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The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to 

more sensitive detection methods, and this increase is creating challenges for clinical 

management. We performed whole-genome sequencing of 102 primary PanNETs and 

defined the genomic events that characterize their pathogenesis. Here we describe the 

mutational signatures they harbour, including a deficiency in G:C>T:A base excision 

repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically 

sporadic PanNETs contain a larger-than-expected proportion of germline mutations, 

including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 

and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% 

of patients. Somatic mutations, including point mutations and gene fusions, were 

commonly found in genes involved in four main pathways: chromatin remodelling, 

DNA damage repair, activation of mTOR signalling (including previously undescribed 
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EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression 

analyses identified a subgroup of tumours associated with hypoxia and HIF signalling. 

Pancreatic neuroendocrine tumours (PanNETs) are the second most common epithelial 

neoplasm of the pancreas and have a mortality rate of 60%1. The World Health Organization 

(WHO) classification, which assesses the proliferative fraction of neoplastic cells, divides 

PanNETs into three groups: low grade (G1), intermediate grade (G2), and high grade (G3). 

While G3 tumours are invariably lethal, 90% of PanNETs are grade G1 or G2. These have an 

unpredictable clinical course that varies from indolent to highly malignant. Our current 

understanding of the molecular pathology of G1 and G2 PanNETs is insufficient for their 

clinical management, where the challenge is to predict the aggressiveness of individual 

tumours in order to identify patients who will benefit from early aggressive therapy and to 

minimize harm from the inadvertent overtreatment of patients with indolent disease. 

PanNETs are usually sporadic but also occur as part of three hereditary syndromes: 

multiple endocrine neoplasia type 1 (MEN-1), von Hippel-Lindau syndrome (VHL), and 

occasionally tuberous sclerosis complex (TSC)1. Somatic mutations of MEN1 occur in 35% 

of PanNETs1–3. Recent expression profiling and exome sequencing have highlighted the 

importance of activated mTOR signalling as a druggable mechanism in 14% of patients3,4 

and, although the mTOR inhibitor Everolimus is approved by the FDA for the treatment of 

advanced PanNET5, it is not yet possible to use molecular analysis to select patients who will 

benefit. In addition, the apoptotic regulator DAXX or the chromatin modifier ATRX are 

mutated in up to 40% of PanNETs3,6, where they promote alternative lengthening of 

telomeres (ALT) and chromosomal instability7,8. 

Our comprehensive molecular analysis of 102 clinically sporadic PanNETs defines 

their molecular pathology and identifies several novel candidate mechanisms that activate 

mTOR signalling, including novel gene fusion events. We have uncovered an important role 

for germline MUTYH variants through a novel G:C>T:A mutational signature. In addition, 

we have identified a larger-than-anticipated germline contribution to clinically sporadic 

PanNETs, delineating future challenges in the clinical assessment of susceptibility. 

Genomic landscape of PanNETs 

The study workflow is illustrated in Extended Data 1. Patients were recruited and consent for 

genomic sequencing obtained as part of the International Cancer Genome Consortium 

(http://www.icgc.org). All cases were classified according to WHO criteria1. The cohort 
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included 98 resected PanNETs (Supplementary Table 1 and Supplementary Table 2) with an 

average tumour content of 82%9 with 36 tumours classified as G1, 57 as G2, and 5 as G3. 

Four additional PanNETs and one colon cancer from a patient with MUTYH-associated 

polyposis (MAP) were sequenced to validate mutational signatures (Supplementary Table 3). 

Matched pairs of tumour and normal DNA were used for whole-genome sequencing (WGS) 

(average 38× normal, 61× tumour) and high-density single nucleotide polymorphism (SNP) 

arrays (Supplementary Table 3), and orthogonal testing estimated that the accuracy of 

somatic calls exceeded 99% (Supplementary Tables 4, 5). Structural rearrangements were 

detected by integrating discordant read pairs, soft-clipping, split read and de novo assembly 

of non-mapping reads10,11 (Supplementary Table 6). Copy number events were identified 

using genome alteration print (GAP) analysis of SNP arrays12 and recurrent focal and arm 

length gains and losses using GISTIC13 (Supplementary Table 7). 

Mutational mechanisms in PanNET 

PanNETs have a lower mutation burden (0.82 per megabase, range 0.04–4.56) than their 

exocrine counterpart11 (pancreatic ductal adenocarcinoma: mean 2.64, range 0.65–28.2), with 

the 98 PanNETs analysed here containing 258,678 high-confidence somatic point mutations 

and indels. Non-negative matrix factorization14 defined five robust mutational signatures 

(Fig. 1a, Extended Data Fig. 2 and Supplementary Table 8), including the unknown aetiology 

‘Cosmic signature 5’14 reported in many tumour types, deamination, APOBEC (also known 

as AID), BRCA and a previously undescribed signature. The germline heterozygous 

APOBEC3A–3B deletion, which has been implicated in APOBEC-induced mutation(s) in 

breast cancers15, appears to play a minimal role in PanNETs, as only 2 out of 13 carriers 

exhibited a predominant APOBEC signature (Fig. 1a). One tumour with a highly prominent 

BRCA deficiency signature (more than 2 mutations per Mb), and the same widespread 

genomic instability pattern recently described in BRCA-deficient breast16, pancreatic ductal11, 

ovarian17 and oesophageal carcinomas10, harboured a pathogenic germline BRCA2 mutation 

(Fig. 1c). 

A novel mutational signature, composed of G:C>T:A transversions, predominated in 

five PanNETs (range 0.2–4.2 mutations per Mb; Fig. 1a, Extended Data Fig. 2), which bore a 

known pathogenic or novel inactivating germline mutation in the base-excision-repair gene 

MUTYH, coupled with loss of heterozygosity (LOH; Fig. 1d). This mutational signature or 

pattern of biallelic MUTYH inactivation was not observed in 100 pancreatic ductal 

adenocarcinomas using the same analysis pipeline11. Germline biallelic inactivation of 
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MUTYH causes the autosomal recessive MUTYH-associated colorectal polyposis syndrome 

and is associated with somatic G:C>T:A transversions in the APC gene, the driver of 

colorectal polyps18. 

