
Garblet: Multi-party Computation for Protecting
Chiplet-based Systems

Mohammad hashemi, Shahin Tajik and Fatameh Ganji

Worcester Polytechnic Institute, Worcester, USA
{mhashemi,stajik,fganji}@wpi.edu

Abstract. The introduction of shared computation architectures assembled from
heterogeneous chiplets introduces new security threats. Due to the shared logical and
physical resources, an untrusted chiplet can act maliciously to surreptitiously probe the
data communication between chiplets or sense the computation shared between them.
This paper presents Garblet, the first framework to leverage the flexibility offered by
chiplet technology and Garbled Circuits (GC)-based MPC to enable efficient, secure
computation even in the presence of potentially compromised chiplets. Our approach
integrates a customized hardware Oblivious Transfer (OT) module and an optimized
evaluator engine into chiplet-based platforms. This configuration distributes the tasks
of garbling and evaluating circuits across two chiplets, reducing communication costs
and enhancing computation speed. We implement this framework on an AMD/Xilinx
UltraScale+ multi-chip module and demonstrate its effectiveness using benchmark
functions. Additionally, we introduce a novel circuit decomposition technique that
allows for parallel processing across multiple chiplets to further improve computational
efficiency. Our results highlight the potential of chiplet systems for accelerating GC
(e.g., the time complexity of garbled AES is 0.0226ms) in order to guarantee the
security and privacy of the computation on chiplets.
Keywords: Multiparty computation · Garbled circuits Oblivious transfer · Chiplet
· Heterogeneous Integration

1 Introduction
There is a significant shift in the chip industry from large, monolithic chip fabrication
to modular architectures built from heterogeneous chiplets. Chiplets are designed as a
response to the need for high performance and maximum efficiency while attempting to
manage costs associated with manufacturing and yield. These heterogeneous designs also
offer advantages for combining chiplets, fabricated potentially with older technologies by a
trusted facility, with ones built with cutting-edge technologies with no security features.
In such cases, while the slower trusted chiplet can act as the root of trust, computationally
heavy tasks can be distributed among the faster cutting-edge chiplets.

However, such multi-chip modules create some novel security risks. Since chiplets could
be manufactured by various suppliers or programmed by different designers, they could
act maliciously and threaten the security and privacy of computation running on them,
see Fig 1. Even if all chiplets are trusted, the interposer connecting them together could
act maliciously and intercept the communication between multiple chiplets.

Hence, we ask the following research question: In a highly adversarial environment,
where virtually all chiplets or interposers can act maliciously, is it still possible to perform

This is the author version of the paper accepted for the presentation at the The IEEE VLSI Test
Symposium (VTS) 2025.

mailto:{mhashemi, stajik, fganji}@wpi.edu


2

Worcester Polytechnic Institute6

Multi-chip Module Chiplet A
Chiplet B

Chiplet 3

In
te

rp
os

er

In
te

rp
os

er

Multi-chip Module

Chiplet B: 
Evaluator

Chiplet A: 
Garbler In

te
rp

os
er

Figure 1: Threats of malicious chiplets and interposers in multi-chip modules.

distributed computation securely? This is answered positively by secure multiparty compu-
tation (MPC), particularly Yao’s Garbled Circuits (GC), which enables parties to jointly
evaluate functions without exposing underlying secret data. GCs allow two parties (the
garbler and the evaluator) to jointly compute a function over their private inputs while
keeping these inputs hidden from each other [BHR12]. Compared to other approaches to
secure computation, namely fully homomorphic encryption (FHE), GC incurs much lower
computation complexity, although at the cost of communication complexity [BCM+19].

In fact, communication can be a bottleneck for traditional GC use cases on untrusted
cloud servers. The communication cost involves (1) the cost of exchanging inputs between
the users and (2) the cost of running the primitive responsible for obliviously sending these
inputs [CPS14]. The communication cost can be especially significant when the circuit
is large. In such scenarios, the communication bandwidth is a key determinant. In this
regard, two implementation paradigms have been identified: (1) sequentially transmitting
the garbled tables’ inputs, and (2) transmitting the entire circuit to be evaluated without
revealing anything but the output [BELO16]. In the case of classical server communications,
the former matches communication characteristics over a local area network (LAN), while
the latter can be conducted much faster over a wide-area network (WAN). However, the
communication inside a chip, has not been discussed in the MPC-related literature. In fact,
chiplet-based systems enable high-speed, low-latency communication between individual
chiplets [Xila], making them ideal for enhancing the performance of secure computations,
particularly GC.

