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Abstract

We perform a fundamental investigation of the complexitgafjunctive query
evaluation from the perspective of parameterized comigle¥/e classify sets of
boolean conjunctive queries according to the complexityisfproblem. Previous
work showed that a set of conjunctive queries is fixed-patanteactable precisely
when the set is equivalent to a set of queries having boumdedidth. We present
a fine classification of query sets up to parameterized ldgait space reduction.
We show that, in the bounded treewidth regime, there arestbomplexity de-
grees and that the properties that determine the degreeusfrst et are bounded
pathwidth and bounded tree depth. We also engage in a stuithe afvo higher
degrees via logarithmic space machine characterizatiodc@amplete problems.
Our work yields a significantly richer perspective on the pterity of conjunctive
queries and, at the same time, suggests new avenues ofcreseparameterized
complexity.

arXiv:1306.5424v2 [cs.CC] 25 Jun 2013

1 Introduction

Conjunctive queries are the most basic and most heavilyestuthtabase queries, and
can be formalized logically as formulas consisting of a seqe of existentially quanti-
fied variables, followed by a conjunction of atomic formul&ser since the landmark
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1977 article of Chandra and Merlinl[4], complexity-thedretspects of conjunctive
queries have been a research subject of persistent andregishterest which continues
to the present day (as a sampling, we point to the works [222.8[ 19, 20.19, 28, 25];
see the discussions and references therein for more infamya The problem of
evaluating a conjunctive query on a relational databasegus/alent to a humber of
well-known problems, including conjunctive query contagnt, the homomorphism
problem on relational structures, and the constraintfsatisn problem([4, 22]. That
this evaluation problem appears in many equivalent guigesta to the fundamental
and primal nature of this problem, and it has corresponglibgen approached and
studied from a wide variety of perspectives and motivatiohise resulting literature
has not only been fruitful in terms of continually providingsights into and notions
for understanding conjunctive queries themselves, buailsasmeaningfully fed back
into a richer understanding of computational complexigaty at large, and of com-
mon complexity classes in particular. This is witnessedhgyabservation that various
flavors of conjunctive query evaluation are used as proto&ypomplete problems for
complexity classes such as NP and W[1] (refer, for examplna books by Creignou,
Khanna, and Sudahl[8] and by Flum and Grahe [17], respeg}ivAinother example
of this phenomenon is the work showing LOGCFL-completenéssaluating acyclic
conjunctive queries (as well as of many related problems)tduGottlob, Leone, and
Scarcello[[13].

As has been eloquently articulated in the literature [2¥8,employment of classi-
cal complexity notions such as polynomial-time tractépiido grade the complexity of
conjunctive query evaluation is not totally satisfactdegr in the context of databases,
the typical scenario is the evaluation of a relatively slopréry on a relatively large
database; this suggests a notion of time complexity whergion-polynomial depen-
dence on the query may be tolerated, so long as the depenaletitedatabase is poly-
nomial. Computational complexity theory has developedstadied precisely such a
relaxation of polynomial-time tractability, calldked-parameter tractabilityin which
arbitrary dependence ingarameteris permitted; in our query evaluation setting, the
query size is normally taken as the parameter. The classcbftsactable problems is
denoted by FPT. Fixed-parameter tractability is the basaadbility notion ofparam-
eterized complexity thearg comprehensive theory for studying problems where each
instance has an associated parameter. As a parameter@®erpr conjunctive query
evaluation is complete for the parameterized complexagsMW/[1] [27| 17]; the prop-
erty of W[1]-hardness plays, in the parameterized setangle similar to that played
by NP-hardness in the classical setting.

Due to the general intractability of conjunctive query ewdion, a recurring theme
in the study of conjunctive queries is the identificationtofistural properties that pro-
vide tractability; such properties inclu@eyclicityandbounded treewidtfil8,/22]. A
natural research issue is to obtain a systematic undeistpofiwhat properties ensure
tractability, by classifying all sets of queries accordiaghe complexity of the evalua-
tion problem. We focus on boolean conjunctive queries, ttiitlogical parlance, are
queries without free variables. Formally, fetbe a set of boolean conjunctive queries,
and define EVAI(®) to be the problem of deciding, given a querge & and a rela-
tional structureB, whether or not) evaluates to true oB. One can then inquire for
which sets® the problem EVAL®) is tractable. For mathematical convenience, we



use an equivalent formulation of this problem. It is knowattéach boolean conjunc-
tive query¢ can be bijectively represented as a relational strucAuia such a way
that, for any relational structui, it holds thatp is true onB if and only if there exists

a homomorphism fronA to B [4]. Hence, the following family of problems is equiv-
alent to the family of problems EVA(®). Let.A be a set of structures, and denote by
Howm(.A) the problem of deciding, given a structudec A and a second structul®,
whether or not there is a homomorphism frexto B. Usep-HoMm(.A) to denote the
parameterized version of this problem, where the siz& of taken as the parameter.

Under the assumption that the structureslihave bounded arity, Grohe [20] pre-
sented a classification of the tractable problems of thimfaf the coresof .4 have
bounded treewidth, then the problemHoMm(A) is fixed-parameter tractable; other-
wise, the problemp-Hom(.A) is W[1]-hard. Thecoreof a structure can be intuitively
thought of as a smallest equivalent structure. Grohe’ssiflestion thus shows that,
in the studied setting, the condition of bounded treewidttheonly property guaran-
teeing tractability (assuming FPZ W[1]). Recall that treewidth is a graph measure
which, intuitively speaking, measures the similitude ofraph to a tree, with a lower
measure indicating a higher degree of similarity. The aggiom of bounded arity pro-
vides robustness in that translating between two reasemaptesentations of struc-
tures can be done efficiently; this is in contrast to the cdsmbounded arity, where
the choice of representation can dramatically affect cexipl [5].

The present article was motivated by the following fundatalnesearch question:
What algorithmic/complexity behaviors of conjunctiveriggare possible, within the
regime of fixed-parameter tractabilityPhat is, we endeavored to obtain a finer per-
spective on the parameterized complexity of conjunctivergs, and in particular, on
the possible sources of tractability thereof, by preserairclassification result akin to
Grohe's, but for queries that are fixed-parameter tractaBke is usual in computa-
tional complexity, we make use of a weak notion of reductiomider to be able to
make fine distinctions within the tractable zone. Logarithepace computation is a
common machine-based mode of computation that is often tosexhke distinctions
within polynomial time; correspondingly, we adgpdrameterized logarithmic space
computation which is obtained by relaxing logarithmic space compatatnuch in
the way that fixed-parameter tractability is obtained byxielg polynomial time, as
the base complexity class and as the reduction notion usaatimvestigation.

We present a classification theorem that comprehensivelgrithes, for each set
A of structures having bounded arity and bounded treewidiih,complexity of the
problemp-Hom(A), up to parameterized logarithmic space reducibility (Bed8).
Let 7 denote the set of all graphs that are treéesjenote the set of all graphs that
are paths, and, for a set of structurdslet A* denote the set of structures obtain-
able by taking a structurd € A and adding each element &f as a relation. Our
theorem shows that precisely three degrees of behaviorcamslphe: such a problem
p-HOM(A) is either equivalent tp-Hom(7™*), equivalent tqgp-Hom(P*), or is solv-
able in parameterized logarithmic space (Thedrem 3.1krkEsdly speaking, bounded
pathwidth and bounded tree depth are the properties thatrdigte which of the three
cases hold; as with treewidth, both pathwidth and tree daplgraph measures that
associate a natural number with each graph. A key comporienircclassification
theorem'’s proof is a reduction that, in effect, allows us tove hardness results on a



problemp-Hom(.A) based on the hardnesspHoM(M*) where M consists of cer-
tain graph minors derived frotd (Lemmd3.6). The proof of our classification theorem
utilizes this reduction in conjunction with excluded mirararacterizations of graphs
of bounded pathwidth and of bounded tree depth. We rematkitheombination with
the excluded grid theorenfrom graph minor theory, the discussed reduction can be
employed to readily derive Grohe’s classification from thedmess of theolored grid
homomorphism problenthis hardness result was presented by Grohe, Schwentidk, a
Segoufin[[21]. A fascinating aspect of our classificatiorotieen, which is shared with
that of Grohe, is that natural graph-theoretic conditiamsur case, those of bounded
pathwidth and bounded tree depth—arise naturally as tleganel properties that are
needed to present our classification. This theorem alsonagitiee interface among
conjunctive queries, graph minor theory, and parametéiipenplexity that is present
in the discussed work [21, 20].

Given that the problemg-Hom(P*) andp-Hom(T*) are theonly problems (up
to equivalence) above parameterized logarithmic spadestharge from our classifi-
cation, we then seek a richer understanding of these prablémparticular, we en-
gage in a study of the complexity classes that these probitsfise: we study the
class of problems that reduce peHom(P*), and likewise forp-Hom(7*) (Sec-
tions[4 and’b). Following a time-honored tradition in conxite theory, we present
machine-based definitions of these classes, which classeslWPATH and TREE,
respectively. The machine definition of PATH comes from réaeork of Elberfeld,
Stockhusen, and Tantau [12] and is based on nondeterroifiigting machines satis-
fying two simultaneous restrictions: first, that only paederized logarithmic space is
consumed; second, that the number of nondeterministiaibéd is bounded, namely,
by the product of the logarithm of the input size and a corislapending on the pa-
rameter. The machine characterization of TREE is similatritlis based on alternating
Turing machines where, in addition to the nondetermintsitis permitted previously,
a parameter-dependent number of conondeterministic ldtsatso be used. In addi-
tion to proving that the problemsHom(P*) andp-Hom(7*) are complete for the
machine-defined classes, we also prove that for any setuststes4 having bounded
pathwidth, the parameterizedhbeddingroblemp-EmB(.A) is in PATH, and prove an
analogous result for structures of bounded treewidth aadltdss TREE.

In the final section of the paper, we present a fine classificdtr the problem of
counting homomorphisms which is analogous to our classificdor the homomor-
phism problem (Sectidd 6).

