
Multi-Authority Functional Encryption:

Corrupt Authorities, Dynamic Collusion, Lower Bounds, and More

Rishab Goyal
UW-Madison∗

Saikumar Yadugiri
UW-Madison†

Abstract

Decentralization is a great enabler for adoption of modern cryptography in real-world sys-
tems. Widespread adoption of blockchains and secure multi-party computation protocols are
perfect evidentiary examples for dramatic rise in deployment of decentralized cryptographic
systems. Much of cryptographic research can be viewed as reducing (or eliminating) the de-
pendence on trusted parties, while shielding from stronger adversarial threats. In this work, we
study the problem of multi-authority functional encryption (MAFE), a popular decentralized
generalization of functional encryption (FE). Our main contributions are:

1. We design MAFE for all poly-sized circuits, in the bounded collusion model, under the min-
imal assumption of PKE/OWFs. Prior to our work, this required either sub-exponentially
secure obfuscation, or log n-party key exchange, or Random Oracles and sub-exponentially
secure PKE. We also extend our constructions to the dynamic collusion model under the
minimal assumptions of IBE/OWFs. Unlike all prior works, our MAFE systems are truly
dynamic and put no restrictions on the maximum number of authorities.

2. Under the hardness of learning with errors (LWE) assumption, we design MAFE for all
poly-sized circuits where we allow adversaries to adaptively corrupt local authorities. We
allow an adversary to corrupt any k out of n local authorities as long as

(
n
k

)
= poly(λ).

Prior to this, such MAFE relied on sub-exponentially secure obfuscation. Additionally, we
design a new MAFE compiler for boosting selective authority corruptions to non-adaptive
authority corruptions.

3. We prove a tight implication from MAFE to (VBB/indistinguishability) obfuscation. We
show that MAFE implies obfuscation only if the number of attribute bits (jointly) con-
trolled by all corrupt local authorities is ω(log λ). This proves optimality of our second
result for a wide range of parameters.

4. Finally, we propose a new MAFE system that we refer to as multi-authority attribute-
based functional encryption (MA-ABFE). We view it as an approach to get best of both
worlds (fully collusion resistant MA-ABE, and bounded collusion resistant MAFE). By
combining our results with prior MA-ABE results, we obtain MA-ABFE for NC1 ◦P/Poly
from standard pairing-based assumptions, and for DNF ◦ P/Poly from LWE, both in the
Random Oracle Model. We also describe a simple construction of MA-ABE for general
predicates from witness encryption, and combining with known results, we also get MA-
ABFE for P/Poly ◦ P/Poly from evasive LWE.

∗Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding
from the Wisconsin Alumni Research Foundation.

†Email: saikumar@cs.wisc.edu.

Contents

1 Introduction 1

2 Technical Overview 4
2.1 MAFE from Minimal Assumptions . 5
2.2 MAFE with Authority Corruptions . 8
2.3 Multi-Authority Attribute-Based Functional Encryption 10

3 Definitions and Preliminaries 12

4 MAFE with Trusted Setup 15
4.1 Construction . 16

5 MAFE from Public-Key Encryption 18

6 MAFE with Dynamic Collusions 20
6.1 Weakly Optimal tMAFE from IBE and tMAFE . 20
6.2 Dynamic MAFE from Minimal Assumptions . 23

7 MAFE with Authority Corruptions 23
7.1 Definition . 24
7.2 MAFE with Adaptive Corruptions from HSS . 24

8 Generic Compilers for Authority Corruptions 27

9 Lower Bounds on MAFE with Authority Corruptions 29
9.1 Preliminaries . 29
9.2 Definitions . 30
9.3 XiO from fst1MAFE . 31
9.4 Weakly Size-Succinct FE from stMAFE . 32

10 (poly, Q)-MA-ABFE Definition 34

11 (poly, 1)-MA-ABFE from MA-ABE and Garbled Circuits 35
11.1 Preliminaries . 36
11.2 Non-Adaptive (poly, 1)-MA-ABFE . 37
11.3 Non-Committing MA-ABE . 38
11.4 Adaptive (poly, 1)-MA-ABFE . 41

12 Attribute-Based Distributed Client-Server Framework 42
12.1 Definition . 43
12.2 Attribute-Based dCSF from Distributed Client-Server Framework 43

13 (poly, Q)-MA-ABFE from (poly, 1)-MA-ABFE and adCSF in ROM 44

A Additional Preliminaries 52

i

B Relevant Material from [GY24] 53
B.1 Distributed Client-Server Framework . 53
B.2 Augmented Statistical Lemmas . 55

C Proofs from Section 5 55

D Proofs from Section 6.1 60

E MAFE with Dynamic Collusions from wotMAFE and BFE 69

F Homomorphic Secret Sharing with Strong Security 70
F.1 Multi-Key Fully Homomorphic Encryption . 70
F.2 Definition . 72
F.3 HSS for P/Poly from mkFHE . 72

G Proofs from Section 7.2 74

H Proofs from Section 11.2 80

I Proofs from Section 11.3 84

J Proofs from Section 11.4 88

K Statically Secure MA-ABE from Witness Encryption 91
K.1 Preliminaries . 92
K.2 Construction . 93

ii

1 Introduction

In standard FE [SW05, BSW11], there is a single trusted authority that generates the global public
parameters pp and a master (secret) key msk. The trusted authority is responsible for securely
storing msk as well as generating and distributing functional secret keys to authorized users. Each
functional key, skx, is associated with an attribute x. And, given pp, one can encrypt any efficiently
computable predicate ϕ, such that the resulting ciphertext can be decrypted using skx to learn
ϕ(x), and nothing else. FE pushes the envelope of public-key encryption significantly by upgrading
ciphertexts from static (all-or-nothing) objects to dynamic objects providing fine-grained control
over encrypted data.

Key Escrow and Single Point-of-Failure. Unfortunately, the FE advancement comes at
the cost of establishing a central point of trust ! FE assumes a single trusted authority that has a
master key msk for the entire system throughout its lifetime. While this is essential for supporting
fine-grained access control, it is quite troubling for practical applications since this trust model is
too strong. The authority could intercept and decrypt any ciphertext ct using msk. Moreover, it
becomes a single point-of-failure. If the authority gets corrupted, then all security is lost! This was
beautifully explained in Rogaway’s essay [Rog15]. It highlights that FE implicitly embeds such key
escrow problems at the cost of promising powerful functionality.

In light of these limitations, it is very important to study FE in decentralized settings reducing
the dependence on a central trusted party. Over the last three decades, the problem of decentralizing
FE has received a lot of attention. Numerous approaches have been studied to weaken the trust
model [BF01, CHSS02, ARP03, LBD+04, CCV04, Goy07, PS08, GHMR18, GHM+19, GV20] in FE
and its various specializations [Sha85, Coc01, BF01, GPSW06]. One very popular and well-adopted
approach is colloquially referred as the multi-authority model [Cha07, CC09, LW11, BCG+17b].

Multi-Authority FE (MAFE) is an established generalization of traditional FE. The goal is to
decentralize trust from a single central authority to a group of (non-interactive and mistrusting)
local authorities. Each local authority samples its own public-secret key pair (mpku,msku), pub-
lishing mpku publicly. The point is each local authority has control over only a small subspace of
attributes. A sender can select any subset of authorities, U , under which it wants to encrypt its
predicate ϕ. The sender only needs {mpku}u∈U for those authorities.

Unlike standard FE, the key generation process is fully decentralized. There is no interaction
between the local authorities, nor they are aware of each other’s existence! Each receiver (annotated
with a unique global public identifier1 GID) can request a partial functional key from an authority u
for the portion of the attribute space controlled by u. E.g., Department of Motor Vehicles (DMV)
can act as a local authority, and it will only control the attribute bit(s) associated with a user’s
driving license information. Thus, user GID can ask authority u for a partial functional key for
its local attribute xu, and gets a key sku,xu,GID annotated with its GID and associated with its
authorized attribute. To decrypt, a user combines all partial functional keys it has, {sku,xu,GID}u,
and use them as its joint functional key.

Clearly, MAFE has all advantages of FE (such as fine-grained access control) while simul-
taneously relaxing the underlying trust assumption. It offers significant robustness by resisting
attackers that can fully corrupt some of the local authorities. This makes it readily more suitable
for applications, since there is no single point-of-failure and does not suffer from key escrow.

1As we discuss later, usage of GIDs is a common and well-known approach to prevent mix-and-match attacks in the
multi-authority setting.

1

Current landscape for available constructions of MAFE is unfortunately very limited. We either can
achieve all-or-nothing functionality2 [Cha07, CC09, LW11, MJ18, Kim19, WFL19, OT20, DKW21,
AG21, AGT21, DKW23, DP23, GGL24], or rely on very heavy hammers like sub-exponentially
secure indistinguishability obfuscation (iO) [BCG+17b]. A recent work by Goyal-Yadugiri [GY24]
made interesting progress by developing new templates for designing MAFE, but their schemes are
insecure even if a single local authority gets compromised, and require sub-exponential hardness
assumptions (for any ω(1) number of authorities). This highlights major gaps and deficiencies in
our understanding of MAFE systems.

Our contributions. We design multiple new MAFE systems with varying functionality and se-
curity. Most of our MAFE schemes are designed in the standard model, and rely on polynomial
hardness of standard cryptographic assumptions. We improve prior lower bounds tightening im-
plications between MAFE and obfuscation [BGI+12]. Overall, our work addresses many existing
gaps in the MAFE literature, and builds a better toolkit for multi-authority encryption systems.
Our main contributions can be summarized as follows:

1. We design MAFE for all poly-sized circuits, in the bounded collusion model [DKXY02, SS10,
GLW12, GVW12], under the minimal assumption of public-key encryption. Our construction
extends to the secret-key setting, where our secret-key MAFE construction only relies on
the minimal assumption of one-way functions. Prior to our work, MAFE for all poly-sized
circuits required either sub-exponentially secure iO [BCG+17b], or log n-party key exchange
for n-authority MAFE [GY24], or Random Oracles and sub-exponentially secure PKE [GY24].

We also design MAFE for all circuits in the dynamic collusion model [AMVY21, GGLW22]
(i.e., collusion bound is dynamically chosen by an encryptor, and not fixed during setup) under
the minimal assumption of identity-based encryption and one-way functions (for secret-key
setting). Moreover, we do not put a limit on the number of local authorities, or require any
global coordination in any of our MAFE systems. Each local authority can join and generate
partial functional keys independent of others. All prior MAFE constructions [BCG+17b,
GY24] required an a-priori bound on the number of authorities, and [GY24] also required all
authorities to have finished system setup before any functional keys had to be generated.

2. Under the hardness of learning with errors (LWE) assumption, we design MAFE for all poly-
sized circuits where we allow adversaries to adaptively corrupt local authorities. We allow
an adversary to corrupt any k out of n local authorities as long as

(
n
k

)
= poly(λ), and treat

corruptions for the rest of (n − k) authorities as in the dynamic collusion model. Prior to
this, the only known MAFE construction providing such security relied on sub-exponentially
secure iO [BCG+17b].

As an additional contribution, we design a new compiler for MAFE, where we show that any
MAFE scheme where the attacker declares the set of corrupted authorities selectively can be
boosted to an MAFE scheme where the attacker can declare these non-adaptively (i.e., before
the challenge phase).

3. Brakerski et al. [BCG+17b] showed that any MAFE scheme, that is secure even against a sin-
gle local authority corruption, implies a (VBB/ indistinguishability) obfuscation scheme [BGI+12].
We prove a tighter formulation of this implication, giving us a better lower bound for MAFE.

2By this we mean multi-authority attribute-based encryption and its inner-product extensions.

2

We show that as long the number of attribute bits (jointly) controlled by all corrupt local
authorities is bounded as O(log λ), then it does not imply obfuscation. That is, an MAFE
scheme which is secure in presence of ω(log λ) “corrupted” attribute bits implies (VBB/ in-
distinguishability) obfuscation. (This proves optimality of our second result for a wide range
of parameters.)

4. Finally, we propose a new MAFE system that we refer to as multi-authority attribute-based
functional encryption (MA-ABFE). As we discuss later in the overview, this is a non-trivial
composition3 of MA-ABE and MAFE. The goal of the above formulation is to design an MA-
ABFE schemes that allows an unbounded number of unsatisfying key queries and bounded
number of satisfying key queries. We view it as an approach to get best of both worlds (fully
collusion resistant MA-ABE, and bounded collusion resistant MAFE). By combining our
results with prior MA-ABE constructions [LW11, DKW21, DKW23], we obtain MA-ABFE
for NC1 ◦P/Poly from standard pairing-based assumptions, and for DNF ◦P/Poly from LWE,
both in the Random Oracle Model.

We also describe a simple construction of MA-ABE for general predicates from witness en-
cryption [GGSW13] without relying on Random Oracles. The only prior work in MA-ABE
that does not rely on Random Oracles was by Waters et al. [WWW22], but they could only
support the class of subset predicates. We show how to support arbitrary polynomial sized cir-
cuits. Instantiating our new MA-ABE with known results [VWW22], we also get MA-ABFE
for P/Poly ◦ P/Poly from evasive LWE assumption [Wee22, Tsa22].

Reference Authorities Security Corruptions Assumption ROM

[BCG+17b] poly(λ) Full Sub-exp iO + OWFs No
[GY24] O(1) Static (B)DDH No
[GY24] poly(λ) Static Sub-exp PKE Yes

Theorem 5.3 poly(λ) Static PKE No
Theorem 6.5 poly(λ) Dynamic IBE No
Theorem 7.4 poly(λ) Dynamic LWE No

Table 1: Comparison of our results with prior works on MAFE for P/Poly circuits with adaptive security.
In the table Security column refers to the collusion-resistance property. “Fixed” refers to an a-priori bound
on partial functional key corruptions set for the whole system. “Dynamic” refers to the bound set for each
ciphertext [AMVY21, GGLW22].

Related work. MAFE was proposed nearly a decade ago as generalization of FE by [BCG+17b].
Despite this, the only known constructions for P/Poly circuits are [BCG+17b, GY24]. The former
provided construction of indistinguishability-based MAFE with unbounded collusions where more
than one secret key per GID can be issued using sub-exponential iO and injective one-way functions.
Moreover, this construction can handle arbitrary authority corruptions. [BCG+17b] also provided
relations between MAFE and iO/VBB regardless of whether MAFE allows authority corruptions.
[GY24] identified that these implications aren’t tight in case of MAFE without authority corruptions
and that issuing more than one secret key per GID goes against the motivation to use GIDs. [GY24]

3A trivial composition would be to first create an MAFE ciphertext, and then encrypt it under MA-ABE. Unfortu-
nately, this is totally insecure as we explain later.

3

Reference Assumption P ◦ C Query Bound Security ROM

[AGT21] Pairings LSSS ◦ IP (poly, poly) Selective Yes
[DP23] BDDH LSSS ◦ IP (poly, poly) Static Yes

Theorem K.6,
Corollary 13.3

Evasive LWE P/Poly ◦ P/Poly (poly, Q) Static No

[DKW23], Theorem 13.2 Sub-exp pairings NC1 ◦ P/Poly (poly, Q) Adaptive Yes
[DKW21], Corollary 13.3 LWE DNF ◦ P/Poly (poly, Q) Static Yes

Table 2: Comparison of our results with prior works on MA-ABFE. Here, P is the policy class (for ABE
part) and C is the circuit class (for FE part). LSSS is the policy class for linear secret sharing schemes and
IP is inner-product functionality. By (poly, Q) we mean unbounded “unsatisfying” queries and Q “satisfying”
queries.

provided constructions where a bounded number of GID queries are allowed with static security
from (plain) PKE, adaptive security for poly(λ) authorities in ROM [BR93] from sub-exponential
PKE and for O(1) authorities from 2/3-party key exchange. All constructions of [GY24] satisfy
simulation security.

MA-ABE [Cha07, CC09] is an all-or-nothing specialization of MAFE, where if the policy is
satisfied, then one learns the full message. [LW11] constructed decentralized ABE for monotone
span programs using paring-based assumptions. Both multi-authority and decentralized ABE saw
multitude of results in the past decade (cf. [MJ18, Kim19, WFL19, OT20, AG21] and the references
there in). Recently, [DKW23] constructed an MA-ABE scheme for NC1 policies from computational
pairing-based assumptions and [DKW21] constructed MA-ABE for DNF formulae from LWE. Both
these works relied on the Random Oracle Model. The only known construction for MA-ABE
that does not rely on ROM is by Waters et al. [WWW22], and could support subset predicate
under the hardness of evasive LWE. In the bounded collusion setting, [WFL19, GGL24] construct
MA-ABE schemes for monotone boolean formulae and circuits respectively from nearly minimal
assumptions.

2 Technical Overview

In this section, we provide a high-level overview of our main ideas and techniques. We start by
recalling the definition of MAFE.

Reviewing MAFE. An MAFE scheme contains four main algorithms (ASetup,KGen,Enc,Dec).
The authority setup algorithm ASetup is used by each authority to sample master public-secret key
pair MPK,MSK on their own (i.e., without any interaction or synchronization). The key generation
algorithm KGen algorithm is used by each authority to compute a partial secret key for a portion
of the input xi using their MSKi. Enc and Dec are defined similar to FE, where the master public
key consists of {MPKi}i from all authorities, and the secret key for input X = (xi)i is {SKi,xi}i.
To avoid mix-and-match attacks (by combining keys for two users from two different authorities),
every partial secret key is embedded with a global user identifier GID. We refer the reader to prior
works [LW11, GY24] to get a better understanding of GID. For this high level overview, we mostly
ignore GIDs while explaining our main ideas.

To define the security of MAFE, we consider two types of corruptions – (a) secret key corrup-
tions, (b) authority corruptions. A type-(a) attacker can only query for secret keys for various
inputs from each authority, but not corrupt their master keys. Type-(a+b) is a stronger attacker,

4

who can additionally corrupt MSKi of any authority of its choice. In this work, we work in the
bounded collusion model [DKXY02, SS10, GLW12], where the attacker can make a fixed number
(say Q) of type (a) corruption queries to each authority. In addition, we also consider stronger
corruptions, where an attacker can adaptively corrupt any authority’s MSKi as well. That is, we
consider both type (a) and (a+b) adversaries.

In Section 2.1, we consider only type-(a) adversaries, and later in Section 2.2, we expand our de-
signs to resist type-(a+b) adversaries as well. Finally, in Section 2.3, we also expand our techniques
and combine them with fully-collusion-resistant (multi-authority) attribute-based encryption sys-
tems to handle an unbounded number of unsatisfying predicate queries, and a bounded number of
satisfying predicate queries.

2.1 MAFE from Minimal Assumptions

Our first goal is to design an MAFE scheme from public-key encryption (PKE). Prior works [BCG+17b,
GY24] require far stronger assumptions, or rely on random oracle heuristics (see Table 1). Our core
technique is a new compiler for composing n single-authority FE systems with a single n-authority
MAFE system with very weak security. We design such a weak n-authority MAFE from PKE, and
plugging this in our new compiler, we design an n-authority MAFE with standard security. Let us
describe our new weak MAFE notion.

MAFE with trusted setup. The main technical tool we use is a new notion of MAFE which
we call MAFE with trusted setup (tMAFE). Given the goal of MAFE is to remove the need for a
central trusted party, it seems rather meaningless to even define the notion of MAFE with trusted
setup. Regardless, as we show later, tMAFE is surprisingly the right abstraction for designing
standard decentralized MAFE. Let us first expand on the notion of tMAFE.

In tMAFE, there is a central trusted authority that generates master public-secret keys for all
authorities and distributes it to every authority. Thus, individual authorities do not sample any
master public-secret keys. Essentially, instead of the ASetup algorithm, tMAFE has a global setup
GSetup algorithm to generate {(MPKi,MSKi)}i for all authorities. Other than this, tMAFE is
defined as its standard (decentralized) counterpart. That is, each authority generates partial secret
keys in a decentralized and asynchronous manner as before. For security, we consider a nearly
identical game, except the challenger generates all authority keys by running GSetup instead of
ASetup n times. Next, we show how to generically bootstrap tMAFE to a standard (non-trusted)
MAFE scheme.

tMAFE =⇒MAFE. Note that tMAFE already captures the desired functionality that we want
from general MAFE, except the authorities need to get together to sample their individual master
public-secret keys. Our idea is to delegate the computation of tMAFE’s global setup to encryption,
by relying on another FE layer to handle the trusted setup problem. Suppose we have a single-
authority FE scheme, let us call it 1-FE. Our plan is to use 1-FE to generate n independent 1-FE
systems, one for each individual authority, and somehow use these independent systems to unlock
the tMAFE secret keys. Let us explain further.

In our MAFE systems, we ask the encryptor to run the global setup, GSetup, for tMAFE.
This gives the encryptor a set of n master public-secret key pairs for tMAFE. Clearly, it can
encrypt the predicate circuit (C) using tMAFE encryption. But, the question is how to share
the tMAFE authority keys with the “real” authorities, or rather how to ensure an authorized user
gets the right tMAFE key without talking to the encryptor? Our insight is that this can be

5

achieved by delegating the tMAFE key generation. That is, we encrypt tMAFE.KGen circuit,
with i-th tMAFE master key hardwired, under the i-th 1-FE system. Concretely, each authority
samples 1-FE keys (1-fe.mpki, 1-fe.mski), and uses 1-fe.mski to answer secret key queries as SKi,xi ←
1-FE.KGen(1-fe.mski, xi). During encryption, we run a fresh GSetup for tMAFE to generate n
authority key pairs, {(MPKi,MSKi)}i. Given {MPKi}i, encrypt C as tMAFE.Enc(C). Moreover,
delegate tMAFE key generation by creating n 1-FE ciphertexts as 1-FE.Enc(1-fe.mpki, Fi), where
Fi = tMAFE.KGen(MSKi, ·). The resulting 1-FE ciphertexts {1-fe.cti}i and tMAFE ciphertext
tMAFE.ct are jointly set as the full MAFE ciphertext. Clearly, decryption is done in two stages– (i)
decrypt {1-fe.cti}i using {SKi,xi}i (resp.) to compute tMAFE.SKi,xi , and (ii) then decrypt tMAFE.ct
using these to recover C(x1, . . . , xn).

The security of the above template can be quite readily reduced to 1-FE and tMAFE security.
The intuition is that as long as none of authorities are corrupted, we can argue that each 1-FE
ciphertext only reveals the tMAFE keys for authorized inputs. Once this happens, we can proceed
to show the tMAFE.ct hides C beyond what can be learned by running decryption honestly. Our
compiler is described in detail later in Section 5. We highlight that we do not need any synchro-
nization among the authorities, they are even oblivious to the existence of each other. Thus, we
do not require an a-priori bound on the number of authorities, and neither we need to pass any
public/secret key between authorities before key generation. Thus, our resulting MAFE scheme
supports fully dynamic authorities, unlike prior works [BCG+17b, GY24]. Looking ahead, this
simplicity and modularity of our template makes it readily extendable to several other corruption
models like the dynamic collusion model [AMVY21, GGLW22, GGL24], full authority corrup-
tions [LW11, BCG+17b]. Next, we talk about constructing tMAFE, and later circle back to other
improvements of our base template.

Constructing tMAFE. Since we already have constructions for 1-FE for poly-size circuits from
minimal assumptions (public/symmetric-key encryption) [GVW12, AV19], thus to instantiate our
compiler from minimal assumptions, we just need to design tMAFE under same set of assumptions.

A natural question the reader might have is: isn’t tMAFE already pretty close to a single-
authority FE (1-FE) system? Basically, since there is a trusted setup, then what prevents us from
sampling just a 1-FE system during the global setup, GSetup, and later thresholdizing by relying
on some threshold homomorphic encryption techniques [BGG+18]. While this will not give us the
desired result from minimal assumptions, it does suggest that designing tMAFE might not be so
hard after all. Although this is a good first idea, looking a bit carefully shows why such an approach
will be flawed.

Recall that a major feature of (t)MAFE is that each authority only generates a partial key for
its portion of the attribute. That is, authority i only gets to see xi, and not the full input (x1, . . .).
Therefore, any approach to just use threshold FHE (or even 2-round MPC-techniques) might just
fail! Because, in such approaches, we either need all parties to know the full input, or there needs
to be another round of communication. Both of these are not allowed in the multi-authority model.
Therefore, we really have to design tMAFE from ground up.

Our strategy is to open up known constructions for 1-FE/MAFE [SS10, GVW12, AV19, GY24],
and generalize their frameworks to the trusted setup model, while relying only on minimal as-
sumptions. We start with the beautiful 1-FE construction by Gorbunov-Vaikuntanathan-Wee
(GVW) [GVW12]. In a few words, the reason GVW is not already a multi-authority system is
because: (i) neither their key generation is distributed, (ii) nor their security reductions can han-
dle attackers that can learn partial secret keys adaptively. Such issues were recently explored by

6

Goyal-Yadugiri [GY24], who designed (standard) MAFE from simple assumptions (see Table 1).
While [GY24] were able to resolve (i) pretty easily, the second issue turned out a lot more chal-
lenging. To which, they relied on stronger assumptions like n-party non-interactive key exchange
(NIKE), or sub-exponential security and random oracle (RO) heuristics.

Our insight is that if we work in the trusted setting, then we could get around issue (ii).
Abstractly, the core missing piece that prohibits known 1-FE schemes [GVW12, AV19, GY24] to
become multi-authority is we need each authority to take certain (randomized) choices to answer a
partial key query for a particular GID consistently. Without an extra round of interaction between
authorities, this is hard to solve. (This is why [GY24] used NIKE.) Our observation is that, in
tMAFE, we have a global setup option. Thus, we can fix this issue by secretly selecting a random
function to synchronize between all n authorities. Basically, this function would deterministically
provide consistent choices to every authority. In the main body, we show that by selecting a vanilla
pseudo-random function during GSetup, we can set the function as FK(·), where K is the globally
shared PRF key. Since we only consider type-(a) adversaries, K is never corrupted, and we can
use pseudorandomness security of F to prove security of resulting tMAFE. Our tMAFE system
directly builds on proof techniques from prior works [GVW12, AV19, GY24], and we provide more
details in Section 4.

We remark that our tMAFE construction easily generalizes to the secret-key setting as well.
Therefore, we are able to design a tMAFE scheme in the public-key setting under the minimal
assumption of PKE, while in the secret-key setting under the minimal assumption of one-way
functions. Therefore, combining the above with our base (tMAFE =⇒ MAFE) template, we
can design MAFE for all poly-size circuits secure against all type-(a) adversaries in the bounded
collusion model. We also can extend our secret-key MAFE scheme to be function hiding by relying
on prior compilers [BS18].

Handling dynamic collusions in MAFE. As a natural progression, we improve our base MAFE
template to resist attackers in the dynamic collusion model [AMVY21, GGLW22]. The dynamic
collusion model is a non-trivial strengthening of the (static) bounded collusion model, where the
collusion bound is selected by an encryptor, and not fixed globally after system setup. That is,
the bound Q is declared during Enc, and as such the ASetup,KGen algorithms are independent of
Q. This allows a more fine-grained control over collusion security for each ciphertext, and we refer
to [AMVY21, GGLW22, GGL24] for a detailed discussion on more benefits.

Let us reuse our base template! Our intuition is that if we use a 1-FE secure in the dynamic collusion
model, then our original MAFE template ‘almost’ already gives us an MAFE with desired security.
The reason is that a dynamic model 1-FE already guarantees that its setup and key generation
are independent of any collusion bound, thus ASetup and KGen for our resulting MAFE will also
be independent of the collusion bound. All that is left to check is that the resulting encryption
algorithm does support dynamic collusions. And, this also seems relatively straightforward since
the encryptor really samples a fresh tMAFE system, thus in the dynamic model, the encryptor can
sample the tMAFE for appropriate level of collusion security. Overall, this seems to suggest that
we can quite easily extend our MAFE to be secure in the dynamic collusion model.

Unfortunately, there is an intricate bug in the above approach. The reason is that the size of
a tMAFE partial key, |tMAFE.SKi,xi | grows polynomially with the collusion bound, Q. Thus, the
1-FE system that we want to use must be able to evaluate functions whose output lengths scale
with Q. This is too strong, and one could even show that this is almost equivalent to full collusion
resistance. While this seems like a major barrier, our observation is that this can be fixed by

7

simply designing ‘slightly better ’ tMAFE systems. That is, suppose we can design tMAFE where
|tMAFE.SKi,xi | = poly(λ, logQ), then the issue goes away, and our original template is enough for
MAFE in the dynamic collusion model. Given 1-FE in the dynamic model can be constructed
from identity-based encryption (IBE) [AMVY21, GGLW22, GGL24] (or one-way functions in the
secret-key setting), this gives us a matching result for dynamic collusion MAFE.

Thus, we have reduced the dynamic collusion problem to designing tMAFE with ‘short’ secret
keys. As it turns out, this problem was also encountered in the single-authority setting [GGLW22].
Garg et al. [GGLW22] referred to this as designing 1-FE with weakly optimal efficiency. While their
original solution was a very complicated design, in a recent follow-up work Garg et al. [GGL24] pre-
sented a simpler generic approach to boost security of any 1-FE to dynamic collusion security. At a
very high level, their idea was to use the “deferred-encryption” paradigm [GKW16, DG17b, DG17a,
GHMR18, GHM+19, GV20] to embed ‘tags’ in every ciphertext and secret keys. The purpose of
these tags was to ensure ciphertexts and keys with only matching tags can be decrypted. Garg et
al. [GGLW22, GGL24] proved that such a tagged 1-FE is sufficient to achieve weak optimality by
using standard combinatorial tricks. We refer the reader to [GGL24] for a detailed overview.

Our approach is to follow a similar template to achieve weak optimality for tMAFE. That is, first
we embed ‘tags’ in every partial secret keys as well as ciphertexts, with the same tag functionality
as in [GGLW22, GGL24]. And, then using standard combinatorial arguments, we boost this to
weak optimality. Since we are in the multi-authority setting, thus we need to be extra careful while
embedding tagging à la [GGL24]. The reason is, unlike single-authority setting, there are multiple
authorities where each will have to individually embed a consistent tag. While this could be a big
hurdle, what saves us is that we are working in the trusted model, thus we could rely on the same
PRF trick as before. As we shown in Section 6, this is sufficient to design tMAFE with weakly
optimal efficiency generically, and in turn, this gives us an MAFE in the dynamic collusion model
from minimal4 assumption of IBE (/one-way functions in secret-key setting).

So far, we have addressed the problem of designing MAFE against type-(a) attackers from minimal
assumptions. However, such attackers are severely limited in two ways: (1) an attacker cannot
corrupt master secret keys, and (2) an attacker cannot make more than a fixed number secret key
queries (even if those keys do not provide any meaningful output). In the rest of the overview, we
tackle both these problems.

2.2 MAFE with Authority Corruptions

In this section, we provide three main results. First, we design an MAFE scheme that is secure
against type-(a+b) attackers. That is, we can prove security in presence of corrupt authorities.
Next, we provide new generic compilers for boosting security of MAFE schemes with corrupt author-
ities. These generic compilers reduce the problem of designing MAFE with authority corruptions to
a simpler model. And, lastly, we show improved lower bounds for MAFE with corrupt authorities,
highlighting optimality of our MAFE design for a wide range of parameters. Let us dive into our
first result.

Corrupt authorities. As a starting point, we set a much simpler goal. We start by designing
MAFE that can handle authority corruptions only when all corrupt authorities are declared a-
priori. That is, the MAFE system is initialized given a set of corrupted authorities K ⊂ [n]. While

4Refer to [AMVY21] for a discussion on minimality of IBE.

8

such “declared” corruptions do not capture any real-world attacks, we will show later how these
can be used as stepping stones for handling arbitrary corruptions.

ConsiderK = {1}, i.e. only first authority is corrupt. Such an attacker can learn C(0, x2, . . . , xn)
and C(1, x2, . . . , xn) from a ciphertext CT and secret keys sk2,x2 , . . . , skn,xn by honestly running
KGen and Dec. Our intuition is that if K is available to us during the setup, then we could simply
define two parallel MAFE instantiations, MAFE(0), MAFE(1) that encrypt C(0, ·) and C(1, ·). And,
each honest authority will generate secret keys for both instantiations. An attacker in possession

of sk2,x2 = (sk
(0)
2,x2

, sk
(1)
2,x2

), . . . can learn C(0, x2, . . . , xn) using MAFE(0) and C(1, x2, . . . , xn) using

MAFE(1) as desired. The above can be easily generalized for any set K ⊂ [n] as long as the total
number of attribute bits that are associated with K are at most O(log λ). (Looking ahead, going
beyond this is either impossible, or requires very strong assumptions.)

One might wonder whether we could use complexity leveraging to guess K, and then prove
security of above approach under sub-exponential hardness assumptions. This would be wrong!
Here we require K to be available even for setting up the MAFE system. Thus, description of
the scheme reveals K. This further highlights why the above corruption model is too weak (and
somewhat meaningless). Regardless, it does serve as a good springboard as we show next.

Hiding K via HSS. Our insight is that if, rather than guessing K, we consider all feasible K and
secret share the computation under them, then this could potentially work. To execute this idea, we
rely on homomorphic secret sharing schemes [ARS24, DIJL23, CM21, BCG+17a, FGJS17, BGI16].
Let us elaborate.

Let k denote the maximum number of authorities whose corruptions we want to tolerate. Let
C denote the set of all size-k subsets of [n]. That is, C contains all possibilities for authorities who
might be corrupt. Clearly, |C| =

(
n
k

)
. We will sample |C| many MAFE systems with declared cor-

ruptions, MAFE(0), . . . ,MAFE(|C|). In MAFE(i), the corruption set Ki is the i-th entry in C. During
authority setup, the u-th authority samples fresh master public-secret key pairs from MAFE(i) if
and only if u /∈ Ki. We will set MPKu = (mpk(i)){i:u/∈Ki} and MSKu = (msk(i)){i:u/∈Ki} Similarly,

to generate a partial secret key, we will sample a partial secret key from each MAFE(i) such that

u /∈ Ki and SKu,xu = (sk
(i)
u,xu){i:u/∈Ki}. To encrypt, we use an HSS to secret share C into |C| share and

encrypt the corresponding share in each MAFE(i) and CT = (ct(i))i. To ensure decryption works
correctly, we have to make mild adjustments, but the high level idea is simply that a decryptor will
recover MAFE outputs for every K ∈ C, and later it combine them by using reconstruction feature
of HSS.

To prove security of the above system, we need a very strong simulation property for HSS.
In a few words, we require that an attacker can learn evaluated shares corresponding to various
honest shares as well. And, even if an attacker corrupts both original shares and evaluated (honest)
shares, then it still does not learn anything beyond the final reconstructed value. To the best of
our knowledge, this strong simulation property has not been explicitly studied for HSS schemes in
the literature. In this work, we design such an HSS scheme by using multi-key fully homomorphic
encryption scheme (mkFHE) with threshold decryption property [MW16, DHRW16]. For more
details about this construction, please refer Appendix F. We remark that while there exists alternate
constructions for HSS (e.g. Dao et al. [DIJL23]), they do not satisfy our strong simulation guarantee.
For instance, if the evaluated shares of an honest share are leaked in the HSS of [DIJL23], then that
would reveal error-free LPN samples which can be used to break sparse LPN security. We leave
it as a very interesting open problem to construct HSS schemes with strong simulation guarantee

9

from other standard assumptions as it readily gives an MAFE scheme with adaptive corruptions.
Lastly, note that for efficiency we require

(
n
k

)
= poly(λ), as otherwise the running time will be

super-polynomial. For instance, if n = poly(λ), k = O(1), or n = O(log λ), k = O(log λ), then above
construction could be efficiently instantiated. For more details, we refer the reader to Section 7.

Boosting selective to non-adaptive authority corruptions. Next, we describe an interesting
approach to be boost security of any MAFE scheme, where the adversary must selectively decide
the set of corrupt authorities (i.e., pick K before setup), to an MAFE where the authority can non-
adaptively pick K. We remark that the selective corruption model is different than the “declared-
corruption” model that we introduced earlier. Here the MAFE scheme is defined independent of
K, and only the challenger needs to know K selectively.

Somewhat surprisingly, our compiler is again just our base MAFE template. That is, recall our
MAFE construction based on tMAFE and 1-FE. Our observation is that we replace tMAFE with
an MAFE scheme with selective corruptions, then we can essentially construct an MAFE scheme
where an attacker can corrupt any authority before declaring C. We have to organize the security
arguments carefully as we need to leverage the fact that pre-challenge simulator of 1-FE works
exactly as an honest challenger [SS10, GVW12, AV19]. Once we do this, then we can corrupt
1-fe.mski for any i non-adaptively, and continue simulation from the challenge phase naturally.
Since we know all corruptions by the challenge phase (in the non-adaptive corruption model), thus
we can instantiate and rely on security of MAFE with selective authority corruptions. We describe
the proof in Section 8. Our compiler has reduced the task of designing MAFE with non-adaptive
corruptions to just selective corruptions, and we leave the problem of designing MAFE with selective
corruptions from minimal assumption as an interesting open problem.

