
TreeKEM: A Modular Machine-Checked Symbolic Security Analysis
of Group Key Agreement in Messaging Layer Security

Théophile Wallez
Inria Paris

Jonathan Protzenko
Microsoft Azure Research

Karthikeyan Bhargavan
Cryspen

Abstract—The Messaging Layer Security (MLS) protocol stan-
dard proposes a novel tree-based protocol that enables efficient
end-to-end encrypted messaging over large groups with thou-
sands of members. Its functionality can be divided into three
components: TreeSync for authenticating and synchronizing
group state, TreeKEM for the core group key agreement, and
TreeDEM for group message encryption. While previous works
have analyzed the security of abstract models of TreeKEM,
they do not account for the precise low-level details of the pro-
tocol standard. This work presents the first machine-checked
security proof for TreeKEM. Our proof is in the symbolic
Dolev-Yao model and applies to a bit-level precise, executable,
interoperable specification of the protocol. Furthermore, our
security theorem for TreeKEM composes naturally with a
previous result for TreeSync to provide a strong modular
security guarantee for the published MLS standard.

1. Introduction

The Messaging Layer Security (MLS) standard [9], pub-
lished in 2023, is the first and till-date only Internet standard
for secure end-to-end encrypted messaging. It is currently
implemented by multiple messaging software vendors, in-
cluding Cisco, AWS, Wire, and XMTP, and several vendors
have announced their intention to support it in the future.
With the advent of new regulations that require messaging
interoperability, like the EU Digital Markets Act, an open
standard like MLS is seen by many as the basis for the next
generation of secure messaging applications.

Compared to popular and widely-deployed messaging
protocols like Signal [2] and its many variants, the design
of MLS distinguishes itself in two important ways.

First, MLS puts group messaging front and center and
seeks to scale up to groups with thousands of members. To
achieve this, MLS is built around a new tree-based protocol
that scales logarithmically with the group size (in the ideal
case) and linearly in the worst case. In contrast, protocols
that build group messaging using two-party channels, such
as Signal Sender Keys [7], scale linearly with group size in
the best case and quadratically in the worst. Furthermore,
these protocols do not provide important properties like
membership agreement and post-compromise security for
group conversations. With the growth in popularity of group
messaging, and with the increase in message sizes entailed

Figure 1: A Modular Treatment of Messaging Layer Secu-
rity: TreeSync, TreeKEM, and TreeDEM

by post-quantum cryptography, the improved security and
scalability of MLS is increasingly desirable.

Second, inspired by the experience of the Transport
Layer Security (TLS) working group in the standardization
of TLS 1.3, the design of MLS was structured as a collabo-
ration between protocol designers and cryptographic experts
with the goal of developing security proofs of the protocol
alongside standardization. This process resulted in a number
of formal security analyses of MLS (and its variants) using
a variety of security models and techniques [3], [4], [6],
[13], [15], [18], [21]. The current work is also a result
of this long-term collaboration, and it contributes a new
machine-checked security proof for TreeKEM, the core key
agreement component of MLS.

MLS: TreeSync, TreeKEM, and TreeDEM. In previous
work, Wallez et al. [21] identified a modular decomposition
of MLS into three sub-protocols, as depicted in Figure 1:

• TreeSync: a protocol that synchronizes the shared
group state across group members. The shared state
includes the current group membership and is struc-
tured as a tree, with each occupied leaf corresponding
to a member, and each internal node representing a
subgroup. TreeSync uses signatures and Merkle-tree
style hash computations to authenticate the initial group
state provided to a member and all subsequent changes
to the state. It also ensures that the tree data structure

maintains an internal integrity invariant. This authenti-
cated, synchronized state is then passed to TreeKEM.

• TreeKEM: a protocol that allows each member to use
its private keys and the sequence of authenticated states
provided by TreeSync to derive a sequence of group
keys, called epoch secrets (Kn). TreeKEM uses the
tree structure to efficiently update the epoch secret; in
the best case, this requires only a logarithmic number
of public key encryptions and a single decryption at
each recipient. Furthermore, TreeKEM provides post-
compromise security, and in particular, security against
members that have been removed.

• TreeDEM: a protocol that takes the epoch secret Kn

computed by TreeKEM and uses it to derive message
encryption keys for each group member. These keys
are then used to encrypt and decrypt group messages
so that only the current members can send or receive
them. After each message, the message encryption keys
are ratcheted forward to provide forward secrecy.

When compared with a two-party secure channel pro-
tocol like TLS, TreeKEM corresponds to the handshake
protocol, and TreeDEM corresponds to the record layer. Of
course, the complexity of MLS is in handling the dynamic
group setting where the list of participants can grow and
change. While all three of these protocols are novel and
deserve close scrutiny via formal security analyses, in this
paper, we will focus on modeling and analyzing TreeKEM.

Security Analyses for Abstract Models of MLS. A key
challenge when analyzing a protocol standard is in finding
the right level of abstraction. The MLS standard is 132 pages
long; it defines the high-level cryptographic constructions
and algorithms of TreeSync, TreeKEM, and TreeDEM, but
also defines the concrete tree data structure and operations
on it, the precise low-level formats of all messages and
cryptographic inputs, and handles the negotiation of versions
and ciphersuites. Most prior works on analyzing MLS ignore
most of these low-level details and instead model MLS
as an abstract group key agreement protocol so that its
specification can fit in a few pages and a formal proof of
its security can be feasible.

Some works have analyzed the core key agreement of
MLS with pen-and-paper proofs: [5] defines a new security
definition called continuous group key agreement (CGKA)
for protocols like TreeKEM; [3] presents a proof that
TreeKEM as specified in MLS draft 7 is a CGKA; [4]
presents a modular proof of MLS draft 11, by decomposing
it into a CGKA protocol (essentially TreeSync+TreeKEM)
and a stateful group AEAD protocol (i.e. TreeDEM); [6] an-
alyzes the security of MLS draft 12 against malicious group
members, by focusing on the integrity mechanisms within
TreeSync. Other pen-and-paper proofs focus on aspects of
MLS outside the core TreeKEM component: [15] analyzes
the MLS key schedule, [17] studies post-compromise secu-
rity for group messaging protocols like MLS.

There have also been some attempts at using (semi-
)automated tools to obtain machine-checked symbolic secu-
rity proofs for abstract models of TreeKEM: [13] analyzes

the original version of TreeKEM [12] using a symbolic
model in F∗ [20] and compares its security with alternate
designs; [18] shows how a simplified version of TreeKEM
can be analyzed in the Tamarin prover for forward secrecy
(but not post-compromise or post-remove security).

Several of these works suggest improvements to MLS,
some of which were incorporated into the MLS standard
before publication. Still other works present and analyze
new group messaging protocols inspired by MLS, but we do
not consider these works here. However, none of the proofs
in these works applies to the published MLS standard, since
they analyze abstract models that leave out many of the
details and options that make MLS complex.

Verifying an Executable Specification of TreeKEM. In
contrast to the above works, our work is directly inspired
by the work of [21], which presents a proof for a bit-level
precise, executable, testable specification of the TreeSync
component of MLS. The advantage of working on such
a specification is that one can run it against protocol test
vectors, or test it for interoperability with other implemen-
tations, to gain confidence that the model we are proving
security for is not missing any important protocol details.

Handling low-level details can be crucial for security.
For example, none of the papers on MLS cited above
precisely model the signatures used in MLS. Even the pen-
and-paper security proof for MLS in [6] abstracts away
from the formats of the signature inputs, which would have
been tedious to handle in a manual proof, and assumes
that these signatures cannot be confused for each other.
As a consequence, this proof misses an important signature
ambiguity attack on MLS, which was subsequently found
in the machine-checked proof of TreeSync [21] which did
model all the low-level signature formats.

In this paper, we present an executable, testable, in-
teroperable model of TreeKEM and a security proof for
this model using a symbolic proof framework called DY∗

(the same methodology as [21]). Consequently, our proof
accounts for all the low-level details of the MLS standard,
and our confidentiality theorem for TreeKEM composes
with the authentication theorem for TreeSync in [21].

Contributions. We present the first machine-checked proof
for the TreeKEM component of the published MLS stan-
dard. Ours is also the first proof for a bit-level precise,
executable, interoperable specification of TreeKEM, which
can be seen as a reference implementation. Our proof shows
how to modularly compose the guarantees of TreeKEM
and TreeSync, and provides some important insights on
key management and erasure for MLS implementations
and deployments. Finally, ours is likely the first machine-
checked symbolic security proof for group key exchange
in dynamic groups (supporting add, remove, and update),
and the first to establishing properties like post-compromise
security in the group setting.

Outline. We start with an informal, accessible description
of TreeKEM (§2); next, we show how to capture TreeKEM
in formal language, encoding its specification using the F∗

2

proof assistant (§3). Then, we state the security properties
we proved (§4), with a precise and extensive discussion of
potential paths to compromise, followed by insights about
our proof techniques (§5). Finally, we discuss our results
and conclude (§6).