Our work shows that the complexity classes PATH and TREE eswily pop-
ulated with complete problems, and, along with the recenkv2], suggests the
further development of the study of space-bounded parainetecomplexity[[15, 6]
and, speaking more broadly, the study of complexity clasgstsn FPT, which may
include classes based on circuit or parallel models of cdation. \We can mention the
following natural structural questions. Are either of thesses PATH or TREE closed
under complement? Can any evidence be given either in fdvar against such clo-
sure? Even if the classes PATH and TREE are not closed undgslement, could it
be that co-PATHC TREE? Another avenue for future research is to develop #arth
of the degrees of counting problems identified by our cogntiassification. We shall
mention some further open questions in the final section.



2 Preliminaries

Forn € N we defingln] := {1,...,n} if n > 0and[0] := (. We write {0, 1}=" for
the set of binary strings € {0, 1}* of length|z| < n; we have{0,1}=<° = {\} where
A is the empty string.

2.1 Structures, homomorphisms and cores
Structures

A vocabulary 7 is a finite set of relation symbols, where edle 7 has an associated
arity ar(R) € N. A r-structure A consists of a nonempty finite se, its universe
together with arinterpretationR™ C A% of everyR € 7. Let us emphasize that,
in this article, we consider only finite structures.sAbstructure (weak substructure)
of A is a structurénducedby a nonempty subséf of 4, i.e. the structuréX ) with
universeX that interprets everk € 7 by (respectively, a subset a2 () 0 R4, A
restrictionof a structure is obtained by forgetting the interpretagtiohsome symbols,
and arexpansiorof a structure is obtained by adding interpretations of seymebols.
We viewdirected graphsis{ E'}-structuresG := (G, ES) for binary E; G is agraph

if EC is irreflexive and symmetric. Note that a weak substructdra graph is a
subgraph. The grapimderlyinga directed grapkax without loops (i.e. with irreflexive
EG©) is obtained by replacing’® with its symmetric closure. We shall be concerned
with the following classes of structures.

— Fork > 2, the structurePk has universék] and edge relatioq (i,7 + 1) |
i € [k—1]}. The classP of directed pathgonsists of the structures that are
isomorphic to a structure of this form.

Let P, be the graph underlyinﬁ. The classP of pathsconsists of the struc-
tures that are isomorphic to a structure of this form.

— Fork > 2, the structur@,C has universék| and edge relatiof(i,i + 1) | 7 €
[k—1]}U{(k,1)}. The classC of directed cyclesonsists of the structures that
are isomorphic to a structure of this form.

L= .
Let Cy, be the graph underlyin@,. The clas< of cyclesconsists of the struc-
tures that are isomorphic to a structure of this form.

— Fork > 0, the structurd?,;C has universg0, 1}=* and binary reIatlon§Bk =
{(z,xi) | = € {0,1}=k=1} fori € {0,1}. The classB consists of the structures

that are isomorphic to a structure of this form.
— —
Let T be the graph underlying the directed grdgh, 1} =¥, S&* U SP*).
Let By, be the structure with univers®, 1}=* and binary reIat|on§B’“ SP*

defined to be the symmetric closures of the relatlsﬁé SB’“ respectively.
The classB consists of the structures that are |som0rph|c to a straatithis
form.

— Finally, 7 is the class ofrees that is, the class of connected, acyclic graphs.



A class of structuregl hasbounded arityif there exists a € N such that any relation
symbol interpreted in any structuse € A has arity at most.

Homomorphisms

Let A, B be structures. Aomomorphisnfrom A to B is a functionh : A — B such
that for all R € 7 and for alla = (a1,...,aa(r)) € RA it holds thath(a) € RB
where we writeh(a) = (h(a1),...,h(aa(r))). A partial homomorphism fronA to

B is the empty set or a homomorphism from a substructur& ¢d B; equivalently,
this is a partial functiorh, from A to B that is a homomorphism frordom(h))4 to

B if the domaindom(h) of i is not empty. As has become usual in our context, by an
embeddingve mean an injective homomorphism.

A structureA is acoreif all homomorphisms fromA to A are embeddings. Every
structureA maps homomorphically to a weak substructure of itself whsch core.
This weak substructure is unique up to isomorphism andd e coreof A (cf. [13]).

For a set of structured we letcore(.A) denote the set of cores of structuresdnlt is
not hard to see that two structurAs B are homomorphically equivalent (that is, there
are homomorphisms in both directions) if and only if theyédntive same core.

WhenA is a structure, we usA* to denote its expansion that interprets for every
a € A afresh unary relation symbdl, by CA™ = {a}. For a class of structure$ we
let

A" ={A" | A e A}.

Example 2.1. The following facts are straightforward to verify. Treeginat least two
vertices and cycles of even length have a single edge asarmteso do cycles of even
length. Cycles of odd length are cores, and so are directbd.patructures of the form
A* are cores.

2.2 Notions of width

We rely on Bodlaender’s surveyi[3] as a general referencth#notions of treewidth
and pathwidth. Tree depth was introduced.in [26].

A tree-decompositioaf a graphG = (G, E<) is a pair of a tred” and a family of
bagsX; C G fort € T suchthaty = |J,. X¢, EG C U;er X7 andX;NXy C Xy
whenevet” lies on the simple path fromto ¢’; it is called apath-decompositioifi T
is a path; itsvidth is max;cp | X;| — 1.

Thetreewidthtw(G) of G is the minimum width of a tree-decomposition Gf.
Thepathwidthpw(G) of G is the minimum width of a path-decomposition@t

By arooted treeT we mean an expansiqi’, ET, rootT) of a tree(T, ET) by
a unary relation symbabot interpreted by a singleton containing tleot. Thetree
depthtd(G) of G is the minimumh € N such that every connected componenois
a subgraph of the closure of some rooted tree of hdightere, theclosureof a rooted
tree is obtained by adding an edge fromo ¢ whenevet lies on the simple path from
the root tot'.

The tree depthd(A) of an arbitrary structuré\ is the tree depth of it&aifman
graph it has verticesd and an edge betweenanda’ if and only if « anda’ are



different and occur together in some tuple in some relatioA i The notiongpw(A)
andtw(A) are similarly defined.

A classA of structures habounded tree depfifithere isw € N such thatd(A) <
w for all A € A. Having bounded pathwidth or treewidth is similarly expkd. It is
not hard to see that bounded pathwidth is implied by bounaeddepth, and, trivially,
bounded treewidth is implied by bounded pathwidth. The eosw statements fail:

Example 2.2. The classP has unbounded tree depth and bounded pathwidth (cf. [26,
Lemma 2.2]). The clas8 has unbounded pathwidth and bounded treewidth (see.
e.g. [3, Theorem 67]).

Such classes are characterized as those excluding ceritadnsnas follows. The
first two statements are well-known from Robertson and Seyimgraph minor series
(cf. [3, Theorems 12,13]) and the third is from [2, Theore®] 4.

Theorem 2.3. LetC be a class of graphs.

1. (Excluded Grid Theoreng) has bounded treewidth if and only(fexcludes some
grid as a minor.

2. (Excluded Tree Theoreng has bounded pathwidth if and onlydf excludes
some tree as a minor.

3. (Excluded Path Theorent) has bounded tree depth if and only(ifexcludes
some path as a minor.

A class of graph€ excludes graphM as a minorif M is not a minor of any graph
in C. Recall, M is aminor of a graphG if there exists aninor mapy from M to G,
that is, a family(u(m))mens Of pairwise disjoint, non-empty, connected subset& of
such that for allm, m’) € EM there are» € p(m) andv’ € p(m’) with (v,v’) € ES.

Itis easy to verify thatd, pw, tw are monotone with respect to the minor pre-order,
that is, e.g.td(G) > td(M) for every minorM of G. Exampld 2P thus gives the
(easy) directions from left to right in the above theorem.

2.3 Parameterized complexity
Turing machines

We identify (classical) problems with sefsC {0, 1}* of finite binary strings. We use
Turing machines with a (read-only) input tape and severaktapes as our basic model
of computation. We will consider nondeterministic and redéging Turing machines
with binary nondeterminism and co-nondeterminism. Forcceteness, let us agree
that a nondeterministic machine has a spe@gistential) guess stgta configuration
with the guess state has two successor configurations eltaiynchanging the guess
state to one out of two further distinguished statgss;. An alternating machine
may additionally have aniversal guess stathat follows a similar convention. For a
function f : {0,1}* — N we say that\ usesf (co-)nondeterministic bitg for every
inputz € {0, 1}* every run ofA onz contains at mosf (z) many configurations with
the existential (respectively, universal) guess state.



Fixed-parameter (in)tractability

A parameterized problertQ, ) is a pair of a classical proble® C {0,1}* and a
logarithmic space computabparameterization : {0, 1}* — N associating with any
instancer € {0,1}* its parameters(z) € NI A Turing machine igpt-time bounded
(with respect tox) if on inputz € {0,1}* it runs in time f(x(z)) - ||°") where
f : N — Nis acomputable function. The class FPT (para-NP) conthmparameter-
ized problemg@, <) such that) is decided (accepted) by an fpt-time bounded deter-
ministic (nondeterministic) Turing machine. Apt-reductionfrom (Q, ) to (Q’, ')
is a reductionR : {0,1}* — {0,1}* from @ to @’ that is computable by a fpt-time
bounded (with respect t8) Turing machine and such thato R < f o x for some
computablef.

We are concerned with homomorphism and embedding problestiated with
classes of structure4.

p-HOM(A)

Instance: A pair of structuregA, B) whereA € A.
Parameter: |A]|.

Problem: Is there a homomorphism fro into B?

p-EMB(A)

Instance: A pair of structuregA, B) whereA € A.
Parameter: |A]|.

Problem: Is there an embedding fros into B?

These problem definitions exemplify how we present pararzet problems. More
formally, the parameterization indicated is the functibattmaps a string encoding a
pair of structuregA, B) to |A|, and any other string to, say, 0. Hetd,| := |7| +

|A] + 3" g, [RA| - ar(R) is thesizeof A; note that the length of a reasonable binary
encoding ofA is O(|A| - log|A|) (cf. [14]).

The theory of parameterized intractability is centerediachthe W-hierarchy, which
consists of the classes W[Q W[2] C --- C W[P]. The class W[P] contains the pa-
rameterized problem@&), ) that are accepted by nondeterministic Turing machines
that are fpt-time bounded with respectt@nd usef(x(z)) - log |z| many nondeter-
ministic bits. We refer to the monographs [17] 11] for morfimation about the
W-hierarchy. It is well-known that, whed is a decidable class of structures, the prob-
lemsp-HoM(.A) andp-EMB(.A) are contained in W[1]; whepl is the e.g. class of
cliques, these problems are W[1]-hard and hence W[1]-cetapinder fpt-reductions.