Lastly, we complement our positive results regarding authority corruptions with improved/tighter
lower bounds. We discuss those briefly below.

Tighter lower bounds. In our construction for MAFE with adaptive corruptions using HSS, we
instantiated 2 MAFE schemes per one corrupted bit. Extending this generically, we would need
2χ parallel compositions if we corrupt a maximum of χ bits. So, we ask the natural question —
can we achieve any slightly better efficiency? In particular, can the parameters of our system grow
sub-linearly in 2χ, i.e, 2χ(1−ξ) where ξ > 0? We show that an MAFE scheme with such a guarantee
can be transformed into an obfuscation scheme.

To provide an intuition for this result, recall [BV15, AJ15]. These results state that in a 1-FE
scheme secure against Q secret-key corruptions, |1-FE.ct| ≥ Q ·poly(λ). Any sub-linearity in size i.e,
Q1−ξ, ξ > 0 implies iO (as long as 1-FE offers indistinguishability-based security). In Section 9 we
show how to construct 1-FE with sub-linearity from an MAFE scheme with selective corruptions.
At a high level, 1-FE.Enc(x) ≡ MAFE.Enc(F (x, ·, ·)) where F is a circuit that uses j, C and outputs
j-th bit of C(x). We will corrupt MSK for slot j and set 1-FE.skC := (MSK,mafe.skC). By sub-
linearity of MAFE, 1-FE.ct only grows in Q1−ξ. In addition, when Q = 1, this will be a worst-case
iO scheme (XiO) with sub-linear size, an object that in conjunction with LWE yields iO [LPST16].
Moreover, we also get that simulation-secure versions of above are impossible in the standard model
due to known incompressibility arguments [BSW11, AGVW13].

2.3 Multi-Authority Attribute-Based Functional Encryption

Finally, we define an amalgamation of MAFE with its attribute-based (all-or-nothing) variant. We
call it multi-authority attribute-based functional encryption (MA-ABFE). It generalizes MA-AB-

10

IPFE systems studied in prior works [AGT21, DP23]. Our goal is to study MAFE against attackers
that can make an unbounded number of unsatisfying secret key queries, but only a bounded number
of satisfying key queries.

Defining MA-ABFE. An MA-ABFE consists of the same four algorithms — ASetup, KGen,
Enc, Dec. The main difference is that the KGen takes two inputs, a predicate attribute x and a
circuit input y, while Enc is used to encrypt a pair of predicate and circuit (P,C). Correctness is
naturally extended to learn C(Y) = C(y1, . . . , yn) if and only if P (X) = P (x1, . . . , xn) = 1. For
security, we consider a fused definition where the attacker can issue both, satisfying and unsatisfying
queries. For a challenge ciphertext encrypting (P ∗, C∗), a satisfying query on {(xi, yi)}i is such
that P ∗(X) = 1, while it is unsatisfying if P ∗(X) = 0. And, the scheme is secure if an attacker can
only learn C∗(Y) for every satisfying query {(xi, yi)}i. In this work, we study attackers that can
make an arbitrary polynomial number of unsatisfying key queries, but only a bounded number of
satisfying key queries. We call this (poly, Q)-bounded security.

A simple but flawed construction. Why isn’t MA-ABFE just a black-box combination of
MA-ABE and MAFE? Consider the following construction. An encryptor computes an MAFE
ciphertext for circuit C, and encrypts it using MA-ABE for predicate P . KGen provides secret
keys for both MA-ABE and MAFE systems, individually. While correctness follows trivially, such
a scheme will be totally insecure. Consider an attacker that makes 1 satisfying and 1 unsatisfying
secret key query. Now using the satisfying MA-ABE key, an attacker can recover the MAFE
ciphertext and then it can decrypt it using both MAFE secret keys (one from the satisfying and
other from unsatisfying secret key). This merely suggests that designing MA-ABFE is not a
straightforward task.

Starting from scratch: (poly, 1)-security. We start by explaining our design for a non-adaptively
secure (poly, 1)-MA-ABFE scheme. At a very high level, the construction draws inspiration from
the classical Sahai-Seyalioglu [SS10] 1-FE construction. Our strategy is to first garble the circuit
C∗, and encrypt its 2n wire labels under 2n MA-ABE ciphertexts for predicate P ∗. Now the
i-th authority generates n MA-ABE secret keys for attribute xi. That is, it gives secrets keys
corresponding to wire keys {(j, yj)}j∈[n]. Thus, if an attacker makes a single satisfying key query
can only learn half of the wire labels. Thus, by using garbling simulation security, we can simulate
it given just C∗(Y) to generate the ciphertext. We can formalize the above ideas to prove non-
adaptive (poly, 1)-security of the above design. Note that this preserves the MA-ABE predicate
class, and the MAFE portion is for P/Poly circuits. We notice that by relying on non-committing
techniques (generalized to MA-ABE) [GVW12, HMNY22, HKM+23, GY24], we can also boost its
security to adaptive (poly, 1)-security. We provide full details later in Section 11.

Multi-Authority Collusion Amplification Techniques [GY24]. Moving forward, we want to
amplify (poly, 1)-secure MA-ABFE to (poly, Q)-security. At a high level, our strategy is to mirror
the multi-authority collusion amplification template developed in a very recent work by Goyal-
Yadugiri [GY24]. In a few words, we start by strengthening the distributed client-server framework
(dCSF) from [GY24] to an attribute-based dCSF. This is provided in Section 12. Given this, we
can design a (poly, Q)-secure MA-ABFE scheme in the Random Oracle Model (ROM) by relying
on sub-exponential security of (poly, 1)-secure MA-ABE. We discuss our construction in detail later
in Section 13. Overall, our result lifts every component of the blueprint laid out in [GY24] to
handle unbounded number of unsatisfying queries. While there are many subtleties that appear
during this process, we are able to design efficient reductions if we work in the ROM. This is crucial

11

because now we have to ensure that each unsatisfying query does not reveal any “un-simulatable”
information about the circuit C∗ as well as the random set selections made for answering each secret
key query do not negatively affect the desired statistical lemmas which are essential for proving
security. We refer the reader to main body for a more detailed discussion.

We conclude by saying that by plugging our compiler with known results from the MA-ABE
literature, we get an MA-ABFE scheme for NC1 policies and P/Poly circuits (NC1◦P/Poly) assuming
sub-exponential hardness of standard pairing-based assumptions [LW11, DKW23] in the ROM.
Similarly, we also get MA-ABFE for DNF ◦P/Poly assuming the hardness of LWE in the ROM, by
relying on [DKW21].

As a side contribution, we also show a simple construction for a statically secure MA-ABE for
any polynomial-size predicate family from vanilla witness encryption by generalizing the frame-
work provided in [GGSW13]. Our construction does not require Random Oracles and also han-
dles arbitrary authority corruptions declared statically (provided along with all key generation
queries). [WWW22] constructed an MA-ABE scheme for subset functionalities using evasive LWE
but left constructing MA-ABE from vanilla witness encryption as an open question. Our con-
struction resolves this question and also improves on their work by constructing an MA-ABE for
any polynomial-size predicate family from vanilla witness encryption. We leave constructing an
adaptively secure MA-ABE for all polynomial-size predicates from vanilla witness encryption as
an interesting open problem. We believe that using similar techniques from [WW24, GY25] might
yield some fruitful results.

Both our MA-ABE and [WWW22] can be instantiated under the hardness of evasive LWE
assumption [Wee22, Tsa22, VWW22]. Thus, this readily gives us a statically secure MA-ABFE for
all polynomial size predicates and circuits without Random Oracles from evasive LWE. For more
details, please confer Appendix K.

3 Definitions and Preliminaries

We introduce the notation we use throughout the paper below.

Notation. By PPT we denote probabilistic polynomial-time. We denote the security parameter
by λ and the set of positive integers by N. For any a, b ∈ {0} ∪ N, a ≤ b, we denote by [a, b], the
set of all integers from a to b including a and b. In other words, [a, b] = {a, . . . , b}. We denote by

[n] := [1, n]. We denote by x
$←− X , the process of sampling an element x from the set X , with

uniform probability. Similarly, for any PPT algorithm A, x← A(y) denotes the process of sampling
x from the output distribution of A when run on y. By negl(·), we denote negligible functions. By
poly, we denote positive polynomials. All of our logarithms log are in base 2. We denote the power
set A by 2A and the set of all subsets of A of size a by 2A

∣∣
a
.

We say that two efficiently samplable probability distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any non-uniform PPT distinguisher D = {Dλ}λ∈N, and
for large enough λ ∈ N,∣∣∣∣ Pr

α←Xλ

[
1← D(1λ, α)

]
− Pr

α←Yλ

[
1← D(1λ, α)

]∣∣∣∣ ≤ negl(λ)

Now, we provide the definition for an MAFE scheme we use in this work. Specifically, we revise
the definition of MAFE from [GY24] and provide a strengthening of this definition where authorities

12

can be created dynamically. In contrast, [GY24] was only able to construct MAFE schemes where
the number of authorities are bounded and must be declared for the specification of the scheme.

Syntax. A multi-authority functional encryption (MAFE) scheme MAFE for circuit class C =
{Cλ : Xλ,1 × . . .× Xλ,n → Oλ}λ∈N and global identifier domain GID = {GIDλ}λ∈N consists of the
following polynomial-time algorithms.

GSetup(1λ, 1Q, 1s)→ CRS. The possibly randomized global setup algorithm takes as input the se-
curity parameter λ, the query bound Q, the maximum circuit size s, and outputs CRS. The
following algorithms take CRS implicitly.

ASetup(id, 1ℓid)→ (MPK,MSK). The probabilistic authority setup algorithm takes as input the
input-size for the id-th authority ℓid, and outputs master public and secret key pair (MPK,MSK).

KGen(id,MSKid,GID, x)→ SKid,GID,x. The possibly randomized key generation algorithm takes as
input the id-th master secret key MSKid, the global identifier for the user GID ∈ GIDλ, an
input x ∈ Xid = {0, 1}ℓid , and outputs the secret key SKid,GID,x.

Note: We do not require KGen to take {MPKidx}idx like [GY24]. This is why our MAFE has
truly dynamic functionality as authorities can join at any point.

Enc({MPKid}id∈I , C)→ CT. The probabilistic encryption algorithm takes as input the master pub-
lic keys for authorities in I, {MPKid}id∈I , a circuit C ∈ Cλ, and outputs ciphertext CT.

Dec({SKid,GID,xid
}id∈I ,CT)→ y. The deterministic decryption algorithm takes as input the secret

keys from authorities in I, {SKid,GID,xid
}id∈I , ciphertext CT, and outputs the value y.

Definition 3.1 (MAFE). An MAFE scheme (GSetup,ASetup,KGen,Enc,Dec) is said to be an
MAFE scheme for circuit class C and GID if it satisfies the following properties.

Correctness. For any λ ∈ N, Q = Q(λ), n = n(λ), s = s(λ), C ∈ Cλ,GID ∈ GIDλ, ∀ I, ℓid =
ℓid(λ), xid ∈ {0, 1}ℓid ,

Pr

 C(x1, . . . xn) =
Dec({SKid,GID,xid

}id,CT)
:

CRS← GSetup(1λ, 1Q, 1s),∀ id ∈ I,
(MPKid,MSKid)← ASetup(id, 1ℓid),
SKid,GID,xid

← KGen(id,MSKid,GID, xid),
CT← Enc({MPKid}id, C)

 = 1

Security. There exists a stateful simulator Sim such that for any admissible adversary A, ∀ λ ∈ N,

Pr

 b← AOb(·,·)(CT) :

Q, s← A(1λ), b $←− {0, 1},
CRS← Ob(1

λ, 1Q, 1s),

(C, I)← AOb(·,·)(CRS),
CT← Ob(I, C)

 ≤ 1

2
+ negl(λ)

where both O0,O1 are stateful oracles that respond to queries from A of the form

(ASetup, (id, 1ℓid)) A queries to setup id-th authority with input size ℓid. Gets MPKid in
response.

13

(KGen, (id,GID, x)) A queries to corrupt secret key for id-th authority for GID and input x
such that |x| = ℓid. Gets SKid,GID,x in response.

O0 uses (GSetup,ASetup,KGen,Enc) to respond to queries from A. However, it maintains
state to store public parameters for all authorities and secret keys generated thus far. O1

uses the simulator Sim to respond to these queries. O1 also provides Sim with the set 1|C|,V
for ciphertext generation. Here, V = {(GID, X = {xGID,id}id∈I , C(X)) : for every GID that
was used to query all id ∈ I in pre-challenge query phase}. In addition, O1 also provides
C(X) for every X completely queried in post-challenge phase to Sim.

A stateful PPT machine A is admissible if it makes polynomially many queries with the
restriction that for the set of authorities submitted in challenge query phase, I, it can make
adaptively at most Q secret key queries across |I| authorities such that each authority is
queried at most once per GID. In addition, A will make at most one ciphertext query with
circuit C ∈ Cλ of size at most s adaptively. For simplicity, we assume that authorities will be
created before secret key is queried for that authority. Thus, all id ∈ I will be created before
challenge circuit is declared.

Definition 3.2 (MAFE with “bounded” authorities). AnMAFE scheme (GSetup,ASetup,KGen,Enc,
Dec) is said to be an MAFE scheme with bounded authorities if the number of authorities (n) are
declared a-priori and GSetup takes 1n as input and I = [n]. In addition, KGen also takes master
public keys from all n authorities. The security definition is also slightly altered where all the
authorities are initiated in the setup phase and master public keys for all authorities are provided
along with CRS. That is, Ob is essentially a KGen oracle and A is only allowed to query it at most
Q times.

We provide the definition of single-authority MAFE scheme, also called BFE.

Definition 3.3 (BFE). A BFE scheme is an MAFE scheme for a single authority (i.e, n = 1).
Hence, we ignore CRS and GID as all key queries are answered by a single authority. We also
alter the syntax where Setup (which also depends on output size ℓout) is used instead of GSetup.
id,GID are dropped from KGen. Our constructions require a stronger version of simulation that is
implicitly satisfied by BFE schemes from [GVW12, AV19]. We define it as follows.

Strong Simulation Security. For any admissible adversary A, there exists a stateful PPT sim-

14

ulator Sim = (S0, S1,S2, S3) such that,AKGen(MSK,·)(CT) :

Q, ℓin, ℓout ← A(1λ),
(MPK,MSK)← Setup(1λ, 1Q, 1ℓin , 1ℓout),

C ← AKGen(MSK,·)(MPK),
CT← Enc(MPK, C)

≡AKGen(MSK,·)(CT) :

Q, ℓin, ℓout ← A(1λ),
(MPK,MSK, st)← S0(1

λ, 1Q, 1ℓin , 1ℓout),

C ← AS1(MSK,st,·)(MPK),
CT← Enc(MPK, C)

≈cAS

C(·)
3 (st,·)(CT) :

Q, ℓin, ℓout ← A(1λ),
(MPK,MSK, st)← S0(1

λ, 1Q, 1ℓin , 1ℓout),

C ← AS1(MSK,st,·)(MPK),

CT← S2(st, 1
|C|,V)

where V = {(x,C(x)) : for each x queried in pre-challenge phase}. A stateful PPT machine
A is said to be admissible if

• It makes at most Q queries to the KGen oracle and one challenge circuit query (OR)

• Makes unbounded queries to KGen oracle and does not make any challenge query.

Definition 3.4 (Dynamic BFE). A BFE scheme (Setup,KGen,Enc,Dec) is said to be a dynamic
query bounded BFE scheme for circuit class C = {Cλ : {0, 1}ℓin → {0, 1}ℓout}λ∈N if it satisfies
Definition 3.3 and Setup no longer takes the query bound Q as input and instead Enc takes it
as input. This also implies that the running times of Setup and KGen are independent of Q and
are polynomial in λ, s and running time of Enc is polynomial in λ,Q, s. Security of the scheme is
defined accordingly.

Remark 3.5 (Ciphertext-policy BFE, [GVW12, AV19]). A BFE scheme for any class of P/Poly
circuits can be constructed from the minimal assumption of public-key encryption. In addition,
when considering ciphertext-policy variant of BFE as opposed to key-policy BFE in [GVW12,
AV19], the Setup algorithm does not need to take the size of the circuit as input. One can use
replace Yao’s garbling scheme in [SS10] with point-and-permute garbling scheme and only work
with the input and output lengths to construct BFE in which the Enc algorithm can handle circuits
of unbounded-size.

Remark 3.6 ([AMVY21, GGLW22, GGL24]). A dynamic query bounded (ciphertext-policy) BFE
scheme for any class of P/Poly circuits can be constructed from the minimal assumption of Identity-
Based Encryption.

4 MAFE with Trusted Setup

In this section, we define and show the construction of an important variant of MAFE, MAFE with
trusted setup (tMAFE). In a tMAFE scheme, there is central authority that initiates the system

15

by generating CRS and master public-secret key pairs for all authorities. So, we forgo the ASetup
algorithm in this scheme and consider GSetup to output all the required parameters for setting up
the system. In the next section, we show that this weakening of MAFE is enough to construct
general MAFE from minimal assumptions. We formally define this object below and provide the
construction.

Definition 4.1 (tMAFE). A tMAFE scheme (GSetup,KGen,Enc,Dec) is said to be an MAFE
scheme with trusted setup (tMAFE) for circuit class C and GID if there is a central authority that
generates all system parameters (i.e, CRS,MPKid,MSKid for all id). To reflect this, we ignore the
ASetup algorithm and change GSetup algorithm as follows.

GSetup(1λ, 1Q, 1n, 1s, 1ℓ1 , . . . , 1ℓn)→ (CRS, {(MPKid,MSKid)}id∈[n]). The possibly randomized global
setup takes the number of authorities n and input sizes for all authorities, ℓ1, . . . , ℓn as addi-
tional input, and outputs CRS, master public-secret key pairs {(MPKid,MSKid)}id∈[n] for all
authorities.

The security of the scheme is defined analogously.

4.1 Construction

We provide the construction of a tMAFE scheme for P/Poly circuits and GID as follows. At a
high level, in [GY24] constructs a statically secure MAFE scheme from the minimal assumption
of one-way functions using a PRF key embedded as part of the CRS. This is already an optimal
construction if we are limited to static security. However, they use additional assumptions to realize
an adaptively secure MAFE scheme such as random oracle, non-interactive key exchange, etc.

As explained in overview, our observation, if we restrict ourselves to the trusted setup model,
we can embed the same PRF key as part of master secret key for each authorities. Since there is a
centralized authority that distributes these keys and we do not consider authority corruptions, this
key remains hidden and we can realize adaptive security easily. In Section 5 we show how we can
use tMAFE in conjunction with BFE to construct a general MAFE scheme. Parts of the following
construction are taken verbatim from [GY24].

Construction 4.2 (tMAFE). We provide the construction of a tMAFE scheme for P/Poly circuits
adn GID = {GIDλ}λ∈N using an MAFE for P/Poly circuits for one GID. ([GY24]), a dCSF
scheme for P/Poly circuits and GID (Definition B.1), and PRF : {0, 1}λ × GIDλ → 2[N]

∣∣
D
× 2[T]

∣∣
v

(Definition A.3) as follows. Here N,D, T, v are from Lemma B.2 and Lemma B.3.

GSetup(1λ, 1Q, 1n, 1s, 1ℓ1 , . . . , 1ℓn). ∀ u ∈ [N], sample mafe.crsu ← 1MAFE.GSetup(1λ, 1n, 1s). Set

CRS := (mafe.crsu)u∈[N]. Sample K
$←− {0, 1}λ. ∀ u ∈ [N], (mafe.mpku,id,mafe.msku,id) ←

1MAFE.ASetup(id, 1ℓid). SetMPKid := (mafe.mpku,id)u∈[N], andMSKid := (K, (mafe.msku,id)u).
Output CRS, {(MPKid,MSKid)}id∈[n].

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). Parse MPKidx as (mafe.mpku,idx)u∈[N] for each idx ∈ [n]

and MSKid as (K, (mafe.msku,id)u∈[N]). Compute (S,∆) = PRF(K,GID).

• {x̂uGID,id}u∈[N] = dCSF.ServEnc(1λ, 1Q, 1n, 1s,GID, id, x,∆).

• ∀ u ∈ S,mafe.sku = 1MAFE.KGen(id,mafe.msku,id, {mafe.mpku,idx}idx, x̂uGID,id).

16

Output SKid,GID,x := (S, {mafe.sku}u∈S).

Enc({MPKid}id∈[n], C). Parse MPKid as (mafe.mpku,id)u∈[N] for each id ∈ [n]. Sample {Ĉu}u∈[N] ←
dCSF.CliEnc(1λ, 1Q, 1n, 1s, C) and with F̂ u = dCSF.UserComp(·, . . . , ·, Ĉu), mafe.ctu ← 1MAFE.
Enc({mafe.mpku,id}id∈[n], F̂ u). Output CT := (mafe.ctu)u∈[N].

Dec({SKid,GID,xid
}id∈[n],CT). Parse SKid,GID,xid

as (Sid, {mafe.sku,id}u∈Sid
) and CT as (mafe.ctu)u∈[N].

If all Sid’s are not the same, abort and output ⊥.
Otherwise, let S = S1 and for each u ∈ S, ŷuGID = 1MAFE.Dec({mafe.sku,id}id,mafe.ctu).
Output y = dCSF.Decode({ŷuGID}u∈S,S).

Theorem 4.3. If 1MAFE is a 1-GID MAFE scheme for P/Poly circuits, dCSF is a secure dCSF
scheme for P/Poly circuits and GID (Definition B.1), and PRF : {0, 1}λ × GIDλ → 2[N]

∣∣
D
× 2[T]

∣∣
v

is a secure PRF (Definition A.3), then Construction 4.2 is a tMAFE scheme for P/Poly circuits and
GID.

Proof. The proof of this theorem follows closely the structure of proofs from [GY24]. We provide
a sketch of the hybrid argument here.

Hybrid 0. This is the real experiment with honest challenger. We use GSetup,KGen,Enc algo-
rithms to respond to adversary’s queries.

Hybrid 1. In this hybrid, we will sample random (S,∆) for each of the Q GID queries during
setup. As the PRF key is not leaked to the adversary, this change remains unnoticeable by
the security of PRF.

Hybrid 2. In this hybrid, we will check if {SGID}GID obey Lemma B.2 and {∆GID}GID obey
Lemma B.3. Hybrids 1 and 2 are statistically indistinguishable due to those lemmas. We will
also compute the set of corrupted users and set of unique indices in each ∆GID.

Hybrid 3, j. for j ∈ [N+1]. In this hybrid, we will simulate the first j−1 1MAFE instantiations if
the corresponding u is not corrupted. The indistinguishability between hybrids can be argued
from the security of 1MAFE.

Hybrid 4. In this hybrid, we know the set of corrupted users, unique indices and all the non-
corrupted u ∈ [N] only use outputs from dCSF. Hence, we will simulate dCSF. The in-
distinguishability of hybrids can be argued by security of the same. This is description of
tMAFE.Sim.

The full proof is provided in the full version.

Corollary 4.4 ([GY24]). Assuming the existence of public-key encryption, there exists a tMAFE
scheme for P/Poly circuits and GID.

Proof. As shown in [GY24], we can construct a 1MAFE scheme for P/Poly circuits and dCSF for
P/Poly circuits and GID from PKE and one-way functions respectively. Hence, the proof of this
corollary follows immediately.

17

Corollary 4.5. Assuming the existence of one-way functions, there exists a secret-key tMAFE
scheme for P/Poly circuits and GID.

Proof. The proof of this corollary is similar to Corollary 4.4 as a secret-key 1MAFE instantiation
for P/Poly circuits can be constructed from any secret-key encryption scheme.

5 MAFE from Public-Key Encryption

In this section, we provide the construction of an general MAFE scheme for P/Poly circuits (Defi-
nition 3.1) using a tMAFE scheme and a BFE scheme for P/Poly circuits. As explained in overview
is that we initiate tMAFE in Enc of the MAFE scheme and use BFE to encrypt the key generation
circuit of tMAFE for various authorities. This way, each authority can independently initialize a
BFE instantiation and issue secret keys for a bounded number of input queries. While decrypting
we can use the BFE secret keys to decrypt and learn tMAFE secret keys. And as we encrypt the
circuit under tMAFE, we can decrypt this and learn the output. Note that the whole construction
crucially requires that authorities are not corrupted.

Remark 5.1 (Deterministic KGen). In the construction below, we assume w.l.o.g that tMAFE.KGen
is a deterministic algorithm. We can always de-randomize a probabilistic key generation algorithm
by including a PRF key (for appropriate parameters) along with MSK as long as MSK is not
corrupted.

We now provide the construction of an MAFE scheme with “dynamic” authorities as follows.

Construction 5.2 (MAFE). We provide the construction of an MAFE scheme for P/Poly circuits
and GID = {GIDλ}λ∈N using a BFE scheme for P/Poly circuits (Definition 3.3) and a tMAFE
scheme for P/Poly circuits and GID = {GIDλ}λ∈N as follows.

GSetup(1λ, 1Q, 1s). Output CRS := (λ,Q, s).

ASetup(id, 1ℓid). Sample keys (bfe.mpk, bfe.msk)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid). Here κid ≤ poly(λ,Q, |GID|, ℓid) is the maximum size of the secret key of tMAFE for
these parameters. Output MPK := (ℓid, bfe.mpk) and MSK := (ℓid, bfe.msk).

KGen(id,MSKid,GID, x). ParseMSKid as (ℓid, bfe.mskid). Sample bfe.skid,GID,x ← BFE.KGen(bfe.mskid,
(id,GID, x)). Output SKid,GID,x := bfe.skid,GID,x.

Enc({MPKid}id∈I , C). Parse MPKid as (ℓid, bfe.mpkid) for each id ∈ I. Let n = |I| and id1, . . . , idn
be the increasing order of elements in I.

• Samplemafe.crs, {(mafe.mpki,mafe.mski)}i ← tMAFE.GSetup(1λ, 1Q, 1n, 1s, 1ℓid1 , . . . , 1ℓidn).

• Compute mafe.ct← tMAFE.Enc({mafe.mpki}i, C),

• ∀i ∈ [n], bfe.ctidi ← BFE.Enc(bfe.mpkidi , tMAFE.KGen(·,mafe.mski, {mafe.mpki′}i′∈[n], ·, ·)).

Output CT := (mafe.ct, I, {bfe.ctid}id∈I).

Dec({SKid,GID,xid
}id∈I ,CT). Parse SKid,GID,xid

as bfe.skid,GID,xid
for each id ∈ I and CT := (mafe.ct, I ′,

{bfe.ctid}id∈I′). If I ≠ I ′, abort and output ⊥.
Otherwise, for each id ∈ I, compute mafe.skid = BFE.Dec(bfe.skid,GID,x, bfe.ctid). Output
y := tMAFE.Dec({mafe.skid}id∈I ,mafe.ct).

18

Correctness. The correctness of the scheme follows from the correctness of BFE and tMAFE.
Note that tMAFE.KGen(·,mafe.mski, {mafe.mpki′}i′∈[n], ·, ·) is a valid P/Poly circuit. Hence, by
correctness of BFE, we have that mafe.skid = tMAFE.KGen(id,mafe.mski, {mafe.mpki′}i′ ,GID, xid).
Thus, y = C(x1, . . . , xn) by correctness of tMAFE.

Theorem 5.3. If tMAFE is a tMAFE scheme (Definition 4.1) for P/Poly circuits and GID =
{GIDλ}λ∈N and BFE is a BFE scheme for P/Poly circuits (Definition 3.3), then Construction 5.2
is an MAFE scheme for P/Poly circuits and GID = {GIDλ}λ∈N (Definition 3.1).

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construction 5.2
as follows.

Hybrid 0. This is the same as the real experiment from Definition 3.1. We use honest and stateless
BFE and tMAFE algorithms to respond to A.

Hybrid 1. In this hybrid, we will simulate the pre-challenge queries using BFE.S0,BFE.S1 for all
queried authorities. That is, we will use (BFE.S0,BFE.S1,BFE.Enc,BFE.KGen) to respond
to authority setup and secret key queries made to authorities in the pre-challenge query
phase. We will still create authorities honestly in the post-challenge query phase. The output
distribution will be identical to hybrid 0 from security of BFE.

Hybrid 2, j. for j ∈ [n+1]. In this hybrid, we simulate the BFE instantiation for id1, . . . , idj−1 ∈ I
using BFE.Sim = (BFE.S0,BFE.S1,BFE.S2,BFE.S3). The indistinguishability between these
hybrids is argued from the security of BFE instantiation.

Hybrid 3. In this hybrid, we will simulate the instantiation of tMAFE. Now that all id ∈ I are
simulated, we will only be using secret keys and not he master secret keys of tMAFE. Hence,
indistinguishability can be argued from security of tMAFE. This is the description of Sim
from Definition 3.1.

We provide the full proof in Appendix C.

Corollary 5.4. Assuming the existence of public-key encryption, there exists a MAFE scheme
(with unbounded authorities) for P/Poly circuits and GID.

Proof. The proof of this corollary follows from Corollary 4.4, and construction of BFE for P/Poly
circuits assuming PKE from [AV19].

Corollary 5.5. Assuming the existence of one-way functions, there exists a secret-key MAFE
scheme (with unbounded authorities) for P/Poly circuits and GID that satisfies full security, i.e,
function- and message-privacy5.

Proof. The proof of this corollary follows from Corollary 4.5, secret-key BFE for P/Poly circuits
using one-way functions with full security from [BS18, AV19].

5As we work in the ciphertext-policy setting, message-privacy means that an adversary cannot distinguish the input
used in KGen.

19

6 MAFE with Dynamic Collusions

Dynamic collusion model as introduced by [AMVY21, GGLW22] is a strengthening of the bounded
query model [DKXY02, SS10, GLW12]. In this model encryptor can choose the collusion bound
for a ciphertext. This allows the encryptor to set a desired collusion bound and provide more fine-
grained control per encryption rather than adhere to strict collusion bound set during the system
initiation. We refer the reader to [AMVY21, GGLW22] for an in-depth discussion on why the
dynamic collusion model is much stronger and useful for BFE systems.

In this section, we construct an MAFE scheme in which an encryptor can dynamically set the
query bound during the encryption and thus usher in all the advantages of the dynamic collusion
setting to the multi-authority model for functional encryption systems. Concretely, the idea is that
the GSetup,ASetup, and KGen algorithms of an MAFE scheme should be independent of the query
bound Q and only the Enc and Dec algorithms should grow polynomially in Q. We formally define
an MAFE scheme with dynamic collusions as follows.

Definition 6.1 (MAFE with Dynamic Collusions). MAFE with dynamic collusions is an MAFE
scheme where GSetup,ASetup, and KGen algorithms are independent of query bound Q. Enc takes
the query bound 1Q as input. The security definition is also defined similarly to Definition 3.1
where A specifies the query bound 1Q during challenge query phase.

Taking a closer look at Construction 5.2, as we use a BFE scheme in ASetup and KGen. Hence,
if we switch to BFE with dynamic collusions, we should realize a dynamic query MAFE scheme
readily. As we are initiating tMAFE in Enc, we can depend polynomially in Q and proceed as
before. However, there is a technical subtlety that avoids this straight forward construction.

The issue is that the output of BFE scheme is κid = poly(λ,Q, |GID|, ℓ) and depends on the query
bound Q. This is because the output of tMAFE.KGen grows polynomially in Q. The main idea in
this section is that if we can construct a tMAFE scheme where the GSetup,KGen and secret keys
grow polynomially in ⌈logQ⌉, we can readily use BFE scheme with dynamic collusions to construct
an MAFE scheme with dynamic collusions. More details are provided in Section 6.2. We call this
object a “weakly optimal” tMAFE scheme (wotMAFE). This is analogous to weakly optimal BFE
constructed in [GGLW22]. Definition of wotMAFE is as follows.

Definition 6.2 (wotMAFE). A wotMAFE scheme (GSetup,KGen,Enc,Dec) is said to be a weakly
optimal trusted MAFE scheme (wotMAFE) for circuit class C = {Cλ}λ∈N and GID = {GIDλ}λ∈N
if the running time of GSetup and KGen is upper bounded by poly(λ, s, ℓ1, . . . , ℓn, ⌈logQ⌉). Running
time of Enc can grow with Q. Hence, we alter the syntax of GSetup and Enc where GSetup takes
the query bound Q in binary whereas Enc takes the query bound in unary, 1Q.

Our construction depends on garbled circuits, pseudorandom functions, and Identity-Based
Encryption (IBE).

6.1 Weakly Optimal tMAFE from IBE and tMAFE

We construct a wotMAFE scheme using IBE and tMAFE below. The techniques used in Con-
struction 6.3 are similar to the construction of weakly optimal BFE from IBE as seen in [GGL24,
GGLW22]. In addition, as noted by [AMVY21], IBE is the minimal assumption for wotMAFE.

20

Construction 6.3 (wotMAFE). We provide the construction of a wotMAFE scheme for P/Poly
circuits and GID = {GIDλ}λ∈N using a tMAFE scheme for P/Poly circuits (Definition 6.2), GID =
{GIDλ}λ∈N (Definition 4.1), an IBE scheme for identity space [Q]×{0, 1}O(log λ)×{0, 1}, garbling
scheme (Garble,Eval) for P/Poly circuits (Definition A.1), and pseudorandom functions PRF0 :
{0, 1}λ × GID → [Q],PRF1 : {0, 1}λ × [Q]→ {0, 1}λ (Definition A.3) as follows.

GSetup(1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn , Q). Set CRS := (λ,Q, n, s). Sample K(0),K(1) $←− {0, 1}λ. For each

id ∈ [n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z) where z = ⌈logQ⌉ + ⌈logLid⌉ + 1 (Lid

defined in KGen).

Set MPKid := (ℓid, ibe.mpkid), MSKid := (ℓid, ibe.mskid,K
(0),K(1)). Output (CRS, {(MPKid,

MSKid)}id∈[n]).

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). Parse MSKid as (ℓid, ibe.mskid,K
(0),K(1)) and ∀ idx ∈ [n],

MPKidx as (ℓidx, ibe.mpkidx). Compute Tag = PRF0(K
(0),GID) and R = PRF1(K

(1),Tag).

Using R deterministically sample mafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup
(1λ, 1q, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R) where q = λ.

Sample secret key, mafe.skid,GID,x = tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x).
Let Lid = |mafe.mpkid|. ∀ i ∈ [Lid], ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i]))

6.
Output SKid,GID,x := (Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]).

Enc(1Q, {MPKid}id∈[n], C). Parse MPKid as (ℓid, ibe.mpkid) for each id ∈ [n]. Let F be circuit that

takes as input {mafe.mpkidx}idx∈[n] and outputs tMAFE.Enc({mafe.mpkidx}idx, C;R) for some
hardwired randomness R. ∀ Tag ∈ [Q],

• Sample RTag $←− {0, 1}λ, garble FTag, (F̃Tag, {wTag
id,i,b}) ← Garble(1λ, FTag) where id ∈

[n], i ∈ [Lid], b ∈ {0, 1}7.
• ∀ id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w

Tag
id,i,b).

Output CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q].

Dec({SKid,GID,xid
}id∈[n],CT). Parse SKid,GID,xid

as (Tagid,mafe.mpkid,mafe.skid,GID,xid
, {ibe.skTagid,i}i)

for each id ∈ [n], i ∈ [Lid]. If all Tagid are not the same, abort and output ⊥. Otherwise, set
Tag = Tag1.

Parse CT accordingly and use the Tag-th component, F̃Tag, {ibe.ctTagid,i,b}.

Perform IBE decryption wTag
id,i,mafe.mpkid[i]

= IBE.Dec(ibe.skTag,i, ibe.ct
Tag
id,i,mafe.mpkid[i]

). Evaluate

garbled circuit, mafe.ct = Eval(F̃Tag, {wTag
id,i,mafe.mpkid[i]

}id,i∈[Lid]).

Output y := tMAFE.Dec({mafe.skid,GID,xid
}id∈[n],mafe.ct).

6Here, mafe.mpkid[i] is the i-th bit of mafe.mpkid.
7For notational convenience, we assume that wires are pre-partitioned this way.

21

Correctness. The correctness of the scheme follows from the correctness of tMAFE, IBE, Garb,
and deterministic nature of PRF. Concretely, by correctness of IBE, we get the wire labels for the
wTag
id,i,mafe.mpkid[i]

as we have secret keys for the identities (Tag, i,mafe.mpkid[i]). Thus, by correctness

of Garb, we have that mafe.ct = tMAFE.Enc({mafe.mpkid}id∈[n], C;RTag). Finally, by correctness of
tMAFE, we have y = C(x1, . . . , xn).