To verify our findings, we used amplicon sequencing of MUTYH on 62 additional 

PanNETs and identified three tumours bearing pathogenic germline mutations coupled with 

LOH. Whole-genome analysis revealed that these three tumours displayed the same novel 

mutational signature (Fig. 1b, Extended Data Fig. 3). Interestingly, the two missense MUTYH 

mutations identified in the Italian cohort (c.536A>G, p.Y179C; c.1187G>A, p.G396D) are 

the most common MAP-linked variants in populations of European origin and have been 

shown to be founder mutations in a recent haplotype analysis of 80 families with MAP from 

Italy and Germany19. Finally, whole-genome sequencing of a colonic tumour from a patient 

with MAP confirmed that this signature indicates MUTYH deficiency (Fig. 1b, Extended Data 

Fig. 3). These data suggest that, in addition to predisposing to colonic, gastric and a variety of 

non-gastrointestinal cancers20, MUTYH deficiency plays a role in PanNET. 

Clusters of breakpoints were identified (Extended Data Fig. 4a) in nine tumours (9%), 

which displayed structural variations and copy-number changes consistent with 

chromothripsis21 (Supplementary Table 9). Four of these nine tumours had recurrent 

catastrophic rearrangements on chromosome 11q (Extended Data Fig. 4b), all involving 

11q13, and two of these rearrangements led to loss of MEN1. Notably, despite TP53 being 

considered a hallmark of chromothripsis22, no TP53 mutations were present in tumours with 

genomic catastrophes in PanNETs. 

Germline mutations 

The discovery of germline deleterious mutations in MUTYH and BRCA2 prompted us to 

screen the germlines of all patients for mutations in DNA damage repair genes or genes 

associated with hereditary syndromes (Supplementary Tables 10, 11). In the case of known 

neuroendocrine predisposition genes, six patients carried either known pathogenic or novel 

deleterious germline MEN1 mutations (four frameshifts, one splice site mutation, and one 

copy-number loss). A single novel truncating CDKN1B germline mutation was identified 

(Q163X). CDKN1B germline mutations cause multiple endocrine neoplasia type 423 and 

somatic mutations occur in intestinal neuroendocrine tumours24. A single, novel, pathogenic 

germline mutation was identified within VHL, a negative regulator of hypoxia signalling that 
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promotes neuroendocrine proliferation and PanNETs25. In every case, germline alterations 

were coupled with somatic LOH. 

The DNA-damage repair gene CHEK2, a known tumour suppressor in breast cancer 

and other cancer types, had predicted damaging germline variants in four individuals (4%): a 

nonsense mutation (c.58C>T, Q20X), a 15-base pair in-frame deletion (c.246–260del, 

p.D77–E82del), a missense mutation in exon 2 implicated in prostate cancer predisposition 

(rs121908702, c.844G>A, p.E282K)26 and a missense variant in exon 4 (c.529G>C, 

p.D177H). Mutation modelling predicted these variants to be damaging (Extended Data Fig. 

5a, b). To investigate the functional consequences of CHEK2 mutations, we generated a panel 

of Flag–CHEK2 constructs encoding the wild-type, P85L, D177H, E282K and ∆77–82 

variants. The conservative mutant P85L showed expression and kinase activity equivalent to 

the wild type, but cells expressing the predicted pathogenic mutants D177H, E282K and 

∆77–82 showed low kinase activity due to a combination of reduced protein expression and 

kinase inactivity (both autophosphorylation and phosphorylation of the substrate CDC25C) 

(Extended Data Fig. 5c–j). 

Somatic driver mutations 

A total of 15,751 somatic coding mutations (7,703 non-silent) were detected in 2,787 genes 

(Supplementary Tables 4, 5). Sixteen significantly and recurrently mutated genes were 

defined using IntOGen27 analysis (Q < 0.1) (Extended Data Fig. 6a, Supplementary Table 

12). Consistent with previous reports, MEN1 was the most frequently mutated of these genes, 

present in 37% of tumours (Extended Data Fig. 6b). Mutually exclusive inactivating 

mutations of DAXX and ATRX were found in 22 and 11 samples, respectively, including a 

structural rearrangement of ATRX. The mechanistic target of rapamycin (mTOR) pathway 

genes PTEN (n = 7) and DEPDC5 (n = 2) were also significantly mutated. PTEN mutations 

were mutually exclusive with mutations in TSC1 (n = 2) and TSC2 (n = 2), which encode 

other negative regulators of mTOR signalling (Supplementary Table 5). As mutations of the 

tumour suppressor gene DEPDC5 have not been previously described in PanNETs, we 

surveyed an additional 62 cases (Supplementary Table 14) and identified a further 2 tumours 

that harboured DEPDC5 mutations, which were again mutually exclusive to PTEN (n = 3) 

and TSC2 mutations (n = 3) (Supplementary Table 15). Consistent with the literature, 

deleterious TP53 mutations were uncommon (n = 3). Among the genes not meeting the 

significance threshold by IntOGen, the histone modifier SETD2 was mutated in five samples 

(Extended Data Fig. 6a, Supplementary Table 5). Similar to previous observations in renal 
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cell carcinoma28, we observed multiple independent SETD2 mutations in presumed subclones 

of one tumour (a nonsense at 3%, a missense at 14% and a frameshift at 11% allelic 

frequency), suggesting strong selection for SETD2 inactivation in that particular tumour. 

Copy number changes 

Copy number analysis revealed four discrete groups of patients based on arm length copy 

number patterns (Extended Data Fig. 7a). These were classified into: 1) recurrent pattern of 

whole chromosomal loss (RPCL); 2) limited copy number events, many of which were losses 

affecting chromosome 11; 3) polyploidy; and 4) aneuploidy (Extended Data Fig. 7a, b). 