In this regard, our paper’s contributions are as follows. (1) For the first time, our
paper demonstrates the feasibility of GC implementation on chiplets, enabling secure MPC
even in the presence of distrustful/corrupted chiplets. Our framework, Garblet, showcases
a great deal of overhead reduction compared to conventional server-client MPC. This is
thanks to our chiplet-based implementation of oblivious communication as well as the
flexibility offered by chiplet-based systems. In addition to minimizing communication
overhead, Garblet addresses the scalability challenges commonly encountered in secure
computation. Through a novel circuit decomposition technique, Garblet distributes
computation tasks across multiple chiplets to enable parallel execution and, consequently,
significantly reduces computation time. Another key advantage of Garblet is its ability
to enhance security through hardware-level isolation. Security-critical tasks, such as
encryption, can be physically separated from nonsensitive operations, limiting the potential
impact of an attack on non-critical components.

2 Background and Adversary Model

2.1 Garbled Circuits
Yao’s Garbled Circuits (GC) is a foundational method in two-party Secure Function
Evaluation (SFE) for Boolean circuits [LP04, HHNZ19]. This technique involves a garbler
and an evaluator, enabling them to jointly compute a function without revealing their
private inputs. The following key components and optimizations are essential in the GC



M. Hashemi, S. Tajik, and F. Ganji 3

Figure 2: Garbled gates look-up table cf. [HFG24].

framework:
Oblivious Transfer (OT). In a 1-out-of-2 OT, the sender holds two messages m0 and
m1, while the receiver selects one message using a bit i ∈ {0, 1}, learning only mi without
revealing i to the sender. This mechanism is crucial for input transfer in GC protocols,
ensuring privacy [Kil88].
Garbling Process. The garbler, denoted as P1, generates a garbled circuit by assigning
random secrets wj

i representing wire values, where j ∈ {0, 1} for each wire Wi. Each gate Gi

is encrypted into a garbled table Ti so that the evaluator, P2, can evaluate the circuit using
these tables without learning the underlying inputs [BHR12]. Fig. 2 illustrates a typical
garbled gate setup for an AND and an XOR gate. Practical implementations of GC leverage
fixed-key block ciphers, namely, AES (part of E·,·(·) in Fig. 2), to efficiently garble non-XOR
gates with a unique identifier for each gate. In practice, multiple optimization techniques
have been proposed to efficiently instantiate GCs, including free-XOR, row-reduction, and
half-gate; see [HK19] for details.

2.2 Adversary Model
We assume that chiplets are deployed to perform distributed computations. We assume that
at least one chiplet in the systems is trusted and can initiate the distributed computation.
The adversary attempts to gain access to untrusted chiplets to at least corrupt one chiplet.
In doing so, she can attempt to eavesdrop on the communication between chiplets or
extract the users’ data being processed on an infected chiplet. As a countermeasure, one
can rely on GC-based computation between chiplets, where the security against passive
adversary is provably guaranteed.

3 Methodology
In this section, we first elaborate on the client-server model and its mapping to Chiplet
then the implementation of circuit decomposition using the reverse logic tracing ap-
proach [Che83], which divides the given circuit into sub-circuits. After that, each sub-
circuit is assigned to dedicated engines for parallel processing. For securely and obliviously
transferring inputs, we implement a novel dedicated hardware OT module. For GC gener-
ation, one can use any existing garbling engine, e.g., FASE [HK19]. We also create the
very first evaluator engine on the chiplet to work efficiently with the garbling engine.

3.1 Client-Server Model and Chiplet Mapping
The design of Garblet leverages the traditional server-client model often used in secure
computation frameworks. In this model, the garbler acts as the server and handles the
majority of computationally intensive tasks, such as generating garbled tables and managing



4

Algorithm 1: Circuit Decomposition
Input: Circuit f with outputs O and inputs I
Output: Set of sub-circuits C, one for each output in O

1 Step 1: Extract Outputs and Inputs
2 Let O ← ExtractOutputs(f) ; // Extract output nodes
3 Let I ← ExtractInputs(f) ; // Extract input nodes

4 Step 2: Initialize Sub-Circuit Set
5 Initialize an empty set C to store sub-circuits for each output.
6 Step 3: Reverse Logic Tracing
7 foreach output o ∈ O do
8 Initialize sub-circuit Co for o.
9 Call ReverseTraverse(o, f, Co) ; // Trace back to inputs

// Recursive tracing function
10 ReverseTraverse(n, f, Co) if n is an input node then
11 return ; // Stop at primary input