2. The MLS TreeKEM Protocol

We now describe TreeKEM as specified by the MLS
standard [9]. We start by describing the overall goals of
TreeKEM (§2.1), then define the two main mechanisms of
TreeKEM: the use of a tree to produce a fresh commit secret
shared by the group, guaranteeing post-compromise security
and remove-security (§2.2), and key schedule that provides
forward secrecy and add-security (§2.3).

2.1. Goals of TreeKEM

The goal of TreeKEM is, at each epoch, to establish
an epoch secret that is known to exactly the participants
currently in the group. This epoch secret is then used in
TreeDEM to derive the same message encryption keys at
each participant. The functionality provided by TreeKEM is
sometimes called continuous group key agreement [5].

Design constraints. The initial design of group key estab-
lishment in MLS was based around Asynchronous Ratchet-
ing Trees [16] which used a tree of Diffie-Hellman opera-
tions to enable efficient asymmetric ratcheting for groups.
TreeKEM [12] was proposed as a KEM-based more efficient
alternative to ART. The current version of TreeKEM in
the MLS standard is the culmination of multiple revisions
and extensions since these early designs. It aims to satisfy
several constraints; in particular, the protocol must i) handle
dynamic groups (i.e. participants can join and leave the
group over time), ii) be asynchronous, (i.e. participants are
not required to always be online), iii) be efficient (i.e. scale
better than linearly on the number of participants) and iv)
provide security properties like key confidentiality, forward
secrecy and post-compromise security. Goal iv) is the main
topic of study in this paper.

Additionally, TreeKEM makes certain assumptions
about the design of the overall system, which are captured
in the MLS architecture document [11]. Notably, TreeKEM
relies on an untrusted Delivery Service, which is tasked
with receiving messages from individual group participants,
and broadcasting them back to all other group participants.
In other words, MLS is not a peer-to-peer service where
messages are sent directly from one participant to another.

TreeKEM Terminology. MLS is an asynchronous, dis-
tributed protocol. The TreeKEM specification therefore dis-
tinguishes the construction (locally, by a participant) of
operations over the group (e.g. addition and removal of
participants), known as proposals; the bundling of possibly
many such operations into a commit; the application of this
commit to the group to reach the next epoch.

The matter of how competing concurrent commits (by
two different participants) are dealt with falls outside the

scope of the MLS protocol; this is a matter handled by the
untrusted delivery service, which we do not cover in the
present paper. MLS assumes that each participant receives a
sequence of commits from the delivery service and attempts
to process them in order.

Upon processing a commit, the group enters a new epoch
and TreeKEM outputs an epoch secret for the group to
use. In other words, each commit does a round of key
derivation which produces a fresh epoch secret: intuitively,
this means that should anything change with the group (the
membership, a member’s public key, etc.), then a new epoch
secret will be derived for the group.

Crucially, a commit may apply a path update operation
on the internal state of TreeKEM (explained in §2.2) and
output a commit secret, which is used in the computation of
the next epoch secret (explained in §2.3). Such path updates
are mandatory except in add-only commits, a special flavor
of commit that does not contain a path update operation
(we leave the description of add-only commits to §2.3). We
explain path updates and commit secrets in detail in the
remainder of this section.

An additional element that flows into the construction
of the epoch secret is the group context, which summarizes
information about the current state of the group – as we will
see later, this is important for the security proofs.

Security properties, informally. TreeKEM aims to offer
several security guarantees on the epoch secret:

• add security (i.e. new participants must not know epoch
secrets that predate their joining the group),

• remove security (i.e. removed participants must not
know epoch secrets after they have left the group),

• forward secrecy (i.e. the compromise of a participant
by an attacker must not reveal past epoch secrets) and

• post-compromise security (i.e. the epoch secret can
eventually heal from a past compromise).

These properties will be more formally studied in §4.4.
Suffices to say, for now, that forward secrecy and add
security are achieved by judicious key erasure and that
post-compromise security and remove security are achieved
with by sharing fresh randomness (through the path update
operation). In the rest of this section, we describe the state
and mechanisms of the TreeKEM protocol and informally
explain how it achieves these desired security guarantees.

2.2. A Tree for Group Key Agreement

Throughout this section, we will use uppercase letters
to denote nodes of TreeKEM’s tree (A to H for leaves and
T to Z for internal nodes) and lowercase letters to denote
the content stored in these nodes during the lifetime of the
group (e.g. a0, a1, etc).

In TreeKEM, group participants are arranged in the
leaves of a complete binary tree, as depicted in Figure 2a
(nodes A to H). Each node contains a public-key encryption
keypair, whose secret key is known by (and only by) the
participants in the subtree rooted at that node (e.g. the secret
key of v0 is known to c0 and d0, and the secret key of the

3

a0 b0 c0 d0 e0 f0 g0 h0

t0 v0 x0 z0

u0 y0

w0

(a) An initial TreeKEM state.

a1 b0 c0 d0 e0 f0 g0 h0

t1 v0 x0 z0

u1 y0

w1

(b) A issues a path update and commits

a1 b0 c0 d0 e0 f0 g0 h0

t1 v0 x0 z0

u1 y0

w1

(c) B and G are removed

a2 b0 c0 d0 e0 f0 g0 h0

t1 v0 x0 z0

u2 y0

w2

(d) A issues a path update and commits

a2 b′1 c0 d0 e0 f0 g0 h0

t1 v0 x0 z0

ub′

2
y0

wb′

2

(e) B′ is added

a2 b′1 c0 d0 e1 f0 g0 h0

t1 v0 x1 z0

ub′

2
y1

w3

(f) E issues a path update and commits

Figure 2: Evolution of a group’s tree in TreeKEM. Nodes in bold are the nodes updated by the current operation, plain
arrow () indicates hashing the path secret and dashed arrow () indicates encrypting the path secret (the cryptographic
operations are detailed in Figure 3).

psa

pst

psu

psw

cs

nsa

nst

nsu

nsw

xpd

xpd

xpd

xpd

xpd

xpd

xpd

xpd

dkp

dkp

dkp

dkp

pka1

ska1

pkt1
skt1

pku1

sku1

pkw1

skw1

cb

cv

cy

enc(pkb0)

dec(skb0)

enc(pkv0)

dec(skv0)

enc(pky0
)

dec(sky0
)

Figure 3: Cryptographic operations performed during
A’s path update in Figure 2b. xpd is HKDF.Expand,
dkp is HPKE.DeriveKeyPair, enc is HPKE.Seal, dec is
HPKE.Open, ps is “path secret”, ns is “node secret”, cs is
“commit secret”, c is “ciphertext”.

root w0 is known to every participant in the group). This
property is called the tree invariant in the MLS standard [9].

By relying on the tree invariant, we can efficiently
encrypt data to specific sub-groups in the tree. For example,
we can perform one encryption to y0 instead of separate
encryptions to e0, f0, g0 and h0. This optimization is the
essence of TreeKEM; we will see how it permits the efficient
creation of path updates, i.e. refreshing secrets from a leaf
node to the root without modifying every node in the tree.

For encryption, TreeKEM relies on the Hybrid Public
Key Encryption (HPKE) construction [10], which uses a key
encapsulation mechanism (KEM), a key derivation function
(HKDF), and an authenticated encryption (AEAD) algo-
rithm to build a public-key encryption scheme that provides
integrity for the plaintext and for additional data.

We now describe how the group evolves through a series
of updates depicted in Figure 2, and explain how each tree
modification preserves the tree invariant.

Path update. In Figure 2b (and more precisely in Figure 3),
A wants to recover from a potential compromise and bene-
fit from post-compromise security properties of TreeKEM.
Hence, it updates any secret (potentially compromised) it
knows in the tree. To do so, A updates the HPKE keypairs of
the nodes between its leaf and the root (i.e. of the nodes A, T,
U, W, shown in bold in Figure 2b), while ensuring the new
secret keys are known by participants in the corresponding

4

subtree (e.g. the secret key of u1 is transmitted to b0, c0 and
d0), and issues a new commit secret to the group.

Here is how the new secrets are generated. A generates
an initial path secret psa (at the bottom of Figure 3), from
which the new commit secret and all new keypairs will
be derived. Here is how it happens: each updated node
is associated with a path secret (ps□ in Figure 3), from
which two secrets are derived: the node secret for the same
node (ns□ in Figure 3), and the path secret for the node
directly above (depicted as in Figure 2b). The node
secret is used to derive a new HPKE keypair (pk□, sk□
in Figure 3). The commit secret (cs in Figure 3) is the path
secret corresponding to the node that would be above the
root.