Notably, the RPCL subtype consistently presented loss of specific chromosomes (Extended 

Data Fig. 7) and was significantly enriched in G2 PanNETs (P = 0.0247, 2 test). The 

polyploid group had the highest somatic mutation rate (P  0.002, Mann–Whitney test) with 

an average of 1.98 mutations per Mb (Extended Data Fig. 7c). 

Recurrent regions of gain and loss (Supplementary Table 7, Extended Data Fig. 7d) 

included broad regions of loss containing the known neuroendocrine tumour suppressors 

MEN1 (chromosome 11q13.1) and CDKN2A (chromosome 9q21.3), whereas focal losses 

highlighted potential tumour suppressor roles for EYA1 (chromosome 8q13.3; a known target 

of MEN129),), FMBT1 (chromosome 3p21.1; encoding a key component of histone 

modification machinery implicated in cancer30) and RABGAP1L (chromosome 1q25.1; 

frequently deleted in neurofibromas31). Significant, recurrently amplified regions included 

PSPN (chromosome 19p13.3), a member of the glial cell line-derived neurotrophic factor 

family that activates phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 

(PIK3CA) signalling via RET and is upregulated in thyroid medullary cancers32,33; and ULK1 

(chromosome 12q24.33), a serine-threonine kinase that is involved in mTOR-regulated 

autophagy34. 

Chromosomal rearrangements 

Structural rearrangements are less common in PanNETs (mean, 29 events per tumour; range 

3–216) (Supplementary Table 6) than in pancreatic ductal adenocarcinoma (119 per tumour; 

range 15–558)11. Inactivation of tumour suppressor genes through rearrangement occurred in 

MTAP (n = 4), ARID2 (n = 5), SMARCA4 (n = 3), MLL3 (n = 3), CDKN2A (n = 1), and 

SETD2 (n = 1). Rearrangements can also create oncogenic drivers through in-frame gene 

fusions. We identified 66 somatic fusions capable of expressing in-frame chimaeric genes 

(Supplementary Table 6). The EWSR1 gene was involved in fusion events in three PanNETs. 
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Two tumours possessed in-frame EWSR1–BEND2 fusion genes, which were expressed as 

mRNA (Fig. 2a, b), defining BEND2 as a novel EWSR1 fusion partner. Of note, BEND2 was 

recently reported to be a fusion partner of MN135. One tumour contained an EWSR1 exon 7–

FLI1 exon 6 gene fusion confirmed by RNA sequencing (RNA-seq) (Fig. 2c). EWSR1–FLI1 

fusions occur in sarcomas36,37, where EWSR1 exon 7–FLI1 exon 6 is the most common (Type 

I)38, but sarcomas rarely arise in the pancreas or gastrointestinal tract39. Unlike PanNET, 

sarcomas typically exhibit a distinctive, high-grade, undifferentiated round cell morphology 

along with strong membrane expression of the glycoprotein CD99. The three tumours that 

conatined EWSR1 fusions had morphological and immunophenotypical features typical of 

PanNETs, had absent or weak staining for CD99, and lacked any clinicopathological features 

of Ewing sarcoma. Inactivation of tumour suppressor genes (STAG2, TP53, and CDKN2A) 

and specific chromosomal copy-number alterations (gains of chromosome 1 and 8q), which 

are common in Ewing sarcomas40–42, were absent in these three cases. The three fusion events 

involved the region of EWSR1 that is most susceptible to breakage or translocation in a 

variety of soft tissue tumours and Ewing sarcoma, and can be detected by fluorescent in situ 

hybridization (FISH) using break-apart probes for EWSR1 (Fig. 2a–c). By applying FISH to 

the 62 cases of the validation cohort, we identified an additional PanNET with positive split 

signals due to an EWSR1 exon 7–FLI1 exon 5 fusion (Type II) confirmed at the mRNA level 

(Fig. 2d). This latter tumour had strong immunostaining for CD99 and mutations in MEN1, 

ATRX and TSC2. 

Telomere integrity and PanNET molecular subtypes 

Telomere repeat content was quantified using whole-genome sequencing data, and ALT was 

assessed using C-tailing qPCR in 86 cases (Extended Data Fig. 8a). In total, 22 of 26 ATRX 

or DAXX mutant tumours displayed ALT, and in DAXX mutations were more frequent 

(19/22) than ATRX mutations (3/22), in contrast to in vitro studies in which ATRX alterations 

are more prevalent43. Biallelic inactivation of ATRX or DAXX through LOH was strongly 

associated with an increase in telomere length (P < 0.0001, Mann–Whitney test; Extended 

Data Fig. 8b, c). MEN1 somatic mutations were also associated with increased telomere 

length (P < 0.0001, Mann–Whitney test) (Extended Data Fig. 8d, e), suggesting that MEN1 

has a role in chromosome maintenance. 

To better understand the consequences of ALT, we compared somatic telomere 

content with copy-number and structural variation patterns (Fig. 3). Genomic catastrophes 

and EWSR1 fusions were associated with short telomeres, which is consistent with 
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observations that telomere exhaustion plays a role in chromothripsis and bridge–fusion–break 

events in solid cancers. Surprisingly, tumours with ALT were strongly associated with the 

PanNET RPCL phenotype, with 16 out of 21 tumours with RPCL displaying ALT. 

Previously, ALT tumours have been reported to undergo recurrent regions of gene copy gain 

and loss in a panel of human cancer cell lines in vitro43; in contrast, whole-chromosome loss 

of specific chromosomes predominates in PanNETs. 

Integrated analysis of PanNET cancer pathways 

RNA sequencing of 30 cases revealed 3 groups of PanNET tumours (Extended Data Fig. 9a), 

which were similar to three previously described expression subtypes termed insulinoma, 

intermediate and metastasis-like (MLP)44 (Extended Data Fig. 9b). One group was similar to 

the intermediate subtype. The group most similar to the MLP subtype contained differential 

expression of genes associated with hypoxia and HIF signalling (Extended Data Fig. 9c–e). 

