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3D Canonical Pose Estimation and Abnormal Gait Recognition
with a Single RGB-D Camera

Yao Guo, Member, IEEE, Fani Deligianni, Xiao Gu, Guang-Zhong Yang, Fellow, IEEE

Abstract— Assistive robots play an important role in improv-
ing the quality of life of patients at home. Among all the
monitoring tasks, gait disorders are prevalent in elderly and
people with neurological conditions, which increases the risk
of fall. Therefore, the development of mobile systems for gait
monitoring at home in normal living conditions is important.
Here we present a mobile system that is able to track humans
and analyze their gait in canonical coordinates based on a
single RGB-D camera. Firstly, view-invariant 3D lower limb
pose estimation is achieved by fusing information from depth
images along with 2D joints derived in RGB images. Next,
both the 6D camera pose and the 3D lower limb skeleton are
real-time tracked in a canonical coordinate system based on
Simultaneously Localization and Mapping (SLAM). A mask-
based strategy is exploited to improve the re-localization of the
SLAM in dynamic environments. Abnormal gait is detected by
using the Support Vector Machine (SVM) and the Bidirectional
Long-Short Term Memory (BiLSTM) network with respect to
a set of extracted gait features. To evaluate the robustness
of the system, we collected multi-camera, ground truth data
from sixteen healthy volunteers performing six gait patterns
that mimic common gait abnormalities. The experiment results
demonstrate that our proposed system can achieve good lower
limb pose estimation and superior recognition accuracy com-
pared to previous abnormal gait detection methods.

I. INTRODUCTION

Gait disorders usually result from neurological or mus-
culoskeletal conditions and they are common in the elderly
[1], [2]. In neurological diseases, such as Parkinson’s, they
mark the disease progression and severity. In elderly, they are
associated with a high risk of falls, poor quality of life and
increased risk for depression. Therefore, there is a pressing
need for real-time gait analysis in patients’ homes [3].

In the past decades, various gait analysis systems have
been developed for pathological gait detection [4]. These
include multi-camera motion capture system, multiple In-
ertial Measurement Units (IMU) system, force plates, and
pressure insoles. Although these systems can monitor the
kinematics and dynamics of the lower limbs’ movements
with promising precision, they require participants to wear
specialized markers/sensors and involved complicated setup,
which limits their application in specialized hospitals or
rehabilitation centers.

Recent advances in computer vision have demonstrated
good performance in offline markerless gait analysis [5]–
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[7]. Furthermore, real-time 2D full body pose estimation
from RGB images has been achieved [8]. However, most
of the pathological gait involves atypical joint kinematics
and dynamics. The evaluation of the gait parameters in 2D
space impedes objective clinical evaluation, since the relation
to standard clinical indices is ill-defined [9]. On the other
hand, depth sensors technology, such as Kinect, enables real-
time 3D human skeleton tracking [10], [11]. Supported by
recent advances in robot vision and artificial intelligence, it
is possible to monitor a patient’s health while carrying out
daily activities [12]–[14].

To this end, a number of challenges should be addressed
in order for robots to be aware of their surroundings, follow
humans and track their gait accurately. Firstly, gait analysis
based on depth images ignores the abundant texture features
in the color space and sometimes results in the unsatisfactory
estimation of the lower limb joints. Secondly, the lower-
limb movement detection accuracy may vary with respect
to the distance between the camera and the person while the
human is observed from a fixed perspective. Thirdly, the 3D
lower limb pose is represented in the moving camera frame,
which means the joint trajectories and many significant gait
parameters (e.g., the gait speed and the step length) cannot
be estimated without prior knowledge of the moving camera
position.

To address the aforementioned challenges, this paper
presents an RGB-D based mobile 3D gait analysis system for
tracking both the 6D camera and the 3D lower limb pose in a
canonical coordinate system. The 3D map of the environment
is pre-built and stored offline. The 3D lower limb pose is
estimated in the camera frame coordinate system by fusing
state-of-the-art RGB-based 2D pose estimation [8] with the
depth inputs. Subsequently, 3D human pose estimation is
mapped to a canonical world representation via information
fusion of the 6D pose of the camera estimated via ORB-
SLAM [15] and RGB-D images. Kalman Filter (KF) is used
to predict the 3D joints that lose track as well as smooth
the joint trajectories. Camera re-localization in the SLAM is
sensitive to the high dynamic environment induced by the
moving human target and a lack of salient world features
[16]. Inspired by [17], we introduce a mask-based strategy
to enhance the robustness of the re-localization accuracy.
Fig. 1 demonstrates an overview of the proposed system for
canonical pose estimation and gait analysis. For validating
the robustness of the system, we compare the lower limb pose
and joint angle estimation results with respect to the ground-
truth data from sixteen healthy volunteers. The ground-
truth data were recorded with the Vicon motion capture



Fig. 1. Overview of the proposed mobile 3D canonical gait analysis system.

system, while subjects performed six gait patterns (normal,
in-toeing, out-toeing, drop foot, supination, and pronation).
Next, we investigate the potential of the proposed system
to the abnormal gait recognition tasks. In the recognition
stage, the Support Vector Machine (SVM) classifier and
the Bidirectional Long-Short Term Memory (BiLSTM) [18]
network were used to classify gait patterns.