Here is how the new secrets are transmitted to the
participants that should know them (e.g. b0 must learn the
new secret key of t1). The path secret of a node can be
used to compute the secret keys of this node and all the
nodes between them and the root, and hence can be used
to compute the commit secret. Therefore, it is sufficient for
every participant to obtain the path secret of the least com-
mon ancestor between them and A (the updater). We could
use this criterion to encrypt one path secret to each group
participant: this requires a linear number of encryptions in
the size of the group. We can instead do a logarithmic
number of encryptions, by relying on the fact that group
participants that obtain a given path secret are arranged in
a subtree, and benefit from the tree invariant to do only
one encryption to this subtree root. Hence it is sufficient to
encrypt pst to b0, psu to v0 and psw to y0 (depicted as
in Figure 2b). The ciphertexts obtained (c□ in Figure 3) and
the new public keys are then sent to every group participant
through the Delivery Service.

Removing participants. In Figure 2c, B and G are removed
from the group. This action is performed using the concept
of blank node. To remove B and G, the contents of their leaf
nodes are erased: their leaf nodes are now blank. Without
further action, this breaks the tree invariant: for example,
B knows t1 although it is not in its subtree anymore. As a
drastic solution to restore the tree invariant, any node whose
secret value is known by B (such as t1) is also blanked, and
the same is done for G (the nodes that were blanked are
shown in bold in Figure 2c).

In Figure 2d, A issues a path update to create a commit
secret known neither by B nor G, thereby obtaining security
after their removal. Blank nodes make this operation more
complex than in Figure 2b, we now describe how a path
update is performed in this situation and introduce two new
concepts: filtered nodes and resolution.

Path update & filtered nodes. In Figure 2d, A issues a
path update to obtain security back after the removal of B
and G. It happens similarly as in Figure 2b and Figure 3,
with one difference about the path secret of T. In Figure 2b,
the path secret of T is encrypted to B, but in Figure 2d, B is
not here because it was removed in Figure 2c. There is no
cb as in Figure 3, hence computing a path secret for T does
not achieve any purpose. The node T is therefore filtered:

it stays blank, and what should have been its path secret
is now the path secret of U, or graphically, the path-secret
arrow () goes directly from A to U.

This optimization ensures that from the viewpoint of
the tree invariant, there are no redundant non-blank nodes
in the tree. Indeed, if during a path update, a bigger subtree
(e.g. rooted at T) covers the same set of participants as
a smaller subtree (e.g. rooted at A), because of the tree
invariant their secret keys will be known by the same set of
participants (e.g. {A}) hence the bigger subtree (e.g. rooted
T) is redundant and its root (e.g. T) is filtered.

This filtering happens each time a bigger subtree covers
the same set of participants as a smaller subtree. For exam-
ple, if C and D were blanked, then the node U would also
be filtered, and what should have been the path secret of T
would become the path secret of W.

Path update & resolution. In Figure 2d (again), A issues
a path update to obtain security back after the removal of
B and G. It happens similarly as in Figure 2b and Figure 3,
with one difference about the encryption of the path secret
of W. In Figure 2b, the path secret of W is encrypted to
Y, but in Figure 2d, Y is blank after the removal of G in
Figure 2c. Instead, we encrypt psw with the smallest set of
public keys such that all participants in the subtree rooted
at Y can decrypt, here, x0 and h0. This set of public keys
is called the resolution of the node Y. In the simplest case
(as it happened in Figure 2b), the resolution of a node is the
public key at that node (when it is not blank). In the other
cases, the resolution of a node is computed by descending in
the tree until encountering a non-blank node and collecting
the public keys of all these non-blank nodes. This is how
we find in Figure 2d that the resolution of Y is the set of
public keys {x0, h0}.

Adding participants. In Figure 2e, B′ is added to the
group. To perform this operation, we place the keypair of
B′ in the left-most blank leaf. If there were no such blank
leaf, we would extend the tree to the right, adding a new
root whose left child is the current tree and right child is
an all-blank tree, thereby doubling the number of leaf nodes
and creating new blank leaves.

This operation breaks the tree invariant, which specifies
that the private key of u2 is known by (and only by) a2,
b′1, c0 and d0. This is not true, because b′1 doesn’t know the
private key of u2 which was generated by the path update
in Figure 2d when b′1 was not in the tree at that time.

To account for this fact, we keep track that b′1 doesn’t
know the private key of u2: we say that b′1 is unmerged for
u2. We do this bookkeeping for all nodes above b′1, and note
that b′1 is also unmerged for w2. With this new concept, we
now reveal the complete formulation of the tree invariant:
the secret key of each non-blank node is known by (and
only by) the merged participants in the subtree rooted at
that node.

Path update & unmerged leaves. In Figure 2f, E issues a
path update. It happens similarly to Figure 2b and Figure 3,
with one difference about the encryption of the path secret

5

isn

csn gcn

jsn

psk gcn

wsn

esn

. . .

isn+1

ctn

gcn
gin

xtr xpd xtr xpd

xpd

xpd

xpd

sig

aenc(skinit,□) senc(□,□)

Figure 4: Cryptographic operations performed in the key
schedule of TreeKEM (§2.3) and Welcome (§2.4). xtr is
HKDF.Extract, xpd is HKDF.Expand, aenc is HPKE.Seal,
senc is AEAD.Seal, sig is signature, is is init secret, cs is
commit secret (see §2.2), gc is group context (appears 3
times), js is joiner secret, psk is pre-shared key, es is epoch
secret (the output of TreeKEM), ws is welcome secret. gi is
group info (see §2.4), ct is confirmation tag. In “. . . ” are the
various keys derived from TreeKEM. Decryption functions
of the Welcome process (§2.4) are left implicit to simplify
the diagram.

of W: it is encrypted to the resolution of u2 which is the
set {u2, b

′
1}. Indeed, recall that the resolution of u2 is the

smallest set of keys to cover all participants in the subtree
of U, and b′1 is unmerged for u2, meaning that it does not
know the private key at u2. Hence, the resolution of u2 must
include the public key of all its unmerged leaves.

In Figure 2e, b′1 was unmerged for w2. Now, the path
secret of w3 has been encrypted to b′1, hence b′1 is not
unmerged for w3: a path update clears unmerged leaves on
the updated nodes.

2.3. The MLS Key Schedule

Intuitively, the tree component of TreeKEM provides
post-compromise security (because secrets are refreshed
upon a path update), and remove security (because a new
commit secret is derived after removing a participant). We
leave a precise characterization of these security guarantees
to §4, and continue our tour of TreeKEM, now describing
the second component of TreeKEM: its key schedule.

Recall that the path secret above the root of the tree is the
commit secret (§2.2). This secret has add-security, remove-
security and post-compromise security. We can deduce this
from the tree invariant: indeed, the commit secret is as secret
as the root node secret key, hence is known by (and only
by) participants in the tree, because after a path update the
root has no unmerged leaves. However, this ensures only a
weak form of forward secrecy: for example, compromising
h0 in Figure 2f would allow the attacker to decrypt the path
secret of w2 in Figure 2d (because it is encrypted with a
key now known by the attacker and we suppose the attacker
knows the ciphertexts), hence compute the commit secret of
this previous epoch.

Strong forward secrecy. Therefore, the commit secret can-
not be used directly for our purposes. We now explain how
to derive the epoch secret (§2.1) from the commit secret; the
epoch secret has the guarantees we desire, such as strong
forward secrecy: a compromise of a participant should not
reveal past epoch secrets. To obtain strong forward secrecy,
the commit secret is injected into a key schedule from which
the epoch secret is computed. The key schedule inherits all
security properties of the commit secret, and further provides
add-security and strong forward secrecy (independently of
the commit secret security) because previous secrets can be
erased upon key derivation. The key schedule is depicted in
Figure 4 and is explained below. It is structured as a loop,
we present the keys in the order they are derived, starting
with the epoch secret and ending with the epoch secret of
the next epoch.

Key schedule. The epoch secret (esn in Figure 4) is the
main key established by TreeKEM, which is used to derive
the keys used by TreeDEM (§2.1). It is also used to derive
the next init secret, which serves to initialize the next epoch.
The init secret (isn and isn+1 in Figure 4) is combined
with the commit secret and the group context to obtain the
joiner secret. The group context is a summary of the current
group state, in particular, it contains (in hashed form) the
initialization keys (see §2.4) with which the joiner secret is
encrypted (see below and §2.4), this will be crucial in the
security proof in §5.3. The joiner secret (jsn in Figure 4) is
encrypted with the initialization key of new participants (or
“joiners”) in the group. (We explain initialization keys in
§2.4.) It is then combined with the pre-shared keys and the
group context to obtain the epoch secret (thereby closing the
keyschedule loop), and is also used to derive the welcome
secret. The welcome secret (wsn in Figure 4) produces a
symmetric key that is used to encrypt the group context to
new participants (as we will see in §2.4). Only a minimal
amount of information is encrypted with the initialization
key; the information that is the same for every joiner (such
as the group context) is encrypted symmetrically via the
welcome secret.

