPRF
(κ) + negl(κ),

if ε, p, q,Q, χlwe, Blwe, Bpub, σflood, σ0, σ1 are selected as in Theorem 4.5.

Proof. With the subsequent Lemmas 4.8–4.14, we obtain the claim.

We define hybrid experiments Hyb1, . . . ,Hyb6 in Algorithms 6,. . . ,11, respec-
tively. We now prove the deferred lemmas, i.e., the indistinguishability of the hy-
brid experiments. As a shorthand, for any algorithm D and experiments H0(1

κ)
and H1(1

κ), we define AdvH0-H1

D (κ) := |Pr[D(H0(1
κ)) = 1]−Pr[D(H1(1

κ)) = 1]|.

22 H. Okada and T. Takagi

Algorithm 4: The real experiment ExptA,Real(1
κ).

ExptA,Real(1
κ):

1 pp← PP(1κ, 1N), (evk, pk, sk, err, {ski, erri, seedseti}i∈[N])← KeyGen(pp, T,N)
2 (corr, st)← A1(pp, pk)
3 assert {corr ⊆ [N] ∧ |corr| < T}, hon := [N]\corr, ctr← 0, sid← 0, List← ∅
4 return {0, 1} ← AOEnc,ODec

2 ({ski, erri, seedseti}i∈corr, st)

OEnc(µ):
5 ct← Enc(pk, µ), ctr← ctr + 1, List[ctr]← (µ, ct)

OEval(C, (i1, . . . , il)):
6 assert {(i1, . . . , il) ⊆ [ctr]}, for j ∈ [l] do (µj , ctj)← List[ij]
7 µ← C(µ1, . . . , µl), ct← Eval(evk, C, ct1, . . . , ctl)
8 ctr← ctr + 1, List[ctr]← (µ, ct)

ODec(act):
9 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}

10 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act

11 for i ∈ act do maskerr
(sid)
i ← MaskErr(erri, seedseti, act, sid)

12 ctdec := (a, b)← OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

13 return {pdi}i∈act ← {PartDec(ctdec, ski, seedseti)}i∈act

OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

14 return ctdec ← ServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

Algorithm 5: The ideal experiment ExptA,Ideal(1
κ). Differences from

ExptA,Real(1
κ) are highlighted.

ExptA,Ideal(1
κ):

1 pp← PP(1κ, 1N), (evk, pk, sk)← FHE.KeyGen()
2 Generate {seedseti}i∈[N] as in ExptA,Real(1

κ)

3 {ski, erri}i∈[N] ← Shamir.ShareZq,T,N ((0,0)) . Shares with no information
4 (corr, st)← A1(pp, pk)
5 assert {corr ⊆ [N] ∧ |corr| < T}, hon := [N]\corr, ctr← 0, sid← 0, List← ∅
6 return {0, 1} ← AOEnc,ODec

2 ({ski, erri, seedseti}i∈corr, st)

. OEnc and OEval are identical to those in ExptA,Real.
ODec(act):

7 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}
8 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act

9 {pdi}i∈act ← SimOServerDec(µ, ct, {ski, erri, seedseti}i∈corr, act),
where the algorithm Sim is defined on lines 3-12 of Hyb6.

10 return {pdi}i∈act

OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

. Identical to OServerDec in Hyb2 (and thus Hyb6).

Low Communication Threshold FHE from Standard (Module-)LWE 23

Algorithm 6: Hyb1: Differences from ExptA,Real are highlighted.

. Expt, OEnc, OEval and ODec are identical to those in ExptA,Real

OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

1 ctin := (ctin,0 ← U(Zn
Q), ctin,1 := ctᵀin,0s+ E+ bQ

2
c · µ),

where µ is the plaintext of ct and E← DZ,σflood .
2 ctdec,0 :=

⌊
1
p
· ctin,0

⌉
σ0

mod q

3 ctdec,1 :=
⌊

1
p
· ctin,1

⌉
σ1

+
∑

i∈act maskerr
(sid)
i mod q

4 return ctdec := (ctdec,0, ctdec,1)

Algorithm 7: Hyb2: Differences from Hyb1 are highlighted.

. Expt, OEnc, OEval and ODec are identical to those in ExptA,Real

OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

1 ctdec,0 ← U(Zn
q), e← D

Z,
√

(σ0‖s‖)2+(σflood/p)
2+σ2

1

2 ctdec,1 := ctᵀdec,0s+ e+ b q
2
c · µ+

∑
i∈act maskerr

(sid)
i mod q,

where µ is the plaintext of ct
3 return ctdec := (ctdec,0, ctdec,1)

Lemma 4.8 (ExptA,Real ≈c Hyb1). Assume that σflood = Ω(2κBeval), then we
have Adv

ExptA,Real-Hyb1
D (κ) ≤ Adv

LWE(m,n,Q,χlwe)
BLWE

(κ) + 2−κ.

Proof. Although the proof is identical to that of [PS25, Lemma 5.2], we provide
it here for the completeness. Let ctfresh := (a, b) ← Encpk(0) in the original
ServerDec algorithm (line 12 in Algo. 2), and define its noise as efresh := b− aᵀs.
Recall a := rᵀA + f as defined in Algo. 1, then we have a ≈c U(Zn

q) under the
LWE assumption. Since ctfresh is not used elsewhere, we also have ctin,0 ≈c U(Zn

q).
Furthermore, we have ctin,1 := ctᵀin,0s+E+efresh+bQ2 c·µ ≈s ct

ᵀ
in,0s+E+bQ2 c·µ by

the smudging lemma, Lemma 3.15, and the hypothesis σflood = Ω(2κBeval).

Lemma 4.9 (Hyb1 ≈s Hyb2). Assume that parameters ε, p, q, Blwe, χlwe, σflood,

σ0, σ1 are selected as in Lemma 4.3. Then, we have Adv
Hyb1-Hyb2
D (κ) = negl(κ).

Proof. The claim holds by the proof of Eq. (12) in Lemma 4.3.

Lemma 4.10 (Hyb2 ≈c Hyb3). We have Adv
Hyb2-Hyb3
D ≤ AdvPRFBPRF

(κ).

