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Robust Student’s t based nonlinear filter and
smoother

Yulong Huang, Yonggang Zhang, Member, IEEE, Ning Li, Jonathon Chambers Fellow, IEEE

Abstract—Novel Student’s t based approaches for formulating
a filter and smoother, which utilize heavy tailed process and
measurement noise models, are found through approximations
of the associated posterior probability density functions. Simu-
lation results for manoeuvring target tracking illustrate that the
proposed methods substantially outperform existing methods in
terms of the root mean square error.

Index Terms—State estimation, heavy tailed noise, Student’s
t based approximate filter, Student’s t based approximate s-
moother, Student’s t weighted integral, unscented transform

I. INTRODUCTION

NONLINEAR filtering and smoothing have been wide-
ly used in many applications such as target tracking,

control, signal processing and navigation [1], [2]. For general
nonlinear systems, closed form solutions of posterior filtering
and smoothing probability density functions (PDFs) are not
available, thus optimal solutions normally don’t exist and
approximate approaches are necessary to design a suboptimal
nonlinear filter or smoother [3]. Gaussian approximations
to such PDFs are most common because their correspond-
ing Gaussian approximate (GA) filter and smoother provide
tradeoffs between computational complexity and estimation
accuracy in many practical applications [4]–[7]. So far, several
forms of GA filter and smoother have been developed using
different rules, such as unscented Kalman filter (UKF) [8] and
unscented Kalman smoother (UKS) [9] based on the unscented
transform (UT); cubature Kalman filter (CKF) [5], [10] and
cubature Kalman smoother [11], [12] utilizing a spherical
radial cubature rule; embedded CKF based on embedded cu-
bature rule [13] and interpolatory CKF based on interpolatory
cubature rule [3]. These approaches realize a GA filter and
smoother but are only suitable for nonlinear systems with
Gaussian process and measurement noises. However, in some
engineering applications, such as tracking agile targets with
measurement outliers from unreliable sensors, their process
and measurement noises are not Gaussian since they have
heavy tails [14]. Thus, existing GA filters and smoothers may
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fail in some engineering applications with heavy tailed process
and measurement noises.

Many linear approaches for realizing filters and smoothers
have been derived based on the variational Bayesian approach
to solve the filtering and smoothing problems of linear sys-
tems with heavy tailed measurement noises [15]–[17]. Robust
nonlinear filters and smoothers can be designed for nonlinear
systems with measurement outliers by using a combination
of the multivariate Student’s t distribution and the variational
Bayesian approach [18]. Many Student’s t based visual track-
ing methods have been proposed to deal with data outliers
induced by varying object appearance, occlusions and changes
in illumination [16], [19], [20]. However, these filters and
smoothers are not suitable for the case of heavy tailed process
noise since they are all based on the assumption of well
behaved process noise [14]. To address the filtering problem
of linear systems with heavy tailed process and measurement
noises, a linear Student’s t based filter was proposed by mod-
elling both the process and measurement noises as Student’s t
distributions and approximating the posterior filtering PDF as
a Student’s t distribution [14]. Although this linear Student’s
t based filter can be used to achieve the filtering estimate for
nonlinear systems with heavy tailed process and measurement
noises based on the first order linearisation approach, it shows
poor filtering performance since enormous truncation errors
can be induced by the linearisation. Moreover, up to the
present, Student’s t based approaches to approximate a filter
and smoother for nonlinear systems with heavy tailed process
and measurement noises do not exist.

In this work, both a robust Student’s t based nonlinear filter
and smoother are derived by providing Student’s t approxima-
tions to posterior filtering and smoothing PDFs. These can be
deemed as a generalization and extension of the linear Studen-
t’s t filter. The moment matching approach is used to constrain
the increase of the degrees of freedom (dof) parameters of
posterior filtering and smoothing PDFs, and the UT is used
to compute the Student’s t weighted integrals involved in the
proposed Student’s t based approximate filter and smoother. It
is shown that existing approaches to linear Student’s t based
filter [14] and GA filter [5] are special cases of the proposed
Student’s t based filter, and the existing GA smoother [21]
is a special case of the proposed Student’s t based smoother.
The performance of the proposed methods is tested using a
manoeuvring target tracking scenario. Simulation results show
that the proposed methods outperform existing methods for the
case of heavy tailed process and measurement noises.
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II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear stochastic
system as shown by the state-space model

xk = fk−1(xk−1) +wk−1 (process equation) (1)

zk = hk(xk) + vk (measurement equation), (2)

where k is the discrete time index, xk ∈ Rn is the state
vector, zk ∈ Rm is the measurement vector, wk ∈ Rn is
the process noise vector, and vk ∈ Rm is the measurement
noise vector. Process and measurement noise distributions
are assumed to have heavy tails, and they are modelled as
Student’s t distributions as follows

p(wk) = St(wk;0,Qk, v1) (3)

p(vk) = St(vk;0,Rk, v2), (4)

where St(x;µ,Σ, v) denotes the Student’s t PDF with mean
vector µ, scale matrix Σ, and dof parameter v. The initial state
vector x0 is assumed to have a Student’s t distribution with
mean vector x̂0|0, scale matrix P0|0, and dof parameter v3,
i.e.,

p(x0) = St(x0; x̂0|0,P0|0, v3). (5)

Moreover, x0, wk and vk are assumed to be mutually uncor-
related in this work.