Four pathways were commonly altered by mutation in PanNETs. Peturbations in these 

pathways may potentially define clinically relevant subtypes that could be used to direct 

stratified therapeutic approaches (Fig. 4): i) DNA damage repair: germline-damaging variants 

of the base-excision-repair MUTYH gene and the homologous recombination genes CHEK2 

and BRCA2 were present in 11% of patients. ii) Chromatin remodelling: MEN1, SETD2, 

ARID1A and MLL3 were recurrently inactivated, and these mutations are likely to drive 

widespread transcriptional dysregulation. iii) Telomere maintenance: upregulation of TERT 

and telomere lengthening is a well-established pro-survival mechanism in solid tumours. 

MEN1 binds the TERT promoter and influences the machinery that controls telomere 

integrity45. Consistent with previous reports, inactivating mutations in DAXX or ATRX were 

present in one third of PanNETs and correlated strongly with somatic telomere repeat content 

and telomere length (Extended Data Fig. 8b, c). Tumours harbouring DAXX or ATRX 

mutations were associated with a poor prognosis in the G2 subgroup (Extended Data Fig. 

10a, b), and correlated significantly (P=0.0214) with mutations in mTOR regulators 

(Supplementary Table 13). Tumours with unaltered telomere length had a better outcome 

(Extended Data Fig. 10c). iv) mTOR signalling activation: the role of mTOR in PanNETs has 

been well established3,4. Inactivating mutations in negative regulators of mTOR signalling 

(PTEN, TSC2, and TSC1 and DEPDC5 reported here) were present in 12% of patients, and 

were associated with a poor prognosis in the G2 subgroup of patients (hazard ratio = 6.85, 

95% confidence interval = 1.14–41.7; P = 0.0353, Supplementary Table 1 and Extended Data 

Fig. 10d). These mutations may represent putative biomarkers for the selection of patients for 
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mTOR inhibitor therapy5. We uncovered three potential novel mTOR pathway activation 

mechanisms: inactivating mutations of the tumour suppressor DEPDC5, which encodes a 

subunit of the GATOR1 complex, a suppressor of mTOR signalling46; a putative mTOR 

activation mechanism involving EWSR1 fusion genes; and amplification of the RET receptor 

ligand PSPN. 

Moreover, inactivation of MEN1, which has a broad range of functions, directly 

influences all these four key processes45,47–49 (Fig. 4). MEN1 encodes the histone modifier 

Menin and its inactivation drives a variety of phenotypes including widespread 

transcriptional dysregulation via histone modification49, activation of mTOR through AKT 

expression48, suppression of homologous recombination DNA damage response genes47 and 

dysregulation of TERT45. 

Conclusion 

We have described the mutational landscape of PanNETs and the mutational signatures that 

underlie their pathogenesis, including a previously undescribed mutational mechanism 

involving MUTYH inactivation. We uncovered previously undescribed mTOR pathway 

activation mechanisms including DEPDC5 inactivation and EWSR1 fusion events. In 

addition, we identified subtypes of PanNET on the basis of global copy number profiles and 

gene mutations that have potential clinical utility. There are three key clinical considerations 

that these data bring to the fore. 1) The discovery of a larger-than-anticipated germline 

mutation contribution to PanNET development, particularly in patients without a family 

history, has implications for individuals that carry these mutations and have an increased but 

unquantifiable risk of disease. 2) The mutational status of DAXX, ATRX and mTOR pathway 

genes could be used to stratify the prognosis of intermediate grade (G2) PanNETs, the 

subgroup with the least predictable clinical behaviour. This calls for exploration of the 

clinical utility of this approach in prospective clinical trials. 3) The identification of 

previously undescribed mechanisms that activate mTOR signalling may lead to the 

development of biomarkers that could be used to predict therapeutic responsiveness to mTOR 

inhibitors such as everolimus, which are currently poorly defined. 
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Figure 1 | Mutational signatures in pancreatic neuroendocrine tumours. a, Five 

signatures (A–E) were identified in 98 PanNET samples. Signature A is previously 

undescribed and has been named MUTYH because all tumours dominated by this signature 

carried a germline inactivating mutation in MUTYH with concurrent loss of the wild-type 

allele; signatures B to E have been previously described and are reported with their given 

names. Tumours with a high MUTYH, APOBEC, BRCA or Age signature showed a higher 

number of mutations per megabase. b, Validation of MUTYH signature in four additional 

PanNETs and one colon tumour. Three PanNETs and the colon tumour contained a dominant 

MUTYH signature and harboured a germline-damaging MUTYH mutation with concurrent 

loss of the wild-type allele, and one PanNET with a benign MUTYH variant did not contain 

the signature. c, The tumour with the BRCA signature contained a BRCA2 germline variant 

(R3052W) and genomic instability as seen in pancreatic ductal adenocarcinoma. d, Variants 

displayed above the MUTYH protein were associated with the MUTYH signature and 

contained somatic biallelic inactivation of the MUTYH gene (highlighted in bold); those 

below were not and are either benign or showed no loss of the wild-type allele. Asterisks 

show variants reported as pathogenic by ref.50 (IDs #5294 & #5293). Variants predicted by 
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SIFT as deleterious and by Polyphen as probably damaging are underlined. All mutations 

shown are for the transcript ENST00000372098.3 and protein ENSP00000361170.3. 

Figure 2 | EWSR1 gene fusions in pancreatic neuroendocrine tumours. a, b, Somatic 

fusion events between EWSR1 and BEND2 confirmed in RNA by capillary electrophoresis of 

RT–PCR products. Representative sections showing typical PanNET morphology (stained 

with haematoxylin and eosin, H&E) and immunoreactivity for the neuroendocrine marker 

chromogranin A (inset), lack of immunostaining for CD99, and positive EWSR1 split signals 

(arrowheads) detected with FISH. c, Somatic fusion event between EWSR1 and FLI1 

confirmed by RNA-seq. Representative sections showing typical PanNET morphology 

(H&E) and immunoreactivity for chromogranin A (inset), faint immunoreactivity for CD99, 

and positive EWSR1 split signals (arrowheads) at FISH. d, Somatic fusion event between 

EWSR1 and FLI1 confirmed by capillary electrophoresis of RT–PCR products. 

