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Abstract. We examine the post-quantum security of the Ascon authenticated encryp-
tion (AE) mode. In spite of comprehensive research of Ascon’s classical security, the
potential impact of quantum adversaries on Ascon has not yet been explored much.
We investigate the generic security of the Ascon AE mode in the setting where the
adversary owns a quantum computer to improve its attack, while the adversarial
encryption or decryption queries are still classical. In this so-called Q1 model, Ascon
achieves security up to approximately min{2c/3, 2k/2} evaluations, where c is the
capacity, k the key size, and the adversary is block-wise adaptive but restricted to
one forgery attempt. Our technique is based on applying the semi-classical one-way
to hiding (O2H) lemma, and on tailoring the puncture set to the Ascon mode. Addi-
tionally, we discuss different parameter choices for Ascon and compare our results to
generic quantum attacks, such as Grover-based key search and state recovery.
Keywords: post-quantum security · lightweight cryptography · Ascon · authenti-
cated encryption.

1 Introduction
For the development and analysis of symmetric cryptosystems, the introduction of sponge
functions [BDPA07] has been a major event; it had been particularly useful for the design of
lightweight cryptographic hash functions, such as QUARK [AHMN10], PHOTON [GPP11],
and SPONGENT [BKL+11]. Likewise, the related duplex construction [BDPV11], or the
more detailed SpongeWrap design from the same article, has been the core idea be-
hind many lightweight authenticated encryption schemes (see also [BDPV12]). Both the
CAESAR competition for authenticated encryption [Ber14] and the lightweight cryptog-
raphy competition organized by the US National Institute of Standards and Technology
(NIST) [TMC+23] received dozens of SpongeWrap-based authenticated encryption (AE)
schemes, and both chose the Ascon authenticated encryption scheme of Dobraunig et
al. [DEMS21, DEMS16] as overall winner.1

The Ascon AE scheme follows the SpongeWrap design strategy, but with a twist.
In detail, Ascon is based on a cryptographic permutation on 320 bits (in fact, on two
permutations, one of which is a round-reduced version of the other one, but we will discard
this difference for the sake of generality). Ascon first initializes a 320-bit state with an
initial value (which is basically a constant), a 128-bit secret key,2 and a nonce. Then, it

1To be precise, the Ascon AE is the “first choice” for lightweight AE in CAESAR, and at 2024-11-08
the NIST published Ascon as a draft standard [TMC+24].

2There also exists a post-quantum variant with a 160-bit key.
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transforms the state using the cryptographic permutation, and adds the key to the bottom
part of the state. It subsequently absorbs the associated data into the top part of the state
r bits at a time, interleaved with permutation evaluations, and encrypts the plaintext r
bits at a time by absorbing each block into the top part and squeezing the top part to get
the ciphertext, again interleaved with permutation evaluations. Finally, the key is again
added to the bottom part of the state, the state is permuted, and the bottom 128 bits
of the state are added with the key and output as tag. (Refer to Section 2.3 for a more
detailed description of the Ascon authenticated encryption mode.)

In the classical security setting, the Ascon authenticated encryption mode has received
various security analyses. Notably, the mode resembles SpongeWrap [BDPV11] or Mon-
keySpongeWrap [Men23], with the difference that the key is used at four places in the
design. Jovanovic et al. [JLM14, JLM+19] mentioned that their proof for NORX also
carries over to the Ascon mode, though without explicit evidence. Recently, Chakraborty
et al. [CDN23] performed a first analysis of the Ascon mode, but only considered plain
nonce-based security in the single-user setting, and Lefevre and Mennink [LM23] performed
more broadly an analysis in the nonce-misuse and multi-user setting, and in particular
investigated the power of the key blinding in the Ascon mode. Chakraborty et al. [CDN24]
also extended their earlier work [CDN23] to the multi-user setting. Lefevre and Mennink
recently wrote a systemization of knowledge on the generic security of the Ascon mode
[LM24].

However, NIST standardized schemes are often expected to be long-lasting, and with-
stand attacks for multiple decades. In this respect, the existing generic security analyses
of Ascon may not be sufficient. Indeed, some believe that quantum computers are coming
[MCJ+16, MVZJ18], and it thus makes sense to investigate the security of currently stan-
dardized schemes against adversaries that have quantum power. There exists a widespread
belief that simply doubling the key size in order to make a symmetric cryptographic
algorithm resistant against quantum adversaries is sufficient. However, for some cases
the contrary could be shown [US23]. Indeed, Simon’s algorithm could be identified as
a possible entry point for attacks such as quantum period finding [KLLN16, LL23] and
quantum linearization [BLNS21], even if the attacker only has quantum computing power
and no quantum oracle access [BHN+19].

In our work, we assume that the keyed scheme, namely the Ascon mode, will always
be evaluated on a classical computer (after all, Ascon is meant to be lightweight), but
the adversary may run a quantum computer and also evaluate the unkeyed cryptographic
permutation on said quantum computer. This model is commonly known as the Q1 model.
In that model, the Ascon mode lacks any security analysis, which is slightly disappointing in
light of the fact that one of the instances in the Ascon submission to the NIST competition,
namely Ascon-80pq, is designed with quantum computers in mind. We wish to note that
a related authenticated encryption scheme, namely SLAE of Degabriele et al. [DJS19], has
recently been analyzed in case of quantum adversaries [JS22]. Unfortunately, however,
their analysis does not at all apply to the Ascon authenticated encryption mode, for two
reasons:

1. the SLAE authenticated encryption scheme is merely a generic composition of
encryption and message authentication with simpler modes that are easier to analyze
in the quantum setting, and

2. the specific key blinding techniques in the Ascon mode make the analysis significantly
more complex.

In the current paper, we perform an in-depth investigation of the quantum security of
the Ascon mode. We prove that in the quantum random oracle model the Ascon mode
achieves confidentiality and authenticity security up to around min{2c/3, 2k/2} evaluations,
where c is the capacity (the state size minus rate r), k is the key size, and n = c + r
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denotes the state size. The quantum random oracle model has been proposed by Boneh et
al. [BDF+11]. Over time, different techniques and frameworks to “reprogram” a quantum
random oracle were introduced, see, e.g., [Unr14, CFHL21, ABK+24]. The reprogramming
technique that we employ for our proofs is the semi-classical one-way to hiding (O2H)
lemma from Ambainis et al. [AHU19].

We focus on block-wise adaptive attacks. After choosing nonce and associated data, we
allow the adversary to choose the first plaintext block, receive the first ciphertext block,
then choose the second plaintext block knowing the first ciphertext block, then receive
the second ciphertext block, etc. While we do not recommend an implementation to
actually give the adversary this kind of power, block-wise adaptive attacks are a natural
concern for lightweight cryptosystems. In any case, security against block-wise adaptive
attacks trivially implies security against “normal” message-wise adaptive attacks, where
the adversary commits to the full message before receiving any parts of the ciphertext.
On the other hand, security under message-wise adaptive attacks does not imply security
under block-wise adaptive attacks.

The security proof of the Ascon mode against block-wise adaptive adversaries is given in
Section 6, though we restrict the adversary to making only one forgery attempt. The main
proof is preceded by a chosen-plaintext security proof against non-adaptive adversaries
in Section 5. In part, the non-adaptive security proof serves as a stepping stone, but
beyond that, we argue that non-adaptive attacks also match a “store-now-decrypt-later”
scenario, where the adversary first passively collects encrypted data, and decrypts them
once an appropriate quantum computer is available. In Section 7 we consider various
generic attacks. In Section 8 we then consider the impact of using larger keys, either by
means of the Ascon design with 192-bit keys (dubbed Ascon-96pq) or through LK-Ascon
of Chakraborty et al. [CDN24]. We conclude the work in Section 9. In this section, we also
compare our bounds and investigate their impacts on several variants of the Ascon mode.

2 Preliminaries

2.1 Notation

We start by defining the notation used throughout the paper. For a natural number n,
perm(n) denotes the set of all permutations on n-bit strings. The length of a bit string X
is denoted by |X|. The concatenation of two bit strings X and Y is represented as X∥Y .
The expression ⌈X⌉α denotes the α most significant bits of the binary representation of
X, while ⌊X⌋β denotes the β least significant bits of X, where α, β ≤ |X|. Throughout, n
will denote the state size. A state S of size n bits is typically split into an outer part ⌈S⌉r
of size r bits, where r is called the rate, and an inner part ⌊S⌋c of size c bits, where c is
called the capacity, for which n = c + r. Given a set of states S ⊆ {0, 1}n, we will write
⌈S⌉r for the set of outer states in S and ⌊S⌋c for the set of inner states in S. For a finite
set S, we denote by S

$←− S the uniform random drawing of an element S from S.

2.2 Balls-and-Bins

The following technical lemma will be useful for us. We remark that there exist tighter
but more complex bounds for the same balls-and-bins problem [DMV17, CLL19], but in
our analysis, this bound will not be the limiting factor.

Lemma 1. Consider α balls, thrown independently and uniformly at random into one of
β bins. For µ ≥ 1, denote by PBB≥µ

α,β the probability that after the experiment, there exists
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Table 1: Different variants of the Ascon authenticated encryption mode [DEMS21]. The rate resembles
the size of the outer state and the capacity the one of the inner state.

Cipher
Bit size of

key nonce tag rate capacity
Ascon-128 128 128 128 64 256
Ascon-128a 128 128 128 128 192
Ascon-80pq 160 128 128 64 256

a bin with at least µ balls. Then,

PBB≥µ
α,β ≤ β

(
eα

µβ

)µ

. (1)

Proof. Fix any of the β bins. There are α balls and at least µ of them should end in this
bin. This happens with probability at most(

α

µ

) (
1
β

)µ

≤ 1
µ!