Our aim is to provide Student’s t based approaches to
approximate a filter and smoother for the nonlinear systems
formulated in (1)-(5). That is to say, we need to find Student’s
t based approximations to the filtering PDF p(xk|Zk) and
smoothing PDF p(xk|ZN ), i.e.,

p(xk|Zk) = St(xk; x̂k|k,Pk|k, v3) (6)

p(xk|ZN ) = St(xk; x̂k|N ,Pk|N , v3), (7)

where ZN = {zj}Nj=1 is the set of all N measurement vectors,
x̂k|k is the filtering estimate vector, Pk|k is the scale matrix of
the filtering PDF, x̂k|N is the smoothing estimate vector, and
Pk|N is the scale matrix of the smoothing PDF which can be
approximated as

x̂k|k = E[xk|Zk] =

∫
xkp(xk|Zk)dxk (8)

Pk|k =
v3 − 2

v3
E[x̃k|kx̃

T
k|k|Zk] =

v3 − 2

v3

∫
x̃k|kx̃

T
k|k×

p(xk|Zk)dxk (9)

x̂k|N = E[xk|ZN ] =

∫
xkp(xk|ZN )dxk (10)

Pk|N =
v3 − 2

v3
E[x̃k|N x̃T

k|N |ZN ] =
v3 − 2

v3

∫
x̃k|N x̃T

k|N×

p(xk|ZN )dxk, (11)

where x̃k|k = xk − x̂k|k and x̃k|N = xk − x̂k|N denote
the estimate error and smoothing error vectors respectively,
and equations (9) and (11) are obtained from the relationship
between scale matrix and the covariance matrix [14]. (For a S-
tudent’s t random vector x with PDF p(x) = St(x;µ,Σ, v), its
covariance matrix is v

v−2Σ, i.e., E[(x−µ)(x−µ)T ] = v
v−2Σ.

Conversely, Σ = v−2
v E[(x− µ)(x− µ)T ].)

To approximate posterior filtering and smoothing PDFs as
Gaussian, the joint PDFs p(xk, zk| Zk−1) and p(xk,xk+1|Zk)
are assumed, respectively, to be Gaussian in the standard GA
filter and smoother [5], [21]. However, in the case that process
and measurement noise distributions have heavy tails, such
assumptions are unreasonable since these joint PDFs are not
Gaussian any more.

In order to approximate the posterior filtering and smooth-
ing PDFs as Student’s t, the joint PDFs p(xk, zk| Zk−1)
and p(xk,xk+1|Zk) need to be assumed Student’s t. These
Student’s t assumptions hold for linear systems due to the
affine property of the Student’s t random vector, and they
are reasonable for applications with mild nonlinearity, such
as target tracking as will be shown in our later simulations.

Assumption 1: The jointly predicted PDF p(xk, zk|Zk−1)
of the state and measurement vectors is Student’s t, i.e.,

p(xk, zk|Zk−1)

= St(

[
xk

zk

]
;

[
x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz

k|k−1

(Pxz
k|k−1)

T
Pzz

k|k−1

]
, v3), (12)

where x̂k|k−1, Pk|k−1, ẑk|k−1, Pzz
k|k−1 and Pxz

k|k−1 can be
computed as

x̂k|k−1 = E[xk|Zk−1] =

∫
xkp(xk|Zk−1)dxk (13)

Pk|k−1 =
v3 − 2

v3
E[x̃k|k−1x̃

T
k|k−1|Zk−1] =

v3 − 2

v3

∫
x̃k|k−1

× x̃T
k|k−1p(xk|Zk−1)dxk (14)

ẑk|k−1 = E[zk|Zk−1] =

∫
zkp(zk|Zk−1)dzk (15)

Pzz
k|k−1 =

v3 − 2

v3
E[z̃k|k−1z̃

T
k|k−1|Zk−1] =

v3 − 2

v3

∫
z̃k|k−1

× z̃Tk|k−1p(zk|Zk−1)dzk (16)

Pxz
k|k−1 =

v3 − 2

v3
E[x̃k|k−1z̃

T
k|k−1|Zk−1] =

v3 − 2

v3

∫ ∫
x̃k|k−1z̃

T
k|k−1p(xk, zk|Zk−1)dxkdzk, (17)

where x̃k|k−1 = xk − x̂k|k−1 denotes the predicted error
vectors, and z̃k|k−1 = zk − ẑk|k−1 denotes the innovation
vector, and equations (14) and (16)-(17) are obtained from the
relationship between the scale matrix and covariance matrix
[14].