Efficiency. Note that running times of GSetup and KGen are only dependent on ⌈logQ⌉ as query
bound q is set to λ and [Q] ⊆ {0, 1}⌈logQ⌉. The running times of Enc and Dec are polynomial in Q.

Theorem 6.4. If tMAFE is a tMAFE scheme (Definition 4.1) for P/Poly circuits, GID = {GIDλ}λ∈N,
IBE is an IBE scheme (Definition A.4) for identity space [Q]× {0, 1}O(log λ) × {0, 1}, (Garble,Eval)
is a garbling scheme (Definition A.1) for P/Poly circuits, and PRF0,PRF1 are pseudorandom func-
tions (Definition A.3), then Construction 6.3 is a wotMAFE scheme for P/Poly circuits, GID =
{GIDλ}λ∈N.

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construction 6.3
as follows.

Hybrid 0. This is the same as the real experiment from Definition 4.1. We use honest algorithms
for PRF0,PRF1, IBE, tMAFE, and (Garb,Eval) to respond to adversary’s queries.

Hybrid 1. In this hybrid, we will sample the Tags used in key generation as uniformly random
strings early and use a dictionary T to set Tags consistently. The indistinguishability between
these hybrid can be argued using the pseudorandomness of PRF.

Hybrid 2. In this hybrid, we will check if for any Tag ∈ [Q], the number of times Tag is sampled
is more than λ. Hybrids 2 and 3 are statistically indistinguishable which follows from Lemma
5.2 of [GGLW22] or Lemma 3.4 of [AMVY21] or Claim 1 of [AV19].

Hybrid 3. In this hybrid, we will sample outputs of PRF1 uniformly at the beginning and use them
accordingly based on Tag. Indistinguishability follows from pseudorandomness of PRF1.

Hybrid 4. In this hybrid, we will sample all tMAFE master public and secret keys early for each
Tag ∈ [Q] and use them accordingly based on selected random Tag for key generation and en-
cryption. Note that difference between hybrids 3 and 4 is the explicit sampling of randomness
for tMAFE.GSetup. Hence, these two hybrids are identically distributed.

Hybrid 5, k. for k ∈ [n+ 1]. In this hybrid, we will set IBE encryptions of half the wire labels for

the first k− 1 users to be all zero strings based on mafe.mpkTagid [i] for every Tag, i and id < k.
Indistinguishability can be argued using multi-challenge security of IBE as we never give out
secret keys corresponding to (1−mafe.mpkTagid [i]).

Hybrid 6, t. for t ∈ [Q+ 1]. In this hybrid, we will simulate the garbled circuits for the first t− 1
Tags. Indistinguishability can be argued by the security of garbled circuits as by the end of
hybrid 5, n+ 1, only half the wire labels are ever given out for all garbled circuits.

Hybrid 7, t. for t ∈ [Q+ 1]. In this hybrid, we will simulate the Tag-th instantiation of MAFE for
Tag < t. When we simulate all garbled circuits, we are using mafe.ctTag ← tMAFE.Enc({mafe.

22

mpkTagid }id, C) in a black-box manner. Hence, we can proceed to simulating the instantiation
readily and qrgue security using tMAFE security. HybA7,Q+1(1

λ) is the description of Sim from
Definition 6.2.

The full proof is provided in Appendix D.

6.2 Dynamic MAFE from Minimal Assumptions

As discussed, essentially the same construction as Construction 5.2 when BFE is replaced with a
dynamic query bounded BFE scheme for P/Poly circuits (Definition 3.4) and tMAFE by wotMAFE
scheme for P/Poly circuits and GID (Definition 6.2) yields a dynamic query bounded MAFE scheme
for P/Poly circuits and GID = {GIDλ}λ∈N. Although the output size of wotMAFE.KGen grows
with ⌈logQ⌉, we can set Q = 2λ while initiating dynamic BFE and pad the output of wotMAFE
secret keys to this length. Thus, we can eliminate the dependency of Q on GSetup,ASetup,KGen
completely. On the other hand, in Enc, we get Q in unary and can proceed with instantiating
wotMAFE as normal. For completeness, we provide the construction in Appendix E. The proof of
the following theorem is immediate.

Theorem 6.5 (MAFE with Dynamic Collusions). If there exists a BFE scheme for P/Poly circuits
with dynamic collusions (Definition 3.4) and a wotMAFE scheme for P/Poly circuits and GID =
{GIDλ}λ∈N (Definition 6.2), there exists an MAFE scheme with dynamic collusions for P/Poly
circuits and GID = {GIDλ}λ∈N (Definition 6.1).

Corollary 6.6. Assuming the existence of IBE, there exists a general MAFE scheme (with un-
bounded authorities) for P/Poly circuits and GID.

Proof. As IBE implies PKE and one-way functions, this corollary follows from Theorem 6.4 and
Theorem 6.5.

Corollary 6.7. Assuming the existence of one-way functions, there exists a secret-key general
MAFE scheme (with unbounded authorities) for P/Poly circuits and GID with full security i.e,
function- and message-privacy.

Proof. As secret-key IBE can be constructed from one-way functions, this corollary follows from
Theorem 6.4 and secret-key message-hiding BFE for P/Poly circuits from one-way functions con-
structed in [BS18, AV19].

7 MAFE with Authority Corruptions

In this section, we provide the definition and construction for an MAFE scheme with authority
corruptions. For an MAFE scheme with authority corruptions (cMAFE), the main difference is
that it is secure even if some of the master secret keys for authorities are lost. The way the adversary
corrupts authorities result in different definitions of (cMAFE). For instance, in an MAFE scheme
with selective corruptions (sel-cMAFE), the adversary declares all corrupted authorities at the
beginning and receives all master secret keys for these authorities along with the public parameters.

As authorities get corrupted, we need to ensure that the ciphertexts also reveal C(X) for each
X ∈ X1 × . . .Xn where Xid = {0, 1}ℓid if id is corrupted. This also induces the restriction that
sum of corrupted authorities’ bits sum up to O(log λ). We expand more on this in Section 9. We
provide the definition MAFE with authority corruptions below.

23

7.1 Definition

Definition 7.1 (cMAFE). A cMAFE scheme, (GSetup,ASetup,KGen,Enc,Dec) is said to be an
MAFE scheme that supports χ corruptible bits for circuit class C, and GID if it supports adaptive
corruptions of authority master secret keys where the cumulative sum of input sizes of corrupted
authorities is at most χ. We take the number of authorities n and χ as inputs to GSetup and work
in the “bounded” authority setting of MAFE (Definition 3.2). Security of the scheme is defined
analogously with the following important changes.

• O responds to KGen queries and in addition, responds to authority corruption queries where
A sends (Corr, id) and receives MSKid.

• Input for Sim in challenge query phase is defined as follows — V = {(GID, X,C(X)) : X ∈
XGID,1 × . . .XGID,n for every GID that was used to query all authorities. If id-th authority
corrupted, then XGID,id = {0, 1}ℓid}. Similarly, the simulator Sim queries C for every X ∈∈
XGID,1×. . .XGID,n where for corrupted id, XGID,id = {0, 1}ℓid and a singleton xGID,id otherwise.

A stateful PPT machine is admissible if it is an admissible adversary for MAFE. In addition,
the adversary can corrupt authorities adaptively. For all corrupted authorities,

∑
id ℓid ≤ χ and

χ(λ) = O(log λ). Once id is corrupted, A should not issue for secret key queries to id.

7.2 MAFE with Adaptive Corruptions from HSS

In this section, we construct an MAFE scheme with adaptive authority corruptions using a ho-
momorphic secret sharing scheme for P/Poly circuits. In particular, we construct a cMAFE
scheme in which the number of authorities that can be corrupted, k < n are known a-priori
such that

(
n
k

)
= poly(λ). For instance, some choices of k could be k = O(1), n = poly(λ) or

n = O(log λ), k = O(log λ).
As mentioned in overview, the idea in this construction is to do a “brute-force” instantiation

of MAFE schemes without authority corruptions such that we cover all possible k-size subset of
n-authority corruptions. Note that by design as

(
n
k

)
= poly(λ), our algorithms will be efficient. In

the i-th instantiation of this MAFE scheme, we will corrupt the i-th subset of [n] of size k.
The idea is that as the valid adversary corrupts authorities, it must corrupt authorities one

of these subsets. In the security argument, we will randomly choose a subset of [n] of size k and
rely on security of this instantiation. The reduction algorithm will be correct with a probability of
1/

(
n
k

)
= 1/poly(λ). Thus, we successfully reduce the security of the scheme to security of one of

the underlying MAFE schemes.
However, a subtle issue is that if we encrypt circuit C provided by adversary in every MAFE

instantiation, security will not hold as we will not be able to protect C present in other instan-
tiations. Hence, we need to “share” C among all the MAFE instantiation such that even if only
one of the shares are honest, we can still argue security. This is where we use homomorphic secret
sharing (HSS). Using HSS, we can share C among all the MAFE instantiations and evaluate on it
to reveal the output. However, the current HSS schemes from literature only satisfy a weaker secu-
rity guarantee where evaluations of honest shares cannot be leaked. We require this feature as the
adversary can use the secret keys from MAFE to learn output of honest share’s evaluation. To this
end, we define and construct a new HSS scheme that facilitates just that. We formally define and
construct such a HSS scheme from multi-key fully homomorphic encryption in Section F. Below,
we formally define and construct (n, k)-cMAFE.

24

Definition 7.2 ((n, k)-cMAFE). An (n, k)-cMAFE scheme for circuit class C and GID is defined
similarly to Definition 7.1 and the maximum number of corruptible authorities, k are declared a-
priori as an input to the GSetup algorithm. In addition, we require that

(
n
k

)
= poly(λ). We satisfy

a the following notion of security in Construction 7.3. For any admissible adversary A that meets
the admissibility criterion in Definition 7.1, there exists a PPT simulator Sim such that ∀ λ ∈ N,

Q,n, s, k, χ,CRS, {MPKid}id,
{MSKid}id∈K,Q,CT, b

:

Q,n, k, χ, s, ℓ1, . . . , ℓn ← A(1λ),
CRS← GSetup(1λ, 1Q, 1n, 1s, 1k, 1χ),
∀ id, (MPKid,MSKid)← ASetup(id, 1ℓid),

C ← AO(·,·)(CRS, {MPKid}id),
CT← Enc({MPKid}id, C),

b← AO(·,·)(CT)

≈c{

SimA,C(·)(1λ)
}

where O is a stateful oracle that responds to key generation using KGen and authority corruption
queries. O adds the query and response toQ for each query made by A. K is the set of all adaptively
corrupted authorities.

Construction 7.3 ((n, k)-cMAFE). We provide the construction of (n, k)-cMAFE for P/Poly cir-
cuits and GID = {GIDλ}λ∈N (Definition 7.2) using an MAFE scheme for P/Poly circuits and GID
(Definition 3.2), a HSS scheme for P/Poly circuits (Definition F.4) as follows.

GSetup(1λ, 1Q, 1n, 1s, 1k, 1χ). Let I =
[(

n
k

)]
and J = [2χ]. We will assume some fixed ordering of

2[n]
∣∣
k
8 and say Ki ∈ 2[n]

∣∣
k
for i ∈ I. For each i ∈ I, j ∈ J, instantiate an MAFE,

∀ i ∈ I, j ∈ J, crs(i,j) ← MAFE.GSetup(1λ, 1Q, 1n−k, 1s)

We assume w.l.o.g that for any i ∈ I, the authority identifiers are elements of the set [n]\Ki
9,

i.e, for the (i, j)-th instantiation of MAFE, id /∈ Ki
10. Output CRS := (crs(i,j))i∈I,j∈J.

ASetup(id, 1ℓid). For each i ∈ I, j ∈ J, generate master public and secret keys for the (i, j)-th

instantiation ofMAFE if id /∈ Ki, (mpk(i,j),msk(i,j))← MAFE.ASetup(id, 1ℓid). OutputMPK :=
(mpk(i,j))i,j and MSK := (msk(i,j))i,j .

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). Parse MSKid as (mafe.msk
(i,j)
id)i∈I,j∈J. For each idx ∈ [n],

parse MPKidx as (mafe.mpk
(i,j)
idx)i∈I,j∈J.

Note that each mafe.mpk
(i,j)
idx implicitly consists of information about ℓidx. Using (ℓ1, . . . , ℓn),

define a corruptible set K′ ⊆ [n] such that ℓid = O(log λ) for id ∈ K′.
Let I′ = {i : i ∈ I,Ki ⊆ K′,

∑
id∈Ki

ℓid ≤ χ}. Let I′id = {i : i ∈ I′, id /∈ Ki}. For every
i ∈ I′id, j ∈ J,

sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x)

8Recall from Section 2 that 2A
∣∣
a
is the set of all subsets of set A of size a.

9We use id /∈ Ki and id ∈ [n] \ Ki interchangeably.
10This is done to avoid complicated notation required in the subsequent algorithms. We use this fact implicitly.

25

Output SKid,GID,x := (sk
(i,j)
id,GID,x)i,j .

Enc({MPKid}id∈[n], C). Parse MPKid as (mpk
(i,j)
id)i∈I,j∈J for each id ∈ [n]. Parse K′ similar to KGen.

Share the circuit C using HSS for all i ∈ I′, {C̃i}i∈I′ ← HSS.Share(1λ, 1Q, 1|I
′|, C). For each

i ∈ I′, encrypt the circuit Fij where this circuit takes (ℓ1+ . . .+ ℓn)−χ bits as input and sets

{xid}id∈Ki
= j (truncations done appropriately) and computes HSS.Eval(i, C̃i, x).

That is, for every i ∈ I′, j ∈ J, ct(i,j) ← MAFE.Enc({mpk
(i,j)
id }id/∈Ki

, Fij). Output CT :=
(ct(i,j))i∈I′,j∈J.

Dec({SKid,GID,xid
}id∈[n],CT). Parse CT as (mafe.ct(i,j))i∈I′,j∈J and SKid,GID,xid

as (mafe.sk
(i,j)
id,GID,xid

)i,j

for each id ∈ [n]. Let x = (x1, . . . , xn). For each i ∈ I′, partition x as {xid}id∈Ki
and {xid}id/∈Ki

.
Observe that we have secret keys for all {xid}id/∈Ki

. Decrypt the (i, j = {xid}id/∈Ki
)-th instantia-

tion of MAFE, yi,j = MAFE.Dec({sk(i,j)id,GID,x}id/∈Ki
, ct(i,j)). Output y := HSS.Retrieve({yi,j}i∈I′).

Correctness. The correctness of the scheme follows from the correctness of MAFE and HSS
schemes. In particular, SKid,GID,xid

= (sk
(i,j)
id,GID,xid

)i∈I′id,j∈J and CT = {MAFE.Enc({mpk
(i,j)
id }id/∈Ki

,HSS.

Eval(i, C̃i, ·, j))}i∈I′,j∈J. By correctness of (i, j = {xid}id/∈Ki
)-th instantiation of MAFE, yi,j =

MAFE.Dec({sk(i,j)id,GID,xid
}id/∈Ki

, ct(i,j)) = HSS.Eval(i, C̃i, x = (x1, . . . , xn)). Thus, by correctness of
HSS, y = C(x1, . . . , xn).

Theorem 7.4. If HSS is a secure HSS scheme for P/Poly circuits (Definition F.4), MAFE is a
secure MAFE scheme for P/Poly circuits and GID (Definition 3.2), then Construction 7.3 is a
secure (n, k)-cMAFE scheme for P/Poly circuits and GID.

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construction 7.3
as follows.

Hybrid 0. This is the real experiment from Definition 7.2. We use the stateless MAFE and HSS
algorithms to respond to queries from adversary.

Hybrid 1, κ. For κ ∈ [|J| + 1]. In this hybrid, we will randomly guess i∗
$←− I and simulate

the (i∗, 1), . . . , (i∗, κ− 1) instantiations of MAFE. The indistinguishability of hybrids can be
argued using the security of MAFE. In addition, if the adversary corrupts any id that is not in
the i∗-th element of I, we abort. The indistinguishability is argued using a two fold argument
– if we correctly guess the authority’s corruption set, the challenger does not abort with 1/|I|
probability which by design is 1/

(
n
k

)
= 1/poly(λ). If this happens, we then proceed to argue

indistinguishability from MAFE security.

Hybrid 2. In this hybrid, we will simulate the HSS instantiation. Now that all MAFE instantia-
tions for i∗ (after correctly guessing at the beginning) are simulated, we would only be using
the outputs of share evaluation. Thus, we can readily rely on the strong security of HSS to
show indistinguishability. This is the description of Sim from Definition 7.2.

The full proof is in Appendix G.

26

Remark 7.5 (Corruptions & dynamic collusions). We remark that Construction 7.3 is agnostic
to the query bound Q. That is, even if we provide the query bound during encryption, the same
construction works mutatis mutandis. This is because of the black-box usage of MAFE. Hence, a
similar construction yields an (n, k)-cMAFE scheme with dynamic collusions.

Remark 7.6 (Leakage Resilient FE). We remark that our techniques provide a way to construct
a leakage resilient FE scheme in which the master secret key can be corrupted block by block such
that the number of bits of input it affects is bounded by χ.

8 Generic Compilers for Authority Corruptions

In this section, we show relations between various notions of authority corruptions in MAFE as
defined in Section 7.1. In particular, we show that selective corruptions are good enough to achieve
non-adaptive corruptions generically and adaptive corruptions via complexity leveraging. MAFE
with selective and non-adaptive authority corruptions are defined as follows.

Definition 8.1 (sel-cMAFE). AMAFE scheme with selectively corruptible authorities (sel-cMAFE)
scheme for circuit class C and GID is defined similarly to Definition 7.1 except that the adversary
will declare all the corruptions a-priori. That is, the adversary will send the set of corrupted author-
ities, K at the beginning and receive {MSKid}id∈K along with the public parameters. The adversary
will not issue secret key queries for corrupted authorities.

Definition 8.2 (na-cMAFE). A MAFE scheme with non-adaptive authority corruptions (na-
cMAFE) scheme for circuit class C and GID is defined similarly to Definition 7.1 except that
the adversary is prohibited to corrupt any authorities in the post-challenge query phase. That is,
all authority corruptions should be made before sending the challenge circuit.

In order to achieve non-adaptive corruptions, we rely on a similar compiler as Section 5. The
idea is that instead of a tMAFE scheme, we use a sel-cMAFE scheme to achieve non-adaptive
corruptions11. As the pre-challenge simulator BFE (BFE.S0,BFE.S1) behaves identically to an
honest challenger, we can reveal BFE.MSK at most by the challenge query phase and proceed
honestly. Thus, if all the corruptions are made before challenge query phase, we can readily rely
on sel-cMAFE security as well.

For adaptive corruptions, we guess the authorities that will be corrupted a-priori and pro-
ceed with the security argument from there. The probability that our guess is correct is at most
2−O(log2 λ).

We now construct a non-adaptively corruptible MAFE scheme (na-cMAFE) using a selectively
corruptible MAFE scheme (sel-cMAFE).

Construction 8.3 (na-cMAFE). We provide the construction of na-cMAFE for P/Poly circuits and
GID = {GIDλ}λ∈N using a sel-cMAFE scheme for P/Poly circuits and GID (Definition 8.1) and a
BFE scheme for P/Poly circuits (Definition 3.3) as follows.

GSetup(1λ, 1Q, 1n, 1s, 1χ). Output CRS := (λ,Q, n, s, χ).

ASetup(id, 1ℓid). Sample keys (bfe.mpk, bfe.msk)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid) where κid ≤ poly(λ,Q, |GID|, ℓid). OutputMPK := (ℓid, bfe.mpk) andMSK := (ℓid, bfe.msk).

11Note that even in Construction 5.2, we could rely on selectively secure tMAFE to achieve the same result.

27

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). ParseMSKid as (ℓid, bfe.mskid) and for all idx ∈ [n],MPKidx

as (ℓidx, bfe.mpkidx). Sample bfe.skid,GID,x ← BFE.KGen(bfe.mskid, (id,GID, x)). Output SKid,GID,x

:= bfe.skid,GID,x.

Enc({MPKid}id∈[n], C). Parse MPKid as (ℓid, bfe.mpkid) for each id ∈ [n].

• Samplemafe.crs← sel-cMAFE.GSetup(1λ, 1Q, 1n, 1s, 1χ) and ∀ id ∈ [n], (mafe.mpkid,mafe.
mskid)← sel-cMAFE.ASetup(id, 1ℓid).

• Compute mafe.ct← sel-cMAFE.Enc({mafe.mpkid}id∈[n], C).

• ∀ id ∈ [n], bfe.ctid ← BFE.Enc(bfe.mpkid, sel-cMAFE.KGen(·,mafe.mskid, {mafe.mpkidx}idx, ·, ·)).

Output CT := (mafe.ct, {bfe.ctid}id∈[n]).

Dec({SKid,GID,xid
}id∈[n],CT). Parse SKid,GID,xid

as bfe.skid,GID,xid
for each id ∈ [n] and CT := (mafe.ct,

{bfe.ctid}id∈[n]). For each id ∈ [n], compute mafe.skid = BFE.Dec(bfe.skid,GID,x, bfe.ctid). Out-
put y := sel-cMAFE.Dec({mafe.skid}id∈[n],mafe.ct).

Correctness. The correctness of the scheme follows from the correctness of BFE and sel-cMAFE.

Theorem 8.4. If sel-cMAFE is a sel-cMAFE scheme (Definition 8.1) for P/Poly circuits and GID =
{GIDλ}λ∈N and BFE is a BFE scheme for P/Poly circuits (Definition 3.3), then Construction 8.3
is an na-cMAFE scheme for P/Poly circuits and GID = {GIDλ}λ∈N (Definition 8.2).

Proof Sketch. The proof of this theorem is similar to the proof of Theorem 5.3. We provide a sketch
of the hybrid argument used to prove security of Construction 8.3 as follows.

Hybrid 0. This is the real experiment from Definition 8.2. We use the stateless sel-cMAFE and
BFE algorithms to respond to queries form adversary.

Hybrid 1. In this hybrid, we will simulate the pre-challenge queries using BFE.S0 and BFE.S1.
That is, we will use (BFE.S0,BFE.S1,BFE.Enc,BFE.KGen) to respond to all secret key queries
made to n authorities in the pre-challenge secret key query phase. Note that if id is corrupted,
we can proceed with revealing itsMSKid as the output distribution remains the same as hybrid
0 by BFE security.

Hybrid 2, j. for j ∈ [n+1]. In this hybrid, we will simulate the honest BFE instantiations for the
first j−1 authorities using BFE.Sim. And, we will use BFE.Enc and BFE.KGen algorithms for
corrupted authorities which we will know by challenge query phase. The indistinguishability
of hybrids can be argued from security of BFE.

Hybrid 3. In this hybrid, as we know all the corruptions by challenge query phase, we can sim-
ulate the sel-cMAFE instantiation. We can use the master secret keys to encrypt the honest
sel-cMAFE.KGen algorithm using the corrupted authorities’ BFE instantiations. Moreover,
as no authority corruptions are allowed in the post-challenge query phase, indistinguisha-
bility can be argued using the security of sel-cMAFE. This is the description of Sim from
Definition 8.2.

We omit full proof for brevity.

28

Remark 8.5 (Adaptive Corruptions). Assuming the quasi-polynomial security of sel-cMAFE, we
can construct a cMAFE scheme simply by guessing the corruption set a-priori. As we have

∑
id ℓid =

poly(λ) and out of which we need to guess χ = O(log λ) bits that get corrupted. We will be

correct with probability 1/
(poly(λ)
O(log λ)

)
= 2−O(log2 λ). Hence, by relying on sub-exponential security of

sel-cMAFE, we can get a cMAFE scheme generically. Moreover, we can construct a tight reduction
using artificial abort techniques [Wat05, GY24] so that the resulting cMAFE scheme is secure against

attackers running in times 2O(log2 λ) with advantage at most 2−O(log2 λ).

9 Lower Bounds on MAFE with Authority Corruptions

In this section, we provide lower bounds on the efficiency of MAFE schemes that support authority
corruptions. Specifically, we show that if an MAFE scheme supports at most χ-bit corruptions, the
size of its ciphertexts and master keys must grow with 2χ. We show that any non-trivial efficiency
in this regard, i.e, 2χ(1−ξ) for ξ > 0, will imply an indistinguishability obfuscation (iO) scheme12.
This result implies that Construction 7.3 is optimal in certain regards.

The main idea as explained in overview is that MAFE schemes that satisfy a weaker notion of
security such as static security (Definition 9.5) with a non-trivial efficiency guarantee as described
above can be bootstrapped to an iO scheme. Here, by static security, we mean that adversary
makes secret key and corruption queries before receiving the public parameters of the system.

We show that an MAFE scheme that obeys this definition implies an XiO scheme for Plog/Poly
[LPST16] if it supports one GID query and a weakly succinct FE scheme for P/Poly [BV15] if it
supports at mostQ GID queries. Our implications are formally proved in Section 9.3 and Section 9.4.
Note that an XiO scheme for Plog/Poly in conjunction with LWE implies an iO scheme whereas a
weakly succinct FE scheme for P/Poly implies it generically. We provide the definitions of these
preliminaries in Section 9.1 and formally define statically secure MAFE schemes in Section 9.2.

9.1 Preliminaries

We provide definitions of some preliminaries we use in this section.

Definition 9.1 (iO). An iO scheme with polynomial-time algorithms (Obf,Eval) is said to be an
indistinguishability obfuscation (iO) for the circuit class C = {Cλ}λ∈N if it satisfies the following
properties.

Correctness. For any λ ∈ N, x, C ∈ Cλ,

Pr[C(x) = Eval(C̃, x) : C̃ ← Obf(1λ, C)] = 1

Indistinguishability. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀λ ∈ N, C0, C1 ∈ Cλ, |C0| = |C1|,∀x,C0(x) = C1(x),

Pr

[
b← A(C̃) :

b
$←− {0, 1}, (C0, C1)← A(1λ),

C̃ ← Obf(1λ, Cb)

]
≤ 1

2
+ negl(λ)

12We consider indistinguishability-based security for our schemes in this section and simulation-based security is
impossible for such schemes (cf. Remark 9.13).

29

Definition 9.2 (XiO). An exponentially-efficient indistinguishability obfuscation (XiO) scheme
XiO as defined by [LPST16] is an iO scheme for the circuit class C =

{
Cλ : {0, 1}n(λ) → {0, 1}m(λ)

}
λ∈N

that satisfies Definition 9.1 and the following property.

Non-trivial Efficiency. There exists a constant ξ > 0 such that for any λ ∈ N, circuit C ∈ Cλ, the
probabilistic algorithm Obf runs in time poly(λ, |C|, 2n) and output size |C̃| = poly(λ, |C|) ·
2n(1−ξ).

Definition 9.3 (Circuit class Plog/Poly, [LPST16]). Plog/Poly is a subclass of P/Poly circuits that
takes O(log λ) many bits as input. The output of any circuit C ∈ Plog/Poly is polynomially bounded.
Note that XiO is efficient for Plog/Poly.

Definition 9.4 (sFE, [BV15]). An sFE scheme (Setup,Enc,Dec) is said to be a weakly size-succinct
functional encryption (sFE) scheme for circuit class C = {Cλ}λ∈N if it satisfies the following prop-
erties.

Correctness. For any λ ∈ N, Q = Q(λ), and any Cq ∈ Cλ for q ∈ [Q], any x,

Pr

[
y = Cq(x) :

(MPK, {SKq}q)← Setup(1λ, {Cq}q),
CT← Enc(MPK, x), y = Dec(SKq,CT)

]
= 1

Weak size-succinctness. The size of the encryption circuit, |Enc(MPK, ·)| ≤ Q1−ξ · poly(λ, |C|)
where ξ > 0 and |C| is the maximum circuit size for Cλ.

Security. For any stateful PPT adversary A, there exists a negligible function negl(·) such that
∀ λ ∈ N,

Pr

 b = b′ :

∀ q ∈ [Q], {Cq}q ← A(1λ), b
$←− {0, 1},

(MPK, {SKq}q)← Setup(1λ, {Cq}q),
(x0, x1)← A(MPK, {SKq}q),
CT← Enc(MPK, xb), b

′ ← A(CT)

 ≤ 1

2
+ negl(λ)

9.2 Definitions

We provide the definitions of primitives with non-trivial efficiency for MAFE with authority cor-
ruptions.

Syntax. A static Q-GID MAFE (stMAFE) scheme for the circuit class C = {Cλ}λ∈N and GID =
{GIDλ}λ∈N that can handle corruption of χ bits with non-trivial efficiency consists of algorithms
(GSetup,ASetup,KGen,Enc,Dec) defined similar to Definition 7.1.

Definition 9.5 (stMAFE). An stMAFE scheme (GSetup,ASetup,KGen,Enc,Dec) is said to be an
stMAFE scheme if it satisfies the following properties.

Correctness. For any λ ∈ N, Q = Q(λ), n = n(λ), s = s(λ), k < n, χ = χ(λ), C ∈ Cλ,GID ∈
GIDλ,∀ id ∈ [n], ℓid = ℓid(λ),

Pr

 C(x1, . . . , xn) =
Dec({SKid,GID,x}id,CT)

:
CRS← GSetup(1λ, 1Q, 1n, 1s, 1k, 1χ),
∀ id, (MPKid,MSKid)← ASetup(id, 1ℓid),
CT← Enc({MPKid}id, C)

 = 1

where SKid,GID,x ← KGen(id,MSKid, {MPKidx}idx∈[n],GID, x).

30

Non-trivial efficiency. The size of the encryption circuit, |Enc({MPKid}id, ·)| is at most (Q ·
2χ)1−ξ · poly(λ, ℓ1, . . . , ℓn, |C|).

Static IND security. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀ λ ∈ N,

Pr

b← A(CT) :

(
Q,n, s, k, χ,K, {ℓid}id∈[n],
{GIDq, {xq,id}id/∈K}q∈[Q]

)
← A(1λ),

∀ id, q, (MPKid,MSKid)← ASetup(id, 1ℓid),
SKid,q ← KGen(id,MSKid, {MPKidx}idx,GIDq, xq,id),

(C0, C1)← A
(

CRS, {MPKid}id∈[n],
{MSKid}id∈K, {SKid,q}q,id

)
,

b
$←− {0, 1},CT← Enc({MPKid}id, Cb)

≤ 1

2
+ negl(λ)

where CRS ← GSetup(1λ, 1Q, 1n, 1s, 1k, 1χ) and KGen is defined similarly. (C0, C1) are such
that for any GID ∈ {GIDq}, x ∈ XGID,1× . . .×XGID,n, C0(x) = C1(x) where XGID,id = {0, 1}ℓid
if id ∈ K and XGID,id = {xGID,id} otherwise. In addition,

∑
id∈K ℓid ≤ χ.

Definition 9.6 (fst1MAFE). A fst1MAFE scheme (GSetup,ASetup,KGen,Enc, Dec) is said to be a
fully static fixed-corruptible 1-GID MAFE scheme for circuit class C = {Cλ}λ∈N and a single GID if
in the above definition, Q = 1 (and we ignore it in syntax) and A sends challenge circuits (C0, C1)
along with secret key queries. In addition, we make the following change to efficiency.

Non-trivial efficiency. The sizes of CRS, MSKid, MPKid for any id ∈ [n], SKid,x, x ∈ {0, 1}ℓid , and
CT for the circuit C are at most poly(λ, ℓ1, . . . , ℓn, |C|) · 2χ(1−ξ) where ξ > 0. In addition, the
running times of GSetup,ASetup,KGen,Enc are at most poly(λ, ℓ1, . . . , ℓn, |C|, 2χ).

9.3 XiO from fst1MAFE

Construction 9.7 (XiO). We provide the construction of an XiO scheme (Definition 9.2) for
Plog/Poly circuits (Definition 9.3) C = {Cλ : {0, 1}n(λ) → Oλ}λ∈N from an fst1MAFE scheme for
P/Poly circuits (Definition 9.6) that can handle n corruptions as follows.

Obf(1λ, C). Let C : {0, 1}n(λ) → Oλ for n(λ) = O(log λ). Sample an fst1MAFE instantiation with
N = 2 authorities, k = 1 corrupts where ℓ1 = n, ℓ2 = poly(λ), χ = ℓ1,

crs ← fst1MAFE.GSetup(1λ, 1N , 1s
′
, 1n, 1k, 1χ). ∀ id ∈ {1, 2}, (mpkid,mskid) ← fst1MAFE.

ASetup(id, 1ℓid).

Sample a secret key for a random α ∈ {0, 1}ℓ2 , sk2,α ← fst1MAFE.KGen(2,msk2, α). Now, gen-
erate a ciphertext for the circuit C ′ of size s′ = Θ(|C|), ct← fst1MAFE.Enc(mpk1,mpk2, C

′).
C ′ simply ignores the second input.

Output C̃ := (crs,mpk1,mpk2,msk1, sk2,α, ct).

Eval(C̃, x). Parse C̃ as (crs,mpk1,mpk2,msk1, sk2,α, ct). Run KGen for x, sk1,x ← fst1MAFE.KGen(1,
msk1, {mpkid}id, x).
Output y := fst1MAFE.Dec(sk1,x, sk2,α, ct).

31

Correctness. This follows from the correctness of fst1MAFE.

Non-trivial Efficiency. As all algorithms of fst1MAFE used in Obf run in poly(λ, n, ℓ2, |C|, 2n),
running time of Obf is poly(λ, n, ℓ2, |C|, 2n) ≤ poly(λ, |C|, |C|, 2n) = poly(λ, |C|, 2n). The size of C̃
can be similarly shown to be poly(λ, |C|) · 2n(1−ξ′) where ξ′ > 0.

Theorem 9.8. If fst1MAFE is a fully static 1-GID MAFE scheme for P/Poly circuits that can handle
O(log λ) corruptions (Definition 9.6), then Construction 9.7 is an XiO scheme for Plog/Poly circuits
(Definition 9.2).

Proof. We prove the security of Construction 9.7 by showing a reduction from an adversary that
breaks XiO security to an adversary that breaks fst1MAFE security. Assume that there exists an
adversary A that runs in time t against XiO that can distinguish between C̃0 and C̃1 with advantage
ϵ. Here, C0 and C1 are such that |C0| = |C1| and ∀ x,C0(x) = C1(x). We prove the security of XiO
by constructing a reduction B between A and a challenger Chal for fst1MAFE for P/Poly circuits.
The description of B is as follows.

BChal(1λ). A sends C0, C1 to B. Let C0, C1 : {0, 1}n → Oλ for n = O(log λ). Set ℓ2 :=

poly(λ), N = 2, k = 1, χ = n, and sample α
$←− {0, 1}ℓ2 . Send N, s′, k, χ,K = {1}, α, (C ′0, C ′1)

to Chal. Parse the information sent by Chal and set C̃ := (crs,mpk1,mpk2,msk1, sk2,α, ct). Run A
on C̃. Output whatever A outputs. Note that the running time of B is polynomial in the running
time of A and λ. In addition, B acts as a valid adversary for Chal and a valid challenger for A.
Advantage of B is exactly ϵ.

Thus, if we have a sub-exponentially secure fst1MAFE for P/Poly circuits, we can build a sub-
exponentially secure XiO scheme for Plog/Poly circuits. The following theorem from [LPST16]
shows that we can build sub-exponentially secure iO for P/Poly circuits from XiO for Plog/Poly.

Theorem 9.9 ([LPST16]). Assuming the existence of sub-exponentially secure XiO for Plog/Poly
and sub-exponentially secure LWE, there exists a sub-exponentially secure iO scheme for P/Poly
circuits (Definition 9.1).

9.4 Weakly Size-Succinct FE from stMAFE

Construction 9.10 (sFE). We provide the construction of a weakly size-succinct FE scheme for
P/Poly circuits (Definition 9.4) from an stMAFE scheme (Definition 9.5) for P/Poly circuits and
GID = {GIDλ}λ∈N as follows.

Setup(1λ, {Cq}q∈[Q]). W.l.o.g., assume that all circuits are of size s and output size m = m(λ). We

will use ℓ1 = ⌈logm⌉, ℓ2 = s,N = 2, k = 1, χ = ℓ1,K := {1} and s′ to be the size of the circuit
from Enc.

Generate an stMAFE instantiation, crs ← stMAFE.GSetup(1λ, 1Q, 1N , 1s
′
, 1k, 1χ). For each

id = {1, 2}, (mpkid,mskid)← stMAFE.ASetup(id, 1ℓid).

Sample Q GIDs randomly from GIDλ. That is ∀ q ∈ [Q],GIDq ← GIDλ. Sample secret keys
for the id = 2, for GIDq, Cq, sk2,q,Cq ← KGen(2,msk2,GIDq, Cq).

Output MPK := (crs,mpk1,mpk2) and SKq := (MPK,msk1,GIDq, Cq, sk2,q,Cq).