(
α

β

)µ

≤
(

eα

µβ

)µ

,

where the last step relies on the fact that, due to Stirling’s approximation, we have
µ! ≥ (µ/e)µ. The final result is obtained by summing over all β bins.

Note that, if β = 2r for some r, the bound can be further upper bounded to

PBB≥µ
α,2r ≤

(
2eα

µβ

)µ

,

provided µ ≥ r. We will use this observation to simplify our bound of Theorem 2.

2.3 Ascon Authenticated Encryption with Associated Data
The Ascon authenticated encryption with associated data scheme [DEMS21] takes a k-bit
key K, an η-bit nonce N , arbitrary length associated data A, and arbitrary length message
M , and outputs a ciphertext C of the same length as M , and a τ -bit tag T . It is denoted
as follows:

EK(N, A, M) = (C, T ) . (2)

The corresponding decryption takes as input (K, N, A, C, T ) and outputs M if the tag is
correct and ⊥ otherwise:

E−1
K (N, A, C, T ) ∈ {M,⊥} . (3)

The Ascon scheme additionally takes an initial value IV of size 64 bits, but as it is
technically a fixed constant, it will not be made explicit. We refer to Appendix A for
the pseudocode of the encryption and decryption of the Ascon mode. Table 1 gives the
recommended parameters for all three variants of Ascon. For all three variants, n = 320.
The two classical ones, Ascon-128 and Ascon-128a, have k = 128 whereas the one aiming
for post-quantum security, Ascon-80pq, has k = 160. The Ascon variants also differ in the
rates and capacities, as becomes apparent from the table.

Ascon is based on the duplex construction [BDPV11]: it operates on an (n = 320)-bit
state and absorbs data into it or squeezes data out of it, interleaved with evaluations of a
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Figure 1: The Ascon authenticated encryption mode.

permutation P .3 The state is split into an r-bit outer part and a c-bit inner part. The
encryption mode on top of permutation P is illustrated in Figure 1. Here, the associated
data A, provided it is non-empty, is first padded with a 1 and a sufficient number of zeros
so that its size becomes a multiple of r bits, and then split into blocks A1, . . . , As of size r
bits:

A1, . . . , As ←

{
r-bit blocks of A∥1∥0r−1−(|A| mod r) if |A| > 0 ,

∅ if |A| = 0 .

Likewise, the message M , whether it is empty or not, is padded with a 1 and a sufficient
number of zeros and split into blocks M1, . . . , M t of size r bits:

M1, . . . , M t ← r-bit blocks of M∥1∥0r−1−(|M | mod r) .

Next, Ascon initializes the state using IV , K, and N . It then permutes the state and adds
0c−k∥K to part of the inner state. Associated data blocks are absorbed into the outer
state one by one, interleaved with P -evaluations. A domain separator bit 0c−1∥1 is added
to the final inner state. After that, message blocks are absorbed, and ciphertext blocks are
squeezed one by one, also interleaved with P -evaluations. Finally, K∥0c−k is added to the
inner state, followed by one more evaluation of P . The τ rightmost bits of the state are
then added with K, assuming τ ≤ k, and output as tag T .

2.4 Quantum Computing
Quantum Algorithms and Oracles. For basics in quantum computing, we refer to a
standard textbook, such as [Mer07]. We model a quantum-accessible oracle for a function
f : {0, 1}n → {0, 1}m as a unitary transformation Uf , which transforms an n + m qubit
register |x, y⟩ into |x, y ⊕ f(x)⟩. A quantum oracle algorithm can perform classical and
quantum computations and can query classical and/or quantum-accessible oracles.

Parallelism. A quantum oracle algorithm can perform oracle queries in parallel. A q-query
algorithm with query depth d can perform at most q queries in total (counting parallel
queries as separate), and invokes the oracle in at most d steps (counting several parallel
queries as a single step).

2.5 Security Models
We will investigate the security of the Ascon authenticated encryption mode in the random
permutation model, when the adversary has quantum power. To this end, we must consider
generalized versions of the commonly used security definitions to capture that the adversary

3Note that the authors of Ascon distinguish between pa and pb, where a and b correspond to the
number of internal rounds used. We neglect this fact and assume that the same permutation P is used
throughout.
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has quantum access to the underlying ideal (unkeyed) permutation. We do so in this
section. Then, in Section 2.6, we refine the notions based on the specific types of adversaries
that we consider in this work.

AE Security. We start with discussing security of authenticated encryption [BN00, BN08,
RS06] in the quantum setting. In this setting, informally, we consider an adversary A that
aims to distinguish Ascon’s encryption EK and decryption E−1

K from a random oracle RO
and a dedicated function that always returns the ⊥ sign. It can only make classical queries
to these oracles. Also, A’s encryption queries must use unique nonces, and, to avoid a
trivial winning strategy, A must not ask for the decryption of a result from a previous
encryption query. On the other hand, A is running a quantum computer and, specifically,
A gets quantum access to the random permutation P and its inverse. We name the model
1AE security, where 1 refers to the fact that we consider Q1 security. It is based on the
model of deterministic authenticated encryption as formalized in [RS06, NRS14].

Definition 1 (1AE). Let K
$←− {0, 1}k be a random key, and consider the Ascon encryption

function EK : {0, 1}η × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}τ and decryption function
E−1

K : {0, 1}η × {0, 1}∗ × {0, 1}∗ × {0, 1}τ → {0, 1}∗ ∪ {⊥} of Section 2.3, instantiated
with a random permutation P : {0, 1}n → {0, 1}n. Let N ⊆ {0, 1}η be a predefined
nonce set. Let RO be a random oracle that on input of a string (N, A, M) returns a
ciphertext C

$←− {0, 1}|M | and a tag T
$←− {0, 1}τ . Let ⊥ be a function that always returns

the ⊥-symbol and let z be the input of the adversary.
The 1AE security of the Ascon mode against an adversary A is defined as

Adv1AE
Ascon(A) =

∣∣∣Pr[AEK ,E−1
K

,P,P −1
(z) = 1]− Pr[ARO,⊥,P,P −1

(z) = 1]
∣∣∣ .

The adversary only has classical access to its construction oracles, but it has quantum
access to the random permutation P and its inverse P −1. We require A to be nonce-
respecting, meaning that it never repeats nonces for encryption queries (to EK or RO).
The adversary is never allowed to make a decryption query (to E−1

K or ⊥) on input of the
response of an earlier encryption query (to EK or RO, respectively). It is restricted to
only making queries for nonces from the predefined nonce set N .

We remark that the conditions imposed on A are common, the only exception being
that it is restricted to only choosing nonces from a predefined nonce set N ⊆ {0, 1}η. We
remark that this restriction is in line with practical attack scenarios. Indeed: typically,
nonces are not chosen by the adversary, but by the sender.4 Note that if one nevertheless
depreciates choosing N ⊂ {0, 1}η in advance, one can just set N = {0, 1}η.5 Finally, we
remark that this constraint is not new. Other authors in the context of post-quantum
security also require the adversary to fix N ⊆ {0, 1}η at the beginning of the attack, see,
e.g., [BBC+21].

IND-1CPA and INT-1CTXT Security. It is common to split AE security into confiden-
tiality and integrity. Here, confidentiality is covered by indistinguishability under chosen
plaintext attacks, or IND-CPA, where the adversary has no access to the decryption.
Integrity is covered by integrity of ciphertexts, or INT-CTXT, where the adversary has
access to EK (in both worlds) and wins if it can distinguish E−1

K from ⊥. We next describe
these security models in the Q1 setting in more detail.

4One formally allows the adversary to choose the nonces to claim security regardless of how that choice
is made: e.g., a current timestamp could be used as a nonce (assuming no two messages are sent in the
same time frame), or nonces are chosen at random. In almost all such cases, the set N of possible nonces
is constrained to |N | ≪ 2η .

5However, our security bounds depend on the size |N | of N and are better if |N | ≪ 2η .
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Definition 2 (IND-1CPA). Consider the setup exactly as outlined in the first paragraph
of Definition 1. The IND-1CPA security of the Ascon mode against an adversary A is
defined as

AdvIND-1CPA
Ascon (A) =

∣∣∣Pr[AEK ,P,P −1
(z) = 1]− Pr[ARO,P,P −1

(z) = 1]
∣∣∣ .

Adversary A is bound to the conditions outlined in the last paragraph of Definition 1
(except for the comment on inverse queries, which is redundant in IND-1CPA security).

Definition 3 (INT-1CTXT). Consider the setup exactly as outlined in the first paragraph
of Definition 1. The INT-1CTXT security of the Ascon mode against an adversary A is
defined as

AdvINT-1CTXT
Ascon (A) =

∣∣∣Pr[AEK ,E−1
K

,P,P −1
(z) = 1]− Pr[AEK ,⊥,P,P −1

(z) = 1]
∣∣∣ .

Adversary A is bound to the conditions outlined in the last paragraph of Definition 1.

For completeness, we note that the security notions are related. In fact, in the classical
setting, we have that if an authenticated encryption scheme is IND-CPA secure and
INT-CTXT secure, then it is AE secure [BN08]:6

AdvAE
Ascon(A) ≤ AdvIND-CPA

Ascon (A′) + AdvINT-CTXT
Ascon (A′′) ,

where A′ and A′′ have the same query complexities as A. A similar result can be attained
in the quantum setting.

Lemma 2. Consider the Ascon authenticated encryption scheme. For any adversary A,

Adv1AE
Ascon(A) ≤ AdvIND-1CPA

Ascon (A′) + AdvINT-1CTXT
Ascon (A′′) ,

where A′ and A′′ have the same query complexities as A.