Assumption 2: The joint PDF p(xk,xk+1|Zk) of the current
state xk and one-step ahead state xk+1 vectors is Student’s t,
i.e.,

p(xk,xk+1|Zk)

= St(

[
xk

xk+1

]
;

[
x̂k|k

x̂k+1|k

]
,

[
Pk|k Pk,k+1|k

PT
k,k+1|k Pk+1|k

]
, v3),(18)

where the scale matrix Pk,k+1|k can be computed as

Pk,k+1|k =
v3 − 2

v3
E[x̃k|kx̃

T
k+1|k|Zk]

=
v3 − 2

v3

∫ ∫
x̃k|kx̃

T
k+1|kp(xk,xk+1|Zk)dxkdxk+1.(19)

Based on Assumptions 1-2, the novel Student’s t based
approximate filter and smoother for nonlinear systems with
heavy tailed process and measurement noises can be derived.
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III. A STUDENT’S T BASED APPROXIMATE FILTER

A. Time Update

In the time update, the one-step predicted PDF p(xk|Zk−1)
of the state is computed as follows [5]

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (20)

Using (1), (3) and (6) in (20), we obtain

p(xk|Zk−1)=

∫
St(xk; fk−1(xk−1),Qk−1, v1)×

St(xk−1; x̂k−1|k−1,Pk−1|k−1, v3)dxk−1.(21)

It can be seen from (21) that p(xk|Zk−1) is not a Stu-
dent’s t PDF due to the nonlinear propagation fk−1(·). Thus,
p(xk|Zk−1) needs to be approximated as a Student’s t PDF
based on Assumption 1

p(xk|Zk−1) = St(xk; x̂k|k−1,Pk|k−1, v3). (22)

Using (21) in (13)-(14), x̂k|k−1 and Pk|k−1 can be com-
puted as follows

x̂k|k−1=

∫
xkp(xk|Zk−1)dxk

=

∫
[

∫
xkSt(xk; fk−1(xk−1),Qk−1, v1)dxk]×

St(xk−1; x̂k−1|k−1,Pk−1|k−1, v3)dxk−1

=

∫
fk−1(xk−1)St(xk−1; x̂k−1|k−1,Pk−1|k−1, v3)

dxk−1 (23)

Pk|k−1=
v3 − 2

v3

∫
xkx

T
k p(xk|Zk−1)dxk − v3 − 2

v3
x̂k|k−1 ×

x̂T
k|k−1

=
v3 − 2

v3

∫
[

∫
xkx

T
k St(xk; fk−1(xk−1),Qk−1, v1)

dxk]St(xk−1; x̂k−1|k−1,Pk−1|k−1, v3)dxk−1 −
v3 − 2

v3
x̂k|k−1x̂

T
k|k−1

=
v3 − 2

v3

∫
fk−1(xk−1)f

T
k−1(xk−1)×

St(xk−1; x̂k−1|k−1,Pk−1|k−1, v3)dxk−1 −
v3 − 2

v3
x̂k|k−1x̂

T
k|k−1 +

v1(v3 − 2)

(v1 − 2)v3
Qk−1. (24)

The time update consists of (22)-(24), where the one-step
predicted PDF p(xk|Zk−1) of the state is approximated as
Student’s t. To approximate the filtering PDF p(xk|Zk) as
Student’s t, the measurement update will be derived as follows.

B. Measurement Update

In the measurement update, firstly, the likelihood PDF
p(zk|Zk−1) is computed as follows

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk. (25)

Using (2), (4) and (22) in (25), we obtain

p(zk|Zk−1)=

∫
St(zk;hk(xk),Rk, v2)×

St(xk; x̂k|k−1,Pk|k−1, v3)dxk. (26)

It can be seen from (26) that p(zk|Zk−1) is not a Student’s t
PDF due to the nonlinear propagation hk(·). Thus, p(zk|Zk−1)
is also approximated as a Student’s t PDF based on Assump-
tion 1

p(zk|Zk−1) = St(zk; ẑk|k−1,P
zz
k|k−1, v3). (27)

Using (26) in (15)-(16), ẑk|k−1 and Pzz
k|k−1 can be comput-

ed as

ẑk|k−1=

∫
zkp(zk|Zk−1)dzk

=

∫
[

∫
zkSt(zk;hk(xk),Rk, v2)dzk]×

St(xk; x̂k|k−1,Pk|k−1, v3)dxk

=

∫
hk(xk)St(xk; x̂k|k−1,Pk|k−1, v3)dxk (28)

Pzz
k|k−1=

v3 − 2

v3

∫
zkz

T
k p(zk|Zk−1)dzk −

v3 − 2

v3
ẑk|k−1ẑ

T
k|k−1

=
v3 − 2

v3

∫
[

∫
zkz

T
k St(zk;hk(xk),Rk, v2)dzk]×

St(xk; x̂k|k−1,Pk|k−1, v3)dxk −
v3 − 2

v3
ẑk|k−1ẑ

T
k|k−1

=
v3 − 2

v3

∫
hk(xk)h

T
k (xk)St(xk; x̂k|k−1,Pk|k−1, v3)

dxk − v3 − 2

v3
ẑk|k−1ẑ

T
k|k−1 +

v2(v3 − 2)

(v2 − 2)v3
Rk. (29)