Parameterized logarithmic space

A Turing machine iparameterized logarithmic space bounded (with respeef tin
short, pl-space bounded (with respect &) if on inputz € {0,1}* it runs in space
O(f(k(z)) + logn), wheref : N — N is some computable function. The class
para-L (para-NL) contains the parameterized problé@s:) such that) is decided

1Usually polynomial time is allowed to computebut as we are interested in parameterized logarithmic
space we adopt a more restrictive notion as [12]. Naturamaterizations are often simply projections.



(accepted) by a (non)deterministic Turing machine that-space bounded with re-
spect tox. Obviously,

para-LC para-NLC FPT C W[P] C para-NP

Remark 2.4. Allowing in the above definition spacg(«(x)) - log|z| gives strictly
larger classes known as (the stronlgy uniform versions &faXd XNL. These classes
are likely to be incomparable with FPT: they do not contai kirless P= NL and
contain problems that are even AW[SAT]-hard under fpt-rduns. We shall not be
concerned with these classes here and refer the interesiddrrto[[6_12] for proofs
of the mentioned facts and further informatidn.|[15] givemg general account of the
para- and X-operators.

Let x be a parameterization. A functiafi : {0,1}* — {0,1}* is implicitly pl-
computable (with respect to) if the parameterized problem

BITGRAPH(F')

Instance: Atriple (z,4,b) wherex € {0,1}*,i > 1, andb € {0,1}.
Parameter: k(z).

Problem: DoesF(x) have lengtHF(z)| > ¢ andith bit equal tah?

is in para-L. The following is straightforwardly verified asthe classical setting of
logarithmic space computability.

Lemma 2.5. Let x, k' be parameterizations and I€t, F’ : {0,1}* — {0,1}* be
implicitly pl-computable with respect toandx’ respectively. Thef” o F' is implicitly
pl-computable with respect to.

Let (Q, k), (Q’, k") be parameterized problems. p@\-reductionfrom (Q, ) to
(Q', k') is a reductionR : {0,1}* — {0,1}* from Q to Q' that is implicitly pl-
computabIB with respect tox and such that there exists a computable funcfion
N — Nsuch thats’ o R < fo k. We write (Q,x) <p (Q,x) to indicate that
such a reduction exists. We writ€), k) =p (Q’, ') if both (Q, x) <p (Q’, ") and
(@', K) <pi (@, K).

3 Classification

Theorem 3.1(Classification Theorem)Let A be a decidable class of structures of
bounded arity such thabre(.4) has bounded treewidth.

1. If core(A) has unbounded pathwidth, then
p-HOM(A) =p p-HOM(T™).

2. If core(A) has bounded pathwidth and unbounded tree depth, then
p-HOM(A) =, p-Hom(P™).

2 |t is routine to verify thatF is implicitly pl-computable if and only if it is computableyta pl-space
bounded Turing machine with a write-only output tape. Odinitéon is equivalent to the ones in [15,6.112].



3. If core(.A) has bounded tree depth, then

p-HOM(A) € para-L

Remark 3.2. If A is assumed to be only computably enumerable instead of algleid

then the theorem stays true understanding all mentiondags in a suitable way as
promise problems. If no computability assumption is plaoed4, then the theorem
stays true in the non-uniform setting of parameterized derify theory (cf. [11]).

We break the proof into several lemmas.

To prove statement (3) of Theorém13.1 we show that a strucfuree depthv can
be characterized, in a sense made precise, by an exisfesti@rder sentence gfuan-
tifier rankw + 1, and that model-checking such sentences can be done in g@rézed
logarithmic space. A proof can be found in Secfiod 3.2.

Lemma 3.3. AssumeA is a decidable class of structures of bounded arity such that
core(A) has bounded tree depth. TherfHoM(.A) € para-L

To prove statements (1) and (2) of Theorfeni 3.1 we need to déahamomor-
phism problems for classe$ that are not necessarily decidable. Slightly abusing no-
tation, we sayp-Hom(A) <p p-Hom(A") for arbitrary classes of structures A’ if
there is a implicitly pl-computableartial function F' that is defined on those instances
(A,B) of p-HoM(A) with A € A and maps them to equivalent instan¢as, B')
of p-Hom(A") with A’ € A’ such thafA’| is effectively bounded ifA|. By saying
that a partial functiorf” is implicitly pl-computable with respect to a parametetiza
x we mean that there are a computalfle N — N and a Turing machine that on
those instancegr, i, b) of BITGRAPH(F') such thatF' is defined onz, runs in space

O(f(k(x)) + log|z|) and answergx, b, 7) é BITGRAPH(F); on other instances the
machine may do whatever it wants.

The following lemma takes care of the reductions from leftight in statements
(1) and (2) of Theorem 3|.1.

Lemma 3.4. Let A be a class of structures arfd C 7 be a computably enumer-
able class of trees. Assume theraisce N such that every structure i has a tree
decomposition of width at mogtwhose tree is contained iR. Then,

p-HOM(A) <p p-HOM(R™).

Proof. Let (A,B) with A € A be an instance of-Hom(A). EnumeratingR,

test successively foI' € R whether there exists a width w tree-decomposition
(T, (X:)wer) Of A. SinceA € A this test eventually succeeds, and the time needed
is effectively bounded in the parametéx|. With such a tree-decomposition at hand
produce the instancgl*, B') of the problemp-HoM(R*) where the structur®’ is
defined as follows. Writelom(f) for the domain of a partial functiorfi; two par-

tial functionsf andg are compatibleif they agree on arguments where they are both
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defined.

B’ := {f]| fisapartial homomorphism from to B and|dom(f)| < w};
EB = {(f,9) € B" x B"| fandg are compatiblg;
CE'" = {feB'|dom(f) =X}, foreveryteT.

Suppose thab is a homomorphism fronA to B. Then the mapping’ : T — B’
defined byh/(¢t) = h | X is straightforwardly verified to be a homomorphism from
T* toB'.

Conversely, leth’ be a homomorphism fro™* to B’. Then,//(¢) is a partial
homomorphism fromA to B with domainX;. SinceT is connected the values bf
are pairwise compatible. Henée:= (J, . #'(t) is a function from J,. X; = A to
B. To seeh is a homomorphism, consider a tugle, ... ,a,) € R* for somer-ary
relation R in the vocabulary ofA. Then{ay,...,a,} is contained in some bag;
since it is a clique in the Gaifman graph Af(cf. [3, Lemma 4]). Butx’(t) maps this
tuple to a tuple inkB, so the mapping does as well. O

For later use we make the following remark concerning thevalpooof.

Remark 3.5. The previous proof associates with a homomorphigitom A to B the
homomorphisnt’ from T* to B’ that maps to & | X;. This associatioh — h’

is injective because every € A appears in some bag;. It is also surjective: a
homomorphisnt’ from T* to B, is associated witth := J,., //(t); the previous
proof argued that is a homomorphism fronA to B. Hence, there is a bijection
between the set of homomorphisms fréato B and the set of homomorphisms from
T* toB'.

At the heart of the proof of Theorelm B.1 is the following semgeeof reductions,
proved in the following subsection. The appropriately mfed reader will recognize
elements from Grohe’s proaf [20] as well as from Marx|[24, lrean5.2].

Lemma 3.6 (Reduction Lemma)Let.A be a computably enumerable class of struc-
tures of bounded arity, lef be the class of Gaifman graphsafre(.A), and letM be
the class of minors of graphs o Then

p-HOM(M™) <y p-Hom(G")

(
<p p-HOM(core(A)*)
<p p-HoM(core(A))
<pl p-HOM(A).

With the Reduction Lemma, we can give the proof of the Classifin Theorem.

Proof of Theoreri 3]1The reduction from left to right in statements (1) and (2} fol
low from Lemma3.4. The reductions from right to left followofm the Reduction
Lemma[3.6 via the Excluded Tree Theoréml 2.3 (2) and the Erduehath Theo-
rem[2.3 (3). Statement (3) is proved as Lenima 3.3. O

11



3.1 Proof of the Reduction Lemma

As a consequence of the assumption thas computably enumerable, each of the sets
M*, G*, core(A)*, andcore(.A) are computably enumerable. The statement of the
theorem claims the existence of four reductions. The lastfomp-Hom(core(A))

to p-Hom(A) is easy to see. We construct the first three in sequence.

Lemma 3.7. LetG be a class of graphs which is computable enumerable, antet
be the class of minors of graphsédh Then

p-HOM(M™) <p p-HOM(G™).

Proof. Let (M*, B) with M* € M™ be an instance of the problemHoM(M*).
Enumeratingg, test successively foG € G whetherM is a minor of G. Since
M € M this test eventually succeeds, and then compute a minorzniegm M to
G. The time needed is effectively bounded in the paramatEr. The reduction then
produces the instand&*, B’) of p-HoM(G*), whereB’ is defined as follows. Lef
denote the sdt), ., u(m).

B = (M x B)U{Ll};
E® = {((m1,b1), (ma,b2)) | [m1 = ma = by = by and
[(m1,m2) € EM = (by,bs) € EP]}
U{(Lb) |V e BYUu{(,L1) |t e B'Y;
CP' = {(m,b)|beCB}, ifme Mandve pu(m);
CP = {1}, ifvé¢l

Suppose that is a homomorphism froMi* to B. Leth’ : G — B’ be the map
that sends, for eaclw € M, the elements in(m) to (m, h(m)) and that sends all
elements ¢ I to L. Thenh' is a homomorphism frors* to B'.