Proof. Note that, by definition,

Adv1AE
Ascon(A) =

∣∣∣Pr[AEK ,E−1
K

,P,P −1
(z) = 1]− Pr[ARO,⊥,P,P −1

(z) = 1]
∣∣∣ . (4)

By the triangle inequality, this distance is at most

Adv1AE
Ascon(A)

=
∣∣∣Pr[AEK ,E−1

K
,P,P −1

(z) = 1]− Pr[AEK ,⊥,P,P −1
(z) = 1] +

Pr[AEK ,⊥,P,P −1
(z) = 1]− Pr[ARO,⊥,P,P −1

(z) = 1]
∣∣∣

≤
∣∣∣Pr[AEK ,E−1

K
,P,P −1

(z) = 1]− Pr[AEK ,⊥,P,P −1
(z) = 1]

∣∣∣ +∣∣∣Pr[AEK ,⊥,P,P −1
(z) = 1]− Pr[ARO,⊥,P,P −1

(z) = 1]
∣∣∣ . (5)

The first distance of (5) is at most AdvINT-1CTXT
Ascon (A′′). For the second distance, we can

drop the query access to ⊥, and we obtain AdvIND-1CPA
Ascon (A′).

Likewise, if a scheme is 1AE secure, it is IND-1CPA and INT-1CTXT secure.
6These security definitions are covered by Definitions 1–3 by disallowing quantum access to the random

permutation.
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2.6 Qualification and Quantification of Adversaries
We typically bound the complexity of A by (qc, qf , qp), where qc denotes the construction
or learning queries, qf the forging queries (which equals 0 for IND-1CPA security), and
qp the number of forward and inverse primitive queries. Each learning and forging query
is always bounded by ν padded blocks including tag squeezing. For example, in Figure 1
ν = s + t + 1. The total length of all construction queries is bounded to σ blocks.

The definitions of Section 2.5 are defined for any adversary. We can consider refinements
based on the amount of information to which the adversary must commit before making
one or all queries:

• Ana: a non-adaptive adversary that commits to all qc construction queries at
initialization, but that may make forgery attempts adaptively;

• Aa: an adaptive adversary that may adaptively query its construction oracles based
on the outcomes of the earlier queries;

• Aba: a block-wise adaptive adversary that may block-wise adaptively query its
construction oracles, i.e., that may choose its next associated data or message block
based on the outcome of the previous permutation evaluation.

The three notions are listed in order of liberty of the adversary. Ana defines the least
liberal environment for the adversary; it describes a “store-now-decrypt-later” scenario and
is considered in our first security proof (in Section 5). Furthermore, Ana is a step towards
our more general proof in Section 6, which takes the most liberal adversary, namely Aba.

However, for the case of block-wise adaptivity, we are slightly abusing notation in
Definitions 1–3. As a matter of fact, the encryption function EK , to which A has access,
is not the plain Ascon authenticated encryption scheme of Section 2.3. Instead, it is a
stateful function that can process inputs block by block. However, this function operates
under the restriction that the adversary must properly indicate in which phase it is. To
formalize this properly, EK will be a stateful function with the interfaces init, ad, enc,
lastenc, and tag. The adversary can query the interfaces at its discretion, but there are
some limitations, e.g., that an init call should occur before all other calls, a lastenc call
before a tag call, and so on. We detail these interfaces and order restrictions below:

1. First, A calls init(N) for an η-bit nonce N . In such a call, EK initializes the state
at S = IV ∥K∥N and outputs nothing.

2. Next, A calls ad(A) zero or more times, where A is an r-bit block of associated data.
In such a call, EK transforms the state to S = P (S)⊕A∥0c. If the previous call was
to init(·), it additionally adds 0n−k∥K to S. Again, EK outputs nothing.

3. After absorbing the associated data (if any), and before dealing with the first message
block, EK transforms the state. If ad(A) has been called at least once (i.e., if the
associated data are not empty), EK sets the state to S = S ⊕ (0n−1∥1). Else, EK

sets the state to S = S ⊕ (0n−1∥1)⊕ (0n−k∥K).

4. Then A processes one or more message blocks. The handling of the final message
block differs from the handling of the previous message blocks:

(a) A calls enc(M) zero or more times, with M ∈ {0, 1}r. In such a call, EK

transforms the state to S = P (S)⊕ (M∥0c) and outputs ⌈S⌉r.
(b) When all calls enc(M) have been made, A calls lastenc(M) exactly once.

Again M ∈ {0, 1}r, but this time also M ̸= 0r. In such a call, EK transforms
the state to S = P (S) ⊕ (M∥0c) ⊕ (0r∥K∥0c−k) and outputs ⌈S⌉r′ , where r′

is the size of M after removing all trailing zero-bits and the trailing one (i.e.,
after removing the 10∗-padding).
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5. Finally, A calls tag(). In this call, EK transforms the state to S = P (S), outputs
⌊S ⊕ (0n−k∥K)⌋τ , and discards S.

3 The Semi-Classical One-way to Hiding (O2H) Lemma
The semi-classical one-way to hiding (O2H) theorem was introduced by Ambainis et al.
[AHU19] and improves the regular O2H theorem from Unruh [Unr14, Unr15]. Assume
some sets X and Y. Let G and H be two functions mapping from X to Y. Consider
a subset S ⊆ X . The key point is that for all elements x ̸∈ S, the functions G and H
are required to produce the same output G(x) = H(x). In this context, S is referred to
as puncture set and H\S denotes the puncturing of H on the subset S, meaning that
for all elements x ∈ S, the output of a quantum algorithm is independent of H(x). In
other words, the term “punctured” refers to the action of removing or excluding elements
from consideration. Let Find be the event of an adversary making a query x where a
measurement on the predicate x ∈ S returns true. Note that this does not imply measuring
x itself. Putting it differently, Find is the event of finding an input from S which depends
on H(x). When Find does not occur, the outcome of said adversary querying H\S is
independent of H(x) for x ∈ S. Let AO(z) be an adversary querying an oracle O with
input z. This z can be seen as the concatenation of all information available to A, e.g. all
queries made by A and the corresponding responses. No assumptions are made on the size
of z such that additional oracles can be encoded as part of z.
Lemma 3 (Semi-Classical O2H [AHU19, Theorem 1]). Let S ⊆ X be random. Let
G, H : X → Y be random functions satisfying that ∀x ̸∈ S : G(x) = H(x). Let z be a
random bit string. (S, G, H, z may have arbitrary joint distribution.) Let A be an oracle
algorithm of query depth d (not necessary unitary). Let

Pleft := Pr[b = 1 : b← AH(z)] ,

Pright := Pr[b = 1 : b← AG(z)] ,

PFind := Pr[Find : AG\S(z)] = Pr[Find : AH\S(z)] .

Then,

|Pleft − Pright| ≤ 2
√

(d + 1) · PFind , (6)
|
√

Pleft −
√

Pright| ≤ 2
√

(d + 1) · PFind . (7)

The notion “depth d” considers an adversary to perform multiple queries in parallel. In
the context of this work, it suffices to point out that d ≤ q holds for a q-query adversary.

What remains is to bound PFind. Ambainis et al. relate it to the guessing probability
by formulating the following theorem:
Theorem 1 (Search in semi-classical oracle [AHU19, Theorem 2]). Let A be any quantum
oracle algorithm making some number of queries at depth at most d to a semi-classical
oracle Ora with domain X . Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary joint
distribution.)
Let B be an algorithm that on input z chooses i

$←− {1, . . . , d}; runs AOra(z) until (just
before) the i-th query; then measures all query input registers in the computational basis
and outputs the set T of measurement outcomes.
Then

Pr[Find : AOra(z)] ≤ 4d · Pr[S ∩ T ̸= ∅ : T ← B(z)].
In this work, w.l.o.g., Pr[Find : AOra(z)] will be replaced by PFind and d will be replaced

by q maintaining d ≤ q. Thus,

PFind ≤ 4q · Pr[S ∩ T ̸= ∅ : T ← B(z)].
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Ambainis et al. show that this theorem can be even simplified if it holds that z and S are
independent. In that case, they formulate a bound relying on the maximal probability
that a value x ∈ X is in S.

Corollary 1 (Search in semi-classical oracle [AHU19, Corollary 1]). Suppose that S and z
are independent, and that A is a q-query algorithm. Let Pmax := maxx∈X Pr[x ∈ S]. Then

PFind ≤ 4q · Pmax.

4 Simulation Lemma
This section provides a technical lemma, which we will later use to prove our main results.
We derive this lemma from the semi-classical O2H theorem explained in Section 3. Let P
be an n-bit random permutation. Let S∗ ⊂ {0, 1}n be a (not necessarily uniform) random
subset of {0, 1}n and f∗ : S∗ → S∗ an arbitrary function. We introduce two functions:

G(α, x) =


P (x) if α = 0 ,

P −1(x) if α = 1 ,

P (x) if α = 2 ,

H(α, x) =


P (x) if α = 0 ,

P −1(x) if α = 1 ,

f∗(x) if α = 2 and x ∈ S∗ ,

P (x) if α = 2 and x ̸∈ S∗ .

(8)

Note that G(2, ·) = P (·) is a permutation, while H(2, ·) may not be a permutation. In
fact, G(0, x) = G(2, x), but H(0, x) = H(2, x) only holds for x ̸∈ S∗. Also, the adversarial
primitive queries to evaluate P ±1 can be answered by calling either G(0, x) and G(1, y) or
H(0, x) and H(1, y). Furthermore, since P is a random permutation, both G and H are
random functions, even though not uniformly distributed.