It can be seen from (12) that, to approximate
p(xk, zk|Zk−1) as a Student’s t PDF, we need to compute
Pxz

k|k−1 using (17) as follows

Pxz
k|k−1=

v3 − 2

v3

∫ ∫
xkz

T
k p(xk, zk|Zk−1)dzkdxk −

v3 − 2

v3
x̂k|k−1ẑ

T
k|k−1

=
v3 − 2

v3

∫
xk[

∫
zTk p(zk|xk)dzk]p(xk|Zk−1)dxk −

v3 − 2

v3
x̂k|k−1ẑ

T
k|k−1

=
v3 − 2

v3

∫
xk[

∫
zTk St(zk;hk(xk),Rk, v2)dzk]×

St(xk; x̂k|k−1,Pk|k−1, v3)dxk −
v3 − 2

v3
x̂k|k−1ẑ

T
k|k−1

=
v3 − 2

v3

∫
xkh

T
k (xk)St(xk; x̂k|k−1,Pk|k−1, v3)dxk

−v3 − 2

v3
x̂k|k−1ẑ

T
k|k−1. (30)
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Secondly, according to Bayes rule and using (12) and (27),
the posterior filtering PDF p(xk|Zk) can be updated as a
Student’s t PDF, i.e., [14]

p(xk|Zk) =
p(xk, zk|Zk−1)

p(zk|Zk−1)
= St(xk; x̂

′

k|k,P
′

k|k, v
′

3), (31)

where x̂
′

k|k, P
′

k|k and v
′

3 are given by

v
′

3 = v3 +m (32)

x̂
′

k|k = x̂k|k−1 +Kk(zk − ẑk|k−1) (33)

P
′

k|k =
v3 +∆2

k

v3 +m
(Pk|k−1 −KkP

zz
k|k−1K

T
k ) (34)

Kk = Pxz
k|k−1(P

zz
k|k−1)

−1 (35)

∆k =
√
(zk − ẑk|k−1)T (P

zz
k|k−1)

−1(zk − ẑk|k−1). (36)

It is seen from (32) that the dof parameter v
′

3 of p(xk|Zk)
will tend to infinity as the time increases so that p(xk|Zk) will
converge to a Gaussian PDF. In other words, p(xk|Zk) will
lose the heavy tailed properties that must be retained. Similar
to [14], the moment matching approach is used to solve this
problem. Here, we only need to match the first two moments,
i.e.,

x̂k|k = x̂
′

k|k
v3

v3 − 2
Pk|k =

v
′

3

v
′
3 − 2

P
′

k|k. (37)

According to (37), Pk|k can be approximated as follows

Pk|k =
(v3 − 2)v

′

3

v3(v
′
3 − 2)

P
′

k|k. (38)

The proposed Student’s t based approximate filter operates
by combining the analytical computations in (32)-(38) with
the Student’s t weighted integrals in (23)-(24) and (28)-(30).

C. Comparisons with existing linear Student’s t based filter
and GA filter

In [14], a Student’s t based filter is designed for linear
systems with heavy tailed process and measurement noises. It
is interesting that the Student’s t based filter [14] is a special
case of the proposed filter when v1 = v2 = v3 = v, which is
confirmed as follows. For a linear system, we let

fk−1(xk−1) = Fk−1xk−1 hk(xk) = Hkxk. (39)

Substituting (39) in (23)-(24) and (28)-(30) and using v1 =
v2 = v3 = v, we obtain

x̂k|k−1 = Fk−1x̂k−1|k−1 (40)

Pk|k−1 =
v − 2

v
Fk−1(x̂k−1|k−1x̂

T
k−1|k−1 +

v

v − 2
Pk−1|k−1)

FT
k−1 −

v − 2

v
x̂k|k−1x̂

T
k|k−1 +Qk−1 = Fk−1Pk−1|k−1F

T
k−1

+Qk−1 (41)
ẑk|k−1 = Hkx̂k|k−1 (42)

Pzz
k|k−1 =

v − 2

v
Hk(x̂k|k−1x̂

T
k|k−1 +

v

v − 2
Pk|k−1)H

T
k−

v − 2

v
ẑk|k−1ẑ

T
k|k−1 +Rk = HkPk|k−1H

T
k +Rk (43)

Pxz
k|k−1 =

v − 2

v
(x̂k|k−1x̂

T
k|k−1 +

v

v − 2
Pk|k−1)H

T
k−

v − 2

v
x̂k|k−1ẑ

T
k|k−1 = Pk|k−1H

T
k . (44)

Using (40)-(44) in (32)-(36), the existing linear Student’s t
based filter can be obtained. Thus, the existing linear Student’s
t based filter is a special case of the proposed filter when
v1 = v2 = v3 = v.

Moreover, the proposed filter converges to the existing GA
filter [5] when v1 = v2 = v3 = v → +∞, which is verified
as follows. If v1 = v2 = v3 = v → +∞, we have

v3 − 2

v3
→ 1

v3 +∆2
k

v3 +m
→ 1 (45)

St(xk; x̂k|k,Pk|k, v3) → N(xk; x̂k|k,Pk|k) (46)

St(xk+1; x̂k+1|k,Pk+1|k, v3) → N(xk+1; x̂k+1|k,Pk+1|k),
(47)

where N(x;µ,Σ) denotes the Gaussian PDF with mean vector
µ and covariance matrix Σ.