32

Enc(MPK, x). Parse MPK as (crs, {mpkid}id). Construct the circuit F = F (x, ·, ·). Here, F (x, i, C)

outputs the i-th bit of C(x) for i ∈ [m]. Note that the size of circuit F is O(s2). Generate
ciphertext for F using stMAFE, ct← stMAFE.Enc(mpk1,mpk2, F) and output CT := ct.

Dec(SK,CT). Parse CT as ct and SK as (crs,mpk1,mpk2,msk1,GIDq, Cq, sk2,q,C). Run stMAFE key
generation m times for id = 1, for sk1,q,i ← stMAFE.KGen(1,msk1, {mpkid}id,GIDq, i). Output
y := (y1, . . . , ym) where ∀ i ∈ [m], yi = stMAFE.Dec(sk1,q,i, sk2,q,C , ct).

Correctness. This follows from the correctness of stMAFE.

Weak size-succinctness. The size of Enc(MPK, ·) is at most

|F |+ |stMAFE.Enc({mpkid}id, ·)| ≤ s2 + (Q2⌈logm⌉)1−ξ · poly(λ, s, ⌈logm⌉, s)
≤ Q1−ξpoly(λ, s)

Theorem 9.11. If stMAFE is a secure static fixed-corruptible Q-GID MAFE scheme for P/Poly
circuits and GID (Definition 9.5), then Construction 9.10 is a secure weakly size-succinct FE scheme
for P/Poly circuits.

Proof. We prove the security of Construction 9.10 by showing a reduction between any adversary
that breaks the security of sFE and a challenger for stMAFE. Assume that there exists a t-time
adversary A that runs in time t against sFE as per Definition 9.4 with advantage ϵ. We prove the
security of sFE by constructing a reduction B between A and a challenger Chal for stMAFE for
P/Poly circuits. The description of B is as follows.

BChal(1λ). A sends size-s circuits with output size m, {Cq}q∈[Q]. Set ℓ1 := ⌈logm⌉, ℓ2 = s, N =

2, k = 1, χ = ℓ1, K = {1}, and s′ = O(s2). Sample GIDq
$←− GIDλ and sets x2,q := Cq for q ∈ [Q].

SendQ,N, s′, k, χ, ℓ1, ℓ2,K, {GIDq, {x2,q}}q to Chal. Receive (crs,mpk1,mpk2,msk1, {sk2,q,Cq}q) from
Chal. SetMPK := (crs,mpk1,mpk2), SKq := (MPK,msk1,GIDq, Cq, sk2,q,Cq), and send (MPK, {SKq}q)
to A. A sends (x0, x1). Construct F0 = F0(x0, ·, ·), F1 = F1(x1, ·, ·) where Fb(xb, i, C) outputs the
i-th bit of C(xb) for b ∈ {0, 1}. Send (F0, F1) to Chal. Receive CT from Chal and run A on CT.
Output whatever A outputs. Note that the running time of B is polynomial in the running time of
A and λ. In addition, B acts as a valid adversary for Chal and a valid challenger for A. Advantage
of B is exactly ϵ.

Thus, if we have a sub-exponentially secure fst1MAFE for P/Poly circuits, we can build a sub-
exponentially secure sFE for P/Poly circuits. The following theorem from [BV15] shows that we
can build sub-exponentially secure iO for P/Poly circuits from sFE for P/Poly circuits.

Theorem 9.12 ([BV15]). Assuming the existence of sub-exponentially secure sFE for P/Poly cir-
cuits, there exists a sub-exponentially secure iO scheme for P/Poly circuits.

Remark 9.13 (Impossibilities for SIM-security). By an incompressibility argument similar to
[BSW11, AGVW13], SIM-secure fst1MAFE and stMAFE are impossible in the standard model.

33

10 (poly, Q)-MA-ABFE Definition

In this section, we provide the definition of (poly, Q)-MA-ABFE with varying security levels. An
MA-ABFE scheme can be thought of as an MAFE scheme for the function class that can be split
into a predicate and a circuit. That is, F = {(Pλ, Cλ)}λ∈N comprises of a tuple of predicates in
P = {Pλ : Xλ,1× . . .×Xλ,n → {0, 1}}λ∈N and circuits in C = {Cλ : Yλ,1× . . .×Yλ,n → Oλ}λ∈N. The
functionality of F is defined as follows — for any F = (P ∈ Pλ, C ∈ Cλ), (x1, . . . , xn) ∈ X1×. . .×Xn,
and (y1, . . . , yn) ∈ Y1 × . . .× Yn,

F ((x1, y1), . . . , (xn, yn)) = C(y1, . . . , yn) if and only if P (x1, . . . , xn) = 1

The idea of MA-ABFE as explained in Section 2 is to facilitate unbounded secret key collusion
per ciphertext as opposed to the bounded collusion as in MAFE. Because of this, our syntax for
MA-ABFE remains similar to an MAFE scheme’s syntax. For KGen, we take the input as a tuple
(x, y) and for Enc, we take (P,C) as input where P is a predicate and C is a circuit. In addition,
GSetup algorithm takes maximum input size L = |yid| for any id and maximum size of predicate
sabe as additional inputs. Similarly correctness is altered to two cases, when P (x1, . . . , xn) = 0/1.
We summarize these ideas formally in the definition below.

Definition 10.1 (MA-ABFE). A multi-authority attribute-based functional encryption (MA-
ABFE) scheme is an MAFE scheme for predicate class P, circuit class C, and GID = {GIDλ}λ∈N.
We define a new security definition, namely, (poly, Q)-bounded security which is defined below. We
also make a few changes to the “bounded” authority variant of MAFE syntax as follows.

Syntax. The GSetup algorithm takes the maximum length of any of circuit inputs L, size of
predicate sabe as additional inputs. Input for KGen is split into x and y for predicate and
circuit respectively. Enc takes the predicate P ∈ Pλ and circuit C ∈ Cλ as inputs.

Correctness. This is defined for two types of queries, namely a satisfying query (P (x1, . . . , xn) =
1) and unsatisfying query (P (x1, . . . , xn) = 0). Dec outputs C(y1, . . . , yn) for satisfying queries
and ⊥ for unsatisfying queries.

(poly, Q)-Bounded Security. For any admissible adversary A, there exists a stateful simulator
Sim such that ∀ λ ∈ N,A

KGen(·,·,·,·)(CT) :

Q,n, L, sabe, sfe, ℓ1, . . . , ℓn ← A(1λ),
CRS← GSetup(1λ, 1Q, 1n, 1sabe , 1sfe),
∀ id ∈ [n], (MPKid,MSKid)← ASetup(id, 1ℓid),

P, C ← AKGen(·,·,·,·)(CRS, {MPKid}id),
CT← Enc({MPKid}id∈I , P, C)

≈cA

SimC(·)(·,·,·,·)(CT) :

Q,n, L, sabe, sfe, ℓ1, . . . , ℓn ← A(1λ),
CRS, {MPKid}id∈[n] ← Sim(1λ, 1Q, 1n, 1sabe , 1sfe),

∀ id ∈ [n],MPKid ← Sim(id, 1ℓid),

P, C ← ASim(·,·,·,·)(CRS, {MPKid}id),
CT← Sim(P, 1|C|,V)

34

where V = {(GID, Y = {yGID,id}id∈[n], C(Y)) : for every GID that was used to query all id ∈ [n]
in pre-challenge query phase such that P (xGID,1, . . . , xGID,n) = 1}. Similarly, Sim queries C(·)
with Y = ({yGID,id}id∈[n]) and receives C(yGID,1, . . . , yGID,|I|) if P (xGID,1, . . . , xGID,n) = 1. KGen
is an oracle that responds to the following type of queries — A queries for secret keys using
(id,GID, x, y) and KGen responds with SKid,GID,x,y ← KGen(id,MSKid, {MPKidx}idx∈[n],GID,
x, y).

A stateful PPT machine A is admissible if it makes polynomially many queries to KGen with
the restriction that the number of queries such that P is satisfied (satisfying queries) are at
most Q. In addition, A will make at most one ciphertext query with circuit C ∈ Cλ of size at
most s adaptively.

We now provide definitions for a few variants of (poly, Q)-MA-ABFE below.

Definition 10.2 (Non-adaptive (poly, Q)-MA-ABFE). We say that a (poly, Q)-bounded MA-ABFE
scheme (GSetup,ASetup,KGen,Enc,Dec) is non-adaptively secure if in the above security game,
satisfying queries are not allowed in post-challenge query phase.

Definition 10.3 ((poly, 1)-MA-ABFE). We say that an MA-ABFE scheme (GSetup,ASetup,KGen,
Enc,Dec) is a (poly, 1)-bounded MA-ABFE if in the above security game, Q = 1. In addition, we
ignore Q in syntax.

Definition 10.4 (Non-adaptive (poly, 1)-MA-ABFE). We say that an MA-ABFE scheme (GSetup,
ASetup,KGen,Enc,Dec) satisfies non-adaptive (poly, 1)-bounded security if it satisfies both Defini-
tion 10.2 and Definition 10.3.

11 (poly, 1)-MA-ABFE from MA-ABE and Garbled Circuits

In this section, we show how to construct an MA-ABFE scheme that is (poly, 1)-bounded secure.
That is, the adversary is allowed to query one set of queries such that P (x1, . . . , xn) and in that
case, learn C(y1, . . . , yn). The main hurdle in this construction is that such a query can be made
adaptively or non-adaptively or in a way that half the authorities are queried in the pre-challenge
phase and the other half in post-challenge phase. In all of these cases, we need to construct a
simulator that only requires C(y1, . . . , yn) to simulate the transcript of communication between a
challenger and an adversary.

As explained in overview, we rely on the template put forth by [GY24] and proceed in 3 stages.
Firstly, we construct a non-adaptively secure (poly, 1)-bounded MA-ABFE scheme in Section 11.2
where the satisfying query can only be made completely in the pre-challenge query phase. We
construct this by relying on garbled circuits. For now, assume that yid = 1 for each id. We proceed
somewhat similar to [SS10] where we replace the PKE instantiation by MA-ABE. Let us elaborate.
We instantiate 2n MA-ABE schemes for n authorities and b ∈ {0, 1}. For i ∈ [n], id-th authority
issues a secret key for each b ∈ {0, 1} if i ̸= id and issues secret key for (i, b) = (id, yid)-th MA-
ABE scheme. In encryption, we will garble the circuit C and encrypt wi,b under (i, b)-th MA-ABE
with predicate P . Note that we provide all secret keys from all authorities for (i, yi)-th MA-ABE
instantiations for i ∈ [n]. Thus, adversary will only learn half the wire labels. The security of this
scheme is then straight-forward where if the adversary make a satisfying query, we can simulate
the garbled circuit and rely on MA-ABE security to hide the other half wire labels.

35

Secondly, we construct a non-committing variant of MA-ABE. In a non-committing MA-ABE,
apart from the regular MA-ABE schemes, there is a special way to “fake” a ciphertext and later
“reveal” it to be an encryption for message m. The idea is that if an adversary makes a satisfying
query in the post-challenge phase, it shouldn’t be able to guess whether it received a honestly
generate CT, {SKid}id pair or a faked pair C̃T, {S̃Kid}id. Note that adversary can query n − 1
authorities for the satisfying GID in the pre-challenge phase and last one in post-challenge phase.
Even then, the security should hold. We proceed somewhat similar to [GVW12] where we replace
the PKE instantiation by MA-ABE. Let us elaborate. Consider that we are working with single bit
messages. We instantiate 2n MA-ABE schemes and generate secret key for id-th authority for every

(i ̸= id, b)-th MA-ABE schemes and (id, ρid)-th MA-ABE where bid
$←− {0, 1}. To encrypt, we sample

R1, . . . , Rn
$←− {0, 1} and Ri in the (i, b)-th MA-ABE system and set R̃ = ⊕idRid ⊕m. Correctness

of the scheme follows immediately as we can decrypt R1, . . . , Rn and learn m from there. This
structure allows us to encrypt 0 and 1 randomly in (i, 0) and (i, 1)-th MA-ABE systems. And
using the secret keys learn Rid := ρid. Thus, when the last authority (say n) is queried for a
satisfying query, we can set ρn = ⊕i ̸=nρi ⊕ R̃ ⊕m and reveal R̃ to be

∑
i ρi ⊕m. Thus, we can

equivocate the ciphertext when the last authority is queried using this trick and the distributions
will be computationally indistinguishable by security of MA-ABE. Full construction of this scheme
is provided in Section 11.3.

Finally, to construct a (poly, 1)-bounded MA-ABFE in Section 11.4 where we combine both
the non-committing MA-ABE and non-adaptive (poly, 1)-bounded MA-ABFE schemes to achieve
the desired result. We generate a ciphertext for non-adaptive (poly, 1)-bounded MA-ABFE and
encrypt it in the non-committing MA-ABE scheme. This way, we can fake the ciphertext and
reveal it only when a satisfying query is made, we can reveal the ciphertext and rely on non-
adaptive (poly, 1)-bounded MA-ABFE security to simulate the ciphertext with only C(y1, . . . , yn).
The main ingredient we use in our constructions in this section is an MA-ABE scheme which we
define in Section 11.1 as a special case of (poly, 0)-bounded MA-ABFE for a special circuit class.

11.1 Preliminaries

We recall the definition of MA-ABE but as a special case of MA-ABFE. This is done in order to
maintain consistency between the definitions of MAFE, MA-ABFE, and MA-ABE.

Definition 11.1 (MA-ABE). A multi-authority attribute-based encryption is a special case of MA-
ABFE (Definition 10.1) that satisfies (poly, 0)-bounded security for predicate class P and C contains
of circuits that outputs a message m ∈ {0, 1}∗13. In syntax, the GSetup algorithm does not take
Q, sfe as inputs and we forgo y as input to KGen as it essentially does not matter. On the other hand
Enc takes the message m as input rather than circuit C. We formulate an indistinguishability-based
definition as follows.

IND Security. For any admissible adversary A, there exists a negligible function negl(λ) such

13Recall that MA-ABE can encrypt messages of arbitrary sizes using hybrid encryption.

36

that,

Pr

b←
AE(·,·)(CT) :

(n, s, ℓ1, . . . , ℓn)← A(1λ),
CRS← GSetup(1λ, 1n, 1sabe),∀ id ∈ [n],
(MPKid,MSKid)← ASetup(id, 1ℓid),

(P,m0,m1)← AE(·,·)(CRS, {MPKid}id),
b

$←− {0, 1},CT← Enc({MPKid}id, P,mb)

 ≤
1

2
+ negl(λ)

where E oracle responds to secret key queries as follows — A sends (KGen, (id,GID, x)) and
receives SKid,GID,x ← KGen(id,MSKid, {MPKidx}idx∈[n],GID, x) from E . A stateful PPTmachine
A is said to be admissible if it makes polynomially many queries to E and makes one KGen
query per GID to an authority and for every set of X = ({xGID,id}id), P (X) = 0.

11.2 Non-Adaptive (poly, 1)-MA-ABFE

Construction 11.2 (na1MA-ABFE). We construct a non-adaptive (poly, 1)-bounded MA-ABFE
scheme for predicate class P = {Pλ}λ∈N, P/Poly circuits, GID = {GIDλ}λ∈N (Definition 10.4)
using an MA-ABE scheme for predicate class P = {Pλ}λ∈N, GID = {GIDλ}λ∈N with no corruptions
(Definition 11.1), and a garbling scheme (Garble,Eval) for P/Poly circuits (Definition A.1) as follows.

GSetup(1λ, 1n, 1L, 1sabe , 1sfe). For each i ∈ [n], j ∈ [L], b ∈ {0, 1}, sample crs(i,j,b) ← MA-ABE.GSetup

(1λ, 1n, 1sabe). Output CRS := (n,L, sabe, sfe, (crs
(i,j,b))i,j,b).

ASetup(id, 1ℓid). For each i ∈ [n], j ∈ [L], b ∈ {0, 1}, sample (mpk
(i,j,b)
id ,msk

(i,j,b)
id)← MA-ABE.ASetup

(id, 1ℓid). Output MPKid := (mpk
(i,j,b)
id)i,j,b and MSKid := (msk

(i,j,b)
id)i,j,b.

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x, y). Parse MSKid as (msk
(i,j,b)
id)i,j,b, MPKidx as (mpk

(i,j,b)
idx)i,j,b

for idx ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}. Pad y such that |y| = L. For each i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,y[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,y[j])
id , {mpk

(i,j,y[j])
idx }idx,GID, x)14.

Output SKid,GID,x,y =
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,y[j])
id,GID,x}i=id,j , x, y

)
Enc({MPKid}id∈[n], P, C). Parse MPKid as (mpk

(i,j,b)
id)i,j,b for id ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}.

Garble the circuit C15, (C̃, {wi,j,b}i,j,b)← Garble(1λ, 1nL, C).

Compute for each i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P, wi,j,b).

Output CT := (C̃, (ct(i,j,b))i,j,b).

Dec({SKid,GID,xid,yid}id∈[n],CT). Parse CT as (C̃, (ct(i,j,b))i,j,b) and SKid,GID,xid,yid as

(
{sk(i,j,b)id,GID,x}i ̸=id,j,b,

{sk(i,j,y[j])id,GID,x}i=id,j , xid, yid

)
for id ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}. For each i, j, wi,j,yi[j] =

MA-ABE.Dec({sk(i,j,yi[j])id,GID,xid
}id∈[n], ct(i,j,yi[j])). Output z = Eval(C̃, {wi,j,yi[j]}).

14By y[j] we denote the j-th bit of y
15For notational convenience, we assume that wire labels are pre-partitioned this way.

37

Correctness. The correctness follows from correctness of MA-ABE and (Garble,Eval). In partic-
ular, for each i ∈ [n], j ∈ [L], we only have a complete set of secret keys for the instances (i, j, yi[j]).
Hence, using these and by correctness of MA-ABE, we get half the wire labels {wi,j,yi[j]}i,j . From

here, we evaluate the garbled circuit C̃ to obtain z = C(y1, . . . , yn).

Theorem 11.3. If MA-ABE is an MA-ABE scheme for predicate class P = {Pλ}λ∈N and GID =
{GIDλ}λ∈N without corruptions (Definition 11.1), (Garble,Eval) is a garbling scheme for P/Poly
circuits (Definition A.1), then Construction 11.2 is a non-adaptive (poly, 1)-bounded MA-ABFE
scheme for predicate class P = {Pλ}λ∈N, P/Poly circuits, and GID = {GIDλ}λ∈N (Definition 10.4).

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construc-
tion 11.2 as follows.

Hybrid 0. This is the real experiment with Chal from Definition 10.4. We use the MA-ABE
honestly to encrypt all the wire labels.

Hybrid 1, ι, γ. for ι ∈ [n], γ ∈ [L]. In this hybrid, if the adversary submits a satisfying query, we
replace the wire label (wi,j,1−yi[j]) with all zero string of same length for every i < ι, j < γ.
Note that we only give n − 1 secret keys for the (i, j, 1 − yi[j])-th instantiation and as such
the adversary cannot decrypt even though P (x1, . . . , xn) = 1. Thus, we can readily rely on
MA-ABE security to argue indistinguishability of these hybrids.

Hybrid 2. In this hybrid, half the wire labels are replaced with all zero strings. This is similar to
the final hybrid from previous phase. Indistinguishability between hybrids 1, n, L and 2 can
be argued from security of MA-ABE.

Hybrid 3. In this hybrid, if the adversary submits a satisfying query (which can only happen in
pre-challenge query phase and thus we know the whole input (y1, . . . , yn)), we simulate the
garbled circuit instantiation. As there are only half the wire labels being used in encryption,
security comes from security of (Garb,Eval). This is the description of Sim from Definition 10.4.

We provide full proof in Appendix H.

11.3 Non-Committing MA-ABE

A non-committing MA-ABE scheme can be viewed as an MA-ABFE that satisfies adaptive (poly, 1)-
bounded security for the circuit class that outputs a hard-coded message m ∈ {0, 1}L for every
input. We present another definition using MA-ABE that can “fake” a ciphertext without using
message m and produce a secret key that “reveals” the ciphertext to be encrypting m.

Definition 11.4 (ncMA-ABE). A non-committing MA-ABE scheme is an MA-ABE scheme (Def-
inition 11.1) equipped with two additional algorithms, Fake,Reveal. Using Fake, we can simulate a
ciphertext without the message m ∈ {0, 1}L and when the adversary makes a satisfying query, we
can use Reveal to adaptively equivocate the ciphertext to reveal m. In the syntax of the scheme
GSetup takes L as an input. Correctness is defined similarly to Definition 11.1. The syntax of
Fake,Reveal and security are defined as follows.

38

Fake({MPKid}id∈[n], P)→ (C̃T, aux). The probabilistic faking algorithm takes as input the set of

all master public keys {MPKid}id∈[n], predicate P ∈ Pλ and outputs a ciphertext C̃T and
auxiliary information aux.

Reveal(id,MPKid,MSKid, {(MPKidx, ρidx)}idx ̸=id,GID, x, aux,m)→ (S̃Kid,GID,x). The possibly random-
ized revealing algorithm takes as input master secret of id-th authority MSKid, master public
keys from all authorities, MPKid, {MPKidx}idx ̸=id, random strings from secret keys of all au-
thorities {ρidx}idx ̸=id, user global identifier GID, attribute x, auxiliary information aux, message

m, and outputs a secret key S̃Kid,GID,x.

Security. For any admissible adversary A, there exists a negligible function negl(λ) such that,

Pr

b← AEb(·,·)(CT) :

(n, sabe, L, ℓ1, . . . , ℓn)← A(1λ), b
$←− {0, 1},

CRS← GSetup(1λ, 1n, 1sabe),∀ id ∈ [n],
(MPKid,MSKid)← ASetup(id, 1ℓid),

(P,m)← AEb(·,·)(CRS, {MPKid}id),
If b = 0,CT← Enc({MPKid}id, P,m),

If b = 1, (C̃T, aux)← Fake({MPKid}id, P)

≤ 1

2
+ negl(λ)

where E0 is a stateless oracle responds to secret key queries for (KGen, (id,GID, x)) from
A as SKid,GID,x ← KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). E1 is a stateful algorithm that

when a satisfying query is made, for the last id with GID, x responds with S̃Kid,GID,x ←
Reveal(id,MPKid,MSKid, {(MPKidx, ρidx,GID)}idx ̸=id,GID, x, aux,m) A stateful PPT machine A
is said to be admissible if it makes polynomially many queries to Eb and makes one KGen query
per GID to an authority such that there is at most one X = ({xGID,id}id), with P (X) = 1.

Construction 11.5 (ncMA-ABE). We construct a non-committing MA-ABE scheme for predi-
cate class P = {Pλ}λ∈N and GID = {GIDλ}λ∈N (Definition 11.4) using an MA-ABE scheme for
predicate class P = {Pλ}λ∈N, GID = {GIDλ}λ∈N with no corruptions (Definition 11.1) as follows.

GSetup(1λ, 1n, 1sabe , 1L). For each i ∈ [n], j ∈ [L], b ∈ {0, 1}, sample crs(i,j,b) ← MA-ABE.GSetup

(1λ, 1n, 1sabe). Output CRS := (n, sabe, L, (crs
(i,j,b))i,j,b).

ASetup(id, 1ℓid). For each i ∈ [n], j ∈ [L], b ∈ {0, 1}, sample (mpk
(i,j,b)
id ,msk

(i,j,b)
id)← MA-ABE.ASetup

(id, 1ℓid). Output MPKid := (mpk
(i,j,b)
id)i,j,b and MSKid := (msk

(i,j,b)
id)i,j,b.

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x). Parse MSKid as (msk
(i,j,b)
id)i,j,b, MPKidx as (mpk

(i,j,b)
idx)i,j,b

for idx ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}. Sample ρ
$←− {0, 1}L and for i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Output SKid,GID,x,y =
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
39

Enc({MPKid}id∈[n], P,m). Parse MPKid as (mpk
(i,j,b)
id)i,j,b for id ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}.

Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕ m. Compute for each i, j, b,

ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]). Output C̃T := (R̃, (ct(i,j,b))i,j,b).

Dec({SKid,GID,xid,yid}id∈[n],CT). Parse CT as (R̃, (ct(i,j,b))i,j,b) and SKid,GID,xid,yid as
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b,

{sk(i,j,ρ[j])id,GID,x}i=id,j , xid, ρid
)
for id ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}. For each i, j, Ri[j] =

MA-ABE.Dec({sk(i,j,ρi[j])id,GID,xid
}id∈[n], ct(i,j,ρi[j])). Output m′ = R1 ⊕ . . . Rn ⊕ R̃.

Fake({MPKid}id∈[n], P). Parse MPKid as (mpk
(i,j,b)
id)i,j,b for id ∈ [n], i ∈ [n], j ∈ [L], b ∈ {0, 1}. Sam-

ple R1, . . . , Rn, R̃
$←− {0, 1}L. Compute for each i, j, ct(i,j,Ri[j]) ← MA-ABE.Enc({mpk

(i,j,Ri[j])
id },

P, 0) and ct(i,j,1−Ri[j]) ← MA-ABE.Enc({mpk
(i,j,1−Ri[j])
id }, P, 1). Output CT := (R̃, (ct(i,j,b))i,j,b)

and aux = (R1, . . . , Rn, R̃).

Reveal(id,MPKid,MSKid, {(MPKidx, ρidx)}idx ̸=id,GID, x, aux,m). ParseMSKid as (msk
(i,j,b)
id)i,j,b,MPKid

as (mpk
(i,j,b)
id)i,j,b, MPKidx as (mpk

(i,j,b)
idx)i,j,b for idx ̸= id, i ∈ [n], j ∈ [L], b ∈ {0, 1} and aux as

(R1, . . . , Rn, R̃). Set ρ :=
(⊕

idx̸=id ρidx ⊕Ridx

)
⊕Rid ⊕ R̃⊕m. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Output SKid,GID,x,y =
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
Correctness. The correctness of the scheme follows from the correctness of MA-ABE. In particu-
lar, similar to Construction 11.2, we have a complete set of secret keys for the instances (i, j, ρi[j]).
Using these and by correctness of MA-ABE, we can recover {Ri[j]}i,j and thus m′ = m.

Theorem 11.6. If MA-ABE is an MA-ABE scheme for predicate class P = {Pλ}λ∈N and GID =
{GIDλ}λ∈N with no corruptions (Definition 11.1), then Construction 11.5 is a non-committing
MA-ABE scheme for predicate class P = {Pλ}λ∈N and GID = {GIDλ}λ∈N (Definition 11.4).

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construc-
tion 11.5 as follows. Note that for this proof, if A makes a satisfying query in the pre-challenge
query phase, all hybrids proceed similar to hybrid 0. Hence, assume that A makes a satisfying
query in the post-challenge query phase.

Hybrid 0. This is the real experiment with E0 from Definition 11.4. We use the MA-ABE honestly
to encrypt Ri[j] in both (i, j, 0) and (i, j, 1) instantiations of MA-ABE.

Hybrid 1. In this hybrid, as A runs in polynomial time, it queries with at most q = poly(λ) many

GIDs. Chal guesses that N∗-th GID, where N∗
$←− [q], is the satisfying query that A issues. In

addition, Chal will sample ρ∗1, . . . , ρ
∗
n

$←− {0, 1}L uniformly during setup phase and use these
strings for the N∗-th GID’s secret key queries. Chal will abort if it guesses incorrectly. Chal
does not abort is at most 1/q probability and output distribution is exactly like hybrid 0.

40

Hybrid 2, ι, γ. for ι ∈ [n], γ ∈ [L]. In this hybrid, we will encrypt 1−Ri[j] in the (i, j, 1−ρ∗i [j])-th
instantiation of MA-ABE for i < ι and j < γ. As only n− 1 secret keys for (i, j, 1− ρ∗i [j])-th
instantiation and as such the adversary cannot decrypt even though P (x1, . . . , xn) = 1. Thus,
we can readily rely on MA-ABE security to argue indistinguishability of these hybrids with a
1/q loss in advantage due to the guess made like in hybrid 1.

Hybrid 3. In this hybrid, (i, j, ρ∗i [j])-th instantiation encrypts Ri[j] and (i, j, 1− ρ∗i [j])-th instan-
tiation encrypts 1−Ri[j] for every i, j. Indistinguishability between hybrids 2, n, L and 3 can
be argued from security of MA-ABE.

Hybrid 4. In this hybrid, we will use Fake to encrypt and when a satisfying query is made, use
Reveal to equivocate m. Output distribution of hybrids 3 and 4 are identical.

We provide full proof in Appendix I.

11.4 Adaptive (poly, 1)-MA-ABFE

Construction 11.7 (1MA-ABFE). We construct a (poly, 1)-bounded MA-ABFE scheme for pred-
icate class P = {Pλ}λ∈N, P/Poly circuits, GID = {GIDλ}λ∈N (Definition 10.3) using a non-
adaptive (poly, 1)-bounded MA-ABFE scheme for predicate class P = {Pλ}λ∈N, P/Poly circuits,
GID = {GIDλ}λ∈N (Definition 10.4), a non-committing MA-ABE scheme for predicate class
P = {Pλ}λ∈N, GID = {GIDλ}λ∈N (Definition 11.4) as follows.

GSetup(1λ, 1n, 1L, 1sabe , 1sfe). Sample abfe.crs← na1MA-ABFE.GSetup(1λ, 1n, 1L, 1sabe , 1sfe). LetG =
poly(λ, n, sabe, sfe, L) be the length of na1MA-ABFE’s ciphertext for these parameters. abe.crs←
ncMA-ABE.GSetup(1λ, 1n, 1sabe , 1G). Output CRS := (abfe.crs, abe.crs).

ASetup(id, 1ℓid). Sample (abfe.mpk, abfe.msk) ← na1MA-ABFE.ASetup(id, 1ℓid), (abe.mpk, abe.msk)

← ncMA-ABE.ASetup(id, 1ℓid). Set MPK := (abfe.mpk, abe.mpk),MSK := (abfe.msk, abe.msk)
and output (MPK,MSK).

KGen(id,MSKid, {MPKidx}idx∈[n],GID, x, y). ParseMSKid as (abfe.mskid, abe.mskid), MPKidx as (abfe.

mpkidx, abe.mpkidx) for each idx ∈ [n]. Run abfe.skid,GID,x,y ← na1MA-ABFE.KGen(id, abfe.mskid,
{abfe.mpkidx}idx,GID, x, y) and abe.skid,GID,x ← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,
GID, x). Output SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x).

Enc({MPKid}id∈[n], P, C). ParseMPKid as (abfe.mpkid, abe.mpkid) for each id ∈ [n]. Sample abfe.ct←
na1MA-ABFE.Enc({abfe.mpkid}id∈[n], P, C). Now, run abe.ct← ncMA-ABE.Enc({abe.mpkid}id,
P, abfe.ct). Output CT := abe.ct.

Dec({SKid,GID,xid,yid}id∈[n],CT). Parse SKid,GID,xid,yid as (abfe.skid,GID,xid,yid , abe.skid,GID,xid
) for each id ∈

[n] and CT as abe.ct. Run abe.ct′ = ncMA-ABE.Dec({abe.skid,GID,xid
}id, abe.ct). If abfe.ct′ = ⊥,

abort and output⊥. Otherwise, output z := na1MA-ABFE.Enc({abfe.skid,GID,xid,yid}id, abfe.ct′).

Correctness. The correctness of the scheme follows from the correctness of na1MA-ABFE and
ncMA-ABE. By correctness of ncMA-ABE, abfe.ct′ is a valid ciphertext of na1MA-ABFE and z =
C(y1, . . . , yn) by correctness of na1MA-ABFE.

41

Theorem 11.8. If ncMA-ABE is a non-committing MA-ABE scheme for predicate class P =
{Pλ}λ∈N, GID = {GIDλ}λ∈N (Definition 11.4), na1MA-ABFE is a non-adaptive (poly, 1)-bounded
MA-ABFE scheme for predicate class P = {Pλ}λ∈N, P/Poly circuits, GID = {GIDλ}λ∈N (Defi-
nition 10.4), then Construction 11.7 is a (poly, 1)-bounded MA-ABFE scheme for predicate class
P = {Pλ}λ∈N, P/Poly circuits, GID = {GIDλ}λ∈N (Definition 10.3).

Proof Sketch. We provide a sketch of the hybrid argument used to prove security of Construc-
tion 11.7 as follows.

Hybrid 0. This is the real experiment with Chal from Definition 10.3. We use E0 for ncMA-ABE
and honest and stateless algorithms for na1MA-ABFE.

Hybrid 1. In this hybrid, we will shift to using E1 for ncMA-ABE. That is we will fake the
ciphertext and only equivocate it to abfe.ct if adv makes a satisfying query in the post-
challenge query phase. The indistinguishability of hybrids can be argued using security of
ncMA-ABE instantiation.

Hybrid 2. In this hybrid, we will simulate the na1MA-ABFE instantiation either while equivocating
or in the challenge query phase (if A makes a satisfying query in pre-challenge query phase).
Hybrids 1 and 2 are indistinguishable due to security of na1MA-ABFE. This is the description
of Sim from Definition 10.3.

We provide full proof in Appendix J.

12 Attribute-Based Distributed Client-Server Framework

In this section, we define and construct an attribute-based distributed client-server framework
(adCSF). This is strengthening of dCSF defined in [GY24] which was used to construct a bounded
query MAFE scheme starting from an MAFE scheme that is secure against one GID collusion. We
define this object to similarly to construct a (poly, Q)-bounded MA-ABFE scheme starting from a
(poly, 1)-bounded MA-ABFE scheme that was constructed in Section 11.4.

Recall that dCSF (defined in Definition B.1) is a specialized MPC protocol between n servers
(with inputs {xid}id) and one client (with circuit C) both of whom delegate their computation to
N users to learn C(x1, . . . , xn) for each input. In adCSF, server encodings are generated for input
parsed as (x, y) and client encodings for input parsed as (P,C). The main difference between dCSF
and adCSF is that the adversary is now allowed to query an unbounded number of server encodings
but only Q of them for satisfying queries. And the security is defined using a simulator who only
uses the values of {C(YGID)}GID for satisfying YGID = (yGID,1, . . . , yGID,n).

We construct an adCSF scheme generically from any dCSF scheme. The client encodings are
set as (P, Ĉu) where Ĉu is client encoding from dCSF. Note that in an MA-ABE scheme, predicate
P is not hidden. Hence, it is fine to reveal P as whole to adversary. The main intuition is that
server encodings are deterministic. Hence, while arguing security, the reduction algorithm can
generate server encodings on its own and respond to the adversary. In order to generate client
encodings, when the predicate P and circuit C are given, reduction algorithm can determine which
of the queries are satisfying and thus send these {yGID,id}id,GID queries to a challenger for dCSF.
We will ignore the server encodings and only use the client encodings to respond to adversary.
Post-challenge query phase proceeds similarly and reduction will query the challenger for output

42

encodings only for satisfying queries. Thus, we construct an adCSF scheme from a dCSF scheme
in Section 12.2.

12.1 Definition

We provide the definition of adCSF as follows. For a complete definition, we ask the reader to
compare and contrast the definition of dCSF provided in Definition B.1. We provide a sanitized
definition of adCSF with the differences from dCSF highlighted below.

Definition 12.1 (adCSF). An adCSF scheme (ServEnc,CliEnc,UserComp,Decode) is said to be an
attribute-based dCSF scheme (adCSF) for predicate class P = {Pλ}λ∈N, circuit class C = {Cλ}λ∈N,
and GID = {GIDλ}λ is a dCSF scheme for function class F = {(Pλ, Cλ)}λ∈N and GID. The major
changes are highlighted below.

Syntax. The server encodings are generated for input parsed as (x, y) and client encodings are
generated for input parsed as predicate and circuit pair (P,C).

Correctness. This is defined for two types of encodings, satisfying encodings where Decode out-
puts C(y1, . . . , yn) if P (x1, . . . , xn) = 1 and unsatisfying encodings where Decode outputs
⊥.

Security. For any admissible adversary A, there exists a stateful simulator Sim such that ∀ λ ∈ N,{
adCSF-ExptChalA,0 (1

λ)
}
≈c

{
adCSF-ExptSimA,1(1

λ)
}

where definitions of adCSF-ExptChalA,0 (1
λ), adCSF-ExptSimA,1(1

λ), and admissible adversary are
similar to Definition B.1. The major changes are as follows—

• A makes polynomially many server encoding queries such that each authority is queried
at most once per GID with the restriction that at most Q server encoding queries are
made across n authorities for satisfying queries.

• Simulator Sim takes P as input.

• V used by Sim only contains C(Y) for Y = (y1,GID, . . . , yn,GID) if P (x1,GID, . . . , xn,GID) = 1.
Similarly in the post-challenge query phase Sim queries C with Y for satisfying queries.