Our proofs in Section 5 and Section 6 rely on reducing the distinguishing advantages
as defined in Definitions 1–3 to, roughly, distinguishing G from H. The advantage of
distinguishing G from H depends on the probability to guess a value x ∈ S∗. The
adversary’s input z was introduced in Section 3. We write Pr[x ∈ S∗ | z] for the probability
of x being in S∗, when given z.

Lemma 4 (Simulation Lemma). Let AOra be a quantum algorithm making q queries, with
query depth d ≤ q, to an oracle Ora : {0, 1, 2} × {0, 1}n → {0, 1}n and returning a bit:
AOra ∈ {0, 1}. A’s oracle queries can be in superposition. Let G, H be defined as above. Let
z be some (partial) information about the elements of S∗. Let Pmax = maxx Pr[x ∈ S∗ | z].
The advantage of A in distinguishing G from H, when given z, is∣∣Pr[AG(z) = 1]− Pr[AH(z) = 1]

∣∣ ≤ 4
√

(d + 1)q · Pmax . (9)

The following lemma is a generalization of Corollary 1. The main difference is that the
result was restricted to independent S and z. However, the proofs of the corollary and
lemma are almost the same.

Lemma 5. Let A be a q-query algorithm. Let Pmax = maxx∈X Pr[x ∈ S | z]. Then,

Pfind ≤ 4q · Pmax .

Proof of Lemma 5. The query depth does not occur in the claimed result, so we can assume
that A does not perform parallel queries. Thus, the output of T of B from Theorem 1 has
|T | ≤ 1. That is, Pr[S ∩ T ̸= ∅ : T ← B(z)] is at most the probability that B(z) outputs
an element of S, which is bounded by Pmax. Therefore, Pfind ≤ 4q · Pmax.
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of Lemma 4. Let P and S∗ be as defined at the beginning of this section. The string
z holds a description of the a priori information the adversary is given about S∗, and
Pmax = maxx Pr[x ∈ S∗ | z]. Then,

S = {(i, x) | i ∈ {0, 2} and x ∈ S∗} ∪
{

(j, y) | j = 1 and P −1(y) ∈ S∗
}

.

We can directly apply Lemma 5:

Pfind ≤ 4q · Pmax = 4q · Pmax .

The proof is now completed using equation (6) of Lemma 3.

5 Security Under Non-Adaptive Adversaries
We start with security against non-adaptive adversaries under chosen-plaintext attacks
(IND-1CPA security). Note that this setting is quite restrictive, but firstly, it applies to a
“store now, decrypt later” scenario, and secondly it is a stepping stone towards the main
proof in Section 6. In any case, our IND-1CPA security bound is quite good, because the
adversary is non-adaptive. Targeting INT-1CTXT or 1AE security introduces adaptivity
in forgery attempts, which causes the security bound to degrade surprisingly fast, nearly
reaching the same level as the bound in Section 6. In detail, we prove the following result.

Theorem 2 (IND-1CPA Security Against Non-Adaptive Adversaries). Consider the Ascon
authenticated encryption scheme and a non-adaptive adversary Ana (see Section 2.6). Ana
makes qc learning queries of query depth d, in total of length at most σ padded blocks
including tag squeezing, and qp primitive queries. For any integer µ ≥ 1,

AdvIND-1CPA
Ascon (Ana) ≤(2(qc+σ)

2
)

2r+c
+ 2

(
2r

(
2e(qc + σ)

µ2r

)µ)
+ 4

√
(qp + 1)qp

2k
+ 4

√
µ(qp + 1)qp

2c
.

Simplification. The second term decreases with µ whereas the fourth term increases with
µ, but as the bound holds for any µ ≥ 1, it makes sense to take the value µ for which the
terms are equal. However, equating these terms is rather cumbersome, and we instead
simplify the terms first. Assuming µ ≥ r (see the text after Lemma 1), the second term is
upper bounded by (provided the inner fraction is at most 1, but if this is not the case, the
bound is void anyway)

2
(

4e(qc + σ)
µ2r

)r

,

and we take µ such that µ ≥ r and(
4e(qc + σ)

µ2r

)r

=
(

µ(qp + 1)2

2c

)1/2

.

Equilibrium is reached for
(

(4e)2r(qc+σ)2r2c

22r2 (qp+1)2

)1/(2r+1)
and we take µ to be the maximum of

r and this value. In this case, the bound of Theorem 2 directly simplifies to

AdvIND-1CPA
Ascon (Ana) ≤(2(qc+σ)

2
)

2r+c
+ 6

(
4e(qc + σ)(qp + 1)2

2r+c

)1/3

+ 4
√

r(qp + 1)qp

2c
+ 4

√
(qp + 1)qp

2k
.
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Interpretation. A bit simplistic, one can view σ ≥ qc as the data complexity and qp as
the time complexity. For σ ≪ 2(r+c)/2, the above bound implies security if

qp ≪ min
{

2k/2,
2c/2
√

r
,

2(r+c)/2
√

σ

}
.

If further σ ≤ 2(r+c)/3 and c ≥ k + log2(r), then qp ≪ min{2k/2, 2(r+c)/3} suffices.

Proof of Theorem 2. Since Ana is a non-adaptive adversary, it commits to the qc queries
(Ni, Ai, Mi) prior to the experiment. For each query, we denote by si the total number
of padded associated data blocks and ti the total number of padded message blocks. We
start with defining S∗ and f∗ and deriving an upper bound for Pmax. Then, we bound
AdvIND-1CPA

Ascon (Ana) by a sequence of games.

State Collisions and Outer Multicollisions. Consider a set of different states Sj
i . If

(i, j) ̸= (i′, j′) exist with Sj
i = Sj′

i′ , we refer to this as a state collision. If µ different states
Sj1

i1
, Sj2

i2
, . . . , S

jµ

iµ
exist with colliding outer states, i.e., with ⌈Sj1

i1
⌉r = ⌈Sj2

i2
⌉r = · · · = ⌈Sjµ

iµ
⌉r,

we refer to this as a µ-outer multicollision.

Defining S∗. We initialize S∗ by S0[IV , N ′] = IV ∥K∥N ′ for N ′ ∈ {0, 1}η.
Next, we fix a number (µ− 1) (the “multiplicity of the outer states”). For each query

i = 1, . . . , qc, we add si +ti +1 randomly chosen states Sj
i to S∗ (where j = 1, . . . , si +ti +1).

The random selection happens as follows:

• The outer states ⌈Sj
i ⌉r are taken uniformly at random, except for the constraint that

no µ-outer multicollision must exist;

• The inner states ⌊Sj
i ⌋c are taken uniformly at random, conditioned on the absence

of state collisions.

The adversary’s input z. According to Section 3, z is a string with all information given
to A. For the purpose of our analysis, we even grant A more information by providing
the ciphertexts for both the functions G and H defined in Section 4. Let Ci,G be the
ciphertexts for the i-th construction query computed by EK [G(2, ·)] and let Ci,H be the
same but computed by EK [H(2, ·)]. We also use this notation for the tags. In the games,
the adversary will learn either the Ci,G or the Ci,H , and either the tags Ti,G or Ti,H .
For the purpose of the analysis, we assume that the adversary knows all of these values.
Overestimating the adversary’s knowledge is acceptable, as our goal is to establish an
upper bound on the adversarial advantage. The string z thus holds the following values:

• the initial state, excluding the secret key K; i.e., the IV and the nonce N ,

• all messages used for construction queries M1, . . . , Mqc
,

• all ciphertexts C1,G, . . . , Cqc,G and C1,H , . . . , Cqc,H and

• all tags T1,G, . . . , Tqc,G and T1,H , . . . , Tqc,H associated with the given messages and
ciphertexts for both encryption oracles.

Set z = zb for uniform random b ∈ {0, 1} and define z0 and z1 as follows:

z0 =
(
IV , N,(C1,G, . . . , Cqc,G), (T1,G, . . . , Tqc,G),

(C1,H , . . . , Cqc,H), (T1,H , . . . , Tqc,H)
)

,

z1 =
(
IV , N,(C1,H , . . . , Cqc,H), (T1,H , . . . , Tqc,H),

(C1,G, . . . , Cqc,G), (T1,G, . . . , Tqc,G)
)

.
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Bound on Pmax. For any x ∈ {0, 1}r+c, the classical event “x ∈ S∗” can be rephrased as
the event of an adversary guessing a value x in the set S∗.7 We derive the bound for Pmax
as follows:

• For S0[IV , N ′] = IV ∥K∥N ′, the adversary knows both IV and N ′. It just has to
guess a k-bit value K, which it succeeds in with probability 1

2k for each guess;

• Regarding the states Sj
i for i ≥ 1, the adversary will eventually learn the outer states

⌈Sj
i ⌉r. In this case, the adversary just has to guess the 2c-bit inner state ⌊Sj

i ⌋c,
rather than the full state.
There could be several identical outer states, Sj

i = Sj′

i′ for (i, j) ̸= (i′, j′), and we do
not care which one the adversary guesses. Since the states have been chosen such
that no µ-outer multicollision exists, the probability to guess any state is at most
µ−1
2c .

Thus, Pmax ≤ 1
2k + µ−1

2c .