Proof. In Hyb3, for all {(i, j) | i ∈ honsid and j ∈ honsid}, the challenger samples
mact,i,j ← U(Zq) instead of the output of a pseudorandom function. It is easy to
see that this hybrid is indistinguishable from Hyb2 under the assumption on the
pseudorandomness of the PRF (Definition A.1).

24 H. Okada and T. Takagi

Algorithm 8: Hyb3: Differences from Hyb2 are highlighted.

. Expt, OEnc, OEval and OServerDec are identical to those in Hyb2
ODec(act):

1 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}
2 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act
3 for i ∈ corrsid do
4 for j ∈ act do mact,i,j := PRF(seedi,j , sid), mact,j,i := PRF(seedj,i, sid)

5 mrow
act,i :=

∑
j∈act mact,j,i, mcol

act,i :=
∑

j∈act mact,i,j . Same as in ExptA,Real

6 for i ∈ honsid do
7 for j ∈ honsid do mact,i,j ← U(Zq) . Sample uniformly
8 mrow

act,i :=
∑

j∈act mact,j,i, mcol
act,i :=

∑
j∈act mact,i,j

9 for i ∈ act do maskerr
(sid)
i := λact,i · ζ(sid)i +mrow

act,i . MaskErr without PRF

10 ctdec := (a, b)← OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

11 for i ∈ act do pdi := λact,i · aᵀsi +mcol
act,i . PartDec without PRF

12 return {pdi}i∈act

Algorithm 9: Hyb4: Differences from Hyb3 are highlighted.

. Expt, OEnc, OEval and OServerDec are identical to those in Hyb2
ODec(act):

1 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}
2 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act
3 for i ∈ corrsid do
4 for j ∈ act do mact,i,j := PRF(seedi,j , sid), mact,j,i := PRF(seedj,i, sid)

5 mrow
act,i :=

∑
j∈act mact,j,i, mcol

act,i :=
∑

j∈act mact,i,j

6 Fix some h ∈ honsid.
7 for i ∈ honsid\{h} do mrow

act,i ← U(Zq),m
col
act,i ← U(Zq)

8 mrow
act,h ← U(Zq)

9 mcol
act,h :=

∑
i∈honsid

mrow
act,i −

∑
i∈honsid\{h}

mcol
act,i +

∑
i∈honsid,j∈corrsid

(mact,j,i −mact,i,j)

10 for i ∈ act do maskerr
(sid)
i := λact,i · ζ(sid)i +mrow

act,i

11 ctdec := (a, b)← OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

12 for i ∈ act do pdi := λact,i · aᵀsi +mcol
act,i

13 return {pdi}i∈act

Lemma 4.11 (Hyb3 ≈ Hyb4). The distributions of Hyb3 and Hyb4 are identical.

Proof. This proof is almost identical to the unforgeability proof of [PKM+24b].
In Hyb4, the challenger samples mrow

act,i and mcol
act,i at random for all honest

parties except some h ∈ honsid that is uniquely defined by the other mask
values. The row masks {mrow

i }i∈honsid are distributed uniformly at random in
Hyb3 because these masks include the individual masks mact,i,i ∼ U(Zq) that are
used nowhere else. This is identical to Hyb4. Furthermore, in Hyb3, all the column

Low Communication Threshold FHE from Standard (Module-)LWE 25

Algorithm 10: Hyb5: Differences from Hyb4 are highlighted.

. Expt, OEnc, OEval and OServerDec are identical to those in Hyb2
ODec(act):

1 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}
2 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act
3 for i ∈ corrsid do
4 for j ∈ act do mact,i,j := PRF(seedi,j , sid), mact,j,i := PRF(seedj,i, sid)

5 mrow
act,i :=

∑
j∈act mact,j,i, mcol

act,i :=
∑

j∈act mact,i,j

6 Fix some h ∈ honsid.
7 for i ∈ honsid\{h} do mrow

act,i ← U(Zq),m
col
act,i ← U(Zq)

8 mrow
act,h ← U(Zq) (mcol

act,h is no longer used)
9 for i ∈ act do maskerr

(sid)
i := λact,i · ζ(sid)i +mrow

act,i

10 ctdec := (a, b)← OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

11 for i ∈ corrsid do pdi := λact,i · aᵀsi +mcol
act,i

12 for i ∈ honsid\{h} do pdi := λact,i · aᵀsi +mcol
act,i

13 pdh := b− b q
2
c · µ−

∑
i∈act\{h}pdi + eSim,

where eSim ← DZ,σdec and σdec :=
√

(σ0Bpub)2 + (σflood/p)2 + σ2
1 .

14 return {pdi}i∈act

masks mcol
i :=

∑
j∈act mact,j,i for i 6= h include mact,h,i used nowhere before the

challenger calculates mrow
act,h on line 8. Hence, {mcol

i }i∈honsid\{h} are distributed
uniformly random as in Hyb4. Finally, we analyze the distribution of mcol

act,h. In
Hyb3, we have∑

i∈honsid

mrow
act,i −

∑
i∈honsid\{h}

mcol
act,i +

∑
i∈honsid,
j∈corrsid

(mact,j,i −mact,i,j)

=
∑

i∈honsid,
j∈act

mact,i,j −
∑

i∈honsid\{h},
j∈act

mact,j,i +
∑

i∈honsid,
j∈corrsid

(mact,j,i −mact,i,j)

=
∑

i∈honsid,
j∈honsid

mact,i,j −
∑

i∈honsid\{h},
j∈honsid

mact,j,i +
∑

j∈corrsid

mact,j,h

=
∑

i∈honsid

mact,i,h +
∑

j∈corrsid

mact,j,h =
∑
i∈act

mact,i,h = mcol
act,h. (18)

Thus, mcol
act,h in Hyb3 and Hyb4 are identically distributed.

Lemma 4.12 (Hyb4 ≈s Hyb5). Assume Bpub ≥ ‖s‖2 + 1 and σ0 ≥
√
2ηε(Z),

then we have Adv
Hyb4-Hyb5
D = negl(κ).

Proof. We analyze the distribution of the partial decryption of the party Ph in
Hyb4; pdh := λact,h ·aᵀsh+mcol

act,h. Note that Eq. (18) implies that
∑

i∈actm
col
act,i =

26 H. Okada and T. Takagi

Algorithm 11: Hyb6: Differences from Hyb5 are highlighted.

