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Abstract

We perform a fundamental investigation of the complexity ofconjunctive query
evaluation from the perspective of parameterized complexity. We classify sets of
boolean conjunctive queries according to the complexity ofthis problem. Previous
work showed that a set of conjunctive queries is fixed-parameter tractable precisely
when the set is equivalent to a set of queries having bounded treewidth. We present
a fine classification of query sets up to parameterized logarithmic space reduction.
We show that, in the bounded treewidth regime, there are three complexity de-
grees and that the properties that determine the degree of a query set are bounded
pathwidth and bounded tree depth. We also engage in a study ofthe two higher
degrees via logarithmic space machine characterizations and complete problems.
Our work yields a significantly richer perspective on the complexity of conjunctive
queries and, at the same time, suggests new avenues of research in parameterized
complexity.

1 Introduction

Conjunctive queries are the most basic and most heavily studied database queries, and
can be formalized logically as formulas consisting of a sequence of existentially quanti-
fied variables, followed by a conjunction of atomic formulas. Ever since the landmark
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1977 article of Chandra and Merlin [4], complexity-theoretic aspects of conjunctive
queries have been a research subject of persistent and enduring interest which continues
to the present day (as a sampling, we point to the works [1, 22,27, 18, 19, 20, 9, 28, 25];
see the discussions and references therein for more information). The problem of
evaluating a conjunctive query on a relational database is equivalent to a number of
well-known problems, including conjunctive query containment, the homomorphism
problem on relational structures, and the constraint satisfaction problem [4, 22]. That
this evaluation problem appears in many equivalent guises attests to the fundamental
and primal nature of this problem, and it has correspondingly been approached and
studied from a wide variety of perspectives and motivations. The resulting literature
has not only been fruitful in terms of continually providinginsights into and notions
for understanding conjunctive queries themselves, but hasalso meaningfully fed back
into a richer understanding of computational complexity theory at large, and of com-
mon complexity classes in particular. This is witnessed by the observation that various
flavors of conjunctive query evaluation are used as prototypical complete problems for
complexity classes such as NP and W[1] (refer, for example, to the books by Creignou,
Khanna, and Sudan [8] and by Flum and Grohe [17], respectively). Another example
of this phenomenon is the work showing LOGCFL-completenessof evaluating acyclic
conjunctive queries (as well as of many related problems) due to Gottlob, Leone, and
Scarcello [18].

As has been eloquently articulated in the literature [27], the employment of classi-
cal complexity notions such as polynomial-time tractability to grade the complexity of
conjunctive query evaluation is not totally satisfactory.For in the context of databases,
the typical scenario is the evaluation of a relatively shortquery on a relatively large
database; this suggests a notion of time complexity whereina non-polynomial depen-
dence on the query may be tolerated, so long as the dependenceon the database is poly-
nomial. Computational complexity theory has developed andstudied precisely such a
relaxation of polynomial-time tractability, calledfixed-parameter tractability, in which
arbitrary dependence in aparameteris permitted; in our query evaluation setting, the
query size is normally taken as the parameter. The class of such tractable problems is
denoted by FPT. Fixed-parameter tractability is the base tractability notion ofparam-
eterized complexity theory, a comprehensive theory for studying problems where each
instance has an associated parameter. As a parameterized problem, conjunctive query
evaluation is complete for the parameterized complexity class W[1] [27, 17]; the prop-
erty of W[1]-hardness plays, in the parameterized setting,a role similar to that played
by NP-hardness in the classical setting.

Due to the general intractability of conjunctive query evaluation, a recurring theme
in the study of conjunctive queries is the identification of structural properties that pro-
vide tractability; such properties includeacyclicityandbounded treewidth[18, 22]. A
natural research issue is to obtain a systematic understanding of what properties ensure
tractability, by classifying all sets of queries accordingto the complexity of the evalua-
tion problem. We focus on boolean conjunctive queries, which, in logical parlance, are
queries without free variables. Formally, letΦ be a set of boolean conjunctive queries,
and define EVAL(Φ) to be the problem of deciding, given a queryφ ∈ Φ and a rela-
tional structureB, whether or notφ evaluates to true onB. One can then inquire for
which setsΦ the problem EVAL(Φ) is tractable. For mathematical convenience, we
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use an equivalent formulation of this problem. It is known that each boolean conjunc-
tive queryφ can be bijectively represented as a relational structureA in such a way
that, for any relational structureB, it holds thatφ is true onB if and only if there exists
a homomorphism fromA to B [4]. Hence, the following family of problems is equiv-
alent to the family of problems EVAL(Φ). LetA be a set of structures, and denote by
HOM(A) the problem of deciding, given a structureA ∈ A and a second structureB,
whether or not there is a homomorphism fromA to B. Usep-HOM(A) to denote the
parameterized version of this problem, where the size ofA is taken as the parameter.

Under the assumption that the structures inA have bounded arity, Grohe [20] pre-
sented a classification of the tractable problems of this form: if the coresof A have
bounded treewidth, then the problemp-HOM(A) is fixed-parameter tractable; other-
wise, the problemp-HOM(A) is W[1]-hard. Thecoreof a structure can be intuitively
thought of as a smallest equivalent structure. Grohe’s classification thus shows that,
in the studied setting, the condition of bounded treewidth is theonly property guaran-
teeing tractability (assuming FPT6= W[1]). Recall that treewidth is a graph measure
which, intuitively speaking, measures the similitude of a graph to a tree, with a lower
measure indicating a higher degree of similarity. The assumption of bounded arity pro-
vides robustness in that translating between two reasonable representations of struc-
tures can be done efficiently; this is in contrast to the case of unbounded arity, where
the choice of representation can dramatically affect complexity [5].

The present article was motivated by the following fundamental research question:
What algorithmic/complexity behaviors of conjunctive queries are possible, within the
regime of fixed-parameter tractability?That is, we endeavored to obtain a finer per-
spective on the parameterized complexity of conjunctive queries, and in particular, on
the possible sources of tractability thereof, by presenting a classification result akin to
Grohe’s, but for queries that are fixed-parameter tractable. As is usual in computa-
tional complexity, we make use of a weak notion of reduction in order to be able to
make fine distinctions within the tractable zone. Logarithmic space computation is a
common machine-based mode of computation that is often usedto make distinctions
within polynomial time; correspondingly, we adoptparameterized logarithmic space
computation, which is obtained by relaxing logarithmic space computation much in
the way that fixed-parameter tractability is obtained by relaxing polynomial time, as
the base complexity class and as the reduction notion used inour investigation.

We present a classification theorem that comprehensively describes, for each set
A of structures having bounded arity and bounded treewidth, the complexity of the
problemp-HOM(A), up to parameterized logarithmic space reducibility (Section 3).
Let T denote the set of all graphs that are trees,P denote the set of all graphs that
are paths, and, for a set of structuresA, let A∗ denote the set of structures obtain-
able by taking a structureA ∈ A and adding each element ofA as a relation. Our
theorem shows that precisely three degrees of behavior are possible: such a problem
p-HOM(A) is either equivalent top-HOM(T ∗), equivalent top-HOM(P∗), or is solv-
able in parameterized logarithmic space (Theorem 3.1). Essentially speaking, bounded
pathwidth and bounded tree depth are the properties that determine which of the three
cases hold; as with treewidth, both pathwidth and tree depthare graph measures that
associate a natural number with each graph. A key component of our classification
theorem’s proof is a reduction that, in effect, allows us to prove hardness results on a
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problemp-HOM(A) based on the hardness ofp-HOM(M∗) whereM consists of cer-
tain graph minors derived fromA (Lemma 3.6). The proof of our classification theorem
utilizes this reduction in conjunction with excluded minorcharacterizations of graphs
of bounded pathwidth and of bounded tree depth. We remark that, in combination with
the excluded grid theoremfrom graph minor theory, the discussed reduction can be
employed to readily derive Grohe’s classification from the hardness of thecolored grid
homomorphism problem; this hardness result was presented by Grohe, Schwentick, and
Segoufin [21]. A fascinating aspect of our classification theorem, which is shared with
that of Grohe, is that natural graph-theoretic conditions–in our case, those of bounded
pathwidth and bounded tree depth–arise naturally as the relevant properties that are
needed to present our classification. This theorem also widens the interface among
conjunctive queries, graph minor theory, and parameterized complexity that is present
in the discussed work [21, 20].

Given that the problemsp-HOM(P∗) andp-HOM(T ∗) are theonly problems (up
to equivalence) above parameterized logarithmic space that emerge from our classifi-
cation, we then seek a richer understanding of these problems. In particular, we en-
gage in a study of the complexity classes that these problemsdefine: we study the
class of problems that reduce top-HOM(P∗), and likewise forp-HOM(T ∗) (Sec-
tions 4 and 5). Following a time-honored tradition in complexity theory, we present
machine-based definitions of these classes, which classes we call PATH and TREE,
respectively. The machine definition of PATH comes from recent work of Elberfeld,
Stockhusen, and Tantau [12] and is based on nondeterministic Turing machines satis-
fying two simultaneous restrictions: first, that only parameterized logarithmic space is
consumed; second, that the number of nondeterministic bitsused is bounded, namely,
by the product of the logarithm of the input size and a constant depending on the pa-
rameter. The machine characterization of TREE is similar, but it is based on alternating
Turing machines where, in addition to the nondeterministicbits permitted previously,
a parameter-dependent number of conondeterministic bits may also be used. In addi-
tion to proving that the problemsp-HOM(P∗) andp-HOM(T ∗) are complete for the
machine-defined classes, we also prove that for any set of structuresA having bounded
pathwidth, the parameterizedembeddingproblemp-EMB(A) is in PATH, and prove an
analogous result for structures of bounded treewidth and the class TREE.

In the final section of the paper, we present a fine classification for the problem of
counting homomorphisms which is analogous to our classification for the homomor-
phism problem (Section 6).

Our work shows that the complexity classes PATH and TREE are heavily pop-
ulated with complete problems, and, along with the recent work [12], suggests the
further development of the study of space-bounded parameterized complexity [15, 6]
and, speaking more broadly, the study of complexity classeswithin FPT, which may
include classes based on circuit or parallel models of computation. We can mention the
following natural structural questions. Are either of the classes PATH or TREE closed
under complement? Can any evidence be given either in favor of or against such clo-
sure? Even if the classes PATH and TREE are not closed under complement, could it
be that co-PATH⊆ TREE? Another avenue for future research is to develop the theory
of the degrees of counting problems identified by our counting classification. We shall
mention some further open questions in the final section.
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2 Preliminaries

Forn ∈ N we define[n] := {1, . . . , n} if n > 0 and[0] := ∅. We write{0, 1}≤n for
the set of binary stringsx ∈ {0, 1}∗ of length|x| ≤ n; we have{0, 1}≤0 = {λ} where
λ is the empty string.