Suppose thag is a homomorphism fron* to B’. We show thay is of the form
h’ for a homomorphisnik from M* to B. First, by definition of th(—:Cf", it holds that
g(v) = Lforallv ¢ I. Next, letv, w be elements of a sei(m), with m € M. The
definition of theCP" ensures thag(v) andg(w) have the form(m,-). Sinceu(m)
is connected, the definition dfB’ ensures thag(v) = g(w). Finally, suppose that
(m1,ma) € EM, let(my,b;) be the image ofi(m1) underg, and let(ma, b2) be the
image ofu(mz) underg. We claim that(by,b2) € EB. But there exist; € p(mq)
andv, € p(my) such thav;, vo) € ES. We then havég(v, ), g(v2)) € EB and the
definition of EB’ ensures thafh,, b,) € EB. O

Lemma 3.8. Let.4 be a computably enumerable class of structures of boundgd ar
and letG be the class of Gaifman graphs.df Then

p-HOM(G™) <pi p-HOM(A™).
Proof. Let (G*,B) with G € G be an instance of-Hom(G*). Similarly as seen

in the previous proof, one can compute fr@na structureA € A whose Gaifman
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graph isG; in particular,A = G and we writeG = (A4, ES). The reduction outputs
(A*,B’) whereB' is the structure defined as follows.

B/ = A X 37
C{ll?’l — {a} % Cf,
RB, = {((ab b1)7 . (aar(R), bar(R))) c (A X B)ar(R) |

ac R*andforalli,j € [ar(R)] : if a; # aj, then(b;,b;) € EB},
for R € T wherer denotes the vocabulary &. We have to show
(G*,B) € p-HOM(G") <= (A*,B’) € p-Hom(A").

To see this, assume first thatis a homomorphism fronG* to B. We claim
thath/(a) := (a,h(a)) defines a homomorphism from* to B'. If o/ € CA", then
a’ = a andh(a’) € CB sinceh is a homomorphism; by definition thet(a’) =
(a,h(a)) € CB'. Henceh’ preserves the symbolg,. To show it preserve® € T,
let (a1, ..., aa(r)) € R™. We have to shovi(ai, h(a1)),. .., (@a(r), M(aa(r)))) €
RB’, or equivalently, for alk, j € [ar(R)] with a; # a; that(h(a;), h(a;)) € EB. But
if a; # a;,then(a;, a;) € E€ by definition of the Gaifman graph artl(a;), h(a;)) €
EP® follows from h being a homomorphism.

Conversely, assume that is a homomorphism fromA* to B’. By definition
of CB' is follows thath/(a) = (a,h(a)) for some functiom, : A — B such that
h(a) € CB. We claim thath is a homomorphism fronG* to B. It suffices to show
(h(a),h(a’)) € EB whenever(a,a’) € E€. Butif (a,a’) € ES, thena # o
and there exisR € o and(ay,...,a.(r)) € R® andi,j € [ar(R)] such thata =
a; anda’ = a;. Then((a1,h(a1)), .- ., (Gar(r): h(aa(r)))) € RP becausd is
a homomorphism. Since; # a; the definition of EB" implies (h(a;), h(a;)) =
(h(a),h(a’)) € E® as desired. O

Recall that thedirect productA x B of two 7-structuresA and B has universe
A x B and interprets a relation symbBle 7 by {((a1,1), - - -, (Gar(r), bar(r))) | @ €
RA )b e RB}.

Lemma 3.9. Let A be a class of structures. Then
p-HoM(core(A)*) <p p-HOM(core(A)).

Proof. Let (D*, B) with D € core(.A) be an instance gf-Hom(core(4)*). Let B,
be the restriction oB to the vocabulary oD. The reduction produces the instance
(D, B’) of the problenp-HoM(core(A))), where
B := ({(d,b) e Dx B|be CPL"P".
Suppose that is a homomorphism fro* to B. Then, the mapping’ : D — B’

defined byh’(d) = (d, h(d)) is straightforwardly verified to be a homomorphism from
DtoB'.
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Suppose thag is a homomorphism from to B’. Write 7; andx, for the projec-
tions that map a pair to its first and second component respbctThe composition
(71 o g) is @ homomorphism fror to itself; sinceD is a core(m o g) is bijective.
Hence, there exists a natural > 1 such thatm; o g)™ is the identity onD. Define
h asg o (m o g)™ . Clearly,h is a homomorphism fronD to B/, som, o h is a
homomorphism fronD to B... We claim thatrs o & is also a homomorphism frofd*
to B. Observe thatr; o h is the identity onD. In other words, for every € D there
is by € B such thati(d) = (d,bs). By definition of B’ we getb, € CP, establishing
the claim. O

Observe that the mag constructed in the above proof is an embedding. Hence we
have the following corollary that we note explicitly for éatuse.

Corollary 3.10. Let.4 be a class of structures. Then

p-HoM(core(A)*) <p p-EMB(core(A)).

3.2 Bounded tree depth and para-L

Let 7 be a vocabulary.First-order 7-formulasare built fromatomsRz,x = z by
Boolean combinations and existential and universal fieation. Herez is a tuple
of variables of length matching the arity & We write o(Z) for a (first-order)r-for-
mula ¢ to indicate that the free variables gnare among the componentsof The
quantifier rankqr(y) of a formulay is defined as follows:

qr(p) =0 for atomsyp;
ar(—e) = ar(y);

ar(p Av) = ar(p vV ¢) = max{qr(e),qr(y)};
qr(3zep) = ar(Vap) = 1+ qr(e).

The following is standard, but we could not find a referenodnslude the simple
proof for completeness.

Lemma 3.11. The parameterized problem

p-MC(FO)

Instance: A structureA, a first-order sentence.
Parameter: ||

Problem: AEp?

can be decided in space(|¢| - log |¢| + (ar(¢) +ar(y)) - log |A|), whereqr(y) is the
quantifier rank ofp andar(y) is the maximal arity over all relation symbols ¢n

Proof. We give an algorithm expecting inputd, ¢, o) wherey is a formula andv

is an assignment fap in A, that is, a map from a superset of the free variableg of
into A. The algorithm determines whethersatisfiesp in A. It executes a depth-first
recursion as follows.
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If » is an atomRy the algorithm writes the tuple(y) € A2 (%) on the worktape
and checks whether it is containedi by scanning the input; it then erases the tuple
and returns the bit corresponding to the answer obtained.

If ¢ = (¥ Ax), the algorithm recurses af(with the same assignment); upon com-
pleting the recursion it erases all space used in it, stolgsfar the answer obtained,
and then recurses oy1 upon completion it erases the space used in it and retuens th
minimum of the bit obtained and the stored bit. The cases (¢ V x) andp = -
are similar.

If o(z) = Jyv(z,y) the algorithm loops through € A and recurses ot with
assignmentv extended by mapping to b; it maintains a bit which is intially 0 and
updates it after each loop to the maximum of the bit obtaimeithé loop; after each
loop it erases the space used in in it. Upon completing the iioeturns this bit, and
restricts the assignment back to its old domain withputhe caser(zZ) = Yy (Z, y)
is similar.

When started on a sentengeand the empty assignment, all assignmentsc-
curing in the recursion have cardinality qr(y), so can be stored in spac¥qr(y) -

(log || +1og |A|)). Each recursive step adds spad@og |¢|) to remember the (posi-
tion of) the current subformula plus one bit ploglog | A|) for the loop orb € A inthe
quantifier case and pld3(ar(¢)-log |A|) in the atomic case. From these considerations
it is routine to verify the claimed upper bound on space. O

The canonical conjunctiorof a structureA is a quantifier-free conjunction in
the variablest, for a« € A; namely, for every relation symbat of A and every
(a1,...,0aR)) € RA it contains the conjuncRz,, “Ta,q - ILiS easy to see that
the canonical conjunction & is satisfiable in a structuB if and only if there is an
homomorphism fronA to B.

Proof of Lemm&3]3Choosew € N such thatd(core(A)) < w forall A € A. Given
a structureA we compute a sentenggy, of quantifier rank at most + 1 such that for
all structuresB, the sentence, is true inB if and only if there is a homomorphism
from A to B. This is enough by Lemma3111.

Given A we checkA € A running some decision procedure fdr If A ¢ A we
letpa = Jdz - = z. If A € A, compute the cord, of A and compute for every
connected component of the Gaifman graph oA, some rooted tre®& with vertices
T = C and height at mosb such that every edge of the Gaifman grapki@§#° is in
the closure ofT.

Consider a componeidt and letT be the rooted tree computed fot. Forc €
C = T we compute the following first-order formula.. We use variables. for
ce C =T.If cisaleaf ofT, let . be the canonical conjunction ()PC>A0 whereP,
is the path inT" leading from the root of T to c¢. For an inner vertex define

e = N\g3Tq Pa;

whered ranges over the successorscofThe following claims are straightforwardly
verified by induction along the recursive definition of thes.

Claims.For everyc € C:
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1. the quantifier rank op. equals the height of the subtreeBfrooted at;
2. the free variables @b, are{z, | d € P.};

3. . is satisfiable ifB if and only if so is the canonical conjunction ¢f'(c))Ao
whereC/(c) containsP, and the vertices in the subtree rooted.at

Letting r range over the roots of the tre#schosen for the connected components
C of Ay, we set

oA =N\, Iz, o

By Claim 2 this is a sentence and by Claim 1 it has quantifiek etrmostw + 1. It
is true inB if and only if every3z,.¢, is true inB, and by Claim 3 this holds if and
only if the canonical conjunction ofC(r))A¢ is satisfiable inB for every connected
component. NotingC(r) = C, this means that every”)*° maps homomorphically
to B, and this means that, maps homomorphically t8. Recalling thatA is the
core of A, we see that this is equivalent fo mapping homomorphically t&. O

Define a{ A, 3}-sentence to be a first-order sentence built from atomsuoatipn,
and existential quantification. The previous proof revedleat, given a structurd
with td(core(A)) < w, there exists A, 3}-sentencep of quantifier rank at most
w + 1 thatcorrespondgo A in that, for all structure®, the sentence is true onB if
and only if there is a homomorphism fromnto B. We show that the existence of such
a sentence in fact characterizes tree depth, in the folppiecise sense.

Theorem 3.12. Letw > 0, and letA be a structure. It holds thatl(core(A)) < w if
and only if there exists &A, 3}-sentence that corresponds té\ with qr(¢) < w -+ 1.

Proof. The forward direction follows from the previous proof. Fhetbackward di-
rection, lety be a sentence of the described type. We may assume that ableas
quantified twice inp and that no equality of variables appearijrby renaming vari-
ables and replacing equalities of the fosrm- v with the empty conjunction. Let, be
the prenex sentence where all variables that are exisigmfisntified ing are existen-
tially quantified in¢,,, and the quantifier-free part @i, is the conjunction of all atoms
appearing inp. Let C be a structure whose canonical conjunction is the quanfifer
part of¢,. Clearly,¢, and the original are logically equivalent; it follows thaf and
A are homomorphically equivalent [4]. It thus suffices to shbattd(C) < w.