Defining f∗. For i = 1, . . . , qc, j = 1, . . . , si, and g = 1, . . . , ti, the function f∗ is defined
as follows:

f∗(S0[IV , N ′]) =


S1

i ⊕M1
i ∥0c−k∥K ⊕ 0r+c−1∥1 ,

if (IV , N ′) = (IV , Ni) and si = 0 ,

S1
i ⊕A1

i ∥0c−k∥K , if (IV , N ′) = (IV , Ni) and si > 0 ,

0n , otherwise ,

f∗(Sj
i ) = Sj+1

i ⊕Aj+1
i ∥0c ,

f∗(Ssi
i ) = Ssi+1

i ⊕M1
i ∥0c−1∥1 , if si > 0 ,

f∗(Ssi+g
i ) = Ssi+g+1

i ⊕Mg+1
i ∥0c ,

f∗(Ssi+ti−1
i ) = Ssi+ti

i ⊕M ti
i ∥K∥0c−k ,

f∗(Ssi+ti
i ) = Ssi+ti+1

i ⊕ 0r+c−k∥K .

The function f∗ is undefined for other inputs.

Games. Our goal is to bound∣∣∣Pr[AEK [P ],P,P −1

na (z) = 1]− Pr[ARO,P,P −1

na (z) = 1]
∣∣∣ . (10)

We introduce a sequence of games. Let G and H be as defined in (8).

• Game0 = (EK [P ], P, P −1). This is the real world;

• Game1 = (EK [G(2, ·)], G(0, ·), G(1, ·)). The permutation P is replaced by G. By
definition of G, this only changes the interface to the primitive, and the games are
equivalent:

Pr[AGame0
na (z) = 1] = Pr[AGame1

na (z) = 1] ;

• Game2 = (EK [H(2, ·)], H(0, ·), H(1, ·)). The function G is replaced by H. We
remark that the two games are equivalent, except if (1) in Game1 there are repeating
states, (2) in Game1 there is a µ-outer multicollision, or (3) in Game2 the adversary
makes a primitive query on a state from the puncture set S∗:

7One might argue that, since S∗ is random, Pr[x ∈ S∗] = |S∗|
2r+c . But this would ignore the partial

knowledge the adversary has about the values in S∗.
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(1) BADs-coll. Recall that f∗ is defined such that no (r + c)-bit state Sj
i repeats.

Clearly, we cannot assume the same for G. Therefore, we define the event
BADs-coll to be the event that two states repeat for G. Then, the probability
for BADs-coll to occur in Game1 is bounded by

Pr[BADs-coll] ≤
(2(qc+σ)

2
)

2r+c
;

(2) BAD≥µ
out-coll. This event occurs if more than (µ− 1) r-bit outer states collide in

Game1. As those states are chosen uniformly at random, we can rephrase this
setting as a balls-and-bins experiment: Throw α = 2(qc + σ) balls into β = 2r

bins uniformly at random. This bad event occurs if any bin holds more than
(µ− 1) balls. Thus, we can apply Lemma 1:

Pr[BAD≥µ
out-coll] = PBB≥µ

2(qc+σ),2r ≤ 2r

(
2e(qc + σ)

µ2r

)µ

;

(3) BADpunc. This bad event is triggered if in Game2 the adversary manages to
distinguish G from H. This is exactly the advantage we bounded in Lemma 4.
As we argued above, Pmax ≤ 1

2k + µ−1
2c . By applying Lemma 4 we obtain

Pr[BADpunc] ≤ 4

√
(qp + 1)qp

(
1
2k

+ (µ− 1)
2c

)

≤ 4
√

(qp + 1)qp

2k
+ 4

√
µ(qp + 1)qp

2c
.

We obtain

∣∣Pr[AGame1
na (z) = 1]− Pr[AGame2

na (z) = 1]
∣∣ ≤

≤
(2(qc+σ)

2
)

2r+c
+ 2r

(
2e(qc + σ)

µ2r

)µ

+ 4
√

(qp + 1)qp

2k
+ 4

√
µ(qp + 1)qp

2c
;

• Game3 = (RO, H(0, ·), H(1, ·)). The oracle EK [H(2, ·)] is replaced by a function
RO that generates uniform random strings (C, T ) for every new input. Note that, by
design, the states in S∗ all have a random outer state, except that no (µ− 1)-outer
multicollisions exist in Game2, but they may exist in Game3. This is exactly the
same “balls in bins” setting as in the case of BAD≥µ

out-coll above, and we can again
apply Lemma 1:

|Pr[AGame2
na (z) = 1]− Pr[AGame3

na (z) = 1]| ≤ PBB≥µ
2(qc+σ),2r ≤ 2r

(
2e(qc + σ)

µ2r

)µ

;

• Game4 = (RO, P, P −1). This is the random world. By definition of H, it is
equivalent to Game3:

Pr[AGame3
na (z) = 1] = Pr[AGame4

na (z) = 1] .
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Conclusion. The proof is concluded by applying a triangle inequality on (10) over above
differences between games:∣∣∣Pr[AEK [P ],P,P −1

na (z) = 1]− Pr[ARO,P,P −1

na (z) = 1]
∣∣∣

=
∣∣Pr[AGame0

na (z) = 1]− Pr[AGame4
na (z) = 1]

∣∣
≤

∑
i∈{1,...,4}

∣∣∣Pr[AGame(i−1)
na (z) = 1]− Pr[AGame(i)

na (z) = 1]
∣∣∣

≤
(2(qc+σ)

2
)

2r+c
+ 2

(
2r

(
2e(qc + σ)

µ2r

)µ)
+ 4

√
(qp + 1)qp

2k
+ 4

√
µ(qp + 1)qp

2c
.

6 Security Under Block-Wise Adaptive Adversaries
By design, chosen-ciphertext attacks in an authenticated encryption setting are adaptive.
In the setting considered in this section, the adversary is fully block-wise adaptive. Notably,
by extending the proof technique from Section 5 to the adaptive setting, security against
block-wise adaptive adversaries follows naturally.

In detail, we prove the following result.

Theorem 3 (Security Against Block-Wise Adaptive Adversaries). Consider the Ascon
authenticated encryption scheme and a block-wise adaptive adversary Aba (see Section 2.6).
Aba makes qc learning queries of query depth d. Each query is of length at most ν and in
total of length at most σ padded blocks including tag squeezing). Furthermore, Aba makes
one forging query of length at most ν padded blocks including tag squeezing and qp primitive
queries. Then

Adv1AE
Ascon(Aba) ≤

(2(qc+σ)+1+ν
2

)
2c

+ 4

√
(qp + 1)qp

(
1
2k

+ 8ν|N |
2c

)
+ 1

2τ
.

Recall that Aba is obliged to select nonces from the predefined nonce set N .

Interpretation. We view σ ≥ max{ν, qc, 8ν|N |} as the data complexity and qp as the
time complexity for the attack. For σ ≪ 2c/2 and large enough τ , the bound guarantees
security as long as

qp ≪ min
{

2k/2,
2c/2
√

σ

}
.

If σ ≤ 2c/3, we can further simplify this to qp ≪ min{2k/2, 2c/3}.

Proof of Theorem 3. Recall that we consider a block-wise adaptive adversary. This means
that in its qc queries (Ni, Ai, Mi), it can actually choose the nonces, associated data, and
message blocks adaptively. For each query, we denote by si the total number of padded
associated data blocks and ti the total number of padded message blocks. These are all of
length at most si + ti + 1 ≤ ν blocks (including the tag squeezing). Then, it can make a
single forgery attempt of length at most sqc+1 + tqc+1 + 1 ≤ ν blocks (including the tag
squeezing). The proof follows the same strategy as that of Theorem 2, but with a different
(or, extended) puncture set S ′

∗ and function f ′
∗, and a slightly different game analysis.

Additional comes from the fact that the adversary can adaptively choose to have empty
associated data or not.
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Defining S′
∗. Similarly to the proof of Theorem 2 we initialize S∗ by S0[IV , N ′] =

IV ∥K∥N ′ for N ′ ∈ {0, 1}η. Then, for each query nonce N ∈ N , noting that it can be
queried together with associated data and messages of length at most si + ti +1 ≤ ν blocks,
we select ν r-bit inner states Sj

N and ν r-bit inner states S̄j
N for j = 1, . . . , ν, randomly

selected according to a criterion outlined below. (Looking ahead, a forgery attempt may
reuse a nonce earlier used for encryption, and in this case, punctured values may be reused;
this is not a problem.) For each N ∈ N and any j = 1, . . . , ν, we define Sj

N [x] = ⟨x⟩r∥Sj
N

for x = 0, . . . , 2r − 1, and add the following states to S ′
∗:

• Sj
N [x]⊕ 0n,

• Sj
N [x] ⊕ 0r+c−k∥K (after the first permutation call or after the final permutation

call),

• Sj
N [x]⊕ 0r+c−1∥1 (transition from processing A to processing M),

• Sj
N [x]⊕ 0r∥K∥0c−k (before the last permutation call).

Likewise, for each N ∈ N and any j = 1, . . . , ν, we define S̄j
N [x] = ⟨x⟩r∥S̄j

N for x =
0, . . . , 2r − 1, and add the following states to S ′

∗:

• S̄j
N [x]⊕ 0n,

• S̄j
N [x]⊕ 0r+c−k∥K ⊕ 0r+c−1∥1 (after the first permutation call),

• S̄j
N [x]⊕ 0r+c−k∥K (after the final permutation call),

• S̄j
N [x]⊕ 0r∥K∥0c−k (before the last permutation call).

We still have to finetune how the Sj
N and S̄j

N are generated. They are generated randomly
so that no states in S ′

∗ collide on their c-bit inner state. The probability to guess one of
the states in S0[IV , N ′] = IV ∥K∥N ′ is at most the probability to guess the k-bit key K
is 1/2k. For the other states, for each outer state x ∈ {0, 1}r, there are exactly m = 8ν|N |
inner states of c bit. Similarly to the proof of Theorem 2, we obtain that Pmax ≤ 1

k + 8ν|N |
2c .