12.2 Attribute-Based dCSF from Distributed Client-Server Framework

Construction 12.2 (adCSF). We provide the construction of an adCSF scheme for predicate class
P = {Pλ}λ∈N P/Poly circuits, GID = {GIDλ}λ∈N from a dCSF scheme (Definition B.1) for P/Poly
circuits, GID as follows.

ServEnc(1λ, 1Q, 1n, 1sabe , 1sfe ,GID, id, x, y,∆). Run {ŷuGID,id}u∈[N] = dCSF.ServEnc(1λ, 1Q, 1n, 1sfe ,GID, y,∆).
Set âuGID,id = (GID, x, ŷuGID,id) and output {âuGID,id}u.

CliEnc(1λ, 1Q, 1n, 1sabe , 1sfe , P, C). Sample {Ĉu}u∈[N] ← dCSF.CliEnc(1λ, 1Q, 1n, 1sfe , C). Set F̂ u :=

(P, Ĉu) and output {F̂ u}u∈[N].

43

UserComp({âuGID,id}id∈[n], F̂ u). Parse F̂ u as (P, Ĉu) and âuGID,id as (GIDid, xid, ŷ
u
GIDid,id

). If all GIDid

are not same or P (x1, . . . , xn) = 0, abort and output ⊥.
Otherwise, compute ẑuGID ← dCSF.UserComp({ŷuGID,id}, Ĉu). Output ẑuGID.

Decode({ẑuGID}u∈S,S). If all encodings are not present, output ⊥. Otherwise, compute and output

z = dCSF.Decode({ẑuGID}u∈S,S).

Correctness. The correctness of the scheme follows from the correctness of dCSF.

Theorem 12.3. If dCSF is a distributed client-server framework for P/Poly circuits, GID (Defini-
tion B.1), then Construction 12.2 is an adCSF scheme for P/Poly circuits, GID.

Proof. Assume that there exists an adversary A that can distinguish between honest Chal and
adCSF.Sim with non-negligible probability ϵ(λ). We will construct a reduction adversary B that
can break the security of dCSF with non-negligible probability. The description of BO is as follows.

Setup. A sends (Q,n, sabe, sfe, S̃) to B. B passes (Q,n, sfe, S̃) to O.

Pre-challenge Queries. A sends polynomially many queries of the form (id,GID, x, y,∆),S. Send
(x, ŷuGID,id) for u ∈ S and ŷuGID,id = (GID, y,∆).

Challenge Query. A sends P,C, {j∗GID}GID. At this point B can figure out all the accepting at-
tributes and GIDs. Perform pre-challenge queries for O using these (id,GID, y,∆),S. Ignore
the responses from O. Query O with C, {j∗q}q to receive {Ĉu}

u∈[N]\S̃ and {ŷuGID}GID,u. Set

F̂ u = (P, Ĉu) for u ∈ [N]\S̃ and ẑuGID = ŷuGID for appropriate GID, u and send {F̂ u}
u∈[N]\S̃, {ẑ

u
GID

}GID,u to A.

Post-challenge Queries. A sends polynomially many queries of the form (id,GID, x, y,∆),S and
j∗GID if P (xGID,1, . . . , xGID,n) = 1 and all authorities are queried. If j∗GID is present query O with
(id,GID, yid,∆),S for id ∈ [n], ignore the responses and receive ŷuGID for u ∈ S. Otherwise,
set âuGID,id = (x, ŷuGID,id) where ŷuGID,id = (GID, yid,∆) and send {âuGID,id}u∈S and {ẑuGID}u∈S (if
applicable) to A.

Guess Phase. Perform required checks on {SGID,∆GID, j
∗
GID}GID and output whatever A outputs.

As we can see, the running time of B is a polynomial in the running time of A and λ. If O us
an honest challenger for dCSF, B behaves like adCSF-ExptChalA,0 (1

λ) and if O is a simulator for dCSF,

B behaves like adCSF-ExptSimA,1(1
λ). Hence, B can break the security of dCSF with advantage ϵ(λ).

Thus, adCSF is secure.

13 (poly, Q)-MA-ABFE from (poly, 1)-MA-ABFE and adCSF in
ROM

In this section, we provide the construction of a (poly, Q)-bounded MA-ABFE scheme from (poly, 1)-
bounded MA-ABFE scheme and an adCSF scheme. The construction is similar to the construc-
tion of MAFE from sub-exponentially secure PKE in ROM from [GY24]. Here, we use a (non-
programmable) random oracle H to sample (S,∆) for each GID. In the security reduction, we will

44

guess the set of non-corrupted users and unique indices in each {∆GID}GID to rely on the security of
adCSF. Note that we need to rely on the augmented statistical lemmas Lemma B.2 and Lemma B.3.
The security proof proceeds similar to [GY24] and we omit full proof for brevity.

Construction 13.1. We construct a (poly, Q)-bounded MA-ABFE scheme for predicate class
P = {Pλ}λ∈N, P/Poly circuits, GID = {GIDλ}λ∈N (Definition 10.1) using a (poly, Q)-bounded
MA-ABFE scheme for predicate class P, P/Poly circuits, GID (Definition 10.3), and an adCSF
scheme for P, P/Poly circuits, GID (Definition 12.1), in the random oracle model as follows. Here,
N,D, t are from Lemma B.2, T, v are from Lemma B.3.

GSetup(1λ, 1Q, 1n, 1L, 1sabe , 1sfe). For each u ∈ [N], sample abfe.crsu ← 1MA-ABFE.GSetup(1λ
′
, 1n,

1L, 1sabe , 1sfe). Here λ′ = O
(
(Q2λ2)1/α

)
and α is a constant to get the adversary’s advantage

within 2−O(Q2λ2). Sample a hash function H : GID → 2[N]
∣∣
D
× 2T

∣∣
v
. Output CRS :=

(λ,Q, n, L, sabe, sfe,H, {abfe.crsu}u∈[N]).

ASetup(id, 1ℓid). For each u ∈ [N], sample master public and secret keys (abfe.mpku, abfe.msku)

← 1MA-ABFE.ASetup(id, 1ℓid). Output MPK := {abfe.mpku}u, MSK := {abfe.msku}u.

KGenH(id,MSKid, {MPKidx}idx∈[n],GID, x, y). ParseMSKid,MPKidx as {abfe.mskid,u}u, {abfe.mpkidx,u}u
for each idx ∈ [n] and u ∈ [N]. Deterministically sample (S,∆) = H(GID). Compute using
adCSF, {âuGID,id}u ← adCSF.ServEnc(1λ

′
, 1Q, 1n, 1sabe , 1sfe ,GID, id, x, y,∆). For each u ∈ S,

compute abfe.sku ← 1MA-ABFE.KGen(id, abfe.mskid, {abfe.mpkidx}idx∈[n],GID, x, âuGID,id). Out-
put SKid,GID,x,y := (S, {abfe.sku}u∈S).

Enc({MPKid}id∈[n], P, C). For each id ∈ [n], parse MPKid as {abfe.mpkid,u}u for u ∈ [N]. Compute

{F̂ u}u ← adCSF.CliEnc(1λ
′
, 1Q, 1n, 1sabe , 1sfe , P, C). ∀ u ∈ [N], let Gu = adCSF.UserComp(

·, . . . , ·, F̂ u). Sample abfe.ctu ← 1MA-ABFE.Enc({abfe.mpkid,u}id∈[n], P,Gu). Output CT :=
{abfe.ctu}u∈[N].

Dec({SKid,GID,xid,yid}id∈[n],CT). For each id ∈ [n], parse SKid,GID,xid,yid as (Sid, {abfe.skid,u}u∈Sid
)

and CT as {abfe.ctu}u∈[N]. If all Sid are not the same, then abort and output ⊥. Oth-
erwise, for each u ∈ S1, ẑuGID = 1MA-ABFE.Dec({abfe.skid,u}id∈[n], abfe.ctu). Output z :=
adCSF.Decode({ẑuGID}u∈S1 ,S1).

Correctness. The correctness follows from correctness of adCSF and 1MA-ABFE.

Theorem 13.2. If 1MA-ABFE is a sub-exponentially secure (poly, 1)-bounded MA-ABFE scheme
(Definition 10.3) for predicate class P, P/Poly circuits, GID and adCSF is a sub-exponentially secure
attribute-based dCSF scheme for predicate class P, P/Poly circuits, GID then Construction 13.1
is a sub-exponentially secure (poly, Q)-bounded MA-ABFE scheme (Definition 10.1) for predicate
class P, P/Poly circuits, GID in random oracle model.

Proof Sketch. The proof of this theorem closely follows the proof of Q-GID MAFE scheme in ROM
from [GY24]. Specifically, we need to use the augmented N,D, t and T, v from Lemma B.2 and
Lemma B.3 respectively as any attacker, by means of the non-programmable H and unsatisfying
queries learn unbounded (S,∆) for any number of GIDs. After this, we have a subtle issue that we

45

do not know which GID is for a satisfying query and which GID is for a unsatisfying query. Hence,
we need to guess all the corrupted users and unique indices which can be used for simulation.

After guessing this string, we need to follow the artificial abort based template from [GY24]
where we determine whether we can use an adversary’s algorithm to attack a specific instantiation
of 1MA-ABFE. Note that like in [GY24], we can consider an intermediate object of “partially
adaptive MA-ABFE in ROM” and proceed from there to make the proof simpler.

Corollary 13.3 ((poly, Q)-MA-ABFE with Static Security). A (poly, Q)-bounded MA-ABFE scheme
is said to satisfy static security if theA declares all the secret key queries before receiving CRS, {MPKid}id.
We remark that a statically secure (poly, Q)-bounded MA-ABFE scheme can be constructed from
polynomially-hard MA-ABE schemes. This is because we can use a PRF key embedded as part of
CRS to find all the satisfying GID and use adCSF readily. The construction and security proof are
similar to the statically secure MAFE construction’s in [GY24].

References

[AG21] Miguel Ambrona and Romain Gay. Multi-authority abe, revisited. Cryptology ePrint
Archive, 2021.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryp-
tion. In Theory of Cryptography: 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8–11, 2021, Proceedings, Part II, pages 224–255. Springer, 2021.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part II, pages 500–518. Springer, 2013.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326. Springer,
2015.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Func-
tional encryption for turing machines with dynamic bounded collusion from lwe. In
Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part IV 41,
pages 239–269. Springer, 2021.

[ARP03] Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key cryptography.
In International conference on the theory and application of cryptology and information
security, pages 452–473. Springer, 2003.

[ARS24] Damiano Abram, Lawrence Roy, and Peter Scholl. Succinct homomorphic secret shar-
ing. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 301–330. Springer, 2024.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Theory of Cryptography Conference, pages 174–198. Springer,
2019.

46

[BCG+17a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homomor-
phic secret sharing: optimizations and applications. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 2105–2122,
2017.

[BCG+17b] Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil
Segev. Hierarchical functional encryption. In 8th Innovations in Theoretical Computer
Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Annual international cryptology conference, pages 213–229. Springer, 2001.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomor-
phic encryption. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Sci-
ence, pages 565–596, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham,
Switzerland.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under ddh. In Annual International Cryptology Conference, pages 509–
539. Springer, 2016.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proceedings of the 2012 ACM conference on Computer and communications security,
pages 784–796, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 62–73, 1993.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. Journal of Cryptology, 31:202–225, 2018.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography: 8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8, pages 253–273.
Springer, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In ACM Conference on Computer and Commu-
nications Security, pages 121–130, 2009.

47

[CCV04] Zhaohui Cheng, Richard Comley, and Luminita Vasiu. Remove key escrow from the
identity-based encryption system. In Exploring New Frontiers of Theoretical Infor-
matics: IFIP 18th World Computer Congress TC1 3rd International Conference on
Theoretical Computer Science (TCS2004) 22–27 August 2004 Toulouse, France, pages
37–50. Springer, 2004.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography:
4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21-24, 2007. Proceedings 4, pages 515–534. Springer, 2007.

[CHSS02] Liqun Chen, Keith Harrison, David Soldera, and Nigel P Smart. Applications of
multiple trust authorities in pairing based cryptosystems. In International Conference
on Infrastructure Security, pages 260–275. Springer, 2002.

[CM21] Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for secure compu-
tation under quasi-polynomial lpn. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 842–870. Springer, 2021.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Cryptography and Coding: 8th IMA International Conference Cirencester, UK,
December 17–19, 2001 Proceedings 8, pages 360–363. Springer, 2001.

[DG17a] Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective HIBE.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 372–
408, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

[DG17b] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages
537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham, Switzerland.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In Annual International Cryptology Conference, pages 93–122.
Springer, 2016.

[DIJL23] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic
secret sharing and sublinear mpc from sparse lpn. In Annual International Cryptology
Conference, pages 315–348. Springer, 2023.

[DKW21] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority abe
for dnf s from lwe. In Annual international conference on the theory and applications
of cryptographic techniques, pages 177–209. Springer, 2021.

[DKW23] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority
abe for nc 1 from bdh. Journal of Cryptology, 36(2):6, 2023.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In International Conference on the Theory and Applications of
Cryptographic Techniques, 2002.

48

[DP23] Pratish Datta and Tapas Pal. Decentralized multi-authority attribute-based inner-
product fe: Large universe and unbounded. In IACR International Conference on
Public-Key Cryptography, pages 587–621. Springer, 2023.

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E Skeith. Homomor-
phic secret sharing from paillier encryption. In Provable Security: 11th International
Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017, Proceedings 11, pages
381–399. Springer, 2017.

[GGL24] Rachit Garg, Rishab Goyal, and George Lu. Dynamic collusion functional encryption
and multi-authority attribute-based encryption. In IACR International Conference on
Public-Key Cryptography, pages 69–104. Springer, 2024.

[GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded
functional encryption from identity-based encryption. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 736–763.
Springer, 2022.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[GHM+19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi,
and Sruthi Sekar. Registration-based encryption from standard assumptions. In IACR
international workshop on public key cryptography, pages 63–93. Springer, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza
Rahimi. Registration-based encryption: removing private-key generator from ibe. In
Theory of Cryptography: 16th International Conference, TCC 2018, Panaji, India,
November 11–14, 2018, Proceedings, Part I 16, pages 689–718. Springer, 2018.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Theory of Cryptography Conference,
pages 361–388. Springer, 2016.

[GLW12] Shafi Goldwasser, Allison Lewko, and David A Wilson. Bounded-collusion ibe from key
homomorphism. In Theory of Cryptography: 9th Theory of Cryptography Conference,
TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings 9, pages 564–581.
Springer, 2012.

[Goy07] Vipul Goyal. Reducing trust in the pkg in identity based cryptosystems. In Annual
International Cryptology Conference, pages 430–447. Springer, 2007.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98, 2006.

49

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92. Springer, 2013.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –
CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer Science, pages
621–651, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Cham, Switzerland.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology–
CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, pages 162–179. Springer, 2012.

[GY24] Rishab Goyal and Saikumar Yadugiri. Multi-authority functional encryption with
bounded collusions from standard assumptions. In Elette Boyle and Mohammad Mah-
moody, editors, TCC 2024: 22nd Theory of Cryptography Conference, Part III, volume
15366 of Lecture Notes in Computer Science, pages 3–30, Milan, Italy, December 2–6,
2024. Springer, Cham, Switzerland.

[GY25] Rishab Goyal and Saikumar Yadugiri. Delegatable ABE with full security from witness
encryption. Cryptology ePrint Archive, Paper 2025/407, 2025.

[HKM+23] Taiga Hiroka, Fuyuki Kitagawa, Tomoyuki Morimae, Ryo Nishimaki, Tapas Pal, and
Takashi Yamakawa. Certified everlasting secure collusion-resistant functional encryp-
tion. Technical report, and more. Cryptology ePrint Archive, Report 2023/236, 2023.

[HMNY22] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified
everlasting functional encryption. arXiv preprint arXiv:2207.13878, 2022.

[Kim19] Sam Kim. Multi-authority attribute-based encryption from lwe in the ot model. Cryp-
tology ePrint Archive, 2019.

[LBD+04] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Se-
ungjae Yoo. Secure key issuing in id-based cryptography. In Proceedings of the second
workshop on Australasian information security, Data Mining and Web Intelligence,
and Software Internationalisation-Volume 32, pages 69–74. Citeseer, 2004.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfusca-
tion with non-trivial efficiency. In Public-Key Cryptography–PKC 2016, pages 447–462.
Springer, 2016.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In
EUROCRYPT, pages 568–588, 2011.

[MJ18] Yan Michalevsky and Marc Joye. Decentralized policy-hiding abe with receiver privacy.
In Computer Security: 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part II 23, pages
548–567. Springer, 2018.

50

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key fhe. In Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II 35, pages 735–763. Springer, 2016.

[OT20] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based encryp-
tion and signatures. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, 103(1):41–73, 2020.

[PS08] Kenneth G. Paterson and Sriramkrishnan Srinivasan. Security and anonymity of
identity-based encryption with multiple trusted authorities. In Steven D. Galbraith
and Kenneth G. Paterson, editors, PAIRING 2008: 2nd International Conference on
Pairing-based Cryptography, volume 5209 of Lecture Notes in Computer Science, pages
354–375, Egham, UK, September 1–3, 2008. Springer Berlin Heidelberg, Germany.

[Rog15] Phillip Rogaway. The moral character of cryptographic work. Cryptology ePrint
Archive, Paper 2015/1162, 2015.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology: Proceedings of CRYPTO 84 4, pages 47–53. Springer, 1985.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings 24, pages 457–473. Springer, 2005.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Annual
International Cryptology Conference, pages 535–559. Springer, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and
null-io from evasive lwe. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 195–221. Springer, 2022.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ad-
vances in Cryptology–EUROCRYPT 2005: 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005. Proceedings 24, pages 114–127. Springer, 2005.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and cp-abe from evasive lattice assump-
tions. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 217–241. Springer, 2022.

[WFL19] Zhedong Wang, Xiong Fan, and Feng-Hao Liu. Fe for inner products and its application
to decentralized abe. In IACR international workshop on public key cryptography, pages
97–127. Springer, 2019.

51

[WW24] Brent Waters and Daniel Wichs. Adaptively secure attribute-based encryption from
witness encryption. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024:
22nd Theory of Cryptography Conference, Part III, volume 15366 of Lecture Notes in
Computer Science, pages 65–90, Milan, Italy, December 2–6, 2024. Springer, Cham,
Switzerland.

[WWW22] Brent Waters, Hoeteck Wee, and David J Wu. Multi-authority abe from lattices with-
out random oracles. In Theory of Cryptography Conference, pages 651–679. Springer,
2022.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th annual sympo-
sium on foundations of computer science (Sfcs 1986), pages 162–167. IEEE, 1986.

A Additional Preliminaries

We recall the definition of garbled circuits [Yao86] which is derived from [BHR12].

Definition A.1 (Garb). A Garb scheme (Garble,Eval) is said to be a garbling scheme for P/Poly
circuits if satisfies the following properties.

Correctness. For any λ ∈ N, n-ary P/Poly circuit C,

Pr

[
y =
C(x1, . . . , xn)

:
(C̃, {wi,b}i∈[n],b∈{0,1})← Garble(1λ, C)

y = Eval(C̃, {wi,xi}i∈[n])

]
= 1

Security. For any PPT adversary A, there exists a simulator Sim, ∀ λ ∈ N,

Pr

 b′ = b :

(C, x)← A(1λ), b $←− {0, 1},
(C̃(0), {w(0)

i,β}i∈[n],β∈{0,1})← Garble(1λ, C)

(C̃(1), {w(1)
i,xi
}i∈[n])← Sim(1λ, 1n, 1|C|, C(x))

b′ ← A(C̃(b), {w(b)
i,xi
}i∈[n])

 ≤ 1

2
+ negl(λ)

Remark A.2 ([Yao86]). Assuming the existence of one-way functions, garbled circuits for any
family of P/Poly circuits exist.

Definition A.3 (PRF). A secure pseudorandom function PRF is a deterministic polynomial-time
function that takes inputs from X = {Xλ}λ∈N and a key K ∈ {0, 1}λ and outputs values in
R = {Rλ}λ∈N. We say that the PRF is a secure pseudorandom function if it satisfies the following
properties.

Pseudorandomness. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀ λ ∈ N,

Pr
[
b′ ← AOb(·)(1λ) : b

$←− {0, 1},K $←− {0, 1}λ
]
≤ 1

2
+ negl(λ)

where O0(·) = PRF(K, ·) and O1(·) generates random strings in Rλ.

52

Definition A.4 (IBE). An IBE scheme (Setup,KGen,Enc,Dec) is said to be an Identity-Based
Encryption scheme (IBE) for identity space I = {Iλ}λ∈N if it satisfies the following properties.

Correctness. For any λ ∈ N, for any identity ibeID ∈ Iλ, |ibeID| = z = z(λ), for any message
m ∈ {0, 1}∗16,

Pr

 m = Dec(SKibeID,CT) :
(MPK,MSK)← Setup(1λ, 1z),
SKibeID ← KGen(MSK, ibeID),
CT← Enc(MPK, ibeID,m)

 = 1

Security. For any admissible stateful PPT adversary A, there exists a negligible function negl(·)
such that for any λ ∈ N,

Pr

 b← AO(·)(CT) :

(MPK,MSK)← Setup(1λ, 1z),

(ibeID∗,m)← AO(·)(1λ, 1z,MPK),

b
$←− {0, 1},m0 := m,m1 := 0|m|,

CT← Enc(MPK, ibeID∗,mb)

 ≤ 1

2
+ negl(λ)

where O(ibeID) outputs KGen(MSK, ibeID) and an admissible adversary queries the oracle
O(·) with ibeID ̸= ibeID∗.

Remark A.5 (Multi-challenge security). Although Definition A.4 is defined for a single challenge
identity, the same holds for to multiple challenge queries by a simple hybrid argument. We will use
this version in this work.

B Relevant Material from [GY24]

In this section, we provide definitions and results from [GY24] that will be useful for the reader.

B.1 Distributed Client-Server Framework

Syntax. A distributed client-server framework (dCSF) for circuit class C = {Cλ}λ∈N and GID =
{GIDλ}λ∈N consists of the following polynomial time algorithms.

ServEnc(1λ, 1Q, 1n, 1s, id,GID, x,∆)→ {x̂uid,GID}u∈[N]. The deterministic server encoding algorithm
takes as input the query bound Q, number of authorities n, maximum size of circuit s,
authority identifier id, user global identifier GID ∈ GIDλ, input x, cover-free set ∆, and
outputs input encodings {x̂uid,GID}u∈[N].

CliEnc(1λ, 1Q, 1n, 1s, C)→ {Ĉu}u∈[N]. The probabilistic client encoding algorithm takes as input
query bound Q, number of authorities n, maximum size of circuit s, circuit C ∈ Cλ, and
outputs client encodings {Ĉu}u∈[N].

UserComp({x̂uid,GID}id∈[n], Ĉu)→ ŷuGID. The deterministic user computation algorithm takes the in-

put encodings for a GID ∈ GIDλ from all authorities, {x̂uid,GID}id∈[n], client encoding Ĉu, and
computes the output encoding ŷuGID.

16Recall that IBE can encrypt messages of arbitrary length using hybrid encryption.

53

Decode({ŷuGID}u∈S,S)→ y. The deterministic decoding algorithm takes as input output encodings
from users in S ⊆ [N], {ŷuGID}u∈S and outputs the value y.

Definition B.1 (dCSF). A dCSF scheme (ServEnc,CliEnc,UserComp,Decode) is said to be a dCSF
scheme for circuit class C and GID if it satisfies the following properties.

Correctness. For any λ ∈ N, Q = Q(λ), n = n(λ), s = s(λ), id ∈ [n], C ∈ Cλ,GID ∈ GIDλ, u ∈ S ⊆
[N], |S| = D,

Pr

 C(x1, . . . , xn) =
Decode({ŷuGID}u∈S,S)

:

{x̂uid,GID}u∈[N] = ServEnc(1λ, 1Q, 1n,

1s, id,GID, x,∆),

{Ĉu}u∈[N] ← CliEnc(1λ, 1Q, 1n, 1s, C),

ŷuGID ← UserComp({x̂uid,GID}id, Ĉu)

 = 1

Security. For any admissible adversary A, there exists a stateful simulator Sim such that ∀ λ ∈ N,{
dCSF-ExptChalA,0 (1

λ)
}
≈c

{
dCSF-ExptSimA,1(1

λ)
}

where definitions of dCSF-ExptChalA,0 (1
λ), dCSF-ExptSimA,1(1

λ), and admissible adversary are as
follows — A stateful PPT machine A is admissible if

• A makes at most Q server encoding queries across n authorities such that each authority
is queried at most once per GID.

• For all server encoding queries, SGID,∆GID should be unique for a GID. And all {SGID}
and {∆GID} satisfy Lemma B.2 and Lemma B.3 respectively. S̃ = [N]\(

⋃
GID ̸=GID′ SGID∩

SGID′) and j∗GID is the unique index in ∆GID for every GID.

dCSF-ExptChalA,0 (1
λ).

Setup. A sends Q,n, s, set of non-corrupted users S̃.

Pre-challenge Queries. A queries for server encodings with ((id,GID, x,∆GID),SGID). Chal
runs {x̂uid,GID}u∈[N] = ServEnc(1λ, 1Q, 1n, 1s, id,GID, x,∆GID), and sends {x̂uid,GID}u∈SGID

.

Challenge Query. A sends circuit C, and {j∗GID}GID for each completed GID in the previous

phase. Chal samples {Ĉu}u∈[N] ← CliEnc(1λ, 1Q, 1n, 1s, C) and for each GID, {{ŷuGID} ←
UserComp({x̂uid,GID}id∈[n], Ĉu)}u∈SGID

and sends {Ĉu}
u/∈S̃ and {ŷuGID}GID,u∈SGID

to A.
Post-challenge Queries. This is similar to pre-challenge query phase, except that A sends

an additional input j∗GID when for this GID, this is the last authority to be queried. In
turn, Chal responds additionally with {ŷuGID}u∈SGID

that it computes using UserComp.

Guess. Output whatever A outputs.

dCSF-ExptSimA,1(1
λ).

Setup. A sends Q,n, s, set of non-corrupted users S̃. Initiate Sim(1λ, 1Q, 1n, 1s, S̃).

54

Pre-challenge Queries. A queries for server encodings with ((id,GID, x,∆GID),SGID). Re-
spond with {x̂uid,GID}u∈SGID

= Sim(id,GID, x,∆GID).

Challenge Query. A sends circuit C, and {j∗GID}GID for each completed GID in the previous

phase. Respond with {Ĉu}
u/∈S̃, {ŷ

u
GID}GID,u∈SGID

← Sim(1|C|,V, {j∗GID}GID). Here, V =
{(GID, X = {xid,GID}id∈[n], C(X)) for all GID that was used to query all authorities in
pre-challenge query phase}.

Post-challenge Queries. This is similar to pre-challenge query phase, except that A sends
an additional input j∗GID when for this GID, this is the last authority to be queried. Re-

spond with ({x̂uid,GID}, {ŷuGID})u∈SGID
← SimC(·)(id,GID, x,∆GID, j

∗
GID). Here, Sim queries

C(·) with X = (x1,GID, . . . , xn,GID) and receives C(X).

Guess. Output whatever A outputs.

B.2 Augmented Statistical Lemmas

We provide the following lemmas used in Section 12 without proofs.

Lemma B.2 (Small Pairwise Intersection). Let P = P (λ), Q = Q(λ) such that P ≥ Q. Let
t = Θ(Qλ), D = Θ(t), N = Θ(Q2t) such that D > 3t. Let S1, . . . ,SP be independently and
uniformly drawn sets from [N] of size D. Then for any R ⊆ [P], |R| = Q, with all but negligible
probability, ∣∣∣∣∣∣

⋃
i,j∈R,i ̸=j

Si ∩ Sj

∣∣∣∣∣∣ ≤ t

Lemma B.3 (Cover-freeness). Let P = P (λ), Q = Q(λ) such that P ≥ Q. Let v = Θ(Q2λ), T =
vQ. Let ∆1, . . . ,∆P be independently and uniformly drawn sets from [T] of size v. Then for any
R ⊆ [P], |R| = Q, i ∈ R, with all but negligible probability,

∆i \
⋃

j ̸=i,j∈R
∆j ̸= ∅

C Proofs from Section 5

In this section, we provide full proof of Theorem 5.3.

HybA0 (1
λ). This is the real experiment with Chal.

Setup. A sends Q, s to Chal. Chal sends CRS := (λ,Q, s) to A.

Auth Setup Queries. A sends (id, ℓid). Chal samples (bfe.mpkid, bfe.mskid) ← BFE.Setup(1λ, 1Q,
1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Chal sends
MPKid to A.

Secret Key Queries. A sends (id,GID, x). Chal samples bfe.skid,GID,x ← BFE.KGen(bfe.mskid,
(id,GID, x)) and sends SKid,GID,x := bfe.skid,GID,x to A.

Challenge Query. A sends circuit I, C to Chal. Let n = |I| and id1, . . . , idn be the increasing
ordering of elements in I.

55

• Chal samplesmafe.crs, {(mafe.mpki,mafe.mski)}i∈[n] ← tMAFE.GSetup(1λ, 1Q, 1n, 1s, 1ℓid1

, . . . , 1ℓidn).

• ∀ i ∈ [n], bfe.ctidi ← BFE.Enc(bfe.mpkidi , tMAFE.KGen(·,mafe.mski, {mafe.mpki′}i′ , ·, ·)).
• Sample mafe.ct← tMAFE.Enc({mafe.mpki}i∈[n], C).

Send CT := (mafe.ct, I, {bfe.ctid}id∈I) to A.

Auth Setup Queries. A sends (id, ℓid). Chal samples (bfe.mpkid, bfe.mskid) ← BFE.Setup(1λ, 1Q,
1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Chal sends
MPKid to A.

Secret Key Queries. A sends (id,GID, x). Chal samples bfe.skid,GID,x ← BFE.KGen(bfe.mskid,
(id,GID, x)) and sends SKid,GID,x := bfe.skid,GID,x to A.

Guess Phase. Output whatever A outputs.

HybA1 (1
λ). In this hybrid, we will simulate the pre-challenge queries using (S0,S1) of BFE instan-

tiations. The changes are highlighted in red.

Setup. A sends Q, s to Chal. Chal sends CRS := (λ,Q, s) to A.

Auth Setup Queries. A sends (id, ℓid). Chal samples (bfe.mpkid, bfe.mskid, bfe.stid)← BFE.S0(1
λ,

1Q, 1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Chal sends
MPKid to A.

Secret Key Queries. A sends (id,GID, x). Chal samples bfe.skid,GID,x ← BFE.S1(bfe.mpkid, bfe.mskid,
bfe.stid, (id,GID, x)) and sends SKid,GID,x := bfe.skid,GID,x to A.

Challenge Query, Post-challenge Queries, Guess Phase. Do this exactly like HybA0 (1
λ).

HybA2,j(1
λ). for j ∈ [n+1]. In this hybrid, we will simulate BFE instantiations of id1, . . . , idj−1 ∈ I.

The changes are highlighted in red.

Setup. A sends Q, s. Send CRS := (λ,Q, s) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid, bfe.stid) ← BFE.S0(1
λ, 1Q,

1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Send MPKid to
A.

Secret Key Queries. A sends (id,GID, x). Sample bfe.skid,GID,x ← BFE.S1(bfe.mpkid, bfe.mskid,
bfe.stid, (id,GID, x)) and send SKid,GID,x := bfe.skid,GID,x to A.

Challenge Query. A sends circuit I, C. Let n = |I| and id1, . . . , idn be the increasing ordering
of elements in I.

• Sample mafe.crs, {(mafe.mpki,mafe.mski)}i∈[n] ← tMAFE.GSetup(1λ, 1Q, 1n, 1s, 1ℓid1 , . . . ,

1ℓidn).

56

• ∀ i ∈ [n], if i ≥ j, bfe.ctidi ← BFE.Enc(bfe.mpkidi , Fi). Otherwise, bfe.ctidi ← BFE.S2(stidi ,

1|Fi|,Vi). Here Fi = tMAFE.KGen(·,mafe.mski, {mafe.mpki′}i′ , ·, ·) and Vi = {(X,Fi(X)) :
X = (idi,GID, xGID,idi) for all GID queries in previous phase}.

• Sample mafe.ct← tMAFE.Enc({mafe.mpki}i∈[n], C).

Send CT := (mafe.ct, I, {bfe.ctid}id∈I) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid). Set MPKid = (ℓid, bfe.mpkid), MSKid := (ℓid, bfe.mskid). Send MPKid to A.

Secret Key Queries. A sends (id,GID, x). If id ∈ {id1, . . . , idj−1}, sample bfe.skid,GID,x ← BFE.S
Fid(·)
3

(stid, (id,GID, x)). Otherwise, bfe.skid,GID,x ← BFE.KGen(bfe.mskid, (id,GID, x)). Send bfe.skid,GID,x

to A.

Guess Phase. Output whatever A outputs.

HybA3 (1
λ). In this hybrid, we will simulate tMAFE. The changes are highlighted in red.

Setup. A sends Q, s. Send CRS := (λ,Q, s) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid, bfe.stid) ← BFE.S0(1
λ, 1Q,

1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Send MPKid to
A.

Secret Key Queries. A sends (id,GID, x). Sample bfe.skid,GID,x ← BFE.S1(bfe.mpkid, bfe.mskid,
bfe.stid, (id,GID, x)) and send SKid,GID,x := bfe.skid,GID,x to A.

Challenge Query. A sends circuit I, C. Let n = |I| and id1, . . . , idn be the increasing ordering
of elements in I.

• Sample mafe.crs, {mafe.mpkid}id∈[n] ← tMAFE.Sim(1λ, 1Q, 1n, 1s, 1ℓid1 , . . . , 1ℓidn).

• ∀ i ∈ [n], bfe.ctidi ← BFE.S2(stidi , 1
|Fi|,Vi). Here Vi = {(X, tMAFE.Sim(idi,GID, xGID,idi)) :

for all GID queries in previous phase}.
• Sample mafe.ct← tMAFE.Sim(1|C|,VC) where VC is as defined in Definition 4.1.

Send CT := (mafe.ct, I, {bfe.ctid}id∈I) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid). Set MPKid := (ℓid, bfe.mpkid), MSKid := (ℓid, bfe.mskid). Send MPKid to A.

Secret Key Queries. A sends (id,GID, x). If id ∈ I, sample bfe.skid,GID,x ← BFE.S
F ′
id(·)

3 (stid,
(id,GID, x)). Otherwise, sample bfe.skid,GID,x ← BFE.KGen(bfe.mskid, (id,GID, x)) and send
bfe.skid,GID,x to A. Here F ′id(·) responds with tMAFE.Sim(id,GID, x,VC) where VC is as defined
in Definition 4.1.

Guess Phase. Output whatever A outputs.

Lemma C.1. HybA0 (1
λ) and HybA1 (1

λ) are identical.

57

Proof. This follows from the security of BFE where pre-challenge simulator (BFE.S0,BFE.S1) behave
exactly as BFE.Setup,BFE.KGen respectively.

Lemma C.2. HybA1 (1
λ) and HybA2,1(1

λ) are identical.

Proof. As we are not simulating any instantiations of BFE in HybA2,1(1
λ), these hybrids are iden-

tically distributed.

Lemma C.3. Assuming the security of BFE, HybA2,j(1
λ) and HybA2,j+1(1

λ) for j ∈ [n] are compu-
tationally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA2,j(1
λ) and

HybA2,j+1(1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA2,j(1

λ)
]
− Pr

[
1← HybA2,j+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of BFE with non-negligible
probability. The description of BO is as follows.

Setup. A sends Q, s. Send CRS := (λ,Q, s) to A. As A runs in polynomial time, it makes

qauth = poly(λ) many authority setup queries. Choose N∗
$←− [qauth].

Auth Setup Queries. A sends (id, ℓid). If this is theN
∗-th authority setup query, receive bfe.mpkid

← O(1Q, 1λ+|GID|+ℓid , 1κid) and set id∗ = id. Otherwise, sample (bfe.mpkid, bfe.mskid, bfe.stid)←
BFE.S0(1

λ, 1Q, 1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid).
Send MPKid to A.

Secret Key Queries. A sends (id,GID, x). If id∗ = id, bfe.skid,GID,x ← O(id,GID, x). Sam-
ple bfe.skid,GID,x ← BFE.S1(bfe.mpkid, bfe.mskid, bfe.stid, (id,GID, x)) and send SKid,GID,x :=
bfe.skid,GID,x to A.

Challenge Query. A sends circuit I, C. Let n = |I| and id1, . . . , idn be the increasing ordering

of elements in I. If idj ̸= id∗, abort and output b′
$←− {0, 1}. Otherwise,

• Sample mafe.crs, {(mafe.mpki,mafe.mski)}i∈[n] ← tMAFE.GSetup(1λ, 1Q, 1n, 1s, 1ℓid1 , . . . ,

1ℓidn).