Representative sections showing typical PanNET morphology (H&E) and immunoreactivity 

for chromogranin A (inset), strong immunoreactivity for CD99, and positive EWSR1 split 

signals (arrowheads). Scale bar, 100 µm. Insets, 600× magnification. 

Figure 3 | Mutational processes in pancreatic neuroendocrine tumours. a, Telomere 

length was estimated using whole-genome sequencing in 98 PanNETs. The relative telomere 

length in each tumour compared to the matched normal is shown as log2. Twenty-four  

tumours contained telomeres that were 1.5× longer than matched normal DNA and 36 

contained telomeres that were 1.5× shorter than matched normal DNA. b, Most of the 

tumours with long telomeres had ALT and 13 contained genomes with large amounts of 

whole chromosome arm losses. Somatic mutations in DAXX or ATRX were strongly 

associated with increased telomere length (P < 0.0001, Mann–Whitney test). Tumours with 

short telomeres contained fewer mutations in DAXX and ATRX and more chromothripsis 

events or EWSR1 gene fusions. 

Figure 4 | Core pathways in PanNETs. The frequency of somatic mutations and copy 

number change are shown for key genes of the mTOR signalling, histone modification, 

altered telomere length and DNA damage repair pathways. MEN1, which is frequently 

mutated in PanNETs, is involved in all of these processes. Activating changes (red) include a 

copy number change of 6 or more and inactivating changes (blue) include copy number 1 or 

copy number two with LOH. Asterisks show genes that also contain germline variants 

predicted as pathogenic. ATRX is located on chromosome X and showed point mutations in 

six males and four females, and in three of the females the inactivation was biallelic by LOH. 
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METHODS 

The experiments were not randomized and the investigators were not blinded to allocation 

during experiments and outcome assessment. 

Human research ethical approval 

ARC-Net, University of Verona: approval number 1885 from the Integrated University 

Hospital Trust (AOUI) Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria 

Integrata) approved in their meeting of 17 November 2010, documented by the ethics 

committee 52070/CE on 22 November 2010 and formalized by the Health Director of the 

AOUI on the order of the General Manager with protocol 52438 on 23 November 2010. 

APGI: Sydney South West Area Health Service Human Research Ethics Committee, western 

zone (protocol number 2006/54); Sydney Local Health District Human Research Ethics 

Committee (X11-0220); Northern Sydney Central Coast Health Harbour Human Research 

Ethics Committee (0612-251M); Royal Adelaide Hospital Human Research Ethics 

Committee (091107a); Metro South Human Research Ethics Committee (09/QPAH/220); 

South Metropolitan Area Health Service Human Research Ethics Committee (09/324); 

Southern Adelaide Health Service/Flinders University Human Research Ethics Committee 

(167/10); Sydney West Area Health Service Human Research Ethics Committee (Westmead 

campus) (HREC2002/3/4.19); The University of Queensland Medical Research Ethics 

Committee (2009000745); Greenslopes Private Hospital Ethics Committee (09/34); North 

Shore Private Hospital Ethics Committee. Baylor College of Medicine: Institutional Review 

Board protocol numbers H-29198 (Baylor College of Medicine tissue resource), H-21332 

(Genomes and Genetics at the BCM-HGSC), and H-32711(Cancer Specimen Biobanking and 

Genomics). 

PanNET patient and tissue cohort 

Patients were recruited and consent obtained for genomic sequencing through the ARC-Net 

Research Centre at Verona University, Australian Pancreatic Cancer Genome Initiative 

(APGI), and Baylor College of Medicine as part of the ICGC (www.icgc.org). A patient 

criterion for admission to the study was that they were clinically sporadic. This information 

was acquired through direct interviews with participants and a questionnaire regarding their 

personal history and that of relatives with regard to pancreas cancers and any other cancers 

during anamnesis. Clinical records were also used to clarify familial history based on patient 

indications. 
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Samples were prospectively and consecutively acquired through institutions affiliated 

with the Australian Pancreatic Cancer Genome Initiative. Samples from the ARC-Net 

biobank are the result of consecutive collections from a single centre. 

All tissue samples were processed as previously described50. Representative sections 

were reviewed independently by at least one additional pathologist with specific expertise in 

pancreatic diseases. Samples either had full face frozen sectioning performed in optimal 

cutting temperature (OCT) medium, or the ends excised and processed in formalin to verify 

the presence of tumour in the sample to be sequenced and to estimate the percentage of 

neoplastic cells in the sample relative to stromal cells. Macrodissection was performed if 

required to excise areas that did not contain neoplastic epithelium. Tumour cellularity was 

determined using SNP arrays (Illumina) and the qpure tool9. 

Sample size 

PanNET is a rare tumour type and the samples were collected via an international network. 

We estimate that with 98 unique patients in the discovery cohort, we will achieve 90% power 

for 90% of genes to detect mutations that occur at a frequency of ~10% above the 

background rate for PanNET (assuming a somatic mutation frequency of more than 2 per 

Mb)51. 

Colon sample acquisition 

Cancer and matched normal colonic mucosa were collected at the time of surgical resection 

from the Royal Brisbane and Women’s Hospital and snap frozen in liquid nitrogen. A 

biallelic germline mutation in the MUTYH gene was detected by restriction fragment length 

polymorphism analysis and confirmed by automated sequencing to be the G382D mutation 

(or ENST00000450313.5 G396D, ClinVar#5294) in both alleles52. 

Immunohistochemistry 

The primary antibodies used for immunohistochemical staining were: cytokeratin 8/18 (5D3, 

Novocastra), chromogranin A (DAK-A3, Dako), and CD99 (O13, Biolegend). Antibodies 

and staining conditions have been described elsewhere39. 