We furthermore define random permutations πj
N , π̄j

N : {0, 1}r → {0, 1}r for N ∈ N and
j = 1, . . . , ν (these will be used to randomize the values ⟨x⟩r; this randomization could
have been done internally in the values Sj

i [x], but this approach allows for a more compact
definition of the puncture set below).

The intuition of these state values is the following. Any nonce N ∈ N may be queried
by the adversary (in a learning or in a forging query). For any such nonce, we prepare
a “puncture path” where each state (for j = 1, . . . , ν) is represented by a set of values
indexed by x. The puncture path is randomized using the permutations πj

N . If, looking
ahead, the adversary makes a query to Ascon instantiated with H of Section 4, the Ascon
evaluation will reside within the path of puncture subsets. If the adversary makes two or
more queries with the same nonce and same prefix, these paths will partially overlap and
become independent later on. This, however, only explains the addition of the states listed
first in the above itemizations. However, note that, as the forgery attempt can be made
adaptively, any state Sj

N [x] may occur at different places in the evaluation of Ascon, and
we have to account for the blinding constants and the blinding keys. Finally, we distinguish
between the cases Sj

N and S̄j
N to capture the case of non-empty/empty associated data.

The addition of all these states is definitely redundant, as not all states can occur at all
positions. For example, a state for j = 1 cannot occur after the last permutation call. In
general, any state cannot occur both as first permutation call and last permutation call
(and because of this, the addition of the state masked with 0r+c−k∥K, the second item in
above list, does not lead to problems).
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The adversary’s input z. The adversary’s input is defined in the same way as in Section
5. Note that we overestimate the information given to the adversary even more, because
it will learn (some of) the ciphertexts and tags only over time. For the purpose of the
analysis, we assume that the adversary has the full z from the start.

Defining f ′
∗. For N ∈ N and j = 1, . . . , ν, the function f ′

∗ is defined as follows:

f ′
∗(S0[IV , N ′]) =


S̄1

N [π̄1
N (x)]⊕ 0r+c−k∥K ⊕ 0r+c−1∥1 ,

if (IV , N ′) = (IV , N) and si = 0 ,

S1
N [π1

N (x)]⊕ 0r+c−k∥K , if (IV , N ′) = (IV , N) and si > 0 ,

0n , otherwise ,

f ′
∗(Sj

N [x]) =


Sj+1

N [πj+1
N (x)]⊕ 0r+c−1∥1 , if transition ad(·) to enc(·) ,

Sj+1
N [πj+1

N (x)]⊕ 0r∥K∥0c−k , if call to lastenc(·) ,

Sj+1
N [πj+1

N (x)]⊕ 0r+c−k∥K , if call to tag() ,

Sj+1
N [πj+1

N (x)]⊕ 0n , otherwise ,

f ′
∗(S̄j

N [x]) =


S̄j+1

N [πj+1
N (x)]⊕ 0r∥K∥0c−k , if call to lastenc(·) ,

S̄j+1
N [πj+1

N (x)]⊕ 0r+c−k∥K , if call to tag() ,

S̄j+1
N [πj+1

N (x)]⊕ 0n , otherwise ,

where the calls init, ad, enc, lastenc, and tag are as specified in Section 2.6 (and
the function f ′

∗ will learn them once being queried). The function f ′
∗ is undefined for

other n-bit inputs. Note that the functions πj
N indeed randomize the outer parts; even

though the adversary can adaptively choose the blocks Aj
i and M j

i , this does not help
the adversary, except for the fact that it may repeat paths, which is covered. We have
all possible 2r outer states combined with the randomly selected inner states in S ′

∗. This
means that there will be states matching the r-bit input blocks selected by the adversary.
Therefore, f ′

∗ will always map a value in S ′
∗ to another value in S ′

∗. Note that if a forgery is
attempted for a nonce that has also appeared in an encryption query, then the punctured
values corresponding to the forgery attempt will (partly) overlap with the punctured values
corresponding to the learning query. This is normal behavior.

Games. Our goal is to bound∣∣∣∣Pr[AEK [P ],E−1
K

[P ],P,P −1

ba (z) = 1]− Pr[ARO,⊥,P,P −1

ba (z) = 1]
∣∣∣∣ . (11)

Let G and H be as defined in (8). We will introduce a sequence of games.

• Game0 = (EK [P ], E−1
K [P ], P, P −1). This is the real world;

• Game1 = (EK [G(2, ·)], E−1
K [G(2, ·)], G(0, ·), G(1, ·)). The permutation P is replaced

by G. By definition of G, this only changes the interface to the primitive, and the
games are equivalent:

Pr[AGame0
ba (z) = 1] = Pr[AGame1

ba (z) = 1] ;

• Game2 = (EK [H(2, ·)], E−1
K [H(2, ·)], H(0, ·), H(1, ·)). The function G is replaced by

H. We remark that the two games are equivalent, except if (1) in Game1 there are
repeating states or (2) in Game2 the adversary makes a primitive query on a state
from the puncture set S ′

∗:
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(1) BADrepeat. Recall that f ′
∗ is defined such that no (r + c)-bit state Sj

i repeats.
Clearly, we cannot assume the same for G. Therefore, we define BADrepeat
to be the event that two states repeat for G. As the adversary can make
block-wise adaptive queries, it has freedom over the choice of outer part. Thus,
the probability for BADrepeat to occur in Game1 is bounded by

Pr[BADrepeat] ≤
(2(qc+σ)+1+ν

2
)

2c
;

(2) BADpunc. This is similar to the proof of Theorem 2: again, we apply the
simulation lemma (Lemma 4), but now with an updated puncture set. In
detail, the second bad event is triggered if in Game2 the adversary manages to
distinguish G from H.
To apply the simulation lemma, we need an upper bound for Pmax. The
probability to guess one of the states in S0[IV , N ′] = IV ∥K∥N ′ is at most the
probability to guess the k-bit key K, namely 1/2k. Considering the other states:
for each outer state x ∈ {0, 1}r, there are exactly 8ν|N | inner states of size c

bit each. Thus Pmax ≤ 1
k + 8ν|N |

2c :

Pr[BADpunc] ≤ 4

√
(qp + 1) qp

(
1
2k

+ 8ν|N |
2c

)
.

We thus obtain∣∣Pr[AGame1
ba (z) = 1]− Pr[AGame2

ba (z) = 1]
∣∣ ≤(2(qc+σ)+1+ν

2
)

2c
+ 4

√
(qp + 1)qp

(
1
2k

+ 8ν|N |
2c

)
;

• Game3 = (RO,⊥, H(0, ·), H(1, ·)). The oracle EK [H(2, ·)] is replaced by a function
RO that generates uniform random strings (C, T ) for every new input. Further, the
oracle E−1

K [H(2, ·)] is replaced by ⊥. Note that by design, the states in S ′
∗ all have a

random outer part, and thus in Game2 the output strings are all randomly generated.
The only way for the adversary to distinguish is to make a successful forgery attempt
in Game2, in which it succeeds with probability at most 1/2τ . Therefore,

∣∣Pr[AGame2
ba (z) = 1]− Pr[AGame3

ba (z) = 1]
∣∣ ≤ 1

2τ
;

• Game4 = (RO,⊥, P, P −1). This is the random world. By definition of H, it is
equivalent to Game3:

Pr[AGame3
ba (z) = 1] = Pr[AGame4

ba (z) = 1] .

Conclusion. The proof is concluded by applying a triangle inequality on (11) over the
games Game0 to Game4:∣∣∣∣Pr[AEK [P ],E−1

K
[P ],P,P −1

ba (z) = 1]− Pr[ARO,⊥,P,P −1

ba (z) = 1]
∣∣∣∣ ≤(2(qc+σ)+1+ν

2
)

2c
+ 4

√
(qp + 1)qp

(
1
2k

+ 8ν|N |
2c

)
+ 1

2τ
.
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IV ∥K∥N
S0

P

0∗∥K 0∗∥1

0r C1

S1

P

0r C2

S2

P

Figure 2: Initialization, handling of empty associated data, handling of two all-zero message blocks
M1 = M2 = 0r, and generating matching ciphertext blocks C1 and C2.

7 Generic Attacks
In this section, we discuss various generic Q1 attacks on the Ascon mode. In detail, we
present the following attacks:

• Key search using Grover’s algorithm (Section 7.1);

• Search for the internal state (Section 7.2);

• Non-adaptive state recovery through internal collisions (Section 7.3);

• Exploiting the state recovery attack to recover secret suffixes (Section 7.4).
For simplicity, we focus on the encryption of an all-zero chosen plaintext under empty
associated data, and we only consider the ciphertext, discarding the authentication tag. In
detail, we focus on the simplified construction of Figure 2.

7.1 Key Search
The most obvious attack involves conducting an exhaustive key search with the help
of Grover’s algorithm. In our attack setting that does not include associated data,
the output of the first call to the permutation P will be XORed with the value δK =
(0r+c−k∥K)⊕ (0r+c−1∥1) (cf., Figure 2). Fix ℓK > ⌊κ/r⌋+ 1. Take as message M = 0ℓK ·r,
which consists of ℓK all-zero r-bit blocks, and the nonce N to an arbitrary value. The
attack consists of the following two steps:

1. Request the encryption of M under the nonce N and the empty associated data.
Denote the resulting ciphertext by C = (C1, . . . , CℓK ) ∈ {0, 1}ℓK r, and discard the
authentication tag;

2. Define a target function f : {0, 1}κ → {0, 1} as follows:

f(X) = 1⇐⇒
(
⌈P (IV ∥X∥N)⊕ δK⌉r = C1)

∧(
⌈P (P (IV ∥X∥N)⊕ δK)⌉r = C2)

∧
· · · ∧(

⌈P ℓK−1(P (IV ∥X∥N)⊕ δK)⌉r = CℓK
)

.