2.1 Structures, homomorphisms and cores

Structures

A vocabularyτ is a finite set of relation symbols, where eachR ∈ τ has an associated
arity ar(R) ∈ N. A τ -structureA consists of a nonempty finite setA, its universe,
together with aninterpretationRA ⊆ Aar(R) of everyR ∈ τ . Let us emphasize that,
in this article, we consider only finite structures. Asubstructure (weak substructure)
of A is a structureinducedby a nonempty subsetX of A, i.e. the structure〈X〉A with
universeX that interprets everyR ∈ τ by (respectively, a subset of)Xar(R) ∩ RA. A
restrictionof a structure is obtained by forgetting the interpretations of some symbols,
and anexpansionof a structure is obtained by adding interpretations of somesymbols.
We viewdirected graphsas{E}-structuresG := (G,EG) for binaryE; G is agraph
if EG is irreflexive and symmetric. Note that a weak substructure of a graph is a
subgraph. The graphunderlyinga directed graphG without loops (i.e. with irreflexive
EG) is obtained by replacingEG with its symmetric closure. We shall be concerned
with the following classes of structures.

– For k ≥ 2, the structure
−→
Pk has universe[k] and edge relation{(i, i + 1) |

i ∈ [k − 1]}. The class
−→P of directed pathsconsists of the structures that are

isomorphic to a structure of this form.

Let Pk be the graph underlying
−→
Pk. The classP of pathsconsists of the struc-

tures that are isomorphic to a structure of this form.

– Fork ≥ 2, the structure
−→
Ck has universe[k] and edge relation{(i, i + 1) | i ∈

[k− 1]}∪ {(k, 1)}. The class
−→C of directed cyclesconsists of the structures that

are isomorphic to a structure of this form.

Let Ck be the graph underlying
−→
Ck. The classC of cyclesconsists of the struc-

tures that are isomorphic to a structure of this form.

– Fork ≥ 0, the structure
−→
Bk has universe{0, 1}≤k and binary relationsS

−→
Bk

i =

{(x, xi) | x ∈ {0, 1}≤k−1} for i ∈ {0, 1}. The class
−→B consists of the structures

that are isomorphic to a structure of this form.

Let Tk be the graph underlying the directed graph({0, 1}≤k, S
−→
Bk

0 ∪ S
−→
Bk

1 ).

Let Bk be the structure with universe{0, 1}≤k and binary relationsSBk

0 , SBk

1

defined to be the symmetric closures of the relationsS
−→
Bk

0 , S
−→
Bk

1 , respectively.
The classB consists of the structures that are isomorphic to a structure of this
form.

– Finally,T is the class oftrees, that is, the class of connected, acyclic graphs.
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A class of structuresA hasbounded arityif there exists ar ∈ N such that any relation
symbol interpreted in any structureA ∈ A has arity at mostr.

Homomorphisms

Let A, B be structures. AhomomorphismfromA to B is a functionh : A→ B such
that for allR ∈ τ and for all ā = (a1, . . . , aar(R)) ∈ RA it holds thath(ā) ∈ RB

where we writeh(ā) = (h(a1), . . . , h(aar(R))). A partial homomorphism fromA to
B is the empty set or a homomorphism from a substructure ofA to B; equivalently,
this is a partial functionh from A to B that is a homomorphism from〈dom(h)〉A to
B if the domaindom(h) of h is not empty. As has become usual in our context, by an
embeddingwe mean an injective homomorphism.

A structureA is acoreif all homomorphisms fromA toA are embeddings. Every
structureA maps homomorphically to a weak substructure of itself whichis a core.
This weak substructure is unique up to isomorphism and called the coreofA (cf. [13]).
For a set of structuresA we letcore(A) denote the set of cores of structures inA. It is
not hard to see that two structuresA,B are homomorphically equivalent (that is, there
are homomorphisms in both directions) if and only if they have the same core.

WhenA is a structure, we useA∗ to denote its expansion that interprets for every
a ∈ A a fresh unary relation symbolCa byCA

∗

a = {a}. For a class of structuresA we
let

A∗ := {A∗ | A ∈ A}.

Example 2.1. The following facts are straightforward to verify. Trees with at least two
vertices and cycles of even length have a single edge as core,and so do cycles of even
length. Cycles of odd length are cores, and so are directed paths. Structures of the form
A

∗ are cores.

2.2 Notions of width

We rely on Bodlaender’s survey [3] as a general reference forthe notions of treewidth
and pathwidth. Tree depth was introduced in [26].

A tree-decompositionof a graphG = (G,EG) is a pair of a treeT and a family of
bagsXt ⊆ G for t ∈ T such thatG =

⋃

t∈T Xt, E
G ⊆ ⋃

t∈T X
2
t andXt∩Xt′ ⊆ Xt′′

whenevert′′ lies on the simple path fromt to t′; it is called apath-decompositionif T
is a path; itswidth ismaxt∈T |Xt| − 1.

The treewidthtw(G) of G is the minimum width of a tree-decomposition ofG.
Thepathwidthpw(G) of G is the minimum width of a path-decomposition ofG.

By a rooted treeT we mean an expansion(T,ET, rootT) of a tree(T,ET) by
a unary relation symbolroot interpreted by a singleton containing theroot. The tree
depthtd(G) of G is the minimumh ∈ N such that every connected component ofG is
a subgraph of the closure of some rooted tree of heighth. Here, theclosureof a rooted
tree is obtained by adding an edge fromt to t′ whenevert lies on the simple path from
the root tot′.

The tree depthtd(A) of an arbitrary structureA is the tree depth of itsGaifman
graph: it has verticesA and an edge betweena anda′ if and only if a anda′ are
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different and occur together in some tuple in some relation in A. The notionspw(A)
andtw(A) are similarly defined.

A classA of structures hasbounded tree depthif there isw ∈ N such thattd(A) ≤
w for all A ∈ A. Having bounded pathwidth or treewidth is similarly explained. It is
not hard to see that bounded pathwidth is implied by bounded tree depth, and, trivially,
bounded treewidth is implied by bounded pathwidth. The converse statements fail:

Example 2.2. The classP has unbounded tree depth and bounded pathwidth (cf. [26,
Lemma 2.2]). The classB has unbounded pathwidth and bounded treewidth (see.
e.g. [3, Theorem 67]).

Such classes are characterized as those excluding certain minors as follows. The
first two statements are well-known from Robertson and Seymour’s graph minor series
(cf. [3, Theorems 12,13]) and the third is from [2, Theorem 4.8].

Theorem 2.3. LetC be a class of graphs.

1. (Excluded Grid Theorem)C has bounded treewidth if and only ifC excludes some
grid as a minor.

2. (Excluded Tree Theorem)C has bounded pathwidth if and only ifC excludes
some tree as a minor.

3. (Excluded Path Theorem)C has bounded tree depth if and only ifC excludes
some path as a minor.

A class of graphsC excludesa graphM as a minorif M is not a minor of any graph
in C. Recall,M is aminor of a graphG if there exists aminor mapµ from M to G,
that is, a family(µ(m))m∈M of pairwise disjoint, non-empty, connected subsets ofG
such that for all(m,m′) ∈ EM there arev ∈ µ(m) andv′ ∈ µ(m′) with (v, v′) ∈ EG.

It is easy to verify thattd, pw, tw are monotone with respect to the minor pre-order,
that is, e.g.td(G) ≥ td(M) for every minorM of G. Example 2.2 thus gives the
(easy) directions from left to right in the above theorem.

2.3 Parameterized complexity

Turing machines

We identify (classical) problems with setsQ ⊆ {0, 1}∗ of finite binary strings. We use
Turing machines with a (read-only) input tape and several worktapes as our basic model
of computation. We will consider nondeterministic and alternating Turing machines
with binary nondeterminism and co-nondeterminism. For concreteness, let us agree
that a nondeterministic machine has a special(existential) guess state; a configuration
with the guess state has two successor configurations obtained by changing the guess
state to one out of two further distinguished statess0, s1. An alternating machine
may additionally have auniversal guess statethat follows a similar convention. For a
functionf : {0, 1}∗ → N we say thatA usesf (co-)nondeterministic bitsif for every
inputx ∈ {0, 1}∗ every run ofA onx contains at mostf(x) many configurations with
the existential (respectively, universal) guess state.
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Fixed-parameter (in)tractability

A parameterized problem(Q, κ) is a pair of a classical problemQ ⊆ {0, 1}∗ and a
logarithmic space computableparameterizationκ : {0, 1}∗ → N associating with any
instancex ∈ {0, 1}∗ its parameterκ(x) ∈ N.1 A Turing machine isfpt-time bounded
(with respect toκ) if on input x ∈ {0, 1}∗ it runs in timef(κ(x)) · |x|O(1) where
f : N → N is a computable function. The class FPT (para-NP) contains the parameter-
ized problems(Q, κ) such thatQ is decided (accepted) by an fpt-time bounded deter-
ministic (nondeterministic) Turing machine. Anfpt-reductionfrom (Q, κ) to (Q′, κ′)
is a reductionR : {0, 1}∗ → {0, 1}∗ from Q to Q′ that is computable by a fpt-time
bounded (with respect toκ) Turing machine and such thatκ′ ◦ R ≤ f ◦ κ for some
computablef .

We are concerned with homomorphism and embedding problems associated with
classes of structuresA.

p-HOM(A)
Instance: A pair of structures(A,B) whereA ∈ A.

Parameter: |A|.
Problem: Is there a homomorphism fromA intoB?

p-EMB(A)
Instance: A pair of structures(A,B) whereA ∈ A.

Parameter: |A|.
Problem: Is there an embedding fromA intoB?

These problem definitions exemplify how we present parameterized problems. More
formally, the parameterization indicated is the function that maps a string encoding a
pair of structures(A,B) to |A|, and any other string to, say, 0. Here,|A| := |τ | +
|A| +∑

R∈τ |RA| · ar(R) is thesizeof A; note that the length of a reasonable binary
encoding ofA isO(|A| · log |A|) (cf. [14]).