Sequencing and mutation analysis 

Whole-genome sequencing with 100-bp paired reads was performed with a HiSEQ2000 

(Illumina). Sequence data were mapped to a GRCh37 using BWA and BAM files are 

available in the EGA (accession number: EGAS00001001732). Somatic mutations and 

germline variants were detected using a previously described consensus mutation calling 
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strategy11. Mutations were annotated with gene consequence using SNPeff. The pathogenicity 

of germline variants was predicted using cancer-specific and locus-specific genetic databases, 

medical literature, computational predictions with ENSEMBL Variant Effect Predictor (VEP) 

annotation, and second hits identified in the tumour genome. Intogen27 was used to find 

somatic genes that were significantly mutated. Somatic structural variants were identified 

using the qSV tool as previously described10,11,17. Coding mutations are included in 

supplementary tables and all mutations have been uploaded to the International Cancer 

Genome Consortium Data Coordination Center. 

Mutational signatures 

Mutational signatures were predicted using a published framework14. Essentially, the 96-

substitution classification was determined for each sample. The signatures were compared to 

other validated signatures and the prevalence of each signature per megabase was 

determined. 

Copy number analysis 

Somatic copy number was estimated using high density SNP arrays and the GAP tool12. Arm 

level copy number data were clustered using Ward’s method, Euclidian distance. GISTIC13 

was used to identify recurrent regions of copy number change. 

Telomere length 

The whole genome sequence data was used to determine the length of the telomeres in each 

sample using the qMotif tool. Essentially, qMotif determines telomeric DNA content by 

calculating the number of reads that harbour the telomere motif (TTAGG), and then estimates 

the relative length of telomeres in the tumour compared to the normal. qMotif is available 

online (http://sourceforge.net/projects/adamajava). Telomere length was validated by qPCR 

as previously described53. 

RNA-seq and analysis 

RNASeq library preparation and sequencing were performed as previously described54. 

Essentially, sequencing reads were mapped to transcripts corresponding to ensemble 70 

annotations using RSEM. RSEM data were normalized using TMM (weighted trimmed mean 

of M-values) as implemented in the R package ‘edgeR’. For downstream analyses, 

normalized RSEM data were converted to counts per million (c.p.m.) and log2 transformed. 

Genes without at least 1 c.p.m. in 20% of the sample were excluded from further analysis54. 

Unsupervised class discovery was performed using consensus clustering as implemented in 
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the ConsensusClusterPlus R package55. The top 2,000 most variable genes were used as 

input. Differential gene expression analysis between representative samples was performed 

using the R package ‘edgeR’56. Ontology and pathway enrichment analysis was performed 

using the R package ‘dnet’57. PanNET class enrichment using published gene signatures44 

was performed using Gene Set Variation Analysis (GSVA) as described previously54. 

Validation of fusion transcripts 

Two strategies were used to verify fusion transcripts. For verification of EWSR1–BEND2 

fusions, cDNAs were synthesized using the SuperScript VILO cDNA synthesis kit 

(Thermofisher) with 1 µg purified total RNA. For each fusion sequence, three samples were 

used: the PanNET sample containing the fusion, the PanNET sample without that fusion, and 

a non-neoplastic pancreatic sample. The RT–PCR product were evaluated on the Agilent 

2100 Bioanalyzer (Agilent Technologies) and verified by sequencing using the 3130XL 

Genetic Analyzer (Life Technologies). Primers specific for EWSR1–BEND2 fusion genes are 

available upon request. To identify the EWSR1 fusion partner in the case ITNET_2045, a 

real-time RT–PCR translocation panel for detecting specific Ewing sarcoma fusion 

transcripts was applied as described58. Following identification of the fusion partner, PCR 

amplicons were subjected to sequencing using the 3130XL Genetic Analyzer. 

Fluorescent in situ hybridization analysis 

EWSR1 rearrangements were assayed on paraffin-embedded tissue sections using a 

commercial split-signal probe (Vysis LSI EWSR1 (22q12) Dual Colour, Break Apart 

Rearrangement FISH Probe Kit) that consists of a mixture of two FISH DNA probes. One 

probe (~500 kb) is labelled in SpectrumOrange and flanks the 5 side of the EWSR1 gene, 

extending through intron 4, and the second probe (~1,100 kb) is labelled in SpectrumGreen 

and flanks the 3 side of the EWSR1 gene, with a 7-kb gap between the two probes. With this 

setting, the assay enables the detection of rearrangements with breakpoints spanning introns 

7–10 of the EWSR1 gene. Hybridization was performed according to the manufacturer’s 

instructions and scoring of tissue sections was assessed as described elsewhere59, counting at 

least 100 nuclei per slide. 

Targeted sequencing 

Recurrently mutated genes identified by whole-genome sequencing were independently 

evaluated in a series of 62 PaNETs from the ARC-Net Research Centre, University of 

Verona. Four Ion Ampliseq Custom panels (Thermofisher) were designed to target the entire 
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coding regions and flanking intron–exon junctions of the following genes: MEN1, DAXX, 

ATRX, PTEN and TSC2 (panel 1); DEPDC5, TSC1 and SETD2 (panel 2); ARID1A and 

MTOR (panel 3); CHEK2 and MUTYH (panel 4). Twenty nanograms of DNA were used per 

multiplex PCR amplification. The quality of the obtained libraries was evaluated by the 

Agilent 2100 Bioanalyzer on chip electrophoresis. Emulsion PCR was performed with the 

OneTouch system (Thermofisher). Sequencing was run on the Ion Torrent Personal Genome 

Machine (PGM, Thermofisher) loaded with 316 or 318 chips. Data analysis, including 

alignment to the hg19 human reference genome and variant calling, was done using Torrent 

Suite Software v4.0 (Thermofisher). Filtered variants were annotated using a custom pipeline 

based on the Variant Effector Predictor (VEP) software. Alignments were visually verified 

with the Integrative Genomics Viewer: IGV v2.3 (Broad Institute). 

Modelling of CHEK2 and MUTYH germline variants in silico 

There is no contiguous structure available for CHEK2, so we produced a model of isoform C 

using PDBid 3i6w60 as a template for predicting the structure of sequence O96017. Modelling 

was carried out within the YASARA suite of programs61 and consisted of an initial BLAST 

search for suitable templates followed by alignment, building of loops not present in selected 

template structure and energy minimization in explicit solvent. Modelling was carried out in 

the absence of a phosphopeptide ligand, which was added on completion by aligning the 

model with structure 1GXC and merging the ligand contained therein with the model 

structure. Similarly, MUTYH is represented by discontinuous structures and so this too was 

modelled using PDBids 3N5N and 4YPR as templates together with sequence NP_036354.1. 