Run Grover’s algorithm to find the value X such that f(X) = 1.
Note that, for the secret key K, it holds that f(K) = 1. I.e., a solution X with f(X) = 1
exists. Also, because ℓK > κ/r, it is unlikely that another solution K ′ ≠ K with f(K ′) = 1
exists. An adversary will succeed in finding the key – the expectedly unique solution with
which the attack will succeed – while querying f about 2k/2 times, which corresponds to
ℓK2k/2 queries to P . For this, the adversary only requests the encryption of ℓK message
blocks.
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7.2 Internal State Search
Instead of searching for the key, one can just as well search for an internal state. The
attack is very similar to the key search attack. For ℓc > 1 + c/r, fix an ℓc · r-bit message
M = 0ℓc·r and perform the following two steps:

1. Request the encryption of M under an arbitrary nonce and arbitrary associated data
of some length s. Denote the resulting ciphertext by C = (C1, . . . , Cℓc) ∈ {0, 1}ℓc·r,
and discard the authentication tag;

2. Define a target function f : {0, 1}κ → {0, 1} as follows:

f(X) = 1⇐⇒
(
⌈P (C1

i ∥X)⌉r = C2
i

)
∧(

⌈P (P (C1
i ∥X))⌉r = C3

i

)
∧

· · · ∧(
⌈P ℓc−1(P (C1

i ∥X))⌉r = Cℓc
i

)
.

Run Grover’s algorithm to search for X with f(X) = 1.

The internal state X ′ = ⌊Ss+1⌋c satisfies f(X ′) = 1. By ℓc > c/r, another solution X ̸= X ′

with f(X) = 1 is unlikely to exist. Thus, we expect to find X ′ (and, by implication, Ss+1)
in 2c/2 steps. I.e., this attack is irrelevant if k ≤ c.

7.3 Non-Adaptive State Recovery
Typically, for sponge and duplex constructions, internal collisions can lead to state recovery.
Fix a parameter ℓ = ⌊(r + c)/r⌋+ 1 and another parameter ζ, which we describe below.
Choose 2ζ distinct nonces N1, . . . , N2ζ and set M = 0ℓr to consist of ℓ all-zero r-bit blocks.
Perform the following operations:

1. For i ∈ {1, . . . , 2ζ}: request the encryption of M under the nonce Ni and the empty
associated data. Denote the resulting ciphertext by Ci = (C1

i , . . . , Cℓ
i ) ∈ {0, 1}ℓ·r,

and discard the authentication tag;

2. Define a target function f : {0, 1}r+c → {0, 1} as follows:

f(X) = 1 ⇐⇒ ∃i :
( (

⌈X⌉r = C1
i

)
∧(

⌈P (X)⌉r = C2
i

)
∧

· · · ∧(
⌈P ℓ−1(X)⌉r = Cℓ

i

) )
.

Run Grover’s algorithm to find the value S such that f(S) = 1.

Essentially, we are trying to find one of the 2ζ states S1 (depending on the 2ζ nonces Ni)
from Figure 2. Since ℓr > c + r, we statistically expect exactly 2ζ solutions Si ∈ {0, 1}r+c

with f(Si) = 1, namely all the 2ζ states Si = P (IV ∥K∥Ni)⊕(0∗∥K). This is the state after
the initialization and before processing the first message block (recall that the associated
data are empty). Thus, the attack, which resembles the famous BHT algorithm [BHT98],
will find one of the 2ζ solutions after iterating Grover’s algorithm about 2(r+c−ζ)/2 times.

If, instead of M = 0ℓr, a random ℓr-bit message is encrypted, it is unlikely that any
solution S with f(S) = 1 exists at all. This implies that the above attack enables the
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adversary to distinguish 2ζ encryptions of M from the same number of encryptions of
random messages of the same length as M .

The first step implies the encryption of ℓ2ζ chosen plaintext blocks 0r. For the second
step, each iteration of Grover’s algorithm requires one evaluation of the target function
f , each making ℓ − 1 calls to P . Thus, the second step makes 2(r+c−ζ)/2ℓ such calls.
There is a data-time trade-off: ℓ2ζ data and 2(r+c−ζ)/2(ℓ − 1) calls to P . To minimize
max(ℓ2ζ , 2(r+c−ζ)/2ℓ), set ζ ≈ (r + c)/3. Under those choices for Ascon with r + c = 320,
the quantum computer calls P roughly 2(r+c)/3(ℓ−1) ≈ 2106.7ℓ times, after choosing about
as many blocks of plaintext.

7.4 Recovering Secret Suffixes
The attack from Section 7.3 recovers an internal state S1 (cf., Figure 2) from the encryption
of a chosen ℓr-bit message. Beyond distinguishing, we can push it to do something
potentially more dangerous to the challenger.

Consider the encryption C ′ of a message M ′ = M∥Y . Here, M = 0ℓr is the same
chosen ℓr-bit string, as before, but now it is followed by an unknown secret Y . Once the
adversary did recover the internal state S1, in either the non-adaptive or the block-wise
attack scenario, it can compute all subsequent states S2, S3, etc. and thus decrypt the
entire ciphertext C ′ to recover the secret suffix Y . Such known-prefix-secret-suffix attacks
were shown to practically attack certain block cipher modes of operation for TLS, and to
recover secret session cookies [BL16].

8 Larger Keys
8.1 Ascon-96-pq
As Ascon is becoming a NIST standard, it makes sense to compare the post-quantum
security level provided by different Ascon variants with the categories proposed by NIST
in the context of the “Post-Quantum Cryptography process” [Nat16].

Category 1 (“key search on a block cipher with a 128-bit key”) requires 128-bit keys,
which both Ascon-128 and Ascon-128a support.

Category 2 (“collision search on a 256-bit hash function”) requires about 85 ≈ 256/3
bits of quantum security and thus 170-bit keys. The 160-bit key of Ascon-80pq is a bit too
short for category 2. For higher security levels, one needs larger keys.

Category 3 (“key search on a block cipher with a 192-bit key”) is tantamount to 96
bits of post-quantum security and needs at least 192-bit keys. Furthermore, to claim a
96-bit post-quantum security level even against block-wise adaptive attacks,8 the capacity
c should be c ≥ 3 · 96 = 288. For the comparisons below, we thus consider an alternative
parameter selection for Ascon, which we will refer to as Ascon-96pq, and which we claim
to match category 3 security:

→ Ascon-96pq: 192-bit key, a ι-bit IV (ι < 128), r = 32, and c = 288.

The tag, nonce, and IV sizes for Ascon-96pq are not critical for our analysis. However,
note that the 192-bit key just leaves 128 bits for both the nonce and the IV . I.e., a ι-bit
IV allows a nonce size η = 128− ι. If we stick with a 128-bit nonce, the IV is just the

8By the bound of Theorem 3, a small 1AE advantage requires q2
pσ ≪ 2c, where qp is the number of

queries to the permutation (i.e., a lower bound on the time complexity), and σ is the data complexity.
The sweet spot is at σ ≈ qp ≈ 2c/3.
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Figure 3: State recovery attack on LK-Ascon. For the sake of simplicity, we assume that the associated
data fits into a single r-bit block A(N), including the nonce N and padding. The main difference to the
state recovery attack on Ascon from Figure 2 is that the LK-Ascon initialization consists of two steps, first
calling P (S−1) for S−1 = IV ∥K, then calling P (S0) for S0 = P (S−1) ⊕ (A(N)∥0∗∥K). As before, the
adversary chooses a message M = 0ℓr.

empty string. Note that all of our security proofs and attacks apply to Ascon-96pq without
any modification.

Category 4 (“collision search on 384-bit hash function”) requires that for 128 bits of
post-quantum security, we would need a 256-bit key. Alas, even if we disregard block-wise
adaptive attacks and focus on non-adaptive attacks, we would still need a 384-bit state,
since 384 = 128 · 3. Thus, it does not seem possible for Ascon to generically achieve
category 4 security, or beyond.

8.2 LK-Ascon
Recently, Chakraborty et al. [CDN24] suggested large-key Ascon, or LK-Ascon, which
differs from the Ascon construction in that the initialization only takes the key, and the
nonce is absorbed as first associated data block. Stated differently, the state after the first
permutation call equals P (IV ∥K) and associated data is never empty (as it always includes
the nonce). Refer to Figure 3 for the initialization, assuming the entire associated data,
including the nonce N and padding, fits into a single r-bit block A(N). While LK-Ascon
allows to support key sizes of up to 320 bits, Chakraborty et al. focus on 256-bit keys and
64-bit IVs. Also, they explicitly advertise the option to support “a higher rate of 192 bits”.
For the comparison below, we thus consider two variants of LK-Ascon, with a rate of 128
and 192 bit, respectively:

→ LK-Ascon-256a: 256-bit keys, 64-bit IV , r = 128, and c = 192;

→ LK-Ascon-256b: 256-bit keys, 64-bit IV , r = 192, and c = 128.

The nonce size and tag size for either variant are not essential for our comparison.

Security Proofs for LK-Ascon. Apart from LK-Ascon’s two-step initialization depicted
in Figure 3, LK-Ascon is identical to Ascon. Thus, our security proofs for Ascon (from
Section 5 and Section 6) apply to LK-Ascon as well, with some trivial modifications to
slightly adjust the puncture set.