Substituting (45)-(47) in (23)-(24) and (28)-(30), we obtain

lim
v→+∞

x̂k|k−1 =

∫
fk−1(xk−1)N(xk−1; x̂k−1|k−1,

Pk−1|k−1)dxk−1 (48)

lim
v→+∞

Pk|k−1 =

∫
fk−1(xk−1)f

T
k−1(xk−1)N(xk−1;

x̂k−1|k−1,Pk−1|k−1)dxk−1 − x̂k|k−1x̂
T
k|k−1 +Qk−1 (49)

lim
v→+∞

ẑk|k−1 =

∫
hk(xk)N(xk; x̂k|k−1,Pk|k−1)dxk (50)

lim
v→+∞

Pzz
k|k−1 =

∫
hk(xk)h

T
k (xk)N(xk; x̂k|k−1,Pk|k−1)

dxk − ẑk|k−1ẑ
T
k|k−1 +Rk (51)

lim
v→+∞

Pxz
k|k−1 =

∫
xkh

T
k (xk)N(xk; x̂k|k−1,Pk|k−1)dxk

− x̂k|k−1ẑ
T
k|k−1. (52)

Substituting (32) and (34) in (38) and using v1 = v2 =
v3 = v → +∞, we obtain

lim
v→+∞

Pk|k = Pk|k−1 −KkP
zz
k|k−1K

T
k . (53)

It is seen from (33), (35), (37) and (48)-(53) that the state
estimate vector x̂k|k and scale matrix Pk|k of the proposed
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Student’s t based approximate filter will converge to the
state estimate vector x̂GA

k|k and corresponding estimate error
covariance matrix PGA

k|k of an existing GA filter as the dof
parameters v1 = v2 = v3 = v → +∞. Considering that
the Student’s t PDF converges to a Gaussian PDF as the dof
parameters tends to infinity results in

lim
v→+∞

p(xk|Zk)= lim
v→+∞

St(xk; x̂k|k,Pk|k, v)

=N(xk; x̂
GA
k|k ,P

GA
k|k ). (54)

Equation (54) implies that the existing GA filter can be
deemed as a special case of the proposed Student’s t based
approximation filter when v1 = v2 = v3 = v → +∞.

IV. A STUDENT’S T BASED APPROXIMATE SMOOTHER

According to Bayes theorem, the smoothing PDF p(xk|ZN )
can be computed as

p(xk|ZN )=

∫
p(xk,xk+1|ZN )dxk+1

=

∫
p(xk|xk+1,ZN )p(xk+1|ZN )dxk+1. (55)

The Markov property of the model in (1)-(2) implies that
given the knowledge of xk+1 and Zk, the state vector xk is
independent of the future measurements {zj}Nj=k+1, i.e., [21]

p(xk|xk+1,ZN ) = p(xk|xk+1,Zk). (56)

Substituting (56) in (55), p(xk|ZN ) can be written as

p(xk|ZN ) =

∫
p(xk|xk+1,Zk)p(xk+1|ZN )dxk+1. (57)

It can be seen from (57) that, to approximate p(xk|ZN )
as a Student’s t PDF, it is necessary to compute
p(xk|xk+1,Zk) based on Assumption 2. Firstly, to approx-
imate p(xk,xk+1|Zk) as a Student’s t PDF, we need to
compute Pk,k+1|k using (19) as follows

Pk,k+1|k=
v3 − 2

v3
E[xkx

T
k+1|Zk]−

v3 − 2

v3
x̂k|kx̂

T
k+1|k

=
v3 − 2

v3

∫ ∫
xkx

T
k+1p(xk,xk+1|Zk)dxk+1dxk −

v3 − 2

v3
x̂k|kx̂

T
k+1|k

=
v3 − 2

v3

∫
xk[

∫
xT
k+1p(xk+1|xk)dxk+1]×

p(xk|Zk)dxk − v3 − 2

v3
x̂k|kx̂

T
k+1|k

=
v3 − 2

v3

∫
xk[

∫
xT
k+1St(xk+1; fk(xk),Qk, v1)

dxk+1]St(xk; x̂k|k,Pk|k, v3)dxk −
v3 − 2

v3
x̂k|kx̂

T
k+1|k

=
v3 − 2

v3

∫
xkf

T
k (xk)St(xk; x̂k|k,Pk|k, v3)dxk −

v3 − 2

v3
x̂k|kx̂

T
k+1|k. (58)

Secondly, according to Bayes rule and using (18) and (22),
p(xk|xk+1,Zk) can be updated as a Student’s t PDF, i.e., [14]

p(xk|xk+1,Zk)=
p(xk,xk+1|Zk)

p(xk+1|Zk)

=St(xk; x̂k|k+1,k,Pk|k+1,k, v
′′

3 ), (59)

where x̂k|k+1,k, Pk|k+1,k and v
′′

3 are given by

v
′′

3 = v3 + n (60)
x̂k|k+1,k = x̂k|k +Ak(xk+1 − x̂k+1|k) (61)

Pk|k+1,k =
v3 + Λ2

k

v3 + n
(Pk|k −AkPk+1|kA

T
k ) (62)

Ak = Pk,k+1|kP
−1
k+1|k (63)