The theory of parameterized intractability is centered around the W-hierarchy, which
consists of the classes W[1]⊆ W[2] ⊆ · · · ⊆ W[P]. The class W[P] contains the pa-
rameterized problems(Q, κ) that are accepted by nondeterministic Turing machines
that are fpt-time bounded with respect toκ and usef(κ(x)) · log |x| many nondeter-
ministic bits. We refer to the monographs [17, 11] for more information about the
W-hierarchy. It is well-known that, whenA is a decidable class of structures, the prob-
lemsp-HOM(A) andp-EMB(A) are contained in W[1]; whenA is the e.g. class of
cliques, these problems are W[1]-hard and hence W[1]-complete under fpt-reductions.

Parameterized logarithmic space

A Turing machine isparameterized logarithmic space bounded (with respect toκ), in
short,pl-space bounded (with respect toκ) if on input x ∈ {0, 1}∗ it runs in space
O(f(κ(x)) + logn), wheref : N → N is some computable function. The class
para-L (para-NL) contains the parameterized problems(Q, κ) such thatQ is decided

1Usually polynomial time is allowed to computeκ but as we are interested in parameterized logarithmic
space we adopt a more restrictive notion as [12]. Natural parameterizations are often simply projections.
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(accepted) by a (non)deterministic Turing machine that is pl-space bounded with re-
spect toκ. Obviously,

para-L⊆ para-NL⊆ FPT⊆ W[P] ⊆ para-NP.

Remark 2.4. Allowing in the above definition spacef(κ(x)) · log |x| gives strictly
larger classes known as (the stronlgy uniform versions of) XL and XNL. These classes
are likely to be incomparable with FPT: they do not contain FPT unless P= NL and
contain problems that are even AW[SAT]-hard under fpt-reductions. We shall not be
concerned with these classes here and refer the interested reader to [6, 12] for proofs
of the mentioned facts and further information. [15] gives some general account of the
para- and X-operators.

Let κ be a parameterization. A functionF : {0, 1}∗ → {0, 1}∗ is implicitly pl-
computable (with respect toκ) if the parameterized problem

BITGRAPH(F )
Instance: A triple (x, i, b) wherex ∈ {0, 1}∗, i ≥ 1, andb ∈ {0, 1}.

Parameter: κ(x).
Problem: DoesF (x) have length|F (x)| ≥ i andith bit equal tob?

is in para-L. The following is straightforwardly verified asin the classical setting of
logarithmic space computability.

Lemma 2.5. Let κ, κ′ be parameterizations and letF, F ′ : {0, 1}∗ → {0, 1}∗ be
implicitly pl-computable with respect toκ andκ′ respectively. ThenF ′ ◦F is implicitly
pl-computable with respect toκ.

Let (Q, κ), (Q′, κ′) be parameterized problems. Apl-reduction from (Q, κ) to
(Q′, κ′) is a reductionR : {0, 1}∗ → {0, 1}∗ from Q to Q′ that is implicitly pl-
computable2 with respect toκ and such that there exists a computable functionf :
N → N such thatκ′ ◦ R ≤ f ◦ κ. We write (Q, κ) ≤pl (Q′, κ′) to indicate that
such a reduction exists. We write(Q, κ) ≡pl (Q

′, κ′) if both (Q, κ) ≤pl (Q
′, κ′) and

(Q′, κ′) ≤pl (Q, κ).

3 Classification

Theorem 3.1(Classification Theorem). Let A be a decidable class of structures of
bounded arity such thatcore(A) has bounded treewidth.

1. If core(A) has unbounded pathwidth, then

p-HOM(A) ≡pl p-HOM(T ∗).

2. If core(A) has bounded pathwidth and unbounded tree depth, then

p-HOM(A) ≡pl p-HOM(P∗).

2 It is routine to verify thatF is implicitly pl-computable if and only if it is computable by a pl-space
bounded Turing machine with a write-only output tape. Our definition is equivalent to the ones in [15, 6, 12].
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3. If core(A) has bounded tree depth, then

p-HOM(A) ∈ para-L.

Remark 3.2. If A is assumed to be only computably enumerable instead of decidable,
then the theorem stays true understanding all mentioned problems in a suitable way as
promise problems. If no computability assumption is placedon A, then the theorem
stays true in the non-uniform setting of parameterized complexity theory (cf. [11]).

We break the proof into several lemmas.

To prove statement (3) of Theorem 3.1 we show that a structureof tree depthw can
be characterized, in a sense made precise, by an existentialfirst-order sentence ofquan-
tifier rankw+1, and that model-checking such sentences can be done in parameterized
logarithmic space. A proof can be found in Section 3.2.

Lemma 3.3. AssumeA is a decidable class of structures of bounded arity such that
core(A) has bounded tree depth. Thenp-HOM(A) ∈ para-L.

To prove statements (1) and (2) of Theorem 3.1 we need to deal with homomor-
phism problems for classesA that are not necessarily decidable. Slightly abusing no-
tation, we sayp-HOM(A) ≤pl p-HOM(A′) for arbitrary classes of structuresA,A′ if
there is a implicitly pl-computablepartial functionF that is defined on those instances
(A,B) of p-HOM(A) with A ∈ A and maps them to equivalent instances(A′,B′)
of p-HOM(A′) with A

′ ∈ A′ such that|A′| is effectively bounded in|A|. By saying
that a partial functionF is implicitly pl-computable with respect to a parameterization
κ we mean that there are a computablef : N → N and a Turing machine that on
those instances(x, i, b) of BITGRAPH(F ) such thatF is defined onx, runs in space

O(f(κ(x)) + log |x|) and answers(x, b, i)
?∈ BITGRAPH(F ); on other instances the

machine may do whatever it wants.
The following lemma takes care of the reductions from left toright in statements

(1) and (2) of Theorem 3.1.

Lemma 3.4. Let A be a class of structures andR ⊆ T be a computably enumer-
able class of trees. Assume there isw ∈ N such that every structure inA has a tree
decomposition of width at mostw whose tree is contained inR. Then,

p-HOM(A) ≤pl p-HOM(R∗).

Proof. Let (A,B) with A ∈ A be an instance ofp-HOM(A). EnumeratingR,
test successively forT ∈ R whether there exists a width≤ w tree-decomposition
(T, (Xt)t∈T ) of A. SinceA ∈ A this test eventually succeeds, and the time needed
is effectively bounded in the parameter|A|. With such a tree-decomposition at hand
produce the instance(T∗,B′) of the problemp-HOM(R∗) where the structureB′ is
defined as follows. Writedom(f) for the domain of a partial functionf ; two par-
tial functionsf andg arecompatibleif they agree on arguments where they are both
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defined.

B′ :=
{

f | f is a partial homomorphism fromA toB and|dom(f)| ≤ w
}

;

EB
′

:=
{

(f, g) ∈ B′ ×B′ | f andg are compatible
}

;

CB
′

t :=
{

f ∈ B′ | dom(f) = Xt

}

, for everyt ∈ T .

Suppose thath is a homomorphism fromA to B. Then the mappingh′ : T → B′

defined byh′(t) = h ↾ Xt is straightforwardly verified to be a homomorphism from
T

∗ toB
′.

Conversely, leth′ be a homomorphism fromT∗ to B
′. Then,h′(t) is a partial

homomorphism fromA to B with domainXt. SinceT is connected the values ofh′

are pairwise compatible. Henceh :=
⋃

t∈T h
′(t) is a function from

⋃

t∈T Xt = A to
B. To seeh is a homomorphism, consider a tuple(a1, . . . , ar) ∈ RA for somer-ary
relationR in the vocabulary ofA. Then{a1, . . . , ar} is contained in some bagXt

since it is a clique in the Gaifman graph ofA (cf. [3, Lemma 4]). Buth′(t) maps this
tuple to a tuple inRB, so the mappingh does as well.

For later use we make the following remark concerning the above proof.

Remark 3.5. The previous proof associates with a homomorphismh fromA toB the
homomorphismh′ from T

∗ to B
′ that mapst to h ↾ Xt. This associationh 7→ h′

is injective because everya ∈ A appears in some bagXt. It is also surjective: a
homomorphismh′ from T

∗ to B
′, is associated withh :=

⋃

t∈T h
′(t); the previous

proof argued thath is a homomorphism fromA to B. Hence, there is a bijection
between the set of homomorphisms fromA to B and the set of homomorphisms from
T

∗ toB
′.

At the heart of the proof of Theorem 3.1 is the following sequence of reductions,
proved in the following subsection. The appropriately informed reader will recognize
elements from Grohe’s proof [20] as well as from Marx [24, Lemma 5.2].

Lemma 3.6(Reduction Lemma). LetA be a computably enumerable class of struc-
tures of bounded arity, letG be the class of Gaifman graphs ofcore(A), and letM be
the class of minors of graphs inG. Then

p-HOM(M∗) ≤pl p-HOM(G∗)

≤pl p-HOM(core(A)∗)

≤pl p-HOM(core(A))

≤pl p-HOM(A).

With the Reduction Lemma, we can give the proof of the Classification Theorem.

Proof of Theorem 3.1.The reduction from left to right in statements (1) and (2) fol-
low from Lemma 3.4. The reductions from right to left follow from the Reduction
Lemma 3.6 via the Excluded Tree Theorem 2.3 (2) and the Excluded Path Theo-
rem 2.3 (3). Statement (3) is proved as Lemma 3.3.

11



3.1 Proof of the Reduction Lemma

As a consequence of the assumption thatA is computably enumerable, each of the sets
M∗, G∗, core(A)∗, andcore(A) are computably enumerable. The statement of the
theorem claims the existence of four reductions. The last one fromp-HOM(core(A))
to p-HOM(A) is easy to see. We construct the first three in sequence.

Lemma 3.7. LetG be a class of graphs which is computable enumerable, and letM
be the class of minors of graphs inG. Then

p-HOM(M∗) ≤pl p-HOM(G∗).

Proof. Let (M∗,B) with M
∗ ∈ M∗ be an instance of the problemp-HOM(M∗).

EnumeratingG, test successively forG ∈ G whetherM is a minor ofG. Since
M ∈ M this test eventually succeeds, and then compute a minor mapµ from M to
G. The time needed is effectively bounded in the parameter|M∗|. The reduction then
produces the instance(G∗,B′) of p-HOM(G∗), whereB′ is defined as follows. LetI
denote the set

⋃

m∈M µ(m).