Add-only commits. Because the key schedule provides
forward secrecy and add-security, when the set of group
proposals since the last epoch only contains participant
additions (hence contains no participant removal), it is
not necessary to issue a path update to obtain a commit
secret: instead, we can move to the next epoch using an
empty commit secret. Doing such “add-only commits” still
provides forward secrecy and add-security (because we do
a round of key schedule) and remove-security (because
we only do that when there were no removals). However,
this doesn’t provide post-compromise security (because no
new randomness was injected in the key schedule), hence
shouldn’t be used when we want to recover from a potential
compromise.

6

2.4. Welcoming New Group Members

We briefly mentioned how new participants join a group
in §2.2 and §2.3, we now describe in depth how it happens.
These explanations support the description of our security
proofs in §5.

Key packages. Because participants are added asyn-
chronously, they publish key packages on the Delivery Ser-
vice, which can be used by any group member to add them
to an MLS group. A key package contains a leaf node that
is added to the tree (§2.2), and an initialization key (skinit
in Figure 4) that is used to encrypt the joiner secret (jsn in
Figure 4), which bootstraps the key schedule. Notice that
as we have described things, two asymmetric encryptions
are required to add a new participant to the group: the
joiner secret is encrypted with the initialization key (in §2.3),
and the path secret is encrypted with the leaf node key
(described in §2.2, but omitted from Figure 4). In reality,
TreeKEM features an optimization and performs only one
asymmetric encryption: both the joiner secret and the path
secret are encrypted with the initialization key, in a package
called encrypted group secret – this is the aenc node in
Figure 4. Our TreeKEM API (§3.2) is designed to support
this behavior, and the fact that the path secret is encrypted
with the initialization key and not the leaf node key will
also need to be taken into account in the security proof in
§5.4.

Group info. To join a messaging group, it is not sufficient to
know the group secrets. For example, the TreeKEM protocol
(§2.2) requires each participant to know the tree of public
keys, and the key schedule requires each participant to know
the group context which summarizes the group state (gcn in
Figure 4). The tree may come from an untrusted source (e.g.
the Delivery Service), and the group context is packaged in
the group info (gin in Figure 4), which also contains a value
derived from the current epoch secret, called confirmation
tag (ctn in Figure 4). The group info is further signed by a
group participant, this will be crucial in the security proofs
for the Welcome process (§5.2). Although the group info
contains in principle only public data, it is opportunistically
encrypted with the welcome secret (wsn in Figure 4, see
§2.3).

3. An executable specification of TreeKEM

In §2 we have explained at a high-level the inner work-
ings of the TreeKEM protocol. We now describe how we
specify TreeKEM in F∗ [20], a dependently-typed func-
tional programming language. The specification is byte-
level precise, passes the published test-vectors [1], and is
used in a broader MLS specification that interoperates with
other MLS implementations. Although the explanations in
§2 are from a global viewpoint, we here specify the local
computations performed by one TreeKEM participant.

3.1. TreeKEM’s Tree in F∗

Earlier work [21] modularizes MLS into three sub-
protocols (TreeSync, TreeKEM and TreeDEM) and proves
that the TreeSync sub-protocol authenticates all of the
TreeKEM state. Our specification is based on their work,
and in particular, we reuse their definition of trees to define
TreeKEM trees as follows:

1 type treekem leaf = {
2 public key: bytes; }
3
4 type treekem node = {
5 public key: bytes;
6 unmerged leaves: list nat; }
7
8 type treekem public =
9 tree (option treekem leaf) (option treekem node)

10
11 type treekem private = path (bytes) (option bytes)

To each node is associated an HPKE keypair (§2.2);
since we are implementing TreeKEM from the (local) point
of view of a participant, we know the public HPKE keys of
all participants; but we only know the private keys on the
path from the leaf (us) to the root. Therefore, tree nodes and
leaves contain public keys only (lines 2 and 5), and internal
nodes additionally contain the list of unmerged leaves (line
6). An additional data structure, named treekem private (line
11) contains the private keys known to us. Because nodes
can be blank, we use the option type whose empty value
represent blank nodes, except for the private HPKE key for
leaf nodes (second argument of path line 11), because it
points to our leaf that is non-blank.

We give an example of code that decrypts the path
secret in Figure 5. This function searches for the least
common ancestor between the updater and us (e.g. node
U for participant C in Figure 2b), finds which ciphertext we
must decrypt depending on our position in the resolution
(e.g. second ciphertext for participant H in Figure 2d) and
find for which private key it was encrypted (e.g. private
key of u2 for participant A in Figure 2f, but private key of
b′1 for B’ because it is unmerged for U). We remark that
this function exhibits many different behaviors depending
on the participant executing it. This level of complexity,
combined with the asymmetry between the sets of opera-
tions performed by different participants, is exactly why a
mechanized proof of security is, in our opinion, necessary
to trust that MLS provides the expected security guarantees.

3.2. TreeKEM API

Users of TreeKEM are not expected to use low-level
functions as shown in Figure 5. Instead, they use a high-level
API that handles modifications to both the public state (the
tree of public keys) and the private state (our path of private
keys from our leaf to the root). We structure our F∗ code to
implement a high-level API that only exposes functions to
process proposals and commits, and to generate commits.
Note that the group management functions (add, remove,

7

val decrypt path secret:
my li:leaf index → upd li:leaf index {my li ̸= upd li} →
treekem public → treekem private → update path →
bytes

let rec decrypt path secret my li upd li t p priv p upd =
if leaf index same side t my li upd li then (

// The update path and the path to our leaf are on the same
// side of the tree. Recurse in that subtree.
let (child,) = get child sibling t upd li in
decrypt path secret child (next p priv) (next p upd)

) else (
// We are at the least common ancestor between us and the
// updater. Obtain the path secret by decryption.
let ciphertext list = get data p upd in
let (, sibling) = get child sibling t upd li in
// Find our ciphertext by descending in the tree until we find
// a non-blank node, and recover the index in the resolution.
let my index = find resolution index sibling my li in
let my ciphertext = ciphertext list[my index] in
// Find the corresponding decryption key. This involves
// checking whether we were encrypted to as an unmerged leaf.
let private key = find private key sibling (next p priv) in
// With all this data gathered, we can now decrypt.
decrypt private key my ciphertext

)

Figure 5: Implementation of the decrypt path secret func-
tion, simplified.

update) are part of the TreeSync API and are orthogonal to
TreeKEM. We focus on the functions for TreeKEM commits
as they are the most interesting.

Processing a commit. Each participant needs to process
two kinds of commits: add-only commits (without path
update), and full commits (§2.3). For this reason, we process
commits in two steps: first, we update our state and compute
the commit secret, second, we perform a round of key
schedule. Furthermore, the first step comes in two flavors,
one for each commit type.

val prepare process full commit:
treekem state → path update → group context →
result pending process commit

val prepare process add only commit:
treekem state →
result pending process commit

val finalize process commit:
pending process commit →
pre shared keys → group context →
result (treekem state & bytes)

These functions might fail, as indicated by the fact that
return values are wrapped in a result. Reasons for failure
include failed decryptions, or malformed path updates – the
error case of result describes the nature of the error so that
the client can act accordingly.

Creating a commit. Just like processing commits, creating

new commits happens in two steps. In the case of a full
commit, the first step, which handles the refresh of the tree
and the commit secret, must itself be decomposed into two
sub-steps, below.

val prepare create commit:
treekem state → entropy →
result (pending create commit & pre path)

val continue create commit:
pending create commit →
added leaves:list nat → group context →
entropy →
result (pending create commit 2 & path & list bytes)

The first function generates fresh path secrets and outputs
the new public keys (in pre path), for nodes along the
affected path. The user can feed these new public keys into
TreeSync to compute the new signature of our leaf node (that
authenticates these new public keys) and compute a hash of
the new tree – as mentioned earlier, we treat TreeSync as
a signature primitive for the tree itself. This new tree hash
is used within the group context, which is itself used when
encrypting path secrets: this is what the second function
does. It returns a pending commit creation object, an updated
path, and the path secret that will be sent over to the joiners
along with their welcome package to invite them into the
group.

3.3. Execution model

One detail we omitted from our presentation (for con-
ciseness and readability) is that all of those specification-
level functions are actually parametric over the type of bytes,
and over operations that operate on such bytes. We do so
efficiently using the type class mechanism of F∗.

This allows us to instantiate the specification either with
concrete bytes (i.e. bitstrings) or with abstract symbolic
bytes that are used in DY∗ [14] proofs (see §4.1). The former
allows us to show that we are byte-for-byte conformant with
the MLS standard, by running our specification (via F∗’s
extraction mechanism to OCaml) against test vectors and
other implementations for interoperability testing. The latter,
naturally, allows us to conduct our proof of security, in the
next section.