. Expt, OEnc, OEval and OServerDec are identical to those in Hyb2
ODec(act):

1 assert {|act| ≥ T ∧ sid < min(ctr, LDec)}
2 sid← sid+ 1, (µ, ct)← List[sid], corrsid := corr ∩ act, honsid := hon ∩ act
3 for i ∈ corrsid do
4 for j ∈ act do mact,i,j := PRF(seedi,j , sid), mact,j,i := PRF(seedj,i, sid)

5 mrow
act,i :=

∑
j∈act mact,j,i, mcol

act,i :=
∑

j∈act mact,i,j

6 Fix some h ∈ honsid. (For i ∈ honsid, mrow
act,i and mcol

act,i are no longer sampled)
7 for i ∈ corrsid do maskerr

(sid)
i := λact,i · ζ(sid)i +mrow

act,i . Same as in Hyb5
8 for i ∈ honsid do maskerr

(sid)
i ← U(Zq) . Sample uniformly

9 ctdec := (a, b)← OServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act)

10 for i ∈ corrsid do pdi := λact,i · aᵀsi +mcol
act,i

11 for i ∈ honsid\{h} do pdi ← U(Zq) . Sample uniformly
12 pdh := b− b q

2
c · µ−

∑
i∈act\{h}pdi + eSim, eSim ← DZ,σdec

13 return {pdi}i∈act . Constructed only with {ski, erri, seedseti}i∈corrsid

∑
i∈actm

row
act,i holds in Hyb4 (as in Hyb3). Hence, we have∑

i∈actpdi = aᵀs+
∑

i∈actm
col
act,h = aᵀs+

∑
i∈actm

row
act,h. (19)

Furthermore, the output (a, b) of OServerDec (in both Hyb4 and Hyb5) satisfies

b := aᵀs+ e+ ζ(sid) + b q2c · µ+
∑

i∈actm
row
act,i mod q. (20)

Thus, by (19) and (20), we obtain
∑

i∈actpdi = b − b q2c · µ + e + ζ(sid). As
shown in Lemma 4.3, we obtain e + ζ(sid) ≈s DZ,σdec

. Thus, let eSim ← DZ,σdec
,

then we have
∑

i∈actpdi ≈s b − b q2c · µ + eSim, and it is equivalent to pdh ≈s

b−b q2c ·µ−
∑

i∈act\{h}pdi+eSim, the right hand side of which is pdh in Hyb5.

Lemma 4.13 (Hyb5 ≈ Hyb6). The distributions of Hyb5 and Hyb6 are identical.

Proof. In Hyb5, mcol
act,h is no longer used. Thus, mrow

act,i for i ∈ honsid is used only for
calculating maskerr

(sid)
i := λact,i ·ζ(sid)i +mrow

act,i (line 9), and mcol
act,i for i ∈ honsid\{h}

is used only for calculating pdi := λact,i · aᵀsi +mcol
act,i (line 12). Hence, we have

maskerr
(sid)
i ∼ U(Zq) for i ∈ honsid and pdi ∼ U(Zq) for i ∈ honsid\{h} in Hyb5,

which are identically distributed as in Hyb6.

Lemma 4.14 (Hyb6 ≈ ExptA,Ideal). The distributions of Hyb6 and ExptA,Ideal

are identical.

Proof. The only difference between Hyb6 and ExptA,Ideal is that the secret
shares {ski, erri}i∈[N] ← Shamir.ShareZq,T,N ((sk, err)) in Hyb5 are replaced with

Low Communication Threshold FHE from Standard (Module-)LWE 27

{ski, erri}i∈[N] ← Shamir.ShareZq,T,N ((0,0)) in ExptA,Ideal, which contain no
information about sk or err. In Hyb6 and ExptA,Ideal, only the corrupted secret
shares {ski, erri}i∈corrsid are used, and |corrsid| ≤ |corr| < T holds for any sid.
Hence, Hyb6 and ExptA,Ideal are identically distributed owing to the privacy of
Shamir secret sharing (Constr. 3.18).

The need for semantic security of the underlying FHE. Interestingly,
we do not require the semantic security of the underlying FHE for our security
proof (Theorem 4.7); we use LWE assumption only for “sanitizing” ciphertext in
the ServerDec procedure. Intuitively, this is because the partial decryption shares
(and shares of padding error ζ) are masked with pseudorandom outputs of the
PRF. Our security definition (Definition 4.6) keeps the encryption oracle Enc
unchanged in the ideal experiment, and we only show that partial decryption
shares (and shares of padding error ζ) do not reveal any information to the
adversary. The semantic security of underlying FHE becomes necessary for
further application of our threshold decryption procedure. For example, in
MPC, we can use the semantic security of the underlying FHE to prove that
no information about the plaintext input of the ciphertext of each party Pi is
provided to Server (and other parties).

Security against the untrusted (semi-honest) Server. Definition 4.6
defines the security against a (semi-honest) adversary who corrupts up to
T − 1 parties. As mentioned in Section 4.2, although the Server is assumed
neither to be corrupted by nor to corrupt any parties, it is untrusted (semi-
honest). We can prove the security against the Server more easily than in
Theorem 4.7. Although the Server receives masked errors from all parties act,
{maskerri := λact,i · ζi + mrow

act,i}iact, these values are pseudorandom to Server
under the pseudorandomness assumption of PRF (as shown in Lemma 4.10).
Additionally, note that the Server does not receive any partial decryption shares.

5 Our Threshold FHE Scheme from Module-LWE

Our threshold FHE scheme in the previous section is constructed from standard
LWE, without relying on “yet another” variant of LWE as in [PS25]. Thus, the
scheme can be naturally extended to the construction based on module-LWE.
Since the construction is almost the same as our LWE-based scheme, we describe
our ThFHE from MLWE (=mThFHE) in Appendix C.

However, the noise analysis, e.g., Lemma 4.3 is nontrivially different in
the MLWE setting: The distribution of our padding error is changed from
DZ,σ0

√
B2

pub−‖s‖2
in the LWE setting (line 3 in Algo. 2) to DZn,σ0

√
B2

pubI−Σs
in

the MLWE setting (line 3 in Algo. 14), where Σs is a covariance matrix that
corresponds to the secret vector s over the polynomial ring.