12 Add n and its gate to Co.
13 foreach input i of gate n do
14 ReverseTraverse(i, f, Co) ; // Recurse on gate inputs

15 Step 4: Construct and Optimize Sub-Circuits
16 foreach o ∈ O do
17 Co ← ConstructSubCircuit(Co) ; // Compile traced gates
18 Co ← OptimizeCircuit(Co) ; // Minimize redundancy

19 Return C ; // Return the set of optimized sub-circuits

cryptographic keys. The evaluator, acting as the client, performs less computationally
demanding tasks, primarily focused on decrypting the garbled tables and evaluating the
circuit. This division of roles ensures that the evaluator’s operations are optimized for speed,
enabling real-time application scenarios, while the garbler focuses on heavy computation
with higher resource requirements.

In Garblet, this client-server model is mapped to a chiplet-based architecture, where one
chiplet functions as the garbler chiplet and the other as the evaluator chiplet. The garbler
chiplet is equipped with dedicated hardware modules, including AES-based encryption
units, a key management unit, and a pipelined garbling engine to efficiently handle the
resource-intensive garbling process. In contrast, the evaluator chiplet is designed for low-
latency operations, integrating modules for secure OT protocol execution and optimized
evaluator engines.

3.2 Reverse Logic Tracing for Circuit Decomposition
Reverse logic tracing decomposes a circuit by backtracking from each output node to its
input dependencies, capturing all gates, wires, and connections involved in the computation.
This process is illustrated in Algorithm 1. The decomposition starts by selecting the primary
outputs and performing a depth-first traversal (DFT) [Che83] in reverse, tracing the logic
back to the primary inputs (PIs). During this traversal, each gate and input affecting
the output is marked, forming a complete dependency tree. After constructing these
dependency trees, each sub-circuit is compiled as an isolated block with all necessary
components. The final step involves optimizing each sub-circuit for logic redundancy by
simplifying or combining gates and paths that do not directly impact the output, thereby
reducing complexity while maintaining full functionality.

By dividing circuits into sub-circuits using reverse logic tracing, our methodology



M. Hashemi, S. Tajik, and F. Ganji 5

facilitates parallel processing, critical for scaling to larger and more complex circuits. The
number of sub-circuits generated increases linearly with the number of circuit outputs,
enabling finer granularity in workload distribution. While this increases pre-processing time
slightly, it significantly enhances scalability by allowing multiple garbling and evaluator
engines to operate concurrently, as demonstrated in Section 4.1.

As an example, Fig. 3 shows the sub-circuits of a two-bit adder, with each dashed area
representing a sub-circuit responsible for a specific output bit. The gray dashed area is the
G1 gate connected to the S0 output and A0 and B0 inputs. The dark blue dashed area is
the sub-circuit of G2, G3, and G4 gates connected to S1 output and all the inputs. The
third sub-circuit includes G7, G6, G5, G3, and G2 connected to the CO output and all
the circuit inputs.

3.3 Oblivious Transfer Implementation
The OT module enables secure transmission of data between the Garbler and Evaluator
chiplets. We implemented a hardware-based 1-out-of-2 OT module, which comprises three
primary blocks: the Key Generator, Random Selector, and Communication Interface, each
designed in Verilog and synthesized onto the chiplets.

The Key Generator Block on the Garbler Chiplet uses a True Random Number
Generator (TRNG) and key management unit to produce cryptographic keys for each
input wire. The TRNG outputs are processed by a Von Neumann extractor [Per92] to
ensure uniform distribution. For each input wire Wi, a random key K0

i is generated, and
K1

i = K0
i ⊕ δ, where δ is a secure global offset. These keys are stored in dual-port BRAM,

with retrieval managed by a control unit.
The Random Selector Block on the Evaluator Chiplet generates a random bit si for

each wire, determining which key (K0
i or K1

i ) will be used. Each selection bit si is masked
with a one-time pad ri to form mi = si ⊕ri, then stored in a FIFO buffer. The masked bits
mi are sent to the Garbler Chiplet via the Communication Interface using a handshaking
protocol.

The Communication Interface supports secure data exchange using high-speed protocols
such as AXI and PCIe. Data channels use AXI4-Lite for control and AXI4-Stream for
high-bandwidth data transfer, with data encrypted before transmission to ensure privacy.
Dual-port BRAM buffers incoming and outgoing data, with a control FSM managing data
flow to prevent conflicts.
OT Execution. The Garbler Chiplet initializes its TRNG and generates a unique global
offset δ while the Evaluator Chiplet pre-loads the random bits ri. The Garbler Chiplet
generates keys K0

i and K1
i for each input wire and stores them. The evaluation chiplet

generates selection bits si, masks them with ri to produce mi = si ⊕ ri, and sends them
to the Garbler chiplet. The Garbler Chiplet computes the selected key Ksi

i = Kmi⊕ri
i and

transmits it to the Evaluator Chiplet, which stores the keys for evaluation.