Furthermore, we point out that our specification is free of
any side effects: there is no memory (we never use a pointer
or reference type), meaning the functions take, and return, a
state, rather than modifying a global memory. Should some
IO action (or, effect) need to happen, it suffices for the
function to return, e.g., a list of messages to be effectively
sent on the network.

To execute our specification and test it for interoperabil-
ity, we wrote some glue code to allow our pure specification
to interact with the effectful libraries such as networking.
For proofs, we embed our specification in the trace-based
semantics of DY∗, as explained next.

8

4. A security theorem for TreeKEM

4.1. Background on DY∗

DY∗ [14] is an F∗ [20] framework to state and prove
security properties of cryptographic protocols. DY∗ uses a
symbolic trace-based runtime model, where various partic-
ipants can participate in a cryptographic protocol by call-
ing cryptographic functions, generating random bytestrings,
storing local state, logging events that indicate progress
in the protocol execution, and sending messages on the
network.

Threat model. DY∗ considers an active attacker that con-
trols the network (hence can intercept, replay, or modify
messages) and can dynamically compromise participants to
learn the content of their private state.

Cryptographic assumptions. DY∗ abstracts cryptographic
functions using the Dolev-Yao (or symbolic) model [19].
The symbolic model treats cryptographic functions as being
perfect: for example, when sending a ciphertext on the
network, the attacker learns nothing about the associated
plaintext unless the attacker knows the corresponding de-
cryption key (e.g. by compromising a participant), in which
case they also learn the content of the plaintext.

Security theorems. DY∗ users can express security prop-
erties as reachability properties, meaning that all traces
reachable through protocol execution satisfy some security
property (specific to each protocol). An example of trace
property that encodes confidentiality would be: if a partic-
ipant finishes the key exchange protocol and the attacker
knows the exchanged key, then the attacker must have
compromised one of the participants involved in the key
exchange.

Security proofs. DY∗ relies on its user to provide a
trace invariant, then prove that each protocol step preserves
the invariant (hence any reachable trace satisfies the trace
invariant) and prove that the trace invariant implies the
desired security properties. Note that the trace invariants
are not trusted, they are only a proof technique to prove
properties on all reachable traces. To define the trace in-
variant, DY∗ provides two tools. The first tool, related to
confidentiality, are security labels, which encode an over-
approximation of the compromises for an attacker to know
some given bytestring. Hence, if the attacker knows some
bytestring (e.g. the private signature key of participant p)
then this bytestring’s label ensures that the attacker must
have compromised some particular state (e.g. the state where
participant p stores their private signature keys). Some labels
are more secure than others, in which case we say the less
secure label flows to the more secure one (which we note
l1 ≳ l2). Security labels will be the main workhorse of
security proofs for TreeKEM (§5). The second tool, related
to authenticity, are cryptographic predicates: for example,
every participant will only sign messages that satisfy the
(protocol-specific) signature predicate. When a signature
verifies, we can then deduce that it was either computed by

an honest participant, in which case the signature predicate
holds on the message, or that it was computed by the
attacker, in which case they know the signature key, hence
must have performed some compromise depicted by the
signature key security label. Signature predicates will also be
a workhorse for security proofs in TreeKEM, mostly through
the work of TreeSync [21].

4.2. Preliminaries

History of a group. In our security theorem, we consider
everything from the viewpoint of a participant p belonging
to a TreeKEM group G. This participant has seen the group
evolve over time, resulting in several epoch secrets being
established throughout the group’s lifetime. At each epoch,
participant p logs an event containing the information on
their local group state at this epoch: the epoch secret Kn,
the group roster p(n)

1 , . . . , p(n)
m (containing p), the joiners

j(n)1 , . . . , j(n)q (contained in the group roster), the tree Tn

(whose leaves form the group roster), and whether the
commit is add-only. For example in Figure 2, assuming we
start at epoch 0, we have p(0)

1 = a0 and p(1)
1 = a1, however,

p(0)
5 = p(1)

5 = p(2)
5 = e0 and p(3)

5 = e1. Participants that
didn’t update since they joined have a special tag in Tn.
When that is the case, we write stalen(p′); for example in
Figure 2f, p(3)

2 = b′1 and stalen(p
(3)
2). Naturally, joiners of

this epoch didn’t update since they joined, so stalen(j
(n)
i).

If we did not create the group, we have been invited in it
by participant pinv at epoch n0. Furthermore participant p
records the time at which they verify signatures: we write
T(p(n)

i) the time of verification of the signature of leaf node
of p(n)

i , and T(j(n)i) the time of verification of the signature
of key package of j(n)i .

State storage. We consider a fine-grained model, where
different parts of the state may be compromised indepen-
dently. For instance, to account for a deployment that may
use higher-security storage (e.g. HSMs) to store (long-term)
signature keys, we can let the private node keys stored by
a participant be compromised, without necessarily compro-
mising the signature keys. Furthermore, we consider that
different signature keys can themselves be compromised
independently, just like initialization keys and epoch secrets.
However, we consider that all nodes private keys are com-
promised together, since compromising one reveals all node
private keys on the path from the compromised participant
to the root.

State identifiers. We write Kn@p to identify the state of
participant p that stores the epoch secret Kn of group G at
epoch n. We write Sig(p(n)

i) to identify the state that stores
the signature key of p(n)

i . We write Init(j(n)i) to identify
the state that stores the initialization key of j(n)i . We write
Node(p(n)

i) to identify the state that stores the node keys of
p(n)
i for the current version of p(n)

i . For example in Figure 2,
p(2)
5 = e0 hence Node(p(2)

5) corresponds to the node keys

9

of {e0, x0, y0, w0, w1, w2}, while Node(p(3)
5) corresponds to

the node keys of {e1, x1, y1, w3}.

Notations. We write Attt(b) when the attacker knows the
bytestring b at time t. We write Compromiset(S) when the
attacker has compromised the state identified by S before
time t.

4.3. Security properties

We now describe the security properties we have proved
on TreeKEM. We state confidentiality as a trace property:
if the attacker knows some epoch secret, then some set of
states must have been compromised at some time in the
past. In turn, we will see in §4.4 that this trace property
implies the desired security guarantees of TreeKEM, such
as add-security, remove-security, forward secrecy and post-
compromise security (see §2.1). For the purpose of stating
security goals in this paper, we assume that some state stores
the epoch secret, but in our code, this secret is never actually
stored since it would break forward secrecy of TreeDEM.

We consider three scenarios: in the first scenario, we
consider a participant in a group that has moved into a new
epoch, in the second scenario, we consider a participant that
has just joined a group, in the third scenario, we consider
a participant that has just created a group. These three
scenarios cover all that may happen within an MLS group;
indeed, advancing an epoch in the first scenario is done via
a commit that may contain any number of add, remove, or
other operations, and optionally a path update. These three
scenarios come with different security guarantees.

Confidentiality theorem for new epochs. Suppose a par-
ticipant p is in a group G at epoch n with epoch secret Kn,
participants p(n)

i , PSKs psksn and joiners j(n)i . If Attt(Kn),
then one of the following cases hold:
(1) ∃i.Compromiset(Kn@p(n)

i): the attacker has compro-
mised before t the state containing the epoch secret of
one of the participants p(n)

i in the current group.
(2) ∃i.Compromiset(Init(j(n)i)) and Attt(psksn): the at-

tacker has compromised before t the initialization key
used to invite the joiner j(n)i into the group at epoch n.

(3) ∃i.CompromiseT(j(n)
i)

(Sig(j(n)i)) and Attt(psksn): the
attacker has compromised the signature key of one of
the joiners j(n)i in the group at epoch n, namely the
one that signed their initialization key. In that case, the
compromise must have happened before we checked
their key package signature. This is a variant of case
(2) where the attacker is active.

(4) Attt(Kn−1) and add-onlyn and Attt(psksn): the at-
tacker knows the previous epoch secret, and the commit
that led to epoch n is an add-only commit (as explained
in §2.3).

(5) Attt(Kn−1) and ∃i.Compromiset(Node(p(n)
i)) and

Attt(psksn): the attacker knows the previous epoch
secret, and has compromised before t the node keys
stored by a participant p(n)

i of the current group after
they last issued a path update.

(6) Attt(Kn−1) and ∃i.CompromiseT(p(n)
i)

(Sig(p(n)
i)) and

Attt(psksn): the attacker knows the previous epoch
secret, and has compromised the signature key of a
participant of the current group p(n)

i , namely the one
that signs their leaf node is the tree. In that case, the
compromise must have happened before we checked
their leaf node signature. This is a variant of case (5)
where the attacker is active.