View the sentence as a directed graph, and define an acyclic directed gfaph
the variables o® where the directed edde, v') is present if and only if the node for
Jv is the first node with quantification occurring above the nfmledv’. Let o be an
arbitrary atom fromp,, (equivalently, fromyp). Since¢ is a sentence, if one traverses
starting from the root and moving tg one will pass a nodev for each variable of .
Letwvy,..., v, be the variables af in the order encountered by such a traversal. The
edgeqvy,v2), (v2,v3),. .., (vk—1,vk) are in the transitive closure @b, and hence in
the closure of the graph underlying (where a node is a root in the graph iff it is
parentless iD). Sinceqr(¢) < w + 1, each directed path iP has length less than or
equal tow, and so the graph underlyifg witnesses thatd(C) < w. O

We now show the following result on the embedding problem.
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Theorem 3.13. AssumeA is a decidable class of structures of bounded arity and
bounded tree depth. TherEmB(A) € para-L

The proof of this result uses color coding methods, moreigeég it relies on the
following lemma (se€ [17, p.349]).

Lemma 3.14. For every sufficiently large, it holds that for allk € N and for every
k-element subseX of [n], there exists a primg < k?logn andgq < p such that the
functionh,, , : [n] — {0,...,k* — 1} given by

hp.q(m) == (q - m modp) modk?
is injective onX.

For later use we give the main step in the proof of Thedrem| 8s1a separate
lemma. Call a structureonnectedf its Gaifman graph is connected.

Lemma 3.15. For every decidable class of connected structudese have
p-EMB(A) <p p-HOM(A™).

Proof. Map an instanc¢A, B) to (A*, B..) whereB, is defined as follows. We as-
sume thaB = [|B|]] andA = [|A|]. Let F be the set

{gohpqlg:{0,...,|A]* =1} - Aandg < p < |A|*log|B|}.

Here,h, , : [|B]] — {0,...,|A|> — 1} is the function from Lemm@a3.14 (for := | B|
andk := |AJ). Forf € F, let B; be the expansion dB that interprets everg,, a €
A, by f~'(a) C B and definéB.. as the disjoint union of the structurBs.. We verify

(A,B) € p-EMB(A) <= (A", B.) € p-HOM(A").

Note that the set€ B~ a € A, are pairwise disjoint, so every homomorphism fram
toB. isan embedding. And becauag is connected, it is an embedding into (the copy
of) someBy, so it corresponds to an embedding frdninto B. Conversely, assume

is an embedding oA into B. By Lemmd3.11 there age ¢ with ¢ < p < |A|? log | B]

such that:,, , is injective on the image af. Then there existg : {0, ..., |A[* —1} —
A such thatg o h,, , o e is the identity onA. Thenf := go h,, € F ande is an
embedding ofA* into B¢ and hence int@... O

This lemma together with Corollafy 3]10 implies:
Corollary 3.16. Let.4 be a decidable class of connected cores. Then
p-HOM(A") =p p-EMB(A).

Proof of Theorerh 3.13Let A accord the assumption.

Claim. There exists a decidable class of connected structire§ bounded tree depth
such thap-EmB(A) <p p-EMB(A').
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Notep-EmB(A") <p p-HOM((A")*) by the previous lemmaandHom((A")*) €
para-L by Lemm&3]3. We are thus left to prove the claim.

AssumeA has tree depth at mogtand letE be a binary relation symbol not oc-
curing in the vocabulary of anA € A. Fix a computable function that maps every
A € Ato a family of height< d rooted tree§T¢ )¢ with Tc = (C, ET<  rootTc)
whereC ranges over the connected components of the Gaifman g¥&ah of A, and
such thatC')(A) is a subgraph of the closure @.. DefineA’ to be the expansion
of A interpretingE by | J ET< U E’ whereE' is defined as follows. It contains edges
between the root ol';, and the roots of the oth&' where( is the lexicograph-
ically minimal component (according to the encoding&f. ThenA’ is connected
and has tree depth at mast- 1. Clearly, A’ := {A’ | A € A} is decidable. The
map(A,B) — (A’,B’), whereB’ is the expansion oB interpretingE by B2, is a
pl-reduction fronp-EmB (A) to p-EmB(A"). O

4 The class PATH

We present the complexity class PATH to capture the comiglexip-Hom(P*). This
class was discovered very recently by Elberfeld etlall [1&ha different angle of
motivation; they refer to this class as para-Mlg]. Among other results, they show
that the following problem is complete for this class: chéci digraph contains a
path from a distinguished vertexo another distinguished vertéxf length at mosk;
here,k is the parameter. We ugest-PATH to denote the corresponding problem for
undirected graphs.

p-st-PATH
Instance: A graphG, s,t € G andk € N.
Parameter: k.
Problem: Is there a path itz from s to ¢ of length at mosk ?

Definition 4.1. The class PATH contains a parameterized prokl@m:) if there are a
computable functiorf : N — N and a nondeterministic Turing machine that accépts
is pl-space bounded with respecttoand useg (x(x)) - log |z| many nondeterministic
bits.

The following is straightforward to verify.
Proposition 4.2. The complexity clagBATH is closed under pl-reductions.
Recall that, using the notation in [15], one has
FPT = para-PC W[P] C para-NP
It follows immediately from the definitions that
para-LC PATH C para-NL

The class PATH is natural in that it has a natural machineatharization that is anal-
ogous to the one of W[P]. We shall see that it captures the ity of many natural
problems.
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Theorem 4.3. p-Hom(P*) is complete foPATH under pl-reductions.

Thatp-Hom(P*) is contained in PATH can be seen by the guess-and-check para-
digm. We find it informative to present such algorithms in anpaitational model
tailored specifically for this kind of nondeterminism.

Definition 4.4. A jump machinas a Turing machine with an input tape and a special
jump state When the machine enters the jump state the head on the mpeiig set
nondeterministically on one of the cells carrying an inptitlwe say that the machine
jumps tothe cell. When this occurs, no other head moves or writes laadtate is
changed to the starting state. Acceptance is defined as, tisagls, such a machine
accepts an input if there exists a sequence of nondetetmijusp choices under
which the machine accepts. Amective jump machine defined similarly to a jump
machine, but never jumps to a cell that has already been jdiope

For a functionj : {0,1}* — N, we say that a jump machine (an injective jump
machine) useg many (injective) jumps if for every inputz and every run or, it
enters the jump state at mggt:) many times.

The idea is that a jump corresponds to a guess of a number imheren is the
length of the input. Observe that one can compute in logaittspace the number
m € [n] of the cell it jumps to by moving the head to the left and steggancreasing
a counter.

Lemma 4.5. Let(Q, k) be a parameterized problem. The following are equivalent.

1. (Q, k) € PATH.

2. There exists a computabfe N — N and a jump machiné using(f o k) many
jumps that accept® and is pl-space bounded with respeckto

3. There exists a computabfe: N — N and an injective jump maching using
(f o) many injective jumps that accefggsand is pl-space bounded with respect
to k.

Proof. (1) implies (2): assume (1) and choasend according Definitiof 4]1. Given
an inputx we simulateA by a jump machind® that makes use of an extra worktape.
WhenA enters its guess stalemoves its head on the extra worktape right and con-
tinues the simulation of in states, whereb € {0, 1} is the bit scanned by this head.
In case the head scans a blank cBlktores the numbey of the cell its input head is
scanning and then performs a jump, say to cekt [|x|]. It computes the binary code
of m of length[log(]z| + 1)]. It overwrites the content of the extra worktape by this
code and sets its head on the firstibif the code, moves the input head back to cell
j and continues the simulation éfin states;. ThenB makes at mosf («(x)) many
jumps.

(2) implies (3): letA andf accord (2). To get a machine according to (3) we intend
to simply simulateA on an injective jump machine. This works providédloes not
have accepting runs with two jumps to the same cell. To enthisecondition we
replaceA by the following maching\’. Intutively, if A jumpsk times thenA’ jumps
2k times and accepts only if the8é& jumps encode pairel, m1), . .., (2k, may); the
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simulation of theith jump of A is done by jumping to théms;, m2;1)th cell. Details
follow.

The machine\’ on z first computes: := f(x(x)): notex(xz) can be computed
in spaceO(log |x|) by our convention on parameterizations; ttkecan be computed
from x(z) running some machine computirfgon x(z) — this needs additional space
which is effectively bounded in the parametér).

ThenA’ checks tha2k - [/n] < nwheren := |z|. If this check fails, A’ simulates
some fixed decision procedure f@r (note that (2) implies thaf) is decidable). Ob-
serve that in this case > Q(1/n), so the decision procedure runs in space effectively
bounded ik and hence in the parameter. Othervdge [/n]| < n andA’ simulates
A as follows. Throughout the simulation it maintains a coufae jumps that initially
is set to 0. It will be clear that this counter always storesimber< 2k.

When A jumps, A’ jumps twice and computes the two numbers of the cells
it jumped to. It interprets;, b as encoding pair&,, ma), (iv,ms) € [2k] X [[v/n]].
More precisely;, := [a/[+/n]] is the least such that - [\/n| > a andm, :=
14+ a— (ig — 1) - [/n]; similarly for (ip,mp). If (iq, mq) OF (ip,mp) is NOt in
[2k] x [[+/n]], thenA’ halts and rejects.

Fori the value of the jump counte&’ checks that + 1 = i, and thati + 2 = 4.
Then it computes: := m,, - [\/n]| + m; and checks that € [n]. ThenA’ increases
the jump counter by two, moves the input head to gelichanges to the starting state
and resumes the simulation &f

(3) implies (1): choose a machideand a functionf according (3) and define a
machineB as follows. On it first computest := f(x(x)) (within allowed space as
seen above) and := |z|. If k£ > logn it runs some fixed machin@ deciding@ and
answers accordingly. Sinde > logn this needs space effectively boundediand
thus in the parameter. If otherwige< logn, thenB simulatesA as follows. During
the simulation it maintains a s&f containing at most natural numbers all smalléf
— intuitively, this set contains fingerprints of the jumpéasolnitially, X = 0.