Λk =
√
(xk+1 − x̂k+1|k)TP

−1
k+1|k(xk+1 − x̂k+1|k). (64)

Substituting (7) and (59) in (57), we obtain

p(xk|ZN ) =

∫
St(xk; x̂k|k+1,k,Pk|k+1,k, v

′′

3 )×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1. (65)

It is seen from (65) that the smoothing PDF p(xk|ZN ) is not
a Student’s t distribution since Pk|k+1,k is a quadratic function
of xk+1. Here, p(xk|ZN ) is approximated as a Student’s t PDF
in (7). By substituting (65) in (10)-(11) and using (61)-(64),
x̂k|N and Pk|N are computed as

x̂k|N =

∫
xkp(xk|ZN )dxk

=

∫ ∫
xkSt(xk; x̂k|k+1,k,Pk|k+1,k, v

′′

3 )dxk ×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=

∫
x̂k|k+1,kSt(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=

∫
[x̂k|k +Ak(xk+1 − x̂k+1|k)]×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

= x̂k|k +Ak(x̂k+1|N − x̂k+1|k) (66)

Pk|N =
v3 − 2

v3
E[xkx

T
k |ZN ]− v3 − 2

v3
x̂k|N x̂T

k|N , (67)

where E[xkx
T
k |ZN ] can be computed as

E[xkx
T
k |ZN ]=

∫ ∫
xkx

T
k St(xk; x̂k|k+1,k,Pk|k+1,k, v

′′

3 )dxk ×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=

∫
[x̂k|k+1,kx̂

T
k|k+1,k +

v
′′

3

v
′′
3 − 2

Pk|k+1,k]×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=Γ+
v

′′

3

v
′′
3 − 2

Ω. (68)

According to the definition of Γ in (68), we obtain

Γ=

∫
[Ak(xk+1 − x̂k+1|N ) + x̂k|N ][Ak(xk+1 − x̂k+1|N ) +

x̂k|N ]TSt(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

= x̂k|N x̂T
k|N +

v3
v3 − 2

AkPk+1|NAT
k (69)
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and given the definition of Ω in (68) results in

Ω=

∫
v3 + Λ2

k

v3 + n
(Pk|k −AkPk+1|kA

T
k )×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=
v3 + ηk
v3 + n

(Pk|k −AkPk+1|kA
T
k ), (70)

where

ηk=

∫
Λ2
kSt(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=

∫
tr[P−1

k+1|k(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T ]×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1

=tr[P−1
k+1|k

∫
(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)

T ×

St(xk+1; x̂k+1|N ,Pk+1|N , v3)dxk+1]

=tr{P−1
k+1|k[

v3
v3 − 2

Pk+1|N + (x̂k+1|N − x̂k+1|k)×

(x̂k+1|N − x̂k+1|k)
T ]}. (71)

Substituting (68)-(71) in (67), the scale matrix Pk|N of the
smoothing PDF p(xk|ZN ) can be computed as

Pk|N =AkPk+1|NAT
k +

(v3 − 2)v
′′

3 (v3 + ηk)

v3(v
′′
3 − 2)(v3 + n)

×

(Pk|k −AkPk+1|kA
T
k ). (72)

The proposed Student’s t based approximate smoother op-
erates by combining the analytical computations in (32)-(38),
(60), (63), (66) and (71)-(72) with the Student’s t weighted
integrals in (23)-(24), (28)-(30) and (58).

The proposed smoother converges to an existing GA s-
moother [21] when v1 = v2 = v3 = v → +∞, which is
shown as follows. If v1 = v2 = v3 = v → +∞, we have

v3 − 2

v3
→ 1

(v3 − 2)v
′′

3 (v3 + ηk)

v3(v
′′
3 − 2)(v3 + n)

→ 1. (73)

Employing (54) and (73) in (58), we obtain

lim
v→+∞

Pk,k+1|k =

∫
xkf

T
k (xk)N(xk; x̂

GA
k|k ,P

GA
k|k )dxk −

x̂k|kx̂
T
k+1|k. (74)

Using (73) in (72) results in

lim
v→+∞

Pk|N = Pk|k −Ak(Pk+1|k −Pk+1|N )AT
k . (75)

It is seen from (63), (66) and (74)-(75) that the smoothing
estimate vector x̂k|N and scale matrix Pk|N of the proposed
Student’s t based approximate smoother will converge to
the smoothing estimate vector x̂GA

k|N and the corresponding
estimate error covariance matrix PGA

k|N of the existing GA
smoother as the dof parameters v1 = v2 = v3 = v → +∞.
Considering that the Student’s t PDF converges to the Gaussian
PDF as the dof parameters tend to infinity, we obtain

lim
v→+∞

p(xk|ZN )= lim
v→+∞

St(xk; x̂k|N ,Pk|N , v)

=N(xk; x̂
GA
k|N ,PGA

k|N ). (76)

Thus, the existing GA smoother can be deemed as a special
case of the proposed Student’s t based approximate smoother
when v1 = v2 = v3 = v → +∞.