3.4 Evaluator Engine Implementation
The literature suggested that a garbling engine can be modified to create an evaluator
engine [HK19]; however, based on our experience, this task is more delicate than expected.
For implementing the evaluator engine, one needs to implement input key handling,
decryption logic, and memory management, as detailed in Algorithm 2. In our efficient and
practical evaluator engine, only a single key Ki per input wire is needed. The hardware
OT module transmits the evaluator’s selected keys, which are stored in dual-port BRAM.
In this way, for each wire Wi, BRAMKey[i] = Ki. A synchronization unit ensures that
evaluation starts only after the secure storage of keys. Here, secure storage means that all
keys are stored in the isolated memory and all buffers are free, i.e., the handshake signal
and acknowledge signal are both raised to 1; otherwise, the key values are accessible during



6

Algorithm 2: Evaluator Engine Implementation
Input: Garbled Circuit C, Garbled Tables T , Input Keys Kin
Output: Final Output Keys Kout

1 InitializeMMU();
2 Initialize dual-port BRAM for input keys and garbled tables;
3 Configure AES cores for decryption mode;
4 ReceiveKeys(Kin);
5 Receive the evaluator’s input keys through the OT protocol and store them in BRAM;
6 Synchronize with Garbler Chiplet to ensure all keys are securely stored;
7 foreach gate Gi in C do
8 if Gi is XOR gate then
9 Kout ← XOR(Kin1, Kin2) ; // Use Free-XOR optimization

10 else
11 Kout ← DecryptGate(Kin, Ti) ; // Decrypt using AES in decryption mode

12 Store Kout in BRAM for subsequent gate evaluations;
13 ManageMemory();
14 ManageMemory();
15 Collect all output keys Kout corresponding to the circuit’s primary outputs;
16 Concatenate the keys to form the final output;
17 TransmitData((Final Output));
18 Send the final output to the external evaluator for verification or further use;

the operations. The AES cores are reconfigured for decryption mode. For each gate Gi,
the evaluator decrypts the garbled truth table entry Ei:

Kout = AES−1(Kin, Ei) = AES−1(Kin, AES(Kin, Kout ⊕ R)),

where R is a random value. For XOR gates, the output key is directly computed: Kout =
Kin1 ⊕ Kin2. This avoids decryption and reduces computational overhead. Memory
management was optimized using a Memory Management Unit (MMU) that dynamically
allocates addresses for sub-circuits being evaluated:

MMUAddress[i] =
{

read; if gate Gi is ready for evaluation,
write; if output Kout is to be stored.

The MMU minimizes data collisions and ensures efficient memory access.
We also optimized the communication interface between the Garbler and Evaluator

engines. The AXI4-Stream interface was configured for direct memory access (DMA),
supporting bulk data transfers of garbled tables and keys. Each packet is encrypted and
includes a parity check P and 32-bit cyclic redundancy check (CRC) to verify data integrity:
P =

⊕n
i=1 biti.

3.5 Sub-circuit Assignment: Advantages and Process
Efficient sub-circuit assignment and synchronization of the garbling and evaluation phases
are essential for optimizing performance in our framework. The scheduler dynamically
allocates encryption keys to the garbling engines and meticulously tracks the progress
of each sub-circuit to prevent conflicts and ensure smooth parallel execution. After the
garbling phase, the generated garbled tables are transmitted to the evaluator engines,
where they are processed, and the results are evaluated to form the final output. Fig. 4
illustrates the high-level flow of sub-circuit assignment and its integration into the overall



M. Hashemi, S. Tajik, and F. Ganji 7

Figure 3: The sub-circuits of a two-bit adder corresponding to each output.

system. By distributing garbling tasks across multiple engines, the scheduler not only
enhances computational efficiency but also contributes to the framework’s security.

A crucial security benefit of this structured approach lies in Garblet’s ability to enforce
hardware-level isolation for security-critical tasks. By assigning different tasks, such
as encryption and evaluation, to separate chiplets, we can physically separate sensitive
operations (e.g., cryptographic key management) from non-critical ones (e.g., intermediate
data storage and transmission). This separation limits the attack surface and reduces the
risk of adversaries compromising critical components. For example, if an attacker gains
access to a chiplet responsible for handling non-sensitive operations, such as managing
communication between sub-circuits, they cannot directly manipulate or observe the
encryption keys managed by a separate, isolated chiplet dedicated to a garbling engine.
This hardware-level partitioning ensures that even if one component is compromised, the
security of the overall computation remains intact, as sensitive operations are shielded from
potential attacks. This robust isolation, combined with efficient sub-circuit assignment and
synchronization, enables Garblet to perform secure computations with minimal performance
overhead, providing both security and efficiency in a highly modular and scalable manner.