This paper is organized as follows. In Section II, two steps
of information fusion are described, namely information
fusion for 3D pose estimation and subsequently information
fusion for human pose representation in the canonical coor-
dinate system. Section III explains the gait feature selection
and abnormal gait recognition. Section IV describes several
experiments to evaluate the accuracy and robustness of the
proposed framework.

II. RGB-D BASED 3D CANONICAL GAIT
ANALYSIS

To construct a home-based assistive system for gait anal-
ysis, we used a light-weight telepresence robot equipped
with a single RGB-D camera and without any additional
sensing feedback. To facilitate the applications on light-
weight mobile platforms with limited computing resources,
the captured RGBD images were live-streamed to a remote
workstation based on Real-Time Streaming Protocol (RTSP).
The robot exploited the 3D lower limb pose estimation
to follow the human and collect data with simple control
commands (forward, backward, turn left, turn right, or the
combination). This control policy is also beneficial for ex-
tending the proposed system across platforms.

A. Information Fusion for 3D Lower Limb Pose Estimation

Real-time, view-invariant, human pose estimation from
RGB-D images has attracted much attention in recent years
[7], [11], [19], in which they used the Kinect sensor to
estimate 3D skeleton both for gait analysis and action
recognition. The Kinect sensor was one of the first systems
that allowed real-time 3D pose estimation and it is popular
to the vision research community. However, its application
in kinematic gait analysis provides unsatisfactory results
and it is not suitable for clinical use [20]. Moreover, it
only supports pose extraction from the live-streamed data.
Zimmermann et al. also demonstrated that human pose

estimation by leveraging both rgb and depth images performs
better than using depth data alone [21].

To fuse information from depth images along with the
abundance of texture features in RGB images, we firstly use a
Part Affinity Fields approach that utilizes deep convolutional
neural networks to detect human body parts and link them to
a 2D skeleton [8]. The 2D skeleton consists of several key
joints, and each joint j is represented as pj = [xj , yj , ε]

T,
where [xj , yj ] is the 2D pixel coordinates and ε indicates the
prediction probability of this joint.

To acquire reliable depth value zj of joint j, the holes
in the raw depth images are first filled. Subsequently, the
bilateral filter in the spatial domain and the moving average
filter in the temporal domain are adopted, respectively. To
extract the 3D pose of the lower limb in real-time, we
directly back-project the 2D points onto the 3D space as
Pj = [Xj , Yj , Zj ] based on the pin-hole camera model.
Accordingly, the raw 3D lower limb skeleton {C}S =
{P1, · · · ,Pj , · · · } expressed in the camera frame {C} can
be determined. Furthermore, the Kalman filter is adopted to
predict the possible 3D joint position while its 2D position
loses tracking, which can also smooth the joint trajectories in
3D space. Specifically, the Kalman filter is applied for each
joint respectively, in which the state vector xKF consists of
the 3D position Pj and its velocity vector vj .

B. Information Fusion for Human Pose Representation in
the Canonical Coordinate System

The 3D joints over time {C}S(t) are represented in the
moving camera frame {C}. To extract joint trajectories as
well as gait parameters such as joints velocities, gait speed
and step/stride length, the 3D joint trajectory S(t) should be
mapped to a canonical coordinate system {E}. This requires
to simultaneously extract information of the 6D trajectory
XC(t) of the moving camera in relation to the surrounding
environment.

Although the camera pose can be estimated by using
additional sensors, such as IMU and odometer, this paper is
focused on a single RGB-D camera setup scenario. Vision-
based SLAM algorithm is first used to localize both the
6D camera pose XC(t) and the lower limb pose S(t)
sequences in a canonical coordinate system {E}, where
{E} is determined by the initial pose of the camera in the



Fig. 2. Information fusion for human lower limb pose representation
and 3D gait analysis in the canonical coordinate system. The 3D map M
of the environment is pre-built and stored offline. During the mobile gait
analysis, the 3D lower limb skeleton S is firstly estimated in the camera
frame coordinate system {C}. We utilize ORB-SLAM to track the real-time
localization of the camera as well as the transformation matrix {E}T{C}
indicating the transformation from camera space to a canonical coordinate
system. Accordingly, the 3D human movement and the 6D camera motion
can be represented in a canonical coordinate system {E}.

mapping stage of SLAM. In this paper, the 3D mapM of the
environment is pre-built and stored offline by using the ORB-
SLAM [15] with RGB-D input. It allows the robot to relocate
itself in an offline world representation of its environment.