Remark 1: For general nonlinear systems, closed form
solution of the posterior PDF is not available, and approximate
approaches have to be employed to calculate the posterior
PDF, such as existing Gaussian approximation and the pro-
posed Student’s t approximation. These approximations to the
posterior PDF all impose a bias on the state estimation. In the
proposed Student’s t filter, the moment matching approach is
used to prevent the growth of the dof parameter, which may
induce a further bias on the state estimation. However, if other
features of the state estimate are more important to the user
than unbiasedness (e.g. root-mean square error (RMSE) and
robustness), then the proposed Student’s t filter and smoother
are attractive. It is shown later in the simulation that the
proposed Student’s t filter and smoother outperforms existing
filters and smoothers in terms of RMSE and robustness, and
the proposed Student’s t filter and smoother exhibit satisfactory
bias.

V. THE COMPUTATION OF THE STUDENT’S T WEIGHTED
INTEGRAL

To implement the proposed Student’s t based approximate
filter and smoother, we need to compute the Student’s t
weighted integrals whose integrands are all of the following
form

I(g) =

∫
g(x)St(x;µ,Σ, v)dx, (77)

where g(x) is a continuous nonlinear function such that the
integral in (77) exists.

In this work, the Student’s t weighted integral in (77) is
approximately computed by the UT since the UT can be
used to approximate arbitrary PDF and the first two moment
information can be retained. Considering that the Student’s t
PDF St(x;µ,Σ, v) has mean vector µ and covariance matrix
v

v−2Σ, thus by using the UT the Student’s t PDF St(x;µ,Σ, v)
can be approximated as follows [8]

St(x;µ,Σ, v) =
2n∑
i=0

ωiδ(x− xi), (78)

where δ(·) is the Kronecker delta function, xi and ωi are
deterministic sigma points and corresponding weights which
are given by

xi = µ ωi = κ/(n+ κ) i = 0

xi = µ+
√

v(n+κ)
v−2

Σei ωi = 0.5/(n+ κ) i = 1, · · · , n

xi = µ−
√

v(n+κ)
v−2

Σei ωi = 0.5/(n+ κ) i = n+ 1, · · · , 2n
,

(79)
where κ is the free parameter of the UT,

√
Σ is the square-

root matrix of Σ, i.e., Σ =
√
Σ
√
Σ

T
, and ei denotes the i-th

column vector of a unit matrix.
Substituting (78) in (77), the Student’s t weighted integral

can be approximated as

I(g) =

∫
g(x)

[
2n∑
i=0

ωiδ(x− xi)

]
dx =

2n∑
i=0

ωig(xi), (80)
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where xi and ωi are given in (79).
By using the UT in (79)-(80) to compute the Student’s

t weighted integrals in (23)-(24), (28)-(30) and (58), a new
unscented Student’s t based approximate filter and unscented
Student’s t based approximate smoother can be developed
respectively.

VI. SIMULATION

In this simulation, the superior performance of the proposed
methods as compared with existing methods is shown in the
problem of tracking an agile target in two dimensional space
executing a manoeuvring turn with unknown and time-varying
turn rate. This problem was used to illustrate the performance
of the CKF [5] and GA smoother [21]. The process and
measurement models are formulated as follows

xk =


1 sinΩT0

Ω 0 cosΩT0−1
Ω 0

0 cosΩT0 0−sinΩT0 0
0 1−cosΩT0

Ω 1 sinΩT0

Ω 0
0 sinΩT0 0 cosΩT0 0
0 0 0 0 1

xk−1 +wk−1 (81)

zk =

[
rk
θk

]
=

[√
ς2k + η2k

tan−1(ηk

ςk
)

]
+ vk, (82)

where the state vector x = [ς ς̇ η η̇ Ω]T ; ς and η
denote positions, ς̇ and η̇ denote velocities in the x and y
directions respectively, Ω denotes constant but unknown turn
rate, and T0 denotes the time-interval between two consecutive
measurements. Similar to [14], outlier corrupted process and
measurement noises are generated according to

wk ∼
{
N(0,Q) w.p. 0.95
N(0, 50Q) w.p. 0.05

(83)

vk ∼
{
N(0,R) w.p. 0.95
N(0, 100R) w.p. 0.05

, (84)

where w.p. denotes “with probability”. Equations (83)-(84)
mean that wk and vk are most of the times drawn from a
Gaussian distribution with nominal covariance matrix Q or R
and five percent of process and measurement noise values are
generated from Gaussian distributions with severely increased
covariance matrix. Process and measurement noises, which
are generated in terms of (83)-(84), have heavy tails. In this
simulation, parameters T0, Q, R, x0 and P0|0 are the same
as defined in [5].

In this simulation, the existing UKF [8], the outlier robust
UKF [18], the Student’s t extended Kalman filter (EKF) [14],
the UKS [9], [21], the outlier robust UKS [18], and the
proposed unscented Student’s t based approximate filter and
smoother are tested. In the proposed and existing methods,
the free parameter is chosen as κ = 0 to ensure the numer-
ical stability of the UT [5] and the dof parameters are set
v1 = v2 = v3 = 3 as suggested in [14]. To compare the
performance of existing methods and the proposed methods,
the RMSEs of position, velocity and turn rate, which were
defined in [5], are chosen as performance metrics.