3.6 Chiplet-based GC Implementation Flow
To leverage the performance benefits of a chiplet-based implementation, we integrate a
garbling engine, our custom hardware OT module, and our evaluator engine on chiplets.
This integration enables us to perform complete GC without relying on external parties as
opposed to, e.g., HostCPU in TinyGarble [SHS+15]. Fig. 5 illustrates the GC protocol
distribution across two chiplets to reduce communication overhead and enhance secure
computation efficiency. We utilize Xilinx UltraScale+ chiplets [Xile] that offer modular
platforms with high-speed interfaces such as AXI [Xila] and PCIe [Xild]. The frame-
work is implemented using Xilinx Vivado Design Suite [Xilf] and Vitis Unified Software
Platform [Xilb]. These tools optimize communication latency between the garbler and
evaluator chiplets.

The garbling process is assigned to Chiplet A, while Chiplet B performs the evaluation.
This separation allows parallel operation with minimal delays. Chiplet A garbles each
Boolean gate in four main phases: (I) circuit representation and key generation, (II) gate
garbling, (III) pipelined garbling, and (IV) inter-chiplet communication.
Circuit Representation and Key Generation. The function is represented as a
Boolean circuit where each gate (AND, OR, XOR) corresponds to a logical operation in GC.
The Key Generator module produces two cryptographic keys per gate’s wire, one for ’0’
and one for ’1’; see Fig. 2.
Pipelined Garbling Process. Each gate is garbled in Chiplet A’s garbling engine by



8

Figure 4: Sub-circuit assignment to garbling/evaluator engines.

creating a garbled truth table, where input wire keys are encrypted. The garbling engine
is pipelined to garble one gate per clock cycle, ensuring continuous AES core operation.
As gates are processed, garbled tables, inputs, and output keys are stored in Chiplet A’s
dual-port BRAM. A memory management wrapper manages read/write operations to
prevent conflicts, enabling simultaneous garbling and data transmission to Chiplet B.

Inter-chiplet Communication. Communication between Chiplet A and Chiplet B is
established using AXI and PCIe protocols to handle large data transfers efficiently. AXI
enables direct memory access (DMA) for fast data transmission, while PCIe supports
high-bandwidth communication to reduce delays in garbled table transfer. Chiplet B,
configured as the evaluator, uses our HW 1-out-of-2 OT protocol to securely select its
input keys. Upon receiving the garbled tables and keys, Chiplet B evaluates each gate
using the garbled tables. XOR gates are evaluated without encryption due to Free-XOR
optimization, while non-XOR gates are decrypted to reveal the correct output keys.

Evaluation and Synchronization. Dual-port BRAM in Chiplet B manages garbled
tables and evaluation keys. Synchronization between Chiplets A and B is handled via a
handshake protocol, ensuring Chiplet B only begins evaluation after receiving all required
data. The Universal Chiplet Interface Express (UCIe) protocol optimizes synchronization,
reducing delays and improving efficiency [Xild]. Once the evaluation is complete, Chiplet B
decrypts the final garbled output to obtain the output in plaintext.

System Optimization. Parameters such as clock speed and inter-chiplet bandwidth
are chosen for scalability to handle large computation efficiently [Xilc, Xila, Xile] (see
Section 4.1).

This makes the framework suitable for real-time applications where quick and secure
computations are crucial.



M. Hashemi, S. Tajik, and F. Ganji 9

Figure 5: The flow of GC implementation on the chiplet-based system.

Table 1: Hardware resource utilization: comparison between Garblet and implementations
on monolithic FPGAs [HK19, HRFG22].