Having constructed both models, amino acid substitutions were carried out to make the wild-

type sequences conform to the variants described above. Each substitution was carried out 

independently and the resulting variant structures were subject to simulated annealing energy 

minimization using the AMBER force field. The resulting energy-minimized structures 

formed the basis of the predictions. 

Functional analysis of CHEK2 germline variants in vitro 

CHEK2 site mutants were generated by site-directed mutagenesis of wild-type pCMV–FLAG 

CHEK2 (primer sequences in Supplementary Table 16). Proteins were expressed in 

HEK293T, a highly transfectable derivative of HEK293 cells that were retrieved from the cell 

culture bank at the QIMR Berghofer medical research institute. Cells were authenticated by 

STR profiling and were negative for mycoplasma. Transfected cells were lysed in NP-40 

modified RIPA with protease and phosphatase inhibitors. Protein expression levels were 
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analysed by western blotting with anti-FLAG antibodies and imaging HRP luminescent 

signal on a CCD camera (Fuji) and quantifying in MultiGauge software (Fuji). Kinase assays 

were performed using recombinant GST–CDC25C (amino acids 200–256) as substrate, 

essentially as described62. Kinase assay quantification was performed by scintillation 

counting of excised gel bands in OptiPhase scintillant (Perkin Elmer) using a Tri-Carb 

2100TR beta counter (Packard). Counts for each reaction set were expressed as a fraction of 

the wild type. All experiments were performed at least three times. 

Clinical correlations 

The date of diagnosis and the date and cause of death for each patient were obtained from the 

Central Cancer Registry and treating clinicians. Median survival was estimated using the 

Kaplan–Meier method and the difference was tested using the log-rank test. P values of less 

than 0.05 were considered statistically significant. The hazard ratio and its 95% confidence 

interval were estimated using Cox proportional hazard regression modelling. The correlation 

between DAXX or ATRX mutational status and other clinico-pathological variables was 

calculated using the 2 test. Statistical analysis was performed using StatView 5.0 Software 

(Abacus Systems). Disease-specific survival was used as the primary endpoint. 

Data availability 

Genome sequencing data presented in this study have been submitted to the European 

Genome-Phenome Archive under accession number EGAS00001001732 

(https://www.ebi.ac.uk/ega/search/site/EGAS00001001732).  
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Extended Data Figure 1 | Flow chart of the experiments performed on 160 PanNETs. 

The chart shows the workflow of analyses conducted on the discovery set of 98 PanNETs and 

on the validation set of an additional 62 PanNETs and 1 colorectal cancer. CNA, copy-

number analysis.  

Extended Data Figure 2 | Five mutation signatures in pancreatic neuroendocrine 

tumours. a, Stability plot indicates there are five mutation signatures (>0.9). b, The profile of 

the five mutational signatures (A–E) and what function has been assigned to these signatures 

(MUTYH, APOBEC, BRCA, Age and ‘Signature 5’). 

Extended Data Figure 3 | Validation of the novel signature in additional MUTYH 

carriers. a, Four PanNet samples, three of which harboured a pathogenic MUTYH germline 

variant, and a colon tumour with a pathogenic MUTYH mutation underwent WGS to validate 
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the association of MUTYH biallelic inactivation with the MUTYH mutation signature. b, 

Family pedigree of the patient with colon cancer. The 64-year-old male patient with colon 

cancer was identified as a candidate for MUTYH mutation analysis owing to the presence of 

two synchronous cancers in the proximal colon, each arising in a contiguous tubulovillous 

adenoma, as well as approximately 50 adenomatous polyps predominantly in the caecum and 

ascending colon. The index patient’s brother presented with colorectal cancer at 45 years of 

age and his sister presented with colorectal cancer at 64 years of age and with breast cancer at 

59 years of age. The index patient’s son had polyps removed at 36 years of age. Mutation 

signature analysis was performed using the 98 discovery PanNET samples and the colon and 

4 PanNET validation samples. c, Stability plot showing the solution for the five mutational 

signatures (>0.75). d, The profile of the five mutational signatures (A–E) and what function 

has been assigned to these signatures (MUTYH, APOBEC, BRCA, Age and ‘Signature 5’). e 

The contribution of each signature (mutations per Mb) and proportion of the signatures in 

each tumour are shown. 

Extended Data Figure 4 | Structural rearrangements in pancreatic neuroendocrine 

tumours. a, Top, the number and type of somatic structural rearrangements in each tumour. 

Bottom, tumours with more events tended to have longer telomeres. b, Two methods were 

used to determine clusters of somatic structural rearrangement breakpoints. Orange squares, 

chromosomes with a significant cluster of events as determined by a goodness-of-fit test 

against the expected distribution (P < 0.0001, Kolmogorov–Smirnov test). Blue squares, 

chromosomes deemed to harbour a high number of breakpoints because they had a 

chromosomal breakpoint per Mb rate that exceeded the 75th percentile of the chromosomal 

breakpoint per Mb rate for the cohort by five times the interquartile range. Red squares, 

chromosomes for which both of these criteria were met. Clusters of events were reviewed and 

nine tumours were found to harbour regions of chromothripsis. c, Recurrent chromothripsis 

for chromosome 11 was detected in four tumours. The chromothripsis event caused loss of 

the MEN1 gene locus in two of these samples. 