To begin,B guesses a pailp, ¢) with ¢ < p < k*logn and stores it. Note that
this requires only)(log k+loglogn) < O(loglog n) nondeterministic bits and space.
ThenB starts simulatingy. WhenA jumps,B guesse$log(n+1)| many bits encoding
anumbem € [n]. It computesf := h, ,(m) and checks thaf ¢ X. Then it adds
f to X, moves the input head to theth input bit, changes to the starting state and
continues the simulation c.

Obviously, if A jumps at most times, therB uses at mosD(log logn + ¢logn)
nondeterministic bits. To see th&truns in allowed space, observe that the “finger-
print” f can be computed in spaee(logn): firstb := ¢gm modp can trivially be
computed in space polynomial Ing p and this is spac@loglogn)°™ < O(logn);
secondf = b mod k2 can trivially be computed in space polynomia(lng k+log b)
and the space usage heflisg log n)°™).

We show thaiB acceptse if and only if x € Q. If B acceptse then either because
Q accepts: (and then triviallyz € @) or becausé\ reaches an accepting state when it
jumps to cells numberenh, . .., m¢; note that the fingerprints of these cell numbers
are pairwise different, and hence so are the numbers. Tipikeisx € Q. Conversely,
if x € @Q, then there is an accepting run Afon z with ¢/ < k& jumps to pairwise
different cellsmy, ..., m,. By Lemma3.14 there exigt < p < k%logn such that
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hyp.q is injective on{m, ..., m,}. ThenB accepts when first guessing some such pair
(p, ¢) and then strings encodings, . . . , my. O

Theorem 4.6. Let A be a decidable class of structures of bounded arity and ofiled
pathwidth. Them-EMB(A) € PATH.

Proof. Choose a constant € N bounding the pathwidth ofl. We use a machin&
with injective jumps to solve-EMB(.A). The result will then follow from Lemmia4.5.

Given an instancéA, B) of p-EmB(.A) the machine first computes a width w
path-decompositiofiPy,, (X;);cx)) of A such thatX; € X, or X;; € X; for all
i € [k — 1]; we further assume that n&; is empty. This is done in space effectively
bounded in the parametgk | and, in particulark is effectively bounded inA|.

It then computes inductively for eaghe [k] a maph; from X; into B that is
a partial homomorphism from into B. To start, the machin& jumps|X;| times
to guess elements, ... b x,| € B. It checks that the functioh; : X; — B that
maps theith element ofX; to b; defines a partial homomorphism fros into B.
Having computed:; the machine compute’s, . ; as follows. If X;.; C X;, then
hit1 = h; | X;11 is the restriction ofh; to X,.,. OtherwiseX,;;; 2 X;, say
Xit1 = X; U{aq,...,aq}; thenA jumpsd times to guessy, ... by € B and checks
thath; 1 := (h; | X;) U{(a;,b;) | j € [d]} is a partial homomorphism fromA into
B. In the end, if no check fails) halts accepting.

This procedure can be implemented in pl-space: the spader® the path de-
composition is bounded in the parameter, and storing /oneeeds space roughly
w - (log |A| + log |B]).

Itis routine to check thah makes exactlyA| many jumps, and that it accepts only
if |J; hi is @ homomorphism fromA to B. Since the machine has injective jumps it
accepts in fact only if this homomorphism is an embeddingav@csely, it is obvious
that the machine accepts if an embedding frArmto B exists. O

Proof of Theorerh 413To seep-HoM(P*) € PATH, just consider the machinfe de-
scribed in the proof of Theoreim 4.6 as a machine with jumpeatsof as a machine
with injective jumps.

To see thap-Hom(P*) is hard for PATH under pl-reductions, I1&f), k) € PATH
and choose a Turing machidewith jumps according Lemnia 4.5 (2) that acce@ts
We can assume that there are computgble: N — N such thath onx € {0,1}* runs
in spaceD(g(x(x)) + log |z|) and makes on every run exacifyx(z)) many jumps.

Fix x € {0,1}* and setk := k(x) andn := |z|. Let Aget be the deterministic
Turing machine defined as but with the jump state interpreted as a rejecting halting
state. Observe thatqe (and A) has at mosin := 29(%) . p¢ configurations where
¢ € N is a suitable constant. Let,...,c,, be a list (possibly with repetitions) of
all configurations ofA\4e; 0N = Whose state is the starting state. Assume ¢has the
starting configuration afiger. FOri, j € [m], sayi reachesj if the computation of\get
started orr; (with z on the input tape) reaches in at maststeps a configuratioa
with the jump state, ane; is obtained front by changing the jump state to the starting
state and changing the position of the input head to somt&anpcell storing an input
bit. Further, calk € [m] acceptingf Age Started ore; accepts within at most steps.
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Consider the structuB,. given by

By = [f(k) +1] x [m],
EB: .= the symmetric closure of
{((,5), (i +1,57) | i € [f(K)], j reacheg},
o = {(LD)},
CP» = {i} x [m]for2 <i< f(k),
Clis = {(f(k)+1,5)] s accepting.

It is clear that there exists a homomorphism frm(k)+l to B, if and only if A
acceptsz, that is, the map — (P;(H(z))+1vBr) is a reduction from(Q, x) to
p-HOM(P*). The new paramet¢P}(N(m))+1| depends only or(z). The reduction is
implicitly pl-computable: first observe that the numbg(&) andm can be computed
from z in pl-space. A counter for numbers uprtoneeds only spac@(g(k) + logn).
Hence one can tell whether or niateacheg in pl-space simply by simulatingyge; for
at mostm many steps. Similarly, this space is sufficient to tell wieethr not a given
Jj € [m] is accepting. O

The following result gives information about fundamentailgems: the problems
p-EMB(B), p-EMB(C), andp-EMB(?) are the parameterized problems of determin-
ing if an input graph contains a simple directeghath, a simple undirectel-cycle,
and a simple directett-cycle, respectively; these problems are denoted respéchy
p-DIRPATH, p-CYCLE, andp-DIRCYCLE by Flum and Grohe [16].

Theorem 4.7. The following parameterized problems are completeHAFH under
pl-reductions:

p-st-PATH,

p-HOM(B), p-EMB(?)
p-HOM((g, p-EMB(Cg
p-Hom(C), p-EmB(C)

Proof. By Theoreni 4.6 all embedding problems are contained in PAF®t.the ho-
momorphism problems anghst-PATH the same argument works (see the proof of
Theoreni 4.B). We are thus left to prove hardness.

Recall Examplé 2]1. Corollafy 310 implies thﬁlHOM(B*) <pl p-EMB(B)
and also thap-HOM(?*) <l p-EMB(?). Since we trivially havep>-Hom(A) <p
p-HoM(A*) for all classesA, we conclude thap—HOM(?) <pl p—EMB(?) and
also thatp—HOM(?) <l p—EMB(?). For C we similarly getp-HOM(Coda) <pli

p-EMB(Coga) WhereCoqq is the class of odd length cycles. @odd we denote the
class of odd length directed cycles.
It thus suffices to show that the problems

p-HOM(?),p-HOM(?),p-HOM(Codd),p-st-PATH
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are PATH-hard. By Theoreim 4.3, we know thatHom(P*) is hard for PATH. We
give the sequence of reductions

p-HOM(P*) <y p—HOM(?) <pl p-st-PATH <p p—HOM(?odd)
and then show the hardnesgeHoOM(Cogg).

p-HOM(P*) <p p—HOM(?). Let (P}, B) be an instance gi-Hom(P*). The
reduction produces the instan@;,, B') whereB’ is the directed graph with vertices
B’ := [k] x B and edges

EB = {((4,0),(i + 1,0)) |ie[k—1],be CB, ¥ € CB,}.

p-HOM(?) <pl p-st-PATH. Let (IT;:,G) be an instance O}f)-HOM(B). The
reduction produces the instan@’, s, ¢, k + 2) whereG’ has verticess’ := {s,¢} U
([k] x G) and as edges the symmetric closure of

{((ivu)v (Z + 1?”)) | 1€ [k - 1]7 (U,U) S EG}
U ({s} x (1] x @) U ({t} x ([K] x G)).

p-st-PATH <p p-HOM(?odd). Let (G, s, t, k) be an instance of the former prob-
lem; by the previous reduction, we may assume that it is angance if and only if
there is ans-t path of length exactl. We can assume thatis odd (otherwise we take
a new neighbor of the givenas our news). Define the graplia’ with vertices([k] x G)
and edges as follows. Where [k — 1] and(u,v) € E“, there is an edge frorfi, u)
to (i + 1,v); also, there is an edge frofk, t) to (1, s). Then(G, s, t, k) — (C—,z, G’)
is a reduction as desired.

Finally, we show the hardnesspfHoMm(Coqq). By appeal to Lemma 3.9, it suffices
to demonstrate a reductiprst-PATH <p p-HOM(Cgyy). Given aninstanceG, s, ¢, k)
of the former problem of the above form, we deflééas in the previous reduction. The
produced instance i@, G”), whereG” is the expansion of the symmetric closure

of G’ with CS" = {i} x G. O

5 The class TREE

We give a machine characterization of the class of parameteproblems that are
pl-reducible top-HOM(T™).

Definition 5.1. The class TREE contains a parameterized proll@mx) if there are
a computable functiorf : N — N and an alternating Turing machine that accepis
is pl-space bounded with respectdpand used (x(x)) - log || nondeterministic bits
andf(x(x)) co-nondeterministic bits.

The following proposition is straightforward to verify.

Proposition 5.2. The complexity clasBREE s closed under pl-reductions.
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Definition 5.3. An alternating Turing machine with jumpsa Turing machiné using
nondeterministic jumps and a universal guess state (sdienPraries). Itacceptsan
inputz € {0, 1}* if its starting configuration on: is accepting it is already explained
what an accepting halting configuration is, and a non-hgltionfiguration which is
not in the universal guess state (resp. is in the universsdgatate) is accepting if at
least one (resp. both) of its successor configurations @epéag.

Lemma 5.4. Let(Q, ) be a parameterized problem. The following are equivalent.

1. (Q, k) € TREE

2. There exists a computabfe N — N and an alternating Turing machint with
f ok many jumps ang o x many co-nondeterministic bits that accef@sand
is pl-space bounded with respectto

Proof. The implication from (1) to (2) can be seen analoguously éodbrresponding
implication in Lemma&4J5.