Resource Garbling Engine Evaluator Engine

FASE [HK19] Garblet Monolithic
(Resource Efficient)

Monolithic
(High Performance) Garblet

LUT 31330 11729 1775 94701 5717
FF 11416 4103 1278 52534 2739

LUTRAM 553 93 N/R N/R 78
BRAM 68.5 103 0 0 95

DSP 0 1 0 0 1

4 Results

4.1 Experimental Setup

We evaluated Garblet using common benchmark functions such as AES, multiplication,
multiply-accumulate (MAC), and an 8-bit adder cf. [HK19]. The experiments were
conducted in two distinct scenarios to compare performance and hardware utilization.
In the first scenario, a traditional server-client (PC-FPGA) setup was used, where a
PC with an Intel Core i7-7700 CPU @ 3.60GHz, 16 GB RAM, and Linux Ubuntu 20
acted as the garbler, and the evaluator was implemented on an ARTIX7 FPGA board
operating at a clock frequency of 20 MHz. This configuration served as the baseline for
performance comparison. In the second scenario, Garblet was implemented on Vertex
UltraScale+ chiplets, where the garbler and evaluator were deployed on separate chiplets.
These chiplets were configured to achieve the maximum possible frequency and bandwidth,
with high-speed transceivers operating at 32.75Gb/s and clock frequencies reaching up to
600 MHz.

To ensure consistency and minimize variability caused by external factors, all execution
times reported represent the average of five independent runs. We explored the impact of
resource allocation by testing configurations with a single pair of garbling and evaluator
engines and then scaling up to multiple engines. This analysis allowed us to evaluate the
trade-offs between hardware costs and performance gains in both resource-efficient and
high-performance modes.



10

Table 2: Hardware resource utilization of Garblet individual modules.
Resource Garbling

Engine Scheduler Key
Generator

OT
Module

Evaluator
Engine Combiner Controller

LUT 11729 5739 8088 4182 5717 47 2071
FF 4103 3693 4270 2237 2739 13 1629

LUTRAM 93 0 0 21 78 0 0
BRAM 103 109 57 2 95 5 15

DSP 1 0 0 0 1 0 0

Table 3: Execution time cost (in µs): comparison of common benchmarks using baseline
(not garbled), monolithic, and Garblet implementation.

Benchmark Garbling Time (µs) Evaluation Time (µs) Communication (µs) Total (µs)
Baseline Monolithic Garblet Baseline Monolithic Garblet Baseline Monolithic Garblet Baseline Monolithic Garblet

Add_8_1 N/A 9.72 0.0173 N/A 0.619 0.00312 N/A 173,000 0.293 0.017 1,730 0.313
Mult_1024_2048 N/A 3,910,000 30.1 N/A 4,180 9.21 N/A 8,950,000,000 4,270 257.17 8,960,000,000 4,300

MAC_32_1 N/A 828 9.31 N/A 99.1 3.02 N/A 576,000 11.0 43.85 577,000 842
AES_128_1 N/A 7,120 6.02 N/A 599 1.02 N/A 4,910,000 219 11.83 4,910,000 226

4.2 Hardware Resource Utilization Analysis
Table 1 compares the hardware resource utilization of Garblet with the implementations
on monolithic FPGAs as in [HK19, HRFG22]. Below is a concise analysis highlighting the
resource savings achieved by the Garblet.

The Garblet’s garbling engine reduces LUT utilization by 2.67× (from 31,330 to
11,729 LUTs) compared to FASE [HK19] due to its modular design and DSP offloading.
The evaluator’s LUT usage shows a 16.57× improvement over the implementation on
a monolithic FPGA, demonstrating significant efficiency gains. The Garblet garbling
engine also uses 4,103 FFs compared to 11,416 FFs in FASE, achieving a 2.78× reduction,
primarily due to the efficient use of dual-port BRAMs, which minimizes the dependency
on flip-flops for intermediate storage. For LUTRAM, Garblet utilizes only 93 LUTRAMs
compared to 553 in FASE, representing a 5.95× reduction attributed to the use of BRAMs
for memory storage. The BRAM usage in the garbling engine increased by 1.5× (from
68.5 to 103 BRAMs), which is justified by the adoption of dual-port BRAMs for efficient
data handling between garbling and evaluation engines. Each Garblet’s garbling and
evaluator engine incorporates 1 DSP, offloading specific computational tasks and further
reducing LUT utilization. This trade-off is also justified by the significant reductions
in computation time and enhanced scalability, which are critical for large-scale secure
computations. Table 2 shows the resource utilization of each module. The garbling and
evaluator engines can be instantiated multiple times as long as the platform supports the
resource requirements.

4.3 Execution Time Cost
Effect of Communication Reduction.

We compared the execution time cost of common benchmark functions for implementa-
tions on baseline (not garbled), monolithic FPGAs, and Garblet. The Garblet framework
was tested in two setups: one with a single garbling and evaluator engine for resource
efficiency and another with multiple engines for better performance. Table 3 shows the
execution times for benchmarks like AES, multiplication, MAC, and an 8-bit adder.