B′ := (M ×B)∪̇{⊥};
EB

′

:=
{

((m1, b1), (m2, b2)) | [m1 = m2 ⇒ b1 = b2] and

[(m1,m2) ∈ EM ⇒ (b1, b2) ∈ EB]
}

∪
{

(⊥, b′) | b′ ∈ B′} ∪ {(b′,⊥) | b′ ∈ B′
}

;

CB
′

v := {(m, b) | b ∈ CB

m}, if m ∈M andv ∈ µ(m);

CB
′

v := {⊥}, if v /∈ I.

Suppose thath is a homomorphism fromM∗ to B. Let h′ : G → B′ be the map
that sends, for eachm ∈ M , the elements inµ(m) to (m,h(m)) and that sends all
elementsv /∈ I to⊥. Thenh′ is a homomorphism fromG∗ to B

′.
Suppose thatg is a homomorphism fromG∗ to B

′. We show thatg is of the form
h′ for a homomorphismh fromM

∗ to B. First, by definition of theCB
′

v , it holds that
g(v) = ⊥ for all v /∈ I. Next, letv, w be elements of a setµ(m), with m ∈ M . The
definition of theCB

′

v ensures thatg(v) andg(w) have the form(m, ·). Sinceµ(m)
is connected, the definition ofEB

′

ensures thatg(v) = g(w). Finally, suppose that
(m1,m2) ∈ EM, let (m1, b1) be the image ofµ(m1) underg, and let(m2, b2) be the
image ofµ(m2) underg. We claim that(b1, b2) ∈ EB. But there existv1 ∈ µ(m1)
andv2 ∈ µ(m2) such that(v1, v2) ∈ EG. We then have(g(v1), g(v2)) ∈ EB

′

and the
definition ofEB

′

ensures that(b1, b2) ∈ EB.

Lemma 3.8. LetA be a computably enumerable class of structures of bounded arity,
and letG be the class of Gaifman graphs ofA. Then

p-HOM(G∗) ≤pl p-HOM(A∗).

Proof. Let (G∗,B) with G ∈ G be an instance ofp-HOM(G∗). Similarly as seen
in the previous proof, one can compute fromG a structureA ∈ A whose Gaifman
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graph isG; in particular,A = G and we writeG = (A,EG). The reduction outputs
(A∗,B′) whereB′ is the structure defined as follows.

B′ := A×B,

CB
′

a := {a} × CB

a ,

RB
′

:=
{

((a1, b1), . . . (aar(R), bar(R))) ∈ (A×B)ar(R) |

ā ∈ RA and for alli, j ∈ [ar(R)] : if ai 6= aj , then(bi, bj) ∈ EB

}

,

for R ∈ τ whereτ denotes the vocabulary ofA. We have to show

(G∗,B) ∈ p-HOM(G∗) ⇐⇒ (A∗,B′) ∈ p-HOM(A∗).

To see this, assume first thath is a homomorphism fromG∗ to B. We claim
thath′(a) := (a, h(a)) defines a homomorphism fromA∗ to B

′. If a′ ∈ CA
∗

a , then
a′ = a andh(a′) ∈ CB

a sinceh is a homomorphism; by definition thenh′(a′) =
(a, h(a)) ∈ CB

′

a . Henceh′ preserves the symbolsCa. To show it preservesR ∈ τ ,
let (a1, . . . , aar(R)) ∈ RA. We have to show((a1, h(a1)), . . . , (aar(R), h(aar(R)))) ∈
RB

′

, or equivalently, for alli, j ∈ [ar(R)] with ai 6= aj that(h(ai), h(aj)) ∈ EB. But
if ai 6= aj , then(ai, aj) ∈ EG by definition of the Gaifman graph and(h(ai), h(aj)) ∈
EB follows fromh being a homomorphism.

Conversely, assume thath′ is a homomorphism fromA∗ to B
′. By definition

of CB
′

a is follows thath′(a) = (a, h(a)) for some functionh : A → B such that
h(a) ∈ CB

a . We claim thath is a homomorphism fromG∗ to B. It suffices to show
(h(a), h(a′)) ∈ EB whenever(a, a′) ∈ EG. But if (a, a′) ∈ EG, thena 6= a′

and there existR ∈ σ and(a1, . . . , aar(R)) ∈ RA andi, j ∈ [ar(R)] such thata =

ai and a′ = aj . Then ((a1, h(a1)), . . . , (aar(R), h(aar(R)))) ∈ RB
′

becauseh′ is

a homomorphism. Sinceai 6= aj the definition ofEB
′

implies (h(ai), h(aj)) =
(h(a), h(a′)) ∈ EB as desired.

Recall that thedirect productA × B of two τ -structuresA andB has universe
A×B and interprets a relation symbolR ∈ τ by {((a1, b1), . . . , (aar(R), bar(R))) | ā ∈
RA, b̄ ∈ RB}.

Lemma 3.9. LetA be a class of structures. Then

p-HOM(core(A)∗) ≤pl p-HOM(core(A)).

Proof. Let (D∗,B) with D ∈ core(A) be an instance ofp-HOM(core(A)∗). Let B∗

be the restriction ofB to the vocabulary ofD. The reduction produces the instance
(D,B′) of the problemp-HOM(core(A))), where

B
′ :=

〈{

(d, b) ∈ D ×B | b ∈ CB

d

}〉D×B∗

.

Suppose thath is a homomorphism fromD∗ toB. Then, the mappingh′ : D → B′

defined byh′(d) = (d, h(d)) is straightforwardly verified to be a homomorphism from
D toB

′.
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Suppose thatg is a homomorphism fromD to B
′. Writeπ1 andπ2 for the projec-

tions that map a pair to its first and second component respectively. The composition
(π1 ◦ g) is a homomorphism fromD to itself; sinceD is a core,(π1 ◦ g) is bijective.
Hence, there exists a naturalm ≥ 1 such that(π1 ◦ g)m is the identity onD. Define
h asg ◦ (π1 ◦ g)m−1. Clearly,h is a homomorphism fromD to B

′, soπ2 ◦ h is a
homomorphism fromD toB∗. We claim thatπ2 ◦h is also a homomorphism fromD∗

to B. Observe thatπ1 ◦ h is the identity onD. In other words, for everyd ∈ D there
is bd ∈ B such thath(d) = (d, bd). By definition ofB′ we getbd ∈ CB

d , establishing
the claim.

Observe that the maph′ constructed in the above proof is an embedding. Hence we
have the following corollary that we note explicitly for later use.

Corollary 3.10. LetA be a class of structures. Then

p-HOM(core(A)∗) ≤pl p-EMB(core(A)).

3.2 Bounded tree depth and para-L

Let τ be a vocabulary.First-order τ -formulasare built fromatomsRx̄, x = x by
Boolean combinations and existential and universal quantification. Here,̄x is a tuple
of variables of length matching the arity ofR. We writeϕ(x̄) for a (first-order)τ -for-
mulaϕ to indicate that the free variables inϕ are among the components ofx̄. The
quantifier rankqr(ϕ) of a formulaϕ is defined as follows:

qr(ϕ) = 0 for atomsϕ;

qr(¬ϕ) = qr(ϕ);

qr(ϕ ∧ ψ) = qr(ϕ ∨ ψ) = max{qr(ϕ), qr(ψ)};

qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ).

The following is standard, but we could not find a reference, so include the simple
proof for completeness.

Lemma 3.11. The parameterized problem

p-MC(FO)
Instance: A structureA, a first-order sentenceϕ.

Parameter: |ϕ|.
Problem: A |= ϕ ?

can be decided in spaceO(|ϕ| · log |ϕ|+(qr(ϕ) + ar(ϕ)) · log |A|), whereqr(ϕ) is the
quantifier rank ofϕ andar(ϕ) is the maximal arity over all relation symbols inϕ

Proof. We give an algorithm expecting inputs(A, ϕ, α) whereϕ is a formula andα
is an assignment forϕ in A, that is, a map from a superset of the free variables ofϕ
intoA. The algorithm determines whetherα satisfiesϕ in A. It executes a depth-first
recursion as follows.
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If ϕ is an atomRȳ the algorithm writes the tupleα(ȳ) ∈ Aar(R) on the worktape
and checks whether it is contained inRA by scanning the input; it then erases the tuple
and returns the bit corresponding to the answer obtained.

If ϕ = (ψ∧χ), the algorithm recurses onψ (with the same assignment); upon com-
pleting the recursion it erases all space used in it, stores abit for the answer obtained,
and then recurses onχ; upon completion it erases the space used in it and returns the
minimum of the bit obtained and the stored bit. The casesϕ = (ψ ∨ χ) andϕ = ¬ψ
are similar.

If ϕ(x̄) = ∃yψ(x̄, y) the algorithm loops throughb ∈ A and recurses onψ with
assignmentα extended by mappingy to b; it maintains a bit which is intially 0 and
updates it after each loop to the maximum of the bit obtained in the loop; after each
loop it erases the space used in in it. Upon completing the loop it returns this bit, and
restricts the assignment back to its old domain withouty. The caseϕ(x̄) = ∀yψ(x̄, y)
is similar.

When started on a sentenceϕ and the empty assignment, all assignmentsα oc-
curing in the recursion have cardinality≤ qr(ϕ), so can be stored in spaceO(qr(ϕ) ·
(log |ϕ|+ log |A|)). Each recursive step adds spaceO(log |ϕ|) to remember the (posi-
tion of) the current subformula plus one bit plusO(log |A|) for the loop onb ∈ A in the
quantifier case and plusO(ar(ϕ)·log |A|) in the atomic case. From these considerations
it is routine to verify the claimed upper bound on space.

The canonical conjunctionof a structureA is a quantifier-free conjunction in
the variablesxa for a ∈ A; namely, for every relation symbolR of A and every
(a1, . . . , aar(R)) ∈ RA it contains the conjunctRxa1 · · ·xaar(R)

. It is easy to see that
the canonical conjunction ofA is satisfiable in a structureB if and only if there is an
homomorphism fromA to B.

Proof of Lemma 3.3.Choosew ∈ N such thattd(core(A)) ≤ w for all A ∈ A. Given
a structureA we compute a sentenceϕA of quantifier rank at mostw+1 such that for
all structuresB, the sentenceϕA is true inB if and only if there is a homomorphism
fromA toB. This is enough by Lemma 3.11.

GivenA we checkA ∈ A running some decision procedure forA. If A /∈ A we
let ϕA := ∃x ¬x = x. If A ∈ A, compute the coreA0 of A and compute for every
connected componentC of the Gaifman graph ofA0 some rooted treeT with vertices
T = C and height at mostw such that every edge of the Gaifman graph of〈C〉A0 is in
the closure ofT.