• ∀ i ∈ [n], if i > j, bfe.ctidi ← BFE.Enc(bfe.mpkidi , Fi). Otherwise, if i = j, bfe.ctidi ←
O(Fi). Otherwise, bfe.ctidi ← BFE.S2(stidi , 1

|Fi|,Vi). Here Fi = tMAFE.KGen(·,mafe.mski,
{mafe.mpki′}i′ , ·, ·) and Vi = {(X,Fi(X)) : ∀ X = (idi,GID, xGID,idi)}.

• Sample mafe.ct← tMAFE.Enc({mafe.mpki}i∈[n], C).

Send CT := (mafe.ct, I, {bfe.ctid}id∈I) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid). Set MPKid = (ℓid, bfe.mpkid), MSKid = (ℓid, bfe.mskid). Send MPKid to A.

Secret Key Queries. A sends (id,GID, x). If id ∈ {id1, . . . , idj−1}, bfe.skid,GID,x ← BFE.S
Fid(·)
3

(stid, (id,GID, x)). Otherwise, if id = idj , bfe.skid,GID,x ← O(id,GID, x). Otherwise, bfe.skid,GID,x

← BFE.KGen(bfe.mskid, (id,GID, x)) and send bfe.skid,GID,x to A.

58

Guess Phase. Output whatever A outputs.

The probability that B doesn’t abort is at most 1/qauth. In that case, the running time of B
is polynomial in the running time of A and λ. If O is (BFE.S0,BFE.S1,Enc,KGen) for BFE, B
behaves as HybA2,j(1

λ) and if O is a BFE.Sim, B behaves like HybA2,j+1(1
λ). Hence, B is a valid

adversary against the security of BFE that can breaks its security with non-negligible advantage,
ϵ/qauth. Thus, HybA2,j(1

λ) and HybA2,j+1(1
λ) are computationally indistinguishable.

Lemma C.4. Assuming the security of tMAFE, HybA2,n+1(1
λ) and HybA3 (1

λ) are computationally
indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA2,n+1(1
λ) and

HybA3 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA2,n+1(1

λ)
]
− Pr

[
1← HybA3 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of tMAFE with non-negligible
probability. The description of BO is as follows.

Setup. A sends Q, s. Send CRS := (λ,Q, s) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid, bfe.stid) ← BFE.S0(1
λ, 1Q,

1λ+|GID|+ℓid , 1κid). Set MPKid = (ℓid, bfe.mpkid), and MSKid = (ℓid, bfe.mskid). Send MPKid to
A.

Secret Key Queries. A sends (id,GID, x). Sample bfe.skid,GID,x ← BFE.S1(bfe.mpkid, bfe.mskid,
bfe.stid, (id,GID, x)) and send SKid,GID,x := bfe.skid,GID,x to A.

Challenge Query. A sends circuit I, C. Let n = |I| and id1, . . . , idn be the increasing ordering
of elements in I.

• Receive mafe.crs, {mafe.mpkid}id∈[n] ← O(1Q, 1n, 1s, 1ℓid1 , . . . , 1ℓidn).
• ∀ i ∈ [n], bfe.ctidi ← BFE.S2(stidi , 1

|Fi|,Vi). Here Vi = {(X,O(idi,GID, xGID,idi)) :
for all GID queries in previous phase}.

• Sample mafe.ct← O(C).

Send CT := (mafe.ct, I, {bfe.ctid}id∈I) to A.

Auth Setup Queries. A sends (id, ℓid). Sample (bfe.mpkid, bfe.mskid)← BFE.Setup(1λ, 1Q, 1λ+|GID|+ℓid ,
1κid). Set MPKid := (ℓid, bfe.mpkid), MSKid := (ℓid, bfe.mskid). Send MPKid to A.

Secret Key Queries. A sends (id,GID, x). If id ∈ I, sample bfe.skid,GID,x ← BFE.S
F ′
id(·)

3 (stid,
(id,GID, x)). Otherwise, sample bfe.skid,GID,x ← BFE.KGen(bfe.mskid, (id,GID, x)) and send
bfe.skid,GID,x to A. Here F ′id(·) responds with O(id,GID, x,VC).

Guess Phase. Output whatever A outputs.

And, the running time of B is polynomial in the running time of A and λ. If O is an honest
challenger for tMAFE, B behaves asHybA2,n+1(1

λ) and if O is a simulator, B behaves likeHybA3 (1
λ).

Hence, B is a valid adversary against the security of tMAFE that can breaks its security with non-
negligible advantage. Thus, HybA2,n+1(1

λ) and HybA3 (1
λ) are computationally indistinguishable.

59

D Proofs from Section 6.1

In this section, we provide the full proof of Theorem 6.4.

HybA0 (1
λ). This is the real experiment from Definition 6.2.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(0),K(1) $←− {0, 1}λ and for
each id ∈ [n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and
MSKid := (ℓid, ibe.mskid,K

(0),K(1)). Send (CRS, {MPKid}id∈[n]) to A.

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). Chal computes Tag =
PRF0(K

(0),GID), R = PRF1(K
(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.

GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid,
(Tag, i,mafe.mpkid[i])). And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,
GID, x). Send SKid,GID,x := (Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Challenge Query. A sends circuit C to Chal. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q−Q1 queries of the form (id,GID, x). Chal computes Tag =
PRF0(K

(0),GID), R = PRF1(K
(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.

GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid,
(Tag, i,mafe.mpkid[i])). And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,
GID, x). Send SKid,GID,x := (Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

HybA1 (1
λ). In this hybrid, we will sample all the Tags used in key generation early. The changes

are highlighted in red.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(0),K(1) $←− {0, 1}λ and for
each id ∈ [n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and

MSKid := (ℓid, ibe.mskid,K
(0),K(1)). Send (CRS, {MPKid}id∈[n]) toA. Sample Tag1, . . . ,TagQ

$←−
[Q]. Initiate counter j = 1 and dictionary T .

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. Compute R =

PRF1(K
(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s,

1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])).
And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x :=
(Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

60

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). If GID ∈ T , set
Tag = T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. Compute R =

PRF1(K
(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s,

1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])).
And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x :=
(Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

HybA2 (1
λ). In this hybrid, we check if any Tag ∈ [Q] was sampled more that λ many times in

previous hybrid. The changes are highlighted in red.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that

q > λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥.

Pre-challenge, Challenge, Post-challenge Queries, Guess Phase. Same as HybA1 (1
λ).

HybA3 (1
λ). In this hybrid, we will sample random strings R and thus random tMAFE instantia-

tions instead of using PRF1. The changes are highlighted in red.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that q >

λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥. Sample R(1), . . . , R(Q) $←−
{0, 1}λ.

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID]. Increment j. Sample mafe.crs, {(mafe.

mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R(Tag)). For each i ∈
[Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])). And, mafe.skid,GID,x ←
tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkid,
mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

61

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). If GID ∈ T , set
Tag = T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. Sample

mafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R(Tag)).
For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])). And,
mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x :=
(Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

HybA4 (1
λ). In this hybrid, we will all Q many tMAFE instantiations early and use the appropriate

keys to generate secret keys. The changes are highlighted in red.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that

q > λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥. For each Tag ∈ [Q],

mafe.crsTag, {(mafe.mpkTagidx ,mafe.mskTagidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn).

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each i ∈ [Lid],

sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, mafe.skTagid,GID,x ←
tMAFE.KGen(id,mafe.mskTagid ,

{mafe.mpkTagidx }idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkTagid ,mafe.skTagid,GID,x, {ibe.skTag,i}i)
to A.

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q−Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each i ∈ [Lid],

sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, mafe.skTagid,GID,x ←
tMAFE.KGen(id,mafe.mskTagid , {mafe.mpkTagidx }idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkTagid ,

mafe.skTagid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

62

HybA5,k(1
λ). for k ∈ [n + 1]. In this hybrid, we will set half of the IBE encryptions to all zero

strings of appropriate length for the first k − 1 authorities. The changes are highlighted in red.

Setup, Pre-challenge Queries. Same as HybA4 (1
λ).

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n],

– If id < k, i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag, i, β),

wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

– Otherwise, for i ∈ [Lid], b ∈ {0, 1}, ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b)

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries, Guess Phase. Same as HybA4 (1
λ).

HybA6,t(1
λ). for t ∈ [Q + 1]. In this hybrid, we will simulate the garbling of F for each Tag < t.

The changes are highlighted in red.

Setup, Pre-challenge Queries. Same as HybA5,n+1(1
λ).

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• If Tag < t (F̃Tag, {w
id,i,mafe.mpkTagid [i]

}id,i) ← Garb.Sim(1λ, 1L, 1|F |,mafe.ctTag) where L =

L1 + . . .+ Ln and mafe.ctTag ← tMAFE.Enc({mafe.mpkTagidx }idx∈[n], C).

• Otherwise, RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• ∀ id ∈ [n], i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag, i, β),

wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries, Guess Phase. Same as HybA5,n+1(1
λ).

HybA7,t(1
λ). for t ∈ [Q+ 1]. In this hybrid, we will simulate the Tag-th tMAFE instantiations for

Tag < t. The changes are highlighted in red. Here, VTag is the set of all input and outputs relations
for C as defined in Definition 4.1 except we only consider the queries where Tag is used.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that

q > λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥. For each Tag ∈ [Q],

if Tag < t, mafe.crsTag, {mafe.mpkTagidx }idx ← tMAFE.SimTag(1
λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn). Other-

wise, mafe.crsTag, {(mafe.mpkTagidx ,mafe.mskTagidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn).

63

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each i ∈
[Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, if Tag < t,

mafe.skTagid,GID,x ← tMAFE.SimTag(id,GID, x). Otherwise, mafe.skTagid,GID,x ← tMAFE.KGen(id,mafe.

mskTagid , {mafe.mpkTagidx }idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkTagid ,mafe.skTagid,GID,x, {ibe.
skTag,i}i∈[Lid]) to A.

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• (F̃Tag, {w
id,i,mafe.mpkTagid [i]

}id,i) ← Garb.Sim(1λ, 1L, 1|F |,mafe.ctTag) where L = L1 + . . . +

Ln and if Tag < t, mafe.ctTag ← tMAFE.Sim(1|C|,VTag). Otherwise, mafe.ctTag ←
tMAFE.Enc({mafe.mpkTagidx }idx∈[n], C).

• ∀ id ∈ [n], i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag, i, β),

wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). If GID ∈ T , set
Tag = T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each

i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, if Tag < t,

mafe.skTagid,GID,x ← tMAFE.Sim
C(·)
Tag (id,GID, x). Otherwise, mafe.skTagid,GID,x ← tMAFE.KGen(id,mafe.

mskTagid , {mafe.mpkTagidx }idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkTagid ,mafe.skTagid,GID,x, {ibe.
skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

Lemma D.1. Assuming the pseudorandomness of PRF0, HybA0 (1
λ) and HybA1 (1

λ) are computa-
tionally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA0 (1
λ) and

HybA1 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA0 (1

λ)
]
− Pr

[
1← HybA1 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the pseudorandomness of PRF0 with
non-negligible probability. The description of BO is as follows.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(0),K(1) $←− {0, 1}λ and for
each id ∈ [n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and
MSKid := (ℓid, ibe.mskid,K

(0),K(1)). Send (CRS, {MPKid}id∈[n]) to A.

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). Let Tag ← O(GID). Com-
puteR = PRF1(K

(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ,
1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,
mafe.mpkid[i])). And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x).
Send SKid,GID,x := (Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

64

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). Let Tag ← O(GID).
ComputeR = PRF1(K

(1),Tag), andmafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup
(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;R). For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag,
i,mafe.mpkid[i])). And, mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x).
Send SKid,GID,x := (Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
is a honest challenger for PRF0, B behaves as HybA0 (1

λ) and if O samples outputs randomly, B
behaves like HybA1 (1

λ). Hence, B is a valid adversary against the pseudorandomness of PRF0
that can breaks its security with non-negligible advantage. Thus, HybA0 (1

λ) and HybA1 (1
λ) are

computationally indistinguishable.

Lemma D.2. HybA1 (1
λ) and HybA2 (1

λ) are statistically indistinguishable.

Proof. The proof of this lemma follows from Lemma 5.2 of [GGLW22] or Lemma 3.4 of [AMVY21]
or Claim 1 of [AV19].

Lemma D.3. Assuming the pseudorandomness of PRF1, HybA2 (1
λ) and HybA3 (1

λ) are computa-
tionally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA2 (1
λ) and

HybA3 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA2 (1

λ)
]
− Pr

[
1← HybA3 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the pseudorandomness of PRF1 with
non-negligible probability. The description of BO is as follows.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that

q > λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥.

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. Samplemafe.crs, {(mafe.

mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;O(Tag)). For each i ∈
[Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])). And, mafe.skid,GID,x ←
tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x := (Tag,mafe.mpkid,
mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

65

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). If GID ∈ T , set
Tag = T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. Sample

mafe.crs, {(mafe.mpkidx,mafe.mskidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn ;O(Tag)).
For each i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkid[i])). And,
mafe.skid,GID,x ← tMAFE.KGen(id,mafe.mskid, {mafe.mpkidx}idx,GID, x). Send SKid,GID,x :=
(Tag,mafe.mpkid,mafe.skid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
is a honest challenger for PRF1, B behaves as HybA2 (1

λ) and if O samples outputs randomly, B
behaves like HybA3 (1

λ). Hence, B is a valid adversary against the pseudorandomness of PRF1
that can breaks its security with non-negligible advantage. Thus, HybA2 (1

λ) and HybA3 (1
λ) are

computationally indistinguishable.

Lemma D.4. HybA3 (1
λ) and HybA4 (1

λ) are identical.

Proof. As we are sampling R(Tag) uniformly in both the hybrids (explicitly in HybA3 (1
λ) and

implicitly in HybA4 (1
λ)), it follows form the output distribution that both of these hybrids are

identical.

Lemma D.5. HybA4 (1
λ) and HybA5,1(1

λ) are identical.

Proof. As we are not substituting any encryptions of IBE with zero strings in HybA5,1(1
λ) for any

authorities, both these hybrids remain identically distributed.

Lemma D.6. Assuming the multi-challenge message security of IBE, HybA5,k(1
λ) andHybA5,k+1(1

λ)
for any k ∈ [n] are computationally indistinguishable.

Proof. Note that the only difference between HybA5,k(1
λ) and HybA5,k+1(1

λ) is that for the k-

th authority we generate ciphertexts differently in HybA5,k+1(1
λ). Assume that there exists a

PPT adversary that can distinguish between HybA5,k(1
λ) and HybA5,k+1(1

λ) with non-negligible
advantage ϵ(λ), i.e, ∣∣∣Pr [1← HybA5,k(1

λ)
]
− Pr

[
1← HybA5,k+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the multi-challenge security of IBE with
non-negligible probability. The description of BO is as follows.

Setup, Pre-challenge Queries. Same as HybA5,k(1
λ) except that set ibe.mpkk that is received

from O. And ibe.mskk = ⊥. For pre-challenge queries, when we need secret keys for k-th
authority, query O((Tag, i,mafe.mpkTagk [i])) for i ∈ [Lk].

66

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• Sample RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n],

– If id < k, i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag, i, β),

wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

– Otherwise, if id = k, i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.

mpkid, (Tag, i, β), w
Tag
id,i,β) and ibe.ctTagid,i,1−β ← O((Tag, i, 1− β), wid,i,1−β).

– Otherwise, for i ∈ [Lid], b ∈ {0, 1}, ibe.ctTagid,i,b ← IBE.Enc(ibe.mpkid, (Tag, i, b), w
Tag
id,i,b)

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries, Guess Phase. Same as HybA5,k(1
λ) except for post-challenge queries,

when we need secret keys for k-th authority, query O((Tag, i,mafe.mpkTagk [i])) for i ∈ [Lk].

Note that the identities queried by B during encryption are not the same as any identity that
B queried a secret key for. And, the running time of B is polynomial in the running time of A and
λ. If O encrypts for all Tag ∈ [Q], wTag

id,i,1−β[i] in ibe.ctTagid,i,1−β[i], B behaves as HybA5,k(1
λ) and if O

encrypts all zero string, B behaves like HybA5,k+1(1
λ). Hence, B is a valid adversary against the

security of IBE that can breaks its multi-challenge security with non-negligible advantage. Thus,
HybA5,k(1

λ) and HybA5,k+1(1
λ) are computationally indistinguishable.

Lemma D.7. HybA5,n+1(1
λ) and HybA6,1(1

λ) are identical.

Proof. As we are not simulating any garbled circuits for any Tags HybA5,1(1
λ), these two hybrids

remain identically distributed.

Lemma D.8. Assuming the security of Garb, HybA6,t(1
λ) and HybA6,t+1(1

λ) for any t ∈ [Q] are
computationally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA6,t(1
λ) and

HybA6,t+1(1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA6,t(1

λ)
]
− Pr

[
1← HybA6,t+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of Garb with non-negligible
probability. The description of BO is as follows.

Setup, Pre-challenge Queries. Same as HybA5,n+1(1
λ).

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• If Tag < t (F̃Tag, {w
id,i,mafe.mpkTagid [i]

}id,i) ← Garb.Sim(1λ, 1L, 1|F |,mafe.ctTag) where L =

L1 + . . .+ Ln and mafe.ctTag ← tMAFE.Enc({mafe.mpkTagidx }idx∈[n], C).

67

• Otherwise, RTag ← {0, 1}λ, if Tag = t, (F̃Tag, {w
id,i,mafe.mpkTagid [i]

}id,i) ← O(FTag, {mafe.

mpkTagidx }idx).

• Otherwise, RTag ← {0, 1}λ, (F̃Tag, {wid,i,b}id∈[n],i∈[Lid],b∈{0,1})← Garble(1λ, F).

• For each id ∈ [n], i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag,

i, β), wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries, Guess Phase. Same as HybA5,n+1(1
λ).

And, the running time of B is polynomial in the running time of A and λ. If O is an honest
challenger for Garb, B behaves as HybA6,t(1

λ) and if O simulated the garbled circuit, B behaves

like HybA6,t+1(1
λ). Hence, B is a valid adversary against the security of Garb that can breaks its

security with non-negligible advantage. Thus, HybA6,t(1
λ) and HybA6,t+1(1

λ) are computationally
indistinguishable.

Lemma D.9. HybA6,Q+1(1
λ) and HybA7,1(1

λ) are identical.

Proof. As we are not simulating any tMAFE instantiations for any Tags in HybA7,1(1
λ), these two

hybrids remain identically distributed.

Lemma D.10. Assuming the adaptive security of tMAFE, HybA7,t(1
λ) and HybA7,t+1(1

λ) for any
t ∈ [Q] are computationally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA7,t(1
λ) and

HybA7,t+1(1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA7,t(1

λ)
]
− Pr

[
1← HybA7,t+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of tMAFE with non-negligible
probability. The description of BO is as follows.

Setup. A sends (Q,n, s, ℓ1, . . . , ℓn). Set CRS := mafe.crs. Sample K(1) $←− {0, 1}λ and for each id ∈
[n], (ibe.mpkid, ibe.mskid) ← IBE.Setup(1λ, 1z). Set MPKid := (ℓid, ibe.mpkid), and MSKid :=

(ℓid, ibe.mskid,K
(1)). Send (CRS, {MPKid}id∈[n]) to A. Sample Tag1, . . . ,TagQ

$←− [Q]. Initiate
counter j = 1 and dictionary T . If there exists a Tag ∈ [Q] and indices i∗1, . . . , i

∗
q such that

q > λ and Tagi∗1 , . . . ,Tagi∗q are same as Tag, then abort and output ⊥. For each Tag ∈ [Q],

if Tag < t, mafe.crsTag, {mafe.mpkTagidx }idx ← tMAFE.SimTag(1
λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn). Oth-

erwise, if Tag = t, mafe.crsTag, {mafe.mpkTagidx }idx ← O(1
λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn). Otherwise,

mafe.crsTag, {(mafe.mpkTagidx ,mafe.mskTagidx)}idx ← tMAFE.GSetup(1λ, 1λ, 1n, 1s, 1ℓ1 , . . . , 1ℓn).

Pre-challenge Queries. A makes Q1 queries of the form (id,GID, x). If GID ∈ T , set Tag =
T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each i ∈
[Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, if Tag < t,

68

mafe.skTagid,GID,x ← tMAFE.SimTag(id,GID, x). Otherwise, if Tag = t, mafe.skTagid,GID,x ← O(id,GID,
x). Otherwise, mafe.skTagid,GID,x ← tMAFE.KGen(id,mafe.mskTagid , {mafe.mpkTagidx }idx,GID, x). Send
SKid,GID,x := (Tag,mafe.mpkTagid ,mafe.skTagid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Challenge Query. A sends circuit C. For each Tag ∈ [Q],

• (F̃Tag, {w
id,i,mafe.mpkTagid [i]

}id,i)← Garb.Sim(1λ, 1L, 1|F |,mafe.ctTag) where L = L1+. . .+Ln

and if Tag < t, mafe.ctTag ← tMAFE.Sim(1|C|,VTag). Otherwise, if Tag = t, mafe.ctTag ←
O(C). Otherwise, mafe.ctTag ← tMAFE.Enc({mafe.mpkTagidx }idx∈[n], C).

• For each id ∈ [n], i ∈ [Lid], let β = mafe.mpkTagid [i], ibe.ctTagid,i,β ← IBE.Enc(ibe.mpkid, (Tag, i,

β), wTag
id,i,β) and ibe.ctTagid,i,1−β ← IBE.Enc(ibe.mpkid, (Tag, i, 1− β), 0

∣∣∣wTag
id,i,1−β

∣∣∣
).

Send CT := (F̃Tag, {ibe.ctTagid,i,b}id,i,b)Tag∈[Q] to A.

Post-challenge Queries. A makes Q − Q1 queries of the form (id,GID, x). If GID ∈ T , set
Tag = T [GID]. Otherwise, set T [GID] := Tagj ,Tag = T [GID] and increment j. For each

i ∈ [Lid], sample ibe.skTag,i ← IBE.KGen(ibe.mskid, (Tag, i,mafe.mpkTagid [i])). And, if Tag <

t, mafe.skTagid,GID,x ← tMAFE.Sim
C(·)
Tag (id,GID, x). Otherwise, if Tag = t, mafe.skTagid,GID,x ←

O(id,GID, x). Otherwise, mafe.skTagid,GID,x ← tMAFE.KGen(id,mafe.mskTagid , {mafe.mpkTagidx }idx,
GID, x). Send SKid,GID,x := (Tag,mafe.mpkTagid ,mafe.skTagid,GID,x, {ibe.skTag,i}i∈[Lid]) to A.

Guess Phase. Output whatever A outputs.

And, the running time of B is polynomial in the running time of A and λ. If O is an honest
challenger for MAFE, B behaves as HybA7,t(1

λ) and if O is a simulator, B behaves like HybA7,t+1(1
λ).

Hence, B is a valid adversary against the security of MAFE that can breaks its security with non-
negligible advantage. Thus, HybA7,t(1

λ) and HybA7,t+1(1
λ) are computationally indistinguishable.

E MAFE with Dynamic Collusions from wotMAFE and BFE

Construction E.1 (MAFE with Dynamic Collusions). We provide the construction of an MAFE
scheme with dynamic collusions for P/Poly circuits and GID = {GIDλ}λ∈N (Definition 6.1) using
a BFE scheme with dynamic collusions for P/Poly circuits (Definition 3.4) and a wotMAFE scheme
for P/Poly circuits and GID = {GIDλ}λ∈N (Definition 6.2) as follows.

GSetup(1λ, 1s). Output CRS := (λ, s).

ASetup(id, 1ℓid). Sample keys (bfe.mpk, bfe.msk)← dBFE.Setup(1λ, 1λ+|GID|+ℓid ,
1κid). Here κid ≤ poly(λ, |GID|, ℓid) is the maximum size of the secret key of wotMAFE for
these parameters with ⌈logQ⌉ = λ. Output MPK := (ℓid, bfe.mpk) and MSK := (ℓid, bfe.msk).

KGen(id,MSKid,GID, x). ParseMSKid as (ℓid, bfe.mskid). Sample bfe.skid,GID,x ← dBFE.KGen(bfe.mskid,
(id,GID, x)). Output SKid,GID,x := bfe.skid,GID,x.

69

Enc(1Q, {MPKid}id∈I , C). ParseMPKid as (ℓid, bfe.mpkid) for each id ∈ I. Let n = |I| and id1, . . . , idn
be the increasing order of elements in I.

• mafe.crs, {(mafe.mpki,mafe.mski)}i∈[n] ← wotMAFE.GSetup(1λ, 1n, 1s, 1ℓid1 , . . . , 1ℓidn , Q).

• Compute mafe.ct← wotMAFE.Enc(1Q, {mafe.mpki}i, C),

• ∀i ∈ [n], bfe.ctidi ← dBFE.Enc(bfe.mpkidi ,wotMAFE.KGen(·,mafe.mski, {mafe.mpki′}i′∈[n],
·, ·)).

Output CT := (mafe.ct, I, {bfe.ctid}id∈I).

Dec({SKid,GID,xid
}id∈I ,CT). Parse SKid,GID,xid

as bfe.skid,GID,xid
for each id ∈ I and CT := (mafe.ct, I ′,

{bfe.ctid}id∈I′). If I ≠ I ′, abort and output ⊥.
Otherwise, for each id ∈ I, compute mafe.skid = dBFE.Dec(bfe.skid,GID,x, bfe.ctid). Output
y := wotMAFE.Dec({mafe.skid}id∈I ,mafe.ct).

Correctness. The correctness of the scheme follows from the correctness of dBFE and wotMAFE.

F Homomorphic Secret Sharing with Strong Security

In this section, we provide the definition and construction of an HSS scheme for P/Poly circuits
that obeys a stronger version of security that what is found in the present literature. Specifically,
we construct an HSS scheme in which the attacker not only corrupts shares of any party but
also corrupts evaluations of honest shares. We formulate our security using a simulator that only
requires C(x) to simulate the honest evaluated shares.

We stress that this notion of security is stronger and not obeyed readily by other HSS construc-
tions found in literature to the best of our knowledge. We construct this object from multi-key fully
homomorphic encryption defined in Section F.1. We formally define the HSS scheme in Section F.2
and construct it in Section F.3. This construction is reminiscent of the MPC protocol secure against
n− 1 corruptions from [MW16], §6.1.

F.1 Multi-Key Fully Homomorphic Encryption

Syntax. A multi-key fully homomorphic encryption (mkFHE) scheme mkFHE for input space
X = {Xλ}λ∈N and circuit class C = {Cλ}λ∈N consists of the following polynomial-time algorithms.

Setup(1λ)→ PP. The probabilistic setup algorithm takes as input the security parameter λ and
outputs the public parameters PP. The following algorithms take PP implicitly unless men-
tioned.

KGen(PP)→ (pk, sk). The probabilistic key generation algorithm takes as input the public param-
eters and outputs the public and secret key pair (pk, sk).

Enc(pk, x)→ ct. The probabilistic encryption algorithm takes as input public key pk, a message
x ∈ Xλ, and outputs a ciphertext ct.

70

Expand(pk1, . . . , pkn, i, ct)→ ĉt. The probabilistic ciphertext expansion algorithm takes as input
public keys for n parties, pk1, . . . , pkn, ciphertext encrypted using the i-th public key ct, and
outputs the expanded ciphertext ĉt.

Eval(C, ĉt1, . . . , ĉtn)→ c̃t. The deterministic evaluation algorithm takes as input description of an
n-ary circuit C, expanded ciphertexts ĉt1, . . . , ĉtn, and outputs the evaluated ciphertext c̃t.

Dec(sk1, . . . , skn, c̃t)→ y. The deterministic decryption algorithm takes as input the secret keys for
n parties, sk1, . . . , skn, an evaluated ciphertext c̃t, and outputs the value y.

PartDec(pk1, . . . , pkn, i, ski, c̃t)→ shid. The probabilistic partial decryption algorithm takes as input
the public keys for all n parties pk1, . . . , pkn, secret key of the i-th party, ski, evaluated
ciphertext c̃t, and outputs the decryption share for the i-th party, shi.

Recon(sh1, . . . , shn)→ y. The deterministic reconstruction algorithm takes as input decryption
shares from n parties sh1, . . . , shn and outputs the value y.

Definition F.1 (mkFHE). An mkFHE scheme (Setup,KGen,Enc,Expand,Eval,PartDec,Recon) is
said to be an mkFHE scheme for circuit class C = {Cλ}λ∈N and message space X = {Xλ}λ∈N if it
satisfies the following properties.

Expansion correctness. For any λ ∈ N, n = n(λ), x ∈ Xλ,

Pr

 x = Dec(sk1, . . . , skn, ĉt) :
∀ i ∈ [n], (pki, ski)← KGen(PP),
for any i′ ∈ [n], cti′ ← Enc(pki′ , x),
ĉt← Expand(pk1, . . . , pkn, i

′, cti′)

 = 1

where PP← Setup(1λ).

Reconstruction correctness. For any λ ∈ N, n = n(λ), any C ∈ Cλ, for any i ∈ [n], xi ∈ Xλ,

Pr

 C(x1, . . . , xn) =
Recon(sh1, . . . , shn)

:
ĉti ← Expand(pk1, . . . , pkn, i, cti),
c̃t← Eval(C, ĉt1, . . . , ĉtn),
shi = PartDec(pk1, . . . , pkn, i, ski, c̃t)

 = 1

where PP← Setup(1λ), (pki, ski)← KGen(PP), cti ← Enc(pki, xi).

Semantic security. For any PPT adversary A, there exists a negligible function negl(λ) such that
∀ λ ∈ N, ∣∣∣Pr [1← AEnc(pk,·)(1λ, pk)

]
− Pr

[
1← AEnc(pk,0)(1λ, pk)

]∣∣∣ ≤ negl(λ)

where PP← Setup(1λ), (pk, sk)← KGen(PP).

Threshold decryption. There exists a stateful PPT simulator Sim such that for any i∗ ∈ [n], and
any evaluated ciphertext c̃t, for any λ ∈ N,

{PartDec(pk1, . . . , pkn, i∗, ski∗ , c̃t)} ≈s {Sim(C(x1, . . . , xn), i
∗, {ski}i ̸=i∗ , c̃t)}

Remark F.2 ([MW16]). There exists a mkFHE scheme for P/Poly circuits and X = {0, 1}∗
assuming the hardness of LWE with sub-exponential modulus-to-noise ratio and circular security.

Remark F.3. There are other key properties that an mkFHE scheme needs to satisfy such as
correctness, compactness, etc. However, we omit them in Definition F.1 and assume that they are
satisfied implicitly.

71

F.2 Definition

Syntax. An all-but-one homomorphic secret sharing (HSS) scheme for the circuit class C =
{Cλ}λ∈N consists of the following polynomial-time algorithms.

Share(1λ, 1K , C)→ {C̃i}i∈[K]. The probabilistic sharing algorithm takes as input security parame-

ter λ, number of shares K, description of a circuit C ∈ Cλ, and outputs the shares {C̃i}i∈[K].

Eval(i, C̃i, x)→ yi. The deterministic evaluation algorithm takes as input the i-th share C̃i, input
x, and outputs the output share yi.

Retrieve(y1, . . . , yK)→ y. The deterministic retrieval algorithm takes as input the output shares
y1, . . . , yK and outputs the output y.

Definition F.4 (HSS). A HSS scheme (Share,Eval,Retrieve) is said to be an all-but-one HSS scheme
for the circuit class C = {Cλ}λ∈N if it satisfies the following properties.

Correctness. For any λ ∈ N, and any C ∈ Cλ,

Pr

[
C(x) = Retrieve(y1, . . . , yK) :

{C̃i}i∈[K] ← Share(1λ, 1K , C),

∀ i ∈ [K], yi ← Eval(i, C̃i, x)

]
= 1

Strong Security. There exists a stateful PPT simulator Sim for any stateful PPT adversary A
such that ∀ λ ∈ N,{

AEval(i∗,C̃i∗ ,·)({C̃i}i ̸=i∗) :
(K,C, i∗ ∈ [K])← A(1λ),
{C̃i}i∈[K] ← Share(1λ, 1K , C)

}
≈c{

ASimC(·)(·)({C̃i}i ̸=i∗) :
(K,C, i∗ ∈ [K])← A(1λ),
{C̃i}i ̸=i∗ ← Sim(1λ, 1K , 1|C|, i∗)

}

Remark F.5 (HSS with indistinguishability.). We remark that a weaker version of HSS where the
security is guaranteed when an adversary gets no evaluations on shares of either x0 or x1 can be
constructed from a multitude of standard assumptions (cf. [ARS24, DIJL23, CM21, BCG+17a,
FGJS17, BGI16] and the references therein). However, these are insufficient for our construction
and we require the strong security property as described above.

F.3 HSS for P/Poly from mkFHE

Construction F.6 (HSS). We construct a HSS scheme for P/Poly circuits using an mkFHE scheme
for P/Poly circuits and unbounded length messages (Definition F.1) as follows.

Share(1λ, 1K , C). Sample public parameters for mkFHE, PP ← mkFHE.Setup(1λ). Now, sample
K key pairs, ∀ i ∈ [K], (pki, ski) ← mkFHE.KGen(PP). Encrypt the description of the
circuit C under pk1, ct ← mkFHE.Enc(pk1, C). Now, expand the ciphertext. That is,
ĉt← mkFHE.Expand(pk1, . . . , pkK , 1, ct) Set C̃i := (pk1, . . . , pkK , ski, ĉt) and output {C̃i}i∈[K].

72

Eval(i, C̃i, x). Parse C̃i as (pk1, . . . , pkK , ski, ĉt). Evaluate U(x, ·) on ĉt where U denotes the uni-

versal circuit, c̃t = mkFHE.Eval(U(x, ·), ĉt). Perform partial decryption on c̃t to get the
decryption share, shi = mkFHE.PartDec(pk1, . . . , pkK , i, ski, c̃t). Output yi := shi.

Retrieve(y1, . . . , yK). Parse yi as shi for each i ∈ [K] and use the mkFHE reconstruction algorithm
to retrieve y. That is, y = mkFHE.Recon(sh1, . . . , shK), and output y.

Correctness. The correctness of the scheme follows from the reconstruction correctness ofmkFHE.

Remark F.7 (mkFHE with deterministic PartDec). We remark that the mkFHE scheme from
[MW16] requires a smudging noise for output shares making PartDec algorithm probabilistic. How-
ever, by rounding the shares, i.e, calculating shi = ⌈γi · 2/q⌋ mod 2, we get a statistically cor-
rect partial decryption17. The correctness and threshold decryption argument hold because of
[DHRW16], Lemma 3.4. As such, we need to modify the threshold decryption’s simulation algo-
rithm (Sim) which also uses rounding instead of smudging noise. The reconstruction algorithm now
simply adds the shares.

We do incur a penalty of K in the error term e′ (implicit in γi) which is can be handled
by increasing the error bound on [GSW13]’s initial error distribution χ. In particular, the error
accumulated by adding the shares in [MW16] and the negligible function probability argument from
[DHRW16] (which uses an additional union bound), accumulates an additional K which can be
handled by augmenting χ. This means that we will be using LWE with sub-exponential modulus-
to-noise ratio and exponential modulus.

Remark F.8 (Compactness). Note that our construction also satisfies a compactness requirement
similar to other HSS schemes with indistinguishability security by virtue of mkFHE. We also remark
that Construction 7.3 does not require this.

Theorem F.9. Assuming mkFHE is a secure mkFHE scheme (Definition F.1) for P/Poly circuits
and message space {0, 1}∗, Construction F.6 is an HSS scheme (Definition F.4) for P/Poly circuits.

Proof. We prove the security of Construction F.6 using the following series of hybrids and lemmas.
We remark that the hybrids and lemmas flow similar to the MPC protocol secure against n − 1
corruptions from [MW16], §6.1.

HybA0 (1
λ). This is the real experiment from Definition F.4.

Setup. A sends (K,C, i∗) to Chal. Chal samples PP← mkFHE.Setup(1λ) and ∀ i ∈ [K], (pki, ski)←
mkFHE.KGen(PP). Next, ct ← mkFHE.Enc(pk1, C), ĉt ← mkFHE.Expand(pk1, . . . , pkK , 1, ct).
Set C̃i := (pk1, . . . , pkK , ski, ĉt) and send {C̃i}i ̸=i∗ to A.

Query Phase. Amakes polynomially many queries xq. For each query, perform c̃tq = mkFHE.Eval
(U(xq, ·), ĉt) and shi∗,q = mkFHE.PartDec(pk1, . . . , pkK , i∗, ski∗ , c̃tq) and send shi∗,q to A.

17We need to this bit-wise for every bit in the output of the circuit.

73

HybA1 (1
λ). In this hybrid, we will encrypt the circuit C using the i∗-th public key. The changes

are highlighted in red.