Garblet reduces communication costs by up to 59, 000× compared to monolithic
implementations and improves performance by up to 5, 500× for benchmarks like the 8-bit
adder. When compared to Baseline implementations, which do not involve multiple parties
and therefore do not require garbling, evaluation, or communication, Garblet introduces
additional overhead for security. For the benchmarks, Garblet is about 15.65 times slower
for the 8-bit adder, 257 times slower for multiplication, 745 times slower for MAC, and
47.8 times slower for AES.



M. Hashemi, S. Tajik, and F. Ganji 11

Table 4: Execution time comparison (in µs) between monolithic and Garblet implementation
with one and three engines.

Benchmark # Sub-circuits Garbling Time (µs) Evaluation Time (µs) Communication (µs)

Monolithic Garblet
One Engine

Garblet
Three Engines Monolithic Garblet

One Engine
Garblet

Three Engines Monolithic Garblet
One Engine

Garblet
Three Engines

2-bit Adder 3 14 0.0591 0.0377 1.47 0.00628 0.00412 473,000 0.522 0.849
Mult_1024_2048 2048 3,910,000 30.1 12.9 4,180 9.21 4.66 8,950,000,000 4,270 6,190

Table 5: Execution time and peak memory cost of the circuit decomposition algorithm.
Benchmark # Sub-circuits Time (s) Memory Peak (MB)
2-bit Adder 3 3.1 394

Mult_1024_2048 2048 65901 11387

Circuit Decomposition Execution Time: We evaluated the cost of our circuit decom-
position algorithm on two benchmark functions: (I) a 2-bit adder and (II) Mult_1024_2048.
The decomposition algorithm was implemented on the PC. Note that this pre-processing is
performed offline (before running the GC protocol) and does not impact the framework’s
online performance. Multiple sub-circuits enable parallel computation, enhancing the
framework’s performance. Table 5 shows the execution time and peak memory cost of the
circuit decomposition algorithm. As the number of sub-circuits increases, the execution
time rises exponentially.

4.4 Acceleration Using Multiple Garbling/Evaluator Engines

The Garblet benefits extend beyond communication cost reduction. Using multiple
garbling and evaluator engines, along with circuit decomposition, enables parallel execution
of computation tasks, significantly improving overall performance. We evaluated this
performance gain by running the 2-bit adder and Mult_1024_2048 benchmark functions
using one and three garbling/evaluator engines. Table 4 shows the execution time cost
comparison between monolithic Garblet with one and three engines. Using three engines
significantly reduces garbling and evaluation times for both benchmark functions. For
the 2-bit adder, garbling time decreased by 1.57×, and evaluation time was reduced by
1.52×. Communication time also shows a reduction, demonstrating minimal overhead with
multiple engines. For the Mult_1024_2048 benchmark, the benefits of parallel processing
are even more pronounced, with garbling time reduced by 2.34× and evaluation time by
1.98×. These results demonstrate that using multiple engines significantly accelerates
framework performance while minimizing communication costs. Parallel processing of
sub-circuits enables efficient handling of complex computations, making it a viable solution
for time-sensitive applications.

5 Conclusion

In this paper, we presented Garblet, a chiplet-based secure MPC framework that integrates
custom hardware modules for OT and optimized evaluator engines. Through a novel circuit
decomposition, Garblet distributes garbling and evaluation tasks across multiple chiplets,
significantly reducing communication overhead and improving computational efficiency.
Experimental results demonstrated that Garblet achieves up to a 59, 000× reduction in
communication costs and up to a 5, 500× performance improvement in key benchmarks
compared to traditional server-client setups. Overall, Garblet paves the way for future
research and development in chiplet-based secure computation, providing a scalable and
efficient solution to the growing demand for secure and efficient computation on chiplets.



12

References
[BCM+19] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski.

Garbled neural networks are practical. Cryptology ePrint Archive, 2019.
[BELO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure

multiparty computation for the internet. In Proc. of the Conference on Computer and
Communications Security, pages 578–590, 2016.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proc. of the 2012 ACM Conf. on Computer and Comm. security, pages 784–796,
2012.

[Che83] To-Yat Cheung. Graph traversal techniques and the maximum flow problem in
distributed computation. IEEE Transactions on Software Engineering, (4):504–512,
1983.

[CPS14] Ashish Choudhury, Arpita Patra, and Nigel P Smart. Reducing the overhead of mpc
over a large population. In International Conference on Security and Cryptography
for Networks, pages 197–217. Springer, 2014.