Key Search on LK-Ascon. Similarly, the key-recovery attack of Section 7.1 applies to
LK-Ascon. Evaluating the target function requires one additional evaluation of P , which
implies that the attack costs go up to (ℓK + 1)2k/2 instead of ℓK2k/2.
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Internal State Search on LK-Ascon. In the case of LK-Ascon, we usually have k > c,
i.e., the key size exceeds the internal state size. In this case, we need ℓc = 1 + ⌊r/c⌋, and
the attack complexity is about log2(ℓc) + c/2 bit.

State Recovery Attacks on LK-Ascon. The state recovery attack of Section 7.3 works
exactly as before and with the same complexities in recovering an internal state S1 =
P (P (IV ∥K) ⊕ (N∥0c−k∥K)). Thus, the attack can serve as distinguisher and also for
known-prefix-secret-suffix attacks.

Extending the State Recovery Attack. In contrast to pure Ascon, the state recovery
attack on LK-Ascon is actually more powerful. The adversary can even undo the second
half of the initialization and, as the adversary knows N , recover the state S0 = P −1(S1 ⊕
(0r+c−1∥1)) ⊕ (N∥0c). Thus, for any nonce N ′ ̸= N , the adversary can then compute
different states S1′ = P (S0 ⊕N ⊕N ′)⊕ (0r+c−1∥1), i.e., it can compute the result from
the initialization under any nonce N ′. Thus, the adversary is not limited to computing
ciphertexts that encrypt the concatenation of a known prefix and an unknown prefix.
Instead, it is capable of decrypting any ciphertext encrypted under any nonce.

Note that the state recovery attack on LK-Ascon still does not enable the adversary to
recover the key, or to evaluate the finalization function. I.e., the adversary can neither
verify the authenticity of ciphertexts, nor forge ciphertexts.

9 Conclusion
In this paper, we derived security of the Ascon mode in the Q1 setting, against non-adaptive
and block-wise adaptive adversaries. We also presented generic attacks in the same setting.
We conclude the work with a comparison of the bounds in Section 9.1, an interpretation of
the bounds in Section 9.2, and a remark on message-wise adaptivity in Section 9.3.

9.1 Comparison of Bounds
To summarize, we obtained the following simplified bounds:

• Theorem 2: non-adaptive IND-1CPA security as long as q2
pσ ≪ 2r+c;

• Theorem 3: block-wise adaptive 1AE security as long as q2
pσ ≪ 2c.

Here, qp is the number of permutation queries (i.e., a simplified “time complexity”), σ an
upper bound for the number of blocks encrypted or authenticated (“data complexity”),
and for 1AE the adversary can make 1 forgery attempt. A summary of the impact of our
attacks of Section 7 is given in Table 2. The attack table includes the official variants of
Ascon (see Table 1), as well as Ascon-96pq of Section 8.1 and two variants of LK-Ascon of
Section 8.2.

9.2 Interpretation of Bounds
Store-now-decrypt-later. We argue that chosen plaintext security of Ascon against non-
adaptive adversaries is at about min{320/3, k/2} bits. If the key is sufficiently large, this
indicates an excellent resistance against a “store-now-decrypt-later” adversary. Such an
adversary is passively listening to current communication, storing it in a huge database,
and eventually trying to decrypt the data once a sufficiently large and reliable quantum
computer is available.
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Table 2: Approximate complexities of the attacks of Section 7, translated to the existing variants of Ascon
(Table 1) as well to LK-Ascon with larger keys (Section 8). State recovery attacks are trade-offs; we picked
a data point to minimize the maximum of data and query complexity. Complexities marked by a star
(“∗”) indicate the ability to decrypt ciphertexts, the other complexities correspond to a distinguisher or
known-prefix secret suffix attack. For LK-Ascon, it holds that c < k, which implies that the internal state
recovery attacks improve on key recovery attacks. We thus also present the complexities of internal state
recovery attacks for LK-Ascon (in brackets).

Cipher
Parameter Blocks Quantum attack complexity

k r c ℓK ℓ
key (resp., int.
state) search

non-adaptive
state recovery

generic Ascon k
2 + log2(ℓK) r+c

3 + log2(ℓ)
Ascon-128 128 64 256 3 6 65.6∗ 109.3
Ascon-128a 128 128 192 2 3 65.0∗ 108.3
Ascon-80pq 160 64 256 3 6 81.6∗ 109.3
Ascon-96pq 192 32 288 7 11 98.8∗ 110.1
generic LK-Ascon k

2 + log2(ℓK + 1) r+c
3 + log2(ℓ)

(resp., c
2 + log2(ℓc))

LK-Ascon-256a 256 128 192 3 3 129.6∗ (97.6∗) 108.3∗

LK-Ascon-256b 256 192 128 2 2 129.0∗ (65.0∗) 107.7∗

Block-wise adaptive attacks. The upper bound against future adaptive adversaries,
who are running quantum computers to boost their attacks, depends on the capacity c,
and is approximately min{2c/3, 2k/2}. This bound even applies to block-wise adaptive
attacks. This indicates good security against adaptive adversaries if c and k are sufficiently
large. Specifically, Ascon’s 320-bit permutation size is large enough to choose a capacity c
sufficiently large for good security.

Large-key variants from [CDN24]. The post-quantum security of LK-Ascon-128a and
LK-Ascon-128b hardly improves over that of Ascon-96pq and Ascon-80pq, or even Ascon-
128.9 Given 192 bits capacity for LK-Ascon-128a (or 128 bits for LK-Ascon-128b), the
proven security against block-wise adaptive attacks is only about 192 bits/3 = 64 bits (or
128 bits/3 ≈ 43 bits). This is much worse than either of Ascon-128, Ascon-80pq, or Ascon-
96pq. Also, when considering the attacks we described, LK-Ascon-128a and Ascon-96pq
offer approximately the same good security level (> 96 bits), Ascon-80pq takes the middle
ground (> 80 bits), and LK-Ascon-128b and Ascon-128 are much weaker (little more than
64 bits).

9.3 Message-Wise Adaptivity
We remark that both security models that we adopt in this work differ from the standard
message-wise adaptive attacks. The non-adaptive security model is quite weak, and the
block-wise adaptive security model is, maybe, too strong. Needless to say, the upper
bound for block-wise adaptive attacks at about min{2c/3, 2k/2} trivially also applies to
message-wise attacks.

The reason why we opted to focus on block-wise adaptive security instead of message-
wise adaptive security is the following. Our technique to prove the upper bounds is based
on the O2H lemma, which requires to non-adaptively choose a puncture set and then play
an attack game. The security depends on the size of the puncture set: the smaller, the

9To be fair, the main motivation in [CDN24] is to improve classical multitarget security and to offer
“additional resilience against quantum key recovery attacks.” [CDN24] does not claim any security against
quantum attacks, beyond key recovery.
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better. In the case of adaptive attacks, the puncture set includes all possible states the
challenger might be in, when responding to the adversarial queries. However, in this case,
there is no benefit from forcing the adversary to commit to an entire message as a sequence
of several blocks, compared to block-wise adaptive attacks settings. Stated differently:
block-wise or message-wise, the puncture set is the same, and our technique does not
seem to allow us to improve on the min{2c/3, 2k/2} upper bound in case of message-wise
adaptive adversaries. On the other hand, based on our generic attacks, it is fair to believe
improved security in case of message-wise adaptive adversaries is possible, and we leave
this as an open problem.
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A Pseudocode of the Ascon Mode

Algorithm 1: Ascon AEAD Encryption
Input: Secret key K, initial value IV , nonce N , associated data A, plaintext M
Output: Ciphertext C, authentication tag T

1 S0 ← IV ∥K∥N
2 S ← P (S0)
3 S ← S ⊕ 0∗∥K
4 if |A| > 0 then
5 (A1, . . . , As)← A∥1∥0∗ ▷ s is the number of r-bit blocks in A∥1∥0∗

6 for 1 ≤ i ≤ s do
7 Si ← S ⊕Ai∥0c

8 S ← P (Si)

9 else
10 s← 0
11 S ← S ⊕ 0∗∥1
12 C ← ∅
13 (M1, . . . , M t)←M∥1∥0∗ ▷ t is the number of r-bit blocks in M∥1∥0∗

14 for 1 ≤ i < t do
15 Ss+i ← S ⊕M i∥0c

16 C ← C∥⌈Ss+i⌉r
17 S ← P (Ss+i)
18 Ss+t ← S ⊕M t∥K∥0∗

19 C ← C∥⌈Ss+t⌉r
20 S ← P (Ss+t)
21 T ← ⌊S ⊕ 0∗∥K⌋c
22 return C, T
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Algorithm 2: Ascon AEAD Decryption
Input: Secret key K, initial value IV , nonce N , associated data A, ciphertext C,

authentication tag T
Output: message M or ⊥

1 S0 ← IV ∥K∥N
2 S ← P (S0)
3 S ← S ⊕ 0 ∗ ∥K
4 if |A| > 0 then
5 (A1, . . . , As)← A∥1∥0∗ ▷ s is the number of r-bit blocks in A∥1∥0∗

6 for 1 ≤ i ≤ s do
7 Si ← S ⊕Ai∥0c

8 S ← P (Si)

9 else
10 s← 0
11 S ← S ⊕ 0∗∥1
12 M ← ∅
13 (C1, . . . , Ct)← C ▷ t is the number of r-bit blocks in C
14 for 1 ≤ i < t do
15 Ss+i ← S ⊕ Ci∥0c

16 M ←M∥⌈Ss+i⌉r
17 S ← P (Ss+i)
18 Ss+t ← S ⊕ Ct∥K∥0∗

19 M ←M∥⌈Ss+t⌉r
20 S ← P (Ss+t)
21 T ′ ← ⌊S ⊕ 0∗∥K⌋c
22 if T ′ ̸= T then
23 return ⊥
24 return M
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