Setup. A sends (K,C, i∗) to Chal. Chal samples PP← mkFHE.Setup(1λ) and ∀ i ∈ [K], (pki, ski)←
mkFHE.KGen(PP). Next, ct← mkFHE.Enc(pki∗ , C), ĉt← mkFHE.Expand(pk1, . . . , pkK , i∗, ct).
Set C̃i := (pk1, . . . , pkK , ski, ĉt) and send {C̃i}i ̸=i∗ to A.

Query Phase. Amakes polynomially many queries xq. For each query, perform c̃tq = mkFHE.Eval
(U(xq, ·), ĉt) and shi∗,q = mkFHE.PartDec(pk1, . . . , pkK , i∗, ski∗ , c̃tq) and send shi∗,q to A.

HybA2 (1
λ). In this hybrid, we will use the threshold decryption property of mkFHE to simulate

shi∗ . The changes are highlighted in red.

Setup. A sends (K,C, i∗) to Chal. Chal samples PP← mkFHE.Setup(1λ) and ∀ i ∈ [K], (pki, ski)←
mkFHE.KGen(PP). Next, ct← mkFHE.Enc(pki∗ , C), ĉt← mkFHE.Expand(pk1, . . . , pkK , i∗, ct).
Set C̃i := (pk1, . . . , pkK , ski, ĉt) and send {C̃i}i ̸=i∗ to A.

Query Phase. Amakes polynomially many queries xq. For each query, perform c̃tq = mkFHE.Eval
(U(xq, ·), ĉt) and shi∗,q = mkFHE.Sim(C(xq), i

∗, ski∗ , c̃tq) and send shi∗,q to A.

HybA3 (1
λ). In this hybrid, we will encrypt a zero string instead of C when generating shares.

This is the description of Sim from Definition F.4. The changes are highlighted in red.

Setup. A sends (K,C, i∗) to Chal. Chal samples PP← mkFHE.Setup(1λ) and ∀ i ∈ [K], (pki, ski)←
mkFHE.KGen(PP). Next, ct ← mkFHE.Enc(pki∗ , 0

|C|), ĉt ← mkFHE.Expand(pk1, . . . , pkK , i∗,
ct). Set C̃i := (pk1, . . . , pkK , ski, ĉt) and send {C̃i}i ̸=i∗ to A.

Query Phase. Amakes polynomially many queries xq. For each query, perform c̃tq = mkFHE.Eval
(U(xq, ·), ĉt) and shi∗,q = mkFHE.Sim(C(xq), i

∗, ski∗ , c̃tq) and send shi∗,q to A.

Lemma F.10. HybA0 (1
λ) and HybA1 (1

λ) are identical.

Proof. The proof of this lemma is straight-forward from the expansion correctness of mkFHE.

Lemma F.11. HybA1 (1
λ) and HybA2 (1

λ) are statistically indistinguishable.

Proof. This holds because of the threshold decryption property of mkFHE.

Lemma F.12. Assuming semantic security of mkFHE, HybA2 (1
λ), HybA3 (1

λ) are computationally
indistinguishable.

Proof. This follows directly from the semantic security of mkFHE.

G Proofs from Section 7.2

In this section, we provide full proof of Theorem 7.4.

74

HybA0 (1
λ). This is the real experiment with Chal.

Setup. A sends Q,n, s, k, χ, ℓ1, . . . , ℓn to Chal. For each i ∈ I, j ∈ J, Chal samples crs(i,j) ←
MAFE.GSetup(1λ, 1Q, 1n−k, 1s). In addition, sample for each id ∈ [n], (mpk

(i,j)
id ,msk

(i,j)
id) ←

MAFE.ASetup(id, 1ℓid) for i such that id /∈ Ki. Set CRS := (crs(i,j))i,j , MPKid := (mpk
(i,j)
id)i,j ,

and MSKid := (msk
(i,j)
id)i,j and send (CRS, {MPKid}id∈[n]) to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1] to Chal such that id is not corrupted.

For each i ∈ I′id, j ∈ J, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x). Set

SKid,GID,x = (sk
(i,j)
id,GID,x)i∈I′id,j and send it to A.

Corruption Queries. A sends (Corr, id) to Chal. Send (msk
(i,j)
id)i,j to A.

Challenge Query. A sends circuit C to Chal. Chal samples {C̃i}i∈I′ ← HSS.Share(1λ, 1|I
′|, C).

For each i ∈ I′, j ∈ J, sample ct(i,j) ← MAFE.Enc({mpk
(i)
id }id/∈Ki

, Fij). Set CT = (ct(i,j))i,j and
send it to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1+1, Q] to Chal such that id is not corrupted.

For each i ∈ I′id, j ∈ J, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx, GID, x). Set

SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id) to Chal. Send (msk(i,j))i,j to A.

Guess Phase. Output whatever A outputs.

HybA1,κ(1
λ). For κ ∈ [2χ + 1]. In this hybrid, we randomly select i∗ ← I and simulate the

(i∗, 1), . . . , (i∗, κ− 1) instantiations of MAFE. The changes as highlighted in red.

Setup. A sends Q,n, s, k, χ, ℓ1, . . . , ℓn. Randomly choose i∗ ← I. For i ∈ I, j ∈ J,

• If i ̸= i∗ or i = i∗ and j ≥ κ, crs(i,j) ← MAFE.GSetup(1λ, 1Q, 1n−k, 1s). Sample, for

id ∈ [n], id /∈ Ki, mpk
(i,j)
id ← MAFE.ASetup(id, 1ℓid).

• Otherwise, sample crs(i,j) ← MAFE.Sim(1λ, 1Q, 1n−k, 1s) and for id /∈ Ki, (mpk
(i,j)
id ,msk

(i,j)
id)←

MAFE.Sim(id, 1ℓid).

Set CRS := (crs(i,j))i,j ,MPKid := (mpk
(i,j)
id)i,j , andMSKid := ((msk

(i,j)
id)i ̸=i∗,j , (msk

(i,j)
id)i=i∗,j≥κ)

and send (CRS, {MPKid}id∈[n]) to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1] such that id is not corrupted. For each
i ∈ I′id, j ∈ J,

• If i ̸= i∗ or i = i∗ and j ≥ κ, sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x).

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

75

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Challenge Query. A sends circuit C. Sample {C̃i}i∈I′ ← HSS.Share(1λ, 1|I
′|, C). For each i ∈

I′, j ∈ J, sample

• If i ̸= i∗ or i = i∗ and j ≥ κ, ct(i,j) ← MAFE.Enc({mpk
(i)
id }id/∈Ki

, Fij).

• Otherwise, sample ct(i,j) ← MAFE.Sim(1|Fij |,Vij) where Vij is as defined in Definition 3.1
for the circuit Fij .

Set CT = (ct(i,j))i,j and send it to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1 + 1, Q] such that id is not corrupted. For
each i ∈ I′id, j ∈ J,

• If i ̸= i∗ or i = i∗ and j ≥ κ, sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x,V) where V is as defined in Defini-

tion 3.1 for the circuit Fij .

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Guess Phase. Output whatever A outputs.

HybA2 (1
λ). In this hybrid, we simulate HSS. The changes are highlighted in red.

Setup. A sends Q,n, s, k, χ, ℓ1, . . . , ℓn. Randomly choose i∗ ← I. For i ∈ I, j ∈ J,

• If i ̸= i∗, crs(i,j) ← MAFE.GSetup(1λ, 1Q, 1n−k, 1s). Sample, for id ∈ [n], id /∈ Ki,

mpk
(i,j)
id ← MAFE.Sim(id, 1ℓid).

• Otherwise, crs(i,j) ← MAFE.Sim(1λ, 1Q, 1n−k, 1s) and for id /∈ Ki, (mpk
(i,j)
id ,msk

(i,j)
id) ←

MAFE.ASetup(id, 1ℓid).

Set CRS := (crs(i,j))i,j , MPKid := (mpk
(i,j)
id)i,j , and MSKid := (msk

(i,j)
id)i ̸=i∗,j) and send

(CRS, {MPKid}id∈[n]) to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1] such that id is not corrupted. For each
i ∈ I′id, j ∈ J,

• If i ̸= i∗, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x).

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

76

Challenge Query. A sends circuit C. Sample {C̃i}i ̸=i∗ ← HSS.Sim(1λ, 1|I
′|, 1|C|, i∗). For each

i ∈ I′, j ∈ J, sample

• If i ̸= i∗, ct(i,j) ← MAFE.Enc({mpk
(i)
id }id/∈Ki

, Fij).

• Otherwise, sample ct(i,j) ← MAFE.Sim(1|Fij |,Vij) where Vij is as defined in Definition 3.1
for the circuit Fij . However, we will set the output as HSS.Sim(X,C(X)) for X ∈
X1 . . . ,Xn.

Set CT = (ct(i,j))i,j and send it to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1 + 1, Q] such that id is not corrupted. For
each i ∈ I′id, j ∈ J,

• If i ̸= i∗, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x,V) where V is as defined in Defini-

tion 3.1 for the circuit Fij . However, we will set the output as HSS.Sim(X,C(X)) for
X ∈ X1 . . . ,Xn.

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Query. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Guess Phase. Output whatever A outputs.

Lemma G.1. HybA0 (1
λ), HybA1,1(1

λ) are identically distributed.

Proof. As we are not simulating any MAFE instantiations in HybA1,1(1
λ), we are only sampling i∗.

So, these hybrids are identically distributed.

Lemma G.2. Assuming the security of MAFE, HybA1,κ(1
λ) and HybA1,κ+1(1

λ) for κ ∈ [|J|] are
computationally indistinguishable.

Proof. Note that the probability that HybA1,κ(1
λ) does not abort is 1/|I| = 1/poly(λ). Let us

denote this event by Abort. Assume that there exists an adversary A that can distinguish between
HybA1,κ(1

λ) and HybA1,κ+1(1
λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← HybA1,κ(1

λ)
]
− Pr

[
1← HybA1,κ+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of fcMAFE with non-negligible
probability. The description of BO is as follows.

Setup. A sends Q,n, s, k, χ, ℓ1, . . . , ℓn. Randomly choose i∗ ← I. For i ∈ I, j ∈ J,

• If i ̸= i∗ or i = i∗ and j > κ, crs(i,j) ← MAFE.GSetup(1λ, 1Q, 1n−k, 1s). Sample,

for id ∈ [n], id /∈ Ki, mpk
(i,j)
id ← MAFE.ASetup(id, 1ℓid). Otherwise, if i = i∗, j = κ,

crs(i,j), {mpk
(i,j)
id }id ← O(Q,n− k, s, ℓ1, . . . , ℓn).

• Otherwise, crs(i,j) ← MAFE.Sim(1λ, 1Q, 1n−k, 1s) and for id /∈ Ki, (mpk
(i,j)
id ,msk

(i,j)
id) ←

MAFE.Sim(id, 1ℓid).

77

Set CRS := (crs(i,j))i,j ,MPKid := (mpk
(i,j)
id)i,j , andMSKid := ((msk

(i,j)
id)i ̸=i∗,j , (msk

(i,j)
id)i=i∗,j≥κ)

and send (CRS, {MPKid}id∈[n]) to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1] such that id is not corrupted. For each
i ∈ I′id, j ∈ J,

• If i ̸= i∗ or i = i∗ and j > κ, sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

Otherwise, if i = i∗, j = κ, sk
(i,j)
id,GID,x ← O(id,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x).

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Challenge Query. A sends circuit C. Sample {C̃i}i∈I′ ← HSS.Share(1λ, 1|I
′|, C). For each i ∈

I′, j ∈ J, sample

• If i ̸= i∗ or i = i∗ and j > κ, ct(i,j) ← MAFE.Enc({mpk
(i)
id }id/∈Ki

, Fij). Otherwise, if
i = i∗, j = κ, ct(i,j) ← O(Fij).

• Otherwise, sample ct(i,j) ← MAFE.Sim(1|Fij |,Vij) where Vij is as defined in Definition 3.1
for the circuit Fij .

Set CT = (ct(i,j))i,j and send it to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1 + 1, Q] such that id is not corrupted. For
each i ∈ I′id, j ∈ J,

• If i ̸= i∗ or i = i∗ and j > κ, sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

Otherwise, if i = i∗, j = κ, sk
(i,j)
id,GID,x ← O(id,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x,V) where V is as defined in Defini-

tion 3.1 for the circuit Fij .

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Guess Phase. Output whatever A outputs.

As we can see, running time of B is polynomial in the running time of A and λ. In addition,
the probability that B does not abort is exactly Pr[Abort]. Hence,

AdvB =

∣∣∣∣Pr[Abort]12 + Pr[Abort] Pr[A wins]− 1

2

∣∣∣∣
=

∣∣∣∣(1− 1

|I|

)
1

2
+

1

|I|
Pr[A wins]− 1

2

∣∣∣∣
=

AdvA
|I|

78

If O is a simulator, B behaves like HybA1,κ+1(1
λ) and if O is an honest challenger, B behaves

like HybA1,κ(1
λ). In addition, as long as |I| = poly(λ), we have that B is a successful reduction

adversary that can break the security of MAFE with non-negligible probability.

Lemma G.3. Assuming the security of HSS, HybA1,|J|+1(1
λ) and HybA2 (1

λ) are computationally
indistinguishable.

Proof. Assume that there exists a PPT adversary A that can distinguish between HybA1,|J|+1(1
λ)

and HybA2 (1
λ) with non-negligible advantage, ϵ(λ), i.e,∣∣∣Pr [1← HybA1,|J|+1(1

λ)
]
− Pr

[
1← HybA2 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of HSS with non-negligible
probability. The description of BO is as follows.

Setup. A sends Q,n, s, k, χ, ℓ1, . . . , ℓn. Randomly choose i∗ ← I. For i ∈ I, j ∈ J,

• If i ̸= i∗, crs(i,j) ← MAFE.GSetup(1λ, 1Q, 1n−k, 1s). Sample, for id ∈ [n], id /∈ Ki,

mpk
(i,j)
id ← MAFE.Sim(id, 1ℓid).

• Otherwise, crs(i,j) ← MAFE.Sim(1λ, 1Q, 1n−k, 1s) and for id /∈ Ki, (mpk
(i,j)
id ,msk

(i,j)
id) ←

MAFE.ASetup(id, 1ℓid).

Set CRS := (crs(i,j))i,j , MPKid := (mpk
(i,j)
id)i,j , and MSKid := (msk

(i,j)
id)i ̸=i∗,j) and send

(CRS, {MPKid}id∈[n]) to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1] such that id is not corrupted. For each
i ∈ I′id, j ∈ J,

• If i ̸= i∗, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x).

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Challenge Query. A sends circuit C. Sample {C̃i}i ̸=i∗ ← O(C, |I′|, i∗). For each i ∈ I′, j ∈ J,
sample

• If i ̸= i∗, ct(i,j) ← MAFE.Enc({mpk
(i)
id }id/∈Ki

, Fij).

• Otherwise, sample ct(i,j) ← MAFE.Sim(1|Fij |,Vij) where Vij is as defined in Definition 3.1
for the circuit Fij . However, we will set the output as O(X) for X ∈ X1 . . . ,Xn.

Set CT = (ct(i,j))i,j and send it to A.

Secret Key Queries. A sends (id,GID, x) for q ∈ [Q1 + 1, Q] such that id is not corrupted. For
each i ∈ I′id, j ∈ J,

• If i ̸= i∗, sample sk
(i,j)
id,GID,x ← MAFE.KGen(id,msk

(i,j)
id , {mpk

(i,j)
idx }idx,GID, x).

79

• Otherwise, sample sk
(i,j)
id,GID,x ← MAFE.Sim(id,GID, x,V) where V is as defined in Defini-

tion 3.1 for the circuit Fij . However, we will set the output as O(X) for X ∈ X1 . . . ,Xn.

Set SKid,GID,x = (sk
(i,j)
id,GID,x)i,j and send it to A.

Corruption Queries. A sends (Corr, id). If id /∈ Ki∗ , abort. Otherwise, send (msk
(i,j)
id)i,j to A.

Guess Phase. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A, λ. If O is a
honest challenger for HSS, B behaves like HybA1,|J|+1(1

λ) and if O is a simulator for HSS, B behaves

like HybA2 (1
λ). Hence, B is a valid adversary that break the security of HSS with non-negligible

probability. Thus, HybA1,|J|+1(1
λ) and HybA2 (1

λ) are computationally indistinguishable.

H Proofs from Section 11.2

In this section, we provide full proof of Theorem 11.3.

HybA0 (1
λ). This is the real experiment with Chal from Definition 10.2.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn) to Chal. Chal samples ∀ i ∈ [n], j ∈ [L], b ∈ {0, 1},
crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe) and (mpk

(i,j,b)
id ,msk

(i,j,b)
id)← MA-ABE.ASetup(id, 1ℓid).

Set CRS := (crs(i,j,b))i,j,b, MPKid := (mpk
(i,j,b)
id)i,j,b, and MSK := (msk

(i,j,b)
id)i,j,b and send

(CRS, {MPKid}id∈[n]) to A.

Pre-challenge Queries. A sends polynomially many queries of the form (id,GID, x, y). Pad y
such that |y| = L. For each i ∈ [n],

• If i ̸= id, ∀ j, b, sample sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {msk

(i,j,b)
idx }idx,GID, x).

• Otherwise, for j ∈ [L], sk
(i,j,y[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,y[j])
id , {mpk

(i,j,y[j])
idx }idx,GID, x).

Send SKid,GID,x,y := ({sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk
(i,j,y[j])
id,GID,x}i=id,j , x, y) to A.

Challenge Query. A sends predicate P , circuit C. Sample (C̃, {wi,j,b}i,j,b)← Garble(1λ, 1nL, C).

For i, j, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id∈[n], P, wi,j,b). Send CT := (C̃, {ct(i,j,b)}i,j,b) to

A.

Post-challenge Queries. A sends polynomially many queries of the form (id,GID, x, y). Pad y
such that |y| = L. For each i ∈ [n],

• If i ̸= id, ∀ j, b, sample sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {msk

(i,j,b)
idx }idx,GID, x).

• Otherwise, for j ∈ [L], sk
(i,j,y[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,y[j])
id , {mpk

(i,j,y[j])
idx }idx,GID, x).

Send SKid,GID,x,y := ({sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk
(i,j,y[j])
id,GID,x}i=id,j , x, y) to A.

Guess Phase. Output whatever A outputs.

80

HybA1,ι,γ(1
λ). for ι ∈ [n], γ ∈ [L]. In this hybrid, we will substitute wi,j,1−yi[j] with all zero string

for i < ι, j < γ.

Setup, Pre-challenge Queries. Same as HybA0 (1
λ).

Challenge Query. A sends predicate P , circuit C. Initiate flag = 0. If there is a satisfying query
from the previous phase, set flag = 1 and extract corresponding Y = (y1, . . . , yn). Sample
(C̃, {wi,j,b}i,j,b)← Garble(1λ, 1nL, C). For i, j,

• If i < ι and j < γ and flag = 1, ct(i,j,1−yi[j]) ← MA-ABE.Enc({mpk
(i,j,1−yi[j])
id }id, P, 0)18

and ct(i,j,yi[j]) ← MA-ABE.Enc({mpk
(i,j,yi[j])
id }id, P, wi,j,yi[j]).

• Otherwise, for b ∈ {0, 1}, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id∈[n], P, wi,j,b).

Send CT := (C̃, {ct(i,j,b)}i,j,b) to A.

Post-challenge, Guess Phase. Same as HybA0 (1
λ).

HybA2 (1
λ). In this hybrid, we will substitute half the wire labels with all zero strings.

Setup, Pre-challenge Queries. Same as HybA1,n,L(1
λ).

Challenge Query. A sends predicate P , circuit C. If a predicate accepting query is made in
previous phase, extract Y = (y1, . . . , yn). Sample (C̃, {wi,j,b}i,j,b) ← Garble(1λ, 1nL, C). For

i, j, ct(i,j,1−yi[j]) ← MA-ABE.Enc({mpk
(i,j,1−yi[j])
id }id∈[n], P, 0) and ct(i,j,yi[j]) ← MA-ABE.Enc

({mpk
(i,j,yi[j])
id }id, P, wi,j,yi[j]). If no satisfying query is made, garble a random circuit C ′ and

set C̃ and ignore the wire labels. For i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id∈[n], P, 0).

Send CT := (C̃, {ct(i,j,b)}i,j,b) to A.

Post-challenge, Guess Phase. Same as HybA1,n,L(1
λ).

HybA3 (1
λ). In this hybrid, we will simulate the (Garble,Eval) instantiation.

Setup, Pre-challenge Queries. Same as HybA2 (1
λ).

Challenge Query. A sends predicate P , circuit C. If a predicate accepting query is made in pre-
vious phase, extract Y = (y1, . . . , yn). Sample (C̃, {wi,j,yi[j]}i,j) ← Sim(1λ, 1nL, 1|C|, C(Y)).

For i, j, ct(i,j,1−yi[j]) ← MA-ABE.Enc({mpk
(i,j,1−yi[j])
id }id, P, 0) and ct(i,j,yi[j]) ← MA-ABE.Enc

({mpk
(i,j,yi[j])
id }id, P, wi,j,yi[j]). If no satisfying query is made, garble a random circuit C ′ and

set C̃ and ignore the wire labels. For i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id, P, 0). Send

CT := (C̃, {ct(i,j,b)}i,j,b) to A.

Post-challenge, Guess Phase. Same as HybA2 (1
λ).

Lemma H.1. HybA0 (1
λ) and HybA1,1,1(1

λ) are identical.

18By 0 we denote an all zero string of sufficient length.

81

Proof. As we are not substituting any wire labels with all zero strings in HybA1,1,1(1
λ), these two

hybrids are identically distributed.

Lemma H.2. Assuming the security of MA-ABE, HybA1,ι,γ(1
λ) and HybA1,ι,γ+1(1

λ) for ι ∈ [n], γ ∈
[L− 1] are computationally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA1,ι,γ(1
λ) and

HybA1,ι,γ+1(1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA1,ι,γ(1

λ)
]
− Pr

[
1← HybA1,ι,γ+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of MA-ABE with non-
negligible probability. The description of BO is as follows.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn). Receive crs, {mpkid}id∈[n] fromO(1λ, 1n, 1sabe , 1ℓ1 , . . . , 1ℓn).
Choose b∗

$←− {0, 1} and set crs(ι,γ,1−b
∗) := crs and mpk

(ι,γ,1−b∗)
id := mpkid for id ∈ [n].

Sample for other i, j, b, crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe), (mpk
(i,j,b)
id ,msk

(i,j,b)
id) ←

MA-ABE.ASetup(id, 1ℓid). Set CRS := (crs(i,j,b))i,j,b, MPKid := (mpk
(i,j,b)
id)i,j,b, and MSK :=

(msk
(i,j,b)
id)i,j,b and send (CRS, {MPKid}id) to A.

Pre-challenge Queries. A sends polynomially many queries of the form (id,GID, x, y). Pad y
such that |y| = L. For each i ∈ [n], proceed similarly to HybA1,ι,γ(1

λ) except that if we

need to query (ι, γ, 1 − b∗)-th instantiation of MA-ABE, set sk
ι,γ,1−b∗)
id,GID,x ← O(id,GID, x). Send

SKid,GID,x,y := ({sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk
(i,j,y[j])
id,GID,x}i=id,j , x, y) to A.

Challenge Query. A sends predicate P , circuit C. Initiate flag = 0. If there is a satisfying query
from the previous phase, set flag = 1 and extract corresponding Y = (y1, . . . , yn). If yι[γ] ̸= b∗,

abort and output b′
$←− {0, 1}. Otherwise, Sample (C̃, {wi,j,b}i,j,b) ← Garble(1λ, 1nL, C). For

i, j,

• If i < ι and j < γ and flag = 1, ct(i,j,1−yi[j]) ← MA-ABE.Enc({mpk
(i,j,1−yi[j])
id }id, P, 0)19

and ct(i,j,yi[j]) ← MA-ABE.Enc({mpk
(i,j,yi[j])
id }id∈[n], P, wi,j,yi[j]).

• Otherwise, if i = ι, j = γ, cti,j,1−b
∗ ← O(wι,γ,1−b∗ , 0), ct

(i,j,b∗) ← MA-ABE.Enc({mpk
(i,j,b∗)
id

}id, P, wi,j,b∗).

• Otherwise, for b ∈ {0, 1}, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id∈[n], P, wi,j,b).

Send CT := (C̃, {ct(i,j,b)}i,j,b) to A.

Post-challenge Queries. Proceed similarly to HybA1,ι,γ(1
λ) except that if we need to query

(ι, γ, 1− b∗)-th instantiation of MA-ABE, set sk
ι,γ,1−b∗)
id,GID,x ← O(id,GID, x).

Guess Phase. Output whatever A outputs.

19By 0 we denote an all zero string of sufficient length.

82

The probability that B doesn’t abort is 1/2. And, the running time of B is polynomial in the
running time of A and λ. If O is encrypts wι,γ,1−yι[γ], B behaves as HybA1,ι,γ(1

λ) and if O encrypts

0, B behaves like HybA1,ι,γ+1(1
λ). Hence, B is a valid adversary against the security of MA-ABE that

can break its security with non-negligible advantage, ϵ/2. Thus, HybA1,ι,γ(1
λ) and HybA1,ι,γ+1(1

λ)
are computationally indistinguishable.

Lemma H.3. Assuming the security of MA-ABE, HybA1,ι,L(1
λ) and HybA1,ι+1,1(1

λ) for ι ∈ [n− 1]
are computationally indistinguishable.

Proof. As the only difference betweenHybA1,ι,L(1
λ) andHybA1,ι+1,1(1

λ) is that we substitute (ι, L, 1−
yι[L])-th wire label with all zero string in HybA1,ι+1,1(1

λ), the proof of this lemma is similar to proof
of Lemma H.2.

Lemma H.4. Assuming the security ofMA-ABE, HybA1,n,L(1
λ) andHybA2 (1

λ) are computationally
indistinguishable.

Proof. As the only difference between HybA1,n,L(1
λ) and HybA2 (1

λ) is that we substitute (n,L, 1−
yn[L])-th wire label with all zero string in HybA2 (1

λ), the proof of this lemma is similar to proof
of Lemma H.2.

Lemma H.5. Assuming the security of (Garble,Eval), HybA2 (1
λ) and HybA3 (1

λ) are computation-
ally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA2 (1
λ) and

HybA3 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA2 (1

λ)
]
− Pr

[
1← HybA3 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of (Garble,Eval) with non-
negligible probability. The description of BO is as follows.

Setup, Pre-challenge Queries. Similar to HybA3 (1
λ).

Challenge Query. A sends predicate P , circuit C. If a predicate accepting query is made in
previous phase, extract Y = (y1, . . . , yn). Sample (C̃, {wi,j,yi[j]}i,j) ← O(C, Y). For i, j,

ct(i,j,1−yi[j]) ← MA-ABE.Enc({mpk
(i,j,1−yi[j])
id }id, P, 0), ct(i,j,yi[j]) ← MA-ABE.Enc({mpk

(i,j,yi[j])
id }id,

P, wi,j,yi[j]). If no satisfying query is made, garble a random circuit C ′ and set C̃ and ig-

nore the wire labels. For i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }id∈[n], P, 0). Send CT :=

(C̃, {ct(i,j,b)}i,j,b) to A.

Post-challenge, Guess Phase. Similar to HybA3 (1
λ).

And, the running time of B is polynomial in the running time ofA and λ. IfO garbles C honestly,
B behaves as HybA2 (1

λ) and if O simulates using C(Y), B behaves like HybA3 (1
λ). Hence, B is a

valid adversary against the security of (Garble,Eval) that can break its security with non-negligible
advantage. Thus, HybA2 (1

λ) and HybA3 (1
λ) are computationally indistinguishable.

83

I Proofs from Section 11.3

In this section, we provide full proof of Theorem 11.6.

HybA0 (1
λ). This is the real experiment using E0 from Definition 11.4.

Setup. A sends (n, sabe, L, ℓ1, . . . , ℓn). For each i, j, b, id, crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe).

Set CRS := (crs(i,j,b))i,j,b. Sample (mpk
(i,j,b)
id ,msk

(i,j,b)
id) ← MA-ABE.ASetup(id, 1ℓid). Set

MPKid := (mpk
(i,j,b)
id)i,j,b, and MSKid := (msk

(i,j,b)
id)i,j,b. Send (CRS, {MPKid}id) to A.

Pre-challenge Queries. A sends (id,GID, x). Sample ρ
$←− {0, 1}L. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕m. Compute for

each i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]). Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries. A sends (id,GID, x). Sample ρ
$←− {0, 1}L. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Guess Phase. Output whatever A outputs.

HybA1 (1
λ). In this hybrid, we will sample ρ∗1, . . . , ρ

∗
n uniformly during setup and use these for the

satisfying query whose number in the sequence of secret key queries is also sampled. We will abort
if this guess turns out to be wrong.

Setup. A sends (n, sabe, L, ℓ1, . . . , ℓn). For each i, j, b, id, crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe).

Set CRS := (crs(i,j,b))i,j,b. Sample (mpk
(i,j,b)
id ,msk

(i,j,b)
id) ← MA-ABE.ASetup(id, 1ℓid). Set

MPKid := (mpk
(i,j,b)
id)i,j,b, MSKid := (msk

(i,j,b)
id)i,j,b. Send (CRS, {MPKid}id) to A.

Sample N∗ ← [q] where q is the number unique GIDs A queries. Sample ρ∗1, . . . , ρ
∗
n

$←− {0, 1}L.

Pre-challenge Queries. A sends (id,GID, x). If this is the N∗-th GID, use ρ∗id. Otherwise, sample

ρ
$←− {0, 1}L. If this is the last authority for N∗-th GID query and P (x1,GID, . . . , xn,GID) ̸= 1,

abort and output b′
$←− {0, 1}. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

84

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕m. Compute for

each i, j, b, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]). Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries. A sends (id,GID, x). If this is theN∗-th GID, use ρ∗id. Otherwise, sample

ρ
$←− {0, 1}L. If this is the last authority for N∗-th GID query and P (x1,GID, . . . , xn,GID) ̸= 1,

abort and output b′
$←− {0, 1}. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Guess Phase. Output whatever A outputs.

HybA2,ι,γ(1
λ). for ι ∈ [n], γ ∈ [L]. In this hybrid, we will replace the (i, j, 1−ρ∗i [j])-th instantiation’s

encryption message with 1−Ri[j] for i < ι and j < γ.

Setup, Pre-challenge Queries. Same as HybA1 (1
λ).

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕m. Compute for

each i, j,

• If i < ι, j < γ ct(i,j,ρ
∗
i [j]) ← MA-ABE.Enc({mpk

(i,j,ρ∗i [j])
id }, P,Ri[j]) and ct(i,j,1−ρ

∗
i [j]) ←

MA-ABE.Enc({mpk
(i,j,1−ρ∗i [j])
id }, P, 1−Ri[j]).

• Otherwise, for b ∈ {0, 1}, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]).

Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries, Guess Phase. Same as HybA1 (1
λ).

HybA3 (1
λ). In this hybrid, each (i, j, 1− ρ∗i [j])-th instantiation’s encryption message is 1−Ri[j].

Setup, Pre-challenge Queries. Same as HybA2,n,L(1
λ).

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕ m. Com-

pute for each i, j, ct(i,j,ρ
∗
i [j]) ← MA-ABE.Enc({mpk

(i,j,ρ∗i [j])
id }, P,Ri[j]) and ct(i,j,1−ρ

∗
i [j]) ←

MA-ABE.Enc({mpk
(i,j,1−ρ∗i [j])
id }, P, 1−Ri[j]). Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries, Guess Phase. Same as HybA2,n,L(1
λ).

85

HybA4 (1
λ). In this hybrid, we will use E1.

Setup. A sends (n, sabe, L, ℓ1, . . . , ℓn). For each i, j, b, id, crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe).

Set CRS := (crs(i,j,b))i,j,b. Sample (mpk
(i,j,b)
id ,msk

(i,j,b)
id) ← MA-ABE.ASetup(id, 1ℓid). Set

MPKid := (mpk
(i,j,b)
id)i,j,b, MSKid := (msk

(i,j,b)
id)i,j,b. Send (CRS, {MPKid}id) to A.

Pre-challenge Queries. A sends (id,GID, x). Sample ρ
$←− {0, 1}L. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L.

• If satisfying query is made, set R̃ := R1 ⊕ . . . ⊕ Rn ⊕ m. Compute for each i, j, b,

ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]).

• Otherwise, sample R̃ ← {0, 1}L. Compute for each i, j, ct(i,j,Ri[j]) ← MA-ABE.Enc(

{mpk
(i,j,Ri[j])
id }, P, 0) and ct(i,j,1−Ri[j]) ← MA-ABE.Enc({mpk

(i,j,1−Ri[j])
id }, P, 1).

Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries. A sends (id,GID, x). If this is the GID with predicate accepting query
and this is the last id, set ρ := (

⊕
idx̸=id

ρidx,GID ⊕ Ridx) ⊕ Rid ⊕ R̃ ⊕ m. Otherwise, sample

ρ
$←− {0, 1}L. For i ∈ [n],

• If i ̸= id, for each j, b, sk
(i,j,b)
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,b)
id , {mpk

(i,j,b)
idx }idx,GID, x).

• If i = id, for each j, sk
(i,j,ρ[j])
id,GID,x ← MA-ABE.KGen(id,msk

(i,j,ρ[j])
id , {mpk

(i,j,ρ[j])
idx }idx,GID, x).

Send SKid,GID,x :=
(
{sk(i,j,b)id,GID,x}i ̸=id,j,b, {sk

(i,j,ρ[j])
id,GID,x}i=id,j , x, ρ

)
to A.

Guess Phase. Output whatever A outputs.

Lemma I.1.
∣∣Pr [1← HybA0 (1

λ)
]
− Pr

[
1← HybA1 (1

λ)
]∣∣ ≤ 1/q.

Proof. As A makes at most one satisfying query which is one of the q GID queries made, Chal’s
guess will be correct with at most 1/q probability. If this happens, as we sample ρid uniformly
during secret key generation, the output distribution remains identical in both the hybrids. Thus
the statistical distance between these hybrids is at most 1/q.

Lemma I.2.
∣∣Pr [1← HybA1 (1

λ)
]
− Pr

[
1← HybA2,1,1(1

λ)
]∣∣ ≤ 1/q.

Proof. As we are changing any encryptions in HybA2,1,1(1
λ), the proof of this claim in similar to

proof of Lemma I.1.

86

Lemma I.3. Assuming the security of MA-ABE, HybA2,ι,γ(1
λ) and HybA2,ι,γ+1(1

λ) for ι ∈ [n], γ ∈
[L− 1] are computationally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA2,ι,γ(1
λ) and

HybA2,ι,γ+1(1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA2,ι,γ(1

λ)
]
− Pr

[
1← HybA2,ι,γ+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of MA-ABE with non-
negligible probability. The description of BO is as follows.

Setup. A sends (n, sabe, L, ℓ1, . . . , ℓn). Sample ρ∗1, . . . , ρ
∗
n

$←− {0, 1}L. Receive crs(i,j,1−ρ
∗
ι [γ]) and

mpk
(i,j,1−ρ∗ι [γ])
id }id∈[n]. For other i, j, b, id, crs(i,j,b) ← MA-ABE.GSetup(1λ, 1n, 1sabe). Set CRS :=

(crs(i,j,b))i,j,b. Run (mpk
(i,j,b)
id ,msk

(i,j,b)
id)← MA-ABE.ASetup(id, 1ℓid). SetMPKid := (mpk

(i,j,b)
id)i,j,b,

MSKid := (msk
(i,j,b)
id)i,j,b. Send (CRS, {MPKid}id) to A. Sample N∗ ← [q] where q is the num-

ber unique GIDs A queries.

Pre-challenge Queries. Proceed similar to HybA1,ι,γ(1
λ). If we need to generate secret keys for

(ι, γ, 1− ρ∗i [j])-th instantiation, set sk
(ι,γ,1−ρ∗i [j])
id,GID,x ← O(id,GID, x).

Challenge Query. Sample R1, . . . , Rn
$←− {0, 1}L and set R̃ := R1 ⊕ . . . ⊕ Rn ⊕m. Compute for

each i, j,

• If i < ι or i = ι, j < γ ct(i,j,ρ
∗
i [j]) ← MA-ABE.Enc({mpk

(i,j,ρ∗i [j])
id }, P,Ri[j]) and ct(i,j,1−ρ

∗
i [j])

← MA-ABE.Enc({mpk
(i,j,1−ρ∗i [j])
id }, P, 1−Ri[j]).

• Otherwise, if i = ι, j = γ, ct(i,j,1−ρ
∗
i [j]) ← O(P,Ri[j], 1 − Ri[j]) and ct(i,j,ρ

∗
i [j]) ←

MA-ABE.Enc({mpk
(i,j,ρ∗i [j])
id }, P,Ri[j]).