Conversely, letA and f accord (2). A machin® according (1) can be obtained
by simulating a jump of\ by existentially guessing a binary string encoding a number
m € [n] and moving the input head to cetl. O

Theorem 5.5. p-Hom(T*) is complete foTREE under pl-reductions.

Proof. (Theoren{5b) We show thatHom(7*) € TREE. Consider the following
alternating Turing machine. Given an instari@ B) of p-Hom(7*), the machine
chooses somee T as a “root” and computes the directed “tré&"with edges directed
away fromt. It existentially guessesX(log |B|) bits encoding) @ € C? and writes
(t,b) on some tape. While the pdit, b) written on the tape is such thahas children
in TV the machine does the following: universally gue®$log |T'|) bits encoding) a
child ¢’ of ¢; existentially gues®’ € B; check that(b,b’) € EP andd’ € C7. The
while loop is left rejecting if this check fails. If the macta leaves the while loop
otherwise, it accepts.

The number of universal guesses is bounded®)l’| - log |T'|). The number of
existential guesses is bounded|y - log | B|. The machine uses space to st@feand
at most two pairs i’ x B, soitis pl-space bounded.

To showp-HoM(7™) is TREE-hard under pl-reductions, let the parameterized
problem(Q, ) be in TREE. Choose an alternating machinavith jumps accord-
ing to Lemmd 5} fo(Q, x). By adding some dummy jumps and dummy universal
guesses we can assume thain everyx and every run on: first makes one universal
guess, then one jump, then one universal guess and so on.ri/flertteer assume that
A onz on every run onr makes exactlyf(«(x)) many jumps and exactly(«(x))
many universal guesses. L&P (A') be the machine obtained fros by fixing the
transition from a configuration with universal guess staté first (second) successor
configuration. Note\ andA! are Turing machines with jumps.

Letz € {0,1}*,k := k(x), n := |z|. Recall the proof of Theoreln4.3. As
there, letey, ..., ¢, enumerate all configurations @éf on = with the starting state;
assume is the starting configuration. Lét},, andA,, be the deterministic machines
obtained formA® andA! by interpreting the jump state as a rejecting halting staoe.
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i,j € [m],b € {0,1} we define what it means that>-reaches;j as in the proof of

Theoreni 4B withh}, in place ofAqethere; calli acceptingf Aj,, (equivalentlyAl,)

started ore; accepts in at most steps without entering the universal guess state.
Recall the notatiol';, from the preliminaries. The reduction outp(nE;( B)

! : k)+1>
whereB is defined as follows.

B := {0, 1}§f(7€)+1 x [ml],
EB .= the symmetric closure of
{((¢.4), (ob,5")) | b€ {0,1},0 € {0,1}=/®_j b-reacheg’},
CP :={(\, 1)}, where) is the empty string
CB .= {0} x [m], for1 < |o| < f(k),

CB .= {(0,j) | j is accepting, for |o| = f(k) + 1.

It is not hard to see tha(t’I"; w41, B) can be computed in pl-space (cf. Proof of
Theoren{4.B). To see this indeed defines a reduction, firehess is a homomor-
phism fromT;i,(k)Jrl to B. As h preserves the unary relations,, for everyo there
is ani, € [m] such thath(oc) = (o,i,). It follows by induction on¢ that for every
o € {0,1}/(®+1=t the configuratior;, is accepting (Definitioh 5]3). Buf, = 1, so
¢i, = c1 is the starting configuration andlacceptse.

Conversely, assumi accepts. We define an accepting configuratignfor every
o € {0,1}=/(W+1: ¢y is the starting configuratiom . All other ¢,s are going to be
the result of a jump (are a successor of a configuration inutmpjstate). Assume,
is already defined. Thety is the starting configuration or results from a jump. In both
cases the machinereaches frona, deterministically a universal guess state with two
accepting successot§, ¢;. For everyb € {0, 1}, A reaches deterministically fron
either an accepting halting configuration or a configuratiothe jump state. In the
first case let,;, be this accepting halting configuration and in the seconitl et some
accepting successor of the jump. For everghoosei, € [m] such thate, = ¢;, .

Theno — (o, i) defines a homomorphism frof; , ., to B. O

Theorem 5.6. Let A be a decidable class of structures of bounded arity and bednd
treewidth. Themp-EmMB(A) € TREE

Proof. Let.4 accord the assumption. We proceed as in the proof of TheorEsn 3

Claim. There exists a decidable class of connected strucidtres bounded treewidth
such thap-EMB(A) <p p-EmB(A’).

Notep-EMB(A’) <p p-HOM((A’)*) by Lemmd3.1B, the latter problem pl-reduces
to p-Hom(T*) by the Classification Theorem, apdHom(7*) € TREE by Theo-
rem[5.5. We are thus left to prove the claim.

AssumeA has treewidth at mosb. Fix a computable function that maps every
A € Atoawidth< w + 1 tree decompositiofiT, (X:):cr) Of A such thai X;| > 2
forallt € T,and X, N X; # 0 forall (s,t) € ET. Let A’ be the expansion dA by
interpreting a new binary relation symba&lby J,. X2, Then(T, (X;)er) is also
a tree decomposition A’ and A’ is connected. Clearlyd’ := {A’ | A € A} is
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decidable. The mapA, B) — (A’,B’), whereB’ is the expansion dB interpreting
R by B2, is a pl-reduction fronp-EMB(A) to p-EmMB(A"). O

Theorem 5.7. The parameterized problemsHom(B), p-HOM(?), p-EMB(B), and
p-EMB(E) are complete folf REEunder pl-reductions.

Proof. It is straightforward to verify that the structuresfhand in?> are connected
cores. Hence, each of the first two problems is TREE-complgte Classification
Theorem and Theorem 5.5.

The problem-EMB(B) andp-EMB(g) are TREE-hard by Corollafy 3.116 and
the hardness gf-Hom(B) andp-HOM(g), which immediately imply the hardness of
p-HoM(B*) andp-Hom( 5 *).

The problemg-EmB(B) andp-EMB(g) are in TREE by Theorem3§.6. O

6 Counting classification

In this section we present a classification of the countirgbl@ms corresponding to
the problem®-Hom(A).

6.1 Preliminaries on parameterized counting complexity

A machine with oracl® C {0,1}* has an extra write-onlgracle tape such a ma-
chine has auery stateand the wordy written on the oracle tape is ttgueryof a
configuration with this state; the successor state is obthiry erasing the oracle tape
and moving to one of two distinguished states depending ethér the query is con-
tained in the oraclé® or not. The oracle tape is not accounted for in space boursds (a
in [23]).

A parameterized counting probleis a pair(F, x) of a functionF : {0,1}* —

N and a parameterization. To say it is in para-L, means thdt is implicitly pl-
computable with respect ta Equivalently one could say that there is a Turing machine
with a write-only output tape that computésand is pl-space bounded with respect
to k.

A parsimonius fpt-reductiofrom (F, k) to another parameterized counting prob-
lem (F', k') is a functionR : {0,1}* — {0,1}* that is computable by an fpt-time
bounded (with respect ) Turing machine suchthd = F’ o Rands’ c R < fok
for some computabl¢ : N — N. In the logspace setting we defingparsimonious
pl-reductionsimilarly demanding that the reduction is implicitly plioputable instead
of computable by a fpt-time bounded machine. We again wiite:) <p (F',x’) if
such a reduction exists.

We say(F, «) is pl-Turing reducibleto (F’, ') and write(F, x) <[ (F',«’) if
there are a pl-space bounded (with respect)daruring machineA with oracle to
BITGRAPH(F") that decides BFGRAPH(F'), and a computablg such that on ev-

?
ery inputz € {0,1}* all queriesy € BITGRAPH(F’) of A on z have parame-
ter x'(y) < f(x(z)). Here, we denote the parameterizations of &RAPH(F') and
BITGRAPH(F") again byx andx’ respectively.
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6.2 Classification theorem
For a class of structured consider the parameterized counting problem.

p-#HOM(A)
Instance: A pair of structuregA, B) whereA € A.
Parameter: |A|.
Problem: Compute the number of homomorphisms frénto B.

Dalmau and Jonsson [[10] gave a classification of countiniglenas of this form, show-

ing that for a class of structuresof bounded arity, the problem#Hom(A) isin FPT

if A has bounded treewidth, and is #W[1]-complete otherwiseghie a fine classifi-
cation of the case whetd has bounded treewidth, analogous to our fine classification
for the problenp-HoM(A).

Theorem 6.1(Counting Classification)Let .4 be a decidable class of structures hav-
ing bounded arity and bounded treewidth.

1. If A has unbounded pathwidth, then

p-#HOM(A) <p p-#HoM(T™) <[ p-#Hom(A).

2. If A has bounded pathwidth and unbounded tree depth, then

p-#HOM(A) <p p-#HOM(P*) <[ p-#HOM(A).

3. If A has bounded tree depth, then

p-#HOM(A) € para-L

The proof of this result partly involves an analysis of theqgdrof Theorenh 311, and
builds on techniques of Dalmau and Jons$an [10].

Lemma 6.2. Let A be a decidable set of finite structures, {ebe the set of Gaifman
graphs ofA, and let M be the set of minors of graphsé Then

p-#HOM(M™) <p p-#HOM(G*) <pi p-#HOM(A") <j) p-#HOM(A).

Proof. The first two reductions are exactly as before, that is, threyttae reductions
from Lemmag 3]7 and 3.8. These reductions are readily vétifidoe parsimonious.
We thus prove that-#HoM(A*) <[ p-#HOM(A).

Let A be an element oft, and let(A*, B) be an instance gf-#HoMm(A*). LetB
be the restriction 0B to relation symbols ofA. For each non-empty subsgtC A,
defineB to be the induced substructureAfx B, on universe(a,b) € Sx B | b €
CB}. For a mapping from A to a set of the fornBs, let g; denote the mapr o g)
wherer is the projection of a pair to its first component.