We first provide preliminaries for MLWE in Section 5.1, and provide the
noise analysis in the MLWE setting (=Lemma 5.7) in Section 5.2. Then, using

28 H. Okada and T. Takagi

Lemma 5.7, we prove the correctness and security of mThFHE in Section 5.3 and
Section 5.4, respectively.

5.1 Preliminaries related to Module-LWE

We define R = Z[X]/(Xn+1) and Rq = Zq[X]/(Xn+1) for n a power of 2 and
q ∈ N. For ease of notation, we define the coefficient vector, coefficient matrix
and coefficient Gram matrix as follows:

Definition 5.1. Let a =
∑n−1

i=0 aiX
i ∈ R, and define the coefficient vector of

a as a := vec(a) := (a0, a1, . . . , an−1)
ᵀ ∈ Zn. Let P :=

(0 −1
In−1 0

)
∈ Zn×n

be a (negacyclic) permutation matrix, and define the coefficient matrix of a as
A := mat(a) :=

(
a Pa · · · Pn−1a

)
∈ Zn×n. The coefficient Gram matrix of a is

defined as Σa := Gram(a) := AAᵀ ∈ Zn×n.

For any a ∈ R, we define ‖a‖ := ‖vec(a)‖ and ‖a‖∞ := ‖vec(a)‖∞. For the
distribution χ over Zn, we defineR(χ) := {a ∈ R | vec(a) ∼ χ}. The randomized
Gaussian rounding b·eσ (Definition 3.16) naturally extends to vectors coefficient-
wise. The coefficient matrix is useful for describing a product:

Fact 5.2. For r, e ∈ R, we have vec(re) = Re = Er, where R := mat(r),
r := vec(r), E := mat(e) and e := vec(e).

From the structure of R, we obtain the following useful facts:

Fact 5.3. For any a ∈ R, ‖mat(a)‖len = ‖vec(a)‖.

Fact 5.4. For any a 6= 0 ∈ R, mat(a) is nonsingular.

The module-LWE problem is defined as follows:

Definition 5.5 (Module-LWE). Let k,m, q ∈ N and χ be a distribution over
Rq. We define the module-LWE distribution as follows: MLWE(k,m, q, χ) :=

{(A,b := As + e) | A $← Rm×k
q , s ← χk, e ← χm}. The advantage of an

algorithm A for solving d-MLWE is defined as Advd-MLWE
A = |Pr[A(A,As+e) =

1]− Pr[A(A,u← U(Rk
q)) = 1]|.

The smudging lemma (Lemma 3.15) is extended to multivariate Gaussian:

Corollary 5.6. Let n = poly(κ), c ∈ Zn and σ = Ω(‖c‖∞2κ). Then, we have
DZn,σ,c ≈s DZn,σ.

5.2 Noise Analysis

We prove the counterpart of Lemma 4.3 in the MLWE setting, which is required
for the proof of correctness and security of our ThFHE from MLWE.

Low Communication Threshold FHE from Standard (Module-)LWE 29

Lemma 5.7 (Noise analysis). Let χmlwe be a Bmlwe-bounded distribution over
Z s.t. s := (s1, . . . , sk) ← R(χn

mlwe)
k satisfies mini∈[k] σmin(Si) ≥ 1

c for some
c > 0 with overwhelming probability, where Si := mat(si) (c.f. Definition 5.1).
Let ε := negl(κ), p ∈ N, σflood ≥ p ·

√
2nBmlweη

+
ε (Zn), σ0 ≥ c ·

√
2nBmlweη

+
ε (Zn),

σ1 ≥ ηε(Zn). Let E ← R(DZn,σflood
), u ∈ Rk, and r := u − pb 1pueσ0

, and define
Σs :=

∑
i∈[k] Σsi , where Σsi := Gram(si). Then, we have

e := b 1p (r · s+ E)eσ1 ≈s R(DZn,
√

σ2
0Σs+((σflood/p)2+σ2

1)I
). (21)

Further, for Bpub >
√
kn2B2

mlwe + 1 and ζ ←R(DZn,σ0

√
B2

pubI−Σs
), we have

e+ ζ ≈s R(DZn,σdec
), where σdec :=

√
σ2
0B

2
pub + (σflood/p)2 + σ2

1 . (22)

Proof. For any x ∈ Rk, we denote the i-th elements of x by xi ∈ R. Furthermore,
we denote the j-th coefficient of xi by xi,j ∈ Z. Since b·eσ0

is performed element-
and coefficient-wise, we have ri,j = ui,j − p · b 1pui,jeσ0 . Thus, ri,j ∼ Dci,j+pZ,pσ0 ,
where ci,j := p{ 1pui,j}. Note that ci,j ∈ p · (1pZ) = Z is an integer. Now, we
also have ri ∼ R(Dci+pZn,pσ0

), where ci := (ci,1, . . . , ci,n) ∈ Zn. Thus, we have
risi ∼ R(Si ·Dci+pZn,pσ0

) by Fact 5.2. Furthermore, we have

risi ∼ R(DAi,pσ0Si
) where Ai := Si · ci + pSi · Zn,

for any i ∈ [k], by Lemma 3.13 and Fact 5.4. Note that the coset Ai satisfies
Ai ⊆ Zn since Si and ci are an integer matrix and vector.

We now analyze the distribution of rᵀs + E =
∑n

i=1 risi + E ∈ R. Let
σ̂ := min(σflood/p, σ0/c), then we have σ̂ ≥

√
2nBmlweη

+
ε (Zn) by the hypothesis.

Hence, we have min(σflood,mini∈[k] σmin(pσ0Si)) = pσ̂ ≥
√
2npBmlweη

+
ε (Zn) ≥√

2maxi∈[k]‖pSi‖lenη+ε (Zn), where we use the fact that
√
nB ≥ maxi∈[k]‖Si‖len

holds by Fact 5.3. Therefore, by the subsequent Lemma 5.9, we obtain

rᵀs+ E ≈s R(DZn,
√
Σ), where Σ := p2σ2

0Σs + σ2
floodI.