(7) Attt(Kn−1) and ∃i.Compromiset(Init(p(n)
i)) and

stalen(p
(n)
i) and Attt(psksn): the attacker knows the

previous epoch secret, and has compromised before t

the initialization keys stored by a stale participant p(n)
i

of the current group. This possibility of compromise
exists because the path secret is encrypted using the
initialization keys of joiners. Note that p might not
know what precise initialization key was compromised
– it might be that p joined after p(n)

i , meaning p never
saw the key package of p(n)

i . However, p knows it
is an initialization key of p(n)

i that got compromised
(i.e., p knows i).

Confidentiality theorem when joining. Suppose a par-
ticipant p joined a group G at epoch n with epoch secret
Kn, participants p(n)

i , PSKs psksn. If Attt(Kn), one of the
following cases hold:
(8) CompromiseT(pinv)

(Sig(pinv)): the attacker has com-
promised the signature key of the participant that in-
vited p. In that case, the signature must have happened
before we checked the signature in the GroupInfo part
of the Welcome message (as explained in §2.4).

(9) Participant pinv (who invited participant p in the group
G) belongs to a group G at epoch n with epoch secret
Kn, participants p(n)

i , PSKs psksn and joiners that are
a subset of {p(n)

i | stalen(p
(n)
i)}. In that scenario, we

have all the hypotheses required to apply this theorem
inductively on pinv.

Confidentiality theorem when creating. Suppose a par-
ticipant p created a group G (hence at epoch 0) with epoch
key K0. If Attt(K0), then:
(10) Compromiset(K0@p): the attacker has compromised

before t the state containing the epoch secret of partic-
ipant p (the only participant in the group).

Malicious participants. In previous MLS drafts, TreeKEM
was vulnerable to attacks wherein a malicious participant
could break the tree invariant and compute the epoch se-
crets after they are removed from the tree, hence breaking
remove-security (e.g. “double-join attack” in [13, Fig 5 and
Fig 8], or “attack on tree-signing” in [6, Fig 8]). In DY∗, we
model malicious participants as participants whose complete
state is fully compromised: this has the same effect as if
they were the attacker. Hence our security theorem accounts
for malicious participants in its threat model, and we will
see in §4.4 that it entails remove-security, making such
attacks impossible. Indeed, the “double-join attack” [13,
Fig 5] was since fixed by introducing the concept of blank

10

nodes, and the “attack on tree-signing” [6, Fig 8] was since
fixed by introducing the concept of parent hash and formally
analyzed as part of the TreeSync sub-protocol [21].

4.4. Security corollaries

Using the TreeKEM security theorem in §4.3, we can
now prove as corollaries the desired TreeKEM security
guarantees stated in §2.1. What follows is manual reasoning:
we are auditing our theorem statement to make sure it does
indeed provide the security guarantees we want.

Add-security, remove-security. The security theorem im-
plies that necessarily, one of the participants in the current
epoch must be compromised. Indeed, each of the cases (1)
to (3), (5) to (8) and (10) implies the compromise of a
participant of the current group, because j(n)i and pinv are
participants of the current group. By induction, (4) implies
a compromise of a participant in the group at epoch n− 1
which is a subset of participants at epoch n because the
commit is add-only. In case (9), by instantiating the theorem
inductively on pinv we deduce that a compromise must
have happened in the current group roster. This implies that
if no group participant at epoch n is compromised, then
compromising any participant that was removed or that is
not yet added provides no useful knowledge to the attacker.

Forward secrecy. The security property implies that some
compromise of keys must have happened in the past, or not
too far in the future. Indeed, in the case of compromise
of a signature (cases (3), (6) and (8)), the compromise must
have happened before we checked the signature, hence in the
past. In cases (1) and (10), because participants delete epoch
secrets when moving to the next epoch, the compromise
must happen before group participants move to the next
epoch. In case (2), we notice that forward-secrecy relies on
initialization keys being deleted quickly after processing a
Welcome message. Not doing this undermines the forward-
secrecy guarantees of MLS. We have found this was not part
of the MLS deployment recommendations by the architec-
ture document of MLS and notified the working group. In
cases (4), (5) and (7), we do an induction on epoch n− 1,
and in case (9) we do an induction on participant pinv.

Post-compromise security. The security theorem implies
that a compromise cannot happen too far in the past. We
can do a case analysis again. In cases (1) and (10) the
compromise must have happened after p(n)

i has computed
the epoch secret Kn. Similarly, in case (5) the compromise
must have happened after p(n)

i has last issued a path update.
In case (4), the group cannot heal from a compromise
(unless psksn is unknown to the attacker), hence we rely
the healing of the previous epoch by doing an induction
on epoch n − 1. This means that if the group keeps doing
add-only commits, there is no opportunity to recover from
compromise (and implementations might need to adopt a
policy encouraging updates to avoid this situation). In the
cases of signature key compromise (cases (3), (6) and (8))
notice that such a compromise might have happened a while

ago if the signature key is not rotated. This highlights
that signature keys must be rotated regularly (so that it
is changed before the attacker has the chance to forge a
signature with it and perform an active attack) or stored
securely e.g. in a hardware security module (HSM): this
is recommended by the MLS architecture document. In
cases (2) and (7), we note that to provide post-compromise
security, the initialization key must not have been generated
too long ago, otherwise this compromise may have happened
far in the past. This highlights that key packages (hence
initialization keys) must expire: adding a key package that
was created too long ago could undermine post-compromise
security. We have communicated to the MLS working group
that this recommendation should be added to the MLS
architecture document. The last case left to consider is (9),
on which we do an induction on pinv.

Lack of epoch authentication in Welcome. Note that
in case (9) our theorem do not give the guarantee to the
invitee (p) that that the inviter (pinv) did invite them at this
epoch. Indeed, in the presence of an active attacker, it may
be possible that although the invitee successfully joined the
group at epoch n, they were actually invited to join the
group in a previous epoch (say, n−1). As discussed above,
this cannot be used to affect the confidentiality guarantees
of TreeKEM, hence is not a practical attack. We describe
this more thoroughly in §A.

5. Proof methodology

We now discuss the methodology we used to prove the
security theorem in §4.3. At a high level, we will use secrecy
labels to prove that we only encrypt messages that are less
secret than the key they are encrypted with, we will prove
how secrecy labels evolve throughout the key derivations,
and we will rely on the signature invariant when needed.

We describe our security proofs in the order keys are
used in TreeKEM: we start with proofs on initialization keys
(§5.1), then move on how they are used to encrypt the joiner
secret in the Welcome message (§5.2), then see how the
key schedule produces a sequence of forward secret epoch
secrets (§5.3), and finally dive into the tree invariant proofs
(§5.4).

5.1. Security lemmas for initialization keys

The first key used by a participant in a group is its
initialization key (skinit in Figure 4), to process the Welcome
message (§2.4). In this section, we present security lemmas
for initialization keys that will be crucial in proofs associated
with the Welcome message (in §5.2) and with the key sched-
ule (in §5.3). As with the rest of the proofs, we describe
security properties from the viewpoint of a participant, at a
specific time point. In what follows, a crucial design choice
is that we store each key in a separate state, which allows
us to talk about the compromise of a particular key, instead
of the compromise of the whole state of a participant.

11

Lemma for a participant’s own key. Each participant
generates its initialization key from fresh randomness, stores
it in its private state and only uses it to decrypt Welcome
messages. As such, we expect the only way for the attacker
to obtain the key is to compromise the participant’s state. We
formally prove this fact, by showing any reachable trace falls
into two categories: (1) either the initialization private key
is currently unknown to the attacker (2) or the attacker has
previously compromised the state storing the initialization
private key.

Lemma for others’ initialization keys. Each participant
receives the initialization public key of each other participant
in a key package (described in §2.4). To prevent the attacker
from tampering with keys, the key package is signed by the
corresponding participant. We expect that if the signature
was computed by a honest participant, they have honestly
computed their initialization key, otherwise the attacker must
have compromised the signature key before we verified the
key package. We formally prove this fact, by showing any
reachable trace falls into three categories: (1) (2) as in the
paragraph above or (3) the attacker has compromised the
other participant’s signature key before we verified the key
package.

Using security labels. We encode the trace properties above
using security labels, namely we prove that if we have ver-
ified a key package, then Init(j(n)i) ⊔ Sig(j(n)i) ≳ L(skinit)
where j(n)i is the joiner we are considering and L(skinit) is
the label of the initialization private key in their key package.
This labeling property allows us to prove that any reachable
trace falls into one of the three categories mentioned above,
and is composable with rest of the security proofs.

5.2. Security lemmas for Welcome

The Welcome message consists of two parts: first, the
GroupInfo object (gin in Figure 4) is signed, and the joiner
secret (jsn in Figure 4) is encrypted with the initialization
keys of joiners (skinit in Figure 4). We now see the security
proofs related to these two cryptographic computations.