The number of homomorphismgsfrom A* to B is the same as the numbgf,
of homomorphismg’ from A to B4 such thatg] is the identity onA (consider the
bijectiong — ¢’ with ¢’(a) := (a,g(a))). To computeM,, it suffices to compute
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the number/;, of homomorphismé from A to B4 such thath,(A) = A. Thisis
because of the fact that a mapping A — A x B is a homomorphism fromA to B 4
with hq(A) = Aif and only if h has the formy oo whereg is a homomorphism fror
to B4, g1 is the identity, and is a bijective homomorphism fromA to A. From this
fact, it follows thatM, = M, /S whereS is the number of bijective homomorphisms
from A to A; note thatS can be computed directly froM, and so this gives a way
to determinel, (division is logspace computable [7]). We prove the clairfed as
follows. The backward direction is clear, so we prove thevard direction. Let be a
homomorphism fronA to B 4 with (71 o h)(A) = A. There exists an integer > 1
such that(mr; o h)™ is the identity mapping onl. Setg = h o (71 o h)™~1; we then
haveh = h o (m o h)™ = g o (7 o h), as desired.

For each subse§ C A, the Turing reduction will query the instan¢a , Bs) of
p-#HOM(A); denote the result bcs. Observe thafVc s is the number of homo-
morphismsh from A to B4 with hy(A) C S. For a subsef C A, let N_g denote
the number of homomorphisnisfrom A to B4 with h1(A4) = S. We have, for
each subse$ C A, the identityNcs = > ;4 N—7. By inclusion-exclusion, we
haveN_4 = 3 ¢c 4 (—1)4I=ISINc g which is the valuel;, that we wanted to deter-
mine. We can evaluate the sum expression in pl-space by camgtivo observations:
first, with oracle access fo#HoM(A) the sequence of the numbérs1) 4115 N g
is implicitly pl-computable; second, summing a sequencmtgigers can be done in
logspace. O

Proof of Theorerh 6]1Statements (1) and (2) each make two claims. The claims made
first concern parsimonious pl-reductions and follow fronmmea 3.4 and Remalk 3.5.
The second claims concern Turing reductions and follow ftleenprevious lemma to-
gether with the Excluded Tree TheorEml2.3 (2) and the Exdidgh Theorem 2.3 (3)
respectively.

We are left to prove Statement (3). It is not hard to see thatiatsire of tree depth
at mostw’ has a tree decomposition of width at magt+ 1 such that the underlying
tree has height at most’ with respect to some root. By Lemrmal3.4 and Rerhark 3.5,
it suffices to showp-#Hom(7 (w)) € para-L for everyw € N. Here, we letT (w) be
the class of structuréE* such thafT is a tree that can be rooted in such a way that its
height is at mostv.

Forw = 0, this is easy to see. So let > 0 and assume by induction that
p-#HOM(T (w — 1)) € para-L. Given an instancgl*, B) of p-#Hom(T (w)), we
conceive ofT* as a rooted tree with roat and of height at most. For elements
t € T andb € B, we defineN,_,; to be the number of partial homomorphismthat
are defined on the subtree rooted ahd such thak(t) = b. Lett,...,t,, denote the
children ofr in T. The number that we desire to determin@j%eqB N,_,. Fora
particular valuéh € B, it is straightforward to verify that

Nrosp = T2y 3y Nty

where the sum is over alt € CP such that(b,b') € EB. Thus, the number we
desire to compute equals a certain sum-product-sum expnesd3ut this expression
is implicitly pl-computable: to determine bits of the numbéV;, ,;,» one can run an
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algorithm witnessing-#Hom(7 (w — 1)) € para-L. Using the facts that iterated
sum and iterated product are computable in logarithmicespzl; it follows that our
sum-product-sum expression can be evaluated in logagtspace. This yields the
result. O

7 Discussion

A classification of the parameterized complexity of embaddiroblems is famously
open [17, p.355], in particular, it is not known whether thebedding problem for
complete bipartite cliques is W[1]-hard (under fpt-redoics).

A fundamental problem whose complexity we failed to settaiw our framework
is p-EMB(P). By Theoreni 416, we know-EMB(P) € PATH, but we do not know
whether it is PATH-hard (under pl-reductions). We note itsatestriction to regular
graphs isin para-L.

p'EMB (P)reg

Instance: A regular graphG andk € N.
Parameter: k.

Problem: DoesG contain a path of length?

Proposition 7.1. p-EMB(P)reg € para-L

The proof uses a result of Flum and Grohel[15, Example 6]rgiatiat model
checking first-order logic on bounded degree graphs is ia-paiTheir proof actually
shows

Theorem 7.2([15]). The following parameterized problem ispara-L

Instance: A graphG of degree at most and a first-order sentenge
Parameter: d + ||
Problem: G| ¢?

Proof of Propositiol 7]1.Given a regular grapks of degreed and a naturak € N,
distinguish two cases: if > k then accept; otherwise check, using the algorithm of
Theoren[ 7.2, whethe® satisfies3z - ”xk(/\i<j<k @ =z A Njop Bxiwig).

B O

On the more structural side, as mentioned in the introdoctiee believe that
it could be worthwhile to investigate whether or not the séssPATH and TREE
are closed under complement. Relatedly, one can ask whethasot it holds that
co-PATHC TREE.

Acknowledgements

The first author was supported by the Spanish Project FORISM(TIN2007-66523),
by the Basque Government Project S-PE12UNO50(SAI12/21@) by the University
of the Basque Country under grant UFI11/45. The second atltiamks the FWF
(Austrian Science Fund) for its support through Project 8524N25.

29



References

[1] S. Abiteboul, R. Hull, and V. VianuFoundations of Database#ddison-Wesley,
1995.

[2] A. Blumensath and B. Courcelle. On the monadic secomfiotransduction
hierarchy.Logical Methods in Computer Scien&2), 2010.

[3] H. Bodlaender. A partiak-arboretum of graphs with bounded treewiditheo-
retical Computer Scienc@09:1-45, 1998.

[4] A. K. Chandra and P. M. Merlin. Optimal implementationaaijunctive queries
in relational data bases. Rroceddings of STOC'7pages 77-90, 1977.

[5] H. Chen and M. Grohe. Constraint satisfaction with snctly specified relations.
Journal of Computer and System Sciend&g8):847—-860, 2010.

[6] Y. Chen, J. Flum, and M. Grohe. Bounded nondeterminischaternation in pa-
rameterized complexity theoryl8th IEEE Conference on Computational Com-
plexity, pages 13-29, 2003.

[7] A.Chiu, G. Davida, and B. Litow. Division in logspace-itorm NC'. Theoretical
Informatics and Applications35:259-275, 2001.

[8] N. Creignou, S. Khanna, and M. Suda@omplexity Classification of Boolean
Constraint Satisfaction Problems$SIAM Monographs on Discrete Mathematics
and Applications. Society for Industrial and Applied Mattegtics, 2001.

[9] N. Creignou, P. G. Kolaitis, and H. Vollmer, editor&omplexity of Constraints
- An Overview of Current Research Themeslume 5250 ofLecture Notes in
Computer Sciencépringer, 2008.

[10] V. Dalmau and P. Jonsson. The complexity of counting bismorphisms seen
from the other sideTheoretical Computer Sciencg?29:315-323, 2004.

[11] R. G. Downey and M. R. Fellows?arameterized Complexitypringer, 1999.

[12] M. Elberfeld, C. Stockhusen, and T. Tantau. On the smacaplexity of pa-
rameterized problem&th International Symposium of Parameterized and Exact
Computation, Springer LNG3535:206-217, 2012.

[13] T. Feder and M. Y. Vardi. The computational structurentdnotone monadic
snp and constraint satisfaction: A study through datalabgoup theorySIAM
Journal on Computing28(1):57-104, 1999.

[14] J. Flum, M. Frick, and Grohe. Query evaluation via toessompositionslJournal
of the ACM 49(6):716-752, 2002.

[15] J. Flum and M. Grohe. Describing parameterized coniplelassesinformation
and Computation187:291-319, 2003.

30



[16] J. Flum and M. Grohe. The parameterized complexity afntimg problems.
SIAM Journal on Computing3:892-922, 2006.

[17] J. Flum and M. GroheParameterized Complexity Theorgpringer, 2006.

[18] G. Gottlob, N. Leone, and F. Scarcello. The complexitaoyclic conjunctive
queries.Journal of the ACM48(3):431-498, 2001.

[19] G. Gottlob, N. Leone, and F. Scarcello. Hypertree depositions and tractable
queries.J. Comput. Syst. S¢b4(3):579-627, 2002.

[20] M. Grohe. The complexity of homomorphism and constraatisfaction prob-
lems seen from the other sidéournal of the ACM54(1), 2007.

[21] M. Grohe, T. Schwentick, and L. Segoufin. When is the @atibn of conjunctive
queries tractable? IBTOC 20012001.

[22] P. Kolaitis and M. Y. Vardi. Conjunctive-query contaient and constraint satis-
faction. 17th ACM Symposium on Principles of Database Syst&h205-213,
1998, full version atht t p: / / www. ¢s. ri ce. edu/ ~var di / papers.

[23] R. E. Ladner and N. A. Lynch. Relativization of quessabout log space com-
putability. Mathematical Systems Theo#0:19-32, 1976.

[24] D. Marx. Can you beat treewidthPheory of Computings(1):85-112, 2010.

[25] D. Marx. Tractable hypergraph properties for constiraatisfaction and conjunc-
tive queries. IrProceedings of the 42nd ACM Symposium on Theory of Comput-
ing, pages 735-744, 2010.

[26] J. NeSetfil and P. O. de Mendez. Tree depth, subgrafgting, and homomor-
phism boundsEuropean Journal of Combinatoric27(6):1022—-1041, 2006.

[27] C. Papadimitriou and M. Yannakakis. On the ComplexityDatabase Queries.
Journal of Computer and System Sciené&%3):407-427,1999.

[28] N. Schweikardt, T. Schwentick, and L. Segoufin. Databieory: Query lan-
guages. In M. J. Atallah and M. Blanton, editoAdgorithms and Theory of
Computation Handbogk/olume 2: Special Topics and Techniques, chapter 19.
CRC Press, second edition, Nov 2009.

31



	1 Introduction
	2 Preliminaries
	2.1 Structures, homomorphisms and cores
	2.2 Notions of width
	2.3 Parameterized complexity

	3 Classification
	3.1 Proof of the Reduction Lemma
	3.2 Bounded tree depth and para-L

	4 The class PATH
	5 The class TREE
	6 Counting classification
	6.1 Preliminaries on parameterized counting complexity
	6.2 Classification theorem

	7 Discussion