Consider a componentC and letT be the rooted tree computed forC. For c ∈
C = T we compute the following first-order formulaϕc. We use variablesxc for
c ∈ C = T . If c is a leaf ofT, letϕc be the canonical conjunction of〈Pc〉A0 wherePc

is the path inT leading from the rootr of T to c. For an inner vertexc define

ϕc :=
∧

d ∃xd ϕd,

whered ranges over the successors ofc. The following claims are straightforwardly
verified by induction along the recursive definition of theϕcs.

Claims.For everyc ∈ C:
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1. the quantifier rank ofϕc equals the height of the subtree ofT rooted atc;

2. the free variables ofϕc are{xd | d ∈ Pc};

3. ϕc is satisfiable inB if and only if so is the canonical conjunction of〈C(c)〉A0

whereC(c) containsPc and the vertices in the subtree rooted atc.

Letting r range over the roots of the treesT chosen for the connected components
C of A0, we set

ϕA :=
∧

r ∃xrϕr.

By Claim 2 this is a sentence and by Claim 1 it has quantifier rank at mostw + 1. It
is true inB if and only if every∃xrϕr is true inB, and by Claim 3 this holds if and
only if the canonical conjunction of〈C(r)〉A0 is satisfiable inB for every connected
componentC. NotingC(r) = C, this means that every〈C〉A0 maps homomorphically
to B, and this means thatA0 maps homomorphically toB. Recalling thatA0 is the
core ofA, we see that this is equivalent toA mapping homomorphically toB.

Define a{∧, ∃}-sentence to be a first-order sentence built from atoms, conjunction,
and existential quantification. The previous proof revealed that, given a structureA
with td(core(A)) ≤ w, there exists a{∧, ∃}-sentenceφ of quantifier rank at most
w + 1 thatcorrespondstoA in that, for all structuresB, the sentenceφ is true onB if
and only if there is a homomorphism fromA toB. We show that the existence of such
a sentence in fact characterizes tree depth, in the following precise sense.

Theorem 3.12. Letw ≥ 0, and letA be a structure. It holds thattd(core(A)) ≤ w if
and only if there exists a{∧, ∃}-sentenceφ that corresponds toA with qr(φ) ≤ w+1.

Proof. The forward direction follows from the previous proof. For the backward di-
rection, letφ be a sentence of the described type. We may assume that no variable is
quantified twice inφ and that no equality of variables appears inφ, by renaming vari-
ables and replacing equalities of the formv = v with the empty conjunction. Letφp be
the prenex sentence where all variables that are existentially quantified inφ are existen-
tially quantified inφp, and the quantifier-free part ofφp is the conjunction of all atoms
appearing inφ. LetC be a structure whose canonical conjunction is the quantifier-free
part ofφp. Clearly,φp and the originalφ are logically equivalent; it follows thatC and
A are homomorphically equivalent [4]. It thus suffices to showthattd(C) ≤ w.

View the sentenceφ as a directed graph, and define an acyclic directed graphD on
the variables ofφ where the directed edge(v, v′) is present if and only if the node for
∃v is the first node with quantification occurring above the nodefor ∃v′. Let α be an
arbitrary atom fromφp (equivalently, fromφ). Sinceφ is a sentence, if one traversesφ
starting from the root and moving toα, one will pass a node∃v for each variablev of α.
Let v1, . . . , vk be the variables ofα in the order encountered by such a traversal. The
edges(v1, v2), (v2, v3), . . . , (vk−1, vk) are in the transitive closure ofD, and hence in
the closure of the graph underlyingD (where a node is a root in the graph iff it is
parentless inD). Sinceqr(φ) ≤ w + 1, each directed path inD has length less than or
equal tow, and so the graph underlyingD witnesses thattd(C) ≤ w.

We now show the following result on the embedding problem.
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Theorem 3.13. AssumeA is a decidable class of structures of bounded arity and
bounded tree depth. Thenp-EMB(A) ∈ para-L.

The proof of this result uses color coding methods, more precisely, it relies on the
following lemma (see [17, p.349]).

Lemma 3.14. For every sufficiently largen, it holds that for allk ∈ N and for every
k-element subsetX of [n], there exists a primep < k2 logn andq < p such that the
functionhp,q : [n] → {0, . . . , k2 − 1} given by

hp,q(m) := (q ·m modp) modk2

is injective onX .

For later use we give the main step in the proof of Theorem 3.13as a separate
lemma. Call a structureconnectedif its Gaifman graph is connected.

Lemma 3.15. For every decidable class of connected structuresA we have

p-EMB(A) ≤pl p-HOM(A∗).

Proof. Map an instance(A,B) to (A∗,B∗) whereB∗ is defined as follows. We as-
sume thatB = [|B|] andA = [|A|]. LetF be the set

{

g ◦ hp,q | g : {0, . . . , |A|2 − 1} → A andq < p < |A|2 log |B|
}

.

Here,hp,q : [|B|] → {0, . . . , |A|2 − 1} is the function from Lemma 3.14 (forn := |B|
andk := |A|). Forf ∈ F , letBf be the expansion ofB that interprets everyCa, a ∈
A, by f−1(a) ⊆ B and defineB∗ as the disjoint union of the structuresBf . We verify

(A,B) ∈ p-EMB(A) ⇐⇒ (A∗,B∗) ∈ p-HOM(A∗).

Note that the setsCB∗

a , a ∈ A, are pairwise disjoint, so every homomorphism fromA∗

toB∗ is an embedding. And becauseA∗ is connected, it is an embedding into (the copy
of) someBf , so it corresponds to an embedding fromA intoB. Conversely, assumee
is an embedding ofA intoB. By Lemma 3.14 there arep, q with q < p < |A|2 log |B|
such thathp,q is injective on the image ofe. Then there existsg : {0, . . . , |A|2 − 1} →
A such thatg ◦ hp,q ◦ e is the identity onA. Thenf := g ◦ hp,q ∈ F ande is an
embedding ofA∗ intoBf and hence intoB∗.

This lemma together with Corollary 3.10 implies:

Corollary 3.16. LetA be a decidable class of connected cores. Then

p-HOM(A∗) ≡pl p-EMB(A).

Proof of Theorem 3.13.LetA accord the assumption.

Claim. There exists a decidable class of connected structuresA′ of bounded tree depth
such thatp-EMB(A) ≤pl p-EMB(A′).
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Notep-EMB(A′) ≤pl p-HOM((A′)∗) by the previous lemma andp-HOM((A′)∗) ∈
para-L by Lemma 3.3. We are thus left to prove the claim.

AssumeA has tree depth at mostd and letE be a binary relation symbol not oc-
curing in the vocabulary of anyA ∈ A. Fix a computable function that maps every
A ∈ A to a family of height≤ d rooted trees(TC)C with TC = (C,ETC , rootTC )
whereC ranges over the connected components of the Gaifman graphG(A) of A, and
such that〈C〉G(A) is a subgraph of the closure ofTC . DefineA′ to be the expansion
of A interpretingE by

⋃

C E
TC ∪E′ whereE′ is defined as follows. It contains edges

between the root ofTC0 and the roots of the otherTC whereC0 is the lexicograph-
ically minimal component (according to the encoding ofA). ThenA′ is connected
and has tree depth at mostd + 1. Clearly,A′ := {A′ | A ∈ A} is decidable. The
map(A,B) 7→ (A′,B′), whereB′ is the expansion ofB interpretingE by B2, is a
pl-reduction fromp-EMB(A) to p-EMB(A′).

4 The class PATH

We present the complexity class PATH to capture the complexity of p-HOM(P∗). This
class was discovered very recently by Elberfeld et al. [12] with a different angle of
motivation; they refer to this class as para-NL[f log]. Among other results, they show
that the following problem is complete for this class: checkif a digraph contains a
path from a distinguished vertexs to another distinguished vertext of length at mostk;
here,k is the parameter. We usep-st-PATH to denote the corresponding problem for
undirected graphs.

p-st-PATH

Instance: A graphG, s, t ∈ G andk ∈ N.
Parameter: k.

Problem: Is there a path inG from s to t of length at mostk ?

Definition 4.1. The class PATH contains a parameterized problem(Q, κ) if there are a
computable functionf : N → N and a nondeterministic Turing machine that acceptsQ,
is pl-space bounded with respect toκ, and usesf(κ(x)) · log |x| many nondeterministic
bits.

The following is straightforward to verify.

Proposition 4.2. The complexity classPATH is closed under pl-reductions.

Recall that, using the notation in [15], one has

FPT= para-P⊆ W[P] ⊆ para-NP.

It follows immediately from the definitions that

para-L⊆ PATH ⊆ para-NL.

The class PATH is natural in that it has a natural machine characterization that is anal-
ogous to the one of W[P]. We shall see that it captures the complexity of many natural
problems.
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Theorem 4.3. p-HOM(P∗) is complete forPATH under pl-reductions.

Thatp-HOM(P∗) is contained in PATH can be seen by the guess-and-check para-
digm. We find it informative to present such algorithms in a computational model
tailored specifically for this kind of nondeterminism.

Definition 4.4. A jump machineis a Turing machine with an input tape and a special
jump state. When the machine enters the jump state the head on the input tape is set
nondeterministically on one of the cells carrying an input bit; we say that the machine
jumps tothe cell. When this occurs, no other head moves or writes and the state is
changed to the starting state. Acceptance is defined as usual, that is, such a machine
accepts an input if there exists a sequence of nondeterministic jump choices under
which the machine accepts. Aninjective jump machineis defined similarly to a jump
machine, but never jumps to a cell that has already been jumped to.

For a functionj : {0, 1}∗ → N, we say that a jump machine (an injective jump
machine) usesj many(injective) jumps if for every inputx and every run onx, it
enters the jump state at mostj(x) many times.

The idea is that a jump corresponds to a guess of a number in[n] wheren is the
length of the input. Observe that one can compute in logarithmic space the number
m ∈ [n] of the cell it jumps to by moving the head to the left and stepwise increasing
a counter.

Lemma 4.5. Let (Q, κ) be a parameterized problem. The following are equivalent.

1. (Q, κ) ∈ PATH.

2. There exists a computablef : N → N and a jump machineA using(f ◦κ) many
jumps that acceptsQ and is pl-space bounded with respect toκ.

3. There exists a computablef : N → N and an injective jump machineA using
(f ◦κ) many injective jumps that acceptsQ and is pl-space bounded with respect
to κ.