Encrypting the joiner secret. To prove that it is safe
to encrypt the joiner secret with the initialization keys
of joiners, we must prove that the joiner secret is less
secret than the initialization private key (as explained in
§4.1). We prove this by combining the theorem on secrecy
label of initialization keys in §5.1 and the theorem on
key schedule that we will prove in §5.3. Formally, we
prove that L(jsn) ≳ L(skinit) by transitivity using the
chain L(jsn) ≳ Init(j(n)i) ⊔ Sig(j(n)i) (proved in §5.3) and
Init(j(n)i) ⊔ Sig(j(n)i) ≳ L(skinit) (proved in §5.1).

Signing GroupInfo. We use the epoch secret (esn in
Figure 4) to derive the confirmation tag (ctn in Figure 4)
and combine it with the group context (gcn in Figure 4)
to form the GroupInfo object (gin in Figure 4). Further,
the GroupInfo is signed by the inviter. In doing so, the
inviter attests that they are in a group with group context

gcn (which includes the epoch number, group identifier, a
hash of the tree, etc), and with an epoch secret esn that
produces the confirmation tag ctn.

Verifying GroupInfo. When the joiner verifies the
GroupInfo signature, they deduce that either the attacker
knew the inviter signature key before they have verified the
GroupInfo (and the attacker is doing an active attack), or that
the inviter is in a group with the same group context and
with an epoch secret that produces the same confirmation
tag. Finally, by collision resistance for the hash function, we
deduce that we must have the same epoch secret. In doing
so, we have proved the cases (8) and (9) of the security
theorem in §4.3.

5.3. Security lemmas for the key schedule

The key schedule (Figure 4) derives a stream of secrets
through extraction (xtr) and expansion (xpd). We prove two
things about the key schedule. First, we prove that the epoch
secret (esn) combines the security of the commit secret (csn)
and the previous epoch secret (esn−1). Second, we prove that
the joiner secret is less secret than the private key of joiners
(skinit). The first goal is easily proved using the semantics
of extraction in DY∗, we therefore focus on the joiner secret.

Labeling of the joiner secret. The joiner secret can be
trivially compromised if the attacker knows isn and csn. If
not, the attacker can gain access to jsn if they compromise
the initialization key skinit of a joiner at epoch n. The joiner
secret jsn is thus the first secret in the key schedule that
is revealed to the attacker when they compromise skinit.
This fact means that the joiner secret is less secret than the
secret that directly precedes it in the key schedule, hence
that interesting proofs must happen in the expansion with the
group context that produced jsn. In DY∗ the security label of
the output of KDF.expand may be weaker than the label of
its input, and it may depend on additional inputs of the KDF
(here, the group context). Indeed, the group context contains
the transcript hash, which contains the proposals adding the
key packages of joiners in the group. This allows us to say
that the label of the joiner secret is weakened using the label
of the joiners’ initialization keys. More precisely, we prove
that L(jsn) ≳ Init(j(n)i) ⊔ Sig(j(n)i) which is then used in
§5.2 to prove that it is safe to encrypt the joiner secret to
each new joiner.

Note that the use of group context in the key derivation
here is important for security, without it it would be possible
that two group participants who don’t agree on the key
packages added at this epoch still compute the same joiner
secret, which would break the security theorem.

5.4. Formally proving the tree invariant

The tree invariant follows the same principle as earlier
(§5.1): first, we consider the security invariant from our own
point of view, then when receiving an update from another
participant, we consider the possibility that their signature

12

key might have been compromised. To establish our security
lemma, we rely on a tree invariant.

The tree invariant. The tree invariant captures the security
guarantees offered by TreeKEM; we show that this invariant
is preserved through every step of the protocol, which
ultimately allows us to conclude that the cryptographic
tree state of TreeKEM (§2.2) is secure. The tree invariant
is a disjunction that captures the two points of view we
mentioned earlier, and states that if the private key of a
(possibly internal) node n is known by the attacker, then
either Compromiset(Node(p)) or CompromiseT(p)(Sig(p)),
where p belongs to the subtree rooted at n and is not an
unmerged leaf for n. The former disjunct captures the fact
that a participant may simply have been compromised; the
latter disjunct captures that we may have been the victim
of an active attack, in which the attacker injects a mali-
cious path update that is signed with another participant’s
compromised signature key. Note that the T(p) in subscript
indicates a temporal relation: the signature key must have
been compromised before we verified that participant’s leaf
node.

Concretely, we prove this invariant by relying on DY∗

secrecy labels, described below.

Lemma on the sender side. We use labels to track
the usage of path secrets throughout the specification of
a commit. Every base cryptographic operation in DY∗ is
annotated with labels in its type; this means that every
usage of the path secret forces us to reason about the set of
compromises by the attacker that would lead to knowledge
of this path secret.

The label of each refreshed path secret (i.e., the output
of the KDF) flows towards all of the sub nodes secrets.
Looking back at Figure 2b, performing a KDF expansion
with the path secret of t1 produces the path secret of u1.
Because the label of u1 covers participants a1, b0, c0, d0, it
is weaker than the label of t1 that covers participants a1 and
b0 only. The path secret of u1 is encrypted with v0’s node
secret – this is a safe thing to do, because the label of u1 is
weaker than the label of v0 (that covers c0 and d0), which
is imposed by encryption in DY∗: the label of the key must
be stronger than the label of the message.

At this stage, we have almost obtained the tree invariant:
if the attacker knows the path secret of u1, it must have
compromised a participant p that is one of a1, b0, c0 or d0.
Because we chose the label of path secrets to be the same as
that of node secrets, and combined with the tree invariant
that previously held upon entering the function, it means
that Compromiset(Node(p)) or CompromiseT(p)(Sig(p)),
and the invariant is re-established.

Lemma on the receiver side. We reuse an earlier for-
malization (and proofs) of TreeSync [21], in order to
use TreeSync as a signature mechanism specialized for
TreeKEM. This follows the same logic as with signing the
initialization key, except this time the committer authenti-
cates every subtree rooted at nodes they have modified (from
their leaf up to the root), using TreeSync to do it efficiently

with one signature in their leaf node.
The authentication covers the entire subtree, that is, the

new node public keys, and all of their intended recipients,
as they appear in the tree invariant. Using the semantics of
DY∗, we know that if the participant is honest, then the
tree invariant is guaranteed by the signature (there was no
compromise). If there is a compromise, it must be the case
that the signature key was compromised before we checked
the signature. This is one of the cases accounted for by the
tree invariant, meaning that the invariant is re-established.

6. Discussion

We have presented a machine-checked security proof for
a bit-level precise, executable, interoperable specification of
TreeKEM. The specification is written in 1.5k lines of F∗

code, and our security proofs are in 4k lines of F∗, relying
on the DY∗ framework. The full development is available
at the URL below, along with instructions for running the
code and verifying the proofs:
https://github.com/Inria-Prosecco/treekem-artifact

Benefits of Machine-Checked Proofs. MLS is a large
protocol and even its TreeKEM component is quite complex.
It maintains a dynamic tree data structure with some unusual
features such as unoccupied leaves, blank nodes, filtered
nodes, unmerged leaves, etc. It defines novel cryptographic
mechanisms for encapsulating secrets to trees of public keys.
It defines new serialization formats for trees, paths, and
various messages and cryptographic inputs.

Ensuring that a formal specification of TreeKEM cap-
tures all these notions correctly can be hard and is greatly
aided by being able to execute and test the specification.
Furthermore, when proving properties about the protocol,
it is easy to forget various corner cases, but a machine-
checked proof keeps us honest and ensures that we account
for anything that may arise in an execution of TreeKEM.
Indeed, we believe that a pen-and-paper proof for the full
TreeKEM protocol at this level of detail would be hard to
write and even harder to check for correctness.

Symbolic vs. Computational Proofs. Our proofs in this
paper rely on a symbolic (i.e. Dolev-Yao) model of cryp-
tography, where the public key encryption is treated as a
perfect black-box that can only be broken if the attacker
knows the private key. In contrast, the classic pen-and-paper
proofs of TreeKEM in prior work [3], [4], [6] operate in a
computational model of cryptography, where public key en-
cryption is modeled in terms of a probabilistic polynomial-
time adversary. Both symbolic and computational models
have their strengths and weaknesses [8]. Computational
cryptographic assumptions are more precise, but symbolic
models yield better proof tools and hence can handle more
protocol details and finer-grained key compromise.

For example, let us compare our work to the most recent
pen-and-paper proof for TreeKEM [6]. This paper proves
a computational security theorem for an abstract model of
TreeKEM draft 12, expressed as pseudocode. Like us, they
consider an active attacker that can dynamically compromise

13

https://github.com/Inria-Prosecco/treekem-artifact

participants, and consider malicious participants. However,
they only allow coarse-grained compromise: the attacker can
only compromise all keys held by a participant, unlike our
work where the attacker can compromise the node secret
keys stored by a participant without compromising their
signature keys. Another difference is that they consider bad
randomness as part of the threat model, which we do not.