However, the recovery of camera pose in dynamic scenes
is challenging [16]. In the scenario of the robot following a
human, the human body typically occupies most of the image
frame and it moves in a relatively fast pace, which would re-
sult in unsatisfactory re-localization in the pre-built 3D map
due to the lack of salient features. To alleviate this problem
and improve the camera re-localization performance, a mask-
based strategy is used. A square human mask is generated in
each frame according to the 2D joint estimation. The mask
not only covers the whole human body but also involves
the neighbor area of the human body. This is because the
neighbor area is also influenced by the human movement
and it is affected by motion blur and illumination vibration.
In the re-localization module of the ORB-SLAM algorithm,
features are only extracted from the image outside the human
mask instead of the extraction from the whole image [15].
This simple method can improve the stability in matching
features of the current dynamic view with the pre-built maps.

Given {E}XC and the pre-built 3D map M, {E}T{C}
indicating the transformation from camera space to canonical
coordinate system can be determined. Finally, the canonical
human pose representation is derived by

{E}S = {E}T{C}
{C}S (1)

In this paper, the transformation matrix {C}T{R} between
camera space {C} and robot space {R} is assumed as the
identical matrix I. This canonical representation allows gait
analysis to be performed in a view-independent canonical
space as demonstrated in Fig. 2, thus providing the feasible

Fig. 3. Visualization of five abnormal gait patterns. a) In-toeing and out-
toeing gait patterns; b) drop-foot gait; c) For the supination and pronation,
participants were wearing correction insoles, which helps for simulating
these two gait abnormalities in a natural manner. d) To capture the ground
truth data by the Vicon motion capture system, reflective markers were
attached to the human body and the camera.

estimation of the 3D joint trajectories and the corresponding
gait indices (heel and toe strikes, gait speed, and step
length). Moreover, the spatial relationship among the human
target, moving camera/robot, and the 3D structure of the
surrounding environment can be captured.

III. 3D GAIT ANALYSIS FOR ABNORMAL GAIT
RECOGNITION

In this section, we investigate the potential of the proposed
system for abnormal gait recognition. To this end, we first
collected a gait database from sixteen subjects using a Vicon
motion capture system and our proposed system. Next, the
joint angle features were extracted from 3D lower limb
skeleton. Finally, two recognition approaches were given by
using the joint angles as input for abnormal gait recognition.

A. Ground Truth Data Acquisition

Sixteen healthy volunteers (mean age = 27.5, fourteen
males and two females) were recruited for this study. Each
volunteer was asked to walk with normal style and imitate
the other five abnormal gait patterns (in-toeing, out-toeing,
drop foot, supination, and pronation) as shown in Fig. 3.
This allows us to examine the accuracy of our proposed
method under conditions that resemble abnormal gait pat-
terns in a range of gait abnormalities. It has been proven that
foot pronation/supination angles and inward/outward rotation
angles are the critical indices for reducing mechanical stress
and avoid sports injuries and osteoarthritis [22]. In-toeing
and out-toeing gait indicate the foot forward direction point
inward and outward instead of straight ahead during walking.
Pronation refers to the inward rotation of the ankle joint, and
supination indicates the outward roll. Especially, the correc-
tion insoles were provided to the participants to naturally



simulate the pronation and supination gait patterns without
exaggeration.

For the acquisition of ground truth gait data, 22 reflective
markers were attached to the lower limb as demonstrated in
Figs. 3(d). The Vicon motion capture system tracked the 3D
positions of these markers with high precision and frequency
(120Hz). The ground truth values of the camera pose were
also recorded by the Vicon system. The timestamps of the
images and the Vicon system were recorded for synchro-
nization. The participants initiated the gait from different
directions and then walked along the diagonal line of a
sensing area of size 2m× 3m. A subject repeated each gait
pattern for eight times, and the total number of samples for
each subject is 48.

B. Gait Parameter Extraction

Among different type of gait parameters, joint angles of
the 3D lower limb correlate well to the joint kinematics in
the gait periodic movement [2], [6]. They are also sensitive
to gait abnormalities and constitute typical measures in
clinical evaluation. Recalling that slight differences exist
between the marker positions of the ground truth data and
the joint positions, thus joint angles are more appropriate
to evaluate the accuracy of the proposed method compared
to the absolute difference between reflective markers and
detected joints.