Proof. (1) implies (2): assume (1) and chooseA andf according Definition 4.1. Given
an inputx we simulateA by a jump machineB that makes use of an extra worktape.
WhenA enters its guess stateB moves its head on the extra worktape right and con-
tinues the simulation ofA in statesb whereb ∈ {0, 1} is the bit scanned by this head.
In case the head scans a blank cell,B stores the numberj of the cell its input head is
scanning and then performs a jump, say to cellm ∈ [|x|]. It computes the binary code
of m of length⌈log(|x| + 1)⌉. It overwrites the content of the extra worktape by this
code and sets its head on the first bitb of the code, moves the input head back to cell
j and continues the simulation ofA in statesb. ThenB makes at mostf(κ(x)) many
jumps.

(2) implies (3): letA andf accord (2). To get a machine according to (3) we intend
to simply simulateA on an injective jump machine. This works providedA does not
have accepting runs with two jumps to the same cell. To ensurethis condition we
replaceA by the following machineA′. Intutively, if A jumpsk times thenA′ jumps
2k times and accepts only if these2k jumps encode pairs(1,m1), . . . , (2k,m2k); the
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simulation of theith jump ofA is done by jumping to the(m2i,m2i+1)th cell. Details
follow.

The machineA′ on x first computesk := f(κ(x)): noteκ(x) can be computed
in spaceO(log |x|) by our convention on parameterizations; thenk can be computed
from κ(x) running some machine computingf on κ(x) – this needs additional space
which is effectively bounded in the parameterκ(x).

ThenA′ checks that2k · ⌈√n⌉ ≤ n wheren := |x|. If this check fails,A′ simulates
some fixed decision procedure forQ (note that (2) implies thatQ is decidable). Ob-
serve that in this casek ≥ Ω(

√
n), so the decision procedure runs in space effectively

bounded ink and hence in the parameter. Otherwise2k · ⌈√n⌉ ≤ n andA′ simulates
A as follows. Throughout the simulation it maintains a counter for jumps that initially
is set to 0. It will be clear that this counter always stores a number≤ 2k.

WhenA jumps,A′ jumps twice and computes the two numbersa, b of the cells
it jumped to. It interpretsa, b as encoding pairs(ia,ma), (ib,mb) ∈ [2k] × [⌈√n⌉].
More precisely,ia := ⌈a/⌈√n⌉⌉ is the leasti such thati · ⌈√n⌉ ≥ a andma :=
1 + a − (ia − 1) · ⌈√n⌉; similarly for (ib,mb). If (ia,ma) or (ib,mb) is not in
[2k]× [⌈√n⌉], thenA′ halts and rejects.

For i the value of the jump counter,A′ checks thati + 1 = ia and thati+ 2 = ib.
Then it computesm := ma · ⌈

√
n⌉+mb and checks thatm ∈ [n]. ThenA′ increases

the jump counter by two, moves the input head to cellm, changes to the starting state
and resumes the simulation ofA.

(3) implies (1): choose a machineA and a functionf according (3) and define a
machineB as follows. Onx it first computesk := f(κ(x)) (within allowed space as
seen above) andn := |x|. If k ≥ logn it runs some fixed machineQ decidingQ and
answers accordingly. Sincek ≥ logn this needs space effectively bounded ink and
thus in the parameter. If otherwisek < logn, thenB simulatesA as follows. During
the simulation it maintains a setX containing at mostk natural numbers all smallerk2

– intuitively, this set contains fingerprints of the jumps sofar. Initially,X = ∅.
To begin,B guesses a pair(p, q) with q < p < k2 logn and stores it. Note that

this requires onlyO(log k+log logn) ≤ O(log logn) nondeterministic bits and space.
ThenB starts simulatingA. WhenA jumps,B guesses⌈log(n+1)⌉ many bits encoding
a numberm ∈ [n]. It computesf := hp,q(m) and checks thatf /∈ X . Then it adds
f to X , moves the input head to themth input bit, changes to the starting state and
continues the simulation ofA.

Obviously, ifA jumps at mostℓ times, thenB uses at mostO(log logn + ℓ logn)
nondeterministic bits. To see thatB runs in allowed space, observe that the “finger-
print” f can be computed in spaceO(log n): first b := qm modp can trivially be
computed in space polynomial inlog p and this is space(log logn)O(1) ≤ O(log n);
second,f = b mod k2 can trivially be computed in space polynomial in(log k+log b)
and the space usage her is(log logn)O(1).

We show thatB acceptsx if and only if x ∈ Q. If B acceptsx then either because
Q acceptsx (and then triviallyx ∈ Q) or becauseA reaches an accepting state when it
jumps to cells numberedm1, . . . ,mℓ; note that the fingerprints of these cell numbers
are pairwise different, and hence so are the numbers. This impliesx ∈ Q. Conversely,
if x ∈ Q, then there is an accepting run ofA on x with ℓ ≤ k jumps to pairwise
different cellsm1, . . . ,mℓ. By Lemma 3.14 there existq < p < k2 logn such that
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hp,q is injective on{m1, . . . ,mℓ}. ThenB accepts when first guessing some such pair
(p, q) and then strings encodingm1, . . . ,mℓ.

Theorem 4.6.LetA be a decidable class of structures of bounded arity and of bounded
pathwidth. Thenp-EMB(A) ∈ PATH.

Proof. Choose a constantw ∈ N bounding the pathwidth ofA. We use a machineA
with injective jumps to solvep-EMB(A). The result will then follow from Lemma 4.5.

Given an instance(A,B) of p-EMB(A) the machine first computes a width≤ w
path-decomposition(Pk, (Xi)i∈[k]) of A such thatXi ( Xi+1 orXi+1 ( Xi for all
i ∈ [k − 1]; we further assume that noXi is empty. This is done in space effectively
bounded in the parameter|A| and, in particular,k is effectively bounded in|A|.

It then computes inductively for eachi ∈ [k] a maphi from Xi into B that is
a partial homomorphism fromA into B. To start, the machineA jumps |X1| times
to guess elementsb1, . . . b|X1| ∈ B. It checks that the functionh1 : X1 → B that
maps theith element ofX1 to bi defines a partial homomorphism fromA into B.
Having computedhi the machine computeshi+1 as follows. IfXi+1 ( Xi, then
hi+1 := hi ↾ Xi+1 is the restriction ofhi to Xi+1. OtherwiseXi+1 ) Xi, say
Xi+1 = Xi ∪ {a1, . . . , ad}; thenA jumpsd times to guessb1, . . . bd ∈ B and checks
thathi+1 := (hi ↾ Xi) ∪ {(aj , bj) | j ∈ [d]} is a partial homomorphism fromA into
B. In the end, if no check fails,A halts accepting.

This procedure can be implemented in pl-space: the space to store the path de-
composition is bounded in the parameter, and storing onehi needs space roughly
w · (log |A|+ log |B|).

It is routine to check thatA makes exactly|A| many jumps, and that it accepts only
if
⋃

i hi is a homomorphism fromA to B. Since the machine has injective jumps it
accepts in fact only if this homomorphism is an embedding. Conversely, it is obvious
that the machine accepts if an embedding fromA intoB exists.

Proof of Theorem 4.3.To seep-HOM(P∗) ∈ PATH, just consider the machineA de-
scribed in the proof of Theorem 4.6 as a machine with jumps instead of as a machine
with injective jumps.

To see thatp-HOM(P∗) is hard for PATH under pl-reductions, let(Q, κ) ∈ PATH
and choose a Turing machineA with jumps according Lemma 4.5 (2) that acceptsQ.
We can assume that there are computablef, g : N → N such thatA onx ∈ {0, 1}∗ runs
in spaceO(g(κ(x)) + log |x|) and makes on every run exactlyf(κ(x)) many jumps.

Fix x ∈ {0, 1}∗ and setk := κ(x) andn := |x|. Let Adet be the deterministic
Turing machine defined asA but with the jump state interpreted as a rejecting halting
state. Observe thatAdet (andA) has at mostm := 2g(k) · nc configurations where
c ∈ N is a suitable constant. Letc1, . . . , cm be a list (possibly with repetitions) of
all configurations ofAdet on x whose state is the starting state. Assume thatc1 is the
starting configuration ofAdet. Fori, j ∈ [m], sayi reachesj if the computation ofAdet

started onci (with x on the input tape) reaches in at mostm steps a configurationc
with the jump state, andcj is obtained fromc by changing the jump state to the starting
state and changing the position of the input head to some arbitrary cell storing an input
bit. Further, calli ∈ [m] acceptingif Adet started onci accepts within at mostm steps.
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Consider the structureBx given by

Bx := [f(k) + 1]× [m],

EBx := the symmetric closure of

{((i, j), (i+ 1, j′)) | i ∈ [f(k)], j reachesj′},
CBx

1 := {(1, 1)},
CBx

i := {i} × [m] for 2 ≤ i ≤ f(k),

CBx

f(k)+1 := {(f(k) + 1, j) | j is accepting}.

It is clear that there exists a homomorphism fromP∗
f(k)+1 to Bx if and only if A

acceptsx, that is, the mapx 7→ (P∗
f(κ(x))+1,Bx) is a reduction from(Q, κ) to

p-HOM(P∗). The new parameter|P∗
f(κ(x))+1| depends only onκ(x). The reduction is

implicitly pl-computable: first observe that the numbersf(k) andm can be computed
fromx in pl-space. A counter for numbers up tom needs only spaceO(g(k) + logn).
Hence one can tell whether or noti reachesj in pl-space simply by simulatingAdet for
at mostm many steps. Similarly, this space is sufficient to tell whether or not a given
j ∈ [m] is accepting.

The following result gives information about fundamental problems: the problems
p-EMB(

−→P ), p-EMB(C), andp-EMB(
−→C ) are the parameterized problems of determin-

ing if an input graph contains a simple directedk-path, a simple undirectedk-cycle,
and a simple directedk-cycle, respectively; these problems are denoted respectively by
p-DIRPATH, p-CYCLE, andp-DIRCYCLE by Flum and Grohe [16].

Theorem 4.7. The following parameterized problems are complete forPATH under
pl-reductions:

p-st-PATH,

p-HOM(
−→P ), p-EMB(

−→P )
p-HOM(C), p-EMB(C)
p-HOM(

−→C ), p-EMB(
−→C )

Proof. By Theorem 4.6 all embedding problems are contained in PATH.For the ho-
momorphism problems andp-st-PATH the same argument works (see the proof of
Theorem 4.3). We are thus left to prove hardness.