Then, by Lemma 3.13 we also have e′ := 1
p (r

ᵀs+ E) ≈s R(D 1
pZn, 1p

√
Σ). Finally,

we obtain Eq. (21), by Lemma 3.11, if the conditions σ1 ≥ ηε(Zn) and (p2Σ−1+
σ−21)−1/2 ≥ ηε(

1
pZ

n) are satisfied. By Fact 5.8, we have

σmin((p
2Σ−1 + σ−21)−1/2) ≥ 1√

2
min{ 1pσmin(

√
Σ), σ1} ≥ 1√

2
min{σ̂, σ1}

and σ̂ ≥
√
2nBmlweηε(Zn)(≥ ηε(

1
pZ

n)) holds by the hypothesis. Hence, (p2Σ−1+
σ−21)−1/2 ≥ ηε(

1
pZ

n) holds by Fact 3.9. Thus, we only require σ1 ≥ ηε(Zn) to
obtain Eq. (21).

Next, we prove Eq. (22). To simplify the notation, let Σe :=
1
p2Σ+ σ2

1I and
Σζ := B2

pubI −Σs, then we have e ≈s R(DZn,
√
Σe

) and ζ ∼ R(DZn,σ0

√
Σζ

). By

30 H. Okada and T. Takagi

Corollary 3.12, e+ ζ ≈s R(DZn,
√

Σe+σ2
0Σζ

), i.e., Eq. (22), holds if
√
Σe ≥ ηε(Zn)

and (Σ−1e + (σ2
0Σζ)

−1)−1/2 ≥ ηε(Zn). By Fact 5.8 and the hypothesis, we have

σmin(
√
Σe) ≥

√
2min(1pσmin(

√
Σ), σ1) ≥

√
2min(σ̂, σ1) ≥ 2

√
nBmlweηε(Zn),

thus,
√
Σe ≥ ηε(Zn) holds by Fact 3.9. Again by Fact 5.8, we have

σmin((Σ
−1
e + (σ2

0Σζ)
−1)−1/2) ≥ 1√

2
min(σmin(

√
Σe), σ0σmin(

√
Σζ)).

Hence, we only need σ0σmin(
√
Σζ) ≥

√
2ηε(Zn). Since σ0 ≥

√
2ηε(Zn) by the

hypothesis, we only need σmin(
√

Σζ) ≥ 1. To prove this, it is sufficient to show
Σζ − I = (B2

pub − 1)I −
∑

i∈[k] SiS
ᵀ
i � 0. Note that the absolute value of every

elements of SiS
ᵀ
i is≤ n·‖vec(si)‖2 ≤ n2B2

mlwe by Fact 5.3. Hence, Σζ−I is strictly
diagonally dominant since (B2

pub−1)−kn2B2
mlwe > 0 by the hypothesis. Further,

it implies Σζ − I � 0 (c.f., [HJ85, Thm. 6.1.10]). Thus, we have σmin(
√

Σζ) =√
λmin((Σζ − I) + I) ≥

√
λmin(Σζ − I) + 1 ≥ 1.

We complete the proof by describing the deferred Fact 5.8 and Lemma 5.9:
Fact 5.8. For any Σ1,Σ2 � 0, we have σmin((Σ

−1
1 + Σ−12)−1/2) ≥

1√
2
min{σmin(

√
Σ1), σmin(

√
Σ2)}.

Lemma 5.9 (Adapted from [OT25, Lemma 5.4]). Let ε = negl(κ). Let
Σ0, . . . ,Σk ∈ Rn×n be positive definite matrices. Let A1, . . . , Ak ⊆ Zn be
cosets of full-rank integer lattices L1(B1), . . . ,Lk(Bk) with (nonsingular) basis
B1, . . . ,Bk. Let σ̂ := mini∈{0,...,k} σmin(

√
Σi) and B̂ := maxi∈[k]‖Bi‖len. If

σ̂ ≥
√
2B̂η+ε (Zn), we have∑k

i=1DAi,
√
Σi

+DZn,
√
Σ0
≈s DZn,

√∑k
i=0 Σi

. (23)

Proof. The proof is almost identical to that of [OT25, Lemma 5.4]. We provide
the proof in Appendix B for the completeness of this paper.

5.3 Correctness

Since the syntax is identical, the correctness of our MLWE-based ThFHE
(Algo. 14) is also defined as in Definition 4.4. We prove the correctness:
Theorem 5.10 (Correctness). Assume parameters ε, p, χmlwe, Bmlwe, Bpub,
σflood, σ0, σ1 are selected as in Lemma 5.7. Furthermore, assume σflood =
Ω(2κBeval) (Beval is defined as in Algo. 13), Q = p · q = σflood · Ω(

√
κ), and

q = σdec ·Ω(
√
κ), where σdec :=

√
(σ0Bpub)2 + (σflood/p)2 + σ2

1. Then, mThFHE
(Algo. 14) is correct.

Proof. The proof is essentially identical to Theorem 4.5, except for that we now
rely on the core analysis in the MLWE setting (=Lemma 5.7) and multivariate
version of the smudging lemma (=Corollary 5.6), instead of Lemma 4.3 and
Lemma 3.15, respectively.

Low Communication Threshold FHE from Standard (Module-)LWE 31

5.4 Security

The security of our mThFHE (Algo. 14) is almost identically defined as Defini-
tion 4.6, by replacing variables over Zn

q with the corresponding variables over
Rk

q . The security can be proved by MLWE assumption as follows:

Theorem 5.11 (Security). mThFHE (Algo. 14) is simulation-secure under the
assumption on the pseudorandomness of PRF and d-MLWE(n,m,Q, χlwe): For
any PPT algorithms D,A, there exists PPT algorithms Sim, BLWE and BPRF s.t.

AdvThFHE
D,A (κ) < Adv

d-MLWE(m,k,Q,R(χn
mlwe))

BLWE
+AdvPRFBPRF

(κ) + negl(κ),

if ε, p, q,Q,Bmlwe, Bpub, χmlwe, σflood, σ0, σ1 are selected as in Theorem 5.10.

Proof. The proof is almost identical to that of Theorem 4.7, except for that we
rely on Lemma 5.7 instead of Lemma 4.3.