Fig. 1 shows the true and estimated trajectories of an
aircraft obtained from existing methods and the proposed
methods in a single Monte Carlo run. Fig. 2–Fig. 4 show
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Fig. 1: True and estimated trajectories of the target
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Fig. 2: RMSEs of the position of the target
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Fig. 3: RMSEs of the velocity of the target

the RMSEs of position, velocity and turn rate, respectively
from the existing methods and the proposed methods by
making 250 independent Monte Carlo runs. Table I shows
the averaged RMSEs of the proposed methods and existing
methods over the last 20s. It is seen from Fig. 1 that the
estimated trajectories from the proposed methods are closer to
the true trajectory as compared with existing methods. We can
see from Fig. 2–Fig. 4 and Table I that the proposed filter has
considerably improved filtering accuracy as compared to the
existing UKF, the outlier robust UKF and the Student’s t EKF.
And the proposed smoother has increased smoothing accuracy
as compared to the existing UKS and outlier robust UKS.
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Fig. 4: RMSEs of the turn rate of the target

TABLE I: Averaged RMSEs of the proposed methods and
existing methods over the last 20s

Estimator position (m) velocity (m/s) turn rate (Deg/s)
Existing UKF [8] 184.5 10573.9 48.8
Existing outlier robust UKF [18] 194.5 351.7 11.1
Existing Student’s EKF [14] 83.6 68.9 17.3
The proposed filter 50.6 31.4 3.0
Existing UKS [9] 169.1 10783.2 49.5
Existing outlier robust UKS [18] 491.3 108.5 4.5
The proposed smoother 34.0 13.6 1.4

Moreover, as expected, the proposed smoother has higher
estimation accuracy than the proposed filter.

The RMSEs from the existing UKF and UKS increase
abruptly after 60s since they are specially designed for Gaus-
sian process and measurement noises so that they are sensitive
to process and measurement outliers. The RMSEs of the
velocity and the turn rate from the existing Student’s t EKF
also increase abruptly after 80s, which is incurred by the
truncation errors of the first-order linearisation. Moreover, the
RMSEs from the existing outlier robust UKF and outlier robust
UKS diverge since they assume a well behaved process noise
so that they are sensitive to process outliers.

To evaluate the consistencies of the proposed filter and
smoother, the filter-estimated RMSE and smoother-estimated
RMSE are respectively compared with the true filter RMSE
and smoother RMSE, where the filter-estimated RMSE and
smoother-estimated RMSE are respectively the square-root of
the averaged (over Monte Carlo runs) appropriate diagonal
entries of the filtering and smoothing covariance matrices [5].
The state estimate is judged to be consistent if the estimated
RMSE equals to the true RMSE [5], [7].

Fig. 5–Fig. 7 show the filter-estimated RMSEs, the
smoother-estimated RMSEs, the true filter RMSEs and s-
moother RMSEs of position, velocity and turn rate from the
proposed filter and smoother by making 1000 independent
Monte Carlo runs. We can see from Fig. 5–Fig. 7 that there
are small differences between the filter-estimated RMSEs and
the true filter RMSEs, and between the smoother-estimated
RMSEs and the true smoother RMSEs, which are induced
by the Student’s t approximation to the posterior filtering and
smoothing PDFs. However, the filter-estimated RMSEs and
smoother-estimated RMSEs closely follow the trends of the
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Fig. 5: True and estimated RMSEs of the position from the
proposed filter and smoother
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Fig. 6: True and estimated RMSEs of the velocity from the
proposed filter and smoother
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Fig. 7: True and estimated RMSEs of the turn rate from the
proposed filter and smoother

true filter RMSEs and the true smoother RMSEs respectively.
Thus, the proposed Student’s t filter and smoother exhibit
acceptable consistencies.

To evaluate the unbiasedness of the proposed filter and
smoother, the biases of position, velocity and turn rate from
the proposed filter and smoother are calculated by making
1000 independent Monte Carlo runs, which are shown in Fig.
8–Fig. 10. We can see from Fig. 8–Fig. 10 that the biases of
position, velocity and turn rate from the proposed filter and
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Fig. 8: Biases of the position from the proposed filter and
smoother
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Fig. 9: Biases of the velocity from the proposed filter and
smoother
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Fig. 10: Biases of the turn rate from the proposed filter and
smoother

smoother are all non zero. Consequently, the proposed filter
and smoother are biased, but we emphasize that all existing
nonlinear filters and smoothers diverge after 80s in Fig. 2–Fig.
4. Thus, the proposed filter and smoother are more robust and
exhibit smaller biases as compared with existing filters and
smoothers.

VII. CONCLUSIONS

In this paper, novel Student’s t based approaches to approx-
imate a filter and smoother are proposed, which require an-

alytical computations and Student’s t weighted integrals. The
moment matching approach is used to constrain the increase
of dof parameters of the posterior filtering and smoothing
PDFs, and the UT is used to compute the Student’s t weighted
integrals involved in the proposed Student’s t based approx-
imate filter and smoother. Simulation results illustrate the
proposed methods considerably outperform existing methods
in an application with heavy tailed process and measurement
noises.
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