We first calculate joint angular features in relation to a
human-based local coordinate system {H}. Based on this
human coordinate system, Sagittal, Coronal, and Transverse
planes are determined as illustrated in Figs. 4(a). Let de-
note the 3D positions of the RASI and LASI joints at
time t as PRASI(t) and PLASI(t), respectively. The origin
of the coordinate system {H} at time t is denoted as
o(t) = 1/2(PRASI(t) + PLASI(t)). Two unit vectors at
time index t can be determined by V1 = PRASI(t) −
PLASI(t)/||PRASI(t)−PLASI(t)|| and V2 = (o(t)−o(t−
1))/||o(t)−o(t− 1)||. Accordingly, {H} = [x̂h, ŷh, ẑh] can
be calculated by:

x̂h = V1, ŷh =
V1 ×V2

||V1 ×V2||
, ẑh =

x̂h × ŷh

||x̂h × ŷh||
(2)

Commonly, the 3D lower limb skeleton can be represented
by six link segments: Thigh(L), Shank(L), Foot(L), Thigh(R),
Shank(R), and Foot(R), where L and R indicate left and right.
As demonstrated in Fig. 4(a), we first calculate the joint
angles {φx, φy, φz} between each link segment l with respect
to the normal vectors of the Sagittal, Coronal, Transverse
planes, respectively.

The angle between link l and floor normal vector nf is
referred to φf . Note that the floor plane can be determined
in the mapping process of the ORB-SLAM. Next, the joint
angles between two segments are also considered in this
paper. As illustrated in Fig. 4(b), the knee angle θknee is cal-
culated by the thigh and shank segments, and the ankle angle
θankle indicates the angle between shank and foot segments.
Finally, another critical gait parameter, which indicates the
angle between the foot direction and walking path, is the foot

Fig. 4. Illustration of the human body coordinate system and various
extracted joint angle features for abnormal gait recognition. a) A human
body coordinate system {H} can be defined as Eq. (2). From this local
coordinate system, we can define three planes as Sagittal, Coronal, and
Transverse, respectively. The joint angles between link segments and the
normal vectors of the plane are calculated; b) The knee angle and the ankle
angle denote the angle between two link segments; c) foot progression angle
is the angle between foot orientation vector and the body forward direction.

progression angle θfp. The walking path orientation at each
frame can be regarded as the z-axis (forward body direction)
of the human body coordinate system as shown in Fig. 4(c).

It should be noted that we only consider the abnormal
gait recognition from forward walking styles in this study,
which means that those regarding turn events are not taken
into consideration. The features within each gait cycle are
estimated, and the gait cycle is defined as the time interval
between two consecutive heel-strike events. A heel-strike
is the moment when the heel touches the ground. In this
paper, the meta-feature of the joint angle for representing
the gait pattern at each timestamp Φ(t) ∈ RK(K = 30) is
the combination of the aforementioned features, which are
summarized in Table I.

TABLE I
EXTRACTED JOINT ANGLE FEATURES

Joint angle Feature quantity Description

φx 6: Left, Right angle between link segments
{Thigh, Shank, Foot} and x̂h

φy 6: Left, Right angle between link segments
{Thigh, Shank, Foot} and ŷh

φz 6: Left, Right angle between link segments
{Thigh, Shank, Foot} and ẑh

φf 6: Left, Right angle between link segments
{Thigh, Shank, Foot} and n̂f

θknee 2: Left, Right angle between thigh and shank
θankle 2: Left, Right angle between shank and foot

θfp 2: Left, Right angle between foot orientation
and forward direction ẑh



C. Abnormal Gait Recognition

In most of the previous works for skeleton-based gait
analysis approaches [11], [23], only binary classification of
the normal and abnormal gait is achieved. In this paper,
we focus on more challenging abnormal gait recognition
tasks for six gait patterns (normal, in-toeing, out-toeing, drop
foot, supination, and pronation) as shown in Fig. 3. Two
recognition methods are utilized for achieving abnormal gait
recognition.

1) Statistical features with SVM classifier: We first adopt
the nonlinear SVM as the classifier for multiple classes
recognition. As joint angles are represented as temporal
sequences of different lengths, the statistical feature will
be calculated to normalize these sequences into the same
dimension. Given a joint angle sequence, the corresponding
histogram Fi with Nb bins representing the distribution
of the angles within [−π, π] can be extracted. For the
K extracted joint angle sequences, the histograms Fi will
be concatenated as the final feature representation F =
[F1, · · · ,Fi, · · · ,FK ] ∈ R1×30Nb . The SVM classifier is
trained using the RBF kernel K(x,x′) = exp(−γ||x−x′||22).
Finally, classification results will be given based on a one-
against-one rule.