References

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, M.
Zohner. “Ciphers for MPC and FHE”. EUROCRYPT 2015. 2015,
pp. 430–454. https://doi.org/10.1007/978-3-662-46800-5_17.

[AJL+12] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
D. Wichs. “Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE”. EUROCRYPT
2012. 2012, pp. 483–501. https://doi.org/10.1007/978-3-642-
29011-4_29.

[AJW11] G. Asharov, A. Jain, D. Wichs. Multiparty Computation with Low
Communication, Computation and Interaction via Threshold FHE.
ePrint 2011/613. 2011. https ://eprint . iacr .org/2011/613. Full
version of [AJL+12].

[BJMS20] S. Badrinarayanan, A. Jain, N. Manohar, A. Sahai. “Secure MPC:
Laziness Leads to GOD”. ASIACRYPT 2020. 2020, pp. 120–150.
https://doi.org/10.1007/978-3-030-64840-4_5.

[BCK+23] Y. Bae, J. H. Cheon, J. Kim, J. H. Park, D. Stehlé. “HERMES:
Efficient Ring Packing Using MLWE Ciphertexts and Application
to Transciphering”. CRYPTO 2023. 2023, pp. 37–69. https://doi.
org/10.1007/978-3-031-38551-3_2.

[BGG+18] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, A. Sahai. “Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption”. CRYPTO 2018. 2018, pp. 565–
596. https://doi.org/10.1007/978-3-319-96884-1_19.

[BS23] K. Boudgoust, P. Scholl. “Simple Threshold (Fully Homomorphic)
Encryption from LWE with Polynomial Modulus”. ASIACRYPT
2023. 2023, pp. 371–404. https://doi.org/10.1007/978-981-99-
8721-4_12.

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2011/613
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-031-38551-3_2
https://doi.org/10.1007/978-3-031-38551-3_2
https://doi.org/10.1007/978-3-031-38551-3_2
https://doi.org/10.1007/978-3-031-38551-3_2
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12

32 H. Okada and T. Takagi

[BS24] K. Boudgoust, P. Scholl. Simple Threshold (Fully Homomor-
phic) Encryption From LWE With Polynomial Modulus. ePrint
2023/016. 2024. https://eprint.iacr.org/2023/016. Version 2024-
07-16.

[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption without Bootstrapping”. ITCS 2012.
ACM, 2012, pp. 309–325. https : / / doi . org / 10 . 1145 / 2090236 .
2090262.

[BP23] L. T. Brandão, R. Peralta. NIST IR 8214C ipd: NIST First Call
for Multi-Party Threshold Schemes (Initial Public Draft). 2023.
https://doi.org/10.6028/NIST.IR.8214C.ipd (visited on Dec. 11,
2023).

[CHK+18] J. H. Cheon, K. Han, A. Kim, M. Kim, Y. Song. “Bootstrapping
for Approximate Homomorphic Encryption”. EUROCRYPT 2018.
2018, pp. 360–384. https://doi.org/10.1007/978-3-319-78381-
9_14.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song. “Homomorphic Encryp-
tion for Arithmetic of Approximate Numbers”. ASIACRYPT 2017.
2017, pp. 409–437. https://doi.org/10.1007/978-3-319-70694-
8_15.

[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. “TFHE: Fast
Fully Homomorphic Encryption Over the Torus”. J. Cryptol. 33.1
(2020), pp. 34–91. https://doi.org/10.1007/s00145-019-09319-x.

[DEG+18] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Lean-
der, E. List, F. Mendel, C. Rechberger. “Rasta: A Cipher with
Low ANDdepth and Few ANDs per Bit”. CRYPTO 2018. 2018,
pp. 662–692. https://doi.org/10.1007/978-3-319-96884-1_22.

[GGHR14] S. Garg, C. Gentry, S. Halevi, M. Raykova. “Two-Round Secure
MPC from Indistinguishability Obfuscation”. TCC 2014. 2014,
pp. 74–94. https://doi.org/10.1007/978-3-642-54242-8_4.

[GMPW20] N. Genise, D. Micciancio, C. Peikert, M. Walter. “Improved Dis-
crete Gaussian and SubGaussian Analysis for Lattice Cryptogra-
phy”. PKC 2020. 2020, pp. 623–651. https://doi.org/10.1007/978-
3-030-45374-9_21.

[Gen09] C. Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”.
STOC ’09. ACM, 2009, pp. 169–178. https://doi.org/10.1145/
1536414.1536440.

[GPV08] C. Gentry, C. Peikert, V. Vaikuntanathan. “Trapdoors for Hard
Lattices and New Cryptographic Constructions”. STOC ’08.
ACM, 2008, pp. 197–206. https : / / doi . org / 10 . 1145 / 1374376 .
1374407.

[GSW13] C. Gentry, A. Sahai, B. Waters. “Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-
Faster, Attribute-Based”. CRYPTO 2013. 2013, pp. 75–92. https:
//doi.org/10.1007/978-3-642-40041-4_5.

https://eprint.iacr.org/2023/016
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

Low Communication Threshold FHE from Standard (Module-)LWE 33

[GLS15] S. Dov Gordon, F.-H. Liu, E. Shi. “Constant-Round MPC with
Fairness and Guarantee of Output Delivery”. CRYPTO 2015.
2015, pp. 63–82. https://doi.org/10.1007/978-3-662-48000-7_4.

[HKL+22] J. Ha, S. Kim, B. Lee, J. Lee, M. Son. “Rubato: Noisy Ciphers
for Approximate Homomorphic Encryption”. EUROCRYPT 2022.
2022, pp. 581–610. https://doi.org/10.1007/978-3-031-06944-
4_20.

[HJ85] R. A. Horn, C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985. https://doi.org/10.1017/CBO9780511810817.

[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. “On Ideal Lattices and
Learning with Errors over Rings”. EUROCRYPT 2010. 2010,
pp. 1–23. https://doi.org/10.1007/978-3-642-13190-5_1.

[MP13] D. Micciancio, C. Peikert. “Hardness of SIS and LWE with Small
Parameters”. CRYPTO 2013. 2013, pp. 21–39. https://doi.org/
10.1007/978-3-642-40041-4_2.