We also note that in MLS draft 12, there is no distinction
between the initialization key and the leaf node key. This
hurts forward-secrecy in their theorem since new partici-
pants need to hold on to this medium-term key even after
joining a group. The TreeKEM design in the published MLS
standard was updated to separate the initialization key and
leaf node key, which yields a stronger theorem in our case.

The main proof in [6] shows that the attacker cannot
distinguish the epoch secret from fresh randomness when a
safety predicate (i.e. a trace invariant) holds. Much of the
high-level logic in their proof and ours is the same; the
main differences arise in the different treatment of public-
key encryption, in our handling of low-level cryptographic
formats (ignored in their proofs), and in our proofs being
oriented towards being machine checkable.

Guidance for Erasing Keys, Removing Members. Our
security theorem clearly specifies which key compromises
could affect the confidentiality guarantees of TreeKEM.
This provides useful guidance for MLS implementations
and deployments. For example, initialization keys must be
deleted after a Welcome message is decrypted or when
they expire, and this is important for both forward and
post-compromise security. Our theorem also includes cases
for participants that have joined the group but not yet
updated their encryption keys. Such stale participants affect
the security of the whole group. They could be identified
and potentially removed from the group after a period of
inactivity. We have proposed to add these recommendations
to the MLS architecture document.

Experimenting with Protocol Improvements. TreeKEM
is designed with many defense-in-depth mechanisms; some
were needed for our proofs (e.g. the use of group context),
and some made our proofs simpler (e.g. the authentication
of subtrees in TreeSync). Others we did not need (e.g. the
use of group context in HPKE encryption), and this may
indicate potential future optimizations in the protocol.

Some changes to the protocol would have simplified
our proofs. For example, the transcript hash input format is
defined as a concatenation, which makes it harder to prove
that it is unambiguous. Using a length-prefixed format would
have simplified this proof. As another example, our proofs
for path secret derivation would have been much simpler if
the sibling tree hash were used in the key derivation.

Our executable specification and machine-checked
proofs provide a good basis for experimenting with different
optimizations and variations of MLS. Running the specifica-
tion makes it easy to compare the impact of optimizations on
message size and computation time. Rerunning the proofs
ensures that the new protocol satisfies the same properties
as MLS, and maybe provides new security guarantees.

Future Work. Two natural directions for future work would
be to develop a machine-checked proof of TreeDEM (and
hence complete the verification effort for the MLS standard)
and to investigate the post-quantum security of TreeKEM.

Acknowledgments

We are indebted to Franziskus Kiefer and Raphael
Robert for proofreading a draft of this paper and providing
precious feedback.

This work received funding from the French Govern-
ment, managed by the ANR under grant agreements ANR-
22-PECY-0006 and ANR-19-P3IA-0001.

References

[1] MLS test vectors. https://github.com/mlswg/mls-implementations/
blob/main/test-vectors.md.

[2] Signal specifications, 2016. https://signal.org/docs/.

[3] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekou-
nis. Security analysis and improvements for the IETF MLS standard
for group messaging. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part I, volume 12170 of
Lecture Notes in Computer Science, pages 248–277. Springer, 2020.

[4] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekou-
nis. Modular design of secure group messaging protocols and the
security of MLS. In Yongdae Kim, Jong Kim, Giovanni Vigna,
and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, pages 1463–1483. ACM, 2021.

[5] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk.
Continuous group key agreement with active security. In Theory of
Cryptography: 18th International Conference, TCC 2020, Durham,
NC, USA, November 16–19, 2020, Proceedings, Part II 18, pages
261–290. Springer, 2020.

[6] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider security
of MLS. Cryptology ePrint Archive, Paper 2020/1327, 2020.

[7] David Balbás, Daniel Collins, and Phillip Gajland. Whatsupp with
sender keys? analysis, improvements and security proofs. In Advances
in Cryptology – ASIACRYPT 2023: 29th International Conference on
the Theory and Application of Cryptology and Information Security,
Guangzhou, China, December 4–8, 2023, Proceedings, Part V, page
307–341. Springer-Verlag, 2023.

[8] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. Sok: Computer-aided
cryptography. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 777–795.
IEEE, 2021.

[9] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer
Security (MLS) Protocol. RFC 9420, July 2023.

[10] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christo-
pher A. Wood. Hybrid Public Key Encryption. RFC 9180, February
2022.

[11] Benjamin Beurdouche, Eric Rescorla, Emad Omara, Srinivas Inguva,
and Alan Duric. The Messaging Layer Security (MLS) Architec-
ture. Internet-Draft draft-ietf-mls-architecture-15, Internet Engineer-
ing Task Force, August 2024. Work in Progress.

[12] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla.
TreeKEM: Asynchronous Decentralized Key Management for Large
Dynamic Groups A protocol proposal for Messaging Layer Security
(MLS). Research report, Inria Paris, May 2018.

14

https://github.com/mlswg/mls-implementations/blob/main/test-vectors.md
https://github.com/mlswg/mls-implementations/blob/main/test-vectors.md
https://signal.org/docs/

[13] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg.
Formal Models and Verified Protocols for Group Messaging: Attacks
and Proofs for IETF MLS. Research report, Inria Paris, December
2019.

[14] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram
Hosseyni, Ralf Küsters, Guido Schmitz, and Tim Würtele. DY*:
A modular symbolic verification framework for executable crypto-
graphic protocol code. In IEEE European Symposium on Security
and Privacy (EuroS&P), pages 523–542. IEEE, 2021.

[15] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security
analysis of the mls key derivation. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 2535–2553, 2022.

[16] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and
Kevin Milner. On ends-to-ends encryption: Asynchronous group
messaging with strong security guarantees. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, page 1802–1819. Association for Computing Machinery,
2018.

[17] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of
healing in secure group messaging: Why cross-group effects matter.
In Michael D. Bailey and Rachel Greenstadt, editors, 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 1847–1864. USENIX Association, 2021.

[18] Cas Cremers, Charlie Jacomme, and Philip Lukert. Subterm-Based
Proof Techniques for Improving the Automation and Scope of Se-
curity Protocol Analysis . In 2023 IEEE 36th Computer Security
Foundations Symposium (CSF), pages 200–213. IEEE Computer So-
ciety, July 2023.

[19] Danny Dolev and Andrew Chi-Chih Yao. On the security of public
key protocols. IEEE Trans. Inf. Theory, 29(2):198–207, 1983.

[20] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzin-
dohoue, and Santiago Zanella-Béguelin. Dependent types and multi-
monadic effects in F*. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 256–270,
2016.

[21] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and
Karthikeyan Bhargavan. TreeSync: Authenticated group management
for messaging layer security. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1217–1233, August 2023.

Appendix A.
Lack of epoch authentication in Welcome

In TreeKEM (hence MLS), when an invitee joins a group
through the Welcome procedure (§2.4), they do not have
the guarantee that they were invited at this epoch: they may
have been invited in a previous epoch. Indeed, an attacker
can exploit the fact that during the Welcome process, only
the GroupInfo is signed, but the encrypted group secrets are
not signed, hence not bound to any epoch.

The attacker must be active, hence we suppose they
control the network. The group is at epoch n, with a tree
similar to Figure 2a, with E and F blanked. The attacker
proceeds as follows:

• A invites E in the group and commits to epoch n+ 1.
The attacker do not transmit the Welcome message to
E.

• A invites F in the group and commits to epoch n+ 2.
• The attacker compromises the initialization key of F,

and use it to decrypt the encrypted group secrets (i.e.

joiner secret of epoch n + 2 and path secret of node
X).

• The attacker re-encrypts the group secrets with the
initialization key of E.

• The attacker sends a Welcome message to E, containing
this re-encrypted group secrets and signed GroupInfo
for epoch n+ 2 (obtained when inviting F).

• E successfully joins at epoch n + 2 although it was
invited at epoch n+ 1.

This works by compromising an initialization key, but
it works the same if F is a malicious participant (recall that
we model malicious participants as participants whose state
is fully compromised, see last paragraph of §4.3).

As explained in §4.4, this cannot be used to attack
confidentiality guarantees of TreeKEM.

15

	Introduction
	The MLS TreeKEM Protocol
	Goals of TreeKEM
	A Tree for Group Key Agreement
	The MLS Key Schedule
	Welcoming New Group Members

	An executable specification of TreeKEM
	TreeKEM's Tree in F
	TreeKEM API
	Execution model

	A security theorem for TreeKEM
	Background on DY
	Preliminaries
	Security properties
	Security corollaries

	Proof methodology
	Security lemmas for initialization keys
	Security lemmas for Welcome
	Security lemmas for the key schedule
	Formally proving the tree invariant

	Discussion
	References
	Appendix A: Lack of epoch authentication in Welcome