2) Angle sequences with Bi-LSTM classifier: We also
adopt the single layer BiLSTM [18] for abnormal gait
recognition. Recurrent Neural Networks (RNN) is a popular
neural network architecture to recognize patterns in sequen-
tial data. Specifically, bidirectional RNN (BRNN) connects
two hidden layers of opposite directions to the same output,
and the output layer can get information from the past and
future simultaneously. The joint angle sequences Φ(t) ∈ RK

is first segmented into segments according to the heel strike
detection. Then all the segmented sequences in the training
set are divided into mini-batches of size Nm. We also pad
the sequences within each mini-batch to the same length as
the longest sequence. The size of the input layer is K = 30,
which equals the dimension of the joint angle features. In
the BiLSTM layer, we use Nh LSTM units and output the
last element, in which each cell consists of an input gate, an
output gate and a forget gate. Finally, a fully connected layer
of size six is followed by a softmax layer and a classification
layer. Considering a test sample contains multiple gait cycles
as well as joint angle segments, we vote the predicted label

Fig. 5. Two approaches for abnormal gait recognition with respect to joint
angle features.

of the sample as the one with the maximum occurrence
frequency among the predicted labels of segments.

IV. EXPERIMENTS AND RESULTS
A. Experiment Settings

We used a remote workstation with the following techni-
cal characteristics: Intel(R) Core(TM) i7-7700K CPU @4.2
GHz with an NVIDIA Titan 1080Ti GPU. For the mobile
platform, a laptop was deployed on the robot to real-time
stream the RGB-D images. It should be pointed out that the
streaming protocols only support 8-bit images, whereas depth
information is usually represented in 16-bit grayscale images.
To this end, we transformed 16-bit depth images into 8-bit
3-channel images. Finally, the RGB image and the encoded
depth image were concatenated as the streaming resource,
and the RTSP was applied for low-latency streaming. The
workstation decoded the received depth images into the real
distance values. The resolution of the RGB-D sensor was
640 × 480 and the frame rate was 30. We summarize the
parameters used in the 2D pose estimation, ORB-SLAM,
and recognition methods in Table II.

TABLE II
PARAMETERS IN DIFFERENT METHODS

Algorithms Parameter Value
pose Net input resolution 640×384

estimation Tracked joint threshold ε >0.2

ORB-SLAM

Close/Far threshold 50
No. of ORB features per image 2000
Scale factors in scale pyramid 1.2
No. of levels in the scale pyramid 4

SVM Histogram bins Nb 37
RBF kernel γ 10

BiLSTM

Mini-batch size Nm 16
No. of hidden units Nh 512
Max epochs 100
Initial learning rate 0.001
Learning rate drop period (epochs) 20
Learning rate drop factor 0.1

In the recognition experiments, we evaluated the per-
formance of the proposed approach for detecting subtle
gait changes and compared with the methods proposed
in [7], [11], [19]. For our proposed approach, four setups
(SVM-GT, BiLSTM-GT, SVM-EST, and BiLSTM-GT)
were examined, where GT indicates the angular features
calculated from ground truth data and EST refers to the
estimated joint angles based on the proposed algorithm. For
the comparison methods, SVM- [7] uses the quantitative gait
features {step length, gait cycle time, and gait symmetric
measure} proposed in [7] as the input to the SVM classifier.
As the seven joint angles {left hip angle, right hip angle, left
knee angle, right knee angle, left ankle angle, right ankle an-
gle and two feet angle} [11] and the DSRF descriptors of six
rigid bodies {left thigh, right thigh, left shank, right shank,
left foot, and right foot} [19] are also temporal sequences,
we validated their performance with the BiLSTM classifier,
which are denoted as BiLSTM- [11] and BiLSTM- [19],
respectively. It should be pointed out that these features were
extracted from the lower limb pose estimated by our system.



B. Camera Localization in Dynamic Environment

In contrast to the RGB-D images used in the construction
of 3D map points, the human target in the gait analysis can
be regarded as a dynamic object, which will increase the
difficulty in tracking the camera pose via the re-localization
module of the ORB-SLAM. To evaluate this, we first con-
ducted two experiments to validate the proposed mask-based
strategy for improving the camera localization performance
in the dynamic environment. In the results shown below,
“With Mask” and “Without Mask” denote the proposed mask-
based method and the standard ORB-SLAM, respectively.