[MR07] D. Micciancio, O. Regev. “Worst-Case to Average-Case Reductions
Based on Gaussian Measures”. SIAM J. Comput. 37.1 (2007),
pp. 267–302. https://doi.org/10.1137/S0097539705447360.

[MS23] D. Micciancio, A. Suhl. Simulation-Secure Threshold PKE from
LWE with Polynomial Modulus. ePrint 2023/1728. 2023. https :
//eprint.iacr.org/2023/1728.

[NLV11] M. Naehrig, K. Lauter, V. Vaikuntanathan. “Can homomorphic
encryption be practical?” Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop. CCSW ’11. ACM, 2011,
pp. 113–124. https://doi.org/10.1145/2046660.2046682.

[OT25] H. Okada, T. Takagi. “Gram Root Decomposition over the Polyno-
mial Ring: Application to Sphericalization of Discrete Gaussian”.
ICISSP 2025. 2025.

[PS25] A. Passelègue, D. Stehlé. “Low Communication Threshold Fully
Homomorphic Encryption”. ASIACRYPT 2024. 2025, pp. 297–
329. https://doi.org/10.1007/978-981-96-0875-1_10.

[Pei10] C. Peikert. “An Efficient and Parallel Gaussian Sampler for Lat-
tices”. CRYPTO 2010. 2010, pp. 80–97. https://doi.org/10.1007/
978-3-642-14623-7_5.

[PKM+24a] R. del Pino, S. Katsumata, M. Maller, F. Mouhartem, T. Prest,
M.-J. Saarinen. “Threshold Raccoon: Practical Threshold Signa-
tures from Standard Lattice Assumptions”. EUROCRYPT 2024.
2024, pp. 219–248. https://doi.org/10.1007/978-3-031-58723-8_8.

[PKM+24b] R. del Pino, S. Katsumata, M. Maller, F. Mouhartem, T. Prest,
M.-J. Saarinen. Threshold Raccoon: Practical Threshold Signatures
from Standard Lattice Assumptions. Cryptology ePrint Archive,
Paper 2024/184. 2024. https ://eprint . iacr .org/2024/184. Full
version of [PKM+24a].

[Reg09] O. Regev. “On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography”. J. ACM 56.6 (2009). https://doi.org/

https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://eprint.iacr.org/2023/1728
https://eprint.iacr.org/2023/1728
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1007/978-981-96-0875-1_10
https://doi.org/10.1007/978-981-96-0875-1_10
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-031-58723-8_8
https://doi.org/10.1007/978-3-031-58723-8_8
https://eprint.iacr.org/2024/184
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324

34 H. Okada and T. Takagi

10.1145/1568318.1568324. Preliminary version appeared in STOC
’05.

[Sha79] A. Shamir. “How to share a secret”. Commun. ACM 22.11 (1979),
pp. 612–613. https://doi.org/10.1145/359168.359176.

A Definition of Pseudorandom Function

We rely on the multi-instance variant of the pseudorandom functions PRF given
in [PKM+24a]. Here, we refer to the definition for the completeness.

Definition A.1 (Pseudorandom function). Let κ be a security parameter
and n, l ∈ N. We say that a deterministic PPT algorithm PRF : {0, 1}κ ×
{0, 1}n → {0, 1}l is pseudorandom function if for any PPT algorithm A we have

AdvPRFA (κ) = |Pr[GamePRFA (κ) = 1]− 1
2 | = negl(κ),

where GamePRFA is defined as in Algo. 12.

Algorithm 12: Security game of PRF.

GamePRFA (κ):
1 List[·] := ∅
2 b← {0, 1}
3 b′ ← AOPRF(κ)
4 if b = b′ then return 1
5 else return 0

OPRF(i, x ∈ {0, 1}n):
6 if List[i] = ∅ then

seed← {0, 1}κ, List[i]← seed
7 seed← List[i]

8 y0 ← U({0, 1}l), y1 ← PRF(seed, x)
9 return yb

B Proof of Lemma 5.9

Although the proof of Lemma 5.9 is almost identical to that of [OT25, Lemma
5.4], we provide the proof in this section for the completeness:

Proof. By using Corollary 3.12, we first show

DA1,
√
Σ1

+DZn,
√
Σ0
≈s DZn,

√
Σ0+Σ1

. (24)

We obtain
√
Σ0 ≥ ηε(Zn) by Fact 3.9 and the hypothesis σmin(

√
Σ0) ≥ σ̂ ≥

√
2B̂η+ε (Zn) ≥ η+ε (Zn). We have

√
(Σ−10 +Σ−11)−1 ≥ ηε(L1(B1)) because

σmin(

√
(Σ−10 +Σ−11)−1) ≥ 1√

2
min{σmin(

√
Σ0), σmin(

√
Σ1)}

≥ 1√
2
σ̂ ≥ ‖B1‖lenη+ε (Zn)

by Fact 5.8 and the hypothesis σ̂ ≥
√
2B̂η+ε (Zn) ≥

√
2‖B1‖lenη+ε (Zn). Therefore,

we obtain Eq. (24) by Corollary 3.12 since A1 ⊆ Zn. Next, we show

DA2,
√
Σ2

+DZn,
√
Σ0+Σ1

≈s DZn,
√
Σ0+Σ1+Σ2

(25)

https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

Low Communication Threshold FHE from Standard (Module-)LWE 35

Algorithm 13: Module-LWE-based underlying FHE scheme mFHE :=
(PP,KeyGen,Setup,Enc,Dec)

PP(1κ, 1N)→ pp:
1 return pp := (n, k,m,Q, χmlwe, Beval) . χmlwe: distribution over Z
KeyGen():

2 sk := s←R(χn
mlwe)

k, pk := (A,b := As+ e) ∼ MLWE(k,m,Q,R(χn
mlwe))

3 Generate the evaluation key evk . We omit the details of evk
4 return (evk, pk, sk)

Enc(pk, µ ∈M := R2):
5 r←R(χn

mlwe)
m, f ←R(χn

mlwe)
k, f ←R(χn

mlwe)