[HFG24] Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji. Time is money, friend!
timing side-channel attack against garbled circuit constructions. In International
Conference on Applied Cryptography and Network Security, pages 325–354. Springer,
2024.

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. Sok: General
purpose compilers for secure multi-party computation. In 2019 IEEE symposium on
security and privacy (SP), pages 1220–1237. IEEE, 2019.

[HK19] Siam U Hussain and Farinaz Koushanfar. Fase: Fpga acceleration of secure function
evaluation. In Intrl. Symp. on Field-Programmable Custom Computing Machines,
pages 280–288. IEEE, 2019.

[HRFG22] Mohammad Hashemi, Steffi Roy, Domenic Forte, and Fatemeh Ganji. Hwgn 2: Side-
channel protected nns through secure and private function evaluation. In Proc. of
Security, Privacy, and Applied Cryptography Engineering, pages 225–248, 2022.

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proc. of the annual ACM
Symp. on Theory of computing, pages 20–31, 1988.

[LP04] Y Lindell and B Pinkas. A proof of yao’s protocol for secure two-party computation.
eccc report tr04-063. In Electronic Colloquium on Computational Complexity (ECCC),
2004.

[Per92] Yuval Peres. Iterating von neumann’s procedure for extracting random bits. The
Annals of Statistics, pages 590–597, 1992.

[SHS+15] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. Tinygarble: Highly compressed and scalable sequential garbled
circuits. In 2015 IEEE Symp. on Security and Privacy, pages 411–428. IEEE, 2015.

[Xila] Xilinx. Exploring the PS-PL AXI interfaces on Zynq UltraScale+ MPSoC.
[Online]https://j-marjanovic.io/exploring-ps-pl-axi-ultrascale[Accessed:
Sep.22,2024].

[Xilb] Xilinx. Vivits2022.1. [Online]https://docs.xilinx.com/v/u/en-US/
ug1416-vitis-documentation.html[AccessedSep.22,2024].

[Xilc] Xilinx. Zynq UltraScale+ MPSoC APIs and AXI Communication. [Online]https://
www.amd.com/en/products/soc/zynq-ultrascale-plus[Accessed:Sep.22,2024].

[Xild] Xilinx. Zynq UltraScale+ MPSoC Documentation. [Online]https://www.xilinx.
com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html[Accessed:
Sep.22,2024].

[Xile] Xilinx. Zynq UltraScale+ MPSoC PS-PL Interface. [Online]https://xilinx-wiki.
atlassian.net/wiki/spaces/A/pages/444006775/Zynq[Accessed:Sep.22,2024].

[Xilf] Xilinx, Inc. Vivado2022.1. [Online]https://www.xilinx.com/products/
design-tools/vivado.html[AccessedSep.22,2024].

[Online] https://j-marjanovic.io/exploring-ps-pl-axi-ultrascale [Accessed: Sep.22, 2024]
[Online] https://j-marjanovic.io/exploring-ps-pl-axi-ultrascale [Accessed: Sep.22, 2024]
[Online] https://docs.xilinx.com/v/u/en-US/ug1416-vitis-documentation.html [Accessed Sep.22, 2024]
[Online] https://docs.xilinx.com/v/u/en-US/ug1416-vitis-documentation.html [Accessed Sep.22, 2024]
[Online] https://www.amd.com/en/products/soc/zynq-ultrascale-plus [Accessed: Sep.22, 2024]
[Online] https://www.amd.com/en/products/soc/zynq-ultrascale-plus [Accessed: Sep.22, 2024]
[Online] https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html [Accessed: Sep.22, 2024]
[Online] https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html [Accessed: Sep.22, 2024]
[Online] https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html [Accessed: Sep.22, 2024]
[Online] https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/444006775/Zynq [Accessed: Sep.22, 2024]
[Online] https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/444006775/Zynq [Accessed: Sep.22, 2024]
[Online] https://www.xilinx.com/products/design-tools/vivado.html [Accessed Sep.22, 2024]
[Online] https://www.xilinx.com/products/design-tools/vivado.html [Accessed Sep.22, 2024]

	Introduction
	Background and Adversary Model
	Garbled Circuits
	Adversary Model

	Methodology
	Client-Server Model and Chiplet Mapping
	Reverse Logic Tracing for Circuit Decomposition
	Oblivious Transfer Implementation
	Evaluator Engine Implementation
	Sub-circuit Assignment: Advantages and Process
	Chiplet-based GC Implementation Flow

	Results
	Experimental Setup
	Hardware Resource Utilization Analysis
	Execution Time Cost
	Acceleration Using Multiple Garbling/Evaluator Engines

	Conclusion