Recall Example 2.1. Corollary 3.10 implies thatp-HOM(
−→P ∗) ≤pl p-EMB(

−→P )

and also thatp-HOM(
−→C ∗) ≤pl p-EMB(

−→C ). Since we trivially havep-HOM(A) ≤pl

p-HOM(A∗) for all classesA, we conclude thatp-HOM(
−→P ) ≤pl p-EMB(

−→P ) and

also thatp-HOM(
−→C ) ≤pl p-EMB(

−→C ). For C we similarly getp-HOM(Codd) ≤pl

p-EMB(Codd) whereCodd is the class of odd length cycles. By
−→C odd we denote the

class of odd length directed cycles.
It thus suffices to show that the problems

p-HOM(
−→P ), p-HOM(

−→C ), p-HOM(Codd), p-st-PATH
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are PATH-hard. By Theorem 4.3, we know thatp-HOM(P∗) is hard for PATH. We
give the sequence of reductions

p-HOM(P∗) ≤pl p-HOM(
−→P ) ≤pl p-st-PATH ≤pl p-HOM(

−→C odd)

and then show the hardness ofp-HOM(Codd).

p-HOM(P∗) ≤pl p-HOM(
−→P ). Let (P∗

k,B) be an instance ofp-HOM(P∗). The

reduction produces the instance(
−→
Pk,B

′) whereB′ is the directed graph with vertices
B′ := [k]×B and edges

EB
′

:= {((i, b), (i+ 1, b′)) | i ∈ [k − 1], b ∈ CB

i , b
′ ∈ CB

i+1}.

p-HOM(
−→P ) ≤pl p-st-PATH. Let (

−→
Pk,G) be an instance ofp-HOM(

−→P ). The
reduction produces the instance(G′, s, t, k + 2) whereG′ has verticesG′ := {s, t} ∪
([k]×G) and as edges the symmetric closure of

{

((i, u), (i+ 1, v)) | i ∈ [k − 1], (u, v) ∈ EG
}

∪
(

{s} × ([1]×G)
)

∪
(

{t} × ([k]×G)
)

.

p-st-PATH ≤pl p-HOM(
−→C odd). Let (G, s, t, k) be an instance of the former prob-

lem; by the previous reduction, we may assume that it is a yes instance if and only if
there is ans-t path of length exactlyk. We can assume thatk is odd (otherwise we take
a new neighbor of the givens as our news). Define the graphG′ with vertices([k]×G)
and edges as follows. Wheni ∈ [k − 1] and(u, v) ∈ EG, there is an edge from(i, u)

to (i + 1, v); also, there is an edge from(k, t) to (1, s). Then(G, s, t, k) 7→ (
−→
Ck,G

′)
is a reduction as desired.

Finally, we show the hardness ofp-HOM(Codd). By appeal to Lemma 3.9, it suffices
to demonstrate a reductionp-st-PATH ≤pl p-HOM(C∗

odd). Given an instance(G, s, t, k)
of the former problem of the above form, we defineG

′ as in the previous reduction. The
produced instance is(C∗

k,G
′′), whereG′′ is the expansion of the symmetric closure

of G′ with CG
′′

i = {i} ×G.

5 The class TREE

We give a machine characterization of the class of parameterized problems that are
pl-reducible top-HOM(T ∗).

Definition 5.1. The class TREE contains a parameterized problem(Q, κ) if there are
a computable functionf : N → N and an alternating Turing machine that acceptsQ,
is pl-space bounded with respect toκ, and usesf(κ(x)) · log |x| nondeterministic bits
andf(κ(x)) co-nondeterministic bits.

The following proposition is straightforward to verify.

Proposition 5.2. The complexity classTREE is closed under pl-reductions.
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Definition 5.3. An alternating Turing machine with jumpsis a Turing machineA using
nondeterministic jumps and a universal guess state (see Preliminaries). Itacceptsan
inputx ∈ {0, 1}∗ if its starting configuration onx is accepting: it is already explained
what an accepting halting configuration is, and a non-halting configuration which is
not in the universal guess state (resp. is in the universal guess state) is accepting if at
least one (resp. both) of its successor configurations are accepting.

Lemma 5.4. Let (Q, κ) be a parameterized problem. The following are equivalent.

1. (Q, κ) ∈ TREE

2. There exists a computablef : N → N and an alternating Turing machineA with
f ◦ κ many jumps andf ◦ κ many co-nondeterministic bits that acceptsQ and
is pl-space bounded with respect toκ.

Proof. The implication from (1) to (2) can be seen analoguously to the corresponding
implication in Lemma 4.5.

Conversely, letA andf accord (2). A machineB according (1) can be obtained
by simulating a jump ofA by existentially guessing a binary string encoding a number
m ∈ [n] and moving the input head to cellm.

Theorem 5.5. p-HOM(T ∗) is complete forTREEunder pl-reductions.

Proof. (Theorem 5.5) We show thatp-HOM(T ∗) ∈ TREE. Consider the following
alternating Turing machine. Given an instance(T,B) of p-HOM(T ∗), the machine
chooses somet ∈ T as a “root” and computes the directed “tree”T

′ with edges directed
away fromt. It existentially guesses (O(log |B|) bits encoding) ab ∈ CB

t and writes
(t, b) on some tape. While the pair(t, b) written on the tape is such thatt has children
in T

′ the machine does the following: universally guess (O(log |T |) bits encoding) a
child t′ of t; existentially guessb′ ∈ B; check that(b, b′) ∈ EB andb′ ∈ CB

t′ . The
while loop is left rejecting if this check fails. If the machine leaves the while loop
otherwise, it accepts.

The number of universal guesses is bounded byO(|T | · log |T |). The number of
existential guesses is bounded by|T | · log |B|. The machine uses space to storeT

′ and
at most two pairs inT ×B, so it is pl-space bounded.

To showp-HOM(T ∗) is TREE-hard under pl-reductions, let the parameterized
problem(Q, κ) be in TREE. Choose an alternating machineA with jumps accord-
ing to Lemma 5.4 for(Q, κ). By adding some dummy jumps and dummy universal
guesses we can assume thatA on everyx and every run onx first makes one universal
guess, then one jump, then one universal guess and so on. We can further assume that
A on x on every run onx makes exactlyf(κ(x)) many jumps and exactlyf(κ(x))
many universal guesses. LetA0 (A1) be the machine obtained fromA by fixing the
transition from a configuration with universal guess state to the first (second) successor
configuration. NoteA0 andA1 are Turing machines with jumps.

Let x ∈ {0, 1}∗, k := κ(x), n := |x|. Recall the proof of Theorem 4.3. As
there, letc1, . . . , cm enumerate all configurations ofA on x with the starting state;
assumec1 is the starting configuration. LetA0

det andA1
det be the deterministic machines

obtained formA0 andA1 by interpreting the jump state as a rejecting halting state.For
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i, j ∈ [m], b ∈ {0, 1} we define what it means thati b-reachesj as in the proof of
Theorem 4.3 withAb

det in place ofAdet there; calli acceptingif A0
det (equivalentlyA1

det)
started onci accepts in at mostm steps without entering the universal guess state.

Recall the notationTk from the preliminaries. The reduction outputs(T∗
f(k)+1,B)

whereB is defined as follows.

B := {0, 1}≤f(k)+1 × [m],

EB := the symmetric closure of
{

((σ, j), (σb, j′)) | b ∈ {0, 1}, σ ∈ {0, 1}≤f(k), j b-reachesj′
}

,

CB

λ := {(λ, 1)}, whereλ is the empty string,

CB

σ := {σ} × [m], for 1 ≤ |σ| ≤ f(k),

CB

σ := {(σ, j) | j is accepting}, for |σ| = f(k) + 1.

It is not hard to see that(T∗
f(k)+1,B) can be computed in pl-space (cf. Proof of

Theorem 4.3). To see this indeed defines a reduction, first assumeh is a homomor-
phism fromT

∗
f(k)+1 to B. As h preserves the unary relationsCσ, for everyσ there

is aniσ ∈ [m] such thath(σ) = (σ, iσ). It follows by induction onℓ that for every
σ ∈ {0, 1}f(k)+1−ℓ the configurationciσ is accepting (Definition 5.3). Butiλ = 1, so
ciλ = c1 is the starting configuration andA acceptsx.

Conversely, assumeA acceptsx. We define an accepting configurationcσ for every
σ ∈ {0, 1}≤f(k)+1: cλ is the starting configurationc1. All other cσs are going to be
the result of a jump (are a successor of a configuration in the jump state). Assumecσ
is already defined. Thencσ is the starting configuration or results from a jump. In both
cases the machineA reaches fromcσ deterministically a universal guess state with two
accepting successorsc′0, c

′
1. For everyb ∈ {0, 1}, A reaches deterministically fromc′b

either an accepting halting configuration or a configurationin the jump state. In the
first case letcσb be this accepting halting configuration and in the second letit be some
accepting successor of the jump. For everyσ chooseiσ ∈ [m] such thatcσ = ciσ .
Thenσ 7→ (σ, iσ) defines a homomorphism fromT∗

f(k)+1 to B.

Theorem 5.6. LetA be a decidable class of structures of bounded arity and bounded
treewidth. Thenp-EMB(A) ∈ TREE.

Proof. Let A accord the assumption. We proceed as in the proof of Theorem 3.13.

Claim. There exists a decidable class of connected structuresA′ of bounded treewidth
such thatp-EMB(A) ≤pl p-EMB(A′).

Notep-EMB(A′) ≤pl p-HOM((A′)∗) by Lemma 3.15, the latter problem pl-reduces
to p-HOM(T ∗) by the Classification Theorem, andp-HOM(T ∗) ∈ TREE by Theo-
rem 5.5. We are thus left to prove the claim.

AssumeA has treewidth at mostw. Fix a computable function that maps every
A ∈ A to a width≤ w + 1 tree decomposition(T, (Xt)t∈T ) of A such that|Xt| ≥ 2
for all t ∈ T , andXs ∩Xt 6= ∅ for all (s, t) ∈ ET. LetA′ be the expansion ofA by
interpreting a new binary relation symbolR by

⋃

t∈T X
2
t . Then(T, (Xt)t∈T ) is also

a tree decomposition ofA′ andA′ is connected. Clearly,A′ := {A′ | A ∈ A} is
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decidable. The map(A,B) 7→ (A′,B′), whereB′ is the expansion ofB interpreting
R byB2, is a pl-reduction fromp-EMB(A) to p-EMB(A′).

Theorem 5.7. The parameterized problemsp-HOM(B), p-HOM(
−→B ), p-EMB(B), and

p-EMB(
−→B ) are complete forTREEunder pl-reductions.