In the first experiment, the camera was located at a fixed
location, and a human subject was asked to randomly move
within the field-of-view of the camera. The Vicon motion
capture system recorded the ground truth data of the human
lower limb as well as the 6D camera pose. In Fig. 6(a), the
camera localization errors in x, y, and z axes by With Mask
and Without Mask are compared. The circle dots indicate the
estimated position, and the black lines are the ground truth
values. It can be seen that the localization result with mask-
based strategy is more stable than without it. Fig. 6(b) shows
the cumulative error distributions of the camera localization
w/o the mask, respectively. With mask-based strategy, the
fraction of the correction detection increases quickly and
reaches 100% while the localization error threshold is about
160mm. However, the fraction of correct detection without
mask-based strategy is still 90% while the error threshold is
500mm.

Next, we validated the stability of the camera re-
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Fig. 6. Comparison results of the camera localization in terms of
dynamic human movement w/o the mask-based strategy for ORB-SLAM,
respectively. a) The error of the x, y, and z axes between ground truth
data and the estimated positions from a fixed viewpoint. b) The cumulative
error distribution of correct detection on the fixed camera position with
respect to different acceptance threshold in the distance; c) The comparison
results of the camera localization on three axes from a moving camera.
d) The cumulative error distribution of correct detection on the moving
camera position with different acceptance threshold under the mask-based
and without mask methods, respectively.

(a) (b)

Fig. 7. Comparison results by the proposed method w/o KF (blue/red)
and the VoxelPoseNet (yellow) [21] in 3D lower limb estimation. a) The
cumulative error distribution of correct detection on the joint angle with
respect to different acceptance thresholds; b) the cumulative distribution
plots of the pose estimation in the distance.

localization while both the camera and the human target
were moving. In Fig. 6(c), the solid black line is the ground
truth value, the blue dot line indicates the result using
mask-based strategy during the re-localization, and the red
slash line shows the result with the standard ORB-SLAM
without the mask. The precision and the stability of the
camera localization using With Mask are superior to those by
Without Mask. The cumulative error distribution with respect
to different distance error thresholds using two methods
are compared in Fig. 6(d). The fraction of the correction
detection of the mask-based method increases to 100% while
the localization error threshold is about 320mm. Due to the
low texture existed in some images and the image motion
blur, the localization error of the moving camera is higher
than that measured from a fixed viewpoint.

In summary, the camera localization via the ORB-SLAM
with the proposed mask-based strategy is more stable and
accurate than the standard algorithm. The proposed mask-
based strategy can substantially improve the re-localization
performance of SLAM algorithm in terms of the dynamic
environment, thus providing the reliable pose estimation in
the canonical coordinate system.

C. Lower Limb Pose and Joint Angle Estimation

In this study, we validated the joint positions and joint
angles estimated by the proposed system and a state-of-
the-art method [21] based on our collected gait database.
Zimmermann et al. estimated 2D pose from color images
via human keypoint detectors, and then incorporated depth
information to predict 3D joints via a deep network, called
VoxelPoseNet [21]. Figs. 7(a) and (b) show the cumulative
distribution of correct angle and position estimation regard-
ing different error thresholds. For our proposed method,
the results w/o KF for predicting and smoothing 3D joints
are given. As Kalman filter can not only smooth the 3D
joints but also predict the 3D positions of the missing joints,
the proposed method with KF has better detection rates in
both joint positions and angles estimation. Especially, the
100% correct detection rate is achieved when the angle error
threshold is 16◦ and the distance error threshold is about
250mm. One of the main reason for the measurement error
is that the depth values of key joints are extracted from the



surface of the human body, and these values may vary a little
from different viewpoints. Moreover, the inherent distance
error in joint position measurements results from different
displacements between estimated joints and ground truth
markers. The yellow slash line indicates the results estimated
by VoxelPoseNet [21]. The large distance error occurs due
to the tracking failure when only the lower limbs of the target
human are present in the rgb and depth images.

D. Abnormal Gait Recognition

Finally, to evaluate the performance of the proposed
system and the previous methods for abnormal gait recog-
nition, seven setups (SVM-GT, BiLSTM-GT, SVM-EST,
and BiLSTM-GT, SVM- [7], BiLSTM- [11] and BiLSTM-
[19]) were examined. Considering the individual differences

in the walking styles, we used the following three protocols
to provide a reliable evaluation of the proposed recognition
methods.
Intra-subject protocol. Considering the individual differ-
ences in the walking styles, we first evaluate different
methods with intra-subject protocol, which means that the
personalized classifier is trained for each subject. In addition
to evaluating the estimation accuracy of the proposed system,
we randomly divided eight samples into two groups with
the same sizes. Hence, the experiments were repeated for 50
times and the average recognition rates were given.
Leave-one-subject-out (LOSO) protocol. We considered
more challenging inter-subject validation protocols. For the
LOSO protocol, the training set consisted of the samples
from 15 subjects, and the samples from the remaining subject
were for testing. In total, the experiments repeated 16 times
and in each time one of the sixteen subjects was excluded.
The LOSO is beneficial for testing the robustness of an
algorithm when the number of samples is small. The average
recognition rate over 16 runs was estimated.
Cross-subject protocol In the cross-subject protocol, we
randomly selected 50 permutations for dividing 16 subjects
into two groups, in which gait samples by 8 subjects were
used for training, and the test data came from the remaining
8 subjects. The average recognition accuracy over 50 exper-
iments was reported.