6 return ct := (a, b) := (rᵀA+ f , rᵀb+ f + bQ
2
c · µ) ∈ Rk+1

Q

Note: PP outputs pp s.t. the noise in the ciphertext ect := b− aᵀs− bQ
2
c · µ

satisfies ‖ect‖∞ < Beval with overwhelming probability
Eval(evk, C, ct1, . . . , ctl):

7 return ct := (a, b) s.t. eeval := b− aᵀs− bQ
2
c · C(µ1, . . . , µl) satisfies

‖eeval‖∞ < Beval for any C, where µ1, . . . , µl are the plaintexts of ct1, . . . , ctl
Dec(sk, ct := (a, b))→ µ ∈M:

8 return µ := b(b− aᵀs)/bQ
2
ce

via Corollary 3.12 again. By Fact 3.9, Fact 5.8 and the hypothesis η+ε (Zn) ≤ σ̂,
we have

√
Σ0 +Σ1 ≥ ηε(Zn) because we have

σmin(
√
Σ0 +Σ1) ≥ min{σmin(

√
Σ0), σmin(

√
Σ1)} ≥ σ̂ ≥ η+ε (Zn).

Furthermore, we have
√
((Σ0 +Σ1)−1 +Σ−12)−1 ≥ ηε(L1(B2)) because

σmin(

√
((Σ0 +Σ1)−1 +Σ−12)−1) ≥ 1√

2
min{σmin(Σ0 +Σ1), σmin(Σ2)}

≥ 1√
2
min{σmin(Σ0), σmin(Σ1), σmin(Σ2)}

≥ 1√
2
σ̂ ≥ ‖B2‖lenη+ε (Zn)

holds by the hypothesis σ̂ ≥
√
2B̂η+ε (Zn) ≥

√
2‖B2‖lenη+ε (Zn). Hence, we obtain

Eq. (25) by Corollary 3.12. Repeating the above, we obtain Eq. (23).

C Omitted Construction of our MLWE-based ThFHE

In this section, we extend our LWE-based threshold FHE presented in Section 4
into the construction based on module-LWE.

We first describe underlying FHE scheme based on MLWE in Algo. 13. The
syntax of FHE is the same as Definition 4.1. Then, we present our MLWE-based
threshold FHE scheme in Algo. 14.

36 H. Okada and T. Takagi

Algorithm 14: Our threshold FHE from Module-LWE: mThFHE := (PP,
KeyGen,Setup,Enc,MaskErr,ServerDec,PartDec,FinDec).
PP(1κ, 1N):

1 return pp := (T, n, k,m, p, q,Q = p · q, χmlwe, σ0, σ1, σflood, Bpub, Beval, LDec)

KeyGen(T,N):
2 Let (evk, pk, sk)← mFHE.KeyGen(), and denote sk = s = (s1, . . . , sk)

ᵀ.
3 err := ζ := (ζ(1), . . . , ζ(LDec))← (R(DZn,σ0

√
B2

pub
I−Σs

))LDec , where

Σs :=
∑

i∈[k] Gram(si).
4 {ski := si, erri := ζi}i∈[N] ← ShamirRq,T,N .Share((sk, err))

5 for (i, j) ∈ [N]× [N] do seedi,j
$← {0, 1}κ

6 for i ∈ [N] do seedseti := {seedi,j , seedj,i}j∈[N]

7 return (evk, pk, sk, err, {ski, erri, seedseti}i∈[N])

Enc(pk, µ ∈M := R2):
8 return ct← mFHE.Enc(pk, µ) (defined in Algo. 13)
Eval(evk, C, ct1, . . . , ctl):

9 return cteval ← mFHE.Eval(evk, C, ct1, . . . , ctl) (defined in Algo. 13)
MaskErr(erri, seedseti, act, sid):

10 mrow
act,i :=

∑
j∈act PRF(seedi,j , sid) ∈ Rq . Private row-sum mask of Pi

11 return maskerr
(sid)
i := λact,i · ζ(sid)i +mrow

act,i ∈ Rq . Masked share of ζ

ServerDec(ct, act, sid, {maskerr
(sid)
i }i∈act):

12 ctfresh ← Encpk(0), E←R(DZn,σflood) . We use the discrete Gaussian for E

13 ctin := (ctin,0, ctin,1) := ct+ ctfresh + (0,E) ∈ Rk+1
Q ,

14 ctdec,0 :=
⌊

1
p
· ctin,0

⌉
σ0

∈ Rk
q

15 ctdec,1 :=
⌊

1
p
· ctin,1

⌉
σ1

+
∑

i∈act maskerr
(sid)
i ∈ Rq

16 return ctdec := (ctdec,0, ctdec,1) := (a, b)

PartDec(ctdec := (a, b), ski, seedseti, act, sid):
17 mcol

act,i :=
∑

j∈act PRF(seedj,i, sid) ∈ Rq . Private column-sum mask of Pi

18 return pdi := λact,i · aᵀsi +mcol
act,i ∈ Rq

FinDec(ctdec := (a, b), {pdi}i∈act, act)→ µ ∈M or ⊥:
19 assert {|act| ≥ T}
20 return µ := b(b−

∑
i∈actpdi)/b

q
2
ce

	Low Communication Threshold FHE from Standard (Module-)LWE
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Technical Overview
	2.1 Threshold FHE with Noise Flooding AJL+12,BGG+18
	2.2 Prior Work: Flood-and-Round Threshold FHE PS25
	2.3 Our Solution: ``Noise Padding'' and Masking
	2.4 Future Work

	3 Preliminaries
	3.1 Notation
	3.2 Statistics
	3.3 Lattices
	3.4 Gaussians
	3.5 Learning with Errors (LWE)
	3.6 Shamir Secret Sharing

	4 Our Threshold FHE Scheme from LWE
	4.1 Structure of the Underlying FHE Scheme
	4.2 Construction and the Threshold Decryption Procedure
	4.3 Noise Analysis
	4.4 Correctness
	4.5 Security

	5 Our Threshold FHE Scheme from Module-LWE
	5.1 Preliminaries related to Module-LWE
	5.2 Noise Analysis
	5.3 Correctness
	5.4 Security

	References
	A Definition of Pseudorandom Function
	B Proof of Lemma 5.9
	C Omitted Construction of our MLWE-based ThFHE