Extended Data Figure 5 | Functional analysis of CHEK2 variants. a, CHEK2 structure 

indicating the positions of the germline variants. Mutations are highlighted by rendering as 

magenta sticks with protein domains coloured as indicated in the adjacent keys. The model 

includes a superimposed phosphopeptide (red). b, A summary of the CHEK2 variants and 

their predicted impact on protein structure. To functionally test the CHEK2 variants, a panel 

of FLAG–CHEK2 constructs encoding P85L, ∆77–82, D177H and E282K was generated. c, 
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d, FLAG western blot of transfected HEK293T whole cell lysates (c) or anti-FLAG 

immunoprecipitates (d) showed that, compared to the wild type, there was normal expression 

of P85L but reduced expression of ∆77–82, D177H and E282K. e, Assessment of kinase 

activity of CHEK2 variants. Immunoprecipitated proteins were incubated either with GST 

alone () or with GST–CDC25C amino acids 200–256 (+) in the presence of -P32 ATP. 

Input and kinase activity were assessed by film radiography (top) and coomassie staining 

(bottom). Immunoprecipitates of ∆77–82, D177H and E282K had significantly reduced 

kinase activity in terms of both autophosphorylation and phosphorylation of CDC25C 

whereas the activity of P85L was normal. f, Quantification of expression levels by western 

blotting expressed as a fraction of wild type. Data points represent independent experiments. 

Error bars are mean ± s.e.m. g, h, Quantification of kinase activity. P32 counts for CDC25C 

(g) and CHEK2 (h) bands were scintillation counted. Corresponding bands from 

untransfected controls were used for background subtraction. Background-corrected P32 

counts per minute were then standardized to wild type for each experiment. Data points 

represent independent experiments. Error bars are mean ± s.e.m. i, j, Quantification of kinase 

activity relative to protein expression. Kinase activity (from i and j) was standardized to 

protein expression level (from f). D177H was not analysed in this manner owing to its very 

low expression level. Error bars are mean ± s.e.m. Once the low expression level of ∆77–82 

is taken into account, it is evident that the expressed protein retains normal kinase activity. 

On the other hand, E282K is kinase defective even after adjusting for its reduced expression. 

D177H expression is so low that it is not possible to reliably correct kinase activity for 

relative expression level, so it is unclear whether D177H is kinase dead as well as unstable. 

Data are summarized in Supplementary Table 16. 

Extended Data Figure 6 | Recurrently mutated genes in pancreatic neuroendocrine 

tumours. a, The number of SNVs and indels within the genome of each patient (n = 98) is 

shown in the histogram. The driver plot displays the somatic mutations in key genes or those 

identified as significantly mutated (Intogen Q < 0.1). SETD2 is also reported, although its Q 

value was 0.15, as it was recurrently inactivated in six samples and multiple independent 

deleterious SETD2 mutations were observed in one tumour (a nonsense present at 3%, a 

missense at 14%, and a frameshift at 11%; only the nonsense is shown but the case is 

highlighted with a black arrow), suggesting strong selection for SETD2 inactivation in that 

tumour. b, Somatic mutations in MEN1 are predominantly nonsense mutations or insertions–
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deletions causing frame shifts and premature protein termination, and occur throughout the 

protein. 

Extended Data Figure 7 | Genome characteristics of PanNETs. Copy number was 

determined using Illumina SNP arrays in a cohort of 98 PanNETs. a, Copy number events 

were mainly comprised of whole chromosome arm loss or gain. Cluster analysis of the 

chromosome arm level copy number state stratified the tumours into four subtypes. Group 1: 

recurrent pattern of whole chromosomal loss, affecting specific chromosomes (1, 2, 3, 6, 8, 

10, 11, 15, 16 and 22); group 2: samples with a limited number of events, many with loss 

affecting chromosome 11; group 3: polyploid tumours, with gain of all chromosomes; and 

group 4: aneuploid tumours, containing predominantly whole chromosome gains affecting 

multiple chromosomes). b, The proportion of bases within the genome affected by copy 

number change. c, The mutations per Mb (SNPs and small insertion deletions). d, GISTIC 

analysis showing recurrent gains (red) and losses (blue) of the entire cohort. 

Extended Data Figure 8 | Telomere length is associated with somatic mutations. Whole 

genome sequence data were used to estimate telomere length in PanNETs relative to the 

matched normal sample. a, Telomere length estimated by whole-genome sequencing 

correlated with the telomere length calculated from qPCR (R2 = 0.8091). Values are plotted 

on a log10 scale. b–e, Boxplots were used to show the association of relative telomere length 

and DAXX or ATRX and MEN1 mutation status. Mann–Whitney tests were used to determine 

significant associations (P < 0.05). b, c, Tumours harbouring DAXX or ATRX mutations 

contain longer telomeres. d, Tumours harbouring MEN1 mutations contain longer telomeres. 

e, Telomere length is shown in relation to DAXX or ATRX and MEN1 somatic mutations. 

Extended Data Figure 9 | RNA-seq of PanNET tumours. Unsupervised clustering, 

network and gene enrichment analysis for available RNA-seq data identify PanNET 

subgroups associated with hypoxia and metabolic reprogramming. a, Unsupervised clustering 

identified three distinct PanNET subgroups (1–3). b, A gene signature defining three 

expression groups previously described in PanNETs showed enrichment of expression of the 

intermediate-group genes43 in Group 1 and the metastasis-like PanNET (MLP) genes43 in 

Group 3. c, Network analysis identified a significant sub-network of genes differentially 

expressed between Group 3 and other groups (Group 1 and Group 2). Red nodes represent 

genes upregulated in Group 3 and green nodes represent genes upregulated in other groups. 

Shaded areas represent network communities. d, Gene enrichment analysis for genes 

belonging to the sub-network shown in b. e, Heatmap showing the differential expression of 
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genes belong to the identified sub-network. Somatic mutations in some of the recurrently 

mutated genes are shown (MEN1, DAXX, ATRX and members of the mTOR pathway: 

DEPDC5, MTOR, PTEN, TSC1 and TSC2). 

Extended Data Figure 10 | Genomic events associated with outcome. Kaplan–Meier 

survival curves. a, b, Tumours harbouring DAXX or ATRX mutations had a poor prognosis in 

the whole cohort (a) and in the G2 cohort (b). c, Tumours with telomere lengths that were 

neither short or long had a better prognosis. d, Tumours harbouring mutations in genes that 

activate the mTOR pathway had a poor prognosis in the G2 cohort (2 test was used in all 

instances). 