In Table III, we report the comparison results in recogniz-
ing six gait patterns with different methods and protocols.
Bold denotes the highest recognition rate under each pro-
tocol, and underline indicates the second-best result. It can
be seen that our proposed method outperforms the previous
methods in terms of recognition accuracy under various pro-
tocols. The classification results achieved by SVM- [7] are
inferior to other recognition methods validated in this work.
This method is affected severely from differences in body
sizes and body movements across subjects. BiLSTM- [11]
and BiLSTM- [19] achieve similar recognition accuracies.
However, they are still inferior to those by our proposed ap-
proach. In addition to the features proposed in [11], we also
calculate the {thigh angle, shank angle, and foot angle} that
reflect the relationship between the lower skeleton and the
floor plane. Moreover, the joint angles with respect to the

local human body coordinate system also help capturing
subtle differences among abnormal gait patterns. On the other
hand, the DSRF descriptor in [19] was devised to be invari-
ant to rigid transformations by rotational normalization and
trajectory length normalization. Apparently, these invariant
properties reduce the ability to detect subtle changes among
various gait patterns.

TABLE III
CLASSIFICATION RESULT ON SIX ABNORMAL GAIT RECOGNITION

Methods\Protocol Intra-subject LOSO Cross-subject
SVM-GT 89.86% 60.82% 54.36%
SVM-EST 88.19% 60.21% 54.27%
SVM-[7] 38.98% 30.64% 23.83%

BiLSTM-GT 90.75% 61.55% 54.43%
BiLSTM-EST 87.79% 60.67% 54.08%
BiLSTM-[11] 68.54% 47.08% 36.86%
BiLSTM-[19] 63.41% 44.71% 39.51%

As can be observed, the recognition accuracies under the
intra-subject protocol are much higher than those with inter-
subject validation protocols (LOSO and cross-subject). This
is because distinct people have different body sizes and
additionally exhibit individual differences in both normal and
abnormal walking styles. Although a personalized classifier
is beneficial for discriminating the gait patterns, it is not
applicable to collect all the candidate gait abnormalities of a
person in the real-world applications. The BiLSTM methods
achieve superior recognition results with respect to the GT
data under the LOSO (61.55%) and cross-subject (54.43%)
protocols, respectively. Due to the reduced size of the training
data, the recognition rates under cross-subject protocol are
slightly lower than those with the LOSO protocol. More im-
portant, the classification rates using the EST data are slightly
inferior to those using the GT data, which emphasizes the
effectiveness of the proposed system in terms of lower pose
estimation.

However, the recognition results on the six gait pattern
recognition task are unsatisfactory, in which the accuracies
under LOSO and cross-subject protocols are below 62%.
Figs. 8(a) and (b) plot the confusion matrix of the highest
recognition rates under intra-subject (90.75%) and LOSO
(61.55%) protocols. It can be seen that the supination and
pronation are difficult to differentiate by the proposed recog-

(a) Intra-subject: 90.75% (b) LOSO protocol: 61.55%

Fig. 8. Confusion matrix of six classes abnormal gait recognition.
Supination and pronation are easily confused with the normal gait.



nition approaches. This is because the correction insoles
introduce only slight differences in pronation and supination
compared to normal gait. We expect the sensitivity of the
classification to increase with the addition of more subjects
for training.

Moreover, we also assessed four gait patterns (normal,
in-toeing, out-toeing, and drop-foot gait) as reported in
Table IV for demonstrating the potential clinical value of
the proposed technique. The highest recognition rates with
different methods under the intra-subject protocol are 99.31%
(SVM-GT) and 98.55% (BiLSTM-GT), which emphasizes
that the personalized classifier can detect the gait abnor-
malities with high precision. As for the LOSO protocol,
the BiLSTM method achieves the better recognition rates
88.90% and 87.44% with GT and EST data, respectively.
Compared to results under the intra-subject protocol, the
recognition rates using the LOSO protocol drop around 15%
due to the individual differences in normal/abnormal gait
styles. Without considering the challenging supination and
pronation gait patterns, the results in recognizing four gait
patterns are significantly increased.