• Otherwise, for b ∈ {0, 1}, ct(i,j,b) ← MA-ABE.Enc({mpk
(i,j,b)
id }, P,Ri[j]).

Send CT := (R̃, (ct(i,j,b))i,j,b) to A.

Post-challenge Queries. Proceed similar to HybA1,ι,γ(1
λ). If we need to generate secret keys for

(ι, γ, 1− ρ∗i [j])-th instantiation, set sk
(ι,γ,1−ρ∗i [j])
id,GID,x ← O(id,GID, x).

Guess Phase. Output whatever A outputs.

The probability that B doesn’t abort is 1/q. And, the running time of B is polynomial in the
running time of A and λ. If O is encrypts Rι[γ], B behaves as HybA2,ι,γ(1

λ) and if O encrypts

1 − Rι[γ], B behaves like HybA2,ι,γ+1(1
λ). Hence, B is a valid adversary against the security of

MA-ABE that can break its security with non-negligible advantage, ϵ/q. Thus, HybA2,ι,γ(1
λ) and

HybA2,ι,γ+1(1
λ) are computationally indistinguishable.

Lemma I.4. Assuming the security of MA-ABE, HybA2,ι,L(1
λ) and HybA2,ι+1,1(1

λ) for ι ∈ [n − 1]
are computationally indistinguishable.

Proof. The proof of this lemma is similar to proof of Lemma I.3.

87

Lemma I.5. Assuming the security of MA-ABE, HybA2,n,L(1
λ) and HybA3 (1

λ) are computationally
indistinguishable.

Proof. The proof of this lemma is similar to proof of Lemma I.3.

Lemma I.6. HybA3 (1
λ) and HybA4 (1

λ) are identically distributed.

Proof. This is apparent from the output distributions. Specifically, for the satisfying query, let
ρ1, . . . , ρn be the random strings given to attacker in secret keys. Using these, the attacker can
decrypt 0 if ρid[j] = Rid[j] for j ∈ [L] and 1 otherwise. Thus, the attacker is decrypting {(ρid⊕Rid)}id
using the secret keys. Using Reveal, we are setting the last ρid to be (

⊕
idx̸=id

ρidx⊕Ridx)⊕Rid⊕R̃⊕m.

By this, we get
⊕

id∈[n]
ρid⊕Rid = R̃⊕m. From this, we can guarantee that the attacker will decrypt

m.

J Proofs from Section 11.4

In this section, we provide full proof of Theorem 11.8.

HybA0 (1
λ). This is the real experiment with Chal from Definition 10.3.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn). Sample abfe.crs← na1MA-ABFE.GSetup(1λ, 1n, 1L, 1sabe ,
1sfe). Let G = poly(λ, n, sabe, sfe, L) be |na1MA-ABFE.ct| for these parameters. abe.crs ←
ncMA-ABE.GSetup(1λ, 1n, 1sabe , 1G). Set CRS := (abfe.crs, abe.crs). ∀ id ∈ [n], (abfe.mpkid,
abfe.mskid) ← na1MA-ABFE.ASetup(id, 1ℓid), (abe.mpkid, abe.mskid) ← ncMA-ABE.ASetup(id,
1ℓid). Set MPKid := (abfe.mpkid, abe.mpkid),MSKid := (abfe.mskid, abe.mskid) and send (CRS,
{MPKid}id) to A.

Pre-challenge Queries. A sends (id,GID, x). Sample abfe.skid,GID,x,y ←
na1MA-ABFE.KGen(id, abfe.mskid, {abfe.mpkidx}idx,GID, x, y) and abe.skid,GID,x ← ncMA-ABE.
KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x). Send SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x)
to A.

Challenge Query. A sends P,C. abfe.ct ← na1MA-ABFE.Enc({abfe.mpkid}id, P, C). Now, run
abe.ct← ncMA-ABE.Enc({abe.mpkid}id, P, abfe.ct). Send CT := abe.ct to A.

Post-challenge Queries. A sends (id,GID, x). Sample abfe.skid,GID,x,y ←
na1MA-ABFE.KGen(id, abfe.mskid, {abfe.mpkidx}idx,GID, x, y) and abe.skid,GID,x ← ncMA-ABE.
KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x). Send SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x)
to A.

Guess Phase. Output whatever A outputs.

HybA1 (1
λ). In this hybrid, we will fake the ncMA-ABE ciphertext and reveal it when the adversary

makes a satisfying query.

Setup, Pre-challenge Queries. Same as HybA0 (1
λ).

88

Challenge Query. A sends P,C. Now,

• If A made a satisfying query, abfe.ct ← na1MA-ABFE.Enc({abfe.mpkid}id∈[n], P, C) and
abe.ct← ncMA-ABE.Enc({abe.mpkid}id, P, abfe.ct).

• Otherwise, (abe.ct, aux)← ncMA-ABE.Fake({abe.mpkid}id, P).

Send CT := abe.ct to A.

Post-challenge Queries. A sends (id,GID, x). Sample abfe.skid,GID,x,y ←
na1MA-ABFE.KGen(id, abfe.mskid, {abfe.mpkidx}idx,GID, x, y).

• If this is the last authority for satisfying query, sample abfe.ct← na1MA-ABFE.Enc({abfe.mpkid}id∈[n], P, C).
abe.skid,GID,x ← ncMA-ABE.Reveal(id, abe.mpkid, abe.mskid, {(abe.mpkidx, abe.ρidx)}idx̸=id,GID, x, aux,
abfe.ct).

• Otherwise, abe.skid,GID,x ← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x).

Send SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x) to A.

Guess Phase. Output whatever A outputs.

HybA2 (1
λ). In this hybrid, we will simulate the na1MA-ABFE instantiation either while equivo-

cating or in challenge query phase.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn). Sample (abfe.crs, {abfe.mpkid}id∈[n]) ← na1MA-ABFE.

Sim(1λ, 1n, 1L, 1sabe , 1sfe , 1ℓ1 , . . . , 1ℓn). Let G = poly(λ, n, sabe, sfe, L) = |abfe.ct| for these pa-
rameters. abe.crs ← ncMA-ABE.GSetup(1λ, 1n, 1sabe , 1G). Set CRS := (abfe.crs, abe.crs). For
each id ∈ [n], (abe.mpkid, abe.mskid)← ncMA-ABE.ASetup(id, 1ℓid). Set MPKid := (abfe.mpkid,
abe.mpkid), MSKid := abe.mskid and send (CRS, {MPKid}id∈[n]) to A.

Pre-challenge Queries. A sends (id,GID, x). abfe.skid,GID,x,y ← na1MA-ABFE.Sim(id,GID, x, y),
abe.skid,GID,x ← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x). Send SKid,GID,x,y :=
(abfe.skid,GID,x,y, abe.skid,GID,x) to A.

Challenge Query. A sends P,C. Now,

• If A made a satisfying query, abfe.ct ← na1MA-ABFE.Sim(P, 1|C|, C(y1, . . . , yn)) and
abe.ct← ncMA-ABE.Enc({abe.mpkid}id, P, abfe.ct).

• Otherwise, (abe.ct, aux)← ncMA-ABE.Fake({abe.mpkid}id, P).

Send CT := abe.ct to A.

Post-challenge Queries. A sends (id,GID, x). abfe.skid,GID,x,y ← na1MA-ABFE.Sim(id,GID, x, y).

• If this is the last authority for satisfying query, sample abfe.ct← na1MA-ABFE.Sim(P, 1|C|, C(y1, . . . , yn)).
abe.skid,GID,x ← ncMA-ABE.Reveal(id, abe.mpkid, abe.mskid, {(abe.mpkidx, abe.ρidx)}idx ̸=id,GID, x, aux, abfe.ct).

• Otherwise, abe.skid,GID,x ← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x).

Send SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x) to A.

Guess Phase. Output whatever A outputs.

89

Lemma J.1. Assuming the security of ncMA-ABE, HybA0 (1
λ) and HybA1 (1

λ) are computationally
indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA0 (1
λ) and

HybA1 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA0 (1

λ)
]
− Pr

[
1← HybA1 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of ncMA-ABE with non-
negligible probability. The description of BO is as follows.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn). abfe.crs ← na1MA-ABFE.GSetup(1λ, 1n, 1L, 1sabe , 1sfe).
Let |abfe.ct| = G for these parameters. Receive abe.crs, {abe.mpkid}id∈[n] ← O(1λ, 1n, 1sabe , 1G,
1ℓ1 , . . . , 1ℓn). Set CRS := (abfe.crs, abe.crs). For each id ∈ [n], sample (abfe.mpkid, abfe.mskid)←
na1MA-ABFE.ASetup(id, 1ℓid). Set MPKid := (abfe.mpkid, abe.mpkid),MSKid := abfe.mskid and
send (CRS, {MPKid}id) to A.

Pre-challenge Queries. A sends (id,GID, x). abfe.skid,GID,x,y ← na1MA-ABFE.KGen(id, abfe.mskid,
{abfe.mpkidx}idx,GID, x, y), abe.skid,GID,x ← O(id,GID, x). Send SKid,GID,x,y := (abfe.skid,GID,x,y,
abe.skid,GID,x) to A.

Challenge Query. A sends P,C. abfe.ct← na1MA-ABFE.Enc({abfe.mpkid}id, P, C) and abe.ct←
O(P, abfe.ct). Send CT := abe.ct to A.

Post-challenge Queries. A sends (id,GID, x). abfe.skid,GID,x,y ← na1MA-ABFE.KGen(id, abfe.mskid,
{abfe.mpkidx}idx,GID, x, y), abe.skid,GID,x ← O(id,GID, x). Send SKid,GID,x,y := (abfe.skid,GID,x,y,
abe.skid,GID,x) to A.

Guess Phase. Output whatever A outputs.

And, the running time of B is polynomial in the running time of A and λ. If O is E0 for
ncMA-ABE, B behaves as HybA0 (1

λ) and if O uses E1 for ncMA-ABE, B behaves like HybA1 (1
λ).

Hence, B is a valid adversary against the security of ncMA-ABE that can break its security with non-
negligible advantage. Thus, HybA0 (1

λ) and HybA1 (1
λ) are computationally indistinguishable.

Lemma J.2. Assuming the security of na1MA-ABFE, HybA1 (1
λ) and HybA2 (1

λ) are computation-
ally indistinguishable.

Proof. Assume that there exists a PPT adversary that can distinguish between HybA1 (1
λ) and

HybA2 (1
λ) with non-negligible advantage ϵ(λ), i.e,∣∣∣Pr [1← HybA1 (1

λ)
]
− Pr

[
1← HybA2 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of na1MA-ABFE with non-
negligible probability. The description of BO is as follows.

Setup. A sends (n,L, sabe, sfe, ℓ1, . . . , ℓn). Sample (abfe.crs, {abfe.mpkid}id∈[n])← O(1λ, 1n, 1L, 1sabe ,
1sfe , 1ℓ1 , . . . , 1ℓn). Let G = poly(λ, n, sabe, sfe, L) = abfe.ct for these parameters. abe.crs ←
ncMA-ABE.GSetup(1λ, 1n, 1sabe , 1G). Set CRS := (abfe.crs, abe.crs). For each id ∈ [n], (abe.mpkid,
abe.mskid) ← ncMA-ABE.ASetup(id, 1ℓid). Set MPKid := (abfe.mpkid, abe.mpkid), MSKid :=
abe.mskid and send (CRS, {MPKid}id∈[n]) to A.

90

Pre-challenge Queries. A sends (id,GID, x). Get abfe.skid,GID,x,y ← O(id,GID, x, y), abe.skid,GID,x

← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x). Send SKid,GID,x,y := (abfe.skid,GID,x,y,
abe.skid,GID,x) to A.

Challenge Query. A sends P,C. Now,

• IfAmade a satisfying query, abfe.ct← O(P,C) and abe.ct← ncMA-ABE.Enc({abe.mpkid}id,
P, abfe.ct).

• Otherwise, (abe.ct, aux)← ncMA-ABE.Fake({abe.mpkid}id, P).

Send CT := abe.ct to A.

Post-challenge Queries. A sends (id,GID, x). Sample abfe.skid,GID,x,y ← O(id,GID, x, y).

• If this is the last authority for satisfying query, sample abfe.ct← O(P,C). abe.skid,GID,x ←
ncMA-ABE.Reveal(id, abe.mpkid, abe.mskid,
{(abe.mpkidx, abe.ρidx)}idx ̸=id,GID, x, aux, abfe.ct).

• Otherwise, abe.skid,GID,x ← ncMA-ABE.KGen(id, abe.mskid, {abe.mpkidx}idx,GID, x).

Send SKid,GID,x,y := (abfe.skid,GID,x,y, abe.skid,GID,x) to A.

Guess Phase. Output whatever A outputs.

Note that we will only query O once for ciphertext. And, the running time of B is polynomial
in the running time of A and λ. If O is an honest challenger for na1MA-ABFE, B behaves as
HybA1 (1

λ) and if O is a simulator for na1MA-ABFE, B behaves like HybA2 (1
λ). Hence, B is a

valid adversary against the security of na1MA-ABFE that can break its security with non-negligible
advantage. Thus, HybA1 (1

λ) and HybA2 (1
λ) are computationally indistinguishable.

K Statically Secure MA-ABE from Witness Encryption

In this section, we will show how to generically transform the selectively secure ABE scheme for
general predicates from [GGSW13] which was constructed using witness encryption into a statically
secure MA-ABE scheme. Recall that in their construction, secret keys for an attribute x are a
“constrain signature” schemes and encryption for a predicate P is a witness encryption that checks

P (x)
?
= 1 and the signature verifies. To argue the security, given a challenge predicate P ∗ selectively,

we can augment the signature to be constrained on P ∗(x) = 0 for any attribute queried to the
challenger.

This constrain signature scheme is constructed using non-interactive witness indistinguishability
schemes (NIWI) and a perfectly binding commitment language (COM) that binds to 0. Our
observation is that this signature scheme is divisible among multiple authorities. The idea is that
we check if the signature from each of the secret keys {SKid,xid

}id verifies as part of the witness
encryption (WE) language. As NIWIs provide statistical soundness, any attacker cannot construct
a valid signature commitment that doesn’t bind to 0.

However, this construction doesn’t provide the same selective security that a single-authority
MA-ABE (i.e, a ciphertext-policy ABE scheme) provides. The reason for this is because of the de-
centralized nature of authorities, in the security argument, we cannot exactly constrain the secret

91

keys to a whole attribute such that P ∗(X) = 0, X = (x1, . . . , xn). To see this let’s work in the selec-
tive setting for a monotone-policy predicate P ∗. In this case, we can setX = (0, . . . , xid, . . . , 0) while
generating secret key for id-th authority and constrain the signature on this X. By functionality of
monotone circuits and admissibility criterion for adversaries for an MA-ABE scheme, this will be a
valid way to constrain the signature. However, now we cannot rely on security of WE as there are
multiple valid witnesses for the language used in WE. Recall that only if the instance is unsatisfiable,
we can rely on security of WE. That is, although for any {Xid = (0, . . . , xid, . . . , 0)}, {SKid,Xid

}id are
valid secret keys, it could be the case that P (x1, . . . , xn) = 1 (regardless of attacker’s admissibility
criterion). Hence, we cannot exactly argue the security of WE.

However, static security is achievable in this construction. By static we mean that adversary
should declare secret key queries for all authorities before receiving the public parameters of the
system. Then, as we know the entire attribute for a given GID, we can constrain the secret keys just
like [GGSW13]. We can also inculcate authority corruptions by setting the attribute for a corrupted
authority to be a random string. We provide this construction to show that our MA-ABFE scheme
can be meaningfully instantiated from various assumptions to achieve non-trivial security. We
provide the definitions of NIWI, COM, and WE used in our construction in Section K.1 and
construct the scheme in Section K.2.

K.1 Preliminaries

Definition K.1 (COM). A COM scheme (Com,Verify) is said to be a perfectly binding commitment
scheme (COM) for message spaceM = {0, 1}∗ if it satisfies the following properties.

Completeness. For any λ ∈ N, m, r = r(λ), if com = Com(1λ,m; r), then Verify(com,m, r) = 1

Computational Hiding. For any PPT adversary A, there exists a negligible function negl(·) such
that,

Pr

[
b← A(com) : (m0,m1)← A(1λ), b

$←− {0, 1},
com← Com(1λ,mb; r)

]
≤ 1

2
+ negl(λ)

Perfect Binding. For any λ ∈ N, m, r = r(λ), if com = Com(1λ,m; r), then for any m′ ̸= m and
any r′, Verify(com,m′, r′) ̸= 1.

Definition K.2 (WE). A WE scheme (Enc,Dec) is said to be a witness encryption scheme (WE)
for language L = {x : ∃ w,R(x,w) = 1} and message spaceM ∈ {0, 1}∗ if it satisfies the following
properties.

Correctness. For any λ ∈ N, m ∈ Mλ, and L, if R(x,w) = 1,Pr[m = Dec(CT, w) : CT ←
Enc(1λ, x,m)] = 1

Semantic Security. For any stateful PPT adversary A, there exists a negligible function negl(·)
such that ∀ λ ∈ N, x ̸∈ L,

Pr

[
b← A(CT) : (x,m0,m1)← A(1λ), b

$←− {0, 1},
CT← Enc(1λ, x,mb)

]
≤ 1

2
+ negl(λ)

92

Definition K.3 (NIWI). A NIWI scheme (Prove,Verify) is said to be a non-interactive witness
indistinguishability scheme (NIWI) for L = {x : ∃ w,R(x,w) = 1} if it satisfies the following
properties.

Completeness. For all x, y such that R(x,w) = 1, Pr[Verify(x, π) = 1 : π ← Prove(CRS, x, w)] = 1

Statistical Soundness. For any x /∈ L, π ∈ {0, 1}∗, there exists a negligible function negl(·) such
that Pr [Verify(x, π) = 1] ≤ negl(λ).

Computational Witness Indistinguishability. For any x,w1, w2 such that R(x,w1) = 1 and
R(x,w2) = 1, {π1 : π1 ← Prove(x,w1)} ≈c {π2 : π2 ← Prove(x,w2)}.

K.2 Construction

Before diving into the construction, we formally provide the definition of an MA-ABE scheme that
is statically secure.

Definition K.4 (Statically secure MA-ABE). We say that an MA-ABE scheme (GSetup,ASetup,
KGen,Enc,Dec) is said to be statically secure if in security game of Definition 11.1, the admissi-
ble adversary A declares the challenge predicate P ∗, corrupted authorities K ⊂ [n], the queries
{GIDq, {xid,q}id/∈K}q for some q = poly(λ) at the beginning of the security game. The adversary also
receives {MSKid}id∈K along with public parameters and secret keys. We modify that admissibility
criterion that for any X ∈ X1 × . . . ×Xid, P

∗(X) = 0. Here, Xid = {0, 1}ℓid if id-th authority is
corrupted and otherwise the set of all queried attributes to this id.

Construction K.5. We provide the construction of a statically secure MA-ABE scheme for any
polynomial-size predicate family and GID = {GIDλ}λ∈N (Definition K.4) using a NIWI scheme for
LNIWI (Definition K.3), a WE scheme for LWE (Definition K.2), and a perfectly binding commitment
scheme (Definition K.1) as follows. The descriptions of LNIWI and LWE are provided in Figure 1
and Figure 2 respectively. In Figure 1, F is a circuit that checks if GIDidx is the same as GID for
all idx and then executes P (x1, . . . , xn).

Language LNIWI

Instance: id,GID, x, com(0), com(1)

Witness: (r(0), r(1), P, {(idx,GIDidx, xidx)}idx̸=id)
Relation: Output 1 if and only if ϕ1 ∨ (ϕ2 ∧ ϕ3) = 1 where,

– ϕ1 = COM.Verify(com(0), 0, r(0))
?
= 1

– ϕ2 = COM.Verify(com(1), P, r(1))
?
= 1

– ϕ3 = F (id,GID, x, {(idx,GIDidx, xidx)}idx̸=id, P)
?
= 0.

Figure 1: Description of LNIWI

GSetup(1λ, 1n, 1s). Output CRS = (λ, n, s).

93

Language LWE

Instance: P, (com
(0)
1 , com

(1)
1), . . . , (com

(0)
n , com

(1)
n)

Witness: {(id,GIDid, xid, πid)}id∈[n]

Relation: Output 1 if and only if

– ∀ id ∈ [n],NIWI.Verify((id,GIDid, xid, com
(0)
id , com

(1)
id), πid) = 1

– GIDid is same for all id ∈ [n].

– P (x1, . . . , xn) = 1.

Figure 2: Description of LWE

ASetup(id, 1ℓid). Sample a commitment for 0 with randomness r(0), com(0) ← COM.Com(1λ, 0; r(0))

and commitment for 0S with randomness r(1). Here, S = poly(s). com(1) ← Com(1λ, 0S ; r(1)).
Output MPK := (com(0), com(1)) and MSK := (MPK, r(0)).

KGen(id,MSKid,GID, x). Parse MSKid as (com
(0)
id , com

(1)
id , r

(0)
id). Generate a NIWI proof, πid ←

NIWI.Prove((id,GID, x, com(0), com(1)), (r
(0)
id , 0))20. Output SKid,GID,x := (id,GID, x, πid).

Enc({MPKid}id∈[n], P,m). Generate a WE ciphertext for instance (P, {MPKid}id∈[n]) and message

m, we.ct←WE.Enc(1λ, (P, {MPKid}id∈[n])). Output CT := (we.ct, P).

Dec({SKid,GID,xid
}id∈[n],CT). Parse CT as (we.ct, P) and ∀ id ∈ [n], SKid,GID,xid

as (id,GIDid, xid, πid).

If GIDid are not same for id ∈ [n] or P (x1, . . . , xn) = 0, abort and output ⊥. Otherwise,
decrypt using WE, m′ = WE.Dec(we.ct, {(id,GIDid, xid, πid)}id). Output m′.

Correctness. The correctness of Construction K.5 follows from the correctness of WE, complete-
ness of NIWI and COM. In particular, from the completeness of COM and NIWI, we have that

∀ id ∈ [n], NIWI.Verify((id,GIDid, xid, com
(0)
id , com

(1)
id), (r

(0)
id , 0)) = 1 as COM.Verify(com

(0)
id , 0, r

(0)
id) =

1. Additionally, when all secret keys correspond to the same GID and P (x1, . . . , xn) = 1, we have

that (P, (com
(0)
1 , com

(1)
1), . . . , (com

(0)
n , com

(1)
n)) is a valid instance of LWE. Hence, by the correctness

of WE, m′ = m.

Theorem K.6. If NIWI is a NIWI scheme for language LNIWI (Definition K.3), COM is a perfectly
binding commitment scheme (Definition K.1), and WE is a witness encryption scheme for language
LWE (Definition K.2), then Construction K.5 is a statically secure MA-ABE scheme (Definition K.4)
for any polynomial size predicate class and GID = {GIDλ}λ∈N.

Proof. We show that Construction K.5 is a statically secure MA-ABE scheme using the following
series of hybrids and lemmas.

HybA0 (1
λ). This is the real experiment with honest challenger from Definition K.4 with b = 0/1.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) to Chal for some q =

poly(λ). Chal sets CRS := (λ, n, s). Chal samples ∀ id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id)

20By 0, we denote an all zero string of sufficient length.

94

and com
(1)
id ← COM.Com(1λ, 0S ; r

(1)
id). Chal sets MPKid := (com

(0)
id , com

(1)
id) and MSKid :=

(MPKid, r
(0)
id).

Response. For each q, id /∈ K, Chal samples πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid), (MSKid, 0))
and sets SKid,q := (id,GIDq, xid,q, πid,q). Send (CRS, {MPKid}id, {MSKid}id∈K, {SKid,q}id,q) toA.

Challenge Query. A sends (m0,m1) to Chal. Chal chooses b
$←− {0, 1} and using WE, encrypts

we.ct←WE.Enc(1λ, (P, {MPKid}id∈[n]),mb). Send (we.ct, P) to A.

Guess Phase. Output whatever A outputs.

HybA1,j(1
λ). For j ∈ [n + 1]. In this hybrid, we change the com

(1)
id to be a commitment of P for

all honest id < j. The changes are highlighted in red.

Static Queries A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ). Set

CRS := (λ, n, s). Sample for each id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id). If id /∈ K, id < j,

com
(1)
id ← COM.Com(1λ, P ; r

(1)
id). Otherwise, com

(1)
id ← COM.Com(1λ, 0S ; r

(1)
id). Set MPKid :=

(com
(0)
id , com

(1)
id) and MSKid := (MPKid, r

(0)
id).

Response For each q, id /∈ K, sample πid,q ← NIWI.Prove(id,GIDq, xid,q,MPKid), (MSKid, 0)) and
set SKid,q := (id,GIDq, xid,q, πid,q). Send (CRS, {MPKid}id, {MSKid}id∈K, {SKid,q}id,q) to A.

Challenge Query A sends (m0,m1). Choose b
$←− {0, 1} and using WE, encrypt we.ct←WE.Enc

(1λ, (P, {MPKid}id∈[n]),mb). Send (we.ct, P) to A.

Guess Phase. Output whatever A outputs.

HybA2,φ(1
λ). for φ ∈ [q+1]. In this hybrid, we simulate all the NIWI proofs in the key generation

for all honest authorities. The changes are highlighted in red.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ).

Set CRS := (λ, n, s). Sample for each id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id) and com

(1)
id ←

COM.Com(1λ, 0S ; r
(1)
id). Set MPKid := (com

(0)
id , com

(1)
id) and MSKid := (MPKid, r

(0)
id).

Response. For each q, id /∈ K, if q < φ, πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid, (0, r
(1)
id , P,V))

where V = {(id,GIDq, xid,q) : id /∈ K} ∪ {(id,GIDq, rid) : id ∈ K} where rid
$←− {0, 1}ℓid . Other-

wise, πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid), (MSKid, 0)) and set SKid,q := (id,GIDq, xid,q,
πid,q). Send (CRS, {MPKid}id, {MSKid}id∈K, {SKid,q}id,q) to A.

Challenge Query. A sends (m0,m1). Choose b
$←− {0, 1} and using WE, encrypt we.ct ←

WE.Enc(1λ, (P, {MPKid}id∈[n]),mb). Send (we.ct, P) to A.

Guess Phase. Output whatever A outputs.

95

HybA4,j(1
λ). For j ∈ [n+1]. In this hybrid, we change the com

(0)
id to be a commitment of 1 for all

honest id < j. The changes are highlighted in red.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ).

Set CRS := (λ, n, s). Sample for each id ∈ [n], if id /∈ K, id < j, com
(0)
id ← COM.Com(1λ, 1; r

(0)
id).

Otherwise, com
(0)
id ← COM.Com(1λ, 0; r

(0)
id). com

(1)
id ← COM.Com(1λ, 0S ; r

(1)
id). Set MPKid :=

(com
(0)
id , com

(1)
id).

Response, Challenge Query, Guess Phase. Same as HybA2,q+1(1
λ).

HybA5 (1
λ). In this hybrid, we change the message in witness encryption to be 0|m0|. The changes

are highlighted in red.

Static Queries, Response. Same as HybA3,n+1(1
λ).

Challenge Query. A sends (m0,m1). UsingWE, encrypts we.ct←WE.Enc(1λ, (P̃ , {MPKid}id), 0|m0|).
Send (we.ct, P) to A.

Guess Phase. Output whatever A outputs.

Lemma K.7. HybA0 (1
λ) and HybA1,1(1

λ) are identical.

Proof. As we are not changing any commitments com
(1)
id in HybA1,1(1

λ), these two hybrids are
identically distributed.

Lemma K.8. Assuming computational hiding property of COM, HybA1,j(1
λ) and HybA1,j+1(1

λ)
for j ∈ [n] are computationally indistinguishable.

Proof. W.l.o.g assume that j /∈ K. Assume that there exists an adversary A that can distinguish
between HybA1,j(1

λ) and HybA1,j+1(1
λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← HybA1,j(1

λ)
]
− Pr

[
1← HybA1,j+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the computational hiding property of
COM with non-negligible probability. The description of BO is as follows.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ).

Set CRS := (λ, n, s). Sample for each id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id). If id /∈ K, id <

j, com
(1)
id ← COM.Com(1λ, P ; r

(1)
id). Otherwise if id > j, com

(1)
id ← COM.Com(1λ, 0S ; r

(1)
id).

Otherwise, if id = j, set com
(1)
id ← O(0

S , P). Set MPKid := (com
(0)
id , com

(1)
id) and MSKid :=

(MPKid, r
(0)
id).

Response, Challenge Query, Guess Phase. Similar to HybA1,j+1(1
λ).

96

As we can see, the running time of B is polynomial in the running time of A and λ. If O
returns a commitment of P , B behaves like HybA1,j+1(1

λ) and if O returns a commitment of 0S , B
behaves like HybA1,j(1

λ). Hence, B is a valid adversary against the computational hiding property

of COM that can break its security with probability ϵ(λ). Thus HybA1,j(1
λ) and HybA1,j+1(1

λ) are
computationally indistinguishable.

Lemma K.9. HybA1,n+1(1
λ) and HybA2,1(1

λ) are identical.

Proof. As we are not changing any NIWI proofs in HybA2,1(1
λ), these two hybrids are identically

distributed.

Lemma K.10. Assuming the witness indistinguishability property of NIWI,HybA2,φ(1
λ),HybA2,φ+1(1

λ)
for φ ∈ [q] are computationally indistinguishable.

Proof. Assume that there exists an adversary A that can distinguish between HybA2,φ(1
λ) and

HybA2,φ+1(1
λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← HybA2,φ(1

λ)
]
− Pr

[
1← HybA2,φ+1(1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the witness indistinguishability property
of NIWI with non-negligible probability. The description of BO is as follows.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ).

Set CRS := (λ, n, s). Sample for each id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id) and com

(1)
id ←

COM.Com(1λ, P ; r
(1)
id). Set MPKid := (com

(0)
id , com

(1)
id) and MSKid := (MPKid, r

(0)
id).

Response. For each q, id /∈ K, q < φ, sample πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid), (r
(1)
id , P,V))

where V is as defined inHybA2,φ(1
λ) and q > φ, πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid), (r

(0)
id ,

0)). If q = φ, πid,q ← O((id,GIDq, xid,q,MPKid), (r
(1)
id , P,V), (r

(0)
id , 0)). Set SKid,q := (id,GIDq,

xid,q, πid,q). Send (CRS, {MPKid}id∈[n], {MSKid}id∈K, {SKid,q}id,q) to A.

Challenge Query. A sends (m0,m1). Choose b
$←− {0, 1} and using WE, encrypt we.ct ←

WE.Enc(1λ, (P, {MPKid}id∈[n]),mb). Send (we.ct, P) to A.

Guess Phase. Output whatever A outputs.

As we can see, the running time of B is polynomial in the running time of A and λ. If O
uses (r

(1)
id , P,V), B behaves like HybA2,φ+1(1

λ) and if O uses (r
(0)
id , 0), B behaves like HybA2,φ(1

λ).
Hence, B is a valid adversary against witness indistinguishability property of NIWI that can break
its security with probability ϵ(λ). Thus HybA2,φ(1

λ) and HybA2,φ+1(1
λ) are computationally indis-

tinguishable.

Lemma K.11. HybA2,q+1(1
λ) and HybA3,1(1

λ) are identical.

Proof. As we are not changing any commitments com
(0)
id in HybA4,1(1

λ), these two hybrids are
identically distributed.

97

Lemma K.12. Assuming the computational hiding property of COM,HybA3,j(1
λ) andHybA3,j+1(1

λ)
for j ∈ [n] are computationally indistinguishable.

Proof. W.l.o.g assume j is honest. As we are not revealing r
(0)
j for honest j in these hybrids,

computational hiding holds and the proof of this lemma is similar to proof of Lemma K.8.

Lemma K.13. Assuming the security of WE, HybA3,n+1(1
λ) and HybA4 (1

λ) are computationally
indistinguishable.

Proof. Consider an id∗ /∈ K and that this is the only honest adversary. For any secret key generated

for id∗, we have that COM.Verify(com
(0)
id∗ , 0, r

(0)
id∗) = 0 as we are generating com

(0)
id∗ as commitment

of 1 in both hybrids and by the perfect binding property of COM. If NIWI.Verify((id∗,GIDq, xid∗,q,

com
(0)
id∗ , com

(1)
id∗), πid∗,q) = 1, this implies that with high probability (1 − ν(λ), ν is soundness error

of NIWI), P (∗, . . . , xid∗,q, . . . , ∗) = 0. For any admissible adversary, it is the case that for any value

where the id∗-th attribute is xid∗,q, P will not be satisfied. In addition, we also have that com
(1)
id∗ is

perfectly binding to P . Thus, with (1 − ν(λ)) probability, for any Xq = (x1,q, . . . , xid∗,q, . . . , xn,q)
such that P (Xq) = 1, the NIWI proof will not accept. Thus, the instance for WE language is not
in the language and we can rely on its security.

Assume that there exists an adversary A that can distinguish between HybA3,n+1(1
λ) and

HybA4 (1
λ) with non-negligible probability ϵ(λ), i.e,∣∣∣Pr [1← HybA3,n+1(1

λ)
]
− Pr

[
1← HybA4 (1

λ)
]∣∣∣ > ϵ(λ)

We will construct a reduction adversary B that can break the security of WE with non-negligible
probability. The description of BO is as follows.

Static Queries. A sends (n, s, ℓ1, . . . , ℓn,K ⊂ [n], P, {GIDq, {xid,q}id/∈K}q) for some q = poly(λ).

Set CRS := (λ, n, s). Sample for each id ∈ [n], com
(0)
id ← COM.Com(1λ, 0; r

(0)
id) and com

(1)
id ←

COM.Com(1λ, P ; r
(1)
id). Set MPKid := (com

(0)
id , com

(1)
id).

Response. For each q, id /∈ K, sample πid,q ← NIWI.Prove((id,GIDq, xid,q,MPKid), (r
(1)
id , P,V))

where V is as defined inHybA3,n+1(1
λ) and set SKid,q := (id,GIDq, xid,q, πid,q). Send (CRS, {MPKid}id,

{MSKid}id∈K, {SKid,q}id,q) to A.

Challenge Query. A sends (m0,m1). Set we.ct← O((P, {MPKid}id∈[n]),mb, 0
|mb|). Send (we.ct, P)

to A.

Guess Phase. A outputs b′. If b′ = b, output 0. Otherwise, output 1.

As we can see, the running time of B is polynomial in the running time of A and λ. If O returns
an encryption of mb, B behaves like HybA3,n+1(1

λ) and if O is returns an encryption of 0|mb|, B
behaves like HybA4 (1

λ). Hence, B is a valid adversary against the security of WE that can break its
security with non-negligible probability. Thus HybA3,n+1(1

λ) and HybA4 (1
λ) are computationally

indistinguishable.

98

	Introduction
	Technical Overview
	MAFE from Minimal Assumptions
	MAFE with Authority Corruptions
	Multi-Authority Attribute-Based Functional Encryption

	Definitions and Preliminaries
	MAFE with Trusted Setup
	Construction

	MAFE from Public-Key Encryption
	MAFE with Dynamic Collusions
	Weakly Optimal tMAFE from IBE and tMAFE
	Dynamic MAFE from Minimal Assumptions

	MAFE with Authority Corruptions
	Definition
	MAFE with Adaptive Corruptions from HSS

	Generic Compilers for Authority Corruptions
	Lower Bounds on MAFE with Authority Corruptions
	Preliminaries
	Definitions
	XiO from fst1MAFE
	Weakly Size-Succinct FE from stMAFE

	(poly, Q)-MA-ABFE Definition
	(poly, 1)-MA-ABFE from MA-ABE and Garbled Circuits
	Preliminaries
	Non-Adaptive (poly, 1)-MA-ABFE
	Non-Committing MA-ABE
	Adaptive (poly, 1)-MA-ABFE

	Attribute-Based Distributed Client-Server Framework
	Definition
	Attribute-Based dCSF from Distributed Client-Server Framework

	(poly, Q)-MA-ABFE from (poly, 1)-MA-ABFE and adCSF in ROM
	Additional Preliminaries
	Relevant Material from GY24
	Distributed Client-Server Framework
	Augmented Statistical Lemmas

	Proofs from Section 5
	Proofs from Section 6.1
	MAFE with Dynamic Collusions from wotMAFE and BFE
	Homomorphic Secret Sharing with Strong Security
	Multi-Key Fully Homomorphic Encryption
	Definition
	HSS for P/Poly from mkFHE

	Proofs from Section 7.2
	Proofs from Section 11.2
	Proofs from Section 11.3
	Proofs from Section 11.4
	Statically Secure MA-ABE from Witness Encryption
	Preliminaries
	Construction