Proof. It is straightforward to verify that the structures inB and in
−→B are connected

cores. Hence, each of the first two problems is TREE-completeby the Classification
Theorem and Theorem 5.5.

The problemsp-EMB(B) andp-EMB(
−→B ) are TREE-hard by Corollary 3.16 and

the hardness ofp-HOM(B) andp-HOM(
−→B ), which immediately imply the hardness of

p-HOM(B∗) andp-HOM(
−→B ∗).

The problemsp-EMB(B) andp-EMB(
−→B ) are in TREE by Theorem 5.6.

6 Counting classification

In this section we present a classification of the counting problems corresponding to
the problemsp-HOM(A).

6.1 Preliminaries on parameterized counting complexity

A machine with oracleO ⊆ {0, 1}∗ has an extra write-onlyoracle tape; such a ma-
chine has aquery stateand the wordy written on the oracle tape is thequeryof a
configuration with this state; the successor state is obtained by erasing the oracle tape
and moving to one of two distinguished states depending of whether the query is con-
tained in the oracleO or not. The oracle tape is not accounted for in space bounds (as
in [23]).

A parameterized counting problemis a pair(F, κ) of a functionF : {0, 1}∗ →
N and a parameterizationκ. To say it is in para-L, means thatF is implicitly pl-
computable with respect toκ. Equivalently one could say that there is a Turing machine
with a write-only output tape that computesF and is pl-space bounded with respect
to κ.

A parsimonius fpt-reductionfrom (F, κ) to another parameterized counting prob-
lem (F ′, κ′) is a functionR : {0, 1}∗ → {0, 1}∗ that is computable by an fpt-time
bounded (with respect toκ) Turing machine such thatF = F ′ ◦R andκ′ ◦R ≤ f ◦ κ
for some computablef : N → N. In the logspace setting we define aparsimonious
pl-reductionsimilarly demanding that the reduction is implicitly pl-computable instead
of computable by a fpt-time bounded machine. We again write(F, κ) ≤pl (F

′, κ′) if
such a reduction exists.

We say(F, κ) is pl-Turing reducibleto (F ′, κ′) and write(F, κ) ≤T
pl (F ′, κ′) if

there are a pl-space bounded (with respect toκ) Turing machineA with oracle to
BITGRAPH(F ′) that decides BITGRAPH(F ), and a computablef such that on ev-

ery input x ∈ {0, 1}∗ all queriesy
?∈ BITGRAPH(F ′) of A on x have parame-

ter κ′(y) ≤ f(κ(x)). Here, we denote the parameterizations of BITGRAPH(F ) and
BITGRAPH(F ′) again byκ andκ′ respectively.
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6.2 Classification theorem

For a class of structuresA consider the parameterized counting problem.

p-#HOM(A)
Instance: A pair of structures(A,B) whereA ∈ A.

Parameter: |A|.
Problem: Compute the number of homomorphisms fromA toB.

Dalmau and Jonsson [10] gave a classification of counting problems of this form, show-
ing that for a class of structuresA of bounded arity, the problemp-#HOM(A) is in FPT
if A has bounded treewidth, and is #W[1]-complete otherwise. Wegive a fine classifi-
cation of the case whereA has bounded treewidth, analogous to our fine classification
for the problemp-HOM(A).

Theorem 6.1(Counting Classification). LetA be a decidable class of structures hav-
ing bounded arity and bounded treewidth.

1. If A has unbounded pathwidth, then

p-#HOM(A) ≤pl p-#HOM(T ∗) ≤T
pl p-#HOM(A).

2. If A has bounded pathwidth and unbounded tree depth, then

p-#HOM(A) ≤pl p-#HOM(P∗) ≤T
pl p-#HOM(A).

3. If A has bounded tree depth, then

p-#HOM(A) ∈ para-L.

The proof of this result partly involves an analysis of the proof of Theorem 3.1, and
builds on techniques of Dalmau and Jonsson [10].

Lemma 6.2. LetA be a decidable set of finite structures, letG be the set of Gaifman
graphs ofA, and letM be the set of minors of graphs inG. Then

p-#HOM(M∗) ≤pl p-#HOM(G∗) ≤pl p-#HOM(A∗) ≤T
pl p-#HOM(A).

Proof. The first two reductions are exactly as before, that is, they are the reductions
from Lemmas 3.7 and 3.8. These reductions are readily verified to be parsimonious.
We thus prove thatp-#HOM(A∗) ≤T

pl p-#HOM(A).
LetA be an element ofA, and let(A∗,B) be an instance ofp-#HOM(A∗). LetB0

be the restriction ofB to relation symbols ofA. For each non-empty subsetS ⊆ A,
defineBS to be the induced substructure ofA×B0 on universe{(a, b) ∈ S×B | b ∈
CB

a }. For a mappingg fromA to a set of the formBS , let g1 denote the map(π1 ◦ g)
whereπ1 is the projection of a pair to its first component.

The number of homomorphismsg from A
∗ to B is the same as the numberMg

of homomorphismsg′ from A to BA such thatg′1 is the identity onA (consider the
bijection g 7→ g′ with g′(a) := (a, g(a))). To computeMg, it suffices to compute
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the numberMh of homomorphismsh from A to BA such thath1(A) = A. This is
because of the fact that a mappingh : A→ A×B is a homomorphism fromA toBA

with h1(A) = A if and only ifh has the formg◦σ whereg is a homomorphism fromA
to BA, g1 is the identity, andσ is a bijective homomorphism fromA to A. From this
fact, it follows thatMg = Mh/S whereS is the number of bijective homomorphisms
from A to A; note thatS can be computed directly fromA, and so this gives a way
to determineMg (division is logspace computable [7]). We prove the claimedfact as
follows. The backward direction is clear, so we prove the forward direction. Leth be a
homomorphism fromA to BA with (π1 ◦ h)(A) = A. There exists an integerm ≥ 1
such that(π1 ◦ h)m is the identity mapping onA. Setg = h ◦ (π1 ◦ h)m−1; we then
haveh = h ◦ (π1 ◦ h)m = g ◦ (π1 ◦ h), as desired.

For each subsetS ⊆ A, the Turing reduction will query the instance(A,BS) of
p-#HOM(A); denote the result byN⊆S . Observe thatN⊆S is the number of homo-
morphismsh from A to BA with h1(A) ⊆ S. For a subsetS ⊆ A, letN=S denote
the number of homomorphismsh from A to BA with h1(A) = S. We have, for
each subsetS ⊆ A, the identityN⊆S =

∑

T⊆S N=T . By inclusion-exclusion, we

haveN=A =
∑

S⊆A(−1)|A|−|S|N⊆S which is the valueMh that we wanted to deter-
mine. We can evaluate the sum expression in pl-space by combining two observations:
first, with oracle access top-#HOM(A) the sequence of the numbers(−1)|A|−|S|N⊆S

is implicitly pl-computable; second, summing a sequence ofintegers can be done in
logspace.

Proof of Theorem 6.1.Statements (1) and (2) each make two claims. The claims made
first concern parsimonious pl-reductions and follow from Lemma 3.4 and Remark 3.5.
The second claims concern Turing reductions and follow fromthe previous lemma to-
gether with the Excluded Tree Theorem 2.3 (2) and the Excluded Path Theorem 2.3 (3)
respectively.

We are left to prove Statement (3). It is not hard to see that a structure of tree depth
at mostw′ has a tree decomposition of width at mostw′ + 1 such that the underlying
tree has height at mostw′ with respect to some root. By Lemma 3.4 and Remark 3.5,
it suffices to showp-#HOM(T (w)) ∈ para-L for everyw ∈ N. Here, we letT (w) be
the class of structuresT∗ such thatT is a tree that can be rooted in such a way that its
height is at mostw.

For w = 0, this is easy to see. So letw > 0 and assume by induction that
p-#HOM(T (w − 1)) ∈ para-L. Given an instance(T∗,B) of p-#HOM(T (w)), we
conceive ofT∗ as a rooted tree with rootr and of height at mostw. For elements
t ∈ T andb ∈ B, we defineNt→b to be the number of partial homomorphismsh that
are defined on the subtree rooted att and such thath(t) = b. Let t1, . . . , tm denote the
children ofr in T. The number that we desire to determine is

∑

b∈CB
r

Nr→b. For a
particular valueb ∈ B, it is straightforward to verify that

Nr→b =
∏m

i=1

∑

b′ Nti→b′

where the sum is over allb′ ∈ CB
ti

such that(b, b′) ∈ EB. Thus, the number we
desire to compute equals a certain sum-product-sum expression. But this expression
is implicitly pl-computable: to determine bits of the numbersNti→b′ one can run an
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algorithm witnessingp-#HOM(T (w − 1)) ∈ para-L. Using the facts that iterated
sum and iterated product are computable in logarithmic space [7], it follows that our
sum-product-sum expression can be evaluated in logarithmic space. This yields the
result.

7 Discussion

A classification of the parameterized complexity of embedding problems is famously
open [17, p.355], in particular, it is not known whether the embedding problem for
complete bipartite cliques is W[1]-hard (under fpt-reductions).

A fundamental problem whose complexity we failed to settle within our framework
is p-EMB(P). By Theorem 4.6, we knowp-EMB(P) ∈ PATH, but we do not know
whether it is PATH-hard (under pl-reductions). We note thatits restriction to regular
graphs is in para-L.

p-EMB(P)reg

Instance: A regular graphG andk ∈ N.
Parameter: k.

Problem: DoesG contain a path of lengthk?

Proposition 7.1. p-EMB(P)reg ∈ para-L.

The proof uses a result of Flum and Grohe [15, Example 6] stating that model
checking first-order logic on bounded degree graphs is in para-L. Their proof actually
shows

Theorem 7.2([15]). The following parameterized problem is inpara-L.

Instance: A graphG of degree at mostd and a first-order sentenceϕ.
Parameter: d+ |ϕ|.

Problem: G |= ϕ ?

Proof of Proposition 7.1.Given a regular graphG of degreed and a naturalk ∈ N,
distinguish two cases: ifd > k then accept; otherwise check, using the algorithm of
Theorem 7.2, whetherG satisfies∃x0 · · ·xk

(
∧

i<j≤k ¬xi = xj ∧
∧

i<k Exixi+1

)

.

On the more structural side, as mentioned in the introduction, we believe that
it could be worthwhile to investigate whether or not the classes PATH and TREE
are closed under complement. Relatedly, one can ask whetheror not it holds that
co-PATH⊆ TREE.
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