TABLE IV
CLASSIFICATION ACCURACY IN RECOGNIZING NORMAL, IN-TOEING,

OUT-TOEING, AND DROP-FOOT GAIT PATTERNS

Methods\Protocol Intra-subject LOSO Cross-subject
SVM-GT 99.31% 85.15% 76.77%
SVM-EST 96.27% 84.55% 73.79%
SVM-[7] 56.08% 39.01% 31.10%

BiLSTM-GT 98.55% 88.90% 76.32%
BiLSTM-EST 97.43% 87.44% 75.32%
BiLSTM-[11] 73.99% 67.02% 59.81%
BiLSTM-[19] 70.70% 60.08% 54.15%

V. CONCLUSIONS
In summary, we have presented in this paper a mobile 3D

gait analysis system for monitoring patients at their home
based on an RGB-D sensor and a light-weight mobile robot.
To deal with the 3D pose estimation in the moving cam-
era frame, visual-SLAM was used to localize both camera
movement and the human gait in a canonical coordinate
system, which enables the calculation of the joint kinematics
and quantitative gait features. Our work does not merely
combine two approaches but it integrates them in a way that
the accuracy of each of the subsystems improves. We have
demonstrated this with results that show the improvement of
camera localization as well as several comparisons with state-
of-the-art methods in abnormal gait detection. We use both
SVM and BiLSTM to classify gait patterns of normal, in-
toeing, out-toeing, drop-foot, supination and pronation gait.
Our proposed method outperforms the previous approaches
in terms of recognition accuracy. Pronation and supination
are based on correction insoles and therefore only result in
subtle changes in the foot position. Future work would aim
to increase the number of subjects to avoid overfitting of
the neural network and improve the feature selection for
detecting subtle gait changes.

REFERENCES

[1] G.-Z. Yang, Body Sensor Networks. Springer, 2006.
[2] S. Chen, J. Lach, B. Lo, and G.-Z. Yang, “Toward pervasive gait

analysis with wearable sensors: a systematic review,” IEEE J. Biomed.
Health Inform., vol. 20, no. 6, pp. 1521–1537, 2016.

[3] L. Penteridis, G. D’Onofrio, D. Sancarlo et al., “Robotic and sensor
technologies for mobility in older people,” Rejuvenation Res., vol. 20,
no. 5, pp. 401–410, 2017.

[4] T. Seel, J. Raisch, and T. Schauer, “Imu-based joint angle measurement
for gait analysis,” Sensors, vol. 14, no. 4, pp. 6891–6909, 2014.

[5] A. Pfister, A. M. West, S. Bronner, and J. A. Noah, “Comparative
abilities of microsoft kinect and vicon 3d motion capture for gait
analysis,” J. Med. Eng. Technol., vol. 38, no. 5, pp. 274–280, 2014.

[6] F. Deligianni, C. Wong, B. Lo, and G.-Z. Yang, “A fusion framework
to estimate plantar ground force distributions and ankle dynamics,”
Inform. Fusion, vol. 41, pp. 255–263, 2018.

[7] S. Bei, Z. Zhen, Z. Xing et al., “Movement disorder detection via
adaptively fused gait analysis based on kinect sensors,” IEEE Sens. J.,
vol. 18, no. 17, pp. 7305–7314, 2018.

[8] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7291–7299.

[9] X. Gu, F. Deligianni, B. Lo, W. Chen, and G.-Z. Yang, “Markerless
gait analysis based on a single rgb camera,” in Proc. IEEE Int. Conf.
Wearable Implant. Body Sens. Netw. (BSN). IEEE, 2018, pp. 42–45.

[10] J. Shotton, T. Sharp, A. Kipman et al., “Real-time human pose
recognition in parts from single depth images,” Commun. ACM,
vol. 56, no. 1, pp. 116–124, 2013.

[11] T.-N. Nguyen, H.-H. Huynh, and J. Meunier, “Skeleton-based abnor-
mal gait detection,” Sensors, vol. 16, no. 11, p. 1792, 2016.

[12] W. Chi, J. Wang, and M. Q.-H. Meng, “A gait recognition method
for human following in service robots,” IEEE Trans. Syst., Man, and
Cybern., Syst., vol. 48, no. 9, pp. 1429–1440, 2017.

[13] G. Wilson, C. Pereyda, N. Raghunath et al., “Robot-enabled support of
daily activities in smart home environments,” Cogn. Syst. Res., vol. 54,
pp. 258–272, 2019.

[14] E. W. McClain and S. Meek, “Determining optimal gait parameters
for a statically stable walking human assistive quadruped robot,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). IEEE, 2018,
pp. 1751–1756.

[15] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, 2017.

[16] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision
and Applications, vol. 9, no. 16, pp. 1–11, 2017